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Abstract

This work presents an innovative and highly competitive Algorithmic Trading (AT) Strategy,

based on a Convolutional Neural Network price direction predictor that uses High Frequency

(HF) transactions and Limit Order Book (LOB) data. Information used includes data from

US and Colombian market. Data processing include more than 5 million raw data files of 21

stocks from different industries (Energy, Finance, Technology, Construction, among others).

Since data include two different sources (Transaction and LOB), applying feature enginee-

ring is necessary to homogenize inputs. For transaction data, an image-like representation

(Grammian Angular Field GAF) is used. It converts Financial Time Series (FTS) to polar

coordinates and creates a kernel based on cosine differences. Additionally, this work propo-

ses a transformation for LOB data. This representation includes all available information

deviated from LOB raw data and it will create an image-like representation of LOB. These

two sources will feed up into a proposed 3D-Convolutional Neural Network (3D-CNN) ar-

chitecture that generates price direction predictions.

These predictions will serve as a trading signal generator for two Algorithmic Trading Strate-

gies. Both of them take real market constrains into consideration, such as liquidity provision,

transaction costs, among others. The two proposed strategies works under different risk aver-

sion constrains.

Results from the proposed 3D-CNN predictor present a strong performance, ranging between

70 % and 74 % in Directional Accuracy (DA), while reducing model parameters as well as

making inputs time invariant. Moreover, trading strategies results illustrate that the propo-

sed CNN predictor can lead to profitable trades and liquidity improvement in the Colombian

Market.

Testing results for both AT strategies on Colombian Market Data lead to interesting findings.

Under different constrains of take profit, stop loss and transaction cost, both strategies ag-

gressive and conservative lead to positive returns over the same period of time. Moreover,

results of number of trades performed by the aggressive AT helps to understand how AT

may impact positively liquidity provision in developing financial markets.

Keywords: Computational Finance, Deep Learning, Convolutional Neural Networks,

Multimodal Representation Learning, LOB Data, Tick Data, Algorithmic Trading
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Strategies, High Frequency Trading.



xiv

Resumen

Este trabajo presenta dos estrategias algoŕıtmicas de trading, basadas en un método in-

novador y altamente competitivo de redes convolucionales para predecir de la dirección en

los precios de series financieras de tiempo de alta frecuencia, tanto del Libro de Ordenes

como en las Transacciones. La información usada incluye datos del mercado americano y

colombiano. Se procesaron más de cinco millones de archivos con información de 21 acciones

de diferentes sectores (enerǵıa, financiero, tecnoloǵıa, construcción, entre otros).

La información de entrada incluye dos fuentes de datos diferentes (Transaciones y Libro de

Ordenes), por lo cual se hace necesario aplicar ingenieŕıa de caracteŕısticas para homogeni-

zarla. Para la información de las transacciones, se usó una representación basada en imágenes

con una transformación conocida como Gramian Angular Field (GAF). Ésta convierte una

serie de tiempo en coordenadas polares y crea un kernel basado en diferencia de cosenos.

Además, este trabajo propone una transformación del Libro de Órdenes. Esta representación

incluye toda la información disponible del Libro de Órdenes y la transforma a una imagen.

La información representada se pasa a una arquitectura de red convolucional propuesta, la

cual genera predicciones de la dirección de los precios. Las predicciones servirán de señales de

negociación para dos estrategias de trading algoŕıtmico. Ambas incluyen restricciones reales

de mercado, como niveles de liquidez y costos de transacción. Las dos estrategias propuestas

trabajan bajo differentes condiciones de riesgo.

Los resultados de predicción de la red convolucional propuesta presenta un desempeño entre

el 70 % al 74 % de precición direccional; a la vez que reduce los paramétros del modelo y

hace las entradas invariantes en el tiempo. Adicionalmente, los resultados de las estrategias

de negociación ilustran que el predictor convolucional puede liderar a generación de ganacias

y mejoras de liquidez en el mercado colombiano.

Las pruebas realizadas para las dos estrategias de trading en el mercado colombiano conlle-

van interesantes hallazagos. Bajo diferentes condiciones de take profit, stop loss y costos de

transacción, tanto la estrategia agresiva como la conservadora reportaron retornos positivos

para el mismo peŕıodo de tiempo. Adicionalmente, la estrategia agresiva permite entender

el impacto positivo en liquidez para mercados financieros emergentes.

Palabras clave: Finanzas computacionales, Aprendizaje profundo, Redes convolucio-

nales, Aprendizaje de representación, Libro de órdenes, Transacciones, Estrategias de

Negociación algoŕıtmica, Negociación de alta frecuencia.
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1. Introduction

Recent advances in computer science and technology, including hardware and software with

enormous processing capabilities, have facilitated the fact that machine-based agents make

trading decisions on short time-scales. This activity is known as Algorithmic Trading (AT),

an emergent discipline that combines Computer Science with Finance, and involves portfolio

management and allocation [65], modelling of Financial Time Series (FTS) and trade execu-

tion on Financial Markets [101].

In general, Computer-Based Trading (CBT) is a trading system used for financial firms and

individual investors to trade financial instruments based on trading strategies. CBT has two

main categories: High Frequency Trading (HTF) and Algorithmic Trading (AT). HFT uses

an extraordinary high speed computer software for generating, routing and executing trade

orders in very short time horizons (milliseconds to seconds). This kind of CBT includes the

use of co-location services to minimize network latency [103]. Additionally, AT, as defined by

the European Commission Directorate General Internal Market and Services (DG MARKT),

is the use of computer programs to enter trading orders where the algorithm decides on order

execution aspects such as time, quantity and price.

Financial Markets are a very important component of the economy, because they allow im-

proving capital allocation. This is channeling financial resources to real actors of the economy.

If well done, such actor can grow its business, generates new jobs, helps to improve commu-

nities and adds value to the economy and the society [33], [92], [95]. In order to make this

kind of impact, financial markets need to become very efficient. Efficiency aims to improve

liquidity provision, to reduce transaction costs and improve price discovery [15], [72], [103].

AT helps to improve such wanted characteristics [15], [72].

As any other activity, trading on financial markets should generate profits for the companies

and individuals engage on it, therefore AT must be profitable. As a result, AT must inclu-

de good analysis of FTS. Since Financial Markets exhibit complex systems properties [76],

modelling of FTS continues to be a recurrent problem to mathematicians, engineers and

statisticians, due to their noisiness and non-stationary behavior [1], [9], [106] that is present
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also in High Frequency Time Series [30].

Over the decades, different modelling techniques, including Statistical and Machine Learning

(ML), have been applied for analyzing FTS [9]. Research during the last 20 years shows

that ML approaches are more effective than classical statistical techniques. The reason is

that ML deals much better with complexity and non-linearity of FTS [38], [53], [79], [96],

[108], [111]. ML offers a wide variety of modelling techniques, including clustering, Support

Vector Machines (SVM), Decision Trees and Artificial Neural Networks (ANN) among others.

Within this set of elements, ANN are the most popular [38], [53], [79], [96], [108], [111].

1.1. Problem Statement

This work includes topics from different topics: machine learning, financial markets, FTS

analysis and AT. As a result, it is necessary to understand constrains that emerge from each

of those. Having said that, it is important to mention that FTS are challenging due to their

characteristics, including noisiness, non stationary behaviour and the impact of externalities

[1], [9], [30], [106].

Moreover, financial markets exhibit characteristics of complex systems [76] and efficiency

improving is the most important fact. This means that characteristics such as liquidity pro-

vision, price discovery, transaction cost reduction are fundamental to make markets more

efficient. Having said that, AT insertion has effectively lead to efficiency improvements wit-

hin financial markets. In fact, automated market agents have affected positively transaction

costs, liquidity and price discovery processes [103]. However, AT has been devoted mostly to

speed action, which reduces on one hand the use of computation intelligence and on the other

important constrains such as market impact while doing [21], [15], [37], [101], [103]. Finally,

emergence of applications to model FTS using ML techniques from late 80’s is notorious,

given the fact that ML handles non-linearities much better than analytical models. However,

limited learning capabilities of most ML techniques makes prediction of FTS an on going

challenging problem [42], [94], [88], [115].

In consequence, in order to overcome these set of issues, this work will apply DL, the latest

development wihtin ML techniques, in order to model FTS in high frequency domain (se-

conds) to generate trade signals that can be feed or used for an AT system that generates

profits while testing its ability to handle financial markets constrains (liquidity, transaction

cost and price discovery). Table 1-1 presents a summary of the problem scope for this work.
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Table 1-1.: Problem Scope.

Topic Issue

Financial Markets
Complexity [76].

Constant need to become more efficient [15], [33], [72], [92], [95], [103].

FTS Noisiness and non stationary behavior [1], [9], [30], [106].

ML ANN learning limitations [29], [100].

CBT Constrains regarding order quality vs profitability generation [15], [103].

Therefore, the issue of AT that uses HF data is not only about computational speed or

profitability constrains, but also computational intelligence. Since, FTS are complex, chaotic

and noisy, it is necessary to explore a different ML approach that can overcome known issues

of ANN, such as poor generalization due to gradient vanishing in multilayered architectures

[29], [100]. Deep Learning (DL) appearance gives a new possibility to model these noise

and non-linear data (FTS). Since DL mimics how brain of mammals process information

in a hierarchical way, allowing to build complex representations of sensory inputs based on

regularity learning of such inputs [4], [45], [61], [76], [75]. In other words, DL may learn non

linear patterns by combining initial simple sparse representation into more complex ones

layer by layer as a mammals brain processes information.

1.2. Justification

Even tough forecasting FTS continues to be a challenging task [1], [9], [106], DL, through

sparse representation of features, can provide a further development to CBT applications.

Having the major role that financial markets plays [33], [92], [95], it is very important to

explore possible impacts of CBT under near close market conditions by building an AT

strategy that integrates computational intelligence and market constrains, while trading on

short time frames.

1.3. Methodology and Objectives

This research is an exploratory study about building an AT strategy capable of generate

trade orders for short time frames, with trading signal generated by a Convolutional Neural

Network. This ML technique takes two different sources of information: LOB and transaction

data. Given the fact that these sources are different modality, it is necessary to homogenize
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them under a common representation. Results of the AT will be tested through simulation.

As a result, the following list shows the central activities for this work:

To build a DL architecture that predicts price direction, which includes:

• Data preprocessing and representation.

• DL topology selection including number of layers and associated characteristics

of chosen topology.

• Definition of software framework and hardware infrastructure to use for training

and testing purposes.

To elaborate an AT strategy that includes trading of different assets, handles real

market constrains and integrates predictions from the DL architecture.

• Analyze market data to find similarities and differences among instruments.

• Analyze financial market aspects such as liquidity

• Analyze aspects of security trading such as entry points, exit strategies, trading

times, among others.

To evaluate AT strategy performance.

• Definition of time span for evaluation.

• Collect and analyze data from trading simulation environment.

• Analyze results.

1.4. Document Organization

This works continues as follows:

Chapter two provides definitions on AT.

Chapter three informs about Multimodal Learning Representation of Financial Data

(Transaction and LOB), and proposes a representation of these data. This is because

they are different sources of information for this work.

Chapter four gives information about ML techniques in general and DL in particular,

and proposes a 3D-CNN Multimodal architecture for Algorithmic Trading Strategies.

Chapter five provides results on experiments conducted, both for FTS modelling and

its applications to an AT.

Chapter six presents the main conclusions and recommendations.



2. Algorithmic Trading

Financial markets in general, and AT in particular are key topics for this work. Therefore,

this chapter makes a literature review in order to introduce key financial concepts about:

Algorithmic Trading, Algorithmic Trading Strategies and their relevance for Financial Mar-

kets. Moreover, it presents important considerations of AT from two different perspectives:

financial and computational.

2.1. Definitions

2.1.1. Algorithmic Trading

The European Commission Directorate General Internal Market and Services (DG MARKT)

[103] defines AT as the use of computer programs to enter trading orders, where the algo-

rithm decides on aspects of the order execution such as time, quantity and price. Otherwise,

the US Commodity Futures Trading Commission (CFTC) [103] defines AT as the use of

algorithms to place trade orders. For [15], AT is the use of computer algorithms to make

trading decisions without human intervention.

AT development is possible thanks to the evolution of technology as a whole, hardware and

software with enormous processing capabilities, allowing non-human-based agents to make

trading decisions on very short time-scales. AT decisions may include analyses of factors such

as economic fundamentals, news, price changes. In order to process sources of information,

AT can use different methods or techniques, including statistical or machine learning, to

learn from monitoring sequences of events in a particular market [56], [103]. Moreover, AT

involves dynamic planning and market reasoning [101] maximize profits under two major

constraints [37], [49]:

Reducing market impacts due to the possibility of sending large orders.

Optimizing transactions costs given the frequency of the trades.
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2.1.2. High Frequency Trading

European Securities and Markets Authority (ESMA) [15] defines HFT as trading activities

that employ sophisticated algorithms to interpret signals from markets and trading strate-

gies implementation that generates a huge number of orders. These orders are transmitted

with low latency to venues or exchanges in very short time frames. Moreover, positions are

closed out at the end of the trading day and involve the own capital of the brokerage firm,

not its clients.

The Securities and Exchange Commission of the US (SEC) [15] defines HTF as an activity

made by professional traders in which they generate a large number of trades on a daily

basis, using sophisticated algorithms for routing and executing orders in very short time

frames, without carrying in positions for the next day. They also use co-location services and

data feed services from exchanges to minimize latency. Order execution time-frame ranges

from microseconds to seconds.

In fact, developments in telecommunications, hardware capabilities and computer science

during the last ten years have enabled computers to make autonomous trading decisions in

financial markets across the world. Technological advances have made possible to process

huge quantities of data to act in milliseconds in order to take advantage of any market

opportunity. HFT is mostly devoted to arbitrages [72], [103], making markets more efficient,

as well as more liquid, due to submission of huge quantities of orders to different exchanges

[67].

2.1.3. Low Frequency Trading

LFT differs from HFT in order execution time-frames. This umbrella qualifies systems that

take minutes to weeks to submit orders. LFT is mostly based in quality trading signals rather

than speed, As a result, aspects such as collocation and latency (network, hardware, software)

are not as relevant as in HFT. However, data analysis and modelling of FTS behavior are

more relevant [101].

2.1.4. Trading Strategies

ESMA defines a trading strategy as a disciplined method to buy or sell a financial asset,

which involves working with a pre-defined set of rules [15]. Trading strategies categories

include:
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Fundamental strategies based on macroeconomic factors as well as industry and com-

pany specific factors such as financial reports, management members, business strategy,

rules to conduct businesses, political stability of operating regions, among others [49],

[94], [101].

Technical strategies based on visual analysis of historic prices and volume data. They

include use of statistical formulas over the price and/or volume time series and their

main objective is to find common patterns across data [49], [94], [101].

Quantitative strategies include intensive use of computational tasks. This category of

trading strategies focuses on stochastic or machine learning techniques [101] to model

assets price behavior.

2.2. Algorithmic Trading Advantages

Nevertheless, the trading frequency of algorithms, and inception of machines into trading

activities have radically changed financial markets from different perspectives [15], [20], [49],

[67], [72], [103].

2.2.1. Perspective 1: Financial Markets Principles

Liquidity Provision

Liquidity is a fundamental characteristic of any financial market, since its lack is core for

many financial crisis. Since High Frequency Traders are usually large financial institutions,

they act as market makers, therefore there are orders at many different price levels and

algorithms are ready to execute to balance any liquidity unbalance to either side (bid/ask).

Several studies in different markets [15], [20], [49], [67], [103] present a consistent reduction

in spreads, as well as a persistent growth of traded volumes, when compared to Limit Order

Book (LOB) behavior during different years with AT.

Price Discovery Improvement

Price discovery by definition [15] is the capacity of a market to find the best price to buy/sell

any asset. Given the fact that AT analyzes market data continuously, it can better predict

market order flow; i.e. how likely prices will change in the near future. Therefore, it can

better adjust orders to discover the best possible prices to execute transactions [15], [20],

[67], [103].
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Transaction Costs Reduction

Better liquidity and price discovery improvement translates into more market interest; that

is, more investors will be willing to participate and trade, thus more transactions occur in

the exchanges. In consequence, AT is a key driver to transactions cost reduction during the

last ten years. This happens because exchanges are able to reduce their marginal operating

cost due to more transactions from automated market participants [20], [15], [67], [103].

2.2.2. Perspective 2: Computer Engineering

Big Data

Financial information is widely available, from market data, to analyst researches, and news.

As a result, financial markets generate huge quantities of data on a daily basis. To give an

example of this phenomena, one day Limit Order Book events of NYSE accounts for nearly

25 PB, bringing Big Data processing and analysis to the industry1.

Machine Learning

Analyses and decisions of these large data sets involve machine-learning modelling [20]. As

explained in the next chapter, the literature is full of papers applying different ML techniques

intending to model financial data to gain an edge to predict future price direction.

Hardware and Networking

Latency reduction is necessary when doing AT. Use of GPA, GPUs, parallel processing, co-

llocation, fiber channels and any other hardware improvement is a common practice in this

industry [20]. In fact, [67] shows that matching engine latency of LSE has reduced from 0.6

microseconds in 2000 to 0.113 nanoseconds in 2011.

Despite its advantages, CBT in general is not apart from criticism. Studies of [15], [49],

[67], [72] and [103] argue that, as improvements of liquidity and price discovery occur very

fast, they become short lived or limited in time, therefore improvements lack of continuity.

This generates an adverse position for low frequency traders when trying to liquidate their

positions in particular situations, because they cannot compete in terms of speed with HF

traders.

1Information collected from NYSE web site
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From the Engineering point of view, some authors [15], [20] and [67] explain that algorithms

tend to overreact in a very short term scales, causing huge imbalances in LOB, liquidity

evaporation or spread changes. In spite of some disadvantages, CBT is still a major trend

not only in developed but also in developing markets [20], [49].

2.3. Categories of Algorithmic Trading

2.3.1. Arbitrage

Arbitrage is the opportunity to profit from the simultaneous purchase of an asset in one

market and the sale of the same asset in a different market, given price differences resulting

in a risk-free profit [103]. Given the fact that CBT involves the analysis of huge quantities

of data at very high speeds [37], strategies related to find statistical arbitrages between

correlated assets are a common practice for CBT practitioners, particularly for those involved

in HFT [103].

2.3.2. Market Impact Reduction

Market impact refers to the action of sending large orders of a particular asset to an ex-

change. As mentioned before, it is one of the issues when doing trading in general and AT

in particular. As a result, a complete field of research have been devoted to market impact

reduction. Algorithms specialize in splitting large orders, while keeping constraints of price.

The main objective is to move large volumes of shares without giving any hint to market

participants, particularly other algorithms [21], [37], [51], [67], [72], [101].

2.3.3. Reversal Engineering Applications

This category includes algorithms that monitor market activity in order to find or decipher

what others trading algorithms do. This research filed is related to adversarial agents finding

[20], [67], [72].

2.3.4. Intelligent Trading Execution

Due to the fast growth of CBT systems and competition among market participants [15],

[20], [21], [67], [72], [94], [103], more attention has been devoted to add intelligence to trading

algorithms, in order to reduce the lack of diversity of trading strategies when using AT [15],
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Figure 2-1.: AT System components. Source: [101].

[20], [67]. As a result, this category is for algorithms that trigger trading actions, that is,

open and close positions while monitoring market activity. Trading of financial instruments

occurs when market participants submit buy and sell orders using a centralized order book

[25].

In summary, AT is a major ongoing trend in financial market worldwide. When execution

time and frequency is a key driver, AT is known as HFT. In contrast, when there are no

time constrains, AT is known as LFT. In both cases, AT helps financial markets efficiency.

Machines make markets more efficient by increasing liquidity and improving price discovery.

As more machines participate, data flow increase considerably. Consequently, big data and

ML techniques flourish within the financial industry, resulting in a wide variety of specialized

algorithms. Some of them reduce market impact, others specialize in eliminating arbitrages,

others in trading execution and others in discovering trading rules of their automated coun-

terparts [72].

Despite criticism CBT is well positioned. A literature review from [20] reflects that CBT

systems account for almost 90 % of the transactions in NYSE, followed nearby LSE and

TSE, where automated systems account for more than 80 % of the daily market volume.

This trend is highly expanded in other developed markets, including DAX and ASX. Even

developing markets as India are starting to take advantage of this trend, as quoted in [49].

Moreover, internet and technological advances have made possible that retail traders can

access algorithmic trading platforms in different markets including currencies, commodities,

stocks, bonds and others. This list includes names such as Dukascopy, Oanda, SaxoBank,

Quantopian, QuantConnect, InteractiveBrokers just to name a few.

Finally, any AT system should include the components highlighted in Figure 2-1, where

pre-trade analysis refers to analyzing market constrains, such as liquidity, market impact;

trading signal is related to modeling of FTS; trade execution refers to the ability of merging

signals with market constrains and investor profitability needs; and post-trade analysis refers

to open position management [72].



3. Multimodal Learning Representation

of Transaction and LOB Data

Another important topic for this work is FTS. As mentioned earlier, this work uses multimo-

dal inputs: LOB an transaction data. Therefore, this chapter will present first definitions for

both LOB and transaction data. Because of their differences, it is necessary to homogenize

them, therefore they are readable for a ML technique. In order to understand this process,

this chapter continues presenting how represent these two different sources of information. In

consequence, the reader will find information about a previous work [86] on LOB representa-

tion. This representation will be extended, and the new proposed representation (extended

one) will include all information from LOB data. For transaction data this work will use a

method introduced in [107]. The original paper is oriented to time series in general therefore,

this will be the first application on FTS, as long as the author knowledge based on literature

reviewed. Once data representation are introduced, data can be homogenized in order to

feed them up into a ML technique. It is worth mentioning that one of the contributions of

this work is the proposed representation for LOB data.

3.1. Definitions

3.1.1. Transaction Data

As shown in Figure 3-1, a transaction occurs when a buy order equals the price of a sell

order. Formally, a transaction T = (p, q, t), where pT is the price agreed between buyer and

seller, qT is the quantity exchanged and tT is the transaction time stamp. Since transactions

do not occur continuously, their mathematical expression is that of a time series [107]:

X = {x1, x2, ..., xn} (3-1)

FTS collect data of price changes over time due to the interaction of market participants

(See Figure 3-1). Therefore, forecasting FTS is a very challenging problem because they

exhibit the following characteristics [100]:
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Figure 3-1.: Illustration of how market participants submit buy/sell orders and their mat-

ching. LOB image taken from www.batstrading.com.

Unavailability to capture the full dependency between future and past prices, also

known as noise.

Non-stationary behavior since their distribution changes over time.

Short-term randomness and long-term determinism, that is deterministically chaotic.

Information content in equation 3-1 is uni-variate, usually prices. However, sometimes transac-

tion data may include prices and traded quantities, generating a bi-variate time series. This

work will use uni-variate information when referring to transaction data.

3.1.2. Limit Order Book

Limit Order Book (LOB) is the recording of buy/sell intentions of all market agents in a

given exchange. LOB recording centralizes all market participants’ intentions. It includes

a time-stamp, quantity and price to buy/sell. This information is very important for HF

traders, because it includes the foundation principles of financial markets: liquidity and

price discovery; therefore, it gives a sense of volume, volatility, market depth among others

market properties [51]. LOB is organized by best price and by arrival time, and an order
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Figure 3-2.: LOB concepts adapted from [40].

matches when the buy price is equal to the sell price [25], [27], [40], [80], [85]. Order matching

generates transaction data, as defined previously. Figure 3-1 illustrates how this interaction

happens among market participants (human and/or non-human).

Formally, an order x = (p, q, t, s), sent at time tx, price px, quantity qx (number of shares)

and side (buy / sell), is a commitment to buy/sell up to qx units of an asset at price px.

Arrival time and quoted price determine orders sorting. Sell orders have larger prices than

buy orders [27], [40], [84], [82], [104]. There are a particular vocabulary strongly associated

to LOB [40], [84]:

Spread size: It is the difference between the best sell and buy prices.

Bid price: It is the highest price among all active buy orders at time.

Ask price: It is the lowest price among all active sell orders at time.

Best quotes: It is a tuple, formed by the best Bid Price, and the best Ask Price.
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Market deep: It is the number of different prices quoted (registered with intentions)

on LOB.

Order type: Submitted orders can be either insert, modify or cancel. An insert order

is a new order send by a market agent; a modify order is an update over an existing

order; and a cancel order deletes an order sent previously.

Data for this work do not include modify or cancel orders, therefore, a LOB L(t) is the set

of all active orders x at time t. Dynamics of LOB are complex [27], [40], [113], since they

capture interactions among market agents with different points of view and different trading

strategies. LOB concepts are illustrated in Figure 3-2, For a particular time t. General

speaking, LOB data can be seen as a collection of FTS. Transactions occur between best

quotes, therefore LOB data is naturally multivariate. Given the fact that, at each point in

time t LOB data may have different market deep (price lines), computationally speaking it

is a collections of lists, where each list is a set of orders. In summary, at any particular time

tk, a LOB L(tk) contains the following information:

A list of orders x = (p, q, tk, s) sorted by price and arrival time.

Prices p can be repeated n times, this means that different market participants are

willing to buy or sell at the same price.

Quantities willing to be traded q differ depending of market participant characteristics.

There fore, quantities q also vary even among orders at same prices p.

In consequence, LOB data present different modalities if compared to transaction data.

As a result, analysis and modelling of these data is difficult. Moreover, this work adds an

additional challenge, because LOB data and transaction data are different, resulting in a

Multimodal Representation problem [8]. In other words, transaction data can be seen as a

uni-variate or bi-variate data (price and quantities), whereas LOB data is a collection of

time series, with variable dimensionality, because there is no market deep homogeneity for

all times t.

3.2. Transaction Data Representation

Given the fact that this work uses multimodal data (transaction and LOB data), it is ne-

cessary to homogenize them, therefore, transaction and LOB can be fetch into the proposed

computational model to predict price direction (Chapter 4). Because, this work proposes a

3D-CNN for prediction with two different inputs (transaction and LOB), data representation



3.2 Transaction Data Representation 15

becomes important in order to be able to use such data. In consequence, both transaction

and LOB data will be represented as images.

In this section, transaction data will be represented as a matrix, which can be converted

to an image. There are different techniques that allow representing uni-variate time series

as images. In [107], authors explain an approach that underlines a kernel filter, to transform

uni-variate time series into an image, named Gramian Angular Field, which takes advantages

of angular measures (cosines) to represent Cartesian points into polar coordinates. Transac-

tions to be represented will be those happening during the time interval of LOB taken for

analysis. (See chapter five for specific details).

3.2.1. Gramian Angular Field

It is a transformation that maps Cartesian to Polar coordinates to then build a Gramian

Matrix, or kernel that represents cosine angles between points [107]. This transformation

offers the following properties [107]:

It is bijective as cos(φ) is monotonic when φ ∈ [0, π].

Polar coordinates preserve absolute temporal relationship. Moreover, they have the

advantage that they differentiate an area under the curve for time stamps [i, i + k]

and [j, j + k] that have the same values in cartesian coordinates. This happens due to

area under the curve definition S. In Cartesian, Si,j =
∫ x(j)
x(i)

f(x(t))dx(t), in contrast

of Polar coordinates definition that states Si,j =
∫ φ(j)
φ(i)

r[φ(t)]2dx(φ(t)). As a result, in

polar coordinates, values of S ′ are different for any time stamps [i, i+ k] = [j, j + k].

As a result, this transformation offers value differentiation at the very input of any compu-

tational model. The following are the step by step equations that need to be performed on

any time series (Equation 3-1).

x′l =
(xi −max(X)) + (xi −min(X))

max(X)−min(X)
(3-2)

φ = arc cos(xl) and r =
ti
N
, ti ∈ N (3-3)

G =

∣∣∣∣∣cos (φ1 + φ1) ... cos (φ1 + φn)

cos (φn + φ1) ... cos (φn + φn)

∣∣∣∣∣ (3-4)

G = XTX−
√
I −X2

T√
I −X2 (3-5)
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3.2.2. Results of Gramian Angular Field on HF FTS

Figure 3-3 shows the visualization of different FTS (transactions) after applying equations 3-

2, 3-3, 3-4 and 3-5. This representation differentiates FTS peaks by colours intensity, helping

to separate price variances within the original signal.

Figure 3-3.: Transaction Data as Image applying GAF. Up trend. Own elaboration based

on [107].

Moreover, for FTS in up trending mode, higher prices are located upside on the image.

Another interesting fact of this transformation is that color continuity signals liquidity. As

the reader can notice, the last two images in the second column of Figure 3-3 present more

squares, which are not present in other images of the same figure.

Figure 3-4 illustrates a representation of down trend transactions. As mentioned earlier,

colors change positions. In this case, red color is at the right side of each image. Another

interesting fact of this transformation can be seen in the second image of the second column.

Flat periods are white colored.

Figure 3-5 show trendless transactions. As noticed earlier, white color is more common and

grid patterns are more frequent for this kind of FTS. In consequence, GAF transformation

also helps to identify liquidity levels, thanks to color continuity and direction separation due

to peak colouring.
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Figure 3-4.: Transaction Data as Image applying GAF. Down trend. Own elaboration based

on [107].

Figure 3-5.: Transaction Data as Image applying GAF. Trend less. Own elaboration based

on [107].

As observed in Figures 3-3, 3-4 and 3-5, this representation informs:

Original FTS trend information, depending on color distribution.

FTS trade-ability information, depending of color gradient. This is a gain of infor-

mation, because more transactions happening during a particular time have different

gradient when compared to less transactions happeing for the same time period.



18 3 Multimodal Learning Representation of Transaction and LOB Data

Figure 3-6.: Image like Representation of LOB Data based on quantities q at prices p, taken

from [86].

3.3. Computational LOB Representation

As mentioned earlier LOB data include all trading intentions, which contain lots of informa-

tion about price dynamics. Initially, LOB data can be represented as a matrix-like object

(Figure 3-7), based on information used in Figure 3-6, where column labels are time stamps

t, row labels are prices p and each cell contains the number of shares to bid/ask q. Due to

order imbalances, the number of ask price (k) does not necessarily equal the number of bid

prices j. Moreover, many cells in this matrix will have a 0 value, because it is necessary to

fix matrix size for computational purposes. This basic representation of LOB was introduced

in [86]. It only takes into account quantities q willing to trade.

3.3.1. Proposed 4-Channel Matrix LOB Representation

As mentioned earlier, information included in LOB is more than quantities. Therefore, it

is possible to deviate or include additional variables to enrich such basic representation as

presented below:
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Figure 3-7.: Matrix object representation. Own elaboration based on [86].

The total quantity (volume) Qpx at one particular price.

The maximum quantity (volume) at one particular price maxV ol = max(qpx). This

information is important because it gives a sense of quantity (volume) distribution at

each different price p to the representation.

The total number of orders N at one particular price.

As a result, each cell for this new matrix contains a vector v = [Pi, Qi, Ni,maxV oli], as

shown in Figure 3-8. Mathematically:

Qst =
∑

(qst) (3-6)

N = countpst(xst) (3-7)

maxV ol = max(qst) (3-8)

It is important to notice that Figure 3-8 differentiates sides, that is, the first member of the

vector v is 0 if and only if there is a bid order. Conversely, the second member of vector

v has a 0 value if and only if there is an ask order. Therefore, equations 3-6, 3-7 and 3-8

change depending on the order side, as follows:

Qat =
∑
k

(qkt) or Qjt =
∑
j

(qjt) (3-9)

Nkt = count(xkt) or Njt = count(xjt) (3-10)

maxV olkt = max(qkt) or maxV oljt = max(qjt) (3-11)
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Figure 3-8.: 4-Channel Matrix Representation, Own elaboration.

As the reader can notice, differences between the basic and the extended representation are

notable in Figures 3-7 and 3-8. This fact should have a positive impact when applying ML

to this proposed representation, because it includes more information.

3.3.2. Results of proposed LOB Representation

Having a 4-vector matrix is equivalent to have a 4-channel image. In order to complete the

proposed representation, it is important to take into account data normalization. This

is because for ML models is important to keep an adequate magnitude relationship. Mo-

reover, computationally speaking an image manages channel colors between [0, 255] if RGB

is used. Therefore, it is necessary to apply (0−1] normalization for each information channel.

The (0−1] normalization differs from the [0−1] normalization due to the fact that some price

lines may have no entries. This happens under real market conditions, in order words, market

agents are willing neither to offer nor to bid on any possible price. As a result, some price

lines will have null entries. To make this difference clear to the ML model the smallest not

null entries will have a value slightly bigger than zero, while null entries will have a zero value.

After applying all the steps (equations 3-9, 3-10, 3-11), results look like those illustrated in

Figure 3-9. As the reader can notice, this proposed representation includes all LOB informa-
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Figure 3-9.: LOB transformed to Image after applying the proposed representation. Own

elaboration. See Annex C for multiple examples of LOB under the proposed

representation

tion if compare to those made in [86] (Figure 3-6). The proposed representation takes into

account prices (p), total quantities (Q) at the same price, number of orders (N) at the same

price and order distribution (maxV ol) at the same price. As a result, it is more machine

readable oriented. For visualization purposes, Figure 3-9 includes two different LOB (dot

framed) and their channel decomposition rendered.

In summary, FTS come in two main categories:

LOB data

Transaction data

LOB data is richer than transaction data since it contains all trade intentions from market

agents. Conversely, transaction data only contains information regarding the trade or asset

exchanged. Under this circumstance, expectations of a better-performing model based on

LOB data are greater than using only transaction data [66].

Given the fact that this work uses multimodal inputs (LOB and transaction data), it is

necessary to homogenize them while keeping individual characteristics.

On the one hand, it is necessary to represent transaction data. In general, ML techniques

group data that are separable in multidimensional spaces. Such spaces are different from the
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original one. To make inputs homogeneous, this work represents raw transaction data as ima-

ges using GAF representation. The main reason to prefer GAF over other methodologies is

that GAF transforms cartesian coordinates into polar ones, making a kernel based on angles.

This fact is very important, because working distances over angles rather than traditional

Euclidean spaces can add more precision to model prediction, particularly when FTS are

very noisy. In fact, as shown in Figures 3-3, 3-4 and 3-5, important characteristics of FTS

are well separated. Peaks separation and liquidity factors can help to improve predictions.

On the other hand, it is necessary to represent LOB data, making it homogeneous with

transaction data representation. As a result, a LOB representation is proposed. This re-

presentation extends the one proposed in [86], by including all the available information in

LOB data. Added information includes volume distribution maxV ol, total volume Q and

the number of orders N at each price p. Consequently, the computational model will learn

from complete data when compared to the representation proposed in [86], as explained in

the following chapter. This new representation may be harder for human understanding, but

it is more machine readable, specially in very short periods of time, when humans cannot

make decisions.
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Machine Learning is another topic for this work. In consequence, this chapter presents a re-

view on techniques used for FTS modelling, pointing out specially to ML and its applications

to FTS prediction. Given the fact that ML techniques varies, it emphasizes in DL, parti-

cularly, Convolutional Neural Networks (CNN) which are the technique used for this work.

In both cases, this chapter presents a comprehensive review of works using ML and DL for

FTS modelling. At the end of the chapter, the reader finds the proposed CNN architecture

for the price direction predictor that will feed the AT strategy. This proposed architecture

feeds from multimodal data, represented using the methodology explained before.

4.1. Brief History of FTS Modelling

FTS modelling is an old discipline that did not include ML from the beginning. In the ear-

liest 1800’s, researches such as Legendre and Gauss started using Linear Regression, which

is the first statistical technique used to model FTS [29]. The 20th century brought different

formulations of well known models such as ARMA, ARIMA and GARCH [16], [36]. Moreo-

ver, stochastic techniques deviated from Browian Motion, Levy Process and Poisson Process

were also formulated to model FTS. These techniques are currently used for FTS modelling,

including stochastic techniques for LOB dynamics modelling [3], [19], [27], [71].

These techniques are very popular in Econometric, in fact, results from [69] indicate that

statistical methods performs well when forecasting TS. However, many academic papers sug-

gest that data driven techniques, i.e. machine-learning methods, are more successful when

modelling FTS [2], [6], [7], [9], [10], [26], [47], [55], [79], [89], [96], [102], [115]. This happens

because ML methods are capable of dealing better with non-linearity, being able of capturing

long and short-term dependencies, as well as finding common patterns. In other words, ML

methods are better at complexity handling, when compared to traditional methods for these

kind of data such as Linear Regression, ARIMA, ARMA and GARCH not to mention all

the assumptions made when using diffusion like models (Browian Motion, Levy and Poisson

processes) [27]. Latest results from M4-Competition [70] show that hybrid approaches using

ML techniques improve substantially results of forecasting TS in general.
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4.2. Machine Learning Techniques Applied to Price

Prediction

Literature is vast when referring to applications of ML to FTS in general and Stock Prices

in particular. It includes a variety of techniques such as Clustering, Decision Trees, Support

Vector Machines (SVM) and Artificial Neural Networks (ANN) [9], [10], [29], [53], [38], [39],

[42], [50], [59], [78], [79], [87], [96], [100], [105], [106], [108], [111], [115]. However, most of the

literature focuses on two techniques: SVM and ANN. This is due to the fact that both SVM

and ANN have proven to be useful when dealing with non-linearity of the inputs [9], [100],

[79].

On the one hand, SVM are related to statistical learning theory [58] by implementing a

structural risk minimization principle [100]. They were introduced by Vapnik in 1996 and

has been widely applied to financial time series forecasting since 2000 [53], [87], [100].

On the other hand, ANN date back to 1943 when McCulloch and Pits formulated them.

They are among the most used techniques for FTS analysis [42], [53], [79], because ANN are

good at describing FTS dynamics [100]. They have also been used to forecast many different

financial instruments across many different geographies since 1988 [108], being prices and

trading volume the most common inputs and two-layer the preferred architecture [9]. Despite

outperforming other techniques when modelling FTS [42], ANN possess limitations, which

include [42], [88], [115]:

Adding layers to the ANN does not translate into better forecasting results and damage

time efficiency of the model.

Over-training causes over-fitting, i.e. the tendency of an ANN to memorize the data,

which results in poor generalizations.

These limitations are caused by the fact that the minimization error procedure gets stuck

in local minima avoiding the ANN to converge in an optimal solution, [18], [88] resulting in

poor generalizations [77]. In order to better comprehend this fact, it is necessary to introduce

the concept of Back Propagation (BP), a method used to back propagate errors, while the

ANN is learning from data. The BP process is done using partial derivatives, which transfers

errors from the output to the first layer, updating ANN weights at each layer. In ANN, BP

fails because once a local minima is reached, error transfers backwards is near zero, therefore

layers weights are not updated, causing the network to improve its learning.
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Table 4-1.: Summary of academic reviews and surveys reporting applications of ML tech-

niques to FTS.

Year Techniques Mentioned Market Freq. Ref.

2018 ANN, Trees, CNN Futures LFT [50]

2016 Trees, Naive Bayes, Clustering Currencies LFT [39]

2016 Clustering, ANN, SVM, Trees Stocks, Currencies, Futures LFT [20]

2015 DBN (Dynamic Bayesian Nets) Currencies HFT [84]

2014 ANN Futures, Options LFT [42]

2012 ANN Stocks LFT [96]

2012 ANN Stocks LFT [79]

2010 ANN, HMM Stocks LFT [53]

2009 Clustering, Trees, ANN, SVM Currencies, Stocks, Futures LFT [9]

1997 ANN Stocks LFT [59]

This was a recurrent problem for ANN, causing that most of the architectures used maximum

two hidden layers, in order to avoid the local minima issue. It was only until 2006, when

Hinton [45] proposes a novel way to train deep architectures, that overcomes the local minima

stuck issue mentioned early. This was the beginning of Deep Learning (DL), and the following

section will explain details of this advance.

4.3. Deep Learning

DL is an extension of ANN [88], and results suggest that DL efficiently overcomes the two

major problems of ANN. Its early applications started in image processing in 2006 [4], [88],

but have extended in recent years to other fields, including traffic modelling and prediction

[48], electricity demand forecast [18], fly direction prediction [32], weather prediction [24],

[23], [28], [68], as well as FTS modelling [5], [6], [7], [14], [22], [26], [31], [34], [35], [41], [43],

[74], [73], [89], [90], [91], [93], [99], [102], [112], [117].

DL definition comes from Neuroscience [57], when seminal authors [75] proposed a novel

explanation of how mammals’ visual cortex processed data coming in through their visual

system. Their proposal consisted in making sparse representations of input data, in order to

have an appropriated representation of the data at the end. As a result, in computational

terms, they proposed a network interpretation that consist of an output unit, determined

by a combination of a feed-forward input, a recurrent term and a self-inhibitory term. In

other words, any instance of data can be reconstructed as a different linear combination of
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Figure 4-1.: Multilayered Visual Information Processing using DL. Adapted from [62].

the same components from sparse representations of the original data [57].

This development was practically feasible only until 2006, when seminal authors [45] propo-

sed a novel Unsupervised Learning (UL) algorithm to train a deep architecture that consisted

of Restricted Boltzmann Machines (RBM). This model was capable of building complex re-

presentations of data at deeper layers by capturing sparse representations from the previous

ones. At that time, this algorithm won an image classification contest and it was seen as the

introduction of DL to ML [57]. Figure 4-1 gives an illustration of how DL makes a complex

representation from a simpler one, built in previous layers.

DL relevance relies in the way it represents and processes data. Traditional ML schemes

include data pre-processing or feature extraction process. If poorly done, it might cause

poor performance and if not done at all, data dimensionality can cause very inefficient ti-

me responses [4]. In contrast, mammals’ brain do nothing of feature selection, instead the

neocortex allows to propagate all the input data into a complex hierarchical structure, that

learns to represent the data based on the regularities or sparse representation it has at each

hierarchy or level [4]. At the first level, the input signal will have some fixed representations,

but when it goes to a deeper level, the representation changes as a new input is added [57],

as illustrated in Figure 4-1.

Since Deep Networks have multiple hidden layers, they can make a better representation of

the input data, due to the fact that each layer makes nonlinear transformation of data from

the previous layer, resulting in learning of more complex representations [12], [61], [81].

Even tough its advantages for complex data modelling and learning, from the very be-

ginning, researchers were aware of some challenges regarding DL architectures, including

training times [11], [12], [28], sequential data modelling [114] and feature extraction to im-
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prove learning [114]. Time and research interest in the subject have helped to overcome

most of these challenges. In fact, decay in training times is a fact because of parallelism. DL

frameworks, such as TensorFlow, include GPU implementations that help to reduce training

times considerably.

Since DL tackles the gradient vanishing issue while training multi-layer networks it facilita-

tes application of different neural network topologies, including those specifically designed

to model sequential data, such as Recurrent Neural Networks (RNN) and Long Short-Term

Memory (LSTM) Networks, in addition to other topologies such as Multilayer Perceptron

(MLP), Deep Belief Networks (DBN) and Convolutional Neural Networks (CNN).

During the last ten years, DL has emerged as the prominent ML technique for both clas-

sification and regression problems. This is because DL has been able to overcome training

issues of classical artificial neural networks, in relation to gradient vanishing problem. As a

result, research in DL has increased in recent years, including studies and applications of

DL for predicting FTS. Table 4-2 shows a summary of DL works specially designed for FTS

modelling.

4.3.1. Deep Learning Applications to Price Prediction

DL pioneering applications are in the image classification domain [57]. From there, it has

expanded to many other different domains. Reports of FTS modelling using DL started

appearing in 2011, being DBN the primary architecture to use. The last two years have

exhibited an interesting growth in reporting of FTS modelling applications using DL. Table

4-2 gives a compound application summary, including architectures and data used. Repor-

ted prediction results, ranging between 57 % to 72 %, suggest that DL improves prediction

accuracy when compared to other ML techniques.

As the reader can notice, the explosion of DL applied to FTS occurred from 2017. DL

classical topologies include MLP, DBN, RNN and CNN. It is worth to mention, that LSTM

and GRU are sub-types of RNN, which are specially designed for sequential data modelling,

in contrast of other more general purposes oriented such as DBN and MLP. CNN are mostly

devoted for images as input. Previously of this work, the author researched on DBN, MLP

and RNN topologies to predict FTS using HF data [5], [6], [7], [74].

It is important to quote that works in Table 4-2 use either prices or returns for inputs,

except by [35], [73] and [74]. This happens because of availability of LOB data is difficult



28 4 CNN Multimodal Trading Strategy

Table 4-2.: Academic papers reporting applications of DL to FTS.

Year Techniques Mentioned Market Freq. Ref.

2011 DBN Currency Prices LFT [22]

2012 DBN Future Prices LFT [54]

2013 Stacked RBM Stock Prices + indicators LFT [99]

2014 DBN Stock Prices LFT [117]

2015 DBN Currency Prices LFT [91]

2015 CNN Stock News LFT [34]

2016 CNN Stock Prices LFT [23]

2016 DBN Stock Prices + LOB HFT [74]

2016 RL + RNN Futures, Stock Prices LFT (Minutes) [31]

2016 MLP (DNN) Stocks Prices HFT [5]

2017 CNN Futures Prices LFT [41]

2017 CNN Stock Prices LFT [93]

2017 DNN, RNN Stock Prices LFT [6]

2017 DNN Stocks Prices LFT 5 Minute [66]

2017 CNN Stock LOB HFT [35]

2018 RNN, LSTM, GRU Stocks Prices HFT [7]

2018 CNN Stock Prices LFT [90]

2018 CNN Stock Prices + LOB HFT [73]

and usually it is costly, instead of transaction data, which usually is widely available for free.

Raw data (LOB or transactions) could be transformed. There are several techniques used to

deviated information from FTS, which include:

Technical Analysis: It is a discipline that has developed a series of quantitative measures

to determine technical indicators regarding prices. It includes moving averages and

momentum indicators. Some authors use them to add information for ML modelling

of FTS. Authors in [5], [6], [74] and [99] use some technical analysis tools to extend

input information.

Quantitative measures or transformations. Under this umbrella may classify data trans-

formations, like for example Wavelets, Fourier Analysis and other analytical methods,

used to change inputs spaces. Authors in [7], [41], [73] and [90] are examples of how to

change input spaces using analytical methods.

Column Freq in Table 4-2 refers to data input frequency: High Frequency or Low Frequency.
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Works labeled as LFT usually refers to days, unless other notation. HFT usually refers a

predictions for very short time frames, usually a minute or less using data with millisecond

granularity. Section below will give an explanation of the different DL topologies: DBN,

MLP, RNN and CNN. An special emphasis will be done on CNN, technique used for this

work.

4.4. Deep Learning Topologies

4.4.1. Deep Belief Networks (DBN)

A DBN is a probabilistic generative model composed of an input layer, an output layer and,

in between, multiple stacked layers of Restricted Boltzmann Machine (RBM). Each RBM is

composed of two layers, one visible, and another hidden, as illustrated in Figure 4-2. Hin-

ton proposed this model [44], where training happens in two steps: one called unsupervised

pre-training and the second one called supervised fine tuning. In [45], Hinton presents an

efficient approach to train this network in a greedy layer by layer manner. An RBM, which

is bipartite graph, is the component of hidden layers. Bipartite graphs have two units: one

is visible and an the other is hidden. An RBM is restricted because there are no connections

between units of the same layer (visible, hidden) [11], [83].

Generally speaking, unsupervised pre-training allows the model to get better values for

Figure 4-2.: DBN architecture. Source: [54].

weight matrix W, which results in finding a better local optima. The supervised fine tuning

phase allows the model to adjust better the initial weights (W) found on the pre-training

phase [54]. Table 4-2 shows three academic works reporting use of DBN for FTS modelling.
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4.4.2. Multi-Layer Perceptron (MLP)

A Multi-layer Perceptron is an ANN with multiple hidden layers. This architecture dates

back to the 1970’s. However, it did not yield better results than a single hidden layer ANN,

because of gradient vanishing problem [88]. Since DL tackles this issue, this architecture

becomes the simplest to use within the DL architecture family. As in other DL architectures,

MLP learns high-level representations by processing and refining large quantities of data, at

each intermediate layer [5], [13], [88]. This network is characterized by having many neurons

at each hidden layer. As a result, the number of parameters is very high, which results in

more computational time for training, if compared to a CNN with the same size inputs [109].

Gradient Descent using BP is the learning algorithm for training this network. Table 4-2

shows two academic works reporting use of MLP for FTS modelling.

4.4.3. Recurrent Neural Networks (RNN)

RNN are ANN where connections include loops between output and input units at each

layer. These loops are specially designed to keep information about short-term dependencies

among data. This kind of architecture is specially designed to model sequential data, because

including these loops allows the network to feed itself with temporal dynamics of the data.

Figure 4-3 illustrates how this loop is used. As the reader can observe, the network keeps a

memory of the previous calculation. There are different variations of RNN, including Long

Short Term Memory (LSTM) and Gate Recurrent Units (GRU) [6], [88], [46]. They are used

to model sequential data, like sentence prediction [17], as well as time series. Table 4-2 shows

three academic works reporting use of RNN or its variations for FTS modelling.

Figure 4-3.: A RNN, taken from: [17].
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4.4.4. Convolutional Neural Networks

CNN are biologically inspired, trying to emulate what happens in mammals’ visual cortex,

where neural cells are specialized to distinguish particular features. Building blocks of a CNN

architecture are in charge of doing this feature detection by activating or de-activating a set

of neurons [61]. Since market agents’ decisions are highly dependent on visual analysis of

price changes and events in the LOB, it can be expected that an algorithm based on CNN

can learn patterns in order to help trigger trading decisions. In fact, [86] showed that a

visual dictionary could be constructed from LOB data and that dictionary had predicting

capabilities. Following this path, a CNN could improve such predicting capabilities.

Different authors [22], [23], [35], [41], [47], [64], [63], [73], [93], [107], [116] have illustra-

ted different possibilities of using CNN to either classify or predict time series and FTS in

particular. Works of CNN applied to FTS are recent; however, applications of CNN to time

series in general are older and more common. Reported results on previous researches show

that CNN are good for FTS classification, though methods differ in how to represent raw

data, in both cases uni-variate and multivariate.

A CNN has two main building blocks, a convolution layer and a pooling layer. These two in

Figure 4-4.: Convolutional Process. Source [4].

conjunction with a dense layer, complete a CNN. In general, a CNN runs layer by layer in

a forward pass, a tensor x goes through the different layers (Figure 4-4). xL is usually a C

dimensional vector xL ∈ RC , encoding the posterior probability of x1 from the i − th class

[110]:

xl → w1 → ...→ xL−1 → wL−1 → xL → wL → z (4-1)

The last layer is associated with a cost function to measure discrepancy between the real
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value of x1 and the predicted one from the CNN.

z =
1

2
‖real − predicted‖2 (4-2)

Loss function equation (4-2) is for regression problems, cross entropy loss function is for

classification [110]. Formally, a CNN prediction is:

argi máx xLi (4-3)

A CNN learns through Stochastic Gradient Descent (SGD), which means that weights w

are adjusted using partial derivatives from z all the way back up to w1, updating weights in

equation 4-1.

ReLU Layer

Every convolution layer includes the application of a function such as ReLU. Formally, for

every element in input xl,

y = xl+1 = máx 0, xli,j,d (4-4)

As a result, partial derivatives of equation (4-4) for the Back Propagation (BP) process are:

dyi,j,d
dxli,j,d

= [xli,j,d > 0] (4-5)

[
∂z

∂xl
]i,j,d = [

∂z

∂y
]i,j,d, if xli,j,d > 0; 0 otherwise. (4-6)

ReLU facilitates certain patterns activation within an input region by increasing CNN non-

linearity. Other functions such as sigmoid or hyperbolic tangent are possible to use, however

BP process reduces significantly the gradient, therefore after several layers, the gradient will

be vanished, making learning more difficult [110].

Convolution Layer

This building block is in charge of applying the convolution operator to the input matrix. In

other words, it applies a kernel to filter data input. Depending on the parameters used, it can

reduce or maintain input dimensionality. The main reason to convolve is to identify edges.

This means to identify or separate features that are used later to construct more complex

representations in deeper layers [11], [109], [110]. Formally, an image I goes through a kernel

K:

I : {1, ..., n1} × {1, ..., n2} → W ⊆ R, (h,w)→ Ih,w (4-7)
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K ∈ R2h1+1×2h2+1 (4-8)

(I ⊗K)(r, s) :=

h1∑
u=−h1]

h2∑
v=−h2

Ku,vIr+u,s+v (4-9)

K =

∣∣∣∣∣∣∣
K−h1,−h2 · · · K−h1,h2

... K0,0
...

Kh1,−h2 · · · Kh1,h2

∣∣∣∣∣∣∣ (4-10)

Therefore, for an input image (4-7) of size H l×W l×Dl, and a kernel (4-8) of size H×W ×
Dl ×D, the convolution (4-1) size is:

(H l −H + 1)× (W l −W + 1)×D (4-11)

Padding is a technique that allows equalling output size (convolution) with input size.

Padded rows and columns usually have zero value. Moreover, the kernel K moves in strides.

Moving the kernel through all possible positions on the input means a stride s is equal to

one. However, if s > 1, every kernel movement skips s − 1 pixel location [110]. In general,

mathematically speaking a convolutional layer, including a bias B, is:

(Y
(l+1)
i,j,d ) = (B(l)) +

H∑
j=0

W∑
j=0

Dl∑
dl=0

(K
(l)
i,j,d)d(Y

(l)
i,j,d) (4-12)

Pooling Layer

This building block is a local operator that takes convolution output and maps sub regions

into a single number. The pooling operator can extract the max value of the mapped sub

region (max pooling), or the average value of the mapped sub region (average pooling).

In other words, it gets subsamples out of its input, usually a convolutional layer (equation

4-12) [110].

Max : yil+1,jl+1,d = máx
(0≤i≤H,0≤j≤W )

xlil+1×H+i,jl+1×W+j,d (4-13)

Average : yil+1,jl+1,d =
1

HW

∑
i,j

xlil+1×H+i,jl+1×W+j,d (4-14)

Usually, these two layers (equations 4-12 and 4-14) make one layer in the CNN topology.

However, it is not necessary to have one convolution followed by one pooling layer. Therefore,

it is possible to have different combinations of convolution and pooling layers in one CNN

topology. Additionally, a CNN topology usually includes various layers of convolution and

pooling, thus networks extract simpler features at the first layer, and by combining those,

they can learn more complex features in deeper layers [11], [57].
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Dense Layer

Finally, the deeper convolutional layer is connected to a dense layer (fully connected), from

which the network obtains its outputs. As mentioned before, a CNN topology may have one

or more dense layers. A CNN topology may include dropout layers as well.

From the computational point of view, convolving is far more efficient than working with tra-

ditional Feed Forward Networks (FFN). This is because of parameter reduction. Moreover,

while working with images, traditional neural nets are more prone to over fitting because of

a larger number of parameters [98], [110].

Receptive field is another important concept of CNN. Given the fact that CNN limits the

connections between neurons by connecting each neuron to only a local region of the input

volume, this local connectivity is known as receptive field and it is equivalent to the filter

size, presented in equation 4-8.

4.5. Architecture Proposal

As mentioned earlier, the author has already explore different DL architectures to model

HF data in FTS. It includes DBN ([74]), MLP ([5]) and RNN ([6] and [7]). Given the fact

that LOB and transaction data are represented as images (See Chapter 3), it is natural to

choose CNN, because they are widely used for image classification. Under these conditions,

it is expected that a CNN yileds better results than another DL topology. This work is not

about classification, it is about prediction of future price direction, therefore a CNN will be

the building block for the machine learning predictor for this work.

As mentioned earlier, a CNN topology may include a different setup of convolutional and

pooling layers. For this work, Figure 4-5 illustrates the proposed CNN topology used for

modelling FTS data (LOB and transactions). Under this topology, the proposed CNN has

two convolutional layers. A max-pooling layer follows each convolutional one. Finally, there

are two fully connected layers, one of them with a dropout of 40 %. The proposed CNN clas-

sifies inputs into three possible categories: up, down and flat movements. The output signal

serves as input for the trading system. The proposed CNN is a 3D CNN, because there are

two different inputs, LOB data and transaction data. Both represented as 4-channel images

using the transformations mentioned in chapter 3.
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Figure 4-5.: Illustration of the proposed CNN Architecture. It is a 3-D CNN. Own

elaboration.

It is important to remember that there is a trade off between training times and prediction

accuracy. This is because the predictor will be feed into an AT strategy for very short times.

As a result, several test were performed, changing the number of convolutional layers (con-

volutional operator + max pooling). Prediction accuracy improves as more layers are added,

however increasing training times growths faster. As a result, the chosen architecture has

two convolutional layers. Chapter 5 will show comparisons between the selected architecture

and two well known CNN: LeNet and AlexNet.Such comparisons will show the benefit of the

proposed architecture while trade off handling.

LeNet-5 is a CNN created by [60] and it was aimed to make hand-written number recogni-

tion. It consists of 7 layers (Input, Conv + Pool, Conv + Pool, Dense + Output). At that

time, computing resources were scarce, creating a constraint for this technique. However, as

computer resources got better in performance and cost, training this particular architecture

is easy and it has become a baseline in image recognition contests.

AlexNet was created in 2012 and it became famous due to the fact that reduces the classifica-

tion error in an Image Recognition Contest to 15.3 % by that time. Nowadays, classification

error is much lower. Since AlexNet was the pioneer, it has become baseline architecture as

LeNet. AlexNet took advantages of computer developments, particularly parallel processing

through Graphics Processing Units (GPUs). It was created by [52]. It has more filters than

LeNet as well as stocked convolution layers, as a result, it is deeper with more parameters.

At this point, it is worth to remember that training times are key, because CNN outputs

serve as a trading signal for an autonomous high frequency trading system. As a result, it is

necessary to balance model complexity in relation to its accuracy to generate quality signals

within such very short time frames.
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Proposed CNN Architecture Details

Table 4-3 shows the main aspects of the proposed CNN. It shows kernel sizes for different

layers, as well as other layer-dependent settings.

Table 4-3.: Main characteristics of the proposed CNN.

Characteristic Description

CNN type 3D CNN for LOB and Transaction data.

Input Size [2, 40, 10, 4].

Convolutional Layer 1 20 filters with a [2x2] kernel, Stride 1, ReLu.

Pooling Layer 1 Max pooling, Stride 1.

Convolutional Layer 2 40 filters with a [2x2] kernel, Stride 1, ReLu.

Pooling Layer 2 Max pooling, Stride 1.

Fully Connected Layer 1 Softmax.

Fully Connected Layer 2 Softmax, Dropout 40 %.

Learning Rate 0.0001

Batch Size 100

In summary, ML applications to FTS modelling are abundant. Complexity handling and

non-linearity learning are the key aspects that differentiate and make more successful ML

from other techniques when modelling FTS. Recent developments in Information and Com-

munications, such as improvements in parallel processing and storage capacity have made

possible to apply ML to different domains in general and to the financial industry in parti-

cular. Moreover, DL, which is a recent development within ML, enhances learning abilities

of machines, thus modelling much better different problems in different domains.

Classifying and predicting FTS are one of such problems. Works devoted to FTS modelling

using DL have increased considerably during recent years. These works have yield better

results when compared to other ML techniques. Indeed, ALGOS research group members

conduct testing of different DL models and topologies ([5], [6], [7], [74], [73]) for FTS. These

works illustrate learning capabilities of DL models under different architectures and condi-

tions, obtaining much better results than other ML techniques.

This work proposes a 3D CNN. This architecture includes two convolutional layers (con-

volution + max pooling) connected to a fully connected layer to classify FTS in order to

generate trading signals for an AT strategy. Inputs to the model will be transaction and LOB

data, after applying the representation proposed in the previous chapter. The next chapter
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will show that results are very competitive, when compared to previous works with other

topologies, as well as, when compared to well known CNN architectures such as LeNet and

AlexNet. Moreover, it will show results when merging CNN signals with two AT strategies.



5. Experiments and Results

This chapter provides comprehensive details on experiments conducted and results achieved.

Given the fact that it is necessary to present both FTS modelling results and implemented AT

strategy results, it includes two separated sections for clarity. In general, both the prediction

model and the AT strategy yielded positive results. Organization of this chapter is as follows:

Experimental Settings provides a general outlook of the conducted experiments.

Results of the Proposed CNN Price Direction Predictor presents results of

the proposed CNN architecture as price direction predictor. It has the following sub-

sections:

• Experiments common considerations for both markets.

• Results using US market data.

• Results using Colombian market data.

• Results comparison between the proposed CNN and other similar works, that use

different DL architectures.

AT Strategy Results contains information about experiments conducted for the AT

strategy in two subsections:

• Trading conditions for the proposed AT strategy.

• Results for the aggressive AT strategy.

• Results for the conservative AT strategy.

5.1. Experimental Settings

In general terms, experiments consist of raw data pre-processing, transforming and splitting.

This is followed by model training and testing. After that, the model is invoked to perform

out of sample testing. In other words, model training and testing is done with in-sample

data. These data refer to the continuous data-set, that represents the FTS used for this

purpose. Out of sample data refer to another data-set, which do not correspond to the same
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time period of in-sample data-set. It is a completely unseen new data-set, that is used once

the model is trained.

Figure 5-1 shows graphically the steps followed to conduct each experiment. As the reader

Figure 5-1.: General steps to conduct training and testing of the prediction model.

can notice, out of sample data run over a model already trained. This is done to verify whet-

her or not the model generalizes well. Finally, the trained model generates trading signals for

two AT strategies. One is for a less risk avert investor (aggressive strategy) and the other,

for a more risk avert investor (conservative strategy).

Experiments include data for two different markets: US market and CO market. In both

cases, particular considerations are presented separately, because of their differences: US

market is highly liquid with a wide range to instruments to choose from; in contrast, CO

market has low liquidity, with a small set of tradable stocks. These facts implies different

considerations while pre-processing data from each market. In consequence, results for the

ML predictor (i.e. the proposed CNN) are presented separately for each market, respectively.

5.2. Results of the Proposed CNN Price Direction

Predictor

5.2.1. Common Considerations

Experiment standardization in Finance is difficult, mainly due to facts like data-sets va-

riety, different time-frames, markets diversity, architecture possibilities, information sources,

among others [9], [37], [47], [49], [53], [78], [79], [94], [101]. Therefore, this work conducts

different experiments while keeping standard the following aspects:
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Data sources and their representation: LOB and transaction data represented as ex-

plained in chapter 3.

CNN architecture. It is the one proposed in Chapter 4. In order to illustrate the

difference having both LOB and tick data as input, in contrast of only one of these

data sources, two experiments are presented. Experiment with LOB and tick data

are referred as 3D-CNN, whereas experiments with only LOB data are referred as

2D-CNN.

Pre-processing details, as presented below in this chapter for each market (US and

CO).In general terms, pre-processing was the most time consuming of all the experi-

ment. This is due to the fact that raw data (LOB plus transaction) for both markets

should be converted to an image like representation, following steps presented in chap-

ter 3. This task is time consuming because it means to generate many images implying

lots of disk read-write operations.

Data-set split with 90 % and 10 % for training and testing, respectively. Given the fact

that there is a good quantity of data, this data split facilitates more data for training

while offers a good quantity for testing purposes.

Number of instruments included in the studies.

Same class labelling, as well as similar class balancing.

Number of days for out of sample testing.

Directional Accuracy (DA) as performance measure. Mathematically, it is defined as
1
N

∑
t 1sign(Xt−Xt−1) = signFt −Xt−1, where Xt is the real (observed) value and Ft is

the predicted value.

Additional performance metrics for the model, as follows:

• MSE, Precision, Recall, F1Score, Mean Class Accuracy (MCA). Tensor flow

metrics is the module used for calculations.

Infrastructure used. It was an Intel computer with two CPUs, 2 GPUs, each one with

2500 processors, 16 GB in RAM, SO Linux Centos and TensorFlow as DL framework.

Table 5-1 gives a brief summary of all the experiments conducted. As the reader can notice,

Experiments labeled 2D means that it uses only one source of data as input (LOB). Con-

versely, 3D quotes experiments that uses both LOB and transaction data.
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Table 5-1.: Summary of the experiments conducted for both markets: US and CO.

Experiment Data input used

Proposed 2D CNN LOB data only.

Proposed 3D CNN US LOB and transaction data.

3D Lenet CNN LeNet architecture with LOB and transaction data.

3D AlexNet CNN AlexNet architecture with LOB and transaction data.

Additionally, there were some changes, mainly because of market differences (US market vs

COlombian market), which are summarized as follows:

Number of samples, US market is more liquid, deep and developed than CO market.

As a result, there are more samples for US market.

Number of lines (prices) of LOB. For US market data collection includes information of

EDGX venue, operated by BatsTrading.com. LOB only contains 5 price lines for each

side. In contrast, raw CO market data includes all LOB entries. This work considers

10 at each side for CO market.

Time granularity. For US market data, there is a book every 5 seconds. For CO market

data, there is a book every 30 seconds.

Sliding Window. For all experiments 10 LOB were taken in account. As a result, Sliding

Window for US market is 50 seconds, while for CO market it is 300 seconds.

Labelling threshold varies, because of differences in spread sizes (price discovery pro-

cess) between the two markets.

Complete data description and pre-processing details are presented for each market (US and

CO) separately in sections below. This is because of market differences, as mentioned earlier.

5.2.2. Results using US Market Data

Table 5-2 summarizes the results using US market data for each experiment. As mentioned

earlier, results reflect a very good performance. The section below shows characteristics of

data used for different purposes: training, testing and out of sample results.

Data Description

Data includes information about 11 equity instruments traded on NYSE. This collection

includes well-known companies such as Facebook (FB), Microsoft (MSFT), American In-
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Table 5-2.: Results summary for experiments using testing US data.

Experiment DA MCA Precision Recall F1 Score

Proposed 2D CNN 59.37 % 58.15 % 65.89 % 67.81 % 66.84 %

Proposed 3D CNN 74.15 % 74.90 % 76.62 % 78.1 % 77.38 %

Proposed 3D LeNet CNN 75.11 % 75.15 % 78.28 % 77.72 % 78.00 %

Proposed 3D AlexNetCNN 76.39 % 76.29 % 81.13 % 76.77 % 78.89 %

ternational Group (AIG) and Citibank (C). Moreover, it includes foreign stocks, known as

ADR (American Depository Receipts). This category contains names such as Deutsche Bank

(DB), Royal Bank of Scotland (RBS), Grupo Aval (AVAL), Avianca (AVH), Bancolombia

(CIB) and Ecopetrol (EC). Additionally, it includes data from an Exchange Traded Fund

(ETF) SP500 (SPY).

This collection includes companies from different sectors, different countries, as well as diffe-

rent liquidity levels. SPY, FB and C are the most liquid on this collection and the Colombian

ADR the least. This wide range of instrument characteristics obeys to the need of training

a single model that generalizes trending patterns under different market scenarios. Data in-

cludes information from 2016-04-01 to 2016-10-31. 47 venues make the whole US market,

that is 47 locations are in charge of registering and matching orders. Data used come from

only 1 venue, EDGX, operated by BatsTrading. Information was collected and facilitated by

DataDrivenMarket. In total, 4.5 million files containing raw data were processed to genera-

te 770,000 images, 385,000 each (LOB and Transaction data), following the methodologies

mentioned in chapter three for both LOB and transaction data.

Preprocessing Considerations

Liquidity was the main aspect to take into account in order to preprocess data. As

a result, daily data of instruments that exhibit low liquidity at particular dates were

sampled out. The threshold was the number of LOB files collected in a particular day.

Therefore, any instrument considered should have more than 1,500 LOB files for a

single day. In order to avoid look ahead bias, trading strategy should be implemented

for highly liquid stocks.

Data normalization was done individually for each channel of figure 3-8 for each stock.

This guarantees two things: first, information homogeneity regardless instrument no-

minal values (prices, quantities, number of quotes at same price) and second, keeping

magnitude measures among individual channels. Therefore, inputs are already stan-
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dardized and meaningful as a collection across different assets.

Sliding window: 50 seconds is the threshold for this parameter. As a result, all the

recorded books in this time frame are joined as matrix object (see Figure 3-8) and

converted to image.

Data labelling includes three categories: (a) Up trend; (b) Down trend; (c) Trendless.

Labels depend on the price percentage change within a sliding window. The first and

the last transactions are used to calculate such change. Any change bigger than 0,025 %

means up trend; changes below −0,025 % are down trend, otherwise it is considered

trendless.

Class distribution: Under the conditions mentioned previously, Up and Down Trend

classes are balanced, 28 % each, and 44 % of the labels correspond to the trendless

class.

Training, Testing and Out of Sample Results

Table 5-3 shows a summary for different metrics achieved at training, testing and out of

sample testing phases. It is worth mentioning that out of sample testing means running the

trained model using data unseen by it. Performance of the proposed architecture is very

competitive, when compared to well-known CNN architectures. Improvements of the classi-

fication results using LeNet and AlexNet come with a high cost in training times. Table 5-4

illustrates a trade-off between DA and training times.

As the reader can observe, a slight improvement of 1 or 2 percentile points means trai-

ning time increases by 85 % and 221 %, respectively. The proposed architecture offers a good

balance between DA, which is very competitive, while handling a shorter time during trai-

ning. This fact complies with the premise of the work: adding intelligence for a short term

trading system, while facilitating model retraining. In consequence, for real industry imple-

mentations, the proposed architecture offer a great advantage. Moreover, Table 5-5 displays

confusion matrix metrics for different experiments.

5.2.3. Results using Colombian Market Data

Table 5-6 summarizes the results using CO market data for each experiment. Two major

experiments, quoted A and B, were done. Experiment A included 134,696 images,

whereas experiment B included 179,828 images. The aim is to show how model results

differ depending on training data availability. In [7] instruments with more data exhibited a
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Table 5-3.: Results complement for experiments using US data.

Experiment Loss MSE Testing DA Out of sample DA

Proposed 2D CNN 1.0707 0.9303 59.37 % 49.65 %

Proposed 3D CNN 0.56116 0.6328 74.15 % 63.45 %

3D LeNet CNN 0.47869 0.5393 75.11 % 64.17 %

3D AlexNetCNN 0.5222 0.5948 76.39 % 66.04 %

Table 5-4.: Trade-off training times vs DA for experiments using US Data.

Experiment Training Minutes Testing DA Trade-off

Proposed 2D CNN 8 59.37 % -42.8 %, -14.78 points

Proposed 3D CNN 14 74.15 % -,-

3D LeNet CNN 26 75.11 % +85.7 %, +0.96 points

3D AlexNet CNN 45 76.39 % +221.4 %, +2.24 points

Table 5-5.: Confusion matrix summary for experiments using US data.

Experiment TP FP TN FN

Proposed 2D CNN 6,710 3,473 6,710 3,185

Proposed 3D CNN 8,513 2,597 8,513 2,381

3D LeNet CNN 8,390 2,328 8,390 2,405

3D AlexNet CNN 8,624 2,001 8,624 2,603

better DA, therefore, experiments quoted A and B respectively, can give additional evidence

to this fact.

Data Description

Data include information about 10 equity instruments traded on BVC (Colombian Stock

Exchange). This collection includes well major Colombian companies from different indus-

tries, including energy and gas, banking, retail, airlines and insurance. Names of companies

are: Ecopetrol (ECOPETROL), Avianca (PFAVH), Cementos Argos (CEMARGOS), Inter-

conexión Eléctrica (ISA), Bancolombia (PFBCOLOM), Grupo Aval (PFAVAL), Almáce-

nes Exito (EXITO), Grupo Sura (GRUPOSURA), Pacific Rubiales (PREC)1 and Canacol

Energy (CNEC). It is important to mention that four of these companies trade on NYSE

under the ADR figure.

1Delisted on April 18th, 2016
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Table 5-6.: Result summary for experiments using testing CO data.

Experiment DA MCA Precision Recall F1 Score

Proposed 2D CNN A 58.23 % 58.58 % 74.64 % 60.13 % 66.60 %

Proposed 3D CNN A 65.31 % 65.72 % 79.65 % 77.62 % 78.62 %

Proposed 2D CNN B 58.83 % 59.04 % 76.6 % 59.45 % 66.97 %

Proposed 3D CNN B 70.31 % 70.56 % 79.93 % 84.55 % 82.18 %

3D LeNet CNN B 70.38 % 70.73 % 75.64 % 86.54 % 80.72 %

3D AlexNetCNN B 71.78 % 72.03 % 79.46 % 85.00 % 82.14 %

As the US market experiment, this wide range of instruments offers a variety of charac-

teristics that helps to generalize trending patterns under different market scenarios. Data for

Experiment A include information from 2016-02-16 to 2017-12-28; while data for experiment

B go from 2016-02-16 to 2018-07-31. Information was collected and facilitated by DataDri-

venMarket. In total, 0.4 million files containing raw data were processed to generate 179,828

images, 89,914 each (LOB and Transaction data), following the methodologies mentioned in

chapter three.

Preprocessing Considerations

As mentioned earlier, liquidity was the main aspect to take into account in order to

preprocess data. For CO market data, this fact is more restrictive. The reason is that

CO market is very small and low liquid, therefore fewer instruments may qualify to be

considered for short time frames trading. The threshold was the number of LOB files

collected in a particular day. Therefore, for any instrument to be considered, it should

have more than 100 LOB files for a single day. As the reader can realize, this is an

remarkable difference when compared to US market.

Data normalization was done individually for each channel of Figure 3-8 for each

stock. This guarantees two things: first, information homogeneity regardless instru-

ment nominal values (prices, quantities, number of quotes at same price) and second,

keeping magnitude measures among individual channels. Therefore, inputs are already

standardized and meaningful as a collection across different assets.

Sliding Window: 300 seconds is the threshold for this parameter. As a result, all recor-

ded books in this time frame are joined as matrix object (see Figure 3-8) and converted

to image. This is another difference when compare to preprocessing considerations for
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US market data.

Data labelling includes three categories: (a) Up trend; (b) Down trend; (c) Trendless.

It depends on the price percentage change within a Sliding Window. The first and the

last transactions are used to calculate such change. Any change bigger than 0,18 %

means up trend; changes below −0,18 % are down trend, otherwise it is considered

trendless.

Class distribution: Under the aforementioned conditions, Up and Down Trend classes

are balanced, 32 % each, and 36 % of the samples correspond to the trendless class.

Training, Testing and Out of Sample Results

Table 5-7 shows a summary for different metrics, achieved at training, testing and out of

sample testing phases. It is important to restate that out of sample testing means running

the trained model using data unseen by it. Performance of the proposed architecture is very

competitive, when compared to well known CNN architectures. Improvements of classifica-

tion results using LeNet and AlexNet come with a high cost in training times, as happened

with US data. Table 5-8 illustrates this fact. A slight improvement of 0.3 or 1.5 percentile

points means training time increases by 60 % and 150 % respectively.

For this case, increases in training times are not as high as for US data. This happens

because there is less quantity of data fro CO data. Nevertheless, the proposed architecture

offers a better balance between DA and training times. Table 5-9 displays confusion matrix

metrics for different experiments.

Table 5-7.: Results complement for experiments using CO data.

Experiment Loss MSE Testing DA Out of sample DA

Proposed 2D CNN B 1.0813 0.9536 58.83 % 47.56 %

Proposed 3D CNN B 0.7376 0.6498 70.31 % 59.17 %

3D LeNet CNN B 0.7308 0.6481 70.38 % 59.32 %

3D AlexNet CNN B 0.7275 0.6368 71.78 % 60.11 %

5.2.4. Comparison against other DL Architectures with similar works.

As mentioned earlier, within the FTS domain, ML techniques lack experiment standardiza-

tion as occurs in other domains. However, this work presents a comparison of the proposed
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Table 5-8.: Trade-off training times vs DA for experiments using CO data.

Experiment Training Minutes Testing DA Trade-off

Proposed 2D CNN B 5 58.83 % -50 %, -11.48 points

Proposed 3D CNN B 10 70.31 % -,-

3D LeNet CNN B 18 70.38 % +80 %, +0.07 points

3D AlexNet CNN B 25 71.78 % +150 %, +1.47 points

Table 5-9.: Confusion matrix summary for experiments using CO data. Source: Tensor-

Flow execution.

Experiment TP FP TN FN

Proposed 2D CNN A 3,520 1,196 3,520 2,334

Proposed 3D CNN A 3,867 988 3,867 1,115

Proposed 2D CNN B 4,015 1,221 4,015 2,739

Proposed 3D CNN B 4,938 1,240 4,938 902

3D LeNet CNN B 5,054 1,228 5,054 786

3D AlexNet CNN B 5,064 1,183 5,064 876

Table 5-10.: Comparison across DL architectures.

Experiment Data used Models Testing DA

Proposed 3D CNN LOB + tick from 11 US Stocks 1 74,15 %

MLP [5] Tick from 2 US Stocks 1 66 %

RNN, LSTM, GRU [7] Tick from 19 US Stocks 19 66 %− 72 %

CNN [35] LOB + tick from 1 UK Stock 1 67 %

DBN [74] LOB + tick from 1 US Stock 1 57 %

architecture against other DL works that have been found in literature reviewed. From Ta-

ble 4-2 the closest experiment to compare are [5], [7], [35] and [74]. Such works have as a

common ground to include HF data, either tick by tick, LOB or both. Data sources include

US as well as UK instruments and they use DL as a modelling technique for price direction

prediction. Table 5-10 presents details of each work and makes a comparison with the pro-

posed architecture that this work introduces based on DA.

As observed the proposed architecture overpass others architectures such DBN, MLP and

RNN family. This may have different explanations, as follows:

DL underlining origin: It is based on how mammals visual cortex works [75], [76], as a
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result it works better for image processing.

LOB characteristics: As mentioned in chapter three a LOB is a set of lists in time.

Therefore a visual like approach may work better for this multivariate FTS. In fact,

real human traders make their decisions after doing a visual processing of LOB data.

Change in time to frequency space of the inputs. The proposed representation gives the

ability to change domains of the inputs. In fact, many analytical tools of TS include

use of Fourier series or Wavelets, that offers such change in order to facilitate pattern

learning. Moreover, an image makes inputs time invariant, which may contribute to

improve pattern learning.

The closest research to compare this work is [35]. As observed, both uses a CNN as archi-

tecture, as well as LOB and transaction data for inputs. The difference between these two

works is the way data inputs are represented. [35] does not make input space transformation,

whereas this works proposed a novel representation for input data.

5.3. AT Strategy Results

This section presents results for two different strategies: aggressive and conservative. Diffe-

rences between these two alternatives relies on a risk aversion constrain.

Figure 5-2 shows the AT Strategy pipeline. The trained model moves to a simulated pro-

Figure 5-2.: AT strategy pipeline.

duction environment where out of sample data goes through the model. Its outputs are feed

up into an AT Strategy.

Authors in [5] and [6] introduce an AT using HF data. This strategy executes every mi-

nute depending on a given signal from a DNN. The strategy includes a form of transaction

cost, expressed in spread widening, but a stop loss neither a take profit. It is a very simple

trading strategy that proved to be highly profitable. As mentioned in [15], [20], [49], [67],

[72] and [103], an AT strategy should consider aspects such as market impact, liquidity,

profitability, risk aversion and other real market conditions in order to materialize a good
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trading signal generator into a profitable trading system. In other words, it should include

real market characteristics in order to be considered for a real implementation.

5.3.1. Trading Conditions for the Proposed AT Strategy

As mentioned earlier, the AT strategy proposed has two different approaches: one aggressive,

another conservative. Table 5-11 presents the summary for these approaches.

Table 5-11.: Summary of trading conditions for AT strategy.

Aspect Aggressive Strategy Conservative Strategy

Trading against

LOB data:
Trades against best quotes. Trades against best quotes.

Take Profit policy: a. 1 %, b. 0.8 % a. 1 %, b. 0.8 %

Stop Loss policy: 1 % 1 %

Transaction Cost 2: a. 0.23 %, b. 0.14 % a. 0.2 %, b. 0.1 %

Liquidity provi-

sion:
Liquidity >= USD15, 000 Liquidity >= USD15, 000

Trading day Clo-

sing Positions:

Yes, any open before 5 minutes

market close

Yes, any open before 5 minutes

market close

Pre trade analysis:
Do nothing if flat signal, trade

any other

Do nothing if flat signal, trade

any other if no open positions

Details of the trading conditions are the following:

Exit strategy by defining an exit point, both Take Profit (TP) and Stop Loss (SL)

policies. Any open position five minutes before market closes will be closed at market

quotes (bid / ask) for a (sell / buy) position.

Trading execution against LOB. AT strategy in [5] and [6] traded against transaction

data, therefore this AT includes a real market constrain.

AT as liquidity taker. This is because it trades against best quotes by opening sells and

buy orders, depending on a trading signal given by the classification model (Proposed

3D CNN).

Monitoring of market conditions in order to execute trades. This deviated in two stra-

tegies. The first one is aggressive, which trades on any up or down trading signal

generated. It means that the AT strategy increases stakes in already open positions.

The AT strategy does nothing on flat signals. The other strategy, a conservative one,
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only keeps one open position, therefore, it does not increase stakes in already open

positions, reducing the number of entries to the market.

Liquidity checking before entering / exiting trades, in order to handle market impact.

It trades on several assets (8 out of 10 trained) for a 41 trading days time frame.

In general, the proposed AT strategy takes more market constrains into consideration when

compared to the AT strategy in [5] and [6]. As a result, it is closer to real market conditions.

Moreover, it includes two major risk constrains, creating two variants: one riskier or aggres-

sive strategy and the other one a more conservative approach for risk management. Table

5-11 contrasts such considerations for these two scenarios.

5.3.2. Aggressive Strategy Results

This variant of the AT strategy trades every signal generated by the proposed 3D CNN

model that complies with liquidity constrains. As a result, there could be more than one

open position at once on the same direction. Figure 5-3 illustrates the general steps of this

strategy. This is a riskier approach, since lack of liquidity may affect exit strategies, or changes

in market conditions may cause larger losses, while trying to close open positions. Table 5-

12 shows a summary of trading results for the aggressive approach. Table 5-13 shows

Table 5-12.: Results summary for the aggressive strategy.

Trading Days 41

Trades Done 4,498

Buy Trades Done 1,935

Sell Trades Done 2,563

Best Performer ECOPETROL

Worst Performer PFAVH

detailed information about the best performer stock: ECOPETROL. Conversely, Table 5-14

illustrates what happens to the worst performer stock. Finally, Table 5-15 exhibits results

for the whole portfolio (8 stocks). Figure 5-4 shows graphically the portfolio performance.

5.3.3. Conservative Strategy Results

Figure 5-5 includes an open position constrain. As a result, this variant o f the AT strategy

trades some signals generated by the proposed 3D CNN model that complies with liquidity

constrains. Basically, the conservative approach will open a position if and only if there
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Figure 5-3.: Aggressive AT strategy proposed for this work. Own elaboration.

Table 5-13.: Detailed results for the best performer: ECOPETROL, aggressive strategy.

Transaction Cost TP;SL Result

0,2 % 1,0 % 35,97 %

0,2 % 0,8 %; 1,0 % 21,04 %

0,1 % 1,0 % 42,14 %

0,1 % 0,8 %; 1,0 % 30,98 %
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Figure 5-4.: Aggressive ATS results. Own elaboration.

Table 5-14.: Detailed results for the worst performer: PFAVH, aggressive strategy.

Transaction Cost TP;SL Result

0,2 % 1,0 % −9,41 %

0,2 % 0,8 %; 1,0 % −8,50 %

0,1 % 1,0 % −8,21 %

0,1 % 0,8 %; 1,0 % −7,30 %

Table 5-15.: Portfolio detailed results, aggressive strategy.

Transaction Cost TP;SL Result

0,2 % 1,0 % 46,54 %

0,2 % 0,8 %; 1,0 % 38,17 %

0,1 % 1,0 % 55,53 %

0,1 % 0,8 %; 1,0 % 47,17 %

are no open positions, otherwise it will do nothing. This condition puts huge constrains in

trading, but avoids causing vast losses if market conditions change suddenly. Table 5-16

shows a summary of trading conditions for the conservative approach.

Table 5-17 shows detailed information about the best performer stock: ECOPETROL. Con-

versely, Table 5-18 illustrates what happens to the worst performer stock. Finally, Table

5-19 exhibits results for the whole portfolio (8 stocks). Figure 5-6 shows graphically the

portfolio performance.

In summary, results for different experiments exhibit good performance for the CNN predic-
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Figure 5-5.: Conservative AT strategy proposed for this work. Own elaboration.

Table 5-16.: Results Summary for the conservative strategy.

Trading Days 41

Trades Done 196

Buy Trades Done 89

Sell Trades Done 107

Best Performer ECOPETROL

Worst Performer ISA

tor as well as the AT strategy proposed. On one hand, the proposed 3D-CNN architecture

yields very competitive results when predicting price direction for both cases: US and CO

market. Moreover, if compared to other well known CNN architectures, the proposed 3D-

CNN exhibit a notorious time efficiency advantage with a slightly reduction in prediction

accuracy. This trade-off can be very attractive for real implementations, since there are very
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Table 5-17.: Detailed results for the best performer: ECOPETROL, conservative strategy.

Transaction Cost TP;SL Result

0,2 % 1,0 % 0,56 %

0,2 % 0,8 %; 1,0 % 0,20 %

0,1 % 1,0 % 0,70 %

0,1 % 0,8 %; 1,0 % 0,36 %

Table 5-18.: Detailed results for the worst performer: ISA, conservative strategy.

Transaction Cost TP;SL Result

0,2 % 1,0 % −0,36 %

0,2 % 0,8 %; 1,0 % −0,42 %

0,1 % 1,0 % −0,30 %

0,1 % 0,8 %; 1,0 % −0,35 %

Table 5-19.: Portfolio detailed results, conservative strategy.

Transaction Cost TP;SL Result

0,2 % 1,0 % −0,17 %

0,2 % 0,8 %; 1,0 % −0,41 %

0,1 % 1,0 % 0,18 %

0,1 % 0,8 %; 1,0 % −0,20 %
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Figure 5-6.: Conservative ATS results. Own elaboration.

short time frames and training times become key under such conditions. Furthermore, the

proposed approach presents much better prediction accuracy when compare to other DL

architectures.

On the other hand, the proposed AT strategy includes real market constrains, while ge-

nerating trades from signals of the proposed 3D-CNN predictor. Having said that, results

from AT strategy, aggressive and conservative, allow to reaffirm the positive impact that

AT brings to markets in terms of liquidity, while generating psotive returns for potential

inverstors.
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6.1. Conclusions

Model General Performance and Multimodal Data Representation.

CNN worked well for FTS price direction prediction. DA results are very competiti-

ve, in fact, better than other approaches tested before, as seen in Table 5-10. This

allows concluding that CNN identifies and learns patterns. Moreover, data represen-

tation is very important because it facilitates learning. The referred works in Table

5-10 illustrated how data representation helps to compensates information asymme-

tries. For example, authors in [5] and [7] include model training with far more millions

of transactions than the ones used for this work. Or authors in [35] use raw LOB da-

ta, including updated and cancelled orders. However, this work shows better results

working with similar instruments or even less liquid ones. This can be due to the fact

that GAF representation for transaction data separates peaks and gives information

about more liquid periods of the chosen instruments, as well as that, the proposed

LOB representation includes all available information of the LOB.

More Data Improve Results.

Results from [7] showed that data driven approaches for modelling FTS improve as

more data are available. That work showed a better performance (72 %) for the most

liquid stock, i.e. the one with more transactions and more information. Conversely,

stocks with low liquidity (less information) exhibited lower DA results. This observa-

tion was confirmed in this work among experiments conducted. Overall, results for US

market were much better than those for CO market. As previously mentioned, US raw

data exceed by approximately 11 times CO data. Moreover, experiments conducted

within the CO market, that differ in the number of input images exhibit same beha-

vior: more data means better results. Therefore, information availability is a key driver

for these data driven techniques and as more data is available, better results can be

achieved.
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Multimodality.

Multimodal entries [8] help enriching model learning capabilities. This work uses LOB

data and Transaction data, resulting in a more complete information of market dyna-

mics. Results on tables 5-2 and 5-6 present such fact when the reader compares 2D

CNN versus 3D CNN results. In consequence, multimodal entry representation [8] helps

to accomplish such task. On the one hand, this is due to the conversion to frequency

domain that an image-like representation implies, and on the other, the representation

in polar coordinates, implies an angular measure rather than an euclidean one. This

is important because in multidimensional spaces, cosine distance-based metrics may

work better than euclidean ones [107].

Information Completeness.

The proposed LOB representation that includes all the available information facilitates

learning. Results from the original representation in [86] differ widely from those pre-

sented in this work, regardless of the different techniques used. The proposed image-like

representation allows including more data in different channels. This has an enormous

potential with 3D CNN, because it is possible to build many different images of the

LOB, that include other features such as time, or other derived variables like those

mentioned by [5] and [74].

Training Times.

In general, applications of CNN to FTS modelling may offer another advantage related

to training times of a model. The reason is that convolutional operator and pooling

layers impose a big reduction in the number of parameters and therefore the number

of operations. This fact is critical for real AT applications in the HF domain, whe-

re speed is very important. Moreover, the proposed 3D CNN architecture simplicity

present considerable advantages in training times when compared to other well-known

CNN architectures like LeNet and AlexNet. Real AT applications require model re-

training periodically. For very short time frames, 25 or 45 minutes may be very long

periods, therefore the proposed architecture reduces training times significantly wit-

hout damaging DA results.(See Tables 5-4 and 5-8).

Model Singularity.

Other consideration that is worth to mention is the ability of generating one single mo-

del for multiple instruments. From literature reviewed, none previous work had build
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a single model for different instruments. This fact helps to simplify the problem of

working for one model for one particular asset, which results in higher operating costs

while conducting AT.

AT Strategy.

Having a good classifier/predictor is key for an AT System (Figure 2-1), but trans-

forming it into a good trading strategy is another problem. Several aspects should be

taken into account, including market impact, pre trade analysis, exit strategies, risk

aversion constrains, technological constrains such as latency, algorithm complexities,

among others [15], [49], [37], [72], [94] [101], [103]. This work includes an AT strategy

that embraces most of these issues, including pre trade analysis, liquidity constrains,

exit strategies, transaction costs and risk aversion policies.

Results exhibited in Tables 5-12 and 5-15 illustrate that it is possible to build profi-

table strategies. Such strategies are in line with the typical financial trade-off between

profits and risk. As expected the aggressive approach yields much better returns than

conservative one, as evidenced in Tables 5-15 and 5-19.

Market Constrains.

This work also induces the impact of HFT in financial markets [15], [49]. The proposed

CNN price direction predictor generates almost 5,000 trading signals for a 41-day time

window. Under aggressive conditions, all of them were executed and closed. For a small

and low liquid market such as the Colombian one, this exercise reveals the potential of

HFT for liquidity generation, which implies a better price discovery. On average, there

were 15 trading signals for stock in the portfolio, i.e. 120 per day. This quantity of

signals for a single market agent is enormous, when usually whitout automatic agents

there are no more than 1,500 to 2,000 transactions per day in all the Colombian equity

market. In average, an automated trading agent was capable of generating near 10 %

of the transactions for the period of analysis.

6.2. Recommendations

There are many different lines of work associated to this proposed model in order to continue

building it and improving it:
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Data Representation and Multimodality [8].

It is possible to include more information in this model from the same data. Experimen-

ting and modelling with additional derived variables may enhance learning capabilities.

For example, transaction volume data (quantities exchanged) could be used as an ad-

ditional FTS. Moreover, including other sources of information, such as financial news,

is another possibility to increase multimodality and enrich inputs to the model.

Combinational Approaches.

It is possible to mix other architectures such as LSTM or RNN with the proposed one

to analyze the trade-off between accuracy and training times. Under this umbrella, it

is possible to explore additional representations of raw data and to test different ar-

chitecture mixes that can take advantage of such representations. Literature reviewed

and previous works have shown that RNN, LSTM and GRU works better than DBN

and MLP, therefore a combinational apprach that includes CNN and LSTM, RNN or

GRU can have better results regarding prediciton accuracy.

Algorithmic Trading Strategies.

Building AT strategies is difficult and there are several constrains. This work presented

two extremes approaches, however there are a huge number of variations that can be

researched. Genetic Algorithms can serve as a tool for parameters searching under this

possible extension. It includes parameter searching in different spaces (Market Impact,

Liquidity, Exit Strategies, Risk Aversion Constrains), among others.

Model Retraining.

As previously mentioned, real AT applications are retrained periodically. Model de-

veloping that helps to predict model retraining periods are another possible line of

research. On the reviewed literature, it was an issue mentioned that requires more at-

tention and formality [94].

Model Adaption.

ML models learn from events presented on training data. But what happens about

variations and unknown conditions that are present in the real world? Open World

Through Tactics Introduction [97] is a technique used to improve ML models for au-

tonomous vehicles that may be applied to this problem. A research on this topic could

be another extension for this work.
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The following definitions are taken from [15], [92] and [103].

Ask price: the price that a seller is willing to receive for selling an asset.

Bid Price: the price that a buyer is willing to pay for buying an asset

Bid-ask spread: the difference in price between the highest price that a buyer is willing

to buy an asset and the lowest price the seller is willing to sell it.

HTF: European Securities and Markets Authority (ESMA) defines it as trading acti-

vities that employ sophisticated algorithms to interpret signals from the markets and

implementation of trading strategies that generate high frequency orders transmitted

with low latency to the markets in very short time frames. Positions are closed at the

end of the trading day and involve the own capital of the brokerage firm, not of its

clients. The Securities and Exchange Commission of the US (SEC) defines HTF as an

activity made by professional traders in which they generate a large number of trades

on a daily basis, using sophisticated algorithms for routing and executing orders in

very short time frames, without carrying in positions for the next day.

In-sample: Dataset used for initial parameter estimation and model selection.1

Limit order: an order to buy / sell a specific quantity of a financial asset to a specific

price.

Liquidity: the ability to buy or sell an asset without greatly affecting its price.

Look ahead bias: It refers to the use of data for simulation purposes that would not

been available during the testing period.2

Order book: the collected limit order to buy or sell an asset.

1See https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:In-sample vs. out-of-

sample forecasts
2See. https://www.investopedia.com/terms/l/lookaheadbias.asp
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Out of sample: Dataset used to evaluate model forecast performance. Empirical evi-

dence is more trustworthy on out of sample dataset rather than in-sample dataset,

because it reflects better the information available to the forecaster in real-time”.3

Market efficiency: the concept that market prices reflect the true underlying value of

the asset.

Market order: order to buy / sell a specific amount of a financial asset at the best

available price in the order book.

Market transparency: the ability to see market information. Post trade transparency

is the ability to see trade prices and quantities, and pre-trade transparency refers to

the ability to see quotes.

Price discovery: market process whereby new information impounds into asset prices.

By doing this, market agents find out best prices (bid/ask) to asset exchange.

Price efficiency: when an asset price reflects the true underlying value of an asset.

Transaction cost: the costs traders incur to buy or sell an asset.

Tick data: Equivalent to transaction data, in other words traded prices for a particular

asset. For this work, tick by tick data means that transaction data include all of the

transactions registered for an asset.

Volatility: variability of an asset price over time.

3See https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:In-sample vs. out-of-

sample forecasts
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B.1. Raw LOB to Img

import pandas as pd

from os . path import j o i n

from os import l i s t d i r

import numpy as np

import j s on

from c o l l e c t i o n s import d e f a u l t d i c t

import matp lo t l i b . pyplot as p l t

def readMetaData ( tkr ) :

#read Max and Mins f o r n o r m a l i z a t i o n s

df=pd . r ead c sv ( j o i n ( outDir , tkr , ’ metadata . csv ’ ) )

mins=df . i l o c [ 0 ] . va lue s

maxs=df . i l o c [ 1 ] . va lue s

return mins , maxs

def writeMetaData ( date , times , d e l t a ) :

#main method to read LOB raw data

i=0

volsDF=pd . DataFrame ( )

puntasDF=pd . DataFrame ( )

for t in t imes :

data=pd . r ead c sv ( j o i n ( inDir , t i c k e r , date , t ) )

data=data . s o r t v a l u e s ( by=[ ’ p r i c e ’ ] )

grouped=data . groupby ( ’ p r i c e ’ )

tmp=grouped [ ’ volume ’ , ’ puntas ’ ] . agg (sum)

tmp [ ’ s i d e ’ ]=grouped [ ’ s i d e ’ ] . agg (max)

tmp=tmp . r e s e t i n d e x ( )
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idx=tmp [ tmp [ ’ s i d e ’ ]== ’C ’ ] . index [−1]

idxMax=tmp . index [−1]

i f idxMax>idx+puntas :

i f idx>=puntas :

idxs =[x for x in range ( idx−puntas +1, idx+puntas +1)]

else :

i dxs =[x for x in range (0 , idx+puntas +1)]

else :

i f idx>=puntas :

idxs =[x for x in range ( idx−puntas +1,idxMax ) ]

else :

i dxs =[x for x in range (0 , idxMax ) ]

tmp=tmp [ tmp . index . i s i n ( idxs ) ]

normVols , normPuntas=normal ize (tmp)

normVols . columns=[ ’h ’ + t [ : −4 ] ]

normPuntas . columns=[ ’h ’ + t [ : −4 ] ]

i f len ( volsDF)== 0 :

volsDF=normVols

puntasDF=normPuntas

else :

volsDF=volsDF . j o i n ( normVols , how=’ outer ’ )

puntasDF=puntasDF . j o i n ( normPuntas , how=’ outer ’ )

return volsDF , puntasDF

def normal ize ( dataIn ) :

#norma l i za t ion us ing volumes ,

#N ( number o f l i n e s at the same p r i c e ) , maxVol

df=dataIn . s e t i n d e x ( ’ p r i c e ’ )

s i d e=df [ ’ s i d e ’ ]

d f=df [ [ ’ volume ’ , ’ puntas ’ , ’maxVol ’ ] ]

xMins=mins [ 1 : ]

xMaxs=maxs [ 1 : ]

v a l s =(df−xMins )/ ( xMaxs−xMins )

green=s i d e==’V ’

i f len ( v a l s [ green ])>0:

v a l s [ ’ volume ’ ] [ green ]=−1∗ v a l s [ ’ volume ’ ] [ green ]

return pd . DataFrame ( v a l s [ ’ volume ’ ] ) ,
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pd . DataFrame ( v a l s [ ’ puntas ’ ] ) , pd . DataFrame ( v a l s [ ’maxVol ’ ] )

f o l d e r s=l i s t d i r ( j o i n ( inDir , t i c k e r ) )

keyDates =[ ]

puntas=10

mins , maxs = readMetaData ( )

for f o l d e r in f o l d e r s :

try :

f i l e s=l i s t d i r ( j o i n ( inDir , t i c k e r , f o l d e r ) )

except :

continue

i f len ( f i l e s )>=100:

dfVols , dfPuntas , dfMaxVol=writeMetaData ( f o l d e r , f i l e s , 4 )

dfVols=dfVols . f i l l n a (0 )

dfPuntas=dfPuntas . f i l l n a (0 )

dfMaxVols=dfMaxVols . f i l l n a (0 )

hours=dfVols . columns

p r i c e s=dfVols . index

f latDF=dfVols . va lue s . f l a t t e n ( )

f l a tPuntas=dfPuntas . va lue s . f l a t t e n ( )

f latMaxVols=dfMaxVols . va lue s . f l a t t e n ( )

f l a t=np . r a v e l (np . column stack ( ( flatDF , f la tPuntas , f latMaxVols ) ) )

r e s u l t =[ ]

for i in range (0 , len ( f l a t ) , 3 ) :

i f f l a t [ i ]>0:

tmp=np . mult ip ly ( f l a t [ i ] , np . array ( [ 0 , 1 , 0 , 0 ] ) )

else :

tmp=np . mult ip ly (−1∗ f l a t [ i ] , np . array ( [ 1 , 0 , 0 , 0 ] ) )

tmp=np . append (tmp,1− f l a t [ i +1])

tmp=np . append (tmp,1− f l a t [ i +2])

r e s u l t=np . r a v e l (np . append ( r e s u l t , tmp ) )

M=r e s u l t . reshape ( len ( p r i c e s ) , len ( hours ) , 4 )

p l t . imsave ( j o i n ( outDir , t i c k e r , str ( f o l d e r )+ ’ . png ’ ) ,M)

pd . DataFrame ( p r i c e s ) . t o c s v ( j o i n ( outDir , t i c k e r ,

’p ’+str ( f o l d e r )+ ’ . csv ’ ) , index=False )

pd . DataFrame ( hours ) . t o c s v ( j o i n ( outDir , t i c k e r ,

’h ’+str ( f o l d e r )+ ’ . csv ’ ) , index=False )
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B.2. Raw Transactions to Img

import pandas as pd

from os . path import j o i n

from os import l i s t d i r

import numpy as np

import re

import math

from s c ipy . misc import imsave

def normal ize ( xIn ) :

maxP=metaData [ ’ p r i c e ’ ] [ 1 ]

minP=metaData [ ’ p r i c e ’ ] [ 0 ]

return ( ( xIn − maxP)+ ( xIn−minP ) ) / (maxP−minP)

for t i c k e r in t i c k e r s :

print ( t i c k e r )

a l l F i l e s=l i s t d i r ( j o i n ( inDir , t i c k e r ) )

t F i l e s =[x for x in a l l F i l e s i f re . s earch ( tFi lesRx , x ) ]

tickDF=pd . r ead c sv ( j o i n ( tradeDir , t i c k e r+’ . csv ’ ) , low memory=False )

metaData=pd . r ead c sv ( j o i n ( inDir , t i c k e r , ’ metadata . csv ’ ) )

for f in t F i l e s :

t imes=pd . r ead c sv ( j o i n ( inDir , t i c k e r , f ) )

t imes=times . d r o p d u p l i c a t e s ( subset =[ ’ 0 ’ ] )

date=int ( f [ 1 : −4 ] )

t imes=l i s t ( set ( t imes [ ’ 0 ’ ] ) )

t imes=sorted ( t imes )

N=len ( t imes )

t ickLen =[ ]

for i in range ( deltaB ,N, 1 ) :

upToTime=f [1:−4]+ str ( t imes [ i − 1 ] [ 1 : ] )

good=(tickDF [ ’ time ’ ]>=date ) & ( tickDF [ ’ time ’ ]< int (upToTime ) )

tmp=tickDF [ good ]

i f ( len (tmp)>0) & (N−i>=deltaB ) :

t i ckLen . append ( len (tmp ) )

date=int ( f [1:−4]+ str ( t imes [ i−deltaB ] [ 1 : ] ) )

dataNorm=normal ize (tmp [ ’ p r i c e ’ ] . va lue s )
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dataCos=

np . array ( [sum( dataNorm [ j : j +1]) for j in range ( len (tmp ) ) ] )

dataSin=np . s q r t (1 − dataCos ∗∗2)

dataSin=np . matrix ( dataSin )

dataCos=np . matrix ( dataCos )

matrixImg=dataSin .T∗dataCos − dataCos .T∗dataSin

imgName=str ( date)+ ’ . png ’

p l t . imsave ( j o i n ( inDir , t i c k e r , imgName ) ,

matrixImg , cmap=p l t . cm . PiYG)

B.3. Training

import t en so r f l ow as t f

from os . path import j o i n

from os import l i s t d i r , makedirs

import re

import pandas as pd

from PIL import Image

from skimage . c o l o r import rgba2rgb , rgb2gray

def cnn model fn ( f e a tu r e s , l a b e l s , mode ) :

””” Model f u n c t i o n f o r CNN. ”””

# Input Layer

#p r i n t ( ’ Keys f o r f e a t u r e s d i c t : ’ , f e a t u r e s . keys ( ) )

#p r i n t ( ’ Shape Labe l s : ’ , l a b e l s . shape )

#p r i n t(’=============’)

i n p u t l a y e r = t f . reshape ( f e a t u r e s [ ”x” ] ,

[−1 , 2 , 10 , 4 0 , 4 ] , name=’ input ’ )

#i n p u t l a y e r = t f . reshape ( f e a t u r e s [” x ” ] , [−1 , 2 , 20 , 20 , 4 ] )

print ( ’ Input laye shape : ’ , i n p u t l a y e r . shape )

# Convo lu t iona l Layer #1

conv1 = t f . l a y e r s . conv3d ( input l aye r , f i l t e r s =20,

k e r n e l s i z e = [1 , 2 , 2 ] ,

padding=”same” ,

a c t i v a t i o n=t f . nn . re lu , name=’Conv−01 ’ )

print ( ’ Layer 1 output shape : ’ , conv1 . shape )

# Pool ing Layer #1
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pool1 = t f . l a y e r s . max pooling3d ( inputs=conv1 , p o o l s i z e = [2 , 2 , 2 ] ,

s t r i d e s = [1 , 2 , 2 ] , name=’Max−Pool−01 ’ )

print ( ’ Pool1 shape : ’ , pool1 . shape )

# Convo lu t iona l Layer #2 and Pool ing Layer #2

conv2 = t f . l a y e r s . conv3d ( pool1 , f i l t e r s =40,

k e r n e l s i z e = [2 , 2 , 2 ] ,

padding=”same” ,

a c t i v a t i o n=t f . nn . re lu , name=’Conv−02 ’ )

print ( ’ Layer 2 output shape : ’ , conv2 . shape )

pool2 = t f . l a y e r s . max pooling3d ( inputs=conv2 , p o o l s i z e = [1 , 2 , 2 ] ,

s t r i d e s = [1 , 2 , 2 ] , name=’Max−Pool−02 ’ )

print ( ’ Pool2 shape : ’ , pool2 . shape )

# Dense Layer

p o o l 2 f l a t = t f . reshape ( pool2 , [−1 , np . prod ( pool2 . ge t shape ( ) . a s l i s t ( ) [ 1 : ] ) ] )

print ( ’ P o o l 2 f l a t shape : ’ , p o o l 2 f l a t . shape )

dense = t f . l a y e r s . dense ( inputs=p o o l 2 f l a t ,

un i t s=p o o l 2 f l a t . shape [1 ]+1 ,

a c t i v a t i o n=t f . nn . re lu , name=’ Dense ’ )

dropout = t f . l a y e r s . dropout (

inputs=dense , r a t e =0.4 ,

t r a i n i n g=mode == t f . e s t imator . ModeKeys .TRAIN,

name=’ Dropout ’ )

print ( ’ Dense shape : ’ , dense . shape )

# L o g i t s Layer

l o g i t s = t f . l a y e r s . dense ( inputs=dropout , un i t s=num classes )

p r e d i c t i o n s = {
# Generate p r e d i c t i o n s ( f o r PREDICT and EVAL mode)

” c l a s s e s ” : t f . argmax ( input=l o g i t s , a x i s =1) ,

# Add ‘ so f tmax tensor ‘ to the graph . I t i s used f o r PREDICT and by the

# ‘ l o g g i n g h o o k ‘ .

” p r o b a b i l i t i e s ” : t f . nn . softmax ( l o g i t s , name=” so f tmax tensor ” )

}



68 B Annex: Python Code

i f mode == t f . e s t imator . ModeKeys .PREDICT:

return t f . e s t imator . EstimatorSpec (mode=mode ,

p r e d i c t i o n s=p r e d i c t i on s ,

expor t outputs={ ’ p r e d i c t ’ :

t f . e s t imator . export . PredictOutput ( p r e d i c t i o n s )} )

# C a l c u l a t e Loss ( f o r both TRAIN and EVAL modes )

o n e h o t l a b e l s = t f . one hot ( i n d i c e s=

t f . c a s t ( l a b e l s , t f . i n t32 ) , depth=num classes )

l o s s = t f . l o s s e s . s o f tmax c ro s s en t ropy (

o n e h o t l a b e l s=oneho t l abe l s , l o g i t s=l o g i t s )

# Configure the Training Op ( f o r TRAIN mode)

i f mode == t f . e s t imator . ModeKeys .TRAIN:

opt imize r = t f . t r a i n . GradientDescentOptimizer

( l e a r n i n g r a t e =0.0001)

t r a i n o p = opt imize r . minimize (

l o s s=lo s s ,

g l o b a l s t e p=t f . t r a i n . g e t g l o b a l s t e p ( ) )

return t f . e s t imator . EstimatorSpec (mode=mode ,

l o s s=lo s s , t r a i n o p=t r a i n o p )

# Add e v a l u a t i o n metr i c s ( f o r EVAL mode)

e v a l m e t r i c o p s = {
” accuracy ” : t f . met r i c s . accuracy ( l a b e l s=l a b e l s

, p r e d i c t i o n s=p r e d i c t i o n s [ ” c l a s s e s ” ] ) ,

” mean c la s s acc ” : t f . met r i c s . mean pe r c l a s s accuracy

( l a b e l s=l a b e l s ,

p r e d i c t i o n s=p r e d i c t i o n s [ ” c l a s s e s ” ] , num classes =3) ,

”mse” : t f . met r i c s . mean squared error ( l a b e l s=l a b e l s ,

p r e d i c t i o n s=p r e d i c t i o n s [ ” c l a s s e s ” ] ) ,

” t r u e p o s i t i v e s ” : t f . met r i c s . t r u e p o s i t i v e s ( l a b e l s=l a b e l s ,

p r e d i c t i o n s=p r e d i c t i o n s [ ” c l a s s e s ” ] ) ,

” f a l s e p o s i t i v e s ” : t f . met r i c s . f a l s e p o s i t i v e s ( l a b e l s=l a b e l s ,

p r e d i c t i o n s=p r e d i c t i o n s [ ” c l a s s e s ” ] ) ,

” f a l s e n e g a t i v e s ” : t f . met r i c s . f a l s e n e g a t i v e s ( l a b e l s=l a b e l s ,

p r e d i c t i o n s=p r e d i c t i o n s [ ” c l a s s e s ” ] )
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}
return t f . e s t imator . EstimatorSpec (

mode=mode , l o s s=lo s s , e v a l m e t r i c o p s=e v a l m e t r i c o p s )

def readData2 ( ) :

y eva l =[ ]

y t r a i n =[ ]

x eva l = [ [ ] , [ ] ]

x t r a i n = [ [ ] , [ ] ]

for i in range ( num classes ) :

for t i c k e r in t i c k e r s :

pngFi l e s=l i s t d i r ( j o i n ( d a t a f o l d e r , str ( bookSize)+ ’ lob ’ ,

t i c k e r , str ( i +1)))

for png in pngFi l e s :

try :

xTicks=np . asar ray ( Image . open( j o i n

( img fo lde r , t i c k e r , png ) ) . r e s i z e ( ( 1 0 , 4 0 ) , Image .ANTIALIAS) )

except :

continue

x=np . asar ray ( Image . open( j o i n ( d a t a f o l d e r ,

str ( bookSize)+ ’ lob ’ , t i c k e r , str ( i +1) ,png ) ) . r e s i z e ( ( 1 0 , 4 0 ) , Image .ANTIALIAS) )

x t r a i n [ 0 ] . append ( x )

x t r a i n [ 1 ] . append ( xTicks )

y t r a i n . append ( i )

#s u f f l e data

x=np . array ( x t r a i n )

y=np . array ( y t r a i n )

tmp=np . random . permutation ( y . shape [ 0 ] )

e v a l s i z e=int ( 0 . 1∗ len ( y ) )

t r a i n s i z e=len ( y)− e v a l s i z e

x=x [ : , tmp , : , : , : ]

y=y [ tmp ]

x t r a i n=x [ : , 0 : t r a i n s i z e , : , : , : ]

y t r a i n=y [ 0 : t r a i n s i z e ]

x eva l=x [ : , t r a i n s i z e : , : , : , : ]

y eva l=y [ t r a i n s i z e : ]

return np . t ranspose ( x t ra in , [ 1 , 0 , 2 , 3 , 4 ] ) ,
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np . t ranspose ( x eva l , [ 1 , 0 , 2 , 3 , 4 ] ) , y t ra in , y eva l

def main ( unused argv ) :

# Load t r a i n i n g and e v a l data

t r a i n d a t a = X tra in . astype (np . f l o a t 3 2 ) # Returns np . array

eva l da ta = X eval . astype (np . f l o a t 3 2 )

e v a l l a b e l s=Y eval

# Create the Est imator

cnnModel = t f . e s t imator . Est imator ( model fn=cnn model fn ,

mode l d i r=modelPath )

# Set up l o g g i n g f o r p r e d i c t i o n s

t e n s o r s t o l o g = {” p r o b a b i l i t i e s ” : ” so f tmax tensor ”

}
l ogg ing hook = t f . t r a i n . LoggingTensorHook ( t e n s o r s=t e n s o r s t o l o g ,

e v e r y n i t e r =10000 , at end=True )

# Train the model

t r a i n i n p u t f n = t f . e s t imator . inputs . numpy input fn

( x={”x” : t r a i n d a t a } , y=Y train ,

b a t c h s i z e =100 ,num epochs=None , s h u f f l e=True )

cnnModel . t r a i n ( i npu t fn=t r a i n i n p u t f n ,

s t ep s =100000 , hooks=[ logg ing hook ] )

# Evaluate the model and p r i n t r e s u l t s

e v a l i n p u t f n = t f . e s t imator . inputs . numpy input fn

( x={”x” : eva l da ta } ,

y=e v a l l a b e l s , num epochs=1, s h u f f l e=Fal se )

e v a l r e s u l t s = cnnModel . eva luate ( i npu t fn=e v a l i n p u t f n )

print ( e v a l r e s u l t s )

f e a t u r e s p e c={ ’ x ’ : t f . p l a c eho ld e r ( dtype=t f . f l o a t32 ,

shape =[None , 2 , 1 0 , 4 0 , 4 ] )}
i n p u t r e c e i v e r f n=

t f . e s t imator . export . b u i l d r a w s e r v i n g i n p u t r e c e i v e r f n ( f e a t u r e s p e c )

cnnModel . export savedmodel

( e x p o r t d i r b a s e=savePath ,
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s e r v i n g i n p u t r e c e i v e r f n=i n p u t r e c e i v e r f n )

print ( ’−−−−− ’ )

p r e d i c t r e s u l t s=cnnModel . p r e d i c t

( i npu t fn=

input fn ( ’ 20180516100009. png ’ , ’PFAVAL’ ) )

for idx , p r e d i c t i o n in enumerate ( p r e d i c t r e s u l t s ) :

print ( idx )

for key in p r e d i c t i o n :

print ( ’ . . . . { } : {} ’ . format ( key , p r e d i c t i o n [ key ] ) )



C. Annex: LOB Images Using The

Proposed Representation

This annex shows various images of LOB data using the proposed representation, explained

in Chapter 3.
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Figure C-1.: Multiple LOB data under proposed representation
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Figure C-2.: Multiple LOB data under proposed representation
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Figure C-3.: LOB data under proposed representation
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