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Abstract

Accurate segmentation of the prostate, the seminal vesicles, the bladder and the rectum is

a crucial step for planning radiotherapy (RT) procedures. Modern radiotherapy protocols

have included the delineation of the pelvic organs in magnetic resonance images (MRI), as

the guide to the therapeutic beam irradiation over the target organ. However, this task is

highly inter and intra-expert variable and may take about 20 minutes per patient, even for

trained experts, constituting an important burden in most radiological services. Automatic

or semi-automatic segmentation strategies might then improve the efficiency by decreasing

the measured times while conserving the required accuracy. This thesis presents a fully

automatic prostate segmentation framework that selects the most similar prostates w.r.t. a

test prostate image and combines them to estimate the segmentation for the test prostate.

A robust multi-scale analysis establishes the set of most similar prostates from a database,

independently of the acquisition protocol. Those prostates are then non-rigidly registered

towards the test image and fusioned by a linear combination. The proposed approach was

evaluated using a MRI public dataset of patients with benign hyperplasia or cancer, follow-

ing different acquisition protocols, namely 26 endorectal and 24 external. Evaluating under

a leave-one-out scheme, results show reliable segmentations, obtaining an average dice coef-

ficient of 79%, when comparing with the expert manual segmentation.

Keywords: Radiotherapy planning, MRI prostate segmentation, atlas based approaches,

label fusion strategy.
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Resumen

La delineación exacta de la próstata, las veśıculas seminales, la vejiga y el recto es un paso

fundamental para el planeamiento de procedimientos de radioterapia. Protocolos moder-

nos han incluido la delineación de los organos pélvicos en imágenes de resonancia magnética

(IRM), como la gúıa para la irradiación del haz terapéutico sobre el órgano objetivo. Sin em-

bargo, esta tarea es altamente variable intra e inter-experto y puede tomar al rededor de 20

minutos por paciente, incluso para expertos entrenados, convirtiéndose en una carga impor-

tante en la mayoŕıa de los servicios de radioloǵıa. Métodos automáticos o semi-automáticos

podŕıan mejorar la eficiencia disminuyendo los tiempos medidos mientras se conserva la

precisión requerida. Este trabajo presenta una estrategia de segmentación de la próstata

completamente automático que selecciona las próstatas más similares con respecto a una

imágen de resonancia magnética de prueba y combina las delineaciones asociadas a dichas

imagenes para estimar la segmentación de la imágen de prueba. Un análisis multiescala

robusto permite establecer el conjunto de las próstatas más parecidas de una base de datos,

independiente del protocolo de adquisición. Las imágenes seleccionadas son registradas de

forma no ŕıgida con respecto a la imágen de prueba y luego son fusionadas mediante una

combinación lineal. El enfoque propuesto fue evaluado utilizando un conjunto público de

imágenes de resonancia magnética de pacientes con hiperplasia benigna o con cáncer, con

diferentes protocolos de adquisición, esto es 26 externas y 24 endorectales. Este trabajo fue

evaluado bajo un esquema leave-one-out, cuyos resultados mostraron segmentaciones confia-

bles, obteniendo un DSC promedio de 79%, cuando se compararon los resultados obtenidos

con las segmentaciones manuales de expertos.

Palabras Clave: Planeación de la radioterapia, segmentación de la próstata en imagenes

de resonancia magnética, enfoques basados en atlas, estrateǵıa de fusión de etiquetas.
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1 Introduction

The prostate is the male reproductive gland responsible for producing the fluid that protects

and nourishes the sperm, increasing the spermatozoid spanlife [13]. By a natural process

and under the influence of a large quantity of different factors, the prostate may undergo a

certain degree of hypertrophy or cancerous lesions. The prostate cancer has become a highly

prevalent disease and an important public health problem worldwide, being the second most

common cancer in men with about 15% of the cancers diagnosed in 2012 (approximately 1.1

million men worldwide) [25]. In 2012, 399.964 new cases were reported in Europe and 92.247

deaths were prostate cancer-related [24]. Likewise, in Colombia, about 6.521 new cases

and 2.482 prostate cancer-related deaths were discovered in 2014 [52]. Finally, in United

States, for 2015 it is estimated 220.000 new cases and 27.540 deaths prostate cancer-related

[7]. This disease has triggered a series of public health interventions to improve both the

early diagnosis and the patient management. Nowadays, different treatments such as the

external beam radiation therapy (ERBT), chemotherapy or surgery constitute the battery

upon which the treatment is established, based on the evidence and analysis of the tumor

characteristics, nodes and metastases [26]. Currently, the external beam radiation therapy is

commonly used as part of any protocol [1] since it has been demonstrated that it reduces the

risk of metastasis in early stages [96], while it improves the disease-free survival and relieve

the pain in advanced stages [9, 96, 78].

EBRT consists in externally irradiating the target structures (prostate and seminal vesicles)

using high-energy x-ray photons during different sessions, delivering different dose quantities

according to a pre-established treatment protocol. A first EBRT step is the planning of

dose, case in which a computed tomography (CT) is used to delineate the target and organs

at risk (OAR) and then design a specific radiation dose delivery map [76, 39]. Such map

is usually used to localize the organs of interest in consecutive radiotherapy sessions, under

the strong assumption that, with respect to the machine, the organs are located at the same

place during the treatment. Recently, Image Guided Radiation Therapy (IGRT) has arisen

as a specialized radiotherapy treatment, for which the initial CT is compared with a Cone

beam computed tomography (CBCT) image, captured at every sesion, thereby obtaining a

better target localization [31, 63] and reducing the toxicity of radiation onto bladder and

rectum [51, 43].

In spite of the improvement about target localization in IGRT, supported by CTs delin-

eations, this planning step remains dependent on the expert knowledge with the inherent

high intra and inter-expert variability among several delineations [99]. Even worst, the or-
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gan delineation on CT volumes is a really difficult task because of the very poor contrast

between different soft tissues, which makes organ boundaries indistinguishable, still for a

trained expert [37, 67, 83]. Modern protocols have included magnetic resonance imaging

(MRI), taking advantage of the high soft tissue contrast and aiming to improve the accuracy

of the radiation planning [47]. Overall, the manual delineation carried out over the MRI is

typically propagated to the CT by using a registration strategy upon which the dose deliver-

ing planning is performed [37]. Although visualization of soft tissues is much better in MRI,

nonetheless it is a considerable burden on the workflow of any radiotherapy service, around

20 to 40 minutes per patient [20]). Again, the inter and intra-expert variability is a crucial

issue in terms of attention of a real patient [23]. In consequence, reliable and reproducible

(semi)-automatic segmentation techniques have an important role in this problem, but they

have to cope with a certain number of challenges: 1) the natural variability of organ shape

structure [86, 88, 39, 102], 2) the continuous change of physiological states,which resulting in

different representations of pixel distribution [18], 3) some prostate regions like the apex re-

main very blurred [57], 4) the large prostate deformation during MRI endorectal coil (ERC)

acquisition [17, 48, 86] and 5) intensity artifacts surrounding the ERC, called near-field effect

[4].

Several strategies that segment the prostate in MRI, have been reported, usually using

structural and appearance prior information from volume delineations. The prior informa-

tion is commonly used in strategies such as the statistical shape models, machine learning

approaches and atlas based methods. Statistical models use a set of organ observations to

construct a statistical organ prior [97] and the most probable organ shape is selected using a

customized cost function. These methods are highly dependent on the cost function defini-

tion and their accuracy is limited because of the dependency on the available set of samples

to deal with the shape variability. Likewise, machine learning techniques try the segmen-

tation as a classification problem, for which a set of image features allows to differentiate

between the target organ and the background [27]. However, most of these selected fea-

tures are global estimators with no spatial information, for instance occurrence descriptors,

whose performance is dependent on their invariance, a hard task in such noisy images. Atlas

based approaches are still the most often used framework, given the particular advantages to

model prior information from a reduced similarity space of samples. Currently, there exist

many different applications for which atlas-based approaches have shown competitive results

[43, 88, 62]. This atlas-framework builts the prior shape from a set of reduced samples se-

lected according to a similarity criterion. Hence, a main component of these strategies is the

cost function metric that allows to statistically narrow the space of samples, while remaining

flexible enough to represent the space from different kind of features. The success of such

strategies is however highly dependant on this measure, that is commonly defined using

appearance features, organ morphology, region identification or specific patterns captured

from expert medical knowledge.
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1.1 Prostate segmentation strategies on magnetic

resonance images

The delineation of the prostate and organs at risk during the IGRT planning is a fundamental

step to setting up the irradiation dose during consecutive sessions [105, 65]. Different compu-

tational strategies have been proposed in the state-of-the-art to automatically segment organs

of interest in image sequences, almost always conserving a relative relationship between the

accuracy and the computational time to obtain reliable results [87, 43, 60, 57]. However,

many challenges remain open because the natural shape variability, the common fuzzy organ

edges and the inclusion of diverse acquisition protocols [86, 88, 39, 102, 57, 17, 48, 86]. In

this section is presented a deeply description and analysis of the most relevant computational

approaches proposed to segment target structures and organs at risk, including a classifica-

tion of such strategies according to prior shape modelling and the definition of likelihood

rules. In general, most proposed approaches use prior knowledge about the organ of interest

that allow to adjust particular shapes in new images by appearance descriptors and machine

learning techniques. Four set of methods are described according to prior shape modeling

and the definition of likelihood rules to warp this geometrical information to new images.

A first group considers statistical shape priors, typically adjusted with low level image fea-

tures (section 1.1.1). A second group describes the atlas based approaches, that for a new

image associate a prior shape obtained from the most similar samples in a MRI population

(section 1.1.2). In addition, a third group gathers deformable models and iterative warping

techniques (section 1.1.3). Finally, it is described the machine learning methods which try

the segmentation as a classification problem to distinguish between the organ of interest and

the background (section 1.1.4).

Computational approaches typically take advantage of prior information to better estimate

geometry and localization of the organ of interest. Such information is based on oncologist

shape delineations. The analyzed strategies were grouped according to the dependence on

the prior information and how this representation is warped to each new image, as illistrated

in Figure 1-1. In the following sections are discussed each of these groups.

1.1.1 Statistical Shape Models

Statistical shape models (SSM) are one of the most useful strategies for prostate segmenta-

tion, in which a prior shape representation is learned from a set of manual delineations and

then such model is coupled with target images [35, 3, 39, 70, 81, 38, 74]. To built the learned

shape model, the delineation samples are firstly aligned to be invariant under transformations

such as translation, rotation and scaling, and then a principal component analysis (PCA) is

used to obtain a statistical shape representation of uncorrelated principal shape components

from the set of correlated delineations [10, 14]. The PCA transformation allows to obtain

the mean shape x and the principal shape variations Pb, where P are the first eigenvectors of
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Figure 1-1: Classification of state-of-art strategies. Although in almost all strategies pro-

posed in the literature the prior delineation is fundamental component, each

author have proposed different strategies to model this information and also

have been proposed different descriptors to extract relevant features about the

organs of interest.

covariance matrix and b are the shape model parameters [33, 22]. From this representation

is then possible to built a set of shapes with different levels of variance, as x ≈ x+Pb, under

a gaussian distribution hypothesis, as seen in Figure 1-2. Although this strategy has been

widely used in many applications, the anatomical variability representation remains limited.

Other approaches have tried to cover the shape variability with more sophisticated strate-

gies, for instance, Roweis et al. [84] proposed a representation by using an expectation

maximization to learn the principal variations. This approach is inherently limited because

the accuracy of the representation depends on the initialization parameters, and the rate

of convergence in some cases is critical. Prior shapes have also been modelled from Inde-

pendent component analysis (ICA), by minimizing the statistical dependence between the

basis vectors, and therefore maximizing the sparsity [82, 58]. However, this representation

many times lost local variability of the structure of interest because the induced sparsity

property, which in many cases result fundamental to adjust new shapes. In addition, the

dimensionality reduction given by the ICA is not ordered, reason why further algorithms are

required to perform vector sorting and discard those that describe noise. Likewise, medial

or skeleton models have been used to reduce the shape dimensionality by representing the

object using only center lines and corresponding radii collections [8, 90]. However, these
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Figure 1-2: Statistical shape models. A set of shapes with different levels of variance is

built using expert delineations. Prior shape matching is performed by user

interaction or automatic methods.

approaches can fail to detect and identify the skeleton geometries of complex shapes like the

organs.

Further strategies have been focused on mapping the prior representation with the target in

the image space. This process is performed using local intensity similarity search algorithms

that require an initial estimation by user interaction. In these strategies, the expert interven-

tion may introduce inter-observer variability and high time consumption [80]. Alternative

approaches have worked in the shape initialization task, by using histogram matching, affine

registration with an atlas [41] and evolutionary algorithms (EA) [36]. Such strategies remain

with some mistakes for shape initialization because of image noise, intensity variability in a

population and artifacts used in clinic (e.g. gold markers) can alter the image appearance.

Alternatively, Active shape models (ASM) [93] couple appearance and shape statistical rep-

resentations learned from a training database. Such representations are characterized around

of a set of landmarks localized close to of the edges of shape delineations. This coupled shape

model is then deformed to a new image according to a cost function that locally searches

intensity similarities [35]. The cost function is generally expressed as a Mahalanobis dis-

tance in the image space that takes into account data correlation and it is invariant to scale

[92, 66]. Other metrics have been proposed as an external and internal energy relation-

ship. In this case, the internal energy preserves the smoothness of the contours while the

external propagates the deformable model towards a boundary, preserving in this way the

shape compactness and coherence [86, 56, 18]. Despite the active shape models incorporate

texture information, in many cases these strategies are very sensitive to model initialization
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and sometimes fail to converge to the desired edges because of the sparse landmarks corre-

spondence [80]. For automatic shape initialization have been proposed different strategies

based on classifiers that localize the region with major probability to contain the prostate,

for instance: boosted classifier [56], bayesian methods [15] and k-means clustering [80].

Otherwise, in Active appearance models (AAM) [94] the whole bounded prostate region is

fully characterized by its appearance and then coupled with statistical shape models, which

combined with search strategies allows to map the learned model to a new image. In this

case, the model combines shape and appearance models into a linear system as a compact

feature descriptor. In prostate applications, the appearance model has been characterized

from texture representation [59, 97, 35] with stable result in a limited group of images,

however the accuracy of the method is contrasted with the computational cost. Ghose et

al. [87] propose a AAM variation to reduce the computation cost, in which the deformation

process is carried out by the approximation of Haar wavelet transform coefficients instead

of using the raw intensities.

1.1.2 Atlas

Atlas approaches arise as a powerful alternative for prostate segmentation, in which a set

of labeled atlases and a similarity criterion allow to pick the most likely shapes for a new

unlabeled image. In such strategies, the whole atlas dataset is firstly aligned and warped

w.r.t the new image by using classical rigid and nonrigid registration techniques. Typically,

rigid registration strategies are used to set a common reference space [71] and non-rigid

registration techniques allow to warp the atlases to unlabeled images, such as free-form

deformation (FFD) [19] and demons algorithms [95]. According to the number of atlases

used to estimate the segmentation, these strategies can be considered as single (the most

similar atlas is warped to the new image) or multi atlas approaches (a set of weighted atlases

contributes to estimate the new segmentation). Single-atlas based approaches missed the

natural high anatomical variability even when a close appearance similarity is established

between two MRI samples. For this reason, it is most common to cover the anatomical

shape variability by fusing different atlas segmentations from a local analysis, as depicted in

Figure 1-3.

Once the atlases are warped w.r.t. the new image, a set of the most similar atlases is selected

to limit the population of samples and built coherent shape priors for organ segmentation.

Several similarity metrics have been proposed to select the most likely atlases according to

local appearance characterization. For instance, sum of squared differences (SSD) performs a

per-pixel comparison assuming a perfect alignment between the two images [61]. In contrast,

the normalized cross correlation (CC) [44, 75] convolves both images by measuring the

degree of interdepency from a covariance matrix at a intensity level. The drawback of such

techniques lies in simple intensity comparison, which in many of the cases results noisy. On

the other hand, mutual information (MI) [45] measure the degree of dependency between
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Figure 1-3: Atlas-based approach. A set of similar prostate MRIs are selected based on a

similarity criterion, whose associated expert delineations are then combined to

obtain the segmentation for a new image.

two images by the joint intensity distribution. This metric is adaptively computed under

a stochastic gradient descent method. An additional variation of this approaches named

the Normalized mutual information (NMI) results less sensitive to changes in overlap by

using the joint entropy to normalized the measure [12, 34, 88]. Such similarity metrics have

allowed to reduce the high inter-individual variability regard to the structure of interest and

therefore the computational time by not using the whole dataset to built the shape prior.

However, the drawback of such techniques lies in the use of classical intensity comparisons,

that specially for medical imaging, result in weak and noisy information because adjacent

structures may have similar intensity distributions with the target organ boundary.

Additionally, atlas based approaches have focused their attention on defining a proper rule to

fuse the most likely atlases and built a shape segmentation on the new image. The majority

voting (VOTE) method [42] defines the segmentation as a pixel label agreement. This strat-

egy is highly dependent on an accurate non-rigid registration. Likewise, Litjens et al. [29]

proposed an iterative label fusion that discards atlases with less similarity, but with a high

registration dependency and high computational cost. An additional well known algorithm

is STAPLE (Simultaneous truth and performance level estimation) [89], that statistically

models a set of atlases as input to recover the hidden label segmentation. This approach

is inherently limited since expectation maximization requires a minimal number of atlases
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and parameters for initialization. Specifically on prostate segmentation, Klein et al. [88]

combined the atlases, selected based on NMI, by using VOTE and STAPLE, reporting large

errors at prostate-bladder boundary. A more sophisticated approach proposed by Dowling

et al. [43] firstly introduced a preprocessing step and then a similarity metric based on a

mean reciprocal square difference (MRSD), that allows to obtain reliable segmentations.

1.1.3 Deformable models

Alternatively, deformable models typically warp parametric surfaces and adjust them to the

MRI prostate contour, as shown in Figure 1-4 [64]. These strategies require a starting seed

(point or surface) and a large amount of constraints to fit the model. In terms of automatic

initialization, Makni et al. [69] used a statistical geometric model as an initial surface, that

was deformed following a Bayesian classification criterion. Likewise, Chandra et al. [91]

proposed an automatic segmentation approach that set an initial shape from a multi-atlas

strategy which is deformed from strong regularizations allowing to preserve shape smoothness

near to apex.

Figure 1-4: Deformable models. An initial seed and a set of constraints are used to warp

parametric surfaces and fit them to the target organ contour.

Additionally, deformable models are typically represented as internal and external energies

that deform the surface with a global compactness [54, 35, 86]. For instance, Pasquier et al.

[18] used a seed region-growing method to segment the bladder. However, there are several

drawbacks such as the low contrast and therefore indistinguishable edges between the bladder

and surrounding organs. Likewise, Garnier et al. [11] uses a fast deformable model for

bladder segmentation, in which a prior is built from a weighted sum of internal and damping

forces that lead a mesh deformation toward the image. This model is computationally

expensive because the large number of iterations to adjust complex shapes.
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Active contour model (ACM) is one of the most known deformable models, which include a

parametric curve that follows the gradient directions of an image target to fit the segmen-

tation [55, 98, 103, 86, 92]. Different approaches have been proposed to overcome manual

initialization in ACM, for instance Gao et al. [28] used atlas-based approach and Artan et al.

[101] proposed a graph-based active contour method by using a statistical shape model as an

initial shape prior. Active contour models only incorporate edge information and therefore

these models may be sensible to noise and present difficulties to be adapted toward complex

topologies [104, 98]. In contrast, level set method [72, 79] represents the shape contour as

a signed function that evolves according to intensity region differences on local neighbor-

hoods [16, 100]. These methods describe topological changes, allowing an efficient splitting

and merging of the curve. Nevertheless, this algorithm is sensitive whether the structure of

interest has a gap in the boundary.

1.1.4 Feature-based models

Prostate segmentation has been also treated as a classification problem, in which the MRI is

projected into an image feature space to characterize different tissues, such as the prostate

tissue and the background neighbor tissues that correspond to the bladder and the rectum,

as presented in Figure 1-5. This space, a patchwork of regions, is divided up according to

the probability of each feature to be a member of a prostate tissue or the background [86].

In this segmentation strategy, it is typically used supervised learning algorithms that involve

phases of training and testing. During training, the MRI features (manually labelled) are

learned setting hyperplanes to separate different tissues [85]. Then, a new MRI is segmented

by measuring the distance between the features of the new image with the classification

model.

Several approaches have been proposed under this machine-learning framework. For instance,

Ghose et al. [2] used an appearance and spatial patch-based characterization of different

tissues, constructing a multitude of decision trees classifiers from a random decision forest.

From this classifier was obtained a coarse patch-based prostate segmentation that was refined

by a classical level sets propagation. This approach achieved reliable segmentations but

manual initialization is required to define the first and last prostate slices.

A more sophisticated approach was proposed by Litjens et al. [27], under a multi-feature

space that includes geometry, intensity and texture features. The geometry is related with

specific salient anatomical positions relative to the organ positions, while the intensity is

used to compute the apparent diffusion coefficient (ADC) in each voxel. Finally, texture

information is modelled as the homogeneity and correlation using the co-occurrence matrix,

histogram information, entropy and texture strength features. A linear discriminant classifier

was used under such multidimensional feature space to separate central gland and peripheral

prostate zone. Although this approach showed reliable segmentations for the central gland,

the peripheral zone remains very challenge because in this zone the tissue is very thin.
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Figure 1-5: Feature-based model. A set of features extracted from MR training images are

used to built a classification model that is then used to segment the prostate.

1.2 Contributions and Academic products

This thesis introduces an automatic atlas-based strategy that segments the prostate from

MRI sequences, captured during radiotherapy planning. Two main contributions are pro-

posed in this work: a novel similarity metric to narrow the MRI samples and a robust

strategy to linearly combine the expert delineations of such subset of MRI samples. For

the computation of the similarity metric, the test image and every template in the database

are firstly represented in a multi-scale salient point space, in which a reduced set of points

allows to describe the region of interest. The main advantage of this representation is the

scale and rotation invariance properties that allow a more robust matching between each

pair of images. In such multi-scale space, the proposed similarity metric is defined as the

occurrence of the SURF points matched using a nearest neighbor algorithm and regularized

by the total number of points detected in each RoI. This similarity metric allows to reduce

the set of prior-samples in the database, preserving the organ variability but discarding the

outliers that have not contribution. Additionally, the multiscale salient point representation

allows to recover the most similar templates, independently of the particular MRI capturing

modality i.e. external and endorectal coil.

A second contribution, the linear combination of prior delinations, as a set of similar tem-
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plates that were previously selected with the similar multiscale criterium, are fussed to esti-

mate the prostate segmentation. For so doing, each selected template is non-rigid registered

towards the target, together with the expert associated delineation. Then, a patch-based

analysis is performed to estimate the local contribution of each template to the target ac-

cording to an appearance-similarity rule. This fusion strategy takes advantage of the patient

shape variability and shows more reliable results when comparing with the expert manual

segmentations. The results of this work were published in:

• Charlens Álvarez, Fabio Mart́ınez and Eduardo Romero. A novel atlas-based ap-

proach for MRI prostate segmentation using multiscale points of interest. Proceedings

of the International Seminar on Medical Information Processing and Analysis, SIPAIM

2013, November 11-14, 2013. Ciudad de México, México.

• Charlens Álvarez, Fabio Mart́ınez and Eduardo Romero. An automatic multi-atlas

prostate segmentation in MRI using a multiscale representation and a label fusion strat-

egy. Proceedings of the International Seminar on Medical Information Processing and

Analysis, SIPAIM 2014, October 14-16, 2014. Cartagena, Colombia.

1.3 Thesis outline

The remaining chapters of this thesis are organized as follows:

• Chapter 2: A novel atlas-based approach for MRI prostate segmentation

using multiscale points of interest. This chapter presents a prostate segmentation

strategy under which a novel multiscale similarity metric allowed to select the most

similar template, whose expert segmentation, non-rigidly registered, corresponds to

the segmentation for the unlabeled MRI. The proposed strategy demonstrated to be

robust to natural high prostate shape and MRI variability, including the fact of mixing

up images from different acquisition protocols.

• Chapter 3: An automatic multi-atlas prostate segmentation in MRI us-

ing a multiscale representation and a label fusion strategy. This chapter

introduces a multi-atlas strategy for prostate segmentation, taking as advantage of the

variability of anatomical structures. Under this strategy, the proposed similarity metric

allows to retrieve a set of the most similar templates and a patch-based strategy allows

to estimate a statistical prior representation. This framework showed more reliable

segmentations when comparing with manual delineations performed by experts.

• Chapter 4: Conclusions and Perspectives. This final chapter presents the main

conclusions of the proposed work, highlighting the main contributions achieved and

its impact in the research area. In addition, it depicts some of the future research

directions and perspectives promoted by this thesis.
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prostate segmentation using

multiscale points of interest

This chapter presents a robust multi-scale similarity analysis in an automatic atlas-based

segmentation strategy to select the most probable template from a database. Once that

probable template is selected, the associated segmentation is non-rigidly registered to the

new MRI. Results show that the method produces reliable segmentations, obtaining an

average dice coefficient of 72% when comparing with the expert manual segmentation under

a leave-one-out scheme with the training database. The complete content of this chapter has

been published as a research article in the proceedings of 9th International Seminar on

Medical Information Processing and Analysis (see [5]).

2.1 Introduction

External beam radiotherapy (EBRT) is the most common treatment for prostate cancer [1].

In such a procedure, a prescribed dose of radiation is applied to the gland tissue, provided

that the target volume has been delimited using a manual delineation of the organ in com-

puter tomography images (CT). Besides of the large anatomical variations of the prostate

shape, the prostate and its neighboring organs are mostly composed of connective tissues

that, when imaged, show poor contrast and then are visually indistinguishable. Currently,

new EBRT protocols simultaneously include pelvic CT and MRI captures so that a manual

delineation over the MRI is propagated to the CT, improving thereby the accuracy of the

radiation planning. Yet visualization of smooth tissues is much better in MRI images, man-

ual delineation nonetheless takes a considerable time (around 20 to 40 minutes to delineate

each image) and inevitably introduces high intra and inter expert variability [23, 99]. In

consequence, reliable, and reproducible (semi)-automatic segmentation techniques are ap-

pealing in this context. Several problems may arise from such automatic methods: 1) the

natural shape variability [88], 2) fuzzy borders between neighboring organs [57] and 3) a

large prostate deformation when acquiring the image, specifically in MRI endorectal coil

(ERC) scans produced by the probe (which is removed during radiation treatment) [48].

Several strategies have been proposed to segment the prostate in MRI, principally using

structural and appearance prior information, namely statistical shape models, machine learn-
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ing approaches and atlas based methods. Statistical models use a set of organ observations

to match an statistical organ prior [97], which is mapped to the space of MRI observations

under a customized cost function. These methods however are highly dependent on the cost

function definition and their accuracy is limited since they depend on the available number

of samples to build up a consistent shape model. Likewise, machine learning techniques try

the segmentation as a classification problem, case in which a set of features is set to robustly

represent each organ of interest [27]. However, most selected features are global estimators

with no spatial information whose performance is dependent on their invariance, a hard task

in such noisy images.

The atlas based approaches are still the most frequently applied methodological framework.

The general pipeline consists in selecting the prostate shape with the most probable template

and register the associated segmentation to the new MRI [62, 88]. Although atlas-based

approaches may provide prior structural information, a high inter-individual variability and

registration errors can hamper the segmentation. A main step in such approaches is the

selection of the most similar templates among a set of prostates, which requires the definition

of a similarity measure. An stand out atlas based approach was proposed by Klein et al [88],

for which the template selection was performed by using the normalized mutual information

(NMI) as similarity index. This metric is nevertheless highly dependant on an accurate

rigid registration for it requires to measure the correlation between the same overlapped

anatomical structures. Gao [77] proposed to start by splitting external and endorectal coil

MRI to reduce the search space. The method uses an intensity regional cost function to

select the most probable template, however the result is highly noisy for it uses exclusively

intensity values without any anatomical reference.

The main contribution of this work is a novel multiscale similarity metric, under which a

prostate candidate is associated with the more similar templates in a database. The method

starts by selecting a region of interest (RoI) around the associated segmentation of each

template. This RoI is superimposed to the new MRI and used as reference frame, within

which, the SURF, a multiresolution transformation, is computed. In such multiresolution

SURF space, the set of points of interest are matched by a nearest neighbor algorithm and

an euclidean metric, weighted by the correlation of such points, defines a similarity estima-

tion. Finally, the segmentation of the most similar template is propagated by non rigidly

registering such template to the new MRI. The rest of this paper is structured as follows:

Section 2.2.1 describes alignment and the image pre-processing. Then, in section 2.2.2 is

presented RoI extraction and SURF description. In section 2.2.3, the definition of the simi-

larity measure used in the propose method is described. Section 2.2.4 describes the non-rigid

registration step and section 2.2.5 present the experimental setup. Finally the evaluation

and results obtained by our approach are shown in section 2.3 and the last section concludes

with a discussion and possible future work.
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Figure 2-1: The pipeline of the proposed approach. (a) a MRI atlas library is built, each

of the prostates is already segmented. (b) the atlas library is aligned w.r.t the

new image. Then, the previously determined RoI is superimposed to the new

MRI and used as a reference frame within which multiresolution salient points

(Surft transform) are calculated (c). Finally, the most similar template is set

as the larger number of correspondences between any of the templates and the

prostate candidate (d). Selected segmentation is then propagated by non-rigid

registration

2.2 Materials and methods

Under an atlas based framework, the proposed approach is able to find the most similar tem-

plate of a new MRI using a slice-wise multiscale analysis. Firstly, the MRI atlas library was

3D-aligned to a common reference w.r.t the new MRI. Prostate RoIs were computed for each

template, using as reference the associated segmentation. Then, they were superimposed to

the candidate prostate. A likelihood allowed to find the best geometrical correspondence

of a set of computed multiresolution points (SURF) between every atlas and the new MRI.

Finally the associated segmentation was 3D-non-rigidly registered to the prostate candidate

to obtain a refined segmentation. The proposed method is summarized in Figure 2-1.
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2.2.1 Pre-processing and alignment of Data

In the proposed work, it was codified a prior appearance and shape organ as an atlas-library

{ti}ni=1 by using a set of n real MRI samples captured from different machines and patients,

which have an associated manual prostate delineation si. Firstly, it was preprocessed and

corrected all samples used to build the atlas in order to remove noise and normalize the high

inter-subject intensity variability, leaving each tissue type more uniformly along the dataset

[50]. Then, the atlas library was then rigidly registered with the new MRI using a classical

“block matching” method [71], thereby ensuring a common reference space. For so doing,

a non-local means algorithm [46] was firstly used to remove the acquisition noise, followed

by a simple histogram equalization that normalizes intensity contrast of every pelvic tissue.

Thus, a set of RoIs with size {S ′i = Si + ξ} were set for the whole set of data, being S ′i the

organ segmentation associated to every template ti and ξ a tolerance value.

2.2.2 Multiresolution MRI Shape Representation

Multiresolution modeling aims to capture structural image information that should somehow

conserve a certain coherence among the different scales [53, 49]. In this work, it was obtained

a multiresolution representation of each RoI using the Speeded Up Features (SURF) detector

and descriptor [32]. SURF, in general terms, offers an invariant image description, allowing

a robust representation against illumination, scale and rotation changes. For the proposed

approach, the salient multiresolution points compactly describe the prostate and neighbor

organs.

For SURF description, a multiresolution image decomposition is firstly carried out by op-

erating a Hessian matrix over the integral image representation, defined as: I∑(x). In this

descriptor, a Hessian matrix is convolved at each specific point X and for each particular

scale σ, as:

H(X, σ) =

[
Lxx(X, σ) Lxy(X, σ)

Lxy(X, σ) Lyy(X, σ)

]
(2-1)

A set of salient points are then obtained as the maximum determinant of the Hessian (DoH),

as : |DoH(u)| > th, where th is a relevancy threshold. Each point is composed of its

associated scale, a unique orientation estimated using the Haar wavelet coefficients and a set

of features calculated within its neighbourhood. Finally correlation between salient points

of the two prostates, MRI candidate and template, was carried out by a classical fast nearest

neighbor algorithm, using the SURF descriptor as point matching criterion [68].

2.2.3 Likelihood measure

A likelihood measure was defined as the manual segmentation that better adjust to the

MRI prostate candidate. This similarity measure takes advantage of the spatial relationship
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among m matched points from the total k detected points in the MRI prostate candidate

and j MRI template points. The per-slice likelihood metric d is defined as:

d(Xa,Ua) = ‖Xa −Ua‖+Wa (2-2)

where Xa = [xa1, xa2, . . . , xam] and Ua = [ua1, ua2, . . . , uam] are arranged vectors that contain

the set of matched points of each template and the MRI prostate candidate, respectively. In

such case, the vector size is m with m ≤ k, j. The likelihood metric is also regularized as

the point detected rate Wa in both RoIs as: Wi = |2m−|ak−aj||
ak+aj

. A global metric for the two

MRI volumes is then a simple average of the computed metric among the L slices, defined

as: sm =
1

L

L∑
a=1

d(Xa,Ua). This metric is only computed in the L slices with prostate

segmentation associated in each template.

2.2.4 Shape refinement by structural analysis and non-rigid

propagation

From the similarity metric, each template of the atlas library was sorted out using the

multiresolution coherence w.r.t the MRI prostate candidate. Then, a reduced set of the

most probable templates was selected to build a prostate probability map. This map is

constructed by assigning the highest probability to those voxels belonging to the largest

number of prostate segmentations. From this structural probability map, the delimited set of

templates are compared through an overlapping measure. The more probable segmentation

is then assigned to the new MRI. Furthermore, the associated segmentation was selected

from a multiresolution analysis but with an structural shape coherence. Finally, two non-

rigid registration state-of-the-art techniques were used to locally warp the template image,

either free-form deformation (FFD) [19] and the demons [95].

2.2.5 Data

The evaluation of the proposed approach was performed over a public dataset PROMISE12

[30], that consists of 50 MRI cases, 24 of them were acquired with endorectal coil. The dataset

just included axial T2-weighted MR pelvic images, acquired to dose planning in radiotherapy

treatment. Such dataset included patients with prostatic hyperplasia or prostate cancer.

The prostate was manually delineated by an oncologist expert. The dataset is challenged

since the cases were acquired from acquisition protocols in diverse clinicals and acquisition

scanners. Such fact may produces high inter-slice distance variability (from 0.27 to 0.75)

and image resolution (from 256x256 to 512x512). In addition, the data is a multi-center and

multi-vendor.
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Figure 2-2: Prostate segmentation result using the proposed approach. The comparison of

the of the expert segmentation (red) with the obtained by the proposed strategy

(yellow). The first line corresponds to three different endorectal coil scans and

the second corresponds to external scans.

2.3 Evaluation and Results

The evaluation was performed under a leave-one-out cross validation scheme, each time a

different MRI was selected as test while the remaining 49 cases in the dataset were used to

build the atlas library. The Figure 2 illustrates the good performance of the method in MRI

cases. The red contour corresponds to the result obtained by the presented method and the

ground truth is represented by the yellow contour, reaching in some cases perfect overlap.

As expected, failures are mainly present in apical slices because of the fuzzy borders of the

prostate.

Quantitative evaluation was performed using classical metrics described in the literature:

Dice score (DSC) measure and Hausdorff distance (HD). An overlap DSC measure is defined

as: DSC(A,B) =
2(A ∩B)

A+B
, where A and B represent the obtained area and the expert

ground truth, respectively. On the other hand, the Hausdorff measure H(A,B) computes

the maximum distance between two sets of points as max(h(A,B), h(B,A)) and h(A,B) =

maxa∈A minb∈B ‖a− b‖22. In this case, each set of points represents the organ surface. This
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measure allows to indirectly assess the compactness of the segmentation.

The table 2-1 summarizes the performance obtained by the proposed approach. As baseline

it was taken the work proposed by Dowling, et al [40], since such approach also uses atlas

strategy. Although the performance of the proposed approach result statisticallly similar,

the complete framework of the baseline is much more complex using a multi-atlas approach

and a fusion label step to get the final segmentation. Currently, state-of-the-art approaches

obtain better scores but a manual initialization is required. Classical approaches as the

Level set approach [2] or Active appearance models [97] have been also tested to try to solve

this problem. However, such methods also fail on Apex and Base prostate warping out the

segmentation of the organ.

Table 2-1: Quantitative results on the training data. The mean and standard deviation of

the respective measure from 50 experiments in a live-one-out scheme.

Segmentation DSC (mean + sd) HD

Proposed method 0.72 ± 0.13 12.61 ± 5.6

Atlas approach [40] 0.73 ± 0.13 –

The proposed approach is a fully automatic strategy and also it is able to work independently

of the acquisition modality i.e. without any previous classification of external or endorectal

coil MRI. Also, under an specific analysis over the RoI by relying in the segmentations

performed by the oncologist over the data in the library was possible to characterize the

prostate and the closer tissues allowing to find the most similar configuration between the

new MRI and each atlas-template.

2.4 Conclusion

A new methodology for segmenting the prostate in MRI was proposed based on multireso-

lution analysis to associate a manual prostate segmentation to a new MRI. The proposed

method takes advantage of both the interindividual shape variation and intra-individual

salient points representation. The method is robust to natural high prostate shape and MRI

variability, including the fact of mixing up images from different modalities. The results of

this paper suggest this metrics is very robust, not only because it is able to compare multi-

modal images but rather since such a simple strategy reaches similar results to those obtained

by much more complicated frameworks used in the state-of-the-art. Future work includes

the extension of the proposed approach to segment the organs at risk, such as bladder and

rectum. Another future work includes validation with a larger data set.
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segmentation in MRI using a

multiscale representation and a label

fusion strategy

This chapter presents a fully automatic atlas-based segmentation strategy that selects a set

of more similar templates for a new MRI using a robust multi-scale SURF analysis. Then

a new segmentation is achieved by a linear combination of the selected templates, which

are previously non-rigidly registered towards the new image. The proposed method shows

reliable segmentations, obtaining an average dice coefficient of 79%, when comparing with

the expert manual segmentation, under a leave-one-out scheme with the training database.

A complete version of this chapter has been accepted for publication as a research article in

the proceedings of 10th International Seminar on Medical Information Processing

and Analysis (see [6].

3.1 Introduction

Prostate cancer has become a highly prevalent disease and an important public health prob-

lem [25], usually treated by external beam radiotherapy (EBRT) [1]. In EBRT, a prescribed

radiation dose is applied to the gland tissue, reason why it is crucial to accurately segment

the prostate volume and surrounding organs. Currently, EBRT protocols include manual

delineation of MRI prostate sequences, estimations that are then used as templates in CT

images. However, manual delineations are a considerable burden (each around 20 to 40

minutes) and highly within and inter-expert variable [23]. In consequence, reliable and re-

producible (semi)-automatic segmentation techniques have to cope with a certain number

of challenges: 1) the natural shape variability [88], 2) fuzzy borders between neighboring

organs [57] and 3) the large prostate deformation when acquiring the image [48].

Several strategies have been proposed to segment the prostate in MRI, mainly using struc-

tural and appearance prior information such as statistical shape models, machine learning

approaches and atlas based methods, which are the most frequently applied. In such case,

a set of labelled atlases and a similarity criterion allow to pick the most likely segmentation
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for a new test image [88]. Multi-atlas strategies commonly include label fusion methods to

estimate the most probable segmentation. For instance, the majority voting [42] sets a label

by a pixel-to-pixel atlases agreement. On the other hand, Litjens et al. [29] proposed an

iterative label fusion that discards atlases with less similarity, but with a high registration

dependency and high computationally cost. Likewise, the STAPLE algorithm (Simultaneous

truth and performance level estimation) [89], statistically models a set of atlases as input to

recover the hidden label segmentation. This approach is inherently limited since expectation

maximization requires a minimal number of atlases and parameters for initialization.

In this work, an automatic prostate segmentation method is presented. The approach is

constructed upon a novel SURF-based similarity metric that retrieves alike prostate MRI

images from the dataset, which are then non-rigidly registered toward a new MRI. This

strategy is complemented by a label fusion process, consisting in a linear combination of

weighted patches from the selected prostates, obtaining a statistical representative of the set

of registered prostates.

3.2 Materials and methods

Given a new MRI, the proposed approach automatically selects, from a training bank of

samples, a subset of similar prostates using a robust multi-scale analysis (Figure 3-1(a)

and further description in sections 3.2.1 and 3.2.2). The selected prostates are non-rigidly

registered to the new MRI and a final segmentation is constructed by linearly combining

weighted patches from the set of similar prostates(Figure 3-1(b) and further description in

section 3.2.3).

Figure 3-1: Pipeline of the proposed approach. In (a), it was selected a subset of similar

prostates from the database under a multi-scale shape representation. In (b),

the selected prostates are non-rigidly registered and then by using a patch-based

strategy are linearly combined to get the final segmentation.
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3.2.1 Pre-processing and alignment of Data

As a first step, the dataset is pre-processed using histogram equalization to normalize the high

inter-subject intensity variability. The dataset is then rigidly registered with respect to the

target MRI prostate using a classical “block matching” method and so ensuring a common

reference space. A region of interest (RoI) is then defined by enclosing the prostate.

3.2.2 The similarity metric from a multiscale MRI shape representation

The similarity metric aims to select the manual prostate delineations that better adjust the

target image. For doing so, over the aligned dataset w.r.t the new image, the RoIs in both

each dataset image and the new MRI are characterized by the Speeded Up Features (SURF)

detector and descriptor [32]. This descriptor is robust to illumination, scale and rotation

changes [32]. The SURF descriptor convolves the Hessian matrix over an Integral image

representation, determining those points with larger multiscale variability through different

scales.

H(X, σ) =

[
Lxx(X, σ) Lxy(X, σ)

Lxy(X, σ) Lyy(X, σ)

]
(3-1)

A set of salient points are defined as the points with maximum determinant of the Hes-

sian (DoH) through different scales. For each salient point, available information includes

the scale at which the point was obtained, orientation estimated using the Haar wavelet

coefficients and the gradients computed within the point neighbourhood. In addition, the

descriptor was modified to include a structural coherence weight: the distance between the

found point and the manual delineation boundary. Afterwards, a matching between salient

points in both images was computed by a classical fast nearest neighbor algorithm.

The final per-slice metric d is then defined as: d(Xa,Ua) = ‖Xa −Ua‖ + Wa, where Xa =

[xa1, . . . , xam] and Ua = [ua1, . . . , uam] are arranged vectors that contain the set of matched

points of each prostate and the new MRI, respectively. The proposed similarity metric is also

regularized by the point detected rate Wa in both RoIs, defined as: Wa = |2m−|ak−aj||
ak+aj

, where

m is the number of matched points, and k, j are the number of points found in the database

and target ROI prostates, respectively. A global metric for the two MRI volumes is then a

simple average of the computed metric among the L slices, defined as: sm =
1

L

L∑
a=1

d(Xa,Ua).

This metric is only computed over the L slices with prostate segmentation. The proposed

measure assume a 3D organ correspondence of the multiscale salient points, since the whole

atlas and the new MRI are in the same reference space because the previous rigid transfor-

mation.
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3.2.3 Shape estimation: the label fusion strategy

Once a set of selected prostates is collected, an estimated segmentation of the target MRI is

built as a linear combination of these prostates by using a patch-based strategy, consisting

in locally weighting each prostate patch by its similarity. First, the selected prostates are

non-rigidly registered to the new MRI prostate using the free-form deformation algorithm

(FFD). Afterwards, in a slice-wise analysis, for all patches surrounding pixel xi in the target

MRI, the final label is estimated by using a label fusion function ϕ(xi) of the N deformed

segmentations, as follows:

ϕ(xi) =

∑N
k=1w(Pt(xi), PAk

(xi))LAk
(xi)∑N

k=1w(Pt(xi), PAk
(xi))

(3-2)

where Pt(xi) is an intensity patch from the target image centered at the xi pixel, PAk
(xi) is

an intensity patch from each of the MRI prostates centered at the same xi pixel, LAk(xi) is

a patch from each of the delineated prostates, and w(Pt(xi), PAk
(xi)) is the weight assigned

to the LAk(xi) by comparing the intensity patches using a non-local means estimator, defined

as: w(Pt(xi), PAk
(xi)) = e

−‖Pt(xi)−PAk
(xi)‖2

2
h , where h is a filtering parameter that allows to

control the decay of the exponential function [46].

3.2.4 Data

The evaluation of the proposed approach was performed using a public dataset PROMISE12

[30], composed of 50 MRI cases, 24 of them acquired with endorectal coil. The dataset con-

tains only axial T2-weighted MR pelvic images, acquired for dose planning in radiotherapy

treatment. Such dataset includes patients with prostatic hyperplasia or prostate cancer, each

manually delineated by an expert oncologist. This dataset is challenging since cases were

acquired using protocols from different clinicals and scanners, increasing the high inter-slice

distance (from 0.27 to 0.75) and image resolution (from 256x256 to 512x512).

3.3 Evaluation and results

The evaluation was performed under a leave-one-out cross validation scheme, using a dice

coefficient (DSC) [21] to measure the segmentation accuracy. Two different label fusion

strategies were tested: majority voting, i.e., a pixel-to-pixel atlases agreement and the pro-

posed patch-based strategy. Figure 3-2 illustrates the segmentation results using the major-

ity voting and the patch based approach as label fusion strategies for external and endorectal

prostate scans. The red and yellow contours stand for the estimated and expert segmenta-

tions respectively, reaching reliable overlapping. As expected, failures are mainly present in

apical slices, because of the fuzzy borders of the prostate.
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Figure 3-2: Prostate segmentation results using the proposed approach. The comparison of

the expert segmentation (red) with the proposed strategy (yellow). Images (a)

and (c) stand for the obtained segmentation using majority voting for external

and endorectal cases respectively. Images (b) and (d) stand for the obtained

segmentation using the proposed patch-based label fusion strategy.

An analysis of two main parameters of the proposed approach was performed: the number

of similar atlases and the patch size used for estimating the segmentation. In table 3-1

is shown the segmentation results using different number of atlases with a fixed patch size

of 31 × 31. In average, the optimal number of atlases is 10 (statistically equivalent with

15 atlases), because it shows reliable results, capturing the organ shape variability of the

population with efficient time machine.

Table 3-1: Segmentation results of the proposed multi-atlas approach using different num-

ber of atlases and a fixed patch size of 31× 31

N. of atlas DSC (mean ± sd)

5 0.67 ± 0.19

10 0.74 ± 0.18

15 0.73 ± 0.11

In table 3-2 is shown the segmentation results using different patch sizes for the atlas com-

bination. The optimal patch size was of 3× 3, showing in general a compact organ segmen-

tation without losing local shape variability. While the patch size is increasing, the resulting

segmentation loses local details of the shape.

In Table 3-3, it was compared the proposed approach with a state-of-the-art multi-atlas

strategy [29]. In spite of the obtained DSC for both strategies is quite similar, the proposed

approach achieve a robust shape representation from a reduced space of atlases. This point
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Table 3-2: Segmentation results of the proposed multi-atlas approach using different patch

sizes for atlas combination

N. of atlas Patch size DSC (mean ± sd)

10 3 0.79 ± 0.10

7 0.78 ± 0.11

15 0.77 ± 0.11

31 0.74 ± 0.18

63 0.37 ± 0.30

allows to obtain reliable segmentations with efficiency in time, a critical issue for real clinical

implementation. An additional advantage of the proposed approach is the fully automatic

search of the most similar prostates in a mixed dataset, i.e. external and endorectal coil MRI,

while the baseline atlas-based approach requires a previous classification of MRI modalities.

Table 3-3: Segmentation results (DSC with the associated standard deviation) of the pro-

posed approach and a state-of-the-art multi-atlas strategy

Segmentation strategy DSC (mean ± sd)

Proposed approach 0.79 ± 0.10

Multi-atlas approach et al. [29] 0.78 ± 0.12

Additionally, Gao et al. [77] proposed a multi-atlas strategy, reporting in average a higher

DSC result (0.84). However, this reported DSC was computed withot including individual

cases with failling segmentations (DSC less than 0.4). These outlier cases reduce significantly

the accuracy of the segmentation and result in totally lost of the shape compactnes, which

is a great drawback for the radiotherapy planning task. Likewise, in Ou et al [73] is only

reported the DSC of a reduced set of cases (only six cases were taking into account), which

is not comparable with our evaluation scheme.

3.4 Conclusion

We have described an automatic multi-atlas approach for segmenting a new prostate MRI.

From a multiresolution analysis is selected the most similar atlases and then a linear com-
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bination of the associated delineation allows to obtain the new prostate segmentation. The

proposed method takes advantage of both the interindividual shape variation and intra-

individual salient point representation. We show that by using the proposed metric, the best

representative prostates were obtained, independently of the particular capturing modality

i.e. external and endorectal coil MRI. Future work includes the method extension to segment

the organs at risk, such as bladder and rectum, as well as validation with a larger data set.
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4.1 Conclusions

This thesis has developed and validated a fully automatic atlas-based framework to segment

the prostate in magnetic resonance images. A main contribution has introduced a multiscale

analysis that characterizes the structure of interest, the prostate gland, by defining a sim-

ilarity metric that is able to find the most similar prostates in a database. The similarity

metric uses prostate salient points, from the image, and medical knowledge, from the expert

delineations, to perform the multiscale analysis. Additionally, the segmentation is refined

by linearly combining the most similar prostates, i.e., the associated segmentations are split

into small patches that are combined with weights that depend on the similarity between the

group of similar prostates and the test image at exactly the position of those patches. This

fusion strategy takes advantage of the inter-individual shape variation, allowing to estimate

a more accurate segmentation.

The proposed framework provides an efficient representation of the prostate organ, setting

the most similar prostates independently of the particular MRI acquisiton protocol, an im-

portant side advantage that increases the number of prostates in the database. That is

to say, with a dataset including external and endorectal MR images, this framework need

not require an initial classification of the dataset between external and endorectal scans as

many state-of-the-art approaches. The results of this work suggest the proposed framework

reaches similar results to those obtained by much more complicated frameworks used in the

state-of-the-art.

4.2 Perspectives

This thesis has contributed to the construction of a computational framework for morphome-

trical analyses of medical images, providing a set of analysis, interpretation and visualization

tools that serves as a support for diagnosis, training and research processes. For a physi-

cian, the possibility of obtaining quantitative and complementary information about the

patient condition, refines the medical management, decreases the diagnostic variability and

results in more accurate treatments, impacting directly the patient quality-of-life. Also, com-

pilation and comparison of this knowledge, within different populations, affects positively

the development of public and preventative health policies. We expect that the proposed
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computational tools, in the future, will contribute to these medical advances. while in the

meanwhile, some work must be performed to prepare these tools to be used by medical

experts in a daily basis. Some of this work includes.

1. Extension for segmentating the organs at risk: External beam radiation therapy

uses high levels of radiation to eliminate cancer cells or prevent their growing. The

use of medical images has allowed more accurate localization of the prostate structure

and therefore has improved the radiotherapy planning. However, in despite of these

improvements, there exist risks of toxicity during each radiotherapy procedure over the

surrounding organs namely the bladder and the rectum. The toxicity of the radiation

consequently yields short and long side effects [7, 13]. Reason why future work includes

the extension of the proposed framework to segment the organs at risk.

2. Performance validation with larger data sets: Evaluation of the proposed frame-

work has been performed with a public dataset to facilitate comparison with other

approaches and their published results. Yet the used dataset shows some differences

along the MR images such as multiple centers, multiple MRI device vendors, differ-

ent acquisition protocols (e.g. external and endorectal) and patients with different

pathologies (e.g. benign prostatic hyperplasia and prostate cancer), this dataset does

not provide an adequate number of cases as to reach significant statistical conclusions.

More accurate and reliable segmentations demand the proposed framework must be

exhaustively evaluated in larger data sets.
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