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Abstract 

 

Prioritizing landscape connectivity is a primary objective in the conservation planning 

of biodiversity, since it is assumed that there will be scenarios where the dispersal of 

species would be necessary due to habitat fragmentation and climate change. Atelines 

(Primates, Atelinae) include species of Spider Monkeys (Ateles spp.) and Woolly 

monkeys (Lagothrix spp.); primates with great importance for the tropical forest 

ecosystems where they inhabit because of their role as seed dispersers. Due to 

habitat loss and habitat fragmentation, hunting and illegal trade, these species are 

increasingly endangered. The aim of this study is to identify priority areas of 

conservation for ateline dispersal in Colombia in order to maintain connectivity among 

their populations under scenarios of habitat fragmentation and climate change in the 

period 2000-2020. Spatiotemporal functions of habitat quality and cost flow were 

constructed to evaluate the probability of dispersal and the dispersal flux of each 

species under a graph-theoretical approach, based on the following variables: i) net 

primary productivity, ii) cover type, human iii) population density and iv) climatic habitat 

suitability. The resulting dispersal scenarios show differences between species located 

in different regions: i) species distributed in the Amazon (A. belzebuth and L. 

lagothricha lagothricha) do not show problems in terms of spatial or temporary 

connectivity; ii) A. geoffroyi distributed over the Pacific region shows a slight trend 

towards habitat fragmentation, however in the short term (10 years) these effects do 

not cause ruptures in the connectivity for the species; iii) Andean species (A. hybridus 

and L. lagothricha lugens) show a clear and drastic loss of habitat over time, strongly 

limiting their current and future dispersion possibilities. Changes in habitat climatic 

suitability for A. belzebuth, A. geoffroyi and L. lagothricha lagothricha are higher in 

moister and warmer low-land areas, responding to increases in precipitation and 

temperature projected in climate change scenarios. For A. hybridus and L. lagothricha 

lugens the climatic habitat suitability is greater in warmer regions with moderate 

elevations, where major process of deforestation have occurred over dry and Andean 

forests. Based on connectivity analysis we propose the following as conservation 

targets: i) source patches, ii) areas of persistence, iii) lost, iv) and regenerated habitat, 
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v) stepping stones, vi) the most efficient network of habitat connected patches 

(minimum spanning tree), vii) and the probable physical connections where species 

dispersal would take place. Spatial and persistent habitat representativeness in 

protected areas (PAs) for each species is low. The results show that larger PAs can be 

an effective measure for habitat conservation of species, since patches of remaining 

habitat under these regions are mostly conserved. We identify the Serranía de San 

Lucas as a priority conservation area; it is not legally protected and is the main source 

patch for A. hybridus, the ateline species treated in most detail. 
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Resumen 

 

Priorizar la conectividad del paisaje es uno de los objetivos primordiales en la 

planeación para la conservación de la biodiversidad, ya que se asume que existirán 

escenarios donde la dispersión de las especies será necesaria debido a la 

fragmentación de hábitat y el cambio climático. Los Atelinos (Primates, Atelinae) 

incluyen las especies de Monos Araña (Ateles spp.) y Monos Lanudos 

(Lagothrix spp.); primates de gran importancia para los ecosistemas de bosque 

tropical húmedo donde habitan por su rol como dispersores de semillas. Debido a la 

fragmentación y pérdida de hábitat, la cacería y el comercio ilegal, estas especies 

están cada vez más en peligro de extinción. El objetivo de este estudio es identificar 

áreas prioritarias de conservación para la dispersión de los atelinos en Colombia con 

el fin de mantener la conectividad entre sus poblaciones bajo escenarios de 

fragmentación de hábitat y cambio climático en el periodo 2000-2020. Se construyeron 

funciones de calidad de hábitat y costo de flujo espaciotemporales para evaluar la 

probabilidad de dispersión y el flujo de dispersión de cada una de las especies bajo un 

enfoque de teoría de grafos, con base en las siguientes variables: i) productividad 

primaria neta, ii) tipo de cobertura, iii) densidad poblacional humana e idoneidad de iv) 
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hábitat climática. Los escenarios de dispersión resultantes muestran diferencias entre 

las especies localizadas en diferentes regiones: i) las especies distribuidas en la 

región amazónica (A. belzebuth and L. lagothricha lagothricha) no mostraron 

problemas en términos de conectividad espacial o temporal; ii) A. geoffroyi distribuido 

sobre la región pacífica, muestra una leve tendencia negativa hacía la fragmentación 

de hábitat, sin embargo a corto plazo (10 años) estos efectos no causan rupturas en la 

conectividad para la especie; iii) las especies Andinas (A. hybridus and L. lagothricha 

lugens) muestran una clara y drástica pérdida de hábitat a través del tiempo, limitando 

fuertemente sus posibilidades de dispersión actuales y futuras. Los cambios en la 

idoneidad de hábitat climática para A. belzebuth, A. geoffroyi y L. lagothricha 

lagothricha son más altos en áreas más húmedas y cálidas de tierras bajas, 

respondiendo a los incrementos en precipitación y temperatura proyectados en los 

escenarios de cambio climático. Para A. hybridus y L. lagothricha lugens la idoneidad 

de hábitat climática es mayor en regiones más cálidas con elevaciones moderadas, 

donde los procesos de deforestación más importantes han ocurrido sobre los bosques 

secos y andinos. Con base en el análisis de conectividad se propusieron los 

siguientes objetos de conservación: i) parches fuente, ii) áreas de hábitat persistente, 

iii) perdida iv) y regenerada, v) stepping stones, vi) la red más eficiente de los parches 

de hábitat conectados (minimum spanning tree), vii) y las conexiones físicas probables 

donde la dispersión de las especies se llevaría a cabo. La representatividad espacial y 

de persistencia de hábitat en las áreas protegidas para cada especie es baja. Los 

resultados muestran que áreas protegidas más grandes pueden ser una medida 

efectiva de conservación del hábitat de las especies, ya que los parches de hábitat 

remanente bajo estas regiones están mayormente conservados. Se identifica la 

Serranía de San Lucas como una zona prioritaria de conservación, ya que esta no 

está legalmente protegida y es el principal parche fuente para A. hybridus, la especie 

de atelinos más amenazada. 
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Introduction 
 

Habitat fragmentation and climate change are considered two of the main threats 

leading to biodiversity loss (Sala et al. 2000; Stedman-Edwards 2000; Sax & Gaines 

2003; Opdam & Wascher 2004; Millennium Ecosystem Assessment 2005; de Chazal 

& Rounsevell 2009; Pereira et al. 2010), considering species extinction as a topic of 

most concern (Thomas et al. 2004; Kuussaari et al. 2009; Jackson & Sax 2010). In this 

context, the decrease in the range of species distributions because of habitat 

fragmentation (Honnay et al. 2002; Fahrig 2003) and climate change in terms of 

potential migrations and projected shifts in the geographic range of species have 

received special attention (Thomas et al. 2004; del Barrio et al. 2006; Thuiller et al. 

2008), particularly when some of these predictions have been modeled outside of 

protected areas (PAs) (Araújo 2004; Hannah et al. 2007). 

 

In most of projections, it is expected that species will be confronted with the movement 

through adverse climate gradients and fragmented landscapes; hence, aspects like the 

extent of the PA, their spatial arrangements, the remnant vegetation, and the 

connectivity should be taken into account to analyze the sensitivity of PAs to species’ 

persistence (Pearson & Dawson 2005; Moilanen et al. 2009). Consequently, this has 

led to the necessity of defining and prioritizing conservation areas, which would allow 

the dispersion of the species in space and time (Williams et al. 2005; Hannah et al. 

2007; Phillips et al. 2008b; Carvalho et al. 2011; Dawson et al. 2011; Hole et al. 2011). 

 

In this regard, the “Guidelines for Applying Protected Area Management Categories” 

proposed by the International Union for Conservation of Nature and Natural Resources 

(IUCN) (Dudley 2008), emphasizes that conservation areas will have to serve as 

buffers against climate change events, and provide a set of natural habitats connected 

to supply dispersal corridors which also permit evolution and adaptation. In Colombia, 

the “Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales” 

(UAESPNN) (www.parquesnacionales.gov.co) has adopted as part of its Action Plan 

for 2010-2019, a proposal to ensure ecological representativeness of the National 
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System of Protected Areas (SINAP by its Spanish acronym) and the connectivity 

between them, where the formulation of selection criteria for places which increase the 

connectivity and viability of PAs, ecosystems, and species at different scales are a 

main concern. 

 

In order to apply prioritization for conservation areas in the framework of Systematic 

Conservation Planning (SCP), the identification of target species that can be used as 

proxies for biodiversity in the planning region is necessary (Margules & Pressey 2000; 

Margules & Sarkar 2007). The use of species, taxa or umbrella groups in this context 

is frequent. Although some studies have tested the inefficiency of using single species, 

others have shown that birds or mammals used as a group of key species, can be 

useful and constitutes an effective conservation tool (Roberge & Angelstam 2004; 

Branton & Richardson 2011). 

 

Primates have often been considered as umbrella species (Caro et al. 2004; Martins & 

Valladares-Padua 2005; Lambert 2011). In particular, the ateline group (Ateles spp. 

and Lagothrix spp.) due to their ecological role as seed dispersers, and their 

vulnerable/endangered conservation status, makes them a key group for prioritizing 

conservation areas (Strier 1992; Stevenson & Aldana 2008; Defler 2010). For these 

species, there is a large uncertainty on what we could expect in their distributions in 

response to climate change scenarios, making their study a remarkable contribution 

towards its conservation, even more if it is applied in the entire context described 

above.  

 

This study aims to model the dispersal of the atelines through scenarios of climate 

change and habitat fragmentation in Colombia with a graph-theoretical approach, to 

select a set of areas that would need additional attention from conservation authorities 

in order to maintain populations of them. The proposed approach, takes into account 

their dispersal over suitable habitats based on the scenarios proposed, and also 

evaluates the representativeness of the actual PAs in terms of their size and spatial 

distribution, prioritizing the set of areas chosen in order to guarantee the connectivity 

for the species through space and time.  
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Objectives 

 

Identify a set of areas that deserve additional attention in order to guarantee the 

dispersion of Atelines over suitable habitats based on scenarios of climate change and 

habitat fragmentation through time (2000-2020). 

 

1. Analyze the differences projected in dispersal of Atelines through time (2000-

2020) under scenarios of climate change and habitat fragmentation. 

 

2. Prioritize areas for conservation of Atelines in order to retain or improve the 

connectivity through time (2000-2020), under scenarios of climate change and 

habitat fragmentation. 

  

3. Determine if the dispersion of Atelines is guaranteed through time by the current 

PAs in Colombia based on scenarios of climate change and habitat fragmentation. 

 



 

 

1. Conceptual Framework 

 

1.1 Biodiversity Threats: Climate Change and Habitat 
Fragmentation 
 

The Intergovernmental Panel on Climate Change (IPCC) (2007) has reported actual 

evidences of climate change continuously affecting multiple natural systems. For the 

next two decades a warming of about 0.2°C per decade is projected primary because 

of increases in: i) CO2 due to fossil fuel use and land-use change, ii) CH4 due to 

livestock and fossil fuel use, and iii) N2O due to agriculture. As consequence, some of 

the following changes are expected to occur: i) a maximum warming on terrestrial 

ecosystems, ii) a greater thaw depth in most permafrost regions, iii) a probable 

increase in the frequency of hot extremes, heat waves, heavy precipitation and tropical 

cyclone intensity, iv) a poleward displacement of the storm paths outside the tropics 

developing changes in patterns of wind, precipitation and temperature, and v) an 

increase in precipitation at high latitudes with decreases in most subtropical land 

regions. 

 

All these probable effects are expected to have negative implications on global 

biodiversity such as: i) changes in ecosystem structure and function, ii) alterations in 

species’ ecological interactions; iii) shifts in species’ geographical ranges;  and iv) 

negative consequences for ecosystem goods and services such as water and food 

supplies (Araújo & Rahbek 2006; Thuiller 2007). In general terms, it is probable that 

the ecosystems will exceed their resilience by a combination of climate change, 

associated disturbances (e.g. flooding, drought, wildfire, insects, ocean acidification), 

and other drivers of global change (e.g. land-use change, pollution). Additional and 

major preoccupations are that probably 20 to 30% of plant and animal species will 

increase their risk of extinction (medium confidence), and that net carbon uptake by 

terrestrial ecosystems is likely to peak before mid-century and then grow weaker or 

even reverse, amplifying climate change (IPCC 2002).Direct climate change effects on 
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biodiversity are not globally measurable, therefore these have been frequently studied 

under interactions with habitat loss/fragmentation (Opdam & Wascher 2004; de Chazal 

& Rounsevell 2009; Clavero et al. 2011). The studies have shown that climate change 

can promote the progress of transition conditions and the opening of gaps inside the 

vegetation (Del Barrio et al. 2006), in addition to species turnover (Thuiller 2004), shifts 

in the distributions and abundances of species (Parmesan & Yohe 2003; Root et al. 

2003) and possible migrations (Pearson 2006). However, the effect of most concern is 

the possibility of species extinction (Thomas et al. 2004; Bässler et al. 2010; Jackson 

& Sax 2010). 

 

Nevertheless, the relationship between habitat fragmentation and climate change is 

not totally understood and the actual impacts of climate change, may have been over- 

or under-estimated because of the lack of integrated analyses that consider their joint 

implications on biodiversity change (Sala et al. 2000; de Chazal & Rounsevell 2009; 

Pereira et al. 2010). For example, a recent study on birds at a community level, show 

that land use changes can reverse, hide or intensify the perception of climate change 

impacts, underlining the need of an explicit incorporation of the relationship between 

climate change and land use dynamics, to understand what climate change indicators 

really represent, and then identifying the actual climate change impacts (Clavero et al. 

2011). 

 

Also, current impacts of habitat fragmentation may have been underestimated. 

Fragmentation is a phenomenon visible from a context of change, including an 

evolutionary level; hence long-term impacts of fragmentation may not be seen 

because of the presence of confounding species factors that can mask them. Some of 

these traits may be specific trophic level, dispersal abilities and the degree of habitat 

specialization that influences the responses of the species (Ewers & Didham 2006). 

However, there is a general assumption in which both, climate change and habitat 

fragmentation in association, might cause a greater impact than either of these by 

themselves, particularly at the metapopulation and the species range levels (Opdam & 

Wascher 2004; de Chazal & Rounsevell 2009). 
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The process of habitat loss/fragmentation decreases the sizes of habitat patches and 

increases their number and isolation, transforming the properties of the remaining 

habitats (Fahrig 2003). Fragmentation in a landscape forces the species that survive in 

the habitat remnants to be confronted with a modified environment in a reduced area 

as well as novel ecological boundaries, with implications at different levels, given that 

in any landscape the number of species and organisms is high and variable, each one 

with different life history strategies (Ewers & Didham 2006).  

 

Habitat fragmentation essentially acts to change the core of a species’ distribution and 

therefore its abundance (Del Barrio et al. 2006). However, it also affects the richness 

and diversity of species and genes, increasing the effects of genetic drift and the 

probability of species extinction. Many empirical studies continue to document 

changes in species richness associated with habitat fragmentation, describing positive, 

negative and absent relationships (Fahrig 2003). These  studies report that shifts in 

biotic and abiotic parameters at edges, make ecological processes more variable than 

in fragment interiors, leading to increased turnover and variability in population (Ewers 

& Didham 2006).  

 

Habitat isolation both in space and time alters the distributional patterns of species 

causing impacts on metapopulation dynamics. Among these gene flow and individuals’ 

movements are the most affected. In this situation the impact of the landscape matrix 

is  a decisive factor in the effects exerted by fragmentation on populations, due to the 

role played in the species dispersal, associated mortality, and the pressure over 

microclimatic gradients present at fragment edges (Pulliam et al. 1992; Ewers & 

Didham 2006). Other more specifically negative effects have been found and reported 

by Fahrig (2003), e.g., the reduction of the trophic chain length (Komonen et al. 2000) 

or the change in the number of specialist species (Gibbs & Stanton 2001), and 

changes in aspects of animal behavior that affect breeding (Kurki et al. 2000), 

predation (Bergin et al. 2000), foraging (Mahan & Yahner 1999), and dispersal 

success (Bélisle et al. 2001). 
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The growing frequency of disturbances caused by large-scale climate events probably 

increases gaps and reduces species’ distributional ranges, particularly in fragmented 

areas. Taking into account the effects of climate change on metapopulations, habitat 

distribution and on land use changes, future biodiversity research and conservation 

strategies will be challenged to reorient the focus and scope of such studies by 

integrating more dynamic aspects at the landscape level, both spatially and 

conceptually (Opdam & Wascher 2004). 

 

1.2 Foraging, Species Dispersal and Connectivity in the 
Context of Habitat Fragmentation and Climate Change  
 

Habitat selection for residency and movement as a behavioral process depends on the 

resource and habitat selection by individuals, which in turn depends on aspects like 

conspecific attraction, habitat imprinting, or natal home range cues at different spatial 

and temporal scales (Chetkiewicz et al. 2006). Organisms are motivated to move for 

different reasons such as foraging, evading predators or searching for breeding 

opportunities (Ims 1995), generating movements on a daily or regular basis, seasonal 

and migratory movements, dispersal movements, and range expansion (Bennett 

2003). 

 

Under habitat fragmentation and climate change scenarios the limitations for the 

foraging and dispersal of species determined by landscape connectivity, plays a 

fundamental role for their persistence (Harrison & Bruna 1999; Williams et al. 2005; 

Apps & McLellan 2006; Ewers & Didham 2006; Phillips et al. 2008b), and therefore in 

the preservation of biodiversity and its ecosystem functions (Boyer et al. 2006; 

Stevenson & Aldana 2008). The foraging behavior of a species responds to 

environmental configurations that support or constraint the search for food (Heller 

1980; Hughes 1990), and it is maximized through time by natural selection (Pyke et al. 

1977). According to the optimal foraging theory (Emlen 1966; MacArthur & Pianka 

1966), the most favorable behavior depends on the choice of a currency, the choice of 

the appropriate cost-benefit functions (i.e., establishing the constraints), and by solving 
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for the optimum behavior that maximizes the net rate of energy intake (all these 

subject to the various constraints) (Schoener 1971). 

 

Main foraging aspects are: optimal diet, optimal patch choice, optimal allocation of time 

to patches, and optimal patterns and speed of movements (Pyke et al. 1977). These, 

are the base of two optimal foraging models: i) individuals forage longer when the 

distance between patches is longer too and the environment less profitable (Charnov 

1976), and ii) the optimal time per unit area decreases with the distance from the 

central place (Andersson 1978). However, if an animal does not distinguish the quality 

of the existing patch types, then its optimal allocation of time should depend on: i) how 

much foraging time remains, ii) on its experience in each patch type, and iii) on any 

prior knowledge about the kinds of patches available (Pyke 1984). These last three 

aspects are a basis for understanding the notion of adaptive foraging.  

 

Adaptive foraging refers to changes in resource or patch exploitation by the experience 

of consumers that give them higher fitness compared with other individuals that show 

other strategies, suggesting that adaptation and evolution can happen on similar time 

scales, where two major components can accelerate them: variations in abiotic 

environment, and dispersal to and from neighbor communities (conditions of changing 

scenarios) (Loeuille 2010). Thus, if the species can be adaptive in terms of foraging, 

their persistence can have a lower risk, even though it does not involve optimal use of 

habitat (Kokko & López-Sepulcre 2006).  

 

Previous postulates are key concepts in the context of actual and future habitat 

fragmentation and climate change, where individuals are expected to experience 

variable negative and positive fitness in response to landscape configuration changes 

(the spatial arrangement of habitat patches and ecotones) and this may result, in a 

change of the species movements (Tischendorf & Fahrig 2000). Thinking in terms of 

evolutionary adaptations to warmer conditions and patchy habitats in species’ ranges 

(McCarty 2001), resource use and dispersal will have to evolve rapidly at the same 

time that range margins change (Parmesan 2006), varying the threshold between 
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species´ foraging and dispersal (a scenario that is unlikely for long-lived ateline 

primates).  

 

In the context of landscape ecology, species dispersal is usually associated with the 

movement of individuals from one habitat patch to another (Turner et al. 2001), or from 

an existing population to another since the perspective of metapopulations (Dunning et 

al. 1995). Thus, species dispersal has consequences for individual fitness, population 

dynamics, species distributions and genetics (Wiens 1997; Hanski 1999).  

 

The optimal use of habitat patches by species depends on landscape elements and 

their configuration. The characteristics of the matrix between patches, corridors linking 

patches, and patches of preferred habitat, make the movement through the landscape 

mosaic different for different species (Selonen & Hanski 2003; Apps & McLellan 2006). 

The process of movement understood as the different ways in which animals move 

within landscapes, defines the patterns of distribution and related ecological 

processes, to the point that the probability of movement can determine the connectivity 

of landscapes (Chetkiewicz et al. 2006). 

 

The concept of connectivity is used to illustrate how spatial arrangement and quality of 

elements in the landscape affect the movement of organisms among habitat patches 

(Bennett 2003). A particular landscape at the same time might provide high 

connectivity for some organisms and low connectivity for others. A landscape with high 

connectivity permits individuals to move without constraints between suitable habitats, 

such as vegetation types for foraging or sleep, while a landscape with low connectivity 

(highly fragmented) restricts moving between selected habitats (Bennett 2003).  

Connectivity can be addressed from two points of view: structural connectivity, 

referring to the degree to which some landscape elements of interest are adjacent or 

physically connected to another (Tischendorf & Fahrig 2000), and functional 

connectivity, understood as the degree to which a landscape mosaic facilitates or 

impedes movement among resource patches (Taylor et al. 1993). The latter depends 

on how an individual recognizes and responds to landscape configuration, and so in 
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this sense, functional connectivity varies with the species, the context, and the scale, 

and may not be equivalent in all directions of movement (Bélisle 2005). 

 

In terms of habitat fragmentation and climate change the role of connectivity is 

essential in order to extend the geographic range of species, maintain continuity in the 

landscape and connect PAs (Chetkiewicz et al. 2006). As far as the extent that 

dispersal resource availability and environmental factors permit, species are projected 

to track the changing climate and habitat, and likewise shift their distributions in 

response (Walther et al. 2002). For this, an integrated landscape approach to 

conservation is necessary, including aspects like: i) plans at broad spatial scales, ii) 

protection of key areas of natural habitat, iii) maximization of conservation values 

across a variety of land tenures, iv) maintenance and restoration of connectivity, v) and 

the integration of conservation with surrounding land uses like agroforestry (Bennett 

2003; Laurance 2004). 

 

However, high levels of movement through a landscape cannot be associated with the 

functional connectivity of a landscape (Bélisle 2005). Therefore, to understand how 

landscape structure affects movement and, therefore, the population dynamics of a 

species, a clear empirical knowledge about movement patterns, and especially about 

the ecology of the species is needed to implement actions towards species 

conservation (Selonen & Hanski 2003). 

 

1.3 Ateline Ecology and Conservation Status in Colombia 
 

The family Atelidae is the most extensively distributed of the New World primates and 

includes genera: Alouatta (howler monkeys), Ateles (spider monkeys), Brachyteles 

(muriquis - woolly spider monkeys) Lagothrix (woolly monkeys) and Oreonax (yellow-

tailed woolly monkey previously incorporated in Lagothrix, but at present considered a 

monospecific genera including the Peruvian endemic species Oreonax flavicauda) 

(Strier 1992; Cornejo et al. 2008; Defler 2010). However, some authors disagree with 

the validity of the genus Oreonax, and it is still debated (Matthews & Rosenberger 

2008; Rosenberger & Matthews 2008).  
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Based on morphological, behavioral and molecular analyses of Atelid phylogenetic 

relationships, it is possible to distinguish between two natural groups of Atelidae: the 

first,  subfamily Alouattinae including Alouatta; and the other four genera grouped in 

the subfamily Atelinae (Strier 1992; Rylands & Mittermeier 2009; Defler 2010). These 

last four genera are commonly referred as the atelines (ateline monkeys), with four 

species for Colombia according to Defler (2010) (Table 1). 

 

The distribution of atelines in Colombia encompasses a large proportion of the 

continental territory because this group is characterized by wide geographic ranges 

(Ford & Davis 1992; Strier 1992; Defler 2010). However, present habitat loss for this 

species also has largely and significantly reduced their current distributional area, and 

added to the lack of knowledge of the real distribution of some of them, leads to 

concern for the formulation of conservation measures of these species (Defler 2010). 

 

The natural habitat of atelines is primary forest in the different ecosystems where they 

are found. They prefer the highest canopy levels and move primarily between middle 

and upper segments (Ford & Davis 1992; Defler 2010). They descend to the ground 

rarely, except under specific conditions like when eating soil or rotten wood, visiting 

salt licks, drinking from streams during the dry season, escaping attacks (by adult 

females) of adult males, or as part of a chase game (Campbell et al. 2005).  

 

Ateles belzebuth lives below 1300 m of altitude in primary rainforest, gallery forest and 

in seasonally flooded forests when these offer a seasonal abundance of fruits (Boubli 

et al. 2008; Defler 2010). Ateles geoffroyi has been reported for many more types of 

habitats than other species of Ateles: evergreen, semideciduous and deciduous forest, 

dry forest, humid forest, cloud forest, mangrove forest and at altitudes reaching 2000 – 

2500 m on the western slopes of the Andean western cordillera of Colombia (Cuarón 

et al. 2008). Ateles hybridus has been frequently found in evergreen forest, tropical 

semi-deciduous forest, tropical coastal forest, dense evergreen forest, and at 

moderate elevations (280-600 m) in montane seasonal forest (Urbani et al. 2008; 

Defler 2010). Lagothrix lagothricha occurs in primary forest from lowlands up to 
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elevations of 3000 m and occasionally in degraded forest and flooded forest. In the 

Llanos Orientales Lagothrix lagothricha inhabits primary tropical moist forest but also 

morichales and yarumales (Defler 2010). The species can be found in cloud forests, 

although the decrease in the size of the groups as they live at higher altitudes is 

notable (Durham 1975). 

 

Table 1. Ateline species and subspecies present in Colombia according to Defler 

(2010). 

 
 

Species 
Species 

Authority 
Common Names Subspecies 

Ateles 

belzebuth  

É. 

Geoffroy, 

1806 

Long-haired Spider Monkey, White-bellied 

Spider Monkey, Mono Araña, Mono Araña 

De Vientre Amarillo, Marimonda, Marimba, 

Braceadora, Coatá, Maquizapa. 

Ateles belzebuth belzebuth 

Ateles 

geoffroyi  
Kuhl, 1820 

Brown-headed Spider Monkey, Black-

headed Spider Monkey, Marimonda, 

Marimunda, Choiba, Mono Negro Mica, 

Zamba. 

Ateles geoffroyi rufiventris and Ateles 

geoffroyi robustus (recognized by 

IUCN specialists Cuarón et al. (2008) 

as Ateles fusciceps rufiventris) 

Ateles 

hybridus 

I. Geoffroy, 

1829 

Variegated Or Brown Spider Monkey, 

Brown Spider Monkey Mono Araña, Mono 

Negro, Choiba. 

Ateles hybridus hybridus and Ateles 

hybridus brunneus 

Lagothrix 

lagothrich

a  

Humboldt, 

1812 

Humboldt's Woolly Monkey, Woolly 

Monkey, Macaco Barrigudo, Mono 

Barrigudo, Mono Caparro, Mono Lanudo, 

Mono Choyo, Choyo, Choro, Churuco, 

Chuluco, Barrigudo, Mico Cholo, Mico 

Negro, Mico Churrusco. 

Lagothrix lagothricha lagothricha 

(recognized by IUCN specialists 

Palacios et al. (2008) as Lagothrix 

lagothricha) and Lagothrix 

lagothricha lugens (recognized by 

IUCN specialists Stevenson & Link 

(2008) as Lagothrix lugens) 

 

Spider monkeys travel and forage in the canopy and are extremely suspensory. When 

they move, they spend more time hanging from the branches and locomoting by 

brachiation, swinging or climbing. The proportion of walking or running is lower 

compared to the other taxa in the group (Ford & Davis 1992; Strier 1992; Defler 1999, 

2010; Cuarón et al. 2008; Urbani et al. 2008). While locomoting and feeding Lagothrix 

lagothricha move quadrupedally 41% of the time, and use arm movements 1.7% of the 

time (they employ this type of locomotion much less than the spider monkeys). 
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Lagothrix also climbs over 38.8% of time and spends about 10.8% of its time moving 

and jumping (Defler 1999, 2010).  

 

Results presented by Cant et al. (2003) show significant differences in the use of 

suspensory modes by Ateles and Lagothrix. Ateles implements more brachiation 

(using forelimbs and tail, with trunk rotation) and forelimb swing (similar to brachiation, 

but without trunk rotation) than Lagothrix, while this latter employs 20% suspensory 

movement using pronograde forelimb swing (similar to forelimb swing but differs due to 

the body position in a pronograde direction), a behavior that Ateles did not show in this 

study. 

 

Results presented for Isler (2004), show that there are very few differences between 

Ateles and Lagothrix in gait parameters of climbing on small diameter trees and 

vertical and oblique ropes, while climbing in large diameter trees differs considerably, 

reflecting the higher costs of locomotion for Lagothrix. However at the same speed, 

Ateles takes longer strides and the support phase takes a smaller percentage of cycle 

duration than in Lagothrix. Phylogenetic differences would be the principal cause for 

differences in patterns of movement in Ateles and Lagothrix, however, the general 

pattern illustrates that these species base their use of space on rapid locomotion, that 

enables them to minimize travel time between different resource patches to access 

fruits, frequently suspending from branches with their prehensile tail, arms and legs to 

better and more easily reach and handle food (Strier 1992; Defler 2010). 

 

Although the home and daily range of atelines is characterized as large, the data vary 

between species and even between populations because of resource availability. This 

means, that when the habitat provides a large amount of resources, the individuals will 

not have to travel large distances because resources can be easily found. On the other 

hand, poor habitats that do not provide enough resources for species will force the 

displacement of individuals to be larger in order to find resources in other habitats. 

Based on this, the approximate home range of Ateles species may vary between 100 

and 400 ha, while the daily range ranges between 0.5 and 5 km. For Lagothrix 

lagothricha it may differ approximately between 100 and 800 ha for the home range, 
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and between 1 and 3 km for the daily range (Ford & Davis 1992; Defler 2010). These 

conditions described above determine movement patterns of the species; therefore 

they are a major concern in this study. 

 

Atelines change the proportions in their diet in order to compensate for the scarcity of 

resources (Mittermeier & Van Roosmalen 1981; Strier 1992; Peres 1994; Castellanos 

& Chanin 1996; Defler 1996; Defler & Defler 1996; Stevenson et al. 2000; Di Fiore & 

Rodman 2001; Di Fiore 2004; Stevenson 2004; Dew 2005; Gonzalez-Zamora 2009). 

These primates pass from an energy-maximizing strategy of food acquisition during 

times of fruit abundance to an energy-minimizing strategy that focuses on animal foods 

during sources scarcity (Strier 1992). This strategy permits to lay down fat reserves 

when ecological conditions are worsen, suggesting again that regional differences in 

habitat quality are extremely influential in ateline behavioral ecology, in this case as an 

opportunistic response in foraging strategy (Stevenson et al. 2000; Di Fiore & Rodman 

2001). 

 

Atelines are highly frugivorous and prey upon seeds of just a few species. Spider 

monkeys feed mostly on the mature, soft parts of a very wide variety of fruits, which 

comprise approximately 83% of their diet. They also can eat young leaves and flowers 

(both especially at times of fruit shortage during the beginning of the dry season), 

young seeds, floral buds, pseudobulbs, aerial roots, bark, decaying wood, and honey, 

and very occasionally small insects such as termites and caterpillars (Mittermeier & 

Van Roosmalen 1981; Castellanos & Chanin 1996; Stevenson et al. 2000; Dew 2005; 

Boubli et al. 2008; Cuarón et al. 2008; Urbani et al. 2008; Gonzalez-Zamora 2009; 

Defler 2010). 

 

Russo et al. (2005) found for Ateles spp., that from the 59 most frequently consumed 

genera from forests in Colombia, Ecuador, Panama, and Surinam, only 4 genera: 

Brosimum (Moraceae), Cecropia (Cecropiaceae), Virola (Myristicaceae), and Ficus, 

(Moracae) were ranked within the top 20 at every forest. They also found that 

interforest variation in plant species composition and abundances, in addition to 

annual fruiting phenologies and dietary flexibility of Ateles spp., explained the results in 
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diet for each species in each forest, suggesting again that variation in plant community 

structure strongly influences dietary preferences. 

 

The dietary habits of Lagothrix lagothricha are not very different from those found for 

Ateles spp.; these variations show differences in plant species richness, plant 

abundances and annual fruiting phonologies of each forest (Strier 1992; Stevenson et 

al. 2000; Di Fiore & Rodman 2001). However, Lagothrix are not hard-fruit specialists 

and their fruit diet is significantly more diverse than that of spider monkeys (Dew 

2005). Defler (2010) describes the species as an obligate frugivore. Lagothrix 

lagothricha bases approximately 80% of its diet on fruits, complemented with immature 

leaves, seeds and exudates of flowers and seeds. It can consume a number of 

different plants (close to 200) that vary in response to forest species composition and 

abundance. The most important families in its diet are: Moraceae, Sapotaceae and 

Leguminosae (Peres 1994; Defler 1996, 2010; Defler & Defler 1996; Stevenson et al. 

2000; Di Fiore 2004; Stevenson 2004; Dew 2005). 

 

Dew (2005) reports that overlap in diet between the atelines is high; nevertheless each 

genus specializes to some degree on a different set of fruit resources and their 

foraging patterns are slightly different. Lagothrix visits more food resources per unit of 

time, feeds less in the canopy, visits more small food patches and preys on more 

seeds. In contrast, Ateles feeds on less rich food resources and are more likely to 

return twice to a food resource than Lagothrix. Ateles maximizes the consumption of 

fruit pulp, swallowing more intact seeds, while woolly monkeys minimize the amount of 

seeds ingested by more careful food processing. This is a principal aspect in terms of 

seed dispersion and a probable reason why Ateles spp. are not more efficient than 

woolly monkeys at improving plant germination rates, even though spider monkeys 

depend more heavily on fruits than woolly monkeys do (Stevenson et al. 2002). 

 

Seed dispersion by atelines can be considered very effective in comparison to other 

primates, in terms of their effects on the seeds they eat and which rarely decrease 

their germination rates (Stevenson et al. 2002). Their principal ecological role as seed 

dispersers is extremely important in order to maintain forest diversity (Stevenson et al. 



16 Conceptual Framework 

 

2002; Defler 2010), to the point that their absence may have negative effects on plant 

populations, especially large-seeded plants, that are rarely swallowed by other seed 

dispersers (Wunderle 1997; Peres & van Roosmalen 2002). 

 

For example, in a comparison between a continuous and fragmented forest with 

floristic affinities and similar ecological characteristics in Tinigua National Park, 

Stevenson & Aldana (2008) found that diversity was lower in the fragmented forest 

where fewer large-seeded plant species lived, suggesting that forest fragmentation 

and local ateline extinctions affect plant communities, reducing diversity and affecting 

large-seeded plants. Thus, ateline conservation is not only important for the 

preservation of the species per se, but also for the conservation of their habitats, that 

ideally should include large continuous forest extensions with high productivity that 

would be able to support many other species.  

 

Atelines are particularly susceptible to hunting and habitat fragmentation (Chapman & 

Peres 2001; Defler 2010), therefore, towards their conservation, priority strategies 

should be as follow: i) Census the species to generate information on the species´ 

actual distribution, densities, and their population structure. ii) Maintain the largest 

extension of forest in actual PAs. iii) Propose the establishment of new PAs. iv) 

Generate strategic alliances with indigenous communities and other groups. v) Create 

conservation campaigns and education plans. vi) Identify financial support for the 

maintenance and monitoring of all these (Defler et al. 2005; Boubli et al. 2008; Cuarón 

et al. 2008; Palacios et al. 2008; Stevenson & Link 2008; Urbani et al. 2008; Defler 

2010; Morales 2010). Conservation status of ateline species and their specific 

conservation actions are presented in Table 2. 
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Table 2. Conservation status for ateline species present in Colombia. Based on data from: Defler et al. (2005), Boubli et al. 

(2008), Cuarón et al. (2008), Palacios et al. (2008), Stevenson & Link (2008), Urbani et al. (2008), Defler (2010) and 

Morales (2010). 

 

 

Category of 

Threat 

CITES 

Appendi

x 

Major Threats Conservation Actions 

Ateles 

belzebuth  

Int. EN 

II 
Heavy subsistence and market hunting for food and 

habitat loss due to colonization and illicit crops 

Maintain the extension of forest in actual PAs, mainly in Parque Nacional Natural Sierra de 

La Macarena, Tinigua Natural National Park and Cordillera de Los Picachos. Support the 

establishment of new PAs specially in forest area between Caguán and Yarí rivers 
Col. EN 

Ateles 

geoffroyi  

Int. CR 

II 

One of the most threatened species with high possibility 

of extinction in Colombia due to hunting, habitat loss and 

fragmentation 

Widespread censuses of Ateles are needed, especially in National Natural Parks Katios 

and Orquideas, where it is believed that populations have declined recently. Col. CR 

Ateles 

hybridus 

Int. CR 

II 

One of the most threatened species in Colombia due to 

hunting and habitat fragmentation. Ateles hybridus 

brunneus is probably the most endangered of both due to 

their small range of distribution and the growing threat of 

colonization, which added to its long birth intervals, every 

3-4 years can lead to extinction in a short time. Ateles 

hybridus is also one of The World’s 25 Most Endangered 

Primates 

2008-2010 (Mittermeier et al. 2009). 

These are some more of the measures outlined in the plan of action for the conservation of 

this species, which is well referenced in Defler 2010. Identify conservation measures within 

the priority areas: Catatumbo Cocuy Quinchas, Luke and Bajo Cauca. Enact the generation 

of the Natural Park Serranía de San Lucas. Generation of strategic alliances with 

indigenous communities and other groups. Conservation campaigns. Support, strengthen 

and solidify nature reserves, particularly the one of La Serranía de Las Quinchas of 

ProAves Foundation. Recovery and reforestation in the areas of distribution. Generate a 

database of campaigns, research projects, outreach and conservation actions that involve 

the species. Community environmental diagnosis to define the risk factors for the species in 

each of the locations. 

Col. CR 

Lagothrix 

lagothricha  

Int. 

L.l.la 
VU II 

The major threats are hunting for food (mainly 

subsistence) and habitat loss due to agricultural 

development/expansion and illicit crops. Late maturation 

and long inter-birth intervals (typically around 3-4 years) 

makes it difficult for them to recover their populations. 

Also national and international pet trade affects this 

species 

Although L.l.lugens is protected by law in 12 or 13 units of conservation, many of these PAs 

were established for the purpose of preserving other habitat, very different to that required 

by Lagothrix, while in other cases, the PA contains very little of the preferred habitat for the 

species, then it is expected that new areas that have a really possibility to maintain 

populations can be established, accompanied by financial support by government for the 

maintenance and monitoring of them. 

 

 Int. and Col., correspond to abbreviations of International and Colombian categories of threat respectively. 
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1.4 Conservation Planning for Habitat Fragmentation and 
Climate Change: Prioritizing Conservation Areas for 
Species Dispersal  
 

Definition and prioritization of conservation areas that permit the continued presence 

and persistence of the species in space and time is a main concern, taking into 

account the actual needs of conservation into the future, and the anticipation of 

species loss due to multiple threats to biodiversity (Hannah et al. 2007; Carvalho et al. 

2011; Dawson et al. 2011; Hole et al. 2011). Major preoccupations like fragmentation 

and climate change (Sala et al. 2000), must be taken into consideration to ensure 

aspects like dispersal (Williams et al. 2005; Phillips et al. 2008b), especially in 

scenarios of possible migrations (Pearson et al. 2006) and unconnected habitats (Sala 

et al. 2000). 

 

Climate change at all scales interacts with other disturbing global trends like 

deforestation and air pollution, producing combined negative effects for the 

environment and natural resources, which will be worse in the future if integrated 

measures for mitigation and adaptation are not taken into account (IPCC 2007). The 

IPCC (2002) proposes potential adaptation options to reduce climate change impacts 

on ecosystems and biodiversity, including the following: i) reduction of deforestation, ii) 

reforestation, iii) captive breeding of animals, iv) ex situ conservation of plants, v) 

translocation programs to increase or restore endangered or sensitive species, and iv) 

connect reserves with corridors that provide dispersal and migration routes for plants 

and animals. 

 

In this context, the best strategy for compensating habitat fragmentation is the 

improvement of habitat connectivity (Tewksbury 2002; Chetkiewicz et al. 2006), as a 

basic concept in PAs design (Margules & Pressey 2000; Margules & Sarkar 2007). 

Bennett (2003) specifies three options to expand connectivity by managing 

landscapes: i) habitat mosaics, ii) habitat corridors and iii) stepping stones. The first 

one refers to act over the entire landscape mosaic, and the second and third ones to 

manage specific habitats for specific responses. 



19 Matheriasl and Methods 

 

19 
 

A common error and a strong criticism in corridor planning is the homogenization of 

species and scales in corridor design, when we know that functional connectivity is 

certainly species-specific. Thus, connectivity approaches based on corridors may not 

take into account all or even most of the species for which a corridor is designed. 

Therefore, in many cases corridor structure could be insufficient and unnecessary to 

support species movement and dispersal. For this reason a better integration of 

pattern and process is significantly important in corridor planning (Chetkiewicz et al. 

2006). 

 

To resolve this concern in conditions of large area requirements, habitat connectivity 

has been managed for site-specific locations of important biodiversity elements or 

indicators of ecosystem health (Margules et al. 2002; Margules & Sarkar 2007). 

Umbrella species have been used as proxies for this, assuming that a group of species 

(particularly birds and mammals) can represent co-occurring species that share the 

habitat and overlap their distributions at different uses of ecological niches (Lambeck 

1997; Thorne et al. 2006). Nevertheless this concept does not have a commonly 

accepted methodology that permits a correct selection of the species to use, it is clear 

that richness and abundance are higher at sites where umbrella species are present 

than in those sites where they are absent (Roberge & Angelstam 2004; Branton & 

Richardson 2011). 

 

The use of primates as umbrella species is not common, but its few applications have 

demonstrated interesting implications in terms of conservation (Caro et al. 2004; 

Martins & Valladares-Padua 2005; Lambert 2011). In this context the modeling of the 

distribution of umbrella species (Loyn et al. 2001; Kerley et al. 2003; Branton & 

Richardson 2011; Edman et al. 2011; Estrada et al. 2011) or their habitat (Graham et 

al. 2006, 2010b; Waltari et al. 2007; VanDerWal et al. 2009), commonly performed 

through Species Distribution Models (SDMs), have been approaches for determining 

key areas for conserving biodiversity. 

 

SDMs are mostly constructed under the niche ecological concept, more commonly 

known as Ecological Niche Models (ENMs) (Guisan & Thuiller 2005). ENMs vary 
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between the application of the fundamental niche concept, where the assumption is 

that species are distributed over all their suitable habitats, and the realized niche 

concept, where the assumption is that species are distributed just over part of their 

fundamental niche because of biotic interactions (Pulliam 2000). The first approach is 

the most commonly used and bases the occurrence of species on biotic predictors 

(Peterson et al. 2007; Elith & Leathwick 2009), while the second uses mechanistic 

modeling, that incorporates physiological or behavioral parameters for the species 

(Kearney & Porter 2004). 

 

The projections obtained using SDMs usually illustrate the probability that a species is 

present in a given location, but also they can be interpreted as the suitability of the 

habitat for the species´ presence, with values ranging between 0 and 1, which may be 

useful for introducing a persistence gradient for the species (regions of high, medium, 

or low habitat suitability, where it is understood that conditions may or may not be 

given for the persistence of species) (Araújo & Williams 2000). However, the selection 

algorithms for defining conservation areas usually work with species occurrences and 

ignore the uncertainty produced by converting the probabilities of occurrence into 

binary maps (Carvalho et al. 2011). 

 

Additional uncertainties are added when we use projections out of occurrence data or 

in hypothetical scenarios like climate change (Elith & Leathwick 2009). Calculating and 

describing the uncertainty implicit in the projections is thus necessary if we want to 

integrate climate change considerations into spatial conservation priority, since the 

PAs chosen may be already based on intermediate probabilities of species 

occurrences causing high uncertainties, and compromising their utility for conservation 

decisions (Araújo & New 2007; Carvalho et al. 2011).  

 

Modeling approaches generally assume full or no dispersion (Peterson et al. 2002; 

Lawler et al. 2009). However, some of them recently have combined the use of 

dispersion corridors in order to prioritize conservation areas with climate change 

scenarios, using the potential distributions of species constructed with SDMs as 

optimal habitats for dispersion through time (Williams et al. 2005; Phillips et al. 2008b). 
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These, include the challenge of integrating patterns of landscape composition and 

configuration, and the processes of habitat selection and movement trough time 

(Chetkiewicz et al. 2006).  

 

Chetkiewicz et al. (2006) reviewed different algorithms for modeling corridors that 

connect conservation areas. Some of them are as follow: i) Linkage zone prediction 

models, which predict the relative probability of movement through an area by 

integrating qualitative scores for a number of spatial layers. ii). Conditional logistic 

regression, that quantifies movement probabilities across landscapes using step 

selection functions. iii). Neutral models, based on percolation theory for evaluate the 

movements within spatially random structured systems. iv). Least-cost path analysis, 

that estimates movement costs between two points of a habitat in terms of their 

suitability. A combination of these last can be found in graph theory that offers the 

measurement of landscape connectivity holistically by combining the movement 

emphasis of percolation theory and the habitat modeling potential of least-cost path 

modeling. 

 

Graph theory has evolved from transportation and computer networks (Ahuja et al. 

1993) and since 2000 has been applied to assessments of landscape connectivity 

(Bunn et al. 2000; Urban & Keitt 2001). Graph analysis measures structural and 

functional connectivity, (Bunn et al. 2000; Urban & Keitt 2001; Calabrese & Fagan 

2004; Proulx et al. 2005; Kent 2009; Urban et al. 2009), showing important implications 

for conservation planning (Minor & Urban 2007, 2008; Treml et al. 2007; Phillips et al. 

2008b). Graph theoretical approaches combine landscape data (typically derived from 

Geographic Information Systems) with movement data, measured as either a dispersal 

distance (Calabrese & Fagan 2004), or a random draw from a dispersal kernel 

generated as a function of dispersal probability with distance (Cowen & Sponaugle 

2009). For the entire network different elements can be established and diverse 

metrics can be used to assess the connectivity and potential dispersal for the species.  

 

Although graph theory in general terms is based on a binary description of habitat 

(nodes), it is feasible to classify these nodes probabilistically with a resource selection 
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function (RSF) used for characterizing habitats (Chetkiewicz et al. 2006). A RSF, 

which can be also understood as SDM (Elith & Leathwick 2009), is defined as any 

function that uses variables as habitat attributes to predict a layer proportional to the 

probability of use of a resource unit (a sampling unit of the landscape e.g., a pixel or 

grid cell) (Manly et al. 2002). For example a random sample of resource units could be 

drawn and examined for the presence or absence of an organism (Boyce & McDonald 

1999). 

 

Therefore, it is possible to identify habitat (nodes) in a graph with a SDM or a RSF, 

and use these to define areas where species are more likely to occur (high). These 

areas used to generate nodes (habitat patches) and the inverse of the RSF (i.e., 

1/RSF) applied as a cost surface for modeling the movement of the individuals, can be 

used to generate a graph and then determine, which are the key areas for conserving 

the dispersal process of the species (Chetkiewicz et al. 2006). 

 

Linking graph theory with SDMs as a RSF, offers a method for quantifying connectivity 

at a broader scale and corridors in a more specific analysis because it explicitly 

combines spatial topology with resource selection (Wagner & Fortin 2005). Because 

graph theory summarizes the spatial relationships between landscape elements 

(configuration and composition) (Urban & Keitt 2001; Calabrese & Fagan 2004), it is 

particularly helpful to predict the impacts of adding or deleting particular landscape 

elements (Chetkiewicz et al. 2006), and then explore the consequences of habitat loss 

scenarios (Urban & Keitt 2001; Treml et al. 2007). 



 

 

2. Materials and Methods 

 

2.1 Study Area 
 

Atelines distribution and dispersal compromises almost the whole of Colombia; hence, 

at the greatest scale this study is national. However on a regional scale, the study 

involves each of the distribution ranges of the four ateline species found in the country 

(Table 1 and Figure 1). 

 

In addition, in order to prioritize areas for maintaining or improving species’ 

connectivity, an analysis of the representativeness of PAs system is necessary. We 

briefly describe the actual representativeness of SINAP in Colombia and the context of 

the country in terms of land use and major socio-economic activities. 
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Figure 1. Distribution of ateline species present in Colombia. Source: Defler (2010). 

 

2.1.1 Species’ Distributional Ranges  

 

The distribution of Ateles belzebuth is not totally clear for various reasons, particularly 

at the southern and eastern limits (Defler 2010). This species is found in Colombia in 

the piedmont of eastern Andean Cordillera southward from Río Upía basin in the 

department of Boyacá, including la Sierra de La Macarena from río Ariari up to 

piedmont of the Cordillera, eastern Caquetá and the Coehmaní rapids in the south-

east of the department of Caquetá, and Yari River southwest and north of the río 

Caquetá, for most of the department (Boubli et al. 2008; Defler 2010). Defler (2010) 

reports the easternmost observation on the right bank of the river Apaporis, in the 

Salado de La Estrella, but  generally the species is unknown in that region and 

hypothetically the collected female individual represents an outlier due to long-distance 

dispersal. Isolated records of observations from residents in remote eastern areas 
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support the possible long-distance dispersal of females away from known populations 

and also the existence of not previously unknown populations (Defler, pers. com.). The 

species´ existence is not clear between the ríos Caquetá and Putumayo, except in the 

most westerly parts and the piedmont of the Cordillera (Boubli et al. 2008; Defler 

2010). 

 

Ateles geoffroyi robustus is found in the lowlands of the Colombian Pacific Region, 

from the southernmost parts of the Western Cordillera of the Andes, northward west of 

the Río Cauca, as far as the southern limit in Cabo Corrientes, Department of Chocó, 

where it may be replaced by Ateles geoffroyi grisescens (a taxon whose current 

presence in Colombia has not yet been confirmed). Ateles geoffroyi rufiventris also can 

be found in the Urabá region in north-western Antioquia, and departments of Córdoba, 

Sucre and northern Bolivar, eastward to the lower Cauca River and along its western 

bank to south-central Antioquia. The southernmost data corresponds to Concordia, 

Antioquia and the southernmost record in Colombia is from Barbacoas, department of 

Nariño. Historically the northern boundary was the southern bank of the Canal del 

Dique near Cartagena, however its distribution probably reached the Pendales region 

in the early part of the last century (Cuarón et al. 2008; Defler 2010).  

 

In Colombia, Ateles hybridus hybridus is found from the right bank of the Río 

Magdalena in the departments of Magdalena, Cesar (north of the southern slopes of 

the Sierra Nevada de Santa Marta), the southwestern portion of the Guajira, in 

northernmost parts of the Serrania de Perija and in the middle valley of río Magdalena 

to the border of the departments of Caldas and Cundinamarca. There are two 

populations of this subspecies in eastern slopes of the eastern Andean Cordillera on 

the frontier with Venezuela: one found in the slope of Catatumbo region in the 

department of Norte de Santander and the other in the northern forest of the foothills in 

the department of Arauca. Ateles hybridus brunneus occupies the region of the lower 

basins of Cauca and Magdalena rivers in the departments of Bolivar, Antioquia and 

Caldas, but its southern limit is at present not well established (Urbani et al. 2008; 

Defler 2010). 
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Lagothrix lagothricha lagothricha is distributed in Colombia over the Amazon Region 

east of the Cordillera Oriental. Lagothrix lagothricha lugens is found north of the river 

Guayabero, ranging from the foothills and eastern slopes of the Cordillera Oriental to 

the Colombian-Venezuelan frontier on the banks of río Apure (Bojabá). There are 

abundant individuals in Serranía de La Macarena and along the foothills in the region 

of Uribe, between Serranía de La Macarena and the Cordillera Oriental. The 

subspecies is found  up to 3000 m of altitude in Andean Region and is present from 

the upper río Magdalena Valley in Puracé National Park at least to southern Tolima, 

with an isolated population in the Serranía de San Lucas, in southern Bolivar (Palacios 

et al. 2008; Stevenson & Link 2008; Defler 2010). Apparently, there was also a 

population on the western slopes of the Cordillera Oriental and there is evidence that 

some animals still exist in the southern department of Santander. The boundaries 

between the two subspecies are not well defined although they seem to have a contact 

zone that may be located not far from the Cordillera Oriental, in the department of 

Caquetá, although Lagothrix lagothricha lugens may reach the Caguán river (Defler 

2010). 

 

2.1.2 Land Use Context in Colombia 

 

Colombia is divided into five major biogeographic regions that are contrasting in their 

biophysical and land cover/use characteristics: i) Caribbean (115,400 km
2
), ii) Andes 

(278,000 km
2
), iii) Pacific (74,600 km

2
), iv) Orinoco (169,200 km

2
), v) Amazon 

(455,000 km
2
), and two smaller regions: the Magdalena (37,100 km

2
) and Catatumbo 

(7,000 km
2
), commonly included in the Andean region with also two inter-Andean 

valleys: Cauca Valley (between Central and Western Andes) and Magdalena Valley 

(between Central and Eastern Andes) (Etter et al. 2006d). 

 

Land conversion in Colombia is heterogeneous and mostly responds to socio-

economic factors, with higher rates in the Caribbean and Andean regions, and lower in 

the Amazon, Orinoco and Pacific regions (González et al. 2011). Historically, in the 

Andes and the Caribbean have occurred the major changes as a result of human 

colonization and densification processes since prehispanic times (Etter & Van 
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Wyngaarden 2000), mostly affecting Andean and dry forests by a combination of 

agriculture (predominant in early times) and livestock grazing (predominant in recent 

times) (Etter et al. 2008). In lowlands of Amazon, Orinoco and Pacific regions, a recent 

(approximately since 1940) unplanned deforestation has been driven by colonization 

fronts, subsistence agriculture and illegal crops (Etter et al. 2006a), although in some 

areas mechanized agriculture, livestock grazing and oil extraction have shaped 

different (no unplanned) deforestation patterns (Etter et al. 2005; Armenteras et al. 

2006). 

 

In Figure 2 is presented an approximation of the current (2000-2003) land cover in 

Colombia (IDEAM et al. 2007). The Andean region shows the most heterogeneous 

mosaic with differences between montane and lowland forest defined by the 

accessibility and contrasting wealth and economic activities (Armenteras et al. 2011). 

Pasturelands are the most abundant land cover in the region (24%) followed by 

croplands (19%) (Sánchez-Cuervo et al. 2012). The Caribbean region is characterized 

by dry vegetation types that correspond to arid and semiarid lowland areas, with forest 

remnants restricted to the Sierra Nevada de Santa Martha. Land use in the Caribbean 

is mostly cattle ranching (48%) and agriculture (14%) (Sánchez-Cuervo et al. 2012). 

The Pacific region has large proportions of lowland rain forest, fragmented in small 

proportions over Nariño and Darien areas by croplands (10%) and pasturelands (<2%) 

(Sánchez-Cuervo et al. 2012). The Orinoco region has a constant dynamic of natural 

and induced fires in savanna ecosystems (Etter et al. 2010; Romero et al. 2010) over 

natural, semi-natural and artificial pasturelands (86%) (Sánchez-Cuervo et al. 2012). 

Land cover type in the Amazon region is primarily forest, however deforestation 

processes have been reported with high rates in foothills of the eastern cordillera in the 

zone of Caquetá and Putumayo (Etter et al. 2006a), where has been converted about 

6% of forests into pasturelands, and less than 1% into legal and illegal croplands 

according to IDEAM et al. (2007). 
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Figure 2. Map of land cover in Colombia (2000-2003). Adapted from IDEAM et al. 

(2007). 

 

2.1.3 Socio-Economic Context in Colombia 

 

Since 1900 the population of Colombia has experienced an approximate tenfold 

exponential increase, exceeding 44 million people (Etter et al. 2011). Since indigenous 
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times, most of the Colombian population has been concentrated in the Andean and the 

Caribbean regions (70%) with a higher growth since 1950 (Etter & Van Wyngaarden 

2000; Armenteras et al. 2011). On the other hand, Orinoquia and Amazonia regions 

(about 54% of total area) have less than 3% of the population and a density of less 

than one person per km
2
 (DANE 2008). 

 

Drug trade and guerilla uprising have been developed in rural and remote areas of the 

country during the last 20-30 years, causing further social and political instabilities for 

economic and public policies, with significant repercussions for the movements of rural 

populations to urban areas and migration outside the country (Etter et al. 2006d). The 

urban population in Colombia increased from 28% of the total population in 1938 to 

76% in 2005, but in absolute terms the rural population increased from 6 to 10 million 

in that period according to DANE (2008c). These illegal activities are also contributing 

to an unknown degree to forest conversion and fragmentation (Etter et al. 2006a, 

2006d; Armenteras et al. 2009, 2011; Rodríguez et al. 2011). 

 

Principal economic activities in Colombia are agriculture (coffee, flowers), mining (oil, 

coal and nickel), cattle grazing and industrial exports (Etter et al. 2006d). Agriculture in 

Colombia contributed approximately 11.5% to the National Gross Domestic Product 

(GDP) and 22.7% of the labor force, including agriculture, livestock and fishing. Since 

1990 the direction of Colombian agriculture has been changing to replace imports by 

export-oriented agribusiness emphasizing a group of permanent crops, including 

coffee, bananas, sugar cane and cocoa, as principals (DANE 2009). 

 

In addition, new economic forces have recently appeared. Oil palm expansion and new 

mining and oil concessions are expected to increase in Colombia affecting other land 

uses (Figure 3). For example, during the period 2002-2008, of the 155,100 ha of new 

oil palm plantations 51% replaced pasturelands, 29.1% croplands, and 16.1% natural 

vegetation (forest and savannas) and regrowth forests (Castiblanco et al. 2013). 
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Figure 3. Location of mining and oil-Related activities, major Socio-Economical 

planned projects and most important places of oil palm distribution in 

Colombia. Constructed with data from: Instituto Geográfico Agustín 

Codazzi (IGAC) and Instituto Colombiano de Geología y Minería 

(Ingeominas) 

 

2.1.4 Context for PAs in Colombia 

 

The Colombian PAs (Figure 4) are grouped in the SINAP, which are managed by the 

UAESPNN (Unidad Administrativa Especial del sistema de Parques Nacionales 

Naturales), described from a political perspective as an articulated set of PAs, social 

stakeholders, and strategies of management towards conservation in Colombia 

(www.parquesnacionales.gov.co). The SINAP was created by the signing of the 

Convention of Biological Diversity through the Law 165 of 1994, that was based the 

formulation of the National Biodiversity Policy, this made a commitment to form and 

consolidate a National Protected Areas System, the SINAP. Currently the SINAP is 

formally structured by the legal designation Act 216/03 (Vásquez & Serrano 2009). 
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Figure 4. Location of PAs, other conservation figures in Colombia and Indigenous 

Communities.  

 

According to Vásquez & Serrano (2009), in Colombia the SINAP is composed of 486 

PAs including national, regional and local categories, with a total area of approximately 

224 391km
2
, occupying approximately 11% of the continental and maritime Colombian 

territory (approximately 24% when only the mainland is taken into account). From the 

total coverage of SINAP, 27% corresponds to the marine protected area “Sea Flower”, 

and 10.5% to a special figure called “Distrito de Manejo Integrado - Ariari Guayabero”, 

that cannot be included as a physical PA. This makes us wonder what the real 

protection provided by SINAP for Colombian biodiversity is. 

 

Since PAs in Colombia are subject to the necessities and behavior of its surrounding 

populations, an approximation of the good or bad conservation status of PAs could be 

the low or high human population density, respectively. For indigenous reserves that 

are higher in density in the Amazon and Orinoquia regions (Figure 4) (DANE 2007), 

the role in terms of conservation is discussed by Armenteras et al. (2009), especially in 
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terms of habitat fragmentation, since high rates of deforestation have been found in 

indigenous population areas in the Colombian Guyana Shield. 

 

The continuing expansion of the agricultural frontier and especially ranching in the 

surrounding zones of PAs affect them permanently (Armenteras et al. 2009). There is 

ample evidence that continuing deforestation due principally to the construction of 

infrastructure, agriculture and cattle ranching, illicit crops, and continuing migrations 

due to unrest in Colombia (Cavelier & Etter 1995; Etter et al. 2006d), may have 

considerably affected the PAs (Armenteras et al. 2009), hence, the real representation 

of SINAP should be reevaluated. 

 

2.2 Modeling the Potential Dispersion of Atelines under 
Climate Change and Habitat Fragmentation Scenarios for 
Identifying Priority Conservation Areas  
 

A general procedure for obtaining major potential areas for the dispersion of atelines 

under climate change and habitat fragmentation scenarios is presented in Figure 5. All 

the analyses were performed for the years: 2000, 2010 and 2020 at a spatial 

resolution of 1 km, since it is the grain of climatic information used. Although land 

cover was available in a finer resolution, 1 km represents the maximum pixel data. 

 

Procedures for selecting priority areas needing additional attention in order to ensure 

the dispersal of atelines over suitable habitats are as follow: i) the construction of 

current and future scenarios of land cover and climate, ii) the current and future 

potential distributions for ateline species, iii) the construction of habitat quality and cost 

flow functions, iv) a connectivity and dispersal corridor analysis, and finally v) a 

selection of priority conservation areas for ateline dispersal. 
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Figure 5.   General procedure to identify main potential areas for the dispersion of 

atelines under climate change and habitat fragmentation scenarios. 

 

2.2.1 Current and Future Scenarios of Land Cover and Climate 

 

Figure 6 shows the process to obtain final land cover and climate layers for the years: 

2000, 2010 and 2020. Because of their differences, the method used to construct each 

data layer is presented separately. 
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Figure 6.  Detailed diagram for the construction of current and future scenarios of 

land cover and climate. 

 

Land Cover Scenarios 

 

The land cover scenarios were constructed as approximations to different cover types 

representing different costs for the movement of atelines. Due to the lack of 

comparable data for non-forest areas, procedures were developed to generate layers 

in these regions that serve to an input for modelling the potential dispersal of species, 

since landscape matrix is the most important factor affecting species dispersal. 

 

Land cover scenarios were generated by combining two data sources: i) an 

unsupervised classification applied to MODIS Vegetation Continuous Fields product 

(VCF-MOD44B-v005); ii) and the forest layers produced by the Instituto de Hidrología, 
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Meteorología y Estudios Ambientales (IDEAM), in the context of Reducing Emissions 

from Deforestation and Forest Degradation (REDD) project for Colombia (García et al. 

2011). VCF layers presented NoData pixels for some areas (particularly in the Pacific 

region) and dates (2001-2005 and 2007), while IDEAM forest layers were only 

available for the years 1990, 2000, 2005 and 2010 and also had NoData pixels, as 

result of clouds and Landsat ETM banding. 

 

The VCF product represents the surface vegetation cover as a proportion of basic 

vegetation traits. It has been generated annually (2000-2010) at 250 m of resolution, 

using monthly composites of Terra MODIS 250 and 500 m Land Surface Reflectance 

data, and Land Surface Temperature (Townshend et al. 2011). In this study we used 

the layer percent tree cover to classify land cover in the non-forest areas. It has a 

range between 0 and 100, where higher values represent a higher proportion of tree 

cover. 

 

Other studies have used MODIS remote sensing data to create land cover 

classifications, in particular the Enhanced Vegetation Index (EVI-MOD13Q1-v005), a 

sub product of Normalized Difference Vegetation Index (NVDI) (Clark et al. 2010; 

Sánchez-Cuervo et al. 2012). These methodologies used control points, which were 

not available for this study. Nevertheless, we performed an unsupervised classification 

with both: VCF and EVI products. Using the IDRISI Selva software, we applied Cluster, 

Chain Cluster and K-means algorithms (Clark Labs 2012). 

 

For each MODIS product and each date (2000-2010 for VCF and 2000-2011 for EVI), 

the parameters of algorithms were modified using a trial and error method to select the 

best performance in each case. In Figure 7 an example of the distribution of values 

inside each resultant class after applying unsupervised classification is presented. The 

comparisons performed, confirmed for each date of VCF product the best performance 

of K-means algorithm respect to the other ones showed by EVI product.  
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Cluster - VCF Cluster - EVI 

  

  

K-means - VCF K-means - EVI 

  

 

Figure 7. Distribution of classes constructed from VCF and EVI products using 

cluster and k-means methods for the year 2000. EVI values are 

normalized between 0 and 100. 
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Figure 8. Reclassification of VCF K-means products. Ordinal Classes are inversely 

related to VCF values. Class 1 corresponds to values close to 100 (higher 

proportion of tree cover) and class 6 and 4 correspond to values close to 

0 (lower proportion of tree cover). Intermediate classes correspond to 

intimidate VCF values. 

 

The results were evaluated using expert knowledge, and particularly the concordance 

with the forest distribution of IDEAM layers was taken into account. The 6 classes 

obtained from unsupervised classification using K-means and VCF product were 
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selected as preliminary land cover layer for years 2000 and 2010. However, VCF 

classification was reclassified to 4 classes merging classes: 3 with 4 and 5 with 6 

(Figure 8). Classes 4 and 6 were spectrally close to classes 3 and 5 respectively 

(Figure 7), and are close to cover types spatially not differentiable under the 

unsupervised classification methodology used, therefore they could increase the 

uncertainty level on the land cover classification.  

 

Since class 1 in classification does not spatially match the distribution of forest cover in 

Colombia (Figure 8), (especially in the Pacific region where major errors in VCF values 

were found due to the constant presence of clouds), the forest cover in the land cover 

classification was taken from IDEAM forest layers (Figure 9). Unfortunately, original 

IDEAM forest layers were also affected with clouds and Landsat ETM banding. Thus, 

IDEAM forest layers for year 2000 and 2010 were fixed by filling the NoData pixels 

with the information of the other dates. For this, all layers were resampled from 30 m 

(original spatial resolution of IDEAM layers) to 250 m to match grid size of the VCF 

classification. With this procedure, some of no-data pixels were combined to dominant 

classes (forest or no forest) using a majority algorithm as resampling technique. 

 

Conditions created for repairing original IDEAM layers follow a major assumption: 

forest persistence. For year 2000, we supposed that forest existence after 5 (2005) or 

10 years (2010) necessary should imply the existence in year 2000, i.e., a mature 

forest could not be generated in less than 5 years. If there was forest in 2005 or 2010 it 

was because there was forest in 2000. In this sense, if there was forest in 2005 or 

2010, we assumed it as evidence of forest existence in year 2000 as well. For year 

2010, a major assumption was made: the future persistence of forest. We supposed 

that forest persistence for 5 (2000-2005) or 15 (1990-2005) years suggested the 

existence of forest in 2010, i.e., if there was forest during those periods, there should 

also be forest after 5 years. 

 



39 Modeling the Dispersion of Atelines through Scenarios of Climate 
Change and Habitat Fragmentation in Colombia 

 

39 
 

 

 

Figure 9. IDEAM forest layers. Source: García et al. (2011) 

 

Final fixed forest of IDEAM layers was inserted in the VCF classification, replacing all 

pixels located over the intersection area. Class 1, equivalent to forest cover, was 

primarily substituted. Pixels remaining of class 1 after insertion corresponding to 

original VCF classification were merged to the nearest neighbor. Final layers were 

resampled to 1 km grid size using a majority filter, which in turn homogenize the land 

cover classification at a higher degree. 
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These land cover scenarios were constructed to respond to the cost of movement for 

primate species, and therefore they not directly correspond to a land cover type. 

Nevertheless, forest cover can be associated with class 1, shrubs or secondary 

vegetation mixed with stubbles with class 2, crops and mixed crops with class 3, and 

low tree density or bare vegetation (including savannas, urban areas and deserts) with 

class 4 (Figure 8). 

 

The 2020 land cover scenario was modeled in Dinamica EGO (Soares-Filho et al. 

2001, 2002, 2009; Maria de Almeida et al. 2003). Dinamica EGO is a spatially explicit 

model for simulating the dynamics of landscape and it has been regularly and widely 

used for modelling land use/cover changes (LUCC) at different scales (Soares-Filho et 

al. 2002, 2006, 2012; Nepstad et al. 2009; Teixeira et al. 2009; Silvestrini et al. 2010; 

Mas et al. 2012). An explanation of the process used to project land cover dynamics in 

Dinamica EGO is presented in Table 3. More detailed information can be found in 

Maria de Almeida et al. (2003) and Soares-Filho et al. (2009). 

 

For the modelling process, 2000 and 2010 land cover scenarios were used to 

construct the land cover transitions, using 2010 as the initial land cover map to start 

simulation. Performance was primarily evaluated using expert knowledge of results, 

taking special attention in the coherence of spatial distribution for losses and 

persistence locations of forest. To validate the simulated 2010 map a confusion matrix 

was constructed between the observed (land cover scenario in 2010) and the 

simulated map (Congalton 1991). 

 

Dinamica EGO uses a set of co-variables to explain the landscape dynamics in the 

time period of the two land cover maps. These predictor variables can be static or 

dynamic. All of them were considered as static except distance to forest edge, which 

was recalculated in Dinamica EGO at each different time step defined in the 

simulation. Co-variables used are described in Table 4 and their spatial distribution 

ranges and units are shown in Figure 10. All of them were constructed at 1 km cell 

size. 
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Table 3. Description of the processes to project land cover data in Dinamica EGO. 

Additional processes like analyze map correlation and validate simulation 

can be consulted in Soares-Filho et al. (2009). 

 

Step Description 

1. Calculate 

transition 

matrices 

A transition matrix between a pair (older and earlier) of land cover images is 

constructed. Each record contains the probability that each land cover category 

will change in every other category in the time step, according to cross tab 

results of the intersection between the two images. 

2. Calculate 

ranges 

Each continuous variable is categorized according to defined increments for 

construct ranges. For each continuous variable in Table 4 the minimum 

increment value was set as 5000m. Calculation of ranges follows the method 

adapted from Agterberg & Bonham-Carter (1990). 

3. Calculate 

weights of 

evidence 

The weights of evidence method taken from Bonham-Carter (1994), is applied to 

produce a transition probability layer, that  contains the most suitable areas for a 

change. Weights of evidence are calculated by a Bayesian method in which the 

effect of a spatial variable on a transition is calculated independently of a 

combined solution. The weights of evidence represent each variable’s influence 

on the spatial probability of a transition. 

4. LUCC 

simulation 

model with 

path 

formation 

(patcher) and 

expansion 

(expander) 

A local cellular automata rule uses a transition engine to simulate spatial 

dynamics in a landscape. It works with information about patches in two forms: 

patch generation (patcher) and patch expansion (expander). The first one is 

used to generate or form new patches through a seeding mechanism. Patcher 

searches for cells around a chosen location for a joint transition. The process is 

started by selecting the core cell of the new patch and then selecting a specific 

number of cells around the core cell, according to their     transition probabilities. 

The second one is used only for the expansion or contraction of previous 

patches of a certain class. Thus in the Expander, a new     spatial transition 

probability depends on the amount of cell type   around a cell type    Parameters 

for patcher module: mean and standard deviation of patches, were derived from 

mean patch metrics calculated for land cover layers.  
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Table 4. Co-variables used to model land use changes. 

 

Variable Type 

Original 

Resolutio

n 

Source 

Distance to Forest Edge (DE) 
Continuou

s 
1 km Land cover classification 

Distance to Roads (DR) 
Continuou

s 
1:100 000 

Roads Layer produced by Instituto 

Geográfico Agustin Codazzi (IGAC) 

Distance to Rivers (DRi) 
Continuou

s 
1:100 000 Rivers Layer produced by IGAC 

Distance to Settlements (DS) 
Continuou

s 
1:100 000 Towns Layer produced by IGAC 

Altitude (A) 
Continuou

s 
1 km 

Digital Elevation Model (DEM) produced by 

United States Geological Survey (USGS) 

Slope (S) 
Continuou

s 
1 km Derived from altitude 

National Natural Parks (NNP) 
Categorica

l 
1:100 000 

Registro Único Nacional de Áreas 

Protegidas Integrantes del SINAP 

(RUNAP) 

Soil Fertility (SF) 
Categorica

l 
1:500 000 

Soil classes layer produced by IGAC and 

modified for fertility by Etter et al. (2005) 

 

These variables have been recognized as drivers of land cover change (Mertens & 

Lambin 1999; Lambert et al. 2001; Serneels & Lambin 2001; Geist & Lambin 2002; 

Lambin et al. 2003; Leemans et al. 2003; Geist et al. 2006) and have been recurrently 

used in LUCC models for national (Etter & Van Wyngaarden 2000; Etter et al. 2006b, 

2006c, 2006d, 2008; Etter & McAlpine 2007; Armenteras et al. 2011; Rodríguez et al. 

2011) and international (Lambin et al. 1999; Mertens & Lambin 1999; Southworth & 

Tucker 2001; Lambin & Geist 2003; Nagendra et al. 2003; Linkie et al. 2004; Lepers et 

al. 2005) applications at different scales.  
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Figure 10. Co-variables used in Dinamica EGO. 
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Climate Scenarios 

 

Climate can influence the movement of atelines. We used two different global climate 

products as climate scenarios: i) WorldClim - Global Climate Data (www.worldclim.org) 

for current climate (2000 and 2010) (Hijmans et al. 2005), and ii) the IPCC Fourth 

Assessment Report (AR4) (2007) projections downscaled by CCAFS et al. (2012) for 

future climate (2020). 

 

WorldClim is probably the most widely climatic source used in ecological studies at 

larger scales. WorldClim is a global climate dataset including monthly total 

precipitation, monthly mean, minimum and maximum temperature, and 19 derived 

bioclimatic variables (Table 5). These were interpolated using thin-plate smoothing 

spline algorithm (TPS) with coordinates and elevation as co-variables in ANUSPLIN 

software. Average monthly climate data from weather stations with more than 10 years 

of time series data in the period 1950-2000 were used (Hijmans et al. 2005). Past and 

future projections are available in the WorldClim data base, but these were not used in 

this study. 

 

Although WorldClim has the drawback to lack data after 2000, it has 4 main 

advantages: i) It has a global extent, allowing the use of observations within the entire 

distribution of atelines, which in turn promotes good performance of the SDMs used to 

construct the species distributions and their habitat quality (to be  detailed later). ii) The 

resolution: 1km, that is detailed taking into account the global extent of data and also is 

the same of this study. iii) The method used for interpolating climate surface that is 

also used for downscaling climatic future projections of IPCC (AR4) (2007) (to be 

detailed later). v) It has been widely and consistently used for multiple spatial 

ecological applications related to weather, hence the results obtained are comparable 

with other studies.  

 

Future Climatic layers were obtained from the Global Circulation Model (GCM) 

Downscaled Data Portal (www.ccafs-climate.org), which is an initiative from the 

International Centre for Tropical Agriculture (CIAT for its Spanish acronym) and the 
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Climate Change, Agriculture and Food Security program (CCAFS), both as part of the 

Consultative Group on International Agricultural Research (CGIAR) (CCAFS et al. 

2012). Data available results from spatial disaggregation to 24 different GCMs from the 

IPCC (AR4) downloaded from the Earth System Grid (ESG) data portal. A total of 441 

future climate scenarios were produced for the same variables included in WorldClim 

(Ramirez & Jarvis 2010a).  

 

Table 5. Bioclim variables from WorldClim. Source: www.worldclim.org/bioclim. 

 

Variable Description 

BIO1  Annual Mean Temperature 

BIO2  Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

BIO3  Isothermality (BIO2/BIO7*100) 

BIO4  Temperature Seasonality (standard deviation *100) 

BIO5  Max Temperature of Warmest Month 

BIO6  Min Temperature of Coldest Month 

BIO7  Temperature Annual Range (BIO5-BIO6) 

BIO8  Mean Temperature of Wettest Quarter 

BIO9  Mean Temperature of Driest Quarter 

BIO10  Mean Temperature of Warmest Quarter 

BIO11  Mean Temperature of Coldest Quarter 

BIO12  Annual Precipitation 

BIO13  Precipitation of Wettest Month 

BIO14  Precipitation of Driest Month 

BIO15  Precipitation Seasonality (Coefficient of Variation) 

BIO16  Precipitation of Wettest Quarter 

BIO17  Precipitation of Driest Quarter 

BIO18  Precipitation of Warmest Quarter 

BIO19  Precipitation of Coldest Quarter 

 

IPCC (AR4) scenarios used were restricted by the availability of information on 

download date (September 24
th
, 2012) including 2 restrictions: i) the downscaling 

method (“Delta Method”) and the resolution (1 km), and ii) the model (HadCM3). 

Available projected scenarios for 2020 fulfilling the above limitations were: A1B, A2 
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and B2; therefore, these were used as climate change scenarios for this study. The 

Table 6 resumes the characteristics of climate change scenarios according to the 

Special Report on Emissions Scenarios (SRES) (IPCC 2000). 

 

“Delta Method” downscales (using TPS) the variables at 1km resolution, based on the 

sum of interpolated anomalies (a departure from a reference value or long-term 

average) to WorldClim layers (baseline) (Ramirez & Jarvis 2010b). The HadCM3 was 

the only model included through all scenarios available. HadCM3 ranks highly with 

respect to other models (Reichler & Kim 2008) and does not need flux adjustment to 

prevent large climate drifts in the simulation, i.e., it has good performance without 

artificial adjustments for controlling unrealistic climate states (Gregory et al. 2000). 

 

Finally, taking into account the importance of seasonal variability of precipitation and 

temperature for resources, and therefore, for the movement of atelines (Defler 1996; 

Defler & Defler 1996; Di Fiore 2004; Dew 2005; Russo et al. 2005), a climatic envelope 

for including climatic variability in the  SDMs and the dispersal flux function was 

constructed. Three kind of climatic envelopes were created as a result of the first 

component in a Principal Component Analysis (PCA). All layers for each of the three 

different sets of climatic variables in current and future scenarios (monthly total 

precipitation, monthly mean temperature and the 19 bioclimatic variables) were used in 

the PCA. A total of 12 (1 current and 3 climatic change scenarios times 3 sets of 

climatic variables) climatic envelopes were generated using IDRISI Selva (Clark Labs 

2012) and afterwards were normalized between 0 and 100. 
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Table 6. Scenarios of climate change according to SRES. Modified from Beaumont et al. (2008). Source: IPCC (2000, 2007). 

 

Synthesis Scenario 

World 

Populatio

n 

Economic 

growth 

Land-

use 

change 

Primary energy 

use 

Hydrocarbon resource 

use 

Groups: A1T, A1B, A1Fl. Global and 

economic focus. Rapid economic 

growth, a global population that peaks 

in mid-century and rapid introduction of 

new and more efficient technologies. 

A1 ~ 7 billion Very high Low Very high 

Oil: low to very high 

Gas: high to very high 

Coal: medium to very high 

Regional and economic focus. High 

population growth, slow economic 

development and slow technological 

change.  

A2 ~ 15 billion Medium Medium High 

Oil: very low to medium 

Gas: low to high 

Coal: medium to very high 

Global and environmental focus. 

Global population as A1, but with more 

rapid changes in economic structures 

toward a service and information 

economy. 

B1 ~ 7 billion High High Low 

Oil: very low to high 

Gas: medium to high 

Coal: very low to high 

Regional and environmental focus. 

Intermediate population and economic 

growth, emphasizing local solutions to 

economic, social, and environmental 

sustainability. 

B2 ~ 10 billion Medium Medium Medium 

Oil: low to medium 

Gas: low to medium 

Coal: low to very high 
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The PCA is known to be a technique for reducing the number of variables and 

incorporating their variability into a minimum number of subsets (components) that 

adequately represent the original information with the least distortion. This method 

constructs each component as a lineal combination of original variables, each one of 

them explaining the variability found in a particular subset of initial data; hence, each 

component resumes a group of correlated variables, but each component is 

orthogonal (uncorrelated) to the others in space and time (Peña 2002). For these 

reasons, this method has been proposed for use in a spatial time series analysis and 

has been remarkably effective in establishing the underlying sources of variability in 

the data (Eastman 2012). 

 

The sum of the variances of the components is equal to the sum of the variances of 

the original variables, then the percentage of variance explained by each component 

corresponds to the proportion between the variance of the component and the total 

variance (Peña 2002). This last value is relevant, since it represents the accuracy of 

one or more components chosen to represent the original data variability (Table 7). 

 

Table 7. Values of variance explained by the first component from PCA. 

 

Scenario Precipitation Temperature Bioclim 

Current 70.620 98.580 84.886 

A1B 71.159 98.924 97.935 

A2 71.721 98.539 97.900 

B2 73.928 98.773 97.575 

 

2.2.2 Current and Future Potential Distributions for Ateline 

Species 

 

A detailed diagram to model the potential present and future distributions of atelines   

under climate change and land cover scenarios is presented in Figure 11. This 

approach is based on the SDMs, which has been widely used to depict actual, past or 

present species’ distributions (Peterson et al. 2002; Araújo & New 2007; Pearson et al. 
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2007; Thuiller et al. 2008; Elith & Leathwick 2009; Graham et al. 2010b). Although the 

primary objective of a SDM is this last, we additionally intend to use its result as an 

approximation to a climatic habitat suitable over current and future climate scenarios, 

since climatic envelopes were used as co-variables in the SDMs. 

 

The SDMs used for these kinds of approaches, are based on the occurrence of 

species and predictor variables (Peterson et al. 2007; Elith & Leathwick 2009), 

establishing the fundamental niche or potential distribution for the species in the first 

instance, and then determining its realized distribution based on the knowledge of its 

habitat and geographic range (Phillips et al. 2004). The fundamental niche of a species 

is the set of all the conditions that enable their survival over time, while its realized 

niche is the subset of the fundamental niche actually occupied by the species 

(Hutchinson 1957). The latter may be restricted by several factors such as: human 

influence, biotic interactions (e.g., competition, predation) or geographical barriers 

(Pulliam 2000). ENMs, then represent an approximation of the ecological niche of a 

species exclusively on the environmental dimensions examined, i.e., only over the 

predictor variables used for modeling. 

 

Although SDMs describe the suitability of the environment in an ecological space, the 

goal is to project this suitability in geographic space, producing a geographic area of 

the species predicted presence. The realized niche is usually smaller than the 

fundamental niche; in this sense the abstraction and simplification of biotic and abiotic 

environments (with respect to the environmental variables being modeled), can lead to 

a predicted distribution smaller than the potential distribution. However, if the model 

tries to include the precision and complexity of the environment, its projection in 

geographic space will represent with a greater certain the potential distribution of the 

species (Phillips et al. 2006). 
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Figure 11. Detailed diagram for modeling the current and future potential distributions 

for atelines in Colombia. 

 

If the realized niche and the fundamental niche do not fully coincide, the algorithm 

used to model will be unable to characterize the fundamental niche of the species; 

hence, it should be assumed that the required information is not present in the 

localities of occurrence, probably because they have been extracted from a small 

geographic area. Therefore, it is recommended that the sample universe of 

observations be  extracted from a large study region (Elith & Leathwick 2009; Graham 

et al. 2011) (if possible, from the entire distributional range of the species) in order to 

characterize with  higher confidence the ecological niche of the species, represented in 

the spatial variation from localities of occurrence and the environmental conditions 

(Peterson & Holt 2003; Phillips et al. 2006).  
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In this context, we used species occurrences for the entire distribution of the ateline 

species, i.e., with information inside and outside Colombia, obtained, verified and 

arranged from: i) collection databases (mostly provided by Defler (unpublished)), ii). 

field observations (mostly provided by A. Link, P. Stevenson and T.R. Defler), iii). the 

world web databases Mammal Networked Information System (MaNIS - 

www.manisnet.org) and The Global Biodiversity Information Facility (GBIF - 

www.gbif.org). 

 

The SDMs for L. lagothricha were constructed separately for the two subspecies, since 

models using all points did not clearly define the expected limits of the species 

distribution ranges. Thus, for all the analyses the two subspecies are considered 

individually, but this does not mean we consider them as two different species; as was 

specified before, we are using the taxonomic information provided by Defler (2010) 

that considers all Colombian Lagothrix lagothricha as being one species rather than 

two. 

 

Table 8. Number of species points occurrences used in SDM. 

 

Species Original Used % of Used Altitudinal Range 

Ateles belzebuth 60 56 93 0-1300 

Ateles geoffroyi 43 43 100 0-2500 

Ateles hybridus 115 92 80 0-900 

Lagothrix lagothricha lagothricha 92 63 68 200-1400 

Lagothrix lagothricha lugens 62 62 100 0-3000 

Total 372 316 85  

 

A total of 372 records of localities for the presence of species were obtained from the 

different sources used, but only 316 (85%) were used in SDM (Table 8 and Figure 12). 

52 observations were excluded for two reasons: i). Because they did not match 

spatially (Figure 12) or attitudinally (Table 8) with historical and known distribution 

range limits of species, or ii) because occurrences were separated less than 5km of 

distance. In practice it is known that occurrences grouped in specific areas tend to 
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make the model overestimates the species occurrence in these regions, leading to 

underestimate the total area of the species distribution (Renjifo et al. In press). 

 

 

(Morales 2004; Sánchez-Londoño 2007; Zarate 2009) 

Figure 12. The 316 Presence points used in SDM by species and source.  
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Is known that for almost any species the distributional range is limited by altitude; and 

the climate is often a good predictor of species distributions because it determines 

some physiological characteristics of the species (Hijmans & Graham 2006). To 

assess the potential distribution of atelines using SDMs, we used as predictor 

variables the elevation and the three climatic envelopes constructed: bioclim, monthly 

precipitation and monthly temperature for current and future climate scenarios, in 

combination with occurrence points of species. Due to georeferenced localities of 

presence for species were distributed inside and outside Colombia, the co-variables 

used were prepared to spatially include all species occurrences.  

 

The SDM MaxEnt (Phillips et al. 2004, 2006; Phillips & Dudík 2008; Elith et al. 2010), 

was used to model ateline distribution and their climatic habitats. MaxEnt uses the 

fundamental niche ecological concept and the maximum entropy approach, and has 

been tested continuously with good performances compared to other modeling 

approaches (including both SDM for presence-only data and presence-absence data) 

under current and future climate scenarios, and also under different sample sizes (Elith 

et al. 2006; Hernandez et al. 2006; Hijmans & Graham 2006; Peterson et al. 2007; 

Wisz et al. 2008; Elith & Graham 2009; Velásquez-Tibatá et al. 2012). 

 

MaxEnt estimates the probability distribution of maximum entropy (i.e., the closest to a 

uniform distribution) of each predictor variable in the study area, subject to the 

condition that the expected value of the moments (e.g. mean, variance, covariance) on 

the estimated probability distribution, must be as close as possible to the moments 

generated from empirical data of the occurrence of species (Phillips et al. 2006; Elith et 

al. 2010). For all species and climate scenarios (current and future), the models were 

ran using the default regularization values which have been adjusted to perform well 

for different species and regions (Phillips & Dudík 2008). Models for current climates 

were run using 10 bootstraps with 75% of occurrence points for training and the 

remaining 25% for testing, while models including the climatic envelope built over 

climate change scenarios were performed using all records to avoid biases in 

distribution models following the same structure proposed by Velásquez-Tibatá et al. 

(2012), who modeled the distribution of 146 species of birds in Colombia. 
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To convert continuous scale models produced by MaxEnt to maps of presence/ 

absence it is necessary to apply thresholds. Several methods have been proposed to 

define them (Liu et al. 2005), however these have been developed mainly thinking on 

the presence/absence of localities information, which is rarely available. For models 

using only presence data, the minimum training presence value, i.e., the highest 

probability value where the omission rate is the lowest, is the common threshold used 

(Anderson et al. 2003; Pearson et al. 2007). The omission rate is equal to the fraction 

of the test locations falling within pixels predicted as not suitable for the species 

(Phillips et al. 2006). Ecologically, when we define the minimum training presence as a 

threshold value, we are selecting as the species’ distribution, the pixels predicted as 

being at least as suitable as those where a species’ presence has been recorded 

(Pearson et al. 2007). 

 

To evaluate the actual predictive performance of SDMs independent assessment data 

are required. Although statics calculated over testing data do not necessarily imply the 

validation of the predicted distribution, bootstrapping provides a measure of internal 

consistency for the models (Araújo et al. 2011). Values of area under the receiver 

operating characteristic (ROC) curve (known as the AUC - area under the curve), were 

in all cases greater than 0.9, verifying good model performances (Wisz et al. 2008). 

However, it is known that this method is affected when only presence data are 

available and it has some problems as a comparative measure of accuracy between 

model results (Pearson et al. 2007; Lobo 2008). Therefore, we also evaluate using 

expert knowledge the distribution obtained for each species across different percentile 

omission thresholds (0-30) applied, taking as base value the minimum training 

presence (Renjifo et al. n.d.; Velásquez-Tibatá et al. 2012). In all cases, these were 

approximately concordant with the known distribution of atelines. 

The application of a minimum training presence threshold to obtain species’ 

distributions often overestimates the known species´ ranges; hence, we obtained in 

the evaluation of models using expert knowledge that generated distributions were not 

totally concordant with known range limits of atelines. To address that, we limit the 

potential distribution of species in Colombia using a combination of one or more of the 
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following criteria: i) expert knowledge of natural and known limits of species’ 

distribution, ii) existing geographic ranges proposed by Defler (2010) (Figure 1) and 

IUCN (Figure 12), iii) altitudinal known limits (Table 8), and iv) the available occurrence 

points used in SDMs (Figure 12). 

 

For future species’ distributions responding to climate scenarios, we defined the same 

ranges obtained for current climate, i.e., future ranges restricted to places predicted as 

suitable in the present (Velásquez-Tibatá et al. 2012). Thus, this study measures the 

exposure of species’ distributions to climate changes, but it does not account for the 

possible migration of species to other suitable areas (Araújo et al. 2011). Additionally, 

all species’ distributions for current and future scenarios were restricted using forest 

cover (the natural habitat of atelines) obtained from land cover scenarios for the years 

2000, 2010 and 2020 (Phillips et al. 2004). 

 

MaxEnt output with continuous values between 0 and 1 (when the exit option is a 

logistic) was used as a climatic suitability layer for current and future scenarios, since it 

responds accordantly to the predictor importance of each pixel (Elith et al. 2010). This 

product is commonly confused with the probability of occurrence of the species and 

represents only the probability of occurrence of the species when the average value of 

the predictor variables has a probability of 0.5. To obtain the conditional probability of 

occurrence of the species given by the predictors, it would be necessary to know the 

proportion of occupied sites (prevalence) in the landscape for the species that are 

unknown. For this reason, the default prevalence is set by MaxEnt as 0.5 (Phillips & 

Dudík 2008; Elith et al. 2010). 

 

Finally, 15 different distributions (for 3 habitat layers and 5 species) and 20 climatic 

habitat suitability layers were combined (for 4 climatic conditions and 5 species), to 

produce 25 (5 species habitat each one with 4 climatic habitat suitability layers under 3 

different habitat distributions) different networks for use in the connectivity and 

dispersal corridor analysis. Each distribution defined by habitat patches in 2000 and 

2010 were associated with current climate conditions for the 5 species (a total of 10 

networks), while the habitat patches in 2020 were associated with 3 different climatic 
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conditions corresponding to 3 different climatic scenarios for the five species (a total of 

15 networks). 

 

2.2.3 Habitat Quality and Cost Flow 

 

A detailed diagram to explain the construction of habitat quality (HQ) and cost flow 

(CF) functions is presented in Figure 13. These functions are the basis for the network 

analysis of species connectivity and dispersal. They were built from 4 sources: i) 

climatic habitat suitability, ii) population density, iii) net primary production (NPP) and 

iv) land cover. 

 

 

 

Figure 13. Detailed diagram for building the dispersal flow function. 
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Climatic habitat suitability layers were created using SDMs as described above. 

Twenty habitat suitability layers were incorporated into the analysis corresponding to 5 

species times 1 current climate conditions, plus 5 species times 3 future climate 

scenarios([                             ]  [                             ]). Figures 

of layers are shown in the Results chapter. 

 

For building population density layers, total population estimations for municipalities in 

Colombia from the years 2000, 2010 and 2020 were obtained from the Departamento 

Administrativo Nacional de Estadistica (DANE)
1
. For each municipality, the total 

population estimation was weighted by the proportion of its rural area with respect to 

the sum of all the municipalities’ rural areas in Colombia, according to the information 

obtained from the Federación Colombiana de Municipios (www.fcm.org.co). The 

weighting proposed, gives more heft in terms of population density to municipalities 

with less number of habitats located in the following regions: Amazon, Orinoco and 

Pacific, where hunting of atelines occurs in equal or greater proportion to the other 

regions (Defler 2010), where population density is greater. 

 

The weighted value of population for each municipality was assigned to its respective 

polygon centroid for computing population density. The latter was calculated for the 

years 2000, 2010 and 2020 using a quadratic kernel function, which fits a smoothly 

curved surface to each centroid (Yamada & Rogerson 2003). The surface value is 

highest at the location of the point and diminishes with increasing distance from the 

point. Calculations were performed using the kernel density function incorporated into 

spatial analyst tools extension in ArcGIS 10 (ESRI 2010). Human population density 

layers obtained are shown in Figure 14. 

 

NPP corresponds to the second layer of MODIS product Net Primary Production 

Yearly (NPP-MOD17A3-v55), which describes the rate at which plants in an 

                                 
 
1 http://www.dane.gov.co/index.php?option=com_content&view=article&id=75&Itemid=72 
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ecosystem produce net useful chemical energy. The rate at which light energy is 

converted to plant biomass is primary productivity, and the sum of total converted 

energy is called gross primary productivity (GPP). NPP is the difference between GPP 

and energy lost during plant respiration. Values of the NPP layers range between 0 

and 65,500 kgC/m
2
 for the entire world, in a spatial resolution of 1km (Heinsch et al. 

2003). They were downloaded annually for the period 2000-2010. 
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Figure 14. Human population density layers. Values are dimensionless because of 

weighting. Light colors indicate higher population density. 

NPP is proportional to absorbed photosynthetically active radiation (APAR), based on 

the suggestion that the NPP of well-watered and fertilized annual crop plants is linearly 

related to the amount of solar energy they absorb (Running et al. 1999). Taking this 

into account, NPP is derived directly or indirectly from MODIS products as follow: i) 

surface reflectance (MOD09), ii) land cover dynamics (MOD12), iii) Leaf Area Index 

(LAI) (MOD15), iv) Fraction of Photosynthetically Active Radiation (FPAR) (MOD15), 

and v) GPP (MOD17) (Heinsch et al. 2003). 

 

NPP measures the production activity or biomass of terrestrial vegetation, indirectly 

measuring forest production (Running et al. 1999). For this analysis we assumed that 

the latter is directly associated with resource availability in the forest. As was specified 

previously, forest productivity is a determinant factor for the atelines in terms of habitat 

quality and movement patterns, since resource availability determines aspects like diet 

composition and abundance, foraging strategy, time spent and the composition of 

foraging activities, and daily ranging distances (Ford & Davis 1992; Strier 1992; 

Stevenson et al. 2000; Di Fiore & Rodman 2001; Defler 2010). 

 

The NPP MODIS product for the years 2000 and 2010 were incorporated in the 

construction of HQ, and CF, after filling few and small gaps with no information, using 

spline interpolation; nevertheless for the year 2020 the NPP had to be projected. In 

this context and with available generated information (taking into account the necessity 

for using data for 2020), we supposed that climate and particularly temperature and 

precipitation (since areas that are warm and wet generally are more productive) in 

combination with vegetation structure and nutrient availability are control variables for 

primary productivity, since these relationships have been already established 

(Bondeau et al. 1999; Schloss et al. 1999; Moldenhauer & Lüdeke 2002; Nemani et al. 

2003; Matsushita et al. 2004).  

 

We tried to explain the NPP observed using: climatic variables (constructed climatic 

envelopes), land cover (land cover layers generated) and soil fertility (co-variable 
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included in land change projection model for 2020). Temperature and precipitation are 

included recurrently in NPP models for testing the relationship of NPP and climate 

change (Running & Coughlan 1988; Moldenhauer & Lüdeke 2002; Matsushita et al. 

2004). Land cover was a proxy for vegetation structure; although LAI or NVDI are used 

more often to quantify this characteristic (Cramer et al. 1999; Phillips et al. 2008a), it 

was not possible to include them due to the limitation of available information for 2020. 

Soil fertility was originally used to simulate nutrient availability; however, it was not a 

statistically significant variable in the models, thus it was not finally included. 

 

Although NPP is commonly constructed using combinations of mathematical and 

physical models  (Running & Coughlan 1988; Field et al. 1995; Cramer et al. 1999; 

Moldenhauer & Lüdeke 2002; Matsushita et al. 2004), we used a statistical approach 

to project NPP for 2020. Generalized linear models (GLM) were applied, since they are 

flexible, efficient and common multivariate techniques that are used to predict a 

dependent variable that can be explained by independent (categorical and/or 

continuous) predictors.  

 

We used different families and links functions for each GLM generated. Two models 

for each family and link function were built to explain the NPP in 2000 and 2010. The 

information used for models was inverted in dates to test the efficiency of the models 

for predicting 10 years later or 10 years before (since this projection is what we were 

looking for), i.e. the models used the information of 3 climatic envelopes and land 

cover as predictor variables. To predict NPP in 2010, land cover of 2000 was used and 

vice versa. In addition, we used another predictor variable to take into account the 

spatial autocorrelation of observations, constructed as the residuals of a polynomial 

linear model of second order between NPP (2000 and 2010) and the pair of 

coordinates (  and  ) for each observation (Equation 1). 

 

                      
     

       

 

Equation 1. Polynomial linear model of second order between NPP and the 

pair of coordinates for each observation. 
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Adjusted R
2
 statistic, the probability value of t-statistic for coefficients of predictors, and 

the probability value of F-statistic for the sum of squares of GLM were considered as 

measures of model performance and significance. A combination of jackknife and 

cross-validation approaches was constructed for validating the performance of models. 

For each GLM run, a random sample of all observations without replacement was 

selected for the model. The total number of pixels from layers extracted in each case 

corresponded to 50% (556,639 points) of all observations. To complete this value, the 

number of observations was randomly selected from each different natural region 

proportional to its area with respect to Colombia, in order to ensure that observations 

were sufficiently distributed through the entire country. In this way, the sample could 

be considered as representative (Table 9). 

Table 9. Number of observations extracted by region to run the models. 

 

Region Area (%) 

Num. Of Obs. 

Extracted 

Andean 28 155,859 

Caribbean 10 55,664 

Orinoquia 15 83,496 

Pacific 7 38,965 

Amazon 40 222,655 

Total 100 556,639 

 

The procedure described here was applied to each family link combination 500 times 

for the NPP of two years, i.e., 1000 GLMs were ran for each family link function 

combination: 500 predicting NPP in 2010 using climate envelope layers, land cover in 

2000 and residuals of NPP for 2010 as independent variables, and 500 predicting NPP 

in 2000 with the same variables except land cover (land cover in 2010). In each run, 

the values of the coefficients for each variable and the model performance measures 

chosen were satisfactory evaluated (jackknife), validating in each time the model.  

 

Also a cross-validation verification was implemented at each run in two ways: i) On the 

remaining 50% of points not used to construct the model, verifying the model 
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performance to predict NPP in the same year but with a model constructed under 

information of 10 years before. ii). Over all observations of the inverted year of NPP 

model, verifying the model performance to predict NPP ten years before or latter but 

with a model constructed under information in the same year of prediction. The statistic 

used to evaluate cross-validation results was the average of the absolute relative error 

(ARE) applied for all the observations tested in each model run (Equation 2).  

 

       (
                  

        
)      

 

Equation 2. Absolute relative error (ARE). 

 

Taking into account GLM performance measures and cross-validation results, the 

normal linear model had the best performance compared to other families of models. 

The best results among the approaches of different years was for the prediction of 

NPP in 2010 using as variables the three climate envelopes, land cover in 2000, and 

the residuals of relationship between NPP and coordinates in 2010. Mean parameters 

of coefficients obtained were used in the final model to predict NPP in 2020, since for 

500 replicates of each model run the parameter variability was too low (Table 10). Five 

NPP layers were generated: 2 from MODIS product for years 2000 and 2010, and 3 

more for year 2020 and each climatic scenario (Equation 3 and Figure 15). All the 

analyses were constructed in R (R Development Core Team 2012) and python 

(Python Software Foundation 2008) programming languages. 

 

                                                                      

                                                          

 

Equation 3. Linear model for prediction of NPP in 2020. 

 

Final source included in the analysis of HQ and CF was land cover (2000-2020) (layer 

figures are shown in Results chapter). With the four sources: i) climatic habitat 

suitability, ii) population density, iii) NPP, and iv) land cover, we construct the functions 
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of HQ and CF for the 5 atelines species, the 3 land cover years and the 3 climate 

change scenarios. A total of 25 layers for the 3 functions were constructed 

corresponding to 5 species times 2 first land cover years, plus 5 species in last land 

cover year times 3 scenarios 

([              (             )]  [             (    )             ]). 

 

The two functions proposed: HQ and CF, are widely used in connectivity and dispersal 

analysis under a graph-theoretic approach (Bunn et al. 2000; Urban & Keitt 2001; 

Pascual-Hortal & Saura 2006; Minor & Urban 2007; Saura & Pascual-Hortal 2007; 

Bodin & Saura 2010; Saura & Rubio 2010). HQ, has recently taken on special 

importance in terms of connectivity, since this last is looked now as a property of the 

habitat itself (Baranyi et al. 2011). CF, on the other hand, is considered the main 

alternative for assessing inter-patch flow, i.e, the value expressing a connectivity and 

dispersal degree between habitats, and it is based on the cost that some variables 

relevant to the species impose on their movement (Phillips et al. 2008b; Kupfer 2012).  

 

Table 10. Parameters obtained for NPP linear model. 

 

Parameter Mean Stand.Dev. Coef.Var. Median Min Max 

Intercept 12558.954 9.221 0.073 12559.000 12527.000 12586.000 

Cover2 -455.255 7.440 -1.634 -455.700 -475.400 -430.600 

Cover3 -462.778 3.177 -0.686 -462.800 -472.300 -453.200 

Cover4 -538.032 2.897 -0.538 -538.000 -547.400 -529.400 

Bioclim -162.640 0.307 -0.189 -162.600 -163.700 -161.700 

Precipitation 70.126 0.150 0.214 70.130 69.500 70.560 

Temperature 60.132 0.107 0.178 60.120 59.770 60.500 

NPP Residuals 0.998 0.000 0.047 0.998 0.997 1.000 

R
2 
Adjusted 0.852 0.000 0.026 0.852 0.851 0.852 

MARE 1 11.512 0.031 0.273 11.510 11.440 11.590 

MARE 2 13.412 0.003 0.025 13.410 13.400 13.420 

 

 Mean absolute relative error (MARE) 1, corresponds to cross-validation verification i, validation on 

the same year of prediction. MARE 2 corresponds to cross-validation verification ii, validation on ten 

years before the year of prediction. 
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HQ was constructed assuming high values for the best habitat conditions for the 

species based on the four source layers. Defined best conditions were as follow: i) 

high climatic habitat suitability, ii) less population density, iii) high NPP, and iv) low 

values of land cover according to 4 classes (1-Forest, 2-Shrubs, 3-Mixed Crops, 4- 

Low tree density or bare vegetation). All values of sources layers were normalized 

between 0 and 1 using Equation 4. 

 

 

 

Figure 15.  NPP maps for years 2000, 2010 and 2020. 

 



65 Modeling the Dispersion of Atelines through Scenarios of Climate 
Change and Habitat Fragmentation in Colombia 

 

65 
 

               
              

                 
 

 

Equation 4. Normalization of variable values. 

 

Since high values should indicate better HQ, then after normalization procedure, 

population density and land cover were inverted using Equation 5. The final HQ habitat 

layer for each species, each land cover year, and each climatic scenario was 

calculated using Equation 6. It is divided by 4, to rank the final values between 0 and 

1, due to all 4 variables were normalized into these values. 

 

                 (              ) 

 

Equation 5. Inversion of variable values. 

 

    
                                      

 
 

 

Equation 6. Calculation of Habitat Quality. 

 

CF should be consider in the inverse sense of HQ, because it represents less 

favorable conditions for the species and hence, the cost for species movement. We 

assumed that cost flow is a function of the same 4 source variables, thus the CF layer 

for each species, in each year, and each climate scenarios was calculated as the 

inverse function of HQ (Equation 5 and Equation 6). Other important variables like 

density or distance to roads could be also considered in this kind of analysis; however, 

due to the uncertainty in building future roads, we decided not to include it in the 

function. All the analyses were performed using map algebra operations in R (R 

Development Core Team 2012) and python (Python Software Foundation 2008) 

programming languages. 
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2.2.4 Connectivity and Dispersal Corridor Analysis 

 

A detailed diagram to perform the analysis of connectivity through corridors for ateline 

dispersal is shown in Figure 16. It is based on a graph-theoretical approach, that 

evaluates the potential dispersal for species through habitat patches according to a 

probability of dispersion. This probability is determined by the species habitat quality 

and dispersal distance that acts as a threshold to determine which habitats are 

connected (Calabrese & Fagan 2004; Chetkiewicz et al. 2006). 

 

  
 

Figure 16.  Detailed diagram for performing the connectivity and dispersal corridor 

analysis for atelines in Colombia. 

 

All forest patches were determined using the 8-neighborrule into each atelines 

distribution for the years 2000, 2010 and 2020, and were assumed to be habitat 

patches for the species. Patches with an area larger or equal to 1 km
2
 (1 cell) were 
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taken into account, since in this range is included the theoretical home range of the 

species, and also atelines have been reported in habitat patches smaller than 100 ha 

(Alfonso 2006; Guerrero Pérez 2007; Aldana 2009; Roncancio et al. 2010). This does 

not necessary imply that in fact populations of species inhabit all habitat patches; 

however, in this case we assumed that they can live and move through all forest 

patches. 

 

Dispersal distances for atelines have not yet been reviewed, in part, because the 

dispersion of these species through very disturbed matrices is unlikely. As was 

mentioned before, it is rare that ateline species move or fall to the ground; they spend 

most of their time on trees (Defler 2010). However, according to a review published by 

Estrada et al. (2012), the use of agroecosystems has been reported  for A. geoffroyi 

grisescens (in Central America) and L. lagothricha lagothricha (in Colombia), as 

corridors to reach native habitat or other agroecosystems. 

 

The movement of atelines into habitats has a wide range of response to resource 

availability, between 100-400 ha for home range and between 0.5-5 km for daily 

ranges in Ateles spp., and between 100-800 ha for home range and 1-3 km for daily 

ranges in Lagothrix lagothricha (Ford & Davis 1992; Defler 2010). Although the above 

values are extensive and large, these are calculated essentially over locomotion on 

trees, not over ground movements; hence, they do not necessarily indicate that 

distances for atelines dispersion may occur between these ranges; then in this context, 

we decided to use as threshold distance for dispersal the minimum possible value, i.e., 

1 km, the spatial resolution of all layers. 

 

Network analyses based on graph theory require the definition of two elements: nodes 

(vertices) and edges (links). Nodes were defined by the habitat patches for the species 

and edges by the connections established between these. For this particular study, the 

edges for each species and each year were assumed to be all the links between 

habitat patches at a distance of 1 km from border to border. A graph (network) is a set 

of connected nodes and edges describing the landscape as a set of interconnected 

patches (Ricotta et al. 2000; Jordán et al. 2003; Chetkiewicz et al. 2006). Nodes 
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represent patches of suitable habitat for the species with a surrounded matrix of non-

habitat (non-forest) that varies its quality according to some variables affecting the 

movement of the species (HQ and CF) (Urban & Keitt 2001). 

 

The existence of a link between each pair of nodes implies a potential ability of the 

species to disperse between them, due to established connections. Edges may have a 

physical correspondence in the landscape in the form of an existing corridor, but in this 

case edges only represent the potential (functional) connections between a pair of 

patches (Pascual-Hortal & Saura 2006). The existence of connections (links) between 

patches can be symmetric (undirected graphs) or take into consideration source/sink 

dynamics (directed graphs) (Proulx et al. 2005; Saura & Pascual-Hortal 2007). The 

first one (symmetric or undirected graphs) establishes the same probability for 

dispersal of species between the two connected nodes, assuming the same conditions 

for the species to pass from patch   to patch   and vice versa. With the second type of 

connection different probabilities for species dispersal can be established, depending 

on whether it inhabits a source patch or a sink patch according to the habitat quality of 

the patches (Pulliam 1988; Pulliam & Danielson 1991). Thus, probabilities for moving 

from source patch   to a sink patch   are lower than in the opposite case (Minor & 

Urban 2007, 2008). We used both cases in this analysis with the application of 

different nodes and edges metrics. 

 

Some other concepts besides node and edge used in graph theory metrics are 

described above, according to Urban & Keitt (2001a) and Urban et al. (2009). A path is 

a sequence of connected nodes in which no node is visited more than once. Its length 

can be measured by distance units or number of links (topological distance). A path is 

closed if the initial node is the same than the final node. A closed path with three or 

more nodes is a cycle. A path that does not include cycles is a tree; and a tree that 

includes every node in the graph is a spanning tree (multiple spanning trees can exist 

in a graph). A component is a set of nodes forming a connected region (subgraph) 

where a path exists between every pair of nodes, hence there is no functional relation 

(no path) among patches grouped in different components (any isolated patch forms a 

component itself) (Figure 17).  
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Figure 17.  Example of the elements in a graph. 

 

Differences between landscape connections assuming symmetric dispersal 
probabilities (the probability of dispersal from patch   to patch   being the same than 
from patch   to patch  ), or asymmetrical and weighted probabilities (the probability of 
dispersal from source patch   to a sink patch   is lower than the one for dispersal from 
sink patch   to source patch  ), were given by different proposed metrics, that in turn, 

correspond to different software used: Conefor Sensinode 2.6 (Saura & Torné 2009), 
and the igraph (http://igraph.sourceforge.net) package implemented on the platform of 
R (R Development Core Team 2012) ( 
Table 11). 

 

For using both approaches, a matrix of probabilities of dispersal between each pair of 

nodes      was constructed, assigning a continuous value between 0 and 1 for 

connected nodes (patches separated by a distance equal to 1 km from border to 

border) and exactly 0 for non-connected nodes (patches separated by a distance 

greater than 1km from border to border). The connection distance was computed as a 

Euclidian distance using coordinates from each border pixel belonging to each patch, 
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to all border pixels belonging to all other patches in the distribution of species. This 

was a very extensive computational procedure because of the use of multiple loops 

and the amount and size of patches; therefore it has to be parallelized to use 

simultaneously multiple processors for computing. It was performed on R through the 

“snow” package (R Development Core Team 2012). 

 

In the event that a node could be connected to another by more than one combination 

of pixels, we choose the connection where cost flow was minimal, according to the CF 

layer created by the CF function (Equation 5 and Equation 6). Cost flow between all 

established connections was computed using Dijkstra’s (1959) algorithm through a 

costDistance function implemented in the R package “gdistance” (R Development 

Core Team 2012); this calculates the cost as the least-cost distance between two pairs 

of coordinates according to a transition layer. Cost values obtained were normalized 

(Equation 4) between 0 and 1 and then inverted (Equation 5), to convert them into 

probabilities of dispersal from patch   to patch   (   ) (a lower cost implies a higher 

probability to disperse and vice versa). These values were used as entries for 

dispersal probabilities of symmetric matrix. 

 

To calculate dispersal probabilities of asymmetric matrix, a dispersal flux (DF) 

function was created. It is based on HQ and CF functions (Equation 6), and also 

reflects the probability for a species to move between habitats; however, this tries to 

take into account the preference that the species may have for moving to patches with 

higher HQ (Bunn et al. 2000; Saura & Pascual-Hortal 2007). For this analysis, nodes 

were characterized by their quality-weighted area (QA): multiplying the area (A) patch 

proportion with respect to the total patches´ area in the species distribution, and the 

habitat quality of the patch, calculated as the sum of all pixels in the patch from the HQ 

layer.  

The DF function has been widely used analyze the dispersal of species between 

patches. It is constructed using the habitat quality of nodes and a probability of 

dispersal, although this latter is often taken as an exponential decay function of 

distance between nodes (Bunn et al. 2000; Urban & Keitt 2001; Minor & Urban 2007). 

DF (   ) from patch   to patch   was calculated as the ratio of QA between both 



71 Modeling the Dispersion of Atelines through Scenarios of Climate 
Change and Habitat Fragmentation in Colombia 

 

71 
 

patches (    ), multiplied by the probability of dispersal between them     (taken from 

normalization and inverting process to CF value between two patches) (Equation 7). 

     is lower when the source patch   has a greater QA than patch   (source patch is 

the denominator and the sink patch is the numerator), since we assumed that the 

probability of dispersal flux for the species is smaller if it is inhabiting a patch with high 

values of HQ. 

 

         , where    
   

   
, and      

  

      
 ∑     
 
   

 

Equation 7. Calculation of Dispersal Flux. 

 

A total of fifty matrices were constructed using the 5 species for the 3 land cover dates 

and the 5 climatic scenarios. Twenty five matrices of dispersal were constructed using 

probabilities of dispersal (symmetrical matrix) for metrics implemented in Conefor 

software (Saura & Torné 2009), and Twenty five were also constructed for dispersal 

flux probabilities (asymmetrical matrix), used in the calculation of metrics obtained 

from the igraph (http://igraph.sourceforge.net) package on R (R Development Core 

Team 2012). 

 

 
Table 11 presents a synthesis of the most commonly used metrics in network 

analyses. Metrics are grouped by type (node, edge or graph) and also have a 

connection condition: i) binary (B), whether taking into account the connection; or ii) 

probabilistic (P), whether taking into account weight given to the connection through 

the probability of dispersal (symmetrical matrix), or the probability of dispersal flux 

(asymmetrical matrix). Also metrics used in this study are specified. They were 

selected according to their recurrent use in graph-theoretic studies evaluating 

connectivity and also based on the analysis of Baranyi et al. (2011), Laita et al. (2011) 

and (Kupfer 2012), which discuss and compare the usefulness and convenience of 

many of them. To depict the node and edge metrics results, two PCA were constructed 

for comparing graphically the results using a biplot (the first one between the three 
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climatic scenarios for each species, and the second one between the three years for 

each species). 

 

2.2.5 Prioritization of Conservation Areas for Ateline Persistence 

 

A diagram showing the procedure to prioritize PAs is shown in Figure 18. The 

prioritization of conservation areas for ateline persistence was performed to optimize 

their dispersal under climate change and habitat fragmentation scenarios in order to 

guarantee the persistence of their populations. This was determined by the graph, 

node and edge metrics, primary based on habitat quality, dispersal probability and 

dispersal flux for each species. Connections between habitat patches for dispersal, the 

habitat patches themselves, and their surrounding areas, were considered as 

conservation areas to be prioritized. 

 

We based our approach on the assumption that the presence or abundance of species 

can be associated with the size, quality, and connectivity of the patch as proxies for 

the persistence of populations (Minor & Urban 2007). Larger patches often enclose 

more individuals; nevertheless both area and habitat quality can affect the population 

sizes and thus, the density of individuals due to changes in reproductive success 

(Kurki et al. 2000; Fahrig 2003; McVinish & Pollett 2013). These dynamics in turn, 

might be affected by human factors influencing connectivity trough deforestation or 

regeneration patterns (Ims 1995; Clevenger & Waltho 2005). Then patches, 

connections and the landscape matrix should be taken into account in priority areas. 

Patches connected, where the potential dispersal of species is supposed to occur, are 

more likely to be occupied than isolated patches (Pulliam et al. 1992; Dunning et al. 

1995); therefore, smaller patches that occasionally can experience local extinctions, 

would be recolonized from neighboring patches if they are well connected (Minor & 

Urban 2007). 
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Table 11. Common metrics used in graph-theoretic approaches measuring connectivity. See also Figure 17. 

 

Used Type Metric Description Source Software 

Yes Node (B) 
Integral index of 

connectivity (IIC) 

Calculated from the attributes of the patches and the topological 

distances between them. It takes into account the connected area 

existing within the patches, the estimated dispersal flux between 

different patches, and their contribution as stepping stones or connecting 

elements that uphold the connectivity between other patches. 

Pascual-Hortal & Saura 

2006a; Bodin & Saura 

2010; Saura & Rubio 2010 

Conefor 

Yes Node (P) Probability Index (PC) 
Conceptually similar to IIC but for weighted graphs. It uses the maximum 

product probability instead of the topological distance between patches. 

Boitani et al. 2007a; Bodin 

& Saura 2010; Saura & 

Rubio 2010 

Conefor 

Yes Node (B) 

Landscape 

coincidence 

probability (LCP) 

Probability that two points located randomly within a landscape reside in 

the same component. 

Pascual-Hortal & Saura 

2006a 
Conefor 

No Node (P) IICconn 

One of the three fractions of IIC measuring the contribution of the 

analyzed patch to the connectivity between other patches, as a 

connecting element or stepping stone between them. 

Saura & Rubio 2010 - 

No Node (P) dIICconn Analogous to IICconn but for the PC index in weighted graphs. Saura & Rubio 2010 - 

No 
Node 

(B/P) 

PCconnector / 

IICconnector 

How much patch contributes to connectivity between other patches by 

serving as an intermediate stepping stone (connecting element) that 

cannot be fully replaced by other patches in the network. This 

contribution depends only on the spatial (topological) position of the 

patch in the landscape. A high value implies that the loss of a patch 

would severely reduce the connectivity between other habitat patches. 

Bodin & Saura 2010; Saura 

& Rubio 2010 
- 

No Node PC / IIC Loss of habitat availability caused by the removal of a patch, evaluated Bodin & Saura 2010; Saura - 
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(B/P) as the relative decrease (%) in the PC or IIC value following the removal. & Rubio 2010 

Used Type Metric Description Source Software 

No Node (P) Harary Index 

Sum of the inverse values of the topological distance (number of links in 

the shortest path) between every two patches. If two patches belong to 

different components, their topological distance is infinity 

Ricotta et al. 2000; Jordán 

et al. 2003 
- 

Yes Node (P) 
Strength or weighted 

vertex degree 
Summing up the edge weights of the adjacent edges for each vertex Minor & Urban 2007a Conefor 

Yes Node (P) 
Weighted Habitat 

Quality 
Habitat quality for patches weighted for proportion of patch area. Minor & Urban 2007a HQ func. 

Yes Node (B) Betweenness 

Number of geodesics (shortest paths) going through a vertex or an 

edge. Describes the frequency with which a patch falls between other 

pairs of patches in the network. It is calculated by finding the shortest 

paths between every pair of patches in the landscape, then counting the 

number of times those paths cross each node. 

Minor & Urban 2007a; 

Bodin & Saura 2010; Saura 

& Rubio 2010  

Conefor 

No Node (B) Closeness centrality 
How many steps are required to access every other vertex from a given 

vertex. 
Baranyi et al. 2011 - 

Yes Node (B) Cut-node 

Vertices whose removal increases the number of connected 

components in a graph, i.e., those whose removal breaks a single graph 

component into several smaller ones. 

Minor & Urban 2007a igraph, R 

Yes Node (B) Degree The number of its adjacent edges. 
Proulx et al. 2005; Minor & 

Urban 2007a, 2008 
igraph, R 

Yes Node (B) 
Minimum spanning 

tree (MST) 

Contains the set of links of minimum total weight (summed distance or 

cost) that joins all nodes into a single connected cluster (i.e. where every 

node is accessible from every other node by following links from one 

node to another). 

Reunanen et al. 2012 igraph, R 
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Used Type Metric Description Source Software 

Yes 
Graph 

(B) 

Integral index of 

connectivity (IIC) 
Follows the same concept described for node metrics. 

Uses the same sources 

mentioned in node metrics. 
Conefor 

Yes 
Graph 

(P) 
Probability Index (PC) Follows the same concept described for node metrics. 

Uses the same sources 

mentioned in node metrics. 
Conefor 

Yes 
Graph 

(B) 

Landscape 

coincidence 

probability (LCP) 

Follows the same concept described for node metrics. 
Uses the same sources 

mentioned in node metrics. 
Conefor 

Yes 
Graph 

(B) 

Characteristic path 

length or average 

path length (CPL) 

Calculates the average length between all pairs of reachable patches in 

the network. 
Minor & Urban 2008 igraph, R 

No 
Graph 

(B) 

Compartmentalization 

or connectivity 

correlation 

Correlation between node degree and average node degree of its 

neighbors. 
Minor & Urban 2008 - 

Yes 
Graph 

(P) 
Diameter Longest shortest path joining any two nodes in the network. 

Bunn et al. 2000; Minor & 

Urban 2008 
igraph, R 

Yes 
Graph 

(B) 
Number of edges Total number of links in a graph.   igraph, R 

Yes 
Graph 

(B) 
Number of nodes Total number of habitat patches in a graph.   igraph, R 

Yes 
Graph 

(B) 
Transitivity Probability that the adjacent vertices of a vertex were connected. Minor & Urban 2008 igraph, R 

Yes Edge (P) Cosf Flow Derived cost flow function.   CF func. 

Yes Edge (P) Flux 
Derived dispersal flux function. An edge attribute that indicates amount 

of movement between nodes. 

Bunn et al. 2000; Urban & 

Keitt 2001a; Minor & Urban 

2008 

DF func. 

Yes Edge (B) Integral index of Follows the same concept described for node metrics. Its importance is Uses the same sources Conefor 
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connectivity (IIC) measured using edge removal methods. mentioned in node metrics. 

Yes Edge (B) 

Landscape 

coincidence 

probability (LCP) 

Follows the same concept described for node metrics. Its importance is 

measured using edge removal methods. 

Uses the same sources 

mentioned in node metrics. 
Conefor 
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Figure 18.  Diagram for Prioritization of Conservation Areas. 

 

According to Minor & Urban (2007a), understanding the above three patch attributes 

(size, quality, and connectivity) the selection of priority areas for species dispersal can 

contribute to the construction of a protected area network. In this context, as 

conservation targets we analyzed: i) source patches, ii) areas of persistence, iii) lost, 

and iv) regeneration of habitat, v) stepping stones, vi) the most efficient network of 

habitat connected patches (minimum spanning tree), and vii) the probable physical 

connections where species dispersal would take place (Table 12). All of these metrics 

together were the basis for determining priority conservation areas for ateline 

dispersal. 

 

High values in the first component of the PCA for node and edge metrics used in the 
connectivity and dispersal corridor analysis ( 
Table 11) were also used to identify patches and connections with high quality, 
capacity and connectivity (sources patches) for each species during each year. 
Persistence patches were calculated as the remaining habitat area spatially 
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intersected during the three years. In contrast, regions where habitat loss and 
regeneration occurred during both periods: 2000-2010 and 2010-2020 were included. 
The MST ( 
Table 11) was employed to identify the main connection network for species dispersal 

and the cut-nodes to represent the stepping stones connections. Finally, potential links 

established (border of two patches separated by 1 km) were consider as the corridors 

where physical dispersion of species could occur. 

 

Priority areas were measured as the sum of conservation targets (Table 12) for each 

year and each species. Major priority areas were the ones with the total superposition 

of conservation targets; therefore, the maximum value for priority areas could be 7 and 

the minimum 0. In addition, areas where processes of land use change have occurred, 

are occurring, or are expected to occur; areas where the presence of the species 

should be reviewed; and areas where climate suitability in future scenarios is the 

highest; were identified as priority areas. 

 

Table 12. Conservation targets for prioritizing PAs for ateline species. 

 

Element 

Conservation 

Target Source 

Patches 

1 Sources 
Values in PCA of node metrics. Normalized between 0 and 

1. Values close to one were considered as source patches. 

2 Persistence 
Persistence areas. Intersection of remnant habitat for  

species during the three years. 

3 Habitat Loss 
Regions where habitat loss for species occurred in the  

period 2000-2020. 

4 
Habitat 

Regeneration 

Regions where regeneration of forest occurred in the 

period 2000-2020. 

5 Stepping Stones Nodes identified in cut-node metrics. 

Patch - Edges 6 MST Nodes connected in MST metrics. 

Edges 7 Connections Probable physical connections where dispersal take place. 

 

We also evaluated the representativeness of Colombian PAs for each species in terms 

of their intersecting area with i) the original species distribution, ii) the persistence, 

deforested and regenerated regions, iii) the remaining habitat in each year, and iv) the 
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conservation targets (as the sum of values within intersecting area). To represent the 

results of representativeness synthetically, the PAs were grouped according to their 

assigned category and their size in four types: protected areas at i) national, ii) 

regional and iii) local scale, and iv) natural reserves of civil society (reservas naturales 

de la sociedad civil - RNSC) (Table 13). All the analyses were performed using map 

algebra operations in ArcGIS 10 (ESRI 2010). 

 

Table 13. Groups formed by categories of PAs. 

 

PA Category 

 

PA Category 

N
a
ti

o
n

a
l 

Área Marina Protegida 

 

R
e
g

io
n

a
l 

Reserva Hídrica 

Área Natural Única 

 

Reserva Natural 

Parque Nacional Natural 

 

Santuario De Vida Silvestre 

Reserva Forestal Protectora 

 

Zona De Interés Cultural 

Reserva Forestal Protectora Productora 

 

Área De Manejo Especial 

Reserva Nacional Natural 

 

L
o

c
a
l 

Área Forestal Distrital 

Santuario De Fauna Y Flora 

 

Parque Ecológico Distrital De Humedal 

Santuario De Flora 

 

Parque Ecológico Distrital De Montaña 

Via Parque 

 

Parque Forestal Y Zoológico 

R
e
g

io
n

a
l 

Área De Manejo Especial 

 

Parque Municipal 

Área De Manejo Especial De Carácter 

Regional 

 

Parque Municipal Natural 

Distrito De Manejo Integrado 

 

Parque Natural Municipal 

Distrito De Manejo Integrado Y Área De 

Recreación 

 

Reserva Forestal Hidrográfica, Piscícola Y 

Patrimonio Ecológico 

Parque Natural 

 

Reserva Ecológica 

Parque Natural Regional 

 

Reserva Ecológica E Hídrica 

Parque Natural Regional Y Ecológico 

 

Reserva Ecológica Y Patrimonio De La Ciudad 

Parque Regional Natural 

 

Reserva Forestal 

Parque Regional Natural Y Ecológico 

 

Reserva Forestal De Interés Público Y Patrimonio 

Ecológico 

Reserva Forestal 

 

Parque Regional Natural  

Reserva Forestal Departamental 

 

Reserva Forestal Protectora 

Reserva Forestal Natural Y De Investigación 

 

Reserva Natural 

Reserva Forestal Protectora 

 

Santuario Distrital De Fauna Y Flora 

Reserva Forestal Protectora Productora 

 

Zona De Utilidad Pública E Interés Social 

Reserva Forestal Protectora Y Bosque De 

Interés General 
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3. Results 

 

3.1 Future Scenarios of Land Cover and Climate 
 

Land cover layers show good performances in terms of spatial distribution and the 

proportion of classes according to expert knowledge (Figure 19), and the 

approximation of land cover map in Colombia (Figure 2). Results of model 

performance for predicting land cover scenarios in 2020 are acceptable according to 

values obtained in a confusion matrix, comparing projected and constructed land cover 

classifications for 2010. Errors of commission and omission (overall error of 16%), in 

addition to Kappa index of agreement (overall value of 0.72) are shown in Table 15. 

Major errors in association, predicting location and proportion of pixels occur for 

classes 2 and 3 because of intermixing between them, but with good projections of 

classes 1 and 4, which are dominant categories in the landscape. 

 

Table 14. Results of Dinamica EGO model performance for the scenario in 2020. 

 

Classes Errors of Commission Errors of Omission Kappa Index of Agreement 

1 0.05 0.02 0.94 

2 0.72 0.82 0.17 

3 0.45 0.41 0.50 

4 0.18 0.25 0.66 

 

 Errors of commission and omission are expressed as proportions. 

 

Final land cover layers are presented in Figure 19. The proportion of different classes 

tends to show no significant change in a broader scale, especially between the period 

2010-2020. However, regional level variations in cover proportions are more evident, 

which would suggest the same pattern for species habitats (Figure 20 and Figure 21). 

Deforestation processes in all regions are evident, except for the Amazonian and 

Pacific regions, where forest stability is consistent throughout the entire period, with a 

very small proportion of reforestation between 2010 and 2020 after deforestation 

between 2000 and 2010 (Figure 20). 
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Figure 19. Final constructed land cover layers. 

 

Strong forest conversion in the last decade is projected over the foothills of the eastern 

slope of the Cordillera Oriental in Putumayo region (Figure 21), which in addition to the 

historically advanced colonization front in Caquetá described by Etter et al. (2006a), 

make this a critical area with a disruptive component for L. lagothricha subspecies. For 

the Pacific region, deforestation occurs in isolated patches distributed throughout the 

region resulting in a fragmentation process, in addition to intense forest loss in Tumaco 

during the period 2000-2010. However, a similar amount of forest lost is recovered for 

Tumaco in the projection for 2020, with also some patches in Darien and Katios 

regions (Figure 21). In this context, is evident the work of the cell automata approach 

used by Dinamica EGO, since patches surrounding by a large area of a different class 

are briefly converted to the surrounding matrix in the projections for 2020. 

 

In the Orinoquia region, the predominance of savannas is maintained over the two 

periods, since savannas are the dominant cover in this area. The transformation 

process of land cover is mainly dominated by fires, as illustrated by Romero et al. 

(2010), producing after the process more low tree density or bare vegetation. 
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Figure 20. Proportion of land cover in Colombia for the period 2000-2020 by region. 

Corresponding legend is:  

 

The highest rates of deforestation are found for the Caribbean and Andean regions, 

where major processes of natural cover transformations have taken place in Andean 

and dry forests (Figure 20). Remnant forests in these regions are projected to be 

affected. Some fragmentation processes would occur according to scenarios projected 

in i) Serranía de San Lucas, ii) Catatumbo region, iii)  surrounding areas of Sierra 

Nevada de Santa Marta, and iv) over Cordillera Central in the departments of Tolima 

and Valle del Cauca (Figure 21). 
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Figure 21. Areas of deforestation and regeneration during the periods 2000-2010 

and 2010-2020. 

 

Transition values for deforestation and regeneration are proportionally distributed 

between the other classes in different regions. Nevertheless, for both processes, the 

forest class has the largest contribution (class 1) (Table 15 and Table 16). This is 

translated into a high spatial autocorrelation pattern, i.e., if a cell is surrounded by 

forest the most likely cause is forest, hence the importance of PAs for conserving 

natural vegetation. 

 

 

 

 

 



84 Results 

 

Table 15. Values for transition of land cover by regions during the period 2000-2010. 

 

 

 Percentages are calculated by rows (r) and columns (c), indicating the proportion of classes in 

which reference classes in row (r) were converted into 2010 and vice versa. Some percentages do 

not sum 100% because of rounding values. 

Table 16. Values for transition of land cover by regions during the period 2010-2020. 
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 Percentages are calculated by rows (r) and columns (c), indicating the proportion of classes in 

which reference classes in row (r) were converted into 2020 and vice versa. Some percentages do 

not sum 100% because of rounding values. 
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Constructed climate envelopes are shown in Figure 22, where climatic known regions 

can be observed. Humid regions, characterized by extremely high precipitation rates 

are clearly defined. In the Pacific region the highest values occur particularly in Chocó, 

in addition to the Orinoco region in the foothills of Cordillera Oriental, and the Amazon 

region in the Caquetá and Putumayo areas. 

 

Humid regions are constant over climate scenarios (2020); however Orinoquia and the 

Amazon show a drier pattern that is not present for the current scenario (2000 and 

2010). The latter, has the problem of absent climate stations in the region, therefore 

there is high uncertainty in WorldClim results for this area. This does not occur for 

future scenarios created from GCMs, where this pattern is spatially and intensity 

constant. The Andean region and the dry inter-Andean valleys and Caribbean are 

clearly visible for three climatic envelopes, where the spatial pattern of temperature 

does not seem to change for any scenario. 

 

There is a slight increase in precipitation for the Orinoco and the Amazon regions, 

according to projections from IPCC (AR4) (2007), especially in scenarios A2 and B2 

with respect to A1B. These results are not comparable with the current scenario due to 

the different spatial patterns generated as product from different climate models used. 

For this region there is a clear difference in climate scenarios showed by Bioclim 

envelope, where the central area is drier (green) with respect to other areas which are 

wetter (yellow to brown). 
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Figure 22. Climatic envelopes for current and futures scenarios. Bioclim 

(dimensionless variable), precipitation and temperature are normalized 

between 0 and 100. 

3.2 Current and Future Potential Distributions for Ateline 
Species 
 

Each species’ distribution limit corresponds to a combination of known spatial and 

altitudinal limits, the boundary points of species occurrences, and a logistic threshold 

applied to the MaxEnt model output. The later was applied where limits of species 

distribution were not clear (see the chapter: Species’ Distributions Ranges). Resultant 

distributions of species are shown in Figure 23 and can be compared to only expert 

knowledge of distributions proposed by Defler (2010) (Figure 1) or IUCN (Figure 12). 

 

 

 

Figure 23. Adjusted species’ distributions using expert knowledge and the MaxEnt 

models. 
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Boundaries obtained for Ateles belzebuth distribution are the río Upía to the  north; 

sixty percentile training presence of MaxEnt on the east, northeast and southeast; the 

río Caquetá on the south, and 1300 m of altitude on the west. For Ateles geoffroyi the 

distribution is Canal del Dique on the north; the Pacific Ocean on the west; the río 

Cauca on the east; and the minimum training presence of MaxEnt on the northeast, 

southeast and south (in combination with the national frontier). For Ateles hybridus the 

boundaries are the minimum training presence of MaxEnt on the north, south and 

southeast; the National frontier on the northeast; the río Cauca on the southwest; and 

the río Magdalena on the northwest. For L. l. lagothricha the boundaries are the 

national frontier on the south, east and west; the río Uva on the northwest; and a 

combination of thirty percentile training presence of MaxEnt for both Lagothrix 

lagothricha subspecies on the northeast. For L. l. lugens the boundaries are 3000 m of 

altitude on the north in combination with minimum training presence of MaxEnt; the 

thirty percentile training presence of MaxEnt on the southeast; the limit of the western 

slopes of Cordillera Central on the southwest; and the minimum training presence of 

MaxEnt on the east and the west. 

 

Resultant ranges for species (Figure 23) are concordant in area (Table 17) and spatial 

distribution (Figure 25 and Figure 26) to the ones proposed by IUCN. Differences are 

very close, just a 15% as maximum error was calculated for distributions of A. 

belzebuth and L. l. lugens (Table 17). Remaining habitat for species and their 

distributions follows the same pattern of deforestation and regeneration described for 

natural regions in Colombia (Figure 21). For species in Andean and Caribbean regions 

(A. hybridus and L. l. lugens) the deforestation pattern is predominant, while for 

species of the Pacific, Amazon, and Orinoquia regions (A. geoffroyi, A. belzebuth,  and 

L. l. lagothricha) there are constant proportions of their remaining habitat (Table 17 

and Figure 24).   

 

Ateles hybridus and L. l. lugens original habitat has decreased more than 50%. Almost 

all forest in lowlands and a large proportion of Andean forest have been deforested for 

both species. Also, major remaining habitats across the three years are distributed in 

regions like Catatumbo, Serranía de San Lucas, Tama, El Cocuy and Serranía de los 
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Yariguies for both species, and in addition the eastern slopes of Cordillera Central in 

department of Antioquia have decreased for A. hybridus, and the foothills of the 

eastern slopes of Cordillera Oriental in Orinoquia and Amazon for L. l. lugens (Figure 

25 and Figure 26). Major deforestation fronts are found at high altitudes and on 

foothills, especially the piedmont of Caquetá and Putumayo, and Serranía de San 

Lucas, where a strong deforestation process is also projected into 2020 (Figure 21). 

 

Table 17. Remaining habitat for ateline species. 

 

 

Orig. Distribution 

(km
2
) 

2000 (km
2
) 2010 (km

2
) 2020 (km

2
) 

A. belzebuth 242,524 (15.1%) 184,014 (75.9%) 176,645 (72.8%) 178,182 (73.5%) 

A. geoffroyi 150,009 (-10.9%) 93,403 (62.3%) 90,054 (60%) 89,145 (59.4%) 

A. hybridus 125,635 (4.9%) 35,085 (27.9%) 31,621 (25.2%) 29,524 (23.5%) 

L. l. 

lagothricha 
384,404 (-4.8%) 359,880 (93.6%) 354,502 (92.2%) 356,400 (92.7%) 

L. l. lugens 146,178 (-14.7%) 70,581 (48.3%) 63,499 (43.4%) 62,479 (42.7%) 

 

 Percentages for original distributions correspond to the proportion of change between this and the 

distributions proposed by the IUCN. Negative values indicate smaller distributions with respect to the 

IUCN and vice versa. Percentages for years correspond to proportions of remaining habitat with respect 

to the original proposed distribution. 

 

 

 

Figure 24. Remaining forest area for ateline species within their distributions 
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For A. geoffroyi major regions with habitat loss are the lowlands of Antioquia and 

Córdoba, while for A. belzebuth and L. l. lagothricha forest loss has occurred in the 

foothills and lowlands of Caquetá and Putumayo (Figure 25 and Figure 26). Remnant 

habitat for Amazonian species is still significant even for projections into 2020; 

however, for A. geoffroyi a declining trend in habitat area corresponds to a forest 

proportion near  60%, in addition to a fragmentation process projected into its core 

distribution for 2020, suggesting that significant reductions will occur in the remaining 

habitat for this species, particularly near to foothills of the western slope of Cordillera 

Occidental (Figure 21, Figure 25 and Figure 26). 

 

Climatic habitat suitability varies for each species and for current and future climate 

change scenarios (Figure 27 and Figure 28); however, this variation is determined in 

some proportion by different sources used in the data for interpolating climatic 

surfaces (Figure 22). For A. belzebuth, patterns of suitability are predominantly given 

by precipitation following humid areas that correspond to foothills in a greater 

proportion respect to lowland regions in future scenarios, in addition to a highly 

suitable area in A2 and B2 scenarios respect to A1B scenario. For A. geoffroyi there is 

not a single climatic factor explaining habitat suitability; nevertheless, a combination of 

humid and warm areas seems to be more suitable for the species. Between climatic 

scenarios there are no notorious differences, although A2 scenario projects more 

suitable areas for the species. Ateles hybridus suitability is higher over humid, hot and 

low regions. For this species it is evidently possible a migration process to higher 

areas (e.g., see projections over Serranía de San Lucas) due to projected climatic 

warming, since climatic scenarios show a general extension of habitat suitability over 

higher altitudes (Figure 27). 
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Figure 25. Remaining habitat for Ateles spp. in the period 2000-2020. 



93 Modeling the Dispersion of Atelines through Scenarios of Climate 
Change and Habitat Fragmentation in Colombia 

 

93 
 

 

Figure 26. Remaining habitat for Lagothrix lagothricha in the period 2000-2020. 

 

For L. l. lagothricha, suitability is defined by humid and warm zones, similar to A. 

belzebuth. Several differences do exist between current and future projections, 

however most climatic favorable scenario (B2) projects a more suitable area near the 

current scenario. It is strange for this species that in the foothills of the Cordillera 

Oriental where is supposed to begins the distribution of L. l. lugens, the climatic habitat 

suitability is the lowest. For the latter, average precipitation values and warm lowland 

zones are more suitable. Like A. hybridus, future projections of L. l. lugens show an 

improvement of climatic habitat suitability in the Serranía de San Lucas, however in 

higher altitudes  migration would not be probable (Figure 28).  
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Figure 27. Climatic habitat suitability for Ateles spp. in the period 2000-2020. 

Magenta, blue and cyan colors indicate high, medium and low climatic 

habitat suitability respectively. 

 

 



95 Modeling the Dispersion of Atelines through Scenarios of Climate 
Change and Habitat Fragmentation in Colombia 

 

95 
 

 

 

Figure 28. Climatic habitat suitability for Lagothrix lagothricha in the period 2000-

2020. Magenta, blue and cyan colors indicate high, medium and low 

climatic suitability respectively. 

 

3.3 Habitat Quality and Cost Flow 
 

High values of habitat quality for all species correspond to regions where forest exists 

(Figure 25, Figure 26, Figure 29 and Figure 30), which also are related to low human 

population density and high NPP zones (Figure 14 and Figure 15). Climatic habitat 

suitability is not clearly related to the same pattern (Figure 27 and Figure 28); however, 

some climatically suitable regions are in correspondence to high quality values, 

therefore cost flow for the movement of species over these areas could be low. 

 

In the Amazon region almost all areas have high quality habitat values for A. belzebuth 

and L. l. lagothricha, corresponding to the desirable values of the variables included in 

the calculations. Low quality habitats for this area correspond to the eastern foothills of 
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the Cordillera Oriental y departments of Putumayo and Caquetá (for both species), 

and the southern areas in the department of Meta (for A. belzebuth). Both are 

essentially related to the absence of forest cover, although average and high values of 

population density are also found (Figure 14, Figure 25 and Figure 26). A very slight 

decline in habitat quality is reflected in projected scenarios affecting both species in 

the central area of the Amazon, due to values in NPP and climatic suitability decreases 

(Figure 15, Figure 27, Figure 28, Figure 29 and Figure 30). For both species it is 

expected that movement has a low cost flow, promoting species dispersal according to 

scenarios used across space and time. 

 

For A. geoffroyi, the habitat quality is high in almost all the core distribution of species 

in the Pacific region (Figure 29), varying in some areas due to fluctuations presented 

by the NPP and climatic suitability (Figure 15 and Figure 27). Nevertheless, in the 

Caribbean portion of the species’ distribution the absence of forest results in a high 

cost flow for the species’ movement (Figure 25). It is important to notice that in future 

projections the western slopes of the Cordillera Occidental decline habitat quality for 

the species because of predicted habitat fragmentation; however, in this area, climatic 

suitability for the species improves according to the scenarios used (Figure 27). 

 

For A. hybridus high quality zones are (Figure 29) i) Catatumbo, ii) Seranía de San 

Lucas, iii) Serranía de los Yariguies, iv) Serranía de las Quinchas, v) Tamá and vi) the 

east foothills in Cocuy. These areas contain the only remaining forest habitat, high 

values of NPP and also high climatic suitable areas, although surrounding population 

density is a limiting factor for habitat quality and a pressure for the species (Figure 14). 

The right bank of río Magdalena in Department of Magdalena is the area with the least 

habitat quality, in addition to the southern distribution in Arauca, and western slopes of 

the Cordillera Oriental in the municipalities of San Gil, Barichara and surroundings. For 

the first area, all included variables have the worse values for species flow, and for the 

other areas a combination of low values in NPP and a minimum proportion of forest is 

the main cause for low habitat quality. Although, in future scenarios the intensity of 

cost flow values is lower due to climatic suitability, the dispersion of species over these 
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areas are almost improbable since there is no current or projected remaining habitat 

(Figure 27). 

 

In L. l lugens’ distribution, the same patterns described before determine the habitat 

quality for the species (Figure 30), mainly associated with the presence of forest cover 

(Figure 26), although similarly to A. hybridus the high human population levels for the 

Andean region is a major concern (Figure 14). Principal areas with low cost flow for 

species movement are the foothills of the eastern slopes of Cordillera Oriental in 

Orinoquia and the Amazon, the Andean forests over the Cordillera Oriental where the 

species is potentially found (Chingaza
2
, Sumapaz, Pisba, El Cocuy and Tamá), as well 

as the Serranía de San Lucas and the remaining forest over high elevations in the 

limits between the departments of Huila, Cauca, Nariño, Putumayo and Caquetá. Low 

habitat quality areas correspond to low lands in the foothills of the Central and Oriental 

Cordilleras where high climatic suitability is projected (Figure 28).  

                                 
 
2 According to Defler (pers. com.), Chingaza has a population of L. l. lugens in the western parts. 
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Figure 29. Habitat quality in the period 2000-2020 for Ateles spp. Green, yellow and red colors indicate high, medium and low 

habitat quality respectively. 

 

 

 

Figure 30. Habitat quality in the period 2000-2020 for Lagothrix lagothricha. Green, yellow and red colors indicate high, medium 

and low habitat quality respectively. 
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3.4 Connectivity and Dispersal Corridor Analysis 
 

According to values in graph, node and edge metrics, no differences are found 
between climatic scenarios A1B, A2 and B2 (Table 18 and Figure 31). Metrics taken 
into account for this analysis correspond to probabilistic metrics, since binary metrics 
do not incorporate the habitat quality of patches, the probability of dispersal, or the 
dispersal flux calculations, that are the variables created to measure the effects of 
climate variability on the species ( 
Table 11). In Table 18 the graph metrics of PC and Diameter show minimal variations 

for the different scenarios and for each species in concordance with Figure 31, where 

superposition of points indicates no differences between scenarios using either node 

metrics or patch metrics. In this order of ideas, we decided to use only the A1B 

scenario for 2020 representing future projections of climate change and land cover. 

 

Comparing all graph metrics among the three years, no substantial differences were 
found for each species, and the same pattern contextualized by deforestation in 
natural regions was associated with results obtained using the metrics (Table 18). 
Andean and Caribbean species are similar in metrics values, and Amazonian species 
do not differ from A. geoffroyi due to the large proportions of forest. Transitivity values 
are higher in A. hybridus and L. l. lugens, since there are more patches and there is a 
higher probability of connectivity due to the existence of more neighbors. It is also 
positively correlated with the number of nodes, edges and the CPL metric ( 
Table 11), since with a greater number of patches and connections the number of 

groups increases, which is also evident through time with increases or decreases of 

deforestation and the corresponding increases or decreases in the number of patches 

and connections (Table 19). 

 

Diameter and connectivity metrics (LCP, IIC and PC) are inversely correlated with the 

ones described before (Table 19). These measures are based on HQ-WA, dispersal 

probability and dispersal flux, which are higher in the Amazon, hence explaining higher 

metric values for A. belzebuth and L. l. lagothricha due to a more connected and with 

better habitat quality patches respect to the other regions. 

 

Table 18. Graph metrics of the ateline species for each year and scenario. 

 

Species Year/Scenario LCP IIC PC Diameter CPL Edges Nodes Transitivity 

A. belz. 2000 0.3700 0.3700 0.3700 205869.35 2.5555 708 995 0.0035 
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2010 0.3720 0.3720 0.3720 197301.29 2.8047 778 1124 0.0049 

2020-A1B 0.3160 0.3160 0.3160 213563.96 2.8262 654 1172 0.0026 

2020-A2 0.3200 0.3200 0.3200 213542.57 2.8262 654 1172 0.0026 

2020-B2 0.3230 0.3230 0.3230 211662.59 2.8262 654 1172 0.0026 

A. geo. 

2000 0.2280 0.2280 0.2280 91262.57 2.4160 292 532 0.0056 

2010 0.2450 0.2450 0.2450 90276.33 2.2967 272 452 0.0046 

2020-A1B 0.2270 0.2270 0.2270 87713.22 2.2973 284 556 0.0044 

2020-A2 0.2330 0.2330 0.2330 88391.70 2.2973 284 556 0.0044 

2020-B2 0.2390 0.2390 0.2390 90146.28 2.2973 284 556 0.0044 

A. hyb. 

2000 0.0066 0.0066 0.0066 12911.09 2.7367 930 1405 0.0156 

2010 0.0058 0.0058 0.0058 12309.63 2.8727 916 1303 0.0312 

2020-A1B 0.0056 0.0056 0.0056 11768.55 3.1576 852 1478 0.0164 

2020-A2 0.0057 0.0057 0.0057 11410.03 3.1576 852 1478 0.0164 

2020-B2 0.0061 0.0061 0.0061 12032.75 3.1576 852 1478 0.0164 

L. l. lag. 

2000 0.4320 0.4320 0.4320 284230.27 2.2956 398 448 0.0037 

2010 0.4350 0.4350 0.4090 300176.28 2.5804 410 532 0.0034 

2020-A1B 0.4090 0.4090 0.4090 402423.98 2.7850 392 602 0.0024 

2020-A2 0.4090 0.4090 0.4090 433238.25 2.7850 392 602 0.0024 

2020-B2 0.4150 0.4150 0.4150 444487.95 2.7850 392 602 0.0024 

L. l. lug. 

2000 0.0471 0.0471 0.0471 49877.34 3.1442 914 1268 0.0109 

2010 0.0494 0.0494 0.0494 38424.11 3.5520 924 1305 0.0103 

2020-A1B 0.0528 0.0527 0.0527 43565.24 2.8303 922 1472 0.0062 

2020-A2 0.0525 0.0525 0.0525 45846.96 2.8303 922 1472 0.0062 

2020-B2 0.0531 0.0531 0.0531 42835.37 2.8303 922 1472 0.0062 
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Scenarios: A1B, A2 and B2,           respectively. Variables for node metrics: habitat quality weighted area, strength and PC,           respectively. Variables for edge 

metrics: dispersal flux and probability of dispersal,         respectively. 

 

Figure 31. Biplots for each species, comparing climatic scenarios for 2020: A1B, A2 and B2. 
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Table 19. Correlation between all graph metrics. Observations included in the 

correlation analysis correspond to all species in all years (Table 18). 

 

 

LCP IIC PC Diameter CPL Edges Nodes Transitivity 

LCP - 1.000 1.000 0.892 -0.522 -0.707 -0.749 -0.746 

IIC 

 

- 1.000 0.892 -0.522 -0.707 -0.749 -0.746 

PC 

  

- 0.893 -0.523 -0.707 -0.748 -0.748 

Diameter 

   

- -0.240 -0.538 -0.593 -0.618 

CPL 

    

- 0.770 0.758 0.455 

Edges 

     

- 0.963 0.580 

Nodes 

      

- 0.550 

Transitivity 

       

- 

 

For node and edge metrics the first, and first and second components product of the 

PCA respectively summarize almost all the variability found in patches and 

connections (Table 20). Less explained variation is presented for A. hybridus and L. l. 

lugens, since in Andean and Caribbean regions the dynamics of habitat fragmentation 

are more complex than in other regions, and is also expressed in the network 

constructed for the species’ distributions.  

 

Table 20. Variance explained for node and edge metrics as products of PCA. Node 

values correspond to the variance explained by the first component, while 

edge values correspond to the variance explained by two first 

components. 

 

 

Nodes Edges 

 

2000 2010 2020 2000 2010 2020 

A. belzebuth 99.400 98.775 98.406 89.222 62.624 76.594 

A. geoffroyi 98.513 98.796 99.081 88.931 90.339 89.597 

A. hybridus 86.377 93.965 91.393 85.256 83.786 83.886 

L. l. lagothricha 99.658 99.146 98.546 90.767 68.968 84.870 

L. l. lugens 93.829 95.278 96.365 86.246 65.117 83.761 
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In Figure 32 and Figure 33 the biplots for node and edge metrics are shown 

respectively. Relationships between the variables are not clear due to scale problems 

in plotting that respond to extreme values in the generated components. For this 

reason at least two groups of nodes and edges are characteristic in all species across 

years. 

 

The first group is characterized by the patches with the highest values in all metrics, 

proportionally very far from the others. Almost all edges associated to these nodes 

have the highest values in the corresponding metrics; however, this relationship also 

depends on the surrounding matrix of patches measured in the dispersal probability, a 

reason why more than one edge has closer values to the highest. These nodes and 

edges can be characterized as source patches and connections (HQ_WA, strength, 

degree, dispersal flux, and probability of dispersal) with the highest degree of 

connectivity (LCP, IIC, PC), and a large amount of movement of species across them 

(betweenness). The second group is composed of the remaining nodes and edges that 

can be assumed as being not significant in a landscape for species dispersal. 

 

Node metrics for all species are represented in Figure 34 and Figure 35 by the first 

component of PCA analysis, which explains almost all their variability (Table 20), and 

is also highly correlated with them (Table 21). For edges metrics, connectivity (IIC and 

LPC) of species is represented in the first component of the PCA, while the possibility 

of dispersion (dispersal probability and dispersal flux) is expressed by the second 

component, responding to correlation between the first and second components of the 

PCA and the metrics (Table 22). Nevertheless, the concordance in the space of the 

two groups of edge metrics (Figure 33), shows that although these are better 

represented in each one of the two components, the edges characterized by these 

metrics take a proportional value for the respective component, i.e., an edge 

characterized by high connectivity is also an edge with high possibility for dispersal; 

hence, only the first component summarizing edge metrics is presented, assuming that 

characterization of the second component is also spatially depicted in the first one 

(Figure 36 and Figure 37). 
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Table 21. Correlation between node metrics and components 1 and 2 of PCA. 

 

Species Year Component HQ_WA Strength Degree Betweenness LCP IIC PC 

A. belzebuth 

2000 
1 0.999 0.996 0.993 0.994 0.999 0.999 0.999 

2 0.037 0.031 0.102 0.080 0.037 0.037 0.037 

2010 
1 0.998 0.995 0.984 0.985 0.998 0.998 0.998 

2 0.058 0.054 0.151 0.137 0.058 0.058 0.058 

2020 
1 0.998 0.994 0.980 0.979 0.998 0.998 0.998 

2 0.066 0.058 0.163 0.166 0.066 0.066 0.066 

A. geoffroyi 

2000 
1 0.998 0.992 0.974 0.989 0.998 0.998 0.998 

2 0.054 0.014 0.226 0.011 0.054 0.054 0.054 

2010 
1 0.998 0.992 0.981 0.991 0.998 0.998 0.998 

2 0.050 0.014 0.191 0.028 0.050 0.050 0.050 

2020 
1 0.999 0.994 0.983 0.996 0.999 0.999 0.999 

2 0.046 0.010 0.183 0.006 0.046 0.046 0.046 

A. hybridus 

2000 
1 0.982 0.957 0.758 0.620 0.952 0.951 0.952 

2 0.178 0.132 0.589 0.730 0.298 0.298 0.298 

2010 
1 0.988 0.969 0.795 0.832 0.974 0.974 0.974 

2 0.131 0.027 0.539 0.427 0.215 0.215 0.215 

2020 
1 0.985 0.979 0.787 0.713 0.975 0.974 0.975 

2 0.167 0.083 0.532 0.640 0.214 0.216 0.215 

L. l. lagothricha 

2000 
1 0.999 0.997 0.995 0.998 0.999 0.999 0.999 

2 0.031 0.020 0.091 0.012 0.031 0.031 0.031 

2010 
1 0.999 0.995 0.991 0.990 0.999 0.999 0.999 

2 0.048 0.046 0.118 0.120 0.048 0.048 0.048 

2020 
1 0.998 0.992 0.986 0.980 0.998 0.998 0.998 

2 0.060 0.061 0.124 0.179 0.060 0.060 0.060 

L. l. lugens 

2000 
1 0.974 0.979 0.946 0.975 0.949 0.987 0.969 

2 0.211 0.166 0.315 0.005 0.305 0.010 0.232 

2010 
1 0.994 0.990 0.947 0.919 0.993 0.993 0.993 

2 0.105 0.101 0.213 0.359 0.110 0.110 0.110 

2020 
1 0.996 0.992 0.932 0.968 0.994 0.994 0.994 

2 0.088 0.055 0.347 0.141 0.107 0.107 0.107 
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Table 22. Correlation between edge metrics and components 1 and 2 of PCA. 

 

Species Year 

Componen

t 
LCP IIC 

Dispersal 

Flux 

Probability of 

Dispersal 

A. belzebuth 

200

0 

1 0.983 0.985 0.134 0.226 

2 0.163 0.154 0.880 0.859 

201

0 

1 0.150 0.134 0.840 0.862 

2 0.689 0.702 0.223 0.012 

202

0 

1 0.781 0.792 0.383 0.480 

2 0.417 0.399 0.776 0.717 

A. geoffroyi 

200

0 

1 0.948 0.948 0.278 0.451 

2 0.304 0.306 0.847 0.759 

201

0 

1 0.968 0.969 0.210 0.358 

2 0.247 0.247 0.876 0.822 

202

0 

1 0.976 0.979 0.175 0.295 

2 0.210 0.200 0.875 0.840 

A. hybridus 

200

0 

1 0.997 0.997 0.057 0.133 

2 0.079 0.080 0.839 0.828 

201

0 

1 0.990 0.990 0.092 0.230 

2 0.130 0.129 0.823 0.786 

202

0 

1 0.998 0.997 0.043 0.120 

2 0.066 0.067 0.824 0.814 

L. l. 

lagothricha 

200

0 

1 0.940 0.938 0.277 0.403 

2 0.303 0.308 0.875 0.822 

201

0 

1 0.169 0.189 0.886 0.917 

2 0.709 0.707 0.257 0.028 

202

0 

1 0.935 0.943 0.166 0.256 

2 0.208 0.176 0.867 0.844 

L. l. lugens 

200

0 

1 0.908 0.789 0.651 0.912 

2 0.351 0.199 0.695 0.319 

201

0 

1 0.321 0.299 0.761 0.828 

2 0.690 0.701 0.393 0.161 

202

0 

1 0.966 0.965 0.120 0.236 

2 0.150 0.153 0.842 0.813 
 

 For the species: A. belzebuth (2000), A. geoffroyi (2010), L. l. lagothricha (2010) and L. l. lugens (2010), 

characterization of metrics according to components are inverted, responding to coordinates of eigen 

vectors in PCA (Figure 33). 
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 Symbols:                  ,                correspond respectively to: habitat quality weighted area, strength, degree, betweenness, LCP, IIC and PC node metrics. 

 

Figure 32. Biplots of node metrics for each species and each year.  
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 Symbols:          ,     correspond respectively to: LCP, IIC dispersal flux, and probability of dispersal. 

 

Figure 33. Biplots of edge metrics for each species and each year.  



109 Modeling the Dispersion of Atelines through Scenarios of Climate 
Change and Habitat Fragmentation in Colombia 

 

109 
 

 
 



110 Results 

 

Figure 34. First component from PCA for node metrics of Ateles spp. Green to yellow 

and red colors represents respectively: high, medium and low values of 

metrics in corresponding patches. 

 

 

Figure 35. First component from PCA for node metrics of Lagothrix Lagothricha. 

Green to yellow and red colors represents respectively: high, medium and 

low values of metrics in corresponding patches. 

 

In general, two groups of metrics are identified here: i) a measure of connectivity and 

dispersal, and ii) a measure of quality and capacity. In concordance, two groups of 

elements (nodes and edges) are characterized by these metrics: the ones with high 

extreme positive values, and the ones with medium and low values. From this, we can 

interpret that patches and connections with high values in metrics, correspond to 
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elements with high connectivity, quality and capacity for species dispersal. These are 

the source patches for the species. 
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Figure 36. First component from PCA for edge metrics of Ateles spp. Green to yellow 

and red colors represents respectively: high, medium and low values of 

metrics in corresponding edges. 

 

 

Figure 37. First component from PCA for edge metrics of Lagothrix Lagothricha. 

Green to yellow and red colors represents respectively: high, medium and 

low values of metrics in corresponding edges. 

 

With respect to changes in nodes and edges through space and time, the same 

configuration described for graph metrics was found. Places and years where habitat 

loss occurs (e.g., Andean region over high altitudes in 2010), increment the number of 

nodes and connections, transforming the landscape connectivity and the capacity of 

dispersal, as is evident for A. hybridus and L. l. lugens (Figure 37). In addition the 
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capacity and quality of patches and connections change over space and time. Larger 

and conserved patches that are highly connected tend to remain through time, while 

patches and connections in a fragmented landscape tend to disappear. Also this 

pattern applies to quality and capacity, but these changes are more noticeably over 

time, being variable in all regions and particularly greater in the Amazon. 

 

3.5 Prioritization of Conservation Areas for Ateline 
Persistence 
 

Patches with high quality are concordant with high values of HQ (Figure 29 and Figure 

30) and node metrics summarized in the PCA (Figure 34 and Figure 35), both 

described before in previous results. In turn, these patches coincide with large areas 

and greater connectivity, and can be conceived as source patches for atelines 

populations (Figure 36 and Figure 37) including all the elements considered in the 

identification of priority areas: the size, capacity, and connectivity of patches. 

 

Persistence areas in habitat patches during the three years are shown in Figure 38. 

Persistence is an essential characteristic, since we assume that persistence areas 

maintain populations through time because they have a tendency of no-change. 

These, follow the pattern described for habitat loss and the fragmentation process. For 

Andean species, persistence areas are drastically reduced in comparison to original 

and remnant areas in every year (Table 17 and Figure 38). In A. hybridus’ distribution, 

only 19% of the original area persists over time, while for L. l. lugens just 37% persists. 

This area is concentrated in larger patches, supporting the idea that the spatial 

autocorrelation of deforestation is very strong and a principal explaining factor for 

persistence of forests. 

 

The presence of forest due to the autocorrelation process is also evident for the 

remaining species (A. belzebuth, A. geoffroyi and L. l. lagothricha), for which the 

persistence area is very close to remnant habitat area in each year. However, in the 

case of Ateles spp. the process of change is much more noticeable, because of the 

proximity to eastern foothills in Cordillera Oriental in the case of A. belzebuth, and the 
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high rates of deforestation in the Caribbean region for the case of A. geoffroyi (Table 

17 and Figure 38). 

 
 

Figure 38. Persistence area for atelines during period 2000-2020. Percentages 

correspond to the proportion between persistence areas and the entire 

distributional area for each species. 

 

Areas of habitat loss and regeneration correspond to the ones shown and analyzed 

before (Figure 21). The highest rates of deforestation are found in the Caribbean and 

Andean regions, but also in the lowlands near the western foothills of Cordillera 

Occidental in the Pacific region, and in the eastern foothills of the Cordillera Oriental in 

Orinoquia and the Amazon regions, with particular attention on the departments of 

Caquetá and Putumayo, where major deforestation has occurred in past, present and 

future scenarios. Regeneration processes have effects in the core of Amazon and 

Pacific regions and in isolated areas of the Andean region, mainly at the northern limit 
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of the Serranía de San Lucas, the region of Catatumbo, and the surrounding area of 

Sierra Neveda de Santa Marta. 
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Figure 39. Patches and edges included in the MSTs for Ateles spp. Black patches 
are not part of the MSTs. Each group of circles (component) with the 
same color (random in each year) corresponds to nodes from different 
MSTs. 

 

 

Figure 40. Patches and edges included in the MST for Lagothrix lagothricha. Black 

patches are not part of the MSTs. Each group of circles (component) with 

the same color (random in each year) corresponds to nodes from different 

MSTs. 

 

The MST (Figure 39 and Figure 40), represents the connected backbone of each 

component (sub-graph) in the network (graph), i.e., it is the parsimonious sequence of 

nodes and edges where species dispersal occurs, hence its importance in terms of 

conservation. However, because of the number of components it is difficult to identify 
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all the MSTs present in the entire species distribution; two connected nodes can form 

a single MST, and isolated patches form a single component (black patches in Figure 

39 and Figure 40), therefore only visible MSTs are taken into account for the analysis. 

For species of the Andean and Caribbean regions, 4 or 5 MSTs are clearly recognized 

through time and have been identified in previous sections, while for the Amazon and 

Pacific regions species 1 (almost the entire Amazonian region in Colombia) or a 

maximum 3 MSTs can be assessed. 

 

Cut-nodes or stepping stones are single links connecting the landscape; therefore, 

their removal would break the network into smaller sections (components) (Figure 41 

and Figure 42). In the calculation, their subtraction necessarily has to increase the 

number of connected components in the graph, hence, a node whose removal does 

not form new connected sub-graphs is not considered a cut-node, i.e., some patches 

whose exclusion is evident for breaking the connection of network are not necessarily 

considered as stepping stones (e.g. source patches), because their removal is not 

creating new components, since their neighbors are only connected to this patch. 

 

On species’ distributions, there is no pattern to identify the occurrence of stepping 

stones trough time, since cut nodes are not constant from one year to the other for 

almost all species. It is relevant, that new patches different from the ones with high 

quality, capacity and connectivity were determined in order to improve the dispersal 

that specially occurs in isolated patches (Figure 41 and Figure 42). 

 

Areas where dispersal most likely occurs correspond to the region between patches 

separated by 1 km from border to border with the minimum cost flow for species 

according to habitat quality (Figure 29 and Figure 30). These areas are shown in 

Figure 43 and Figure 44. As expected, dispersal occurs from border of source patches 

to neighbor patches and their flux and the probability of dispersal follow the same 

pattern of habitat quality layers (Figure 29 and Figure 30). These areas are susceptible 

to a consideration for restoration or reforestation since is probable that species 

dispersal can occur on there. 
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Figure 41. Cut-nodes or stepping stones (in black) for Ateles spp. 
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Figure 42. Cut-nodes or stepping stones (in black) for Lagothrix lagothricha. 

 

The sum of the above conservation targets (Table 12) conform the priority areas 

proposed for the conservation of the Atelinae (Figure 45 and Figure 46). Areas with the 

highest values (red colors) correspond to cells within the largest patches where land 

change (deforestation or regeneration) is taking place, or physical dispersal of species 

probably is occurring. These are the highest priority areas, since in them the possibility 

of species dispersal can be directly affected. The largest source patches are the next 

priority areas (orange colors), however all source patches (Figure 36 and Figure 37) 

have to be considered in this group (including green patches) due to their importance 

in supporting denser populations and their persistence through time (Figure 38). 

Middle values (yellow colors) correspond to stepping stones and deforestation areas. 
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Figure 43. Potential areas for Ateles spp. dispersal. Green to yellow and red colors 
represent respectively: high, medium and low values of edge metrics. 
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Figure 44. Potential areas for Lagothrix lagothricha dispersal. Green to yellow and 

red colors represent respectively: high, medium and low values of edge 

metrics. 

 

For A. hybridus and L. l. lugens the main priority areas are i) the Catatumbo and the 

foothills in ii) Arauca, iii) Tama, iv) El Cocuy, v) Serranía de San Lucas, vi) Serranía de 

los Yariguies and vii) Serranía de las Quinchas, in addition to viii) the eastern slopes of 

the Cordillera Central and ix) Cordillera Oriental in north of the department of 

Antioquia, and the x) southern and western portions of the Sierra Nevada de Santa 

Marta for A. hybridus; and the xi) foothills of the eastern slopes of Cordillera Oriental in 
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Orinoquia and Amazon for L. l. lugens (Figure 25 and Figure 26). In the above regions 

connected and persistence source patches exist for both species.    

 
 

Figure 45. Priority areas for Ateles spp. Within the blue box: on the left are areas where 
processes of land use change have occurred, are occurring, or will occur; in the 
middle, areas where the presence of the species should be reviewed (in addition 
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to unknown limits, see also Figure 1); and on the right, areas where climate 
suitability in future scenarios is the highest (see also Figure 27). 

 
 

Figure 46. Priority areas for Lagothrix lagothricha. Within the blue box: on the left, areas 

where processes of land use change have occurred, are occurring, or will occur; 

in the middle, areas where the presence of the species should be reviewed (in 

addition to unknown limits, see also Figure 1); and on the right, areas where 

climate suitability in future scenarios is the highest (see also Figure 28). 

 

Major deforestation fronts are found in high altitudes and foothills for both Andean 

species. For A. hybridus, special attention should be paid to the foothills surrounding 

Serranía de San Lucas, in addition to the remaining patches in the western foothills of 

the Cordillera Central in the Serranía de los Yariguies and Serrania de las Quinchas of 

the Cordillera Oriental. The latter are susceptible to deforestation but can be also 

acting as stepping stones, connecting the three places. This region also shows high 
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climatic suitability in addition to dry regions in the departments of Bolivar, Magdalena 

and la Guajira. Forest in the Cordillera Oriental in Catatumbo and Tama, including the 

lowest altitudes in Cocuy and foothills in Arauca would be a single source patch for 

species since connection exists (Figure 39); therefore the existence of species 

between the discontinuous regions in Norte de Santander and Arauca is proposed to 

be revisited.  

 

For L. l. lugens, forests at high altitudes of both slopes of the Cordillera Oriental are 

source patches for the species, almost in the same regions as A. hybridus. However, 

the presence of the species is poorly documented in this region, where it potentially 

could be found in zones like Chingaza
3
, Cocuy and Perijá between others, where main 

areas of climatic suitability exist. All ateline species´ distributions are susceptible to 

deforestation, especially the foothills of Caquetá and Putumayo. The major region that 

species inhabit according to a widely studied prioritization of areas is the PNN Tinigua 

in Serranía de la Macarena but also the PNN Los Picachos.  

 

For A. geoffroyi the major regions with lost habitat are the lowlands of Antioquia and 

Córdoba, while for A. belzebuth and L. l. lagothricha major lost habitat has occurred in 

the foothills of Caquetá and Putumayo. Therefore, these areas are a main priority for 

these species. Remnant and persistent habitats that are also the main source patches 

for species is the core of the Pacific and Amazon regions respectively. Climatic 

suitability for species is consistent with regions where species have suffered, are 

suffering or are projected to suffer major fragmentation processes. 

 

Representativeness of larger PAs in species’ distributions is inversed related to their 

status of conservation; more threatened species (Andean species) have less 

proportion of national PAs than the other species (Figure 47 and Table 23). PA 

proportions for each species with respect to their original distributions are less than 

30%. The most critical species is A. hybridus with only 5% of its original distribution 

                                 
 
3 According to Defler (pers. com.), Chingaza has a population of L. l. lugens in the western parts. 
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protected, and on average, just 11% of its remaining habitat is protected in this study. 

Even worse, the main source patch for species (Serranía de San Lucas) does not 

have any kind of protection either inside or in surrounding areas, therefore dispersal 

and maintenance of its populations is priority in terms of legal protection. 

 

 
 

Figure 47. Spatial arrangement of PAs in the distribution of each species. Gray areas 

are the persistent areas for species. 

 

The other critical species L. l lugens, has apparently higher protection than other 

species (Table 23), however it is overestimated by three regional PAs corresponding 
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to i) Distrito de Manejo Integrado Serranía de los Yariguies in north, and ii) Distritos de 

Manejo Integrado la Macarena Norte and iii) Ariari - Guayabero in south, which can be 

considered as management areas instead of physical PAs. It is evident that this kind of 

PA does not conserve the persistent habitat for this and almost for any of the species 

(Figure 47). 

  

National PAs contribute in a higher proportion than other figures for the conservation of 

species. In A. hybridus the low proportion of national areas and the presence of 

Distrito de Manejo Integrado Serranía de los Yariguies balance the proportions 

between national and regional PAs, but for the other species the national PAs are 

more and larger (Table 23). It is also evident that a process of persistence and 

regeneration occur with a higher proportion in national PAs, although deforestation is 

also taking place. This is clear evidence of protection exerted by the largest and 

national PAs represented by the PNN Cordillera de los Picachos, Serranía de la 

Macarena and Tinigua, which maintain persistent forested areas in the distributions of 

A. belzebuth and L. l lugens, avoiding the accumulating deforestation from the 

Amazonian foothills in the departments of Caquetá and Putumayo. The Figure 47 

shows the marked correlation between the shape of the patch in the area and the PA 

formed by the three PNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 Modeling the Dispersion of Atelines through Scenarios of Climate 
Change and Habitat Fragmentation in Colombia 

 

127 
 

 

Table 23. Representativeness of PAs in the distribution of each species. Intersection 

areas between PAs are summed in the type of PA with the highest scale, 

with National PAs possessing the highest scale when the conflict was 

present. 
 

Sp. PA 

Area - Original 

Distribution 

(km2) 

Persistence  

(Area km2) 

Deforestation  

(Area km2) 

Regeneration  

(Area km2) 
Yr. 

Area - Remaining 

Habitat (km2) 

Conservation 

Targets (Sum) 

A
te

le
s
 b

e
lz

e
b

u
th

 

Nat. 31799 (13%) 28992 (17%) 789 (5%) 2043 (21%) 

00 29735 (16%) 89781 (16%) 

10 29230 (17%) 87634 (17%) 

20 30989 (17%) 124476 (18%) 

Reg. 23032 (9%) 5620 (3%) 6072 (39%) 2513 (26%) 

00 11321 (6%) 35209 (6%) 

10 8497 (5%) 24545 (5%) 

20 7762 (4%) 28594 (4%) 

Loc. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

00 0 (0%) 0 (0%) 

10 0 (0%) 0 (0%) 

20 0 (0%) 0 (0%) 

RNSC 136 (0%) 6 (0%) 34 (0%) 11 (0%) 

00 30 (0%) 80 (0%) 

10 36 (0%) 86 (0%) 

20 7 (0%) 19 (0%) 

Tot. 54967 (23%) 34618 (20%) 6895 (44%) 4567 (47%) 

00 41086 (22%) 125070 (23%) 

10 37763 (21%) 112265 (21%) 

20 38758 (22%) 153089 (22%) 

A
te

le
s
 g

e
o

ff
ro

y
i 

Nat. 12344 (8%) 10124 (12%) 1037 (9%) 687 (10%) 

00 15 (0%) 36 (0%) 

10 15 (0%) 42 (0%) 

20 12 (0%) 33 (0%) 

Reg. 1984 (1%) 886 (1%) 130 (1%) 49 (1%) 

00 1008 (1%) 2873 (1%) 

10 966 (1%) 2734 (1%) 

20 927 (1%) 2743 (1%) 

Loc. 91 (0%) 9 (0%) 10 (0%) 7 (0%) 

00 15 (0%) 36 (0%) 

10 15 (0%) 42 (0%) 

20 12 (0%) 33 (0%) 

RNSC 75 (0%) 44 (0%) 11 (0%) 3 (0%) 

00 55 (0%) 166 (0%) 

10 50 (0%) 150 (0%) 

20 47 (0%) 143 (0%) 

Tot. 14494 (10%) 11063 (13%) 1188 (10%) 746 (10%) 

00 1093 (1%) 3111 (1%) 

10 1046 (1%) 2968 (1%) 

20 998 (1%) 2952 (1%) 

A
 -

h
y
b

ri
d

u
s

 

Nat. 2199 (2%) 1930 (8%) 93 (1%) 109 (1%) 

00 2019 (6%) 5948 (6%) 

10 1955 (6%) 4194 (4%) 

20 2035 (7%) 5894 (6%) 
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Sp. PA 

Area - Original 

Distribution 

(km2) 

Persistence  

(Area km2) 

Deforestation  

(Area km2) 

Regeneration  

(Area km2) 
Yr. 

Area - Remaining 

Habitat (km2) 

Conservation 

Targets (Sum) 

A
te

le
s
 h

y
b

ri
d

u
s

 

Reg. 3991 (3%) 1467 (6%) 796 (6%) 393 (5%) 

00 2019 (6%) 5948 (6%) 

10 1955 (6%) 4194 (4%) 

20 2035 (7%) 5894 (6%) 

Loc. 607 (0%) 53 (0%) 21 (0%) 20 (0%) 

00 67 (0%) 162 (0%) 

10 63 (0%) 132 (0%) 

20 66 (0%) 140 (0%) 

RNSC 23 (0%) 6 (0%) 2 (0%) 0 (0%) 

00 8 (0%) 16 (0%) 

10 8 (0%) 23 (0%) 

20 6 (0%) 14 (0%) 

Tot. 6820 (5%) 3456 (14%) 912 (7%) 522 (7%) 

00 4113 (12%) 12074 (13%) 

10 3981 (13%) 8542 (9%) 

20 4142 (14%) 11942 (13%) 

L
a
g

o
th

ri
x
 l

a
g

o
th

ri
c
h

a
 l

a
g

o
th

ri
c
h

a
 

Nat. 55506 (14%) 53468 (15%) 268 (2%) 1539 (17%) 

00 53699 (15%) 214852 (15%) 

10 53651 (15%) 214443 (15%) 

20 54970 (15%) 219951 (15%) 

Reg. 10329 (3%) 3281 (1%) 2777 (22%) 1372 (15%) 

00 5872 (2%) 24005 (2%) 

10 4505 (1%) 16133 (1%) 

20 4467 (1%) 16689 (1%) 

Loc. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

00 0 (0%) 0 (0%) 

10 0 (0%) 0 (0%) 

20 0 (0%) 0 (0%) 

RNSC 2 (0%) 1 (0%) 1 (0%) 1 (0%) 

00 5872 (2%) 24005 (2%) 

10 4505 (1%) 16133 (1%) 

20 4467 (1%) 16689 (1%) 

Tot. 65837 (17%) 56750 (16%) 3046 (24%) 2912 (32%) 

00 65443 (18%) 262862 (18%) 

10 62661 (18%) 246709 (17%) 

20 63904 (18%) 253329 (18%) 

L
a
g

o
th

ri
x
 l

a
g

o
th

ri
c
h

a
 l

u
g

e
n

s
 Nat. 20173 (14%) 16589 (31%) 1692 (9%) 1435 (14%) 

00 18253 (26%) 68463 (29%) 

10 17165 (27%) 48753 (29%) 

20 17996 (29%) 52725 (30%) 

Reg. 18472 (13%) 5997 (11%) 4140 (23%) 1641 (16%) 

00 18253 (26%) 68463 (29%) 

10 17165 (27%) 48753 (29%) 

20 17996 (29%) 52725 (30%) 

Loc. 937 (1%) 413 (1%) 99 (1%) 59 (1%) 

00 0 (0%) 0 (0%) 

10 0 (0%) 0 (0%) 

20 0 (0%) 0 (0%) 
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L
. 
l.

 l
u

g
e

n
s

 RNSC 149 (0%) 20 (0%) 33 (0%) 11 (0%) 

00 43 (0%) 92 (0%) 

10 49 (0%) 131 (0%) 

20 21 (0%) 46 (0%) 

Tot. 39731 (27%) 23019 (42%) 5964 (32%) 3146 (31%) 

00 36549 (52%) 137019 (57%) 

10 34379 (54%) 97637 (57%) 

20 36013 (58%) 105497 (60%) 
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4. Discussion 

 

4.1 Current and Future Scenarios 
 

For current and future scenarios, a main discussion topic is the uncertainty implicit 

from the sources used and the products generated for the analysis, since this is 

inherent in  remote-sensing and their derivate constructions (Van Leeuwen et al. 2006; 

Soudani et al. 2008). Therefore, in this discussion strong reference to uncertainty is 

implicit and analyzed for the models and sources included in this study. 

 

For example, VCF layers have inter-annual fluctuations in the percentage of tree cover 

from year to year, thus inter-annual comparisons have to be carefully done. The VCF 

products are validated just to stage-1, i.e., precision was estimated through an 

assessment of the training data’s accuracy, and from the limited in situ field validation 

datasets (Townshend et al. 2011). Thus, uncertainty is not only present in source 

products (VCF and forest layers), it is also inherent in the classification, resampling, 

hold-fixing and merging processes.  

 

Even when expert knowledge of  land cover results for the period 2000-2020 have 

been well tested, the proportions of cover types and processes of deforestation, 

regeneration and habitat persistence into the species’ distribution are relative values 

and not absolute ones. However, we think that they are too close to the recent (2000), 

current (2010), and future (2020) proportions of remaining habitat for atelines, due to 

the fact that they reflect the major issues in terms of conservation for each one of them 

(Table 2), and because of the spatial match of the trends in forest losses and gains 

found respect to the most recent study of land cover change in Colombia developed by 

Sánchez-Cuervo et al. (2012). 

 

Major deforestation in the Caribbean and Andean regions occur primarily due to 

demographic impacts and cattle practices of the present and also since pre-Hispanic 

and Hispanic times, (Etter & Van Wyngaarden 2000; Etter et al. 2008). Therefore, the 
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deforestation trend projected particularly in the Andes is concordant with this historic 

tendency. 

 

Remaining forest zones in the three Cordilleras are defined by altitude and 

topography, due complicated accessibility for other uses (Armenteras et al. 2011). 

Some forest regeneration that was found and projected into the future for the region 

Serranía de San Lucas and Sierra Nevada de Santa Marta are particular from areas 

where larger patches of forest are found (Figure 21). These forest gains are 

concordant with the results described by Sánchez-Cuervo et al. (2012), showing a 

surprising woody vegetation recovery in the Andean region and other zones in 

Colombia. 

 

Sánchez-Cuervo et al. (2012) attribute regeneration patterns to 3 factors: i) oil palm 

plantations, ii) inter-annual variation in precipitation and iii) coca crop eradication 

programs. The first two are influencing cover classifications, and the third one, induced 

by a national program. According to our results a fourth explaining factor can be added  

corresponding to the strong autocorrelation process of forest cover, since major 

regeneration and forest stability processes are in areas with large forest patches, like 

the Pacific and the Amazon. This conclusion is also in concordance with Sánchez-

Cuervo et al. (2012).  

 

Specific areas where deforestation occurred during the period 2000-2010 and a quick 

regeneration was also projected for the year 2020 (like Caquetá and Putumayo, or the 

southern limit of Pacific region in Tumaco and surroundings municipalities) have to be 

analyzed carefully (Figure 21). In the piedmont of the Amazonian region the 

colonization front has been the main cause of forest losses, (described by Etter et al. 

2006a) for  the period 1989-2002), and was also found in our results and the results of 

Sánchez-Cuervo et al. (2012) for the transition between 2000 and 2010. 

 

The projected cover change for 2020 showing a high forest recovery in the 

departments of Putumayo and Caquetá and other projected regeneration areas, place 

a high degree of uncertainty in land cover projections. It is difficult to assume the 
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growth of large areas of forest over predominantly deforested regions in just 10 years. 

However, other areas of regeneration that are projected like Darien, the north portion 

of Serranía de San Lucas or the Sierra Nevada de Santa Marta are likely to have 

forest gains, since a regeneration process was found for the period 2000-2010 in our 

results and in the results of Sánchez-Cuervo et al. (2012). 

 

For current and climate scenarios a high degree of uncertainty is associated with the 

products used as well. In the choice of the climate model, some constraints are 

described by Beaumont et al. (2008): i) not all climate models are equally reliable, ii) 

some regions could be represented poorly by climate models, iii) one or a limited 

number of climate models are just a sample of un unknown fraction of the uncertainty 

in future conditions, and iv) the internal climate model variability, uncertainty and bias. 

 

Another source of uncertainty is the interpolation of original data (Hijmans et al. 2005; 

Ramirez & Jarvis 2010b), due to current and future layers corresponding to different 

interpolation sources: climate stations for current scenarios and the GCM output for 

future scenarios. For example, the absence of meteorological stations in particular 

areas like the Orinoquean and Amazonian regions can be the cause of different 

patterns in current and future scenarios, even when the interpolation method is the 

same. 

 

Nevertheless, differences found between current and future climate scenarios are in 

agreement with estimations of IPCC (2007), where increases of temperature and 

precipitation values for the tropical zone are projected. These are explanatory factors 

for why we found larger and drier regions for Orinoquia and larger and moister regions 

for Amazonia in the scenarios projected. However, the increase or decrease in the 

magnitude of these values projected for the three climatic envelopes is not widely 

evident because of the normalization of values. In the same sense, future climatic 

projections for NPP can be underestimated, since these were based on climatic 

envelopes.  
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Normalization of values can be also affecting the dispersal probabilities and dispersal 

flux in future scenarios, since these are based on HQ and CF that in turn depend on 

NPP. Constant or lower than expected values in climatic envelopes could produce 

constant or lower than expected values in NPP; since in the model constructed, and in 

the physics of the real process, the NPP is positively correlated with the precipitation 

and temperature (Figure 15) (Field et al. 1995; Moldenhauer & Lüdeke 2002; 

Matsushita et al. 2004). 

 

NPP as proxy for availability resources in forest measure should be highly weighted in 

the HQ and CF functions forest productivity is a determinant factor for the ateline 

primates in terms of habitat quality and movement patterns (Stevenson et al. 2000; 

Defler 2010). Factors influencing production in ecosystems like precipitation, 

temperature and soils nutrient supply (Running et al. 1999), are also the same in their 

effect on resource availability in forests inhabited by these primates. There is a positive 

correlation between abundant sunlight, warmth and rainfall, and high productivity 

presented by forests (Defler 1996; Defler & Defler 1996; Di Fiore 2004; Link & Di Fiore 

2006).  

 

Relating the scenarios proposed to the climatic suitability of species, some key 

aspects to consider when using SDMs under climate change scenarios have been 

proposed: i) Consider and try to incorporate dispersion abilities of species and 

therefore their future dispersion ranges based on connectivity; ii) Selectivity in the 

choice of predictive variables in terms of scale, their relevance to the biology of the 

species and the interpolation methods used, iii) The amount and the bias implicit in the 

observations of occurrences. iv) The model used because of its ability to limit the 

overestimation of results, their biological significance and the use of thresholds to 

define species distributions (Elith & Leathwick 2009; Graham et al. 2011). All of these 

were taken into account for future projections of species. 

 

Besides uncertainties in land cover and climate scenarios, some limitations are 

present in SDMs too, related to ENMs, and environmental variables and records of 

species presences used for modelling. According to Phillips et al. (2006), the SDM 
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based on the ecological niche model follows certain assumptions as follow: i) The 

localities of occurrence are from a source habitat and not a sink habitat, which may not 

have the necessary conditions to maintain the species´ population. ii) The 

environmental conditions at the localities of occurrence are realized niche samples. iii) 

A niche model is a version of the realized niche of the species only in the study area 

and with the particular environmental dimensions considered. 

 

Phillips et al. (2006) include some assumptions implicit in the set of environmental 

variables used to model, the most important are these: i) Temporarily, there must be 

correspondence between the localities of occurrence and the environmental variables. 

ii) Spatially, the variables should be sufficient to describe all the parameters of the 

fundamental niche of the species that are relevant for distribution to the scale of 

analysis. iii) There may be errors in the data manipulation, due to inaccuracies in the 

climate models used to generate the climate variables, or due to interpolation. 

 

Finally, certain conditions in the species records can affect the accuracy of the models 

and these include: i) The geographical bias, since the records are commonly spatially 

correlated to paths (rivers or roads) (Reddy & Dávalos 2003). ii) The spatial correlation 

between records. iii) The variability between efforts and sampling methods (Anderson 

et al. 2003). iv) Errors in the localities of occurrence, due to transcription errors or lack 

of geographically detailed information requiring default geographic coordinates. v) 

Misidentification of species. vi) Low number of localities of occurrence to reliably 

estimate model parameters  (Stockwell & Peterson 2002; Hernandez et al. 2006; 

Pearson et al. 2007; Wisz et al. 2008). 

 

In this context of limitations and uncertainties, models based on bioclimatic variables 

tend to over-predict species occurrences in areas where they are not present because 

of historical or geographical barriers and/or biotic factors (Graham et al. 2010a). 

Particularly in Colombia, the three main cordilleras have very similar climates, hence  

models generated for a species that exists on one or two cordilleras often predict 

suitable habitat on the other cordilleras (Velásquez-Tibatá et al. 2012). Therefore, the 
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necessity of evaluating the proposed distribution in conjunction with an expert, 

underlines the concordance between these and the ones existing. 

 

For generated distributions and the dynamics of climatic suitability, we recognize that 

many other factors like biotic interactions, evolutionary change and dispersal ability 

play an important role. However, taking into account the complexity that natural 

systems present for predictive modeling, we are in concordance with Pearson & 

Dawson (2003) in the use of a bioclimatic envelope approach, since it has been widely 

and successfully used as a good approximation for current and future species’ 

distributions. 

 

However, climatic suitability generated for species cannot be compared to other 

studies, since the spatial effect of climate change on the atelines is unknown in 

Colombia. One exception in population ecology is a study conducted by Wiederholt & 

Post (2010), who found relationships between El Niño Southern Oscillation (ENSO) 

and the dynamics of atelines populations across Central and South America. 

Wiederholt & Post (2010) found that all ateline genera experienced a direct or a lagged 

negative El Niño effect as measured from their population structure or through their 

resource levels (arboreal phenology). Furthermore, they showed a high degree of 

interspecific population synchrony (respect to yearly primate abundances) over large 

scales across Central and South America, explicable through the recent trends in 

large-scale climate. Then, these results emphasize that climate change could pose 

additional threats to the persistence of multiple species of endangered primates and 

their habitats by directly affecting the individual abundances or through the plants 

phenology, affecting fruit production. 

 

Thus, there is a strong possibility for distributional shifts in future climates caused by 

species movements, due to the fact that primate species are suffering or will likely 

suffer changes in their distributions as a response to phenological shifts of plant 

species (Bradley et al. 1999; McCarty 2001; Walther et al. 2002; Badeck et al. 2004; 

Visser & Both 2005; Cleland et al. 2007; Wiederholt & Post 2010). Therefore, a study 

comparing the distribution of the most consumed plants by atelines under the same 
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climatic conditions and the generated distributions could be a starting point for 

predicting which would be more suitable areas at higher elevations for Andean species 

and at lower, warmth and moister areas for the other species (Figure 27 and Figure 

28). 

 

The climatic suitability for species is concordant with altitudinal movements that are 

projected for different species around the world (IPCC 2002; Walther et al. 2002; 

Bennett 2003; Visser & Both 2005; del Barrio et al. 2006; Parmesan 2006), and it is 

also related to projections for the NPP (Nemani et al. 2003; Matsushita et al. 2004); 

hence, the habitat quality of the species may not be apparently affected in the future. 

However in some species like L. l. lugens, our scenarios proposed show low habitat 

quality areas in the foothills of the Central and Oriental Cordilleras where major 

processes of deforestation occur are also related to zones of higher climatic suitability 

(Figure 28 and Figure 30). A similar situation is presented for A. hybridus’ distribution, 

where high climatic suitability over the Magdalena valley is projected, to result in dry 

forest virtually inexistent (Figure 27 and Figure 29).  

 

No single measure for establishing the current or potential effects on the distribution or 

pattern of movements for the species is needed. A framework of connectivity and 

dispersal of species, measuring all influencing factors is a more robust approach in 

addressing the changes that the species may suffer and that may aid in identifying 

some priorities for their persistence. 

 

4.2 Connectivity and Dispersal 
 

In principle, connectivity analysis has two limitations for evaluating species dispersal 

through proposed scenarios: i) A no dispersal scenario with respect to the boundaries 

of their distributional ranges in future scenarios. ii) A potential measure of species 

dispersal which not necessary represents their actual dispersal.  

 

In the context of the first limitation, this analysis measures the exposure of species’ 

distributions to climate changes and habitat fragmentation, but it does not take into 
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account the possible migrations that species would suffer to other suitable areas 

because of future transformations of their habitat (Araújo et al. 2011). As a response to 

future scenarios, the boundaries of species’ distributional ranges were not changed; 

thus, the potential species distributions would be extended or reduced in other types of 

analysis, where dispersion of species outside the known limits of their distribution 

could be modeled.  

 

With respect to the second limitation, the graph-theoretical approach used measures a 

potential dispersion of species based on a probable connection in the landscape, 

according to the dispersal distance threshold established (Calabrese & Fagan 2004). 

This analysis cannot measure the actual dispersal of species, since we are not sure if 

individuals are actually moving via the landscape links proposed. 

 

Moilanen (2011) gives some limitations of graph-theoretic connectivity approaches in 

spatial ecology and conservation that are included in four themes: i) A multitude of 

measures with uncertain ecological relevance and novelty value. ii) Losses of 

information by using thresholds. iii) Computational limitations in application to high-

resolution GIS grids. iv) An overemphasis on the relevance of landscape connectivity. 

This latter is discussed in the analysis for prioritization of conservation areas. 

 

The first limitation proposed by Moilanen (2011) is evident in the reviewed metrics of  
Table 11, which is also reflected in our results, since all metrics could be synthetized in 

the first component of the PCA, where there is a high correlation between metrics 

(Table 21 and Table 22). This also supports the idea of Rothley & Rae (2005), 

indicating the patch area as the most simplistic approach to quality, capacity and 

connectivity of patches, which we have summarized in source patches.  

 

The second and third limitations proposed by Moilanen (2011) are related to the scale 

of analysis. Our experience suggests that computational requirements to calculate 

metrics for finer resolutions in widely distributed species should be a major issue, 

although different approaches like parallelization or slicing (in python context) 

programming are solutions to this problem. On existing software these are just 
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available for programming platforms like R or Python under igraph 

(http://igraph.wikidot.com), but these are currently unavailable in Conefor (Saura & 

Torné 2009) and probably in others software (Kupfer 2012).  

 

The landscape model for graph-theoretical approaches is binary, since nodes and 

connections are limited to habitat and no-habitat connected areas, discarding 

transitional zones like ecotones, that can link (like stepping stones) or act as sink 

patches for species dispersal (Chetkiewicz et al. 2006). In our approach, we establish 

thresholds to both nodes and edges, in part for the necessity of the graph method but 

also due to the grain of spatial information. We assume that all forest pixels were 

habitat patches for the atelines due to the problems generating a more complex land 

cover surface that can include transitional habitats for the species. Secondly we assign 

a higher threshold for species dispersal than the probable maximum dispersal distance 

for them, due to the minimum resolution available (1 km). 

Both thresholds contribute to losses of information, since we are inferring a 

simplification of the landscape and the use that species put it to. However, changes in 

the described and analyzed scenarios are consistent with the changes introduced into 

the connection networks that describe the landscape for each species, i.e., the 

changes in fragmentation and climate change described above explain the changes in 

networks for each species and each scenario. These results validate the analysis of 

connectivity proposed, since we found that dispersal of species responds to the 

landscape characteristics, which in turn, according to expert knowledge, represent the 

main landscape elements in the scale of analysis. In general, and for a variety of 

ecological systems, network analysis is a remarkably robust framework for habitat 

connectivity (Urban et al. 2009), with inferences for populations (Minor & Urban 2007) 

and species dispersal (Lookingbill et al. 2010). 

 

Thus, if we project a reduction in the remnant habitat of a species as a product of 

deforestation, this will result in a fragmentation process promoting the node increases, 

but also the increase or disappearance of some of the potential connections. This is 

characteristic for the species of the Andean and Caribbean regions (A. hybridus and L. 

l. lugens), but it happens at a lower proportion for all other species. 
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As the same time, HQ and hence CF also changes spatially and temporally. The cover 

and climate pattern of change is repeated on networks. In the Amazon and Pacific 

species (A. belzebuth, A. geoffroyi and L. l. lagothricha), source patches and their 

associated connections promote higher dispersal compared to sink patches and the 

other regions, since climatic and cover changes are more suitable over source patches 

in forest zones. 

 

However, overall actual or future dispersion of the atelines in the Andean region is very 

compromised, not only by changes in coverage and climate, but also by its dispersal 

ability. The natural habitat of atelines monkeys is primary forest in the different 

ecosystems where they are found, preferring the highest canopy levels and moving 

primarily between middle and upper segments (Ford & Davis 1992; Defler 2010). They  

descend to the ground rarely and usually under specific conditions (Campbell et al. 

2005), then the existence of a not-frosted matrix might make their movement almost 

impossible. 

 

A main element to take into account in this discussion is resource availability. When 

the habitat provides a large amount of resources, the individuals will not have to travel 

long distances because resources can be easily found, but inhabiting poor habitats 

that do not provide enough resources will force the displacement of individuals to be 

longer in order to find resources in other habitats (Stevenson 2000; Stevenson et al. 

2002, 2005; Link & Di Fiore 2006). Even though atelines change the proportions in 

their diet in order to compensate for the scarcity of resources (Charnov 1976; Strier 

1992; Stevenson et al. 2000; Di Fiore & Rodman 2001), a faster adaptive foraging or 

dispersal is needed to avoid human changes. 

 

Adaptive foraging requires that species recognize some characteristics related to both 

quality (Loeuille 2010), and the spatial distribution of existing patches (Pyke et al. 

1977; Andersson 1978; Pyke 1984), which in turn, are associated with negative and 

positive fitness in response to landscape configuration. After some time and depending 
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of species adaptability, this process would result in a probable change of the species 

movements (Tischendorf & Fahrig 2000). 

 

Terrestrial behavior of Atelines can be adaptive to the environment (Campbell et al. 

2005; Estrada et al. 2012). According to Kokko & López-Sepulcre (2006), adaptation 

can be both fast and significant for the ability of a species to colonize new areas in a 

short time, since some recent examples suggest several ways in which changes in 

species dispersal can either constrain, or accelerate, their responses to environmental 

changes. Even more, processes of contemporary evolution (times less than 100 years) 

have been documented in response to different changes induced to the environment 

(Stockwell et al. 2003). Based on the use of agroecosystems as feeding habitats or 

steeping stone patches by some primates species (Estrada et al. 2012), we propose 

that the process of adaptive dispersal in atelines species can exists in the same way 

that opportunistic foraging responds to resource scarcity, since contemporary 

behavioral process of adaptation in atelines have taken place in response to the 

human presence (Papworth et al. 2013). 

 

Campbell et al. (2005) reported individuals descending to the ground looking for water 

in less desirable locations during dry seasons when sources of drinking are scarce, a 

probable condition if we are expecting that climate changes increase the temperature 

in humid forest where these species live. Estrada et al. (2012) reviewed the dispersal 

of atelines (A. geoffroyi grisescens in Central America and L. l. lagothricha in 

Colombia) through agroecosystems like cacao, coffee or fruit plantations, using this 

kind of patches for foraging activities. Then, if the environment conditions like habitat 

fragmentation or climate change force the species to move, they will probably do it if 

there is additional habitat available (Figure 48). Nevertheless, the goal is to improve 

the landscape connectivity for species dispersal to different habitat patches with the 

lowest degree of susceptibility for them.  

 

Therefore, for conservation planning purposes we need to link landscape structure to 

underlying ecological processes, since connectivity for species is functional (Kent 

2009). According to Urban & Keitt (2001a), this determines how a given species might 
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perceive and disperse through the landscape, which in practical terms reflects how a 

species might act as a metapopulation.  

 

The necessities for improvement of landscape connectivity are not the same for all 

atelines, due to different underlying ecological processes. These are derived from 

particularly different habitat fragmentation effects that can be exacerbated by climate 

change according to these results, and which in turn correspond to different LUCC 

over Colombia, and result historically from the different human settlement patterns 

over natural regions (Etter et al. 2008). 

 

 

 

Figure 48. Ateles hybridus dispersal over a non-forest matrix. 
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In synthesis, the landscape connectivity for A. geoffroyi, A. hybridus and L. l. lugens, 

and for A. belzebuth and L. l. lagothricha, are different and correspond to the different 

patterns of habitat fragmentation described in the regions that they inhabit. In this vein, 

the definition of conservation areas is priority to guarantee enough time for adaptive 

foraging and includes also the conditions in the landscape that affect the dispersal 

process, particularly in the Andean region, since the results obtained in this study 

suggest the potential dispersal of species even in fragmented landscapes, although 

seriously compromised. 

 

4.3 Prioritization of Conservation Areas for Persistence 
 

The main objective of connected ecological networks is to permit the movement of 

species through unsuitable areas. Nevertheless, these are proposed as a simplification 

of complex ecological concepts, and therefore their use in biodiversity conservation is 

limited. Ecological networks are particular to the species and therefore they are scale 

dependent; however, the information of species requirements for its implementation is 

always incomplete. Additionally, information about how to build them (e.g., width, 

shape, structure, and content) or processes to validate in the practice how do they 

ensure connectivity and enhance biodiversity conservation are unknown (Boitani et al. 

2007). 

 

Despite this picture, it is clear that connectivity of habitat patches is important for 

movement of genes, individuals, populations, and species over multiple temporal and 

spatial scales (Wiens et al. 1993). Through a network framework, it is possible to 

provide inferences about rates and paths of species movements and their vulnerability 

to disturbance (Minor & Urban 2008), in addition to identifying patches that are very 

important to habitat connectivity and thus long-term population persistence across the 

landscape (Minor & Urban 2007). 

 

In this sense, the fourth issue of Moilanen (2011) proposes that there exists an 

overemphasis on the relevance of landscape connectivity in graph-theoretical 

approaches, since any measure of connectivity can give a fully reliable estimate of the 
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persistence, extinction risk, or resilience of a species at a regional scale. According to 

Moilanen (2011), connectivity only informs us about the immigration and emigration 

components of populations, although we are supposing that the presence or 

abundance of species can be related to size, quality, and connectivity of the patch as 

proxies to the persistence of populations, according to Minor & Urban (2007). Based 

on the multi-temporal analysis, we argue our position respect to the relationship 

between population persistence and the quality of the patches. 

 

Over the networks constructed during the period 2000-2020, source patches (the ones 

with higher size, quality, and connectivity) are also persistence patches; therefore it 

can be associated to persistence of populations as well. Source patches can support 

more individuals and are associated with populations with higher sizes, that are 

expected to grow over time (Pulliam 1988; Pulliam & Danielson 1991), since the size 

and quality of the largest patches support the populations and the connectivity 

process, promoting migration and immigration fluxes (Pulliam et al. 1992; Dunning et 

al. 1995; Wiens 1997; Johst et al. 2002; Treml et al. 2007).  

 

Although graph theory networks do not require knowledge of behavior, fecundity, or 

mortality parameters, these data can be incorporated and used to create a more 

ecologically complex graph model (Minor & Urban 2008). Towards a conservation 

planning application, results obtained require further empirical validation, refinement 

and calibration for the species in order to evaluate their correlation with descriptors of 

population dynamics such as colonization, extinction events or population sizes, 

between others (Saura & Rubio 2010). 

 

Therefore, to understand how landscape structure affects movement and, hence, the 

population dynamics of atelines, a clear empirical knowledge about movement 

patterns, and especially about the dispersal of the species is needed to implement 

actions for  their conservation (Selonen & Hanski 2003). In practical terms, to 

complement this study and the correct selection of conservation corridors to connect 

defined priority areas (Figure 45 and Figure 46), a field study based on the potential 

areas where dispersal of species can occur (Figure 43 and Figure 44) would be ideal.  
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Conserving priority areas for the atelines is not a conservation strategy for the 

persistence of species per se. Their principal ecological role as seed dispersers is 

extremely important in order to maintain forest diversity (Stevenson et al. 2002; Defler 

2010), to the point that their absence may have negative effects on plant populations, 

especially large-seeded plants, that are rarely swallowed by other seed dispersers 

(Wunderle 1997; Peres & van Roosmalen 2002).  

 

In this sense, Chetkiewicz et al. (2006) argue that connections between PAs through 

corridors and networks that facilitate the dispersal of species would be the most 

important and required action for ensuring the persistence of species and their 

ecosystems. PAs must be close, or connected enough, to allow for the preservation of 

species and large-scale ecological and evolutionary processes (such as gene flow, 

migration, and range shifts in response to climate change) (Minor & Lookingbill 2010). 

 

Nevertheless, the actual SINAP in Colombia has a highly fragmented PA system, 

especially in the Andes where higher connectivity levels are required (Figure 47). 

Landscape connectivity can be improved in two main ways, i) according to the spatial 

pattern of landscape elements by managing the entire mosaic to favor movement, or 

by ii) managing specific habitats for specific responses (habitat corridors and stepping 

stones) (Bennett 2003).  

 

For A. belzebuth, A. geoffroyi and L. l. lagothricha the first option presented by Bennett 

(2003) might be better, since there is a specific habitat patch (the core of the Amazon 

and the Pacific regions) and a specific corridor (through the specific patch) as the most 

important landscape elements to maintain connectivity (Jordán et al. 2003). For A. 

hybridus and L. l. lugens the second option is the only solution, since the landscape is 

highly fragmented. Establishing  strategic habitat corridors that connect remaining 

habitats or increasing the number of stepping stones even with agroecosystems 

should be a conservation priority, in the same sense of Minor & Lookingbill's (2010) 

proposal for small mammals in USA. 
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In order to rank defined priority areas, the structure of connected conservation areas is 

the first option (corresponding to MST in each component). Thus, the main source 

patch in the Pacific and Amazon regions has a higher priority, while in the Andean and 

Caribbean regions, both source patches and sink patches acting like stepping stones 

are needed to conserve (Minor & Urban 2007). On the next level, according to Rothley 

& Rae (2005), the best surrogate for conservation value is the patch size, which in our 

results also reflects the sources patches containing higher quality, capacity and 

connectivity (Figure 36 and Figure 37). Other conservation targets proposed (Table 

12) are included in previous; therefore, prioritize the improvement of the MSTs 

established over source patches for the ateline primates, is a main concern for 

improving species persistence over time. 

 

In addition, some particular areas which have to be undelaying to the ones established 

are identified below. For L. lagothricha sspp. and A. belzebuth, the piedmont in the 

departments of Caquetá and Putumayo and the network formed by natural parks 

Picachos, Tinigua and Serranía de la Macarena are main conservation regions. For 

the first area, a major process of deforestation (Figure 21) affects the distribution of 

both species and also may be a key area in evolutionary and biogeographic terms for 

the genera Lagothrix, since it is proposed as a region where processes of 

diversification (Defler 2010) or even speciation have occurred (Botero et al. 2010; 

Mantilla-Meluk 2013). For the second one, a major process to avoid deforestation from 

the eastern foothills of the Cordillera Oriental has occurred (Figure 47). In general 

terms both areas including the eastern slopes of the Cordillera Oriental are high 

climatic suitability areas for the species (Figure 27 and Figure 28). 

 

For A. geoffroyi the regions of Darien and the entire low-lands in the western slope of 

the Cordillera Occidental are exposed to fragmentation and a high climatic suitability 

according to scenarios proposed (Figure 21 and Figure 27). Although it may not be 

worrisome in the near future (10 years), the presence of the species should be 

constantly evaluated in these zones. For A. hybridus, the most threatened of the 

Atelinae species, the Serranía de San Lucas is the major area that needs to be 

conserved, since it is not legally protected. It is the main source patch for the species, 
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and it is projected to be fragmented at the same time as an increase in its climatic 

habitat suitability in the scenarios projected for the species (Figure 21 and Figure 27).  



 

5. Conclusions 

 

The species connectivity and dispersal are closely related to patterns in habitat 

deforestation and regeneration in the species’ distributions. The Andean and 

Caribbean species (A. hybridus and L. l. lugens) are susceptible to fragmentation 

processes in almost their entire distribution in past present and future scenarios of land 

cover. Therefore, improvement of habitat connectivity for this species is needed 

immediately. A. belzebuth, A. geoffroyi and L. l. lagothricha are species less affected 

by habitat fragmentation; nevertheless, some specific areas like piedmont in Caquetá 

and Putumayo and the lowlands in western foothills of Cordillera Occidental are priority 

areas to conserve. 

 

Climate change effects for each species movement vary. For A. hybridus and L. l. 

lugens, higher habitat climatic suitability values are found in moderate elevations for 

both species, and in the Magdalena valley and foothills of the Cordillera Oriental for 

each species respectively. This agrees with the global hypothesis of altitudinal 

migration of species due to temperature increases. For both species, major potential 

migrations because climate changes are projected over less suitable areas in terms of 

habitat quality due to fragmentations processes affecting dry and Andean forests. For 

the species A. belzebuth, A. geoffroyi and L. l. lagothricha, a better and more suitable 

habitat is projected in suitable climates corresponding to moister and lower areas of 

the Pacific and Amazonian regions, coinciding with higher precipitation and 

temperature rates projected for the  tropics, where the NPP is also supposed to 

increase. 

 

Representativeness of PAs in ateline species’ distributions is low. Larger PAs like 

national natural parks are more representative, since they are larger, more numerous 

and protect higher proportion of remaining habitat for the species. These may 

constitute an effective measure for conserving populations, since patches of remaining 

habitat under these zones are mostly conserved, and respond to the spatial 

configuration and size of most PAs. Both characteristics are fundamental for species 
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foraging ecology, where larger extensions of habitat for their movements are needed. 

In addition larger protected areas can form source patches, since they are a good 

proxy for habitat quality, capacity and connectivity in the context of species dispersal 

and persistence. 

 

In order to rank the defined priority areas the structure of connected conservation 

areas is the first option (corresponding to MST in each component), followed by source 

patches, which contain the highest values for quality, capacity and connectivity. Other 

conservation targets have been included previously; therefore, to prioritize the 

improvement of MSTs established over source patches for atelines is a main concern 

for improving species persistence over time. In concordance two way of landscape 

management is proposed, by managing the entire mosaic to favor movement for A. 

belzebuth, A. geoffroyi and L. l. lagothricha, since there is a specific habitat patch (the 

core of the Amazon and the Pacific regions) and a specific corridor (through the 

specific patch); and by managing specific habitats for specific responses (habitat 

corridors and steeping stones) for A. hybridus and L. l. lugens, since landscape is 

highly fragmented.  
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