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ABSTRACT

Control of Systems Subject to Uncertainty and Constraints. (December 2007)

Elizabeth Roxana Villota Cerna, B.S., Universidad Nacional de Ingenieria;

M.S., Pontificia Universidade Catolica do Rio de Janeiro

Chair of Advisory Committee: Dr. Suhada Jayasuriya

All practical control systems are subject to constraints, namely constraints aris-

ing from the actuator’s limited range and rate capacity (input constraints) or from

imposed operational limits on plant variables (output constraints). A linear control

system typically yields the desirable small signal performance. However, the presence

of input constraints often causes undesirable large signal behavior and potential insta-

bility. An anti-windup control consists of a remedial solution that mitigates the effect

of input constraints on the closed-loop without affecting the small signal behavior.

Conversely, an override control addresses the control problem involving output con-

straints and also follows the idea that large signal control objectives do not alter small

signal performance. Importantly, these two remedial control methodologies must in-

corporate model uncertainty into their design to be considered reliable in practice. In

this dissertation, shared principles of design for the remedial compensation problem

are identified which simplify the picture when analyzing, comparing and synthesiz-

ing for the variety of existing remedial schemes. Two performance objectives, each

one related to a different type of remedial compensation, and a general structural

representation associated with both remedial compensation problems will be consid-

ered. The effect of remedial control on the closed-loop will be evaluated in terms of

two general frameworks which permit the unification and comparison of all known

remedial compensation schemes. The difference systems describing the performance

objectives will be further employed for comparison of remedial compensation schemes



iv

under uncertainty considerations and also for synthesis of compensators. On the ba-

sis of the difference systems and the general structure for remedial compensation,

systematic remedial compensation synthesis algorithms for anti-windup and override

compensation will be given and compared. Successful application of the proposed

robust remedial control synthesis algorithms will be demonstrated via simulation.
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CHAPTER I

INTRODUCTION

This dissertation shows shared principles of design that simplify the picture when

analyzing and synthesizing remedial compensation for systems subject to uncertainty

and constraints. The identification of these principles permits one to discern the

advantages and disadvantages of employing certain remedial compensators.

The aim of the introduction is threefold: to give an engineering motivation for

studying remedial compensation by understanding the ramifications of the presence of

uncertainty and constraints, to describe the remedial compensation strategies which

will counteract the undesirable effects of the presence of uncertainty and constraints,

and to provide a summarized review of previous works employing remedial compen-

sation in order to identify the main existing deficiencies, which serve to motivate and

justify the contributions of this dissertation.

A. Real-world systems are subject to uncertainty and constraints

The presence of uncertainty and plant constraints is well known to control engineers.

Control system design is typically model based, with physical systems always uncer-

tain, and hence the necessity for the provision of robustness to uncertainty. Similarly,

all physical systems are subject to constraints, namely actuator saturation (input

constraints arising from actuator limited range and rate capacity), which cause unde-

sirable large signal behavior and potential instability, and operational limits in plant

variables (output constraints arising from efficiency, safety and other concerns) that

must be met. Hence it is know well known that a control systems that is not ca-

This dissertation follows the style of IEEE Transactions on Automatic Control.
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pable to operate under constraints and despite uncertainty, is unlikely to perform

acceptably.

1. Physical systems are uncertain

The task of a control engineer is to abstract a complex engineering problem, cast it

into an appropriate mathematical setting and derive a solution, the latter of which

represents a computable method of evaluation of the problem under study. However,

by employing mathematical abstractions to represent the real world system dynamics,

one has to deal with fundamental gaps between theory and practice. These gaps are

reflected in the uncertainty1 about the behavior of the real system when a mathe-

matical prediction is given. This rationale of dealing with uncertainty is applied in

the feedback control theory to obtain reliability in spite of faulty predictions. Impor-

tantly, a suitably designed feedback compensator will effectively reduce the sensitivity

of the system to certain sources of uncertainty, but this will be possible only at the

expense of increased sensitivity to other unmodeled effects. Hence, these existent

trade-offs require that feedback theory provides with a means for their quantification

and subsequently incorporation in the design process. Notably, this quantification,

in addition to the mathematical model, requires some quantitative assessment of the

model uncertainty.

2. Physical systems subject to constraints

Any conceivable physical system, in every application of control technology, is ulti-

mately limited. In control system design, these limitations typically manifest them-

1Uncertainty in its broader sense describes not only the physical phenomena we
are unable to predict, but also, many aspects of the physical plant we have chosen to
neglect or simplify.
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selves as constraints at the input and at the output of the plant. On the one hand,

input or manipulated variable constraints are typically observed at the output of the

system actuators, namely actuator saturation. Note that actuators can be limited

in amplitude and rate, with all control actuation devices limited in both energy and

power. Examples include: amplifiers, which may be constrained to produce outputs

in the range of 0-10 V or 0-20 mA, flow valves, which cannot be opened more than

100%, and motor-driven actuators, which have limited speeds and torques. On the

other hand, output or state variable constraints arise from operational limits imposed

on the plant variables. Importantly, operational limits are usually related to efficiency,

safety and other concerns. Examples include: environmental regulation agencies im-

posing strict safety limits in noise pollution or emission of pollutants. Evidently,

actuator saturation and operational limits are inherent system features and as such,

must be must be taken into account in any control system that aims to be practical

and reliable.

3. Importance of uncertainty and constraint consideration

The importance of considering model uncertainty and system constraints in the con-

trol problem can be evaluated with regards to its practical and intellectual merit.

a. Practical merit

Moderns systems are designed and required to operate efficiently and cost effectively

under safety regulations. This requires increasing demand on the throughput of the

system and its subsystems. The extent to which the effect of constraints needs to

be considered in the control design process depends on the required control system

performance in relation to the capacity of the actuators and operational limits, as

well as the level of expected disturbances, noise and uncertainty. Although in some
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applications it might be possible to ignore these effects, the reliable operation and

acceptable performance of most control systems must be assessed in the light of ac-

tuator saturation and operational limits. Notably, saturation can cause performance

degradation (excessive overshoot and oscillation) and stability problems (limit cycles

and instability), which can lead to catastrophic system failure. It has been reported

that Chernobyl disaster was due to such an actuator saturation [1]. Saturation is also

present in flight control, especially in high-performance aircraft, where catastrophic

outcomes have resulted in the case of statically unstable aircraft (conditionally stable

systems) [1, 2, 3]. Rate saturation has also been implicated in the YF-22 crash early

in 1992 [4] and possibly in the JAS 39 crash of 1993 [5], both of which also experienced

serious pilot-induced oscillations (PIO). Furthermore, on the output constraints side,

there also exist dramatic examples. The 1984 Bhopal tragedy in India caused by the

release of the highly toxic gas methyl isocyanate (MIC) from the Union Carbide Plant

[6].

b. Intellectual merit

The practical importance of managing constraints in control system design has in-

spired long and increasing research interests in the control community [7]. However,

despite the fact that for linear systems the effect of plant model uncertainty on con-

troller performance has been reasonably well understood [8], a similar understanding

has not been achieved for the case of systems subject to constraints. The presence

of both uncertainty and constraints generally affects the behavior of the system in

a dramatic way. Therefore, stability and performance analysis accounting for the

effect of both uncertainty and constraints simultaneously is crucial for the control de-

sign. Some attempts in this regard have recently been done, but with a conservative

description of the model uncertainty.
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4. Motivating real problem

An inherent motivation for study of the problem of systems with uncertainty and con-

straints stems from its practical and theoretical importance, as previously detailed.

However, an additional motivation arises from the existence of a suitable experi-

mental testbed at the Dynamic Systems and Control Lab, Texas A&M University.

This testbed, a multidimensional positioning system, presents a real-world application

scenario that permits the study of the effects of constraints on multivariable systems

with uncertainty. This system is useful to study the following issues within the setting

of multivariable systems: rate/amplitude saturation, operational limitations, uncer-

tainty, marginally stable systems, convexity, conservatism and decentralized control,

among others. In this dissertation, the issues of saturation, operational limits and

uncertainty are of principal concern and the MPS is an ideal testbed for the contri-

butions in these areas.

B. Remedial compensation strategies for systems subject to uncertainty and con-

straints: literature review

The extensive literature on the effects of constraints in application areas such as

aerospace, chemical, and mechanical engineering emphasizes the broad technological

concern for this problem. As such, many researchers have sought to address problems

associated with their presence from a number of perspectives, including:

• Synthesizing controllers which a priori directly account for the system con-

straints [9, 10, 11, 12];

• Model predictive control strategies, where the constraints are incorporated

into the resulting optimization procedure [13]; and
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• Remedial compensation strategies: Anti-windup and override compen-

sation, techniques that are commonly employed in cases where the desire is to

handle the effect of constraints that appear occasionally, and where the basic

tenet is a two-step controller design paradigm: first, design the linear (uncon-

strained) controller ignoring constraints in the system, and second, add anti-

windup and/or override compensation to minimize the adverse effect of any

constraint on the closed-loop system stability and performance. Interestingly,

the behavior of the feedback system with anti-windup and/or override compen-

sation must match the initial unconstrained closed-loop system behavior in the

absence of input and/or output constraints.

The anti-windup and override augmentation approaches are the most established,

having an intuitive interpretation and requiring the least change in the linear control

design, the latter providing them with the distinct advantage of being able to be

readily retrofitted to existing systems. Importantly, anti-windup control has been

used to deal with input constraints2 whereas override control has been employed for

handling output constraints.

Increasing attention has been given to both robust and constrained control prob-

lems, yet independently, within the control community. Herein an overview of the

study of systems subject to constraints is presented, where the issue of uncertainty3

is included as the solutions proposed to the input/output constrained control prob-

lems are listed. Compared to anti-windup, override control has not been as extensively

studied. Therefore, the main focus of the following literature survey is on anti-windup

2Note that in the mode selection scheme (e.g. Min-Max-selectors), a switching
nonlinearity is introduced at the plant input to select between a group of controllers
designed to achieve specific objectives. Hence, in essence, this type of problem can
be addressed as an input constraint problem.

3Good references on robust control theory are [8, 14].
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control, which can handle the input nonlinearities introduced by both the saturation

limits and the mode selection schemes.

For anti-windup compensation, the review is organized in terms of the framework

employed (architecture and goal), stability and performance analysis, and synthesis

approach.

1. Anti-windup compensation

One can easily visualize the effects of actuator saturation in control systems by the

significant deterioration in control system performance and by the stability problems.

These effects are known as windup effects. The study of windup effects evolved to

a formal interpretation of the windup phenomenon as any inconsistency between the

unconstrained controller output and the unconstrained controller states when the con-

trol signal saturates. Notably, controllers with slow or unstable dynamics are prone

to experience windup problems [15]. As such, the first windup effects were observed

in PI/PID controllers [16]. Given the windup effects and its formal interpretation,

numerous researchers have proposed anti-windup techniques to overcome the prob-

lem, each one tackling different issues involved. Anti-windup techniques developed

before the early 90’s were unified [17, 18] in an attempt to formalize the anti-windup

control problem and advance to a more systematic theory. Kothare et al. [17] pointed

out significant weaknesses in the earlier techniques, such as lack of rigorous stability

analysis, no robustness consideration, no general extension to MIMO systems, and

no clear exposition of performance objectives. Only in the last decade has the anti-

windup problem been addressed in a more formal way, with stability guarantees and

clear performance specifications, [19, 20, 21].
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a. Anti-windup compensation architecture

Many control configurations have been proposed for anti-windup compensation [17,

19, 21, 22, 23, 24, 25, 26, 27, 28]. This presents a potential problem for the anti-windup

control system designer, in that it is often difficult to determine the appropriate con-

figuration and what effect, if any, this choice has on the achievement of the design

objectives. This issue was addressed by Kothare et al. [17] for static anti-windup

control, where a general framework that unified all known static anti-windup com-

pensation configurations up to that time was presented. The unification was based

on a coprime factorization of the unconstrained controller and showed how a frame-

work that captured the two-step controller design paradigm employed two static gain

matrices to enforce a variety of control configurations. While uncertainty was not

explicitly considered in the work, the unification also holds for systems with uncer-

tainty. This seminal work was advanced by Miyamoto and Vinnicombe [23], where a

dynamic version of the Kothare’s coprime factorization representation was presented

using a Q parameter. However, their work omitted the specific form of the Q pa-

rameterization for implementation. Importantly, no direct relation of Kothare and

Miyamoto’s works to more recent configurations is present in the literature. Hence,

dealing with these issues remains as an open problem.

Considering previous works, it could appear that all configurations are essentially

equivalent and hence the chosen configuration has no inherent effect on the synthesis

problem. However, for synthesis purposes, the configurations employed do seem to

be of importance. Before presenting relevant distinctions between configurations em-

ployed for synthesis, one issue has yet to be solved: the objective of an anti-windup

design. The anti-windup compensation goal was initially subjective but has gradu-

ally evolved to be: to preserve the performance of the anti-windup closed-loop system
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in the unsaturated operating range if the system never saturates, while guarantee-

ing global stability and minimizing the degradation of anti-windup closed-loop system

performance whenever saturation is present. The difference (mismatch) system de-

scribing the difference between the anti-windup closed-loop system response and the

unconstrained closed-loop system response, and having the anti-windup compensator

to modify its properties, arises as the ideal setting for analysis and design. With this

in mind, the anti-windup configuration proposed by Weston and Postlethwaite [26]

for nominal systems was extended by Turner et al. [29] for use in the solution of

the dynamic robust anti-windup control problem. Aside from the limitation to un-

structured uncertainty, this approach has several problems, such as the complicated

mismatch structure employed and the subsequent inability to directly enforce robust

performance in the design. Grimm et al. [30] employed an anti-windup configuration

which proved to be effective in accommodating unstructured (nonlinear) uncertainty

for static and dynamic anti-windup compensation when placed in a certain mismatch

structure. Teel and Kapoor [19] also implicitly proposed a mismatch structure for dy-

namic anti-windup compensation by including a model of the nominal plant dynamics

in the feedback path of the anti-windup controller. Furthermore, an implicit mismatch

structure also appeared in the work of Wu and Jayasuriya [31] where they employed

the generic anti-windup configuration defined in Edwards and Postlethwaite [24] for

dynamic anti-windup compensation. Other mismatch structures were also effectively

described by Horowitz [22] and Miyamoto [23]. Considering these anti-windup com-

pensation configurations for static and dynamic, robust anti-windup compensation,

it is not clear what the relative advantages and disadvantages are when employed for

synthesis. Comparing Turner [28] and Grimm [30] works it could appear that there

are inherent advantages of some configurations over others, while other configurations

appear to be equivalent. Therefore, resolving this issue is of importance.
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For completeness of the literature review, the choice of performance metric (Lp)

can also be considered within the anti-windup configuration setting. Notably, only

recently has the importance of the performance metric been emphasized in anti-

windup control. The original approach was to consider an L2 gain (i.e, H∞) of certain

closed-loop transfer functions [21, 20, 19]. However, lately it has been demonstrated

that this can be ineffective as a performance metric [30]. Rather a regional L2 gain

may be more suitable [32]. Note that a regional L2 gain has to be used for non-

exponentially stable plants as a global finite L2 gain cannot be achieved for such

systems by bounded control. The advantages of employing this regional gain, when

one is working with exponentially stable systems, is that, by addressing the exogenous

input dependence, tighter quantification of performance is provided and hence relative

optimization of the anti-windup closed-loop system performance becomes possible.

b. Anti-windup compensation stability and performance analysis

With the incorporation of constraints in the system design, special care must be taken

when analyzing stability, as the feedback loop is no longer linear. The elements of

the unconstrained closed-loop system remain linear, even the anti-windup controller

to be designed is linear, but also a saturation nonlinearity is present. Importantly, a

system like this can be considered within the Lure’s Problem setting. Hence the first

attempts to analyze (anti-)windup control system stability by the direct application

of the Popov [33] and Circle [34] criteria. Other methods reported include the scaled

small gain theorem [35], the describing function analysis [36], the incremental gain

analysis [37], and the invariant subspace technique [38]. Following their unification

work for AW configurations, Kothare et al. [18] presented a general framework for an-

alyzing stability of anti-windup bumpless transfer schemes where sufficient conditions

for stability analysis provided by the passivity theorem were reduced to equivalent
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linear matrix inequalities (LMI) by the use of multipliers. These multipliers preserved

positivity for the different descriptions of nonlinearities studied, e.g. time varying,

static or slope restricted memoryless4. However, none of these results can accom-

modate plant uncertainty. Recently, limited to SISO systems, the Circle and Popov

criteria have also been employed to analyze stability with both structured and un-

structured uncertainties in the linear plant [40]. In the more general MIMO setting

with uncertainty, construction of LMIs guaranteeing the absolute stability for systems

with unstructured uncertainty was developed [29, 30]. With this being done, it seems

interesting to define a framework for analyzing stability of systems with uncertainty,

as done by Kothare et al.[18] for the nominal plant case.

Importantly, the advantage of presenting the anti-windup control problem in

terms of the mismatch system permits the analysis of stability to only be defined

in the nonlinear feedback loop (with the nonlinearity being a deadzone), as pointed

out by Weston and Postlethwaite [26] for the nominal plant case. It should be noted

that the majority of this work on stability analysis was limited to stable systems.

Exceptions include the work of Hess and Wu [41, 42] at the SISO level and Pare and

Teel [43, 44] at the MIMO level. This area is beyond the scope of our work and will

not be explored further.

The explicit incorporation of the performance measurement in the analysis of the

anti-windup problem was given by Mulder et al. [20] where a Lyapunov function was

found useful in order to state the stability requirements together with the performance

properties. Similar ideas were followed by Grimm, Turner [21, 27, 28, 29] and others,

for the case of stable plants and uncertain plants. More specifically, in these works, the

4Multipliers that preserve positivity for repeated single-input single-output (SISO)
nonlinearities are of our interest as they relate to the case of decentralized saturation
and parametric (structured) uncertainty [39].
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performance measure was represented by the gain relation between two defined signals

and the anti-windup design objective was to minimize this measure according to an

appropriate (L2) metric. Notably, a framework for analysis of the of different types

of performance with stability guarantees, and accommodating uncertainty, appears

as a necessity.

c. Anti-windup compensation synthesis

In addition to the analysis of stability and performance, the anti-windup synthe-

sis problem has been considered from a number of perspectives. The early work

[22, 34, 36, 45, 46] utilized SISO classical techniques for the enforcement of abso-

lute stability for the nominal plant case. A recent extension of SISO classical work

is done by Wu and Jayasuriya [31] where the SISO QFT design methodology was

employed for the synthesis of anti-windup controllers satisfying robust stability, non-

overshooting, limit cycles and robust performance specifications. Importantly, the

extension of the SISO classical tools for anti-windup control to the multivariable case

has not been achieved. Extensions to MIMO systems have employed modern control

techniques [20, 21, 24, 23, 28], some of which permit synthesis of control systems

with consideration of uncertainty [29, 30], but typically only unstructured. Grimm

et al. [30], revisiting the paradigm given by Mulder et al. [20], introduced robustness

into the synthesis scheme by accounting for (nonlinear) unstructured model uncer-

tainty. Interestingly, Turner and Postlethwaite [29] considered additive unstructured

uncertainty in the plant for plant order controller synthesis, the latter with no clear

definition of robustness performance. The importance of the LMI tools employed in

much of this work [21, 28, 29, 30] is evident, where various stability and performance

tests for the closed-loop system are formulated in an L2 setting as convex feasibility
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problems, the latter possible to be solved employing computationally efficient solvers5.

Notably, all of this work on LMIs for the anti-windup problem was limited to expo-

nentially stable plants. The LMI approach has also been used for the case of unstable

nominal plants [47]. No further description of the asymptotically unstable plant case

will be given, as this will not be a focus of the present work. Recalling the descrip-

tion of the structured LTI uncertainty from robust control theory, it seems natural

to define the robust anti-windup control problem with structured uncertainty consid-

erations. Evidently, it could appear that researchers [29, 30] are implicity trying to

extend the robust control methods [48, 49, 50] to saturating systems and solve the

robust anti-windup compensation problem. Specifically, the ideal problem solution

for the robust control problem accounting for nonlinearities described by sectors or

more restrictive assumptions, in addition to block structured and unstructured, real

and complex, linear uncertainty, is of interest in the present work.

2. Override compensation

The problem of designing compensators for systems with output constraints has al-

ways been linked to that of designing compensators for input constrained systems.

Little literature can be found that explicitly studies the problem of output constraints.

With this being the case, it is even more unlikely to find works on override compensa-

tion. Importantly, one of the most comprehensive accounts on override compensation

can be found in Glattfelder et al. [33, 51], where an analysis of performance and

stability of systems subject to output constraints is given, along with some guidelines

for designing compensators. However, as in the case of previous anti-windup works,

5The main limitation of this LMI-based synthesis technique is that LMI constraints
are not always feasible, specially in the case of static anti-windup compensation, thus
leaving the linear anti-windup design problem not completely solved.
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one can say that the design of compensators is not done in a systematical way and

that much of the work is limited to SISO systems [51]. Building on the anti-windup

compensation work, Turner and Postlethwaite [52, 53] addresses the synthesis of over-

ride compensators using LMIs and providing stability and performance guarantees.

Evidently, these papers denote an advance towards systematization, with direct ap-

plication to MIMO systems. All in all, much work still needs to be done. In terms of

the override design objective, the authors in Turner and Postlethwaite [52, 53] pro-

pose to measure the performance of the system by considering how much the actual

output deviates from the ideal limited output. The ideal limited output they con-

sider corresponds to the saturated version of the override system response. Notably,

one can argue that the most desirable response is the saturated version of the linear

closed-loop system output response. Furthermore, in an attempt to preserve the linear

behavior as much as possible, the authors choose an extra minimization problem, the

reduction of the override compensator output such that the effect of override compen-

sation on closed-loop is minimized. Again, this selection may address indirectly the

objective of preserving the linear responses but does not employ the actual objectives,

namely the output responses of the system. In terms of the controller synthesis, the

work in Turner and Postlethwaite [52, 53] only furnishes static override compensation

and, from the anti-windup literature, it is known that the main drawback of static

compensation is that the LMI constraints may be infeasible.

The anti-windup literature provides valuable results that can easily be extended

to the override compensation problem [54]. The engineering community is awaiting

systematic and efficient algorithms for override compensator synthesis, with guaran-

tees of existence of solutions. In that regard, providing advances on systematization

of the override compensation problem is also an interest in the present work.
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C. Contribution of dissertation

Control design for linear plants with constraints is not an easy task. The presence of

both constraints and uncertainty produces a challenging control problem. The main

goal of this dissertation is to provide a degree of simplicity in several aspects of the

remedial compensation problem, which is intriguing given the amount of remedial

compensation schemes that continuously appear. In order to reach this goal, the

following projects have been completed, each one amounting to a contribution of this

dissertation, and described in the following paragraphs.

One level of simplicity occurs in the structure of the remedial compensation

schemes. As a first contribution, this dissertation contributes to the remedial com-

pensation problem by providing a clear theoretical system interpretation with a fun-

damental structure. Based on this fundamental structure, the remedial control prob-

lem can be defined to include the variety of interaction patterns between the un-

constrained closed-loop system and the remedial compensator. Once the remedial

compensation problem is redefined, we contribute with extending an abstract frame-

work that facilitated the unification of all existing static anti-windup compensation

schemes [17] to cope also with dynamic anti-windup compensation. Moreover, an-

other abstract framework is defined that facilitates unification of all existing and

potential static and dynamic override compensation schemes. The unifying frame-

work is what we call the conditioning of the controller, for anti-windup compensation,

and conditioning of the plant, for override compensation. In particular, this condi-

tioning provides with a description of the remedial compensation problem in terms of

the parameters (H1, H2, Q). Hence, these parameters can now determine the freedom

one possesses during the control synthesis process. Building on this unification and

on the performance objectives, we contribute with depicting a difference (mismatch)
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system describing the effect of the saturation nonlinearity on the system response.

The unification of remedial schemes, under the difference system, offers insight into

the difficulties faced when employing specific remedial structures and facilitates im-

proved transparency in remedial control system design. In particular, the effect of

plant uncertainty on the achievement of the remedial performance objectives can be

analyzed in this mismatch setting. From this analysis, we contribute to the robust

remedial compensation problem and specially to W&P anti-windup configuration [26]

by showing that any compensation scheme based on a model of the plant and hence

implicitly relying on a pole-zero cancelation is prone to fail if some hidden cancelation

of unstable poles occurs.

Before exploring a source of simplicity in the remedial compensation design, a

second contribution of this dissertation is to consider the mismatch system in order to

define the robust remedial compensation synthesis problem in this setting. We con-

tribute to the anti-windup synthesis problem by redefining the performance objective

and extending the static/dynamic full-authority and external feedback augmenta-

tions to incorporate structured (parametric) plant uncertainty. We contribute to the

override synthesis problem by providing systematization to the synthesis process. By

further exploring similitudes with the anti-windup synthesis method, we show that

a static or (plant-order) dynamic override compensator can be constructed by solv-

ing only convex LMIs. Notably, for each case, static and dynamic, robust override

compensation synthesis schemes are considered.

Another level of simplicity in remedial compensation can be found in the design

area. A third contribution to the remedial compensation problem is to provide robust

anti-windup compensation synthesis algorithms based on the fundamental structure

and show that existing anti-windup compensation schemes arise as special cases.

Similar conclusions could also be obtained for the override compensation synthesis
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problem.

One important aspect of the contributions consists of the demonstration of the

efficacy of the emerging methodologies. Hence, a fourth contribution is that of vali-

dating the research developments in practical applications via simulations.

D. Notation

The notation employed in this dissertation is standard throughout.

R is the set of real numbers. Given a matrix A, AT denotes its transpose, A−1

denotes its inverse (if it exists), det(A) its determinant, Im(A) its image space, Ker(A)

its null space, rank(A) its rank and He A =AT + A. The matrix inequality A > B

(A ≥ B) means that A and B are square Hermitian matrices and A − B is positive

(semi-) definite. Furthermore, diag[a1, .., an] denotes a n× n diagonal matrix with ai

as its i−th diagonal element.

Given a signal u(t), t ≥ 0, its L2 norm is defined as ‖u(·)‖2 =

√∫ ∞

0

|u(t)|2dt,

whenever the integral on the right hand side converges to a finite value. Moreover,

defining L2 as the space of signals with finite L2 norm, whenever a signal s(·) has

finite L2 norm, we say that s(·) belongs to the space L2, namely s(·) ∈ L2. ‖U‖L2 7→L2

denotes the induced L2 norm of a possibly nonlinear operator U : U1 7→ U2 from one

Lebesgue space to another. The distance between a vector u ∈ Rnu and a compact

set, U , is denoted dist(u,U) = infw∈U‖u−w‖. RH∞ denotes the set of all real rational

transfer function matrices, analytic in the closed right-half complex plane.

A state space representation of a transfer function matrix is denoted by:

G(s) =




A B

C D


 .

The term ñ§ denotes the order of the system §. Additionally, unless a distinction
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needs to be made, the same symbol will be used to denote a time domain signal and

its Laplace transform.
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CHAPTER II

REMEDIAL COMPENSATION STRATEGIES: GENERAL ARCHITECTURE,

GOAL AND MISMATCH SYSTEM

This chapter presents the architecture on which the remedial strategies for constrained

control are based. Moreover, the large signal performance goal is described, together

with an structure suitable for the achievement of this goal.

A. Definitions

The Introduction, it has been identified some of catastrophic, consequences of having

limited actuation and/or not imposing limitations on the performance output. This

section of the dissertation is used to make a precise mathematical definition of the

actuation and performance output limitation notions.

1. Saturation nonlinearity

In the case of actuator saturation, a control system commands an actuator to produce

a determined outcome, but with this outcome limited to lie within a restricted range

due to the physical nature of the actuator (e.g. finite capacity of the valve, compressor,

pump, etc.). The latter may even further constrain the rate of change of the actuator’s

outcome. This limited operating range of the actuator’s rate and amplitude can

be represented by a function that maps the actuator’s input (output of the linear

controller) into a range of capabilities according to the function illustrated in Fig. 1,

which is usually referred to as the saturation function or nonlinearity.

On the other hand, the case of a limited performance output may arise because

a certain process output may be required to lie between prespecified limits. Differ-

ent from the case of actuator saturation that is a inherently property of all control
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input signal

saturated signal

Fig. 1. Input/output representation of saturation phenomenon.

systems, limited performance output is a design requirement that must be taken into

account due to stringent product specifications, safety limits or environmental reg-

ulations. Having to constrain the outcome of a process corresponds to setting the

system performance output to lie within a specified (restricted) range. The satura-

tion function or nonlinearity depicted in Fig. 1 can also be used to map the system

performance output to the desired limited range of outcomes.

Throughout the whole manuscript, the block diagram in Fig. 2 will be employed

to represent the input signal u(t) and its saturated version sat(u(t)). From this

representation, it is evident that when the input signal u(t) is less than the saturation

limits the outcome of the saturation block is the same output signal u(t). However

when u(t) becomes too large, the only possible outcome is the limited saturated

version sat(u(t)).

Consider ǔ and −ǔ to be the maximal and minimal allowable saturation output,

the saturation function1 can be mathematically represented by:

sat(u) =





ǔ, if u ≥ ǔ

u, if − ǔ ≤ u ≤ ǔ

−ǔ, if u ≤ −ǔ.

(2.1)

In the case where the input signal u is a vector representing a finite number of

1The saturation we have considered here is called symmetric.
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u sat(  )u

Fig. 2. A signal u and its saturated version sat(u).

actuation channels or performance output variables, the vector saturation is composed

by separated saturation functions at each input channel. Then, ui denotes the i-th

element of the vector u for each i = 1, ··, nu and the vector saturation function:

φ(u) =




sat1(u1)

sat2(u2)

:

satnu(unu)




, (2.2)

where sati(·) is defined as in Eqn. 2.1 for all i, is called a decentralized saturation.

2. The unconstrained closed-loop system

A feature of a remedial compensation strategy is to act only when the saturation

nonlinearity is active, either due to actuator saturation or limited performance out-

put. Hence, remedial control is not responsible for the behavior of the controlled

system whenever the plant input or output does not saturate. This implies that an

original linear design in charge of regulating the behavior of the system must exist.

In fact, the behavior of this original closed-loop, which is not designed to account

for saturation nonlinearities, serves as a standard for remedial control, with remedial

control attempting to recover this performance output.

In Fig. 3, the closed-loop without constraints is represented in a block diagram

form. The uncertain linear plant is represented by P∆ and the linear controller is
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represented by G. The plant has a control input ul ∈ Rnu , an exogenous input

w ∈ Rnw , a measured output yl ∈ Rny , a performance output zl ∈ Rnz , an uncertainty

perturbation2 input ηl ∈ Rnm and an uncertainty perturbation output ζl ∈ Rnm . The

controller G has as its inputs the measured plant output yl and the exogenous input

w. Note that the exogenous input w may contain the prefiltered reference rf , among

other inputs (e.g. disturbances).

To be consistent with existing literature, some components of the closed-loop

system without saturation nonlinearities will have the following names:

Definition 2.1. For a given remedial control problem, and with the closed-loop

system without saturation nonlinearities as presented in Fig. 3, we use the following

notation:

• G is the unconstrained controller,

• the closed-loop system shown in Fig. 3 is the unconstrained closed-loop system,

• the internal state trajectory of the closed-loop shown in Fig. 3 is the uncon-

strained state response and the trajectories ul, zl and yl are the unconstrained

control input response, unconstrained performance output response, and the un-

constrained measured output response, respectively. C

An important assumption for all remedial compensation is the following:

Assumption 2.2. The unconstrained closed-loop system in Fig. 3 possess acceptable

and desired robust stability and performance properties.

2To be consistent with the notation, being the plant and the controller linear, the
uncertainty considered in this dissertation will also be linear.
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Fig. 3. Linear control design.

3. The constrained closed-loop systems

The remedial control problem arises when saturation has to be incorporated either in

the control input path or in the output performance path for the unconstrained closed-

loop representation in Fig. 3. Importantly, without any remedial control action, the

constrained closed-loop systems are obtained. Figures 4 and 5 represent the input

constrained and output constrained closed-loop systems, respectively.

Definition 2.3. For a given remedial control problem, and with the closed-loop

systems with saturation nonlinearities as presented in Figs. 4 and 5, we use the

following notation:

• the closed-loop system shown in Figs. 4 and 5 is the constrained closed-loop

system,

• the internal state trajectory of the closed-loop shown in Figs. 4 and 5 is

the constrained state response and the trajectories uc, zc and yc are the con-

strained control input response, constrained performance output response, and

the constrained measured output response, respectively. C

Remark 2.4. For the output constrained control problem, the unconstrained and
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Fig. 5. Output constrained closed-

loop system. Ideal process.

constrained responses coincide with the exception of the performance output response.

This is the case because, as observed from Fig. 5, the saturation nonlinearity does

not affect the feedback loop in the unconstrained closed-loop system. C

4. The remedial compensation augmented closed-loop system

The remedial strategies for the constrained control problem can be divided in two.

One of them, termed anti-windup compensation, which will enter into action when

there are input constraints, i.e. actuator rate and amplitude saturation. The other,

termed override compensation, will play a role only when the output is constrained,

i.e. the performance output is required to lie within a limited range.

Figures 6 and 7 present compensation architectures for anti-windup and override

control, respectively. The architectures employed in the two remedial strategies are

similar in their working principle: the activation of the remedial control action relies

on the activation of the saturation nonlinearity. The blocks Λ and Θ represent possibly

dynamic and linear systems. For these two compensation architectures for remedial

control, additional terminology needs to be defined.

Definition 2.5. With respect to Figs. 6 and 7, we use the following notation:
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• the system R represent either the Λ or Θ systems and is the remedial com-

pensator,

• the system GM is the modified unconstrained controller,

• the closed-loop in Figs. 6 and 7 are the remedial augmented closed-loop system,

and

• the internal state trajectory of the closed-loop in Figs. 6 and 7 is the remedial

augmented state response; the trajectories u, z and y are the remedial augmented

control input response, remedial augmented performance output response, and

the remedial augmented measured output response, respectively. C

a. The anti-windup augmented closed-loop system

Definition 2.6. With respect to Fig. 6, we use the following notation:

• the system Λ is the anti-windup compensator,

• the system GM is the modified unconstrained controller,

• the closed-loop in Fig. 6 is the anti-windup augmented closed-loop system,

and

• the internal state trajectory of the closed-loop is the anti-windup augmented

state response; the trajectories u, z and y are the anti-windup augmented control

input response, anti-windup augmented performance output response, and the

anti-windup augmented measured output response, respectively. C

b. The override augmented closed-loop system

Definition 2.7. With respect to Fig. 7, we use the following notation:
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Fig. 6. Anti-windup augmented closed-loop system.

• the system Θ is the override compensator,

• the system GM is the modified unconstrained controller,

• the closed-loop in Fig. 7 is the override augmented closed-loop system, and

• the internal state trajectory of the closed-loop is the override augmented state

response; the trajectories u, z and y are the override augmented control input

response, override augmented performance output response, and the override

augmented measured output response, respectively. C

B. General architecture for remedial compensation

The augmented architectures for remedial control may have to consider certain re-

strictions in terms of the available connections between the remedial compensator

and the unconstrained controller3. For example, it may be a possibility that the

remedial compensator senses sat(u) − u, or sat(z) − z, but only acts on the output

3The introduction of these connections needs an appropriate modification of the
unconstrained controller dynamics to allow for the remedial compensator outputs.
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Fig. 7. Override augmented closed-loop system.

of the unconstrained controller. Note, however, that the remedial compensation can

not only act on the output of the unconstrained controller but also on the input or

internal states of the unconstrained controller. Hence, depending on where the reme-

dial compensator affects the unconstrained controller, it is possible to define a variety

of remedial control configurations (external structure) and corresponding functional

relations (internal structure). Anti-windup control shows that this variety of con-

figurations sometimes may be a problem, as given the freedom of the anti-windup

compensator and unconstrained controller interconnection, many control configura-

tions have been proposed for the anti-windup control (see Introduction). Notably,

this presents a potential problem for the anti-windup control system designer as the

designer has to choose one configuration for the design4. With this in mind, a for-

mal classification of the variety of configurations is performed by defining the general

configuration for remedial control.

4In some cases, the implementation of the remedial compensator, e.g. con-
trol systems with analog controllers, does not provide much freedom in selecting
configurations
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1. External structure of remedial compensation: general configuration

The general configuration for remedial control, as stated by the name, is a generaliza-

tion of the type of interaction that the block representing the remedial compensator

has with the rest of the remedial augmented closed-loop system, see Figs. 6 and 7. In

order to define the general configuration, the two structural properties of the remedial

compensator are going to be analyzed, being, the selection of the inputs of R and the

selection of the locations where the outputs of R are injected.

a. Remedial compensator inputs

Figures 6 and 7 show that the input to the remedial compensator is the difference

between the saturation nonlinearity input and output, sat(u)− u or sat(z)− z. Nev-

ertheless, in general, this may not be the case. The remedial compensator could

also receive information provided by the unconstrained controller, or even informa-

tion coming directly from the plant. Keeping in mind that remedial control idea is

to act only when the saturation nonlinearities become active, for the remainder of

the dissertation, the only input to the remedial compensator R will be sat(u) − u

or sat(z) − z, as appropriate from the remedial control type considered. This is the

ideal selection because, thanks to the linearity of the remedial compensator, for zero

initial conditions, the local behavior of the remedial closed-loop system coincides with

behavior of the unconstrained closed-loop system.

b. Remedial compensator outputs

From Figs. 6 and 7, the outputs of the remedial compensator act directly on the

unconstrained controller. Hence, in order to have a precise characterization of the

general configuration for remedial control, the full dynamic equations of the uncon-
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control.

strained controller emphasizing the points of injection of the remedial compensator

outputs are written below. The unconstrained controller, modified to allow for reme-

dial control outputs, is termed modified unconstrained controller and may be defined

as:

GM = [ Gw Gy Gv ]





ẋg = Agxg + Bg,ww + Bg,yy + Bg,v1v1

u = Cgxg + Dg,ww + Dg,yy + Dg,v1v1 + Dg,v2v2

, (2.3)

where v1 and v2 are the remedial compensator outputs. Importantly, the exact loca-

tions where these outputs are injected can be specified by the blocks Bg,v1 , Dg,v1 and

Dg,v2 of Fig. 8. There are a variety of possible interactions that can be described

with these blocks, each one corresponding to a particular authority allowed to the

remedial compensator. Consequently, this representation gives generality to the re-

medial augmented closed-loop system presented in Figs. 6 and 7. For example, the

external anti-windup compensation [27] corresponds to Bg,v1 = Bg,y, Dg,v1 = Dg,y and

Dg,v2 = Inu . See Section II.B for the recovery of other existing configurations.
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2. Internal structure of remedial compensation

Once the external structure of remedial control has been specified, i.e. the inputs

and outputs of the remedial compensator are fixed, the (internal) functional relation

between such inputs and outputs has to be determined. The following classification

of internal structures, starting form the least complicated, will be useful to provide

clarity throughout this dissertation. In the following, consistent with the previous

section, we assume for simplicity that the only input to the remedial compensator

block is sat(u)− u, for anti-windup control, and sat(z)− z, for override control, and

that its two outputs are denoted by v1 and v2.

The two internal structures presented below correspond to the anti-windup com-

pensation case when substitutingR and r by Λ and u respectively, and to the override

control case when substituting R and r by Θ and z respectively.

a. Static linear remedial compensation

This compensation class constitutes the simplest remedial scheme. This corresponds

to having the following static gain implemented in the remedial block:

R =



R1

R2








v1 = DR1(sat(r)− r)

v2 = DR2(sat(r)− r)
, (2.4)

where DR1 and DR2 are linear gains or matrices which need to be chosen according to

suitable procedures. This static structure for remedial control looks very appealing

because of its simplicity. However, Grimm et al. [21] shows that in some cases this

selection cannot be carried out in a constructive way. Under this situation a more

complex structure is necessary.
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b. Dynamic linear anti-windup compensation

Dynamic remedial compensation arises naturally as the extension of the static case

allowing for the inclusion of dynamics. Mathematically, this inclusion of dynamics

can be represented as:

R =



R1

R2








ẋR = ARxR + BR(sat(r)− r)

v1 = CR1xR + DR1(sat(r)− r)

v2 = CR2xR + DR2(sat(r)− r)

, (2.5)

where the state xR ∈ RnR , i.e. nR ≥ 0. Evidently, when nR = 0, this zero-order reme-

dial anti-windup compensation corresponds to the static case. In all other cases, when

nR > 0, the matrices AR, BR, CR1 and CR2 constitute additional variables to be cho-

sen when designing the remedial compensator. Importantly, these additional variables

constitute extra degrees of freedom in the remedial compensation selection. Therefore,

as compared to static remedial compensation, dynamic remedial compensator suitable

solves a wider range of remedial problems. The case when the state xR has the same

size as the state of the plant will be called plant order remedial compensation. This

case will be specially important in Chapters V and VI where it can be shown that

setting the remedial compensator to be plant order allows for convenient remedial

compensation constructions that are useful for a wide class of systems.

C. Characterizing remedial compensation goals

In the previous sections we have characterized different families of remedial compen-

sators by presenting the general architecture for remedial compensation. Moreover,

we have presented a framework that enables the unification of all known (or possible)

remedial compensation schemes. In the following development of this dissertation,

given a particular external and internal structure, we will provide constructive algo-
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rithms for determining a remedial compensator which optimizes a certain performance

measure. Hence, the aim of this section is to characterize the choice of such perfor-

mance measures.

1. Basic goals of remedial compensation

a. Anti-windup compensation goals

The goal of anti-windup compensation was initially subjective, with a variety of goals

proposed, all related to reducing the deleterious effects of actuator saturation on

the system performance response. These goals were: to recover the unconstrained

controller output response [22], to recover the unconstrained closed-loop system per-

formance output response [29, 17, 23, 28, 30, 55] or to minimize a certain closed-loop

response that is deemed appropriate to capture the performance of the unconstrained

closed-loop system [20, 21]. If one recognizes that the spirit of anti-windup control

is to act in order to preserve the unconstrained closed-loop response, then one can

see that the unconstrained closed-loop provides the most desirable response of the

system. Hence, the ultimate goal of anti-windup design can be formulated as the

recovery of the unconstrained response.

Importantly, by having the real plant subject to input saturation, certain limita-

tions to this recovery task arise. This means that not all the unconstrained trajectories

can be recovered. Then, for clarity purposes, the unconstrained trajectories can be

classified as reproducible, tractable and untractable5 [56]. Note that reproducible tra-

jectories correspond to plant inputs such that ‖(ul − sat(ul))(·)‖2 = 0 and tractable

trajectories can be characterized as those plant inputs such that for any positive δ,

5Untractable trajectories arise when the actuators are undersize in relation to the
control goal.
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‖(ul − satδ(ul))(·)‖2 is finite. The δ-restricted saturation function, satδ(·), serves to

characterize all the tractable trajectories and is defined as:

satδu =





ǔ− δ, if u ≥ ǔ− δ

u, if − ǔ + δ ≤ u ≤ ǔ− δ

−ǔ + δ, if u ≤ −ǔ + δ.

(2.6)

Based on this L2 classification, the following properties of anti-windup compen-

sation can be formalized, as done in Grimm [56] and succinctly presented in Teel and

Kapoor [19], as follows:

Property 2.8. (Small signal preservation) The anti-windup closed-loop system is

said to guarantee small signal preservation if all the unconstrained trajectories such

that ul(t) = satδ(ul(t)) for all times t ≥ 0 (namely, such that the unconstrained plant

input never exceeds what would be the saturation limits) are exactly reproduced by the

anti-windup closed-loop system.

Property 2.9. (Tracking) The anti-windup closed-loop system is said to guarantee

tracking if for any unconstrained trajectory such that ‖(ul−satδ(ul))(·)‖2 is finite, the

corresponding anti-windup trajectory is such that ‖(zl − z)(·)‖2 is finite (where zl − z

is the difference between the unconstrained and anti-windup augmented performance

output).

Property 2.10. (Global internal stability) The anti-windup closed-loop system is

said to be globally BIBS stable (bounded input implies bounded state) if for any

bounded selection of external input (corresponding to an unconstrained trajectory),

the resulting anti-windup augmented response is bounded.

Property 2.11. (Local internal stability) The anti-windup closed-loop system is

said to be locally BIBS stable if for any bounded selection of external input w (corre-

sponding to an unconstrained trajectory) such that ‖w‖2 ≤ b and b > 0, the resulting
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anti-windup augmented response is bounded.

In summary, the three properties of anti-windup compensation can be defined as

i) preservation of the anti-windup closed-loop system’s response in the unconstrained

operating range if the system never saturates (small signal preservation), ii) guarantee

of steady-state tracking6 whenever input saturation is present and the unconstrained

response is recoverable at steady state (tracking), and iii) guarantee of global BIBS

stability for all the anti-windup trajectories.

b. Override compensation goals

The scope of this section is to characterize the override design objective in order to

define the override compensation problem. If one recognizes that the unconstrained

closed-loop response with constrained performance output provides the most desirable

response of the system, then the ultimate goal of override design can be formulated

as the recovery of this unconstrained response and the corresponding constrained

performance output. At this point, we are able to expand on the difference between

anti-windup compensation and override compensation. Anti-windup is employed to

act against the detrimental effects of input saturation (already present in the real

plant) whereas override is employed to force the real plant output to behave within

certain limits by including a saturation nonlinearity at the performance output. On

one side, we have the real plant subject to input saturation and whose effects we

want to get rid of and, on the other side, we have the real plant subject to output

saturation and whose effects we want to accomplish.

The output constrained problem defined in Fig. 5, whose solution is the override

6The tracking property ensures steady-state tracking, this is the response of the
anti-windup closed-loop system converges asymptotically to the response of the un-
constrained system (in an L2 sense) whenever the latter is recoverable at the steady
state.
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compensation in Fig. 7, does not consider any limitations on the actuation of the

system, hence we can guarantee that all the unconstrained trajectories, including the

constrained performance output, are either reproducible or tractable7. Similar to the

anti-windup case, reproducible trajectories correspond to plant performance outputs

such that ‖(zl − sat(zl))(·)‖2 = 0 and tractable trajectories can be characterized as

those plant performance outputs such that ‖(zl − sat(zl))(·)‖2 is finite.

On the basis of these L2 classification of trajectories, the following properties

of override compensation can be formalized, as done in Grimm [56] and succinctly

presented in Teel et al. [19] for anti-windup compensation, as follows:

Property 2.12. (Small signal preservation) The override closed-loop system is said

to guarantee small signal preservation if all the unconstrained trajectories such that

zl(t) = sat(zl(t)) for all times t ≥ 0 (namely, such that the unconstrained plant

output never exceeds what would be the saturation limits) are exactly reproduced by

the override closed-loop system.

Property 2.13. (Tracking) The override closed-loop system is said to guarantee

tracking if for any unconstrained trajectory such that ‖(zl− sat(zl))(·)‖2 is finite, the

corresponding override trajectories are such that ‖(sat(zl)− z)(·)‖2 and ‖(yl− y)(·)‖2

are finite (where sat(zl)− z and yl−y are the differences between the constrained and

override augmented plant outputs).

Property 2.14. (Global internal stability) The override closed-loop system is said

to be globally BIBS stable (bounded input implies bounded state) if for any bounded

selection of external input (corresponding to an unconstrained trajectory), the resulting

override augmented response is bounded.

Property 2.15. (Local internal stability) The override closed-loop system is said to

7Both reproducibility and tractability characteristics are defined here with respect
to the saturation nonlinearity at the plant performance output.
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be locally BIBS stable if for any bounded selection of external input w (corresponding

to an unconstrained trajectory) such that ‖w‖2 ≤ b and b > 0, the resulting override

augmented response is bounded.

In summary, the three properties of override compensation can be defined as

i) preservation of the override closed-loop system’s response in the unconstrained

operating range if the system never saturates (small signal preservation), ii) guarantee

of steady-state tracking whenever output saturation is present and the unconstrained

response is recoverable at steady state (tracking), and iii) guarantee of global BIBS

stability for all the override trajectories.

c. Basic goals

The combination of the three properties listed above, for both anti-windup compen-

sation and override compensation, will define the main objectives of remedial aug-

mentation. For the rest of the dissertation, these three properties will be called basic

goals, according to the definition below.

Property 2.16. (The global basic properties) The remedial closed-loop system is

said to guarantee the global basic properties if

1. it is well-posed (i.e. all the signals are well-defined),

2. it guarantees the small signal preservation property,

3. it guarantees the tracking property, and

4. it is globally BIBS stable. C

Property 2.17. (The local basic properties) The remedial closed-loop system is

said to guarantee the local basic properties if

1. it is well-posed (i.e. all the signals are well-defined),
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2. it guarantees the small signal preservation property,

3. it guarantees the tracking property, and

4. it is locally BIBS stable. C

2. Performance measures for remedial compensation

The basic properties of a remedial closed-loop system, presented in the preceding

section, provide for global BIBS stability (limited to stable plants) or local BIBS sta-

bility (applicable to unstable plants) but considering only qualitative performance.

To define the design problem, a suitable performance measure can be chosen quan-

tifying the difference in performance response and a remedial compensator designed

to optimize/modify this measure.

a. Anti-windup compensation

A variety of performance measures can be selected for anti-windup design, each one

of them related to a specific anti-windup objective. Nevertheless, a careful look into

the anti-windup problem reveals that the finite L2 gain8 from ul to zl(·) − z(·) is a

natural performance measure. This takes place because, on the basis of the small

signal preservation property, all anti-windup compensators that guarantee Property

2.8 will provide the same response and hence we can rule out the unconstrained

closed-loop system and consider only the effect of ul whenever it goes beyond the

8Other metrics have been proposed more recently, e.g. Hu et al. [32] proposes
a nonlinear L2 gain that deals with the input dependence of the performance lev-
els. This nonlinear gain helps to reduce the conservatism on the treatment of the
nonlinearity and hence provide a better quantification of performance, and more im-
portantly relative performance between designs, permitting better optimization of the
anti-windup closed-loop system performance. Nevertheless, the L2 metric is simple
to use and is therefore commonly employed.
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saturation limits. Moreover, the quantification of performance will be given by the

mismatch between the unconstrained output and anti-windup output. In fact, the

ideal situation occurs when the anti-windup output response perfectly matches the

unconstrained one. However, most of the time this is impossible and the most we

can aim for is to minimize their difference. The smaller the difference the better the

performance of the anti-windup closed-loop.

Mathematically, the quantification of the performance (level of performance) can

be given by the smallest constant γ such that (given zero initial conditions):

‖zl(·)− z(·)‖2 ≤ γ‖ul‖2. (2.7)

b. Override compensation

A previously employed selection of performance measure for the override closed-loop

system, in Fig. 7, was the L2 gain of the nonlinear system from the exogenous input

w to the performance output z, when z represents an error signal. This error signal

can be composed of the mismatch between the input and the output of the saturation

nonlinearity in the override augmentation system, and the mismatch between the

unconstrained measured output response and the corresponding override response

[52]. Nevertheless, a careful look into the override problem reveals that the output

constrained system in Fig. 5 presents the ideal signals for override compensation

performance evaluation. Hence, considering the L2 gain from sat(zl)−zl to sat(zl)−z

and yl − y it is a natural performance measure.

Based on the basic properties of override control, all unconstrained responses that

do not activate the saturation nonlinearity should be disregarded when evaluating

the performance of an override design. This is because all override compensators

guaranteeing the Property 2.12 will provide the same responses whenever saturation
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is not active. Moreover, the mismatch between the output constrained responses and

the override responses should be taken into account to evaluate the performance.

Given that the output constrained system responses generate the target responses

for the override compensation problem, the performance can be formally measured in

terms of how small the deviation of the override performance output




z

y


 from the

ideal constrained performance output




sat(zl)

yl


 is. The smaller this deviation is,

the better the override compensation responses match the ideal constrained responses.

Mathematically, the quantification of the level of performance can be determined

by the smallest constant γ, such that (given zero initial conditions):

∥∥∥∥∥∥∥




(sat(zl)− z)(·)
(yl − y)(·)




∥∥∥∥∥∥∥
2

< γ ‖(sat(zl)− zl)(·)‖2. (2.8)

c. The finite unconstrained response recovery gain for remedial compensation

The following definition is given by Grimm [56] and here is restated for completeness

of the presentation.

Definition 2.18. Given a positive constant γ and a decentralized saturation function

sat(·), the remedial closed-loop system is said to have a global finite unconstrained

response recovery gain smaller than γ if for all possible selections of the input function

w(·), the solutions of the unconstrained (or output constrained) closed-loop system

and of the remedial closed-loop system, starting with the same initial conditions in the

plant and controller and zero initial conditions in the remedial compensator, satisfy

the bound in Eqn. 2.7 (or 2.8). C

Definition 2.19. Given a positive constant γ and a decentralized saturation function

sat(·), the remedial closed-loop system is said to have a local finite unconstrained



40

response recovery gain smaller than γ if for all possible selections of the input function

w(·) such that ‖w‖2 ≤ b for a positive b, the solutions of the unconstrained (or output

constrained) closed-loop system and of the remedial closed-loop system, starting with

the same initial conditions in the plant and controller and zero initial conditions in

the remedial compensator, satisfy the bound in Eqn. 2.7 (or 2.8). C

For the case of anti-windup compensation, a finite gain to quantify the uncon-

strained response recovery was also employed [30, 56]. Indeed, the performance mea-

sure employed [30, 56] enforces a finite L2 gain from the signal satδ(ul) − ul to the

output z − zl, i.e. ‖z(·) − zl(·)‖2 ≤ γ‖satδ(ul(·)) − ul(·)‖2. Interestingly, this quan-

tification of performance corresponds to a strengthening of the tracking property in

Definition 2.9. In following chapters, we will show why we consider our performance

measure more suitable in representing the mismatch between the unconstrained out-

put and the anti-windup output responses.

D. Setting for remedial compensation: mismatch system

An effective way to guarantee the properties of Definitions 2.16. and 2.17 is to con-

sider the system describing the difference between the unconstrained (or output con-

strained) system response and the remedial system response, and modify the proper-

ties of this system using the remedial compensator. This difference system is employed

herein and termed the mismatch system9.

9This definition is consistent with Grimm et al. [30]. It should however be noted
that this mismatch system has been considered by previous researchers in anti-windup
compensation, both implicitly [19, 22, 23, 24, 25, 31], and explicitly [26, 28].



41

1. Anti-windup compensation

a. Amplitude saturation

Figure 9 is equivalent to Fig. 6 and shows a cascade connection of the unconstrained

closed-loop system and the mismatch system for anti-windup compensation. In par-

ticular, the mismatch system W∆ in Fig. 9 is presented in an LFT representation.

The detailed description of the mismatch system components is shown in Fig. 10.

For this mismatch system additional terminology needs to be defined.

Definition 2.20. For a given anti-windup problem, when the closed-loop with plant

input saturation has the form in Fig. 10, we use the following notation:

• the system W∆ is the mismatch system for anti-windup compensation,

• the internal state trajectory of the system W∆ is the mismatch state response;

the trajectories ud, zd, and ηd are the mismatch control input response, mis-

match performance output response and the mismatch uncertainty perturbation

response, respectively and

• the function ψ : Rnu 7→ Rnu is defined10 as ψ(u) = u− φ(u), ∀u ∈ Rnu . C

Notably, the case of linear plant uncertainty permits the decomposition of the

mismatch system into a nonlinear feedback loop (ψ(·) in positive feedback with T u
n )

and a disturbance filter (PzuS
u
n) [57], as shown in Fig. 11 and defined in Eqns. 2.10

and 2.12 respectively. A graphical interpretation of this decomposition can also be

given, as in Weston and Postlethwaite [26] where the closed-loop transfer functions

of the mismatch system, T u
n and PzuS

u
n, are given in terms of a parameter M for the

nominal plant case. Other researchers have also employed the mismatch system for

10With the function φ(·) corresponding to the saturation nonlinearity, the function
ψ(·) corresponds to the deadzone nonlinearity.
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Fig. 10. Detailed representation of the mismatch system for anti-windup compensa-

tion.

synthesis [22, 23], but this was limited to an algebraic presentation and hence the

geometric interpretation was not clear.

The loop transmission around the nonlinearity Lu
n [22, 25], provides a very con-

venient representation of the mismatch system and corresponding transfer functions.

Additionally, the mismatch transfer functions can also be defined as done in Miyamoto

and Vinnicombe [23], where a Q parameter and coprime factorizations, U and V , of

the unconstrained controller were employed. Following, Lu
n, Q, U and V are employed

to define the closed-loop transfer functions of the mismatch system. Importantly, Q,
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(linear uncertainty case): nonlinear loop and disturbance filter.

U and V will be explicitly defined in Chapter III.

Lu
n = − u

φ(u)
= Ṽ (I +GyPyu− Ṽ −1) = (Ṽ + Ṽ GyPyu− Inu) = (QV +QV GyPyu− Inu),

(2.9)

T u
n = (Inu + Lu

n)−1Lu
n = Inu − (Inu + GyPyu)

−1Ṽ −1 = Inu − (Inu + GyPyu)
−1V −1Q−1,

(2.10)

Su
n = (Inu + Lu

n)−1 = (Inu + GyPyu)
−1V −1Q−1, (2.11)

PzuS
u
n = Pzu(Inu + Lu

n)−1 = Pzu(Inu + GyPyu)
−1Ṽ −1 = Pzu(Inu + GyPyu)

−1V −1Q−1,

(2.12)

where:

T u
n + Su

n = Inu . (2.13)

Here T u
n , Su

n and PzuS
u
n can be defined as the corresponding closed-loop transfer

function matrices for the mismatch system11. Note that Eqns. 2.10 and 2.12 are

equivalent to Eqns. 3 and 5 in Miyamoto and Vinnicombe [23]. Furthermore, Eqn.

2.10 is equivalent to Eqn. 10.9 in Lurie [25], without the coprime factorizations.

11Note that the superscript of the plant has been dropped, and the reference to
uncertain or nominal plant will be clarified whenever necessary.
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Fig. 12. Model for rate limit (RL). Interconnections for anti-windup compensation.

More recently, with the objective of recovering robustly the unconstrained response,

the mismatch structure was also used in an LFT framework [30].

Remark 2.21. When the perturbation uncertainty is nonlinear, the mismatch system

is affected by the exogenous input w through ηl. This, however, is not the case for

linear uncertainty where the exogenous input plays no role in the definition of the

mismatch system. C

b. Rate saturation

The rate saturation problem commonly is also important in most systems, most

notably in aerospace applications, and hence its practical importance. Different from

amplitude saturation, the rate saturation case has a variety of models to represent

the phenomenon. Here, for analysis purposes, the rate saturating actuator with finite

bandwidth model [58] will be considered. This model of rate saturation is presented

in Fig. 12 as RL, where H is a gain matrix.

The anti-windup augmented closed-loop system for rate saturation consists of the

construction of Fig. 6, but with the appropriate substitution of the saturation non-

linearity for the rate limit model RL presented in Fig. 12. Note the correspondence

among the signals u, uc and v for the interconnection. The two seemingly different ar-
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chitectures for amplitude and rate saturation anti-windup compensation can be made

equivalent by conveniently absorbing the rate limit dynamics and the integrator into

the plant and unconstrained controller, respectively. Then, by redefining the plant

and unconstrained controller as:


Pr

yu

Pr
yu


 =



Pyu

1
s

Pzu
1
s


 , (2.14)

Gr
y = (Inu + H

1

s
)−1HGy, (2.15)

we are able to find a mismatch representation, of the anti-windup compensation, for

the rate saturation problem, as presented in Figs. 9 and 11, and defined in Eqns. 2.9

to 2.13. Interestingly, provided the plant is exponentially stable, the redefined plant

becomes marginally stable due to the presence of the integrator.

2. Override control

Figure 13 is equivalent to Fig. 7 and shows a cascade connection of the unconstrained

closed-loop system and the mismatch system for override compensation. In particular,

the mismatch system, in Fig. 13, is presented in an LFT representation. The detailed

description of the mismatch system components is presented in Fig. 14. For this

mismatch system additional terminology needs to be defined.

Definition 2.22. For a given override problem, when the closed-loop with plant

output saturation has the form shown in Fig. 14, we use the following notation:

• the system W∆ is the mismatch system for override compensation,

• the internal state trajectory of the system W∆ is the mismatch state response;

the trajectories zd, yd, and zd are the mismatch performance output response,

mismatch measured output response and the mismatch constrained performance
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Fig. 14. Detailed representation of the mismatch system for override compensation.

output response,

• the function ψ : Rnz 7→ Rnz is defined as ψ(r) = r − φ(r), ∀r ∈ Rnz , and

• the function ϕ : Rnz 7→ Rnz is defined as ϕ(z − zl, zl) = ψ(z)− ψ(zl), ∀z, zl ∈
Rnz . C

This mismatch structure is not a new idea, it has been proposed and considered

by several researchers within the anti-windup literature [57]. Notably, for the case of

linear plant uncertainty, the mismatch system presented in Fig. 13 can be decomposed
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into a nonlinear feedback loop (ϕ(·, zl) in positive feedback with T z
n) and a disturbance

filter (F y
n ), as shown in Fig. 15. For this representation of the mismatch system, the

following transfer function matrices are defined:

Lz
n = − z

φ(z)
= (Inz +PzuSGvΘ)−1−Inz = (V −1

zu Q−1−PzuSGyPyuGvΘ)−1−Inz , (2.16)

Sz
n = (Inz + Lz

n)−1 = Inz + PzuSGvΘ = V −1
zu Q−1 − PzuSGyPyuGvΘ, (2.17)

T z
n = (Inz + Lz

n)−1Lz
n = −PzuSGvΘ = Inz − V −1

zu Q−1 + PzuSGyPyuGvΘ, (2.18)

F y
n = −PyuSGvΘ. (2.19)

where:

T z
n + Sz

n = Inz . (2.20)

Here Lz
n is the loop transmission around the saturation nonlinearity, similar to the

anti-windup compensation case [22, 25]. Moreover, T z
n , Sz

n and F y
n are the corre-

sponding closed-loop transfer function matrices for the mismatch system, and S =

(Iny +GyPyu)
−1. Note that T z

n , Sz
n and F y

n can also be defined in terms of a parameter

Q and coprime factors of the plant, Uzu and Vzu. In Chapter III, the corresponding

Q, Uzu and Vzu will be explicitly defined.
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CHAPTER III

STUDY OF REMEDIAL COMPENSATION ARCHITECTURES

This chapter presents a unified framework for the study of linear systems subject to

control input and plant output nonlinearities using remedial compensation schemes.

A. Conditioning of the unconstrained controller and plant: parameterization

(H1, H2, Q)

The effect of the remedial compensator on the remedial closed-loop dynamics can be

interpreted as a conditioning of either the unconstrained controller, in the anti-windup

compensation case, or the plant, in the override compensation case. Importantly,

when defining the remedial action in this setting, a general framework for studying

remedial control design arises. This framework allows for the unification of all known

linear remedial control schemes in terms of three parameters (H1, H2, Q). Recall that

this idea was previously employed by Kothare et al. [17] for the study of linear sys-

tems subject to control input nonlinearities and working under anti-windup schemes.

However, by only considering the parameterization (H1, H2, I), the work of Kothare

left out all dynamic anti-windup compensation schemes. In this sense, the param-

eterization (H1, H2, Q) here described can be considered an extension of Kothare’s

work as it can include both static and dynamic anti-windup compensation schemes

via the Q parameter. Furthermore, an analysis under the general framework given by

the (H1, H2, Q) parameters can also be insightful in the override compensation case,

as shown in the next sections.
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1. Anti-windup compensation

This section presents a generalization of the static anti-windup framework for the

study of systems subject to control input nonlinearities [17]. This general framework,

that permits dynamic anti-windup compensation, is further improved by considering

that the anti-windup compensator output v1 acts on either the unconstrained con-

troller state or unconstrained controller input, and that the anti-windup compensator

output v2 acts on the unconstrained controller output. This is achieved through the

freedom of Bg,v1 , Dg,v1 and Dg,v2 in Eqn. 2.3, see also Figs. 6 and 8. Placing this

general architecture for anti-windup compensation into an analogous framework to

that in Kothare et al. [17] gives the following conditioned controller Ĝ:

Ĝ(s) =

[
Ĝy Gw

]
, (3.1)

where:

Ĝy(s) = [ Ũ(s) Inu − Ṽ (s) ], (3.2)

as seen in Fig. 16 (see also Miyamoto and Vinnicombe [23]), and:

Ṽ (s) = Q(s)V (s), (3.3)

Ũ(s) = Q(s)U(s), (3.4)

V (s) =




Ag − H̃1Cg −H̃1

H̃2Cg H̃2


 , (3.5)

U(s) =




Ag − H̃1Cg Bg,y − H̃1Dg,y

H̃2Cg H̃2Dg,y


 , (3.6)

H̃1 = D̃Λ1H̃2, (3.7)

H̃2 = (Inu + D̃Λ2)
−1, (3.8)
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D̃Λ1 = Bg,v1DΛ1 , (3.9)

D̃Λ2 = Dg,v1DΛ1 + Dg,v2DΛ2 , (3.10)

To define Q(s) we require the following additional definitions:

Λ1(s) = Λ1s(s) + DΛ1 , (3.11)

Λ2(s) = Λ2s(s) + DΛ2 . (3.12)

Λis(s) =




AΛ BΛ

CΛi
0


 , i = {1, 2}, (3.13)

C(s) =




Ag − H̃1Cg Bg,v1

H̃2Cg 0


 . (3.14)

From these definitions one can derive:

Q(s) = (Inu + V Dg,v1Λ1s + CΛ1s + V Dg,v2Λ2s)
−1. (3.15)

The transfer function matrices U and V correspond to minimal realizations of
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the left coprime factors of Gy [17], where:

Gy(s) = V (s)−1U(s), (3.16)

for any H̃1 and H̃2, provided H̃2 is invertible.

The above description of the anti-windup closed-loop system has the static con-

figuration described in Kothare et al. [17] as a degenerate case, for which Dg,v1 = 0

and Bg,v1 = Ing , such that the feedback location of Λ1 is the unconstrained controller

states, and Λ1s = Λ2s = 0, thus Q = Inu . Therefore the above description can be seen

to be a generalization of the configuration in Kothare et al. [17] allowing for higher

order coprime factorizations of the unconstrained controller Gy and a higher order for

the subsequent conditioned controller Ĝy. Hence this permits dynamic anti-windup

compensation via a dynamic Q, combined with either unconstrained controller input

or unconstrained controller state feedback of Λ1. This presentation for the general

configuration for anti-windup compensation is equivalent to Miyamoto and Vinni-

combe [23], where Q,Q−1 ∈ RH∞, but with Q explicitly parameterized in the above

description in terms of Λ1 and Λ2 and the specific feedback location for Λ1.

Based on the proposed general configuration for anti-windup compensation, an

anti-windup compensator will be termed static if Q is static (i.e. Q = Inu), and

conversely dynamic if Q is dynamic. In this way, a static anti-windup compensator

adds no additional states to the anti-windup closed-loop system1, while a dynamic

anti-windup compensator does add additional states, being those introduced by Λ.

The latter can also be seen from the increase in the order of Ṽ and Ũ relative to V

and U in Eqns. 3.3 and 3.4 and consequently an increase in order of the conditioned

1It is important to distinguish this from the anti-windup static synthesis problem,
where only the elements of a gain matrix are modified in the design and the resulting
anti-windup compensator may be static or dynamic, depending on the remaining
elements in the anti-windup compensator.
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controller Ĝ (note the cancelation between zeros of Q and poles of V and U).

2. Override compensation

For anti-windup compensation, Kothare et al. [17] presented a general framework that

unified all the static anti-windup configurations and Villota et al. [57] presented its

extension via a dynamic Q parameter to account for dynamic anti-windup compensa-

tion. Importantly, not a similar study has been performed for override compensation.

The general configuration for override compensation here considered is similar to

that in the anti-windup case but accommodated accordingly for the override problem

here discussed. This configuration permits static and dynamic override compensation,

with v1 going to either the unconstrained controller state or unconstrained controller

input, and v2 going to the unconstrained controller output. The latter achieved

through the freedom of Bg,v1 , Dg,v1 and Dg,v2 in Eqn. 2.3, see also Figs. 7 and 8.

Placing this general configuration for override compensation in a framework similar

to Villota et al. [57], gives the following conditioned plant P̂ :

P̂(s) =



P̂zu Pzw

P̂yu Pyw


 , (3.17)

where:

P̂zu(s) = [ Ũzu Inz − Ṽzu ], (3.18)

P̂yu(s) = [ Ǔyu PyuGvΘṼzu ], (3.19)

as seen in Fig. 17, and:

Ṽzu(s) = Q(s)Vzu(s), (3.20)

Ũzu(s) = Q(s)Uzu(s), (3.21)

V̌∗u(s) = V̄∗u(s)Q̄(s), (3.22)
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Ǔ∗u(s) = Ū∗u(s)Q̄(s), (3.23)

Vzu(s) =




Ap − H̃1Cp,z −H̃1

H̃2Cp,z H̃2


 , (3.24)

Uzu(s) =




Ap − H̃1Cp,z Bp,u − H̃1Dp,zu

H̃2Cp,z H̃2Dp,zu


 , (3.25)

V̄∗u(s) =




Ap −Bp,uH̄1 Bp,uH̄2

−H̄1 H̄2


 , (3.26)

Ū∗u(s) =




Ap −Bp,uH̄1 Bp,uH̄2

Cp,∗ −Dp,∗H̄1 Dp,∗uH̄2


 , (3.27)

H̃1 = Bp,uD̃ΘH̃2, (3.28)

H̃2 = (Inz + Dp,zuD̃Θ)−1, (3.29)

H̄1 = H̄2D̃ΘCp,z, (3.30)

H̄2 = (Inu + D̃ΘDp,zu)
−1, (3.31)

D̃Θ = Dg,v1DΘ1 + Dg,v2DΘ2 , (3.32)

where ∗ substitutes either y or z. To define Q(s) and Q̄(s) we require the following

extra definitions:

Θ1(s) = Θ1s(s) + DΘ1 , (3.33)

Θ2(s) = Θ2s(s) + DΘ2 , (3.34)

Gv1(s) = Gv1s(s) + Dg,v1 , (3.35)

Θis(s) =




AΘ BΘ

CΘi
0


 , i = {1, 2}, (3.36)
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Fig. 17. Conditioned plant P̂ .

Gv1s(s) =




Ag Bg,v1

Cg 0


 . (3.37)

From these definitions one can derive:

Q(s) = (Inz + UzuDg,v2Θ2s + UzuDg,v1Θ1s + UzuGv1sΘ1)
−1, (3.38)

Q̄(s) = (Inu + Dg,v2Θ2sŪzu + Dg,v1Θ1sŪzu + Gv1sΘ1Ūzu)
−1. (3.39)

Similarly to Villota et al. [57], the transfer function matrices Uzu and Vzu (Ū∗u

and V̄∗u) correspond to minimal realizations of the left (right) coprime factors of, in

this case, Pzu (P∗u), where:

Pzu(s) = V −1
zu (s)Uzu(s), (3.40)

P∗u(s) = Ū∗u(s)V̄ −1
∗u (s), (3.41)

for any H̃1 and H̃2 (H̄1 and H̄2) provided H̃2 (H̄2) are invertible.

From Fig. 7, it is easy to note that the plant perceives the effect of override com-
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pensation as the unconstrained controller does it in the case of dynamic conventional

anti-windup configuration for controller input described in Villota et al. [57]. This

takes place because with the construction of Fig. 7 it is not possible to have inter-

nal modification nor affect the output of the plant dynamics (physical system). The

limitations of this construction are manifested in the parameters H̃1 and H̃2 (H̄1 and

H̄2) in Eqns. (3.28) and (3.29) (Eqns. (3.30) and (3.31)) which are not independent,

as they are both defined by D̃Θ.

On the basis of the presented general configuration for override compensation,

for the left (right) plant coprime factorizations, the override compensator is termed

static if Q (Q̄) is either static (i.e. Q = Inz , Q̄ = Inu) or dynamic with nQ = np + ng

(nQ̄ = np + ng) (i.e. Q = (I + UzuGv1sDΘ1)
−1, Q̄ = (I + Gv1sDΘ1Ūzu)

−1), and

conversely dynamic if Q (Q̄) is dynamic with nQ = np + nΘ (nQ̄ = np + nΘ) or nQ =

np+ng +nΘ (nQ̄ = np+ng +nΘ). To be more precise, for static override compensation

the order of Ṽzu and Ũzu (V̌∗u and Ǔ∗u) can be either np or np + ng whereas for

dynamic override compensation the order can be either np + nΘ or np + ng + nΘ

(note the cancelation between zeros of Q (Q̄) and poles of Vzu and Uzu (V̄∗u and

Ū∗u)). This is different from the anti-windup compensation case, because, for override

compensation, the unconstrained controller dynamics can be embedded in Q (Q̄)

trough Bg,v1 even when the override compensator Θ is static. In other words, what

we see in override compensation is that the unconstrained controller dynamics can be

employed for “modification” of the plant dynamics whenever the override compensator

output v1 is fed back to the unconstrained controller states or input. Notably, the

increase in order of Ṽzu and Ũzu (V̌∗u and Ǔ∗u) produces an increase in order of the

conditioned plant P̂ . However, this increase in order of the coprime factors is only

possible with dynamic override compensation, i.e. Θ adds its states to the override

closed-loop system (note the cancelation between zeros of Q (Q̄) and poles of G in
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closed-loop).

B. Configurations for remedial compensation: study based on parameterization

(H1, H2, Q)

We will now discuss several linear remedial compensation schemes and will show them

in the framework developed in the preceding section.

1. Anti-windup compensation

a. Full-authority feedback anti-windup augmentation

This configuration corresponds to the case when the anti-windup compensator output

v1 is fed back to the unconstrained controller states and output [27]. Consequently

Bg,v1 = Ing , Dg,v1 = 0 and Dg,v2 = Inu . Notably, the configuration employed in

Grimm et al. [30] (also Grimm et al. [21] for nominal design) is this configuration.

The corresponding Q for dynamic anti-windup compensation is given by:

Q(s) = (Inu + V Λ2s + CΛ1s)
−1, (3.42)

where:

C(s) =




Ag − H̃1Cg Ing

H̃2Cg 0


 , (3.43)

H̃1 = DΛ1H̃2, (3.44)

H̃2 = (Inu + DΛ2)
−1. (3.45)

Note that for this configuration, H̃1 and H̃2 are independent, as they are defined by

DΛ1 and DΛ2 , which can be assigned independently.
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b. External feedback anti-windup augmentation

This configuration corresponds to the case in which the anti-windup compensator

output v1 can modify the input and output of the unconstrained controller [27].

Consequently Bg,v1 = Bg,y, Dg,v1 = Dg,y and Dg,v2 = Inu . The corresponding Q, after

simplification using C below, is:

Q(s) = (Inu + V Λ2s + UΛ1s)
−1, (3.46)

where:

C(s) =




Ag − H̃1Cg Bg,y

H̃2Cg 0


 = U − V Dg,y, (3.47)

H̃1 = Bg,yDΛ1H̃2, (3.48)

H̃2 = (Inu + Dg,yDΛ1 + DΛ2)
−1. (3.49)

For this configuration H̃1 and H̃2 are also independent, as they are defined by DΛ1

and DΛ2 , which are independent.

c. Generic anti-windup configuration

The generic anti-windup configuration, as defined in Edwards and Postlethwaite [24]

(and see also Wu and Jayasuriya [55] for applications), employs only anti-windup

feedback to the unconstrained controller output, hence Bg,v1 = 0, Dg,v1 = 0. Conse-

quently, the corresponding Q for dynamic anti-windup compensation is:

Q(s) = (Inu + V Λ2s)
−1 = (I + H̃2Λ2s)

−1, (3.50)

where:

V (s) =




Ag 0

H̃2Cg H̃2


 = H̃2, (3.51)
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U(s) =




Ag Bg,y

H̃2Cg H̃2Dg,y


 = H̃2G(s), (3.52)

H̃1 = 0, (3.53)

H̃2 = (Inu + DΛ2)
−1. (3.54)

Note that for this configuration only H̃2 is free to be defined via DΛ2 . Subsequently,

there is no freedom to change the poles of V or U . Additionally, V is effectively static

(assuming zero initial conditions for its states), as its states are uncontrollable.

d. Dynamic conventional anti-windup configuration

Within this type of configuration, we can mention those that adopt a philosophy

similar to that of the anti-reset windup. In this case, the anti-windup compensator

output v = v1 can only modify either the states or the input of the unconstrained

controller and hence Dg,v2 = 0.

Dynamic conventional anti-windup configuration for unconstrained controller state.

Here the configuration scheme considered is similar to the observer technique but

with a dynamic feedback compensation instead of the static one [59]. The anti-

windup compensator output v = v1 is fed back to the unconstrained controller states,

therefore Bg,v1 = Ing and Dg,v1 = 0. The corresponding dynamic Q is given by:

Q(s) = (Inu + CΛ1s)
−1, (3.55)

where:

C(s) =




Ag − H̃1Cg Ing

H̃2Cg 0


 , (3.56)

H̃1 = DΛ1 , (3.57)
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H̃2 = Inu . (3.58)

Note that this configuration only allows modification of H̃1 through DΛ1 .

Dynamic conventional anti-windup configuration for unconstrained controller input.

Here a dynamic representation of the (high gain) conventional anti-windup config-

uration proposed in Doyle et al. [15] as presented in Kothare et al. [17] (see also

Lurie [25]) is considered. The anti-windup compensator output v = v1 modifies the

input of the unconstrained controller, therefore Bg,v1 = Bg,y and Dg,v1 = Dg,y. This

corresponds to Q defined as follows:

Q(s) = (Inu + UΛ1s)
−1, (3.59)

where:

C(s) =




Ag − H̃1Cg Bg,y

H̃2Cg 0


 = U − V Dg,y, (3.60)

H̃1 = Bg,yDΛ1H̃2, (3.61)

H̃2 = (Inu + Dg,yDΛ1)
−1. (3.62)

Note that for this configuration, H̃1 and H̃2 are dependent, as they are both defined

by DΛ1 .

Remark 3.1. High gain conventional anti-windup configuration [15]. Complemen-

tary to the work presented in Kothare et al. [17] for the conventional anti-windup

structure, here the version presented in Doyle et al. [15] is considered. The design

with this configuration starts with some coprime factorization of the unconstrained

controller Gy = V −1
o Uo and proceeds such that the associated loop transfer matrix

LX = V −1
o X has gain and bandwidth much higher than of L = GyPyu, where X is

the (high) gain to be designed. Let the coprime factors Vo and Uo be defined by H̃1o
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and H̃2o. Then designing for X corresponds to the choices:

H̃1 = H̃1oH̃
−1
2o X(Inu + H̃−1

2o X)−1, (3.63)

H̃2 = (Inu + H̃−1
2o X)−1. (3.64)

Note that this is a static anti-windup configuration, Q = Inu , as X is not adding

dynamics to the anti-windup closed-loop system. Also note that H̃1 and H̃2 are

dependent, as both parameters are defined by X. C

e. Weston and Postlethwaite configuration (W&P)

The previous configurations were all natural variations on the general configuration

for anti-windup compensation, in that they are all based on a coprime factorization

of the unconstrained controller. However, more recent methods employed for anti-

windup compensation have used configurations based on a coprime factorization of the

nominal plant [29, 19, 26, 28]. Here the latter are related to the general configuration

for anti-windup compensation.

The W&P configuration [26] (and extension [60]) is characterized by the anti-

windup compensator being defined in terms of a single transfer function matrix M̂(s)

and the nominal plant Po
yu (see Fig. 6). This anti-windup compensator modifies the

input of the unconstrained controller, and therefore Bg,v = Bg,y and Dg,v = Dg,y. The

corresponding elements Λ1 and Λ2 of the anti-windup compensator are shown below:

Λ1(s) = Po
yu(Inu + Λ2) = Po

yuM̂, (3.65)

Λ2(s) = M̂ − Inu , (3.66)

where M̂ = M̂s + DM̂ is a transfer function that is bi-proper for well-posedness of

the system. From these definitions one can derive the following Q (after cancelations
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based on C below):

Q(s) = ((V + UPo
yu)M̂)−1, (3.67)

where the definition Po
yu = Po

yu,s + Dp,yu permits the definition of U and V in terms

of M̂ and Po
yu, and:

C(s) =




Ag − H̃1Cg Bg,y

H̃2Cg 0


 = U − V Dg,y, (3.68)

H̃1 = Bg,yDp,yu(Inu + Dg,yDp,yu)
−1, (3.69)

H̃2 = ((Inu + Dg,yDp,yu)DM̂)−1. (3.70)

For this configuration, H̃1 cannot be modified as it is defined by the unconstrained

controller and the nominal plant Po
yu and hence the poles of V and U cannot be

modified by M̂ (the only way is to change Po
yu). However, H̃2 is independent as it is

defined by DM̂ , with M̂ to be designed.

Importantly, the unknowns in Q are given in terms of M̂ , the coprime factors of

the unconstrained controller and the nominal plant, which are necessarily non-zero

and dynamic (assuming the plant and linear controller are dynamic). Hence Q must

be dynamic in this configuration (except for pathological cases). However, it should

be noted that the anti-windup synthesis problem may be static if M̂ is chosen to be a

coprime factor of the nominal plant and of plant order. This case is described below.

Equivalence of W&P [26] and Teel and Kapoor (T&K) [19] configurations

Within the framework proposed by W&P [26] one can also choose M̂ = Mo, where

Po
zu = Po

yu = NoM
−1
o and Mo being plant order, to give a static synthesis problem,
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where:

Mo(s) =




Ap + Bp,uF Bp,u

F Inu


 , (3.71)

and F is the design parameter. In this case the corresponding Q below can be derived:

Q(s) = (V Mo + UNo)
−1, (3.72)

where the choice of Mo = Mos + DMo defines the anti-windup compensator elements,

Λ1 and Λ2, and the unconstrained controller coprime factors, V and U . Therefore:

Λ1(s) = No, (3.73)

Λ2(s) = Mos, (3.74)

H̃1 = Bg,yDp,yu(Inu + Dg,yDp,yu)
−1, (3.75)

H̃2 = (Inu + Dg,yDp,yu)
−1. (3.76)

Observe that this configuration is simply the one proposed in Teel and Kapoor [19],

where F = k and k is the gain matrix in Eqn. 11 of Teel and Kapoor [19], restricted

to be linear. Hence T&K [19] and W&P [26] configurations are equivalent under

the restriction that M̂ = Mo in [26], where Mo is plant order, and the coprime

factorization of the plant is linear (i.e. k(xaw) is a linear function of xaw) in Weston

and Postlethwaite [19]. The additional advantage of employing the T&K configuration

is the possibility of synthesizing for a nonlinear, dynamic anti-windup compensator

(e.g. kσ(·)(xaw) where the selection function σ(·) can be based on switching among a

family of linear gains). A nonlinear compensator is proven to be useful when seeking

for highly improved performance [61].
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Extension of W&P configuration

To exploit a similar degree of freedom to that of H̃2 for the coprime factorization of

the unconstrained controller, the addition of an extra parameter E to the coprime

factorization of the nominal plant was proposed [60]. Then Mo becomes:

Mo(s) =




Ap + Bp,uF Bp,uE

F E


 . (3.77)

Employing this coprime factorization of the nominal plant results in the following

anti-windup compensator:

Λ1(s) = No =




Ap + Bp,uF Bp,uE

Cp,u + Dp,uF Dp,uE


 , (3.78)

Λ2(s) = Mo − Inu =




Ap + Bp,uF Bp,uE

F E − Inu


 . (3.79)

This modification permits a bi-proper Λ2, so that DΛ2 6= 0 and H̃2 can be modified.

This allows further modification of the coprime factors of the controller, compared to

the previous selection of Mo where DΛ2 = 0 and H̃2 is fixed.

f. IMC configuration

The IMC configuration [17] is the simplest. For instance, it can be obtained from

the W&P configuration by choosing M̂ = Inu . Notably, there is no synthesis problem

when IMC is employed. However, this methodology is of interest due to its application

in practice. For this configuration the corresponding Q and anti-windup compensator

elements are:

Λ1(s) = Po
yu, (3.80)

Λ2(s) = 0, (3.81)
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Fig. 18. Weston and Postlethwaite (W&P) configuration.

Q(s) = (Inu + UPo
yu,s)

−1, (3.82)

H̃1 = Bg,yDp,yu(Inu + Dg,yDp,yu)
−1, (3.83)

H̃2 = (Inu + Dg,yDp,yu)
−1, (3.84)

where Po
yu = Po

yu,s + Dp,yu.

2. Override compensation

The objective in this section is to understand the relative advantages of employing a

variety of override configurations, the latter obtained as special cases of the general

configuration for override compensation adopted here. This work is of interest be-

cause we want to preclude the appearance of a myriad of configurations for override

compensation, as happened in the case of anti-windup compensation. Similar config-

urations to the anti-windup compensation case have already been proposed [52, 54].
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a. GOC for controller state/output

Then Bg,v1 = Ing , Dg,v1 = 0 and Dg,v2 = Inu . For a dynamic override compensator

Θ with its outputs v1 and v2 affecting the unconstrained controller states and output

respectively, the corresponding dynamic Q and Q̄ are:

Q(s) = (Inz + UzuΘ2s + UzuGv1sΘ1)
−1, (3.85)

Q̄(s) = (Inu + Θ2sŪzu + Gv1sΘ1Ūzu)
−1 (3.86)

where:

H̃1 = Bp,uDΘ2H̃2, (3.87)

H̃2 = (Inz + Dp,zuDΘ2)
−1, (3.88)

H̄1 = H̄2DΘ2Cp,z, (3.89)

H̄2 = (Inu + DΘ2Dp,zu)
−1, (3.90)

Gv1s(s) =




Ag Ing

Cg 0


 . (3.91)

Note that for this configuration Q (Q̄) is dynamic with nQ = np + ng + nΘ (nQ̄ =

np + ng + nΘ).

The case of a static override compensator Θ differs with its dynamic version in

that:

Q(s) = (Inz + UzuGv1sDΘ1)
−1, (3.92)

Q̄(s) = (Inu + Gv1sDΘ1Ūzu)
−1. (3.93)

Note that for this case Q (Q̄) is dynamic with nQ = np + ng (nQ̄ = np + ng) even

though the override compensator is static.
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b. GOC for controller input/output

Then Bg,v1 = Bg,y, Dg,v1 = Dg,y and Dg,v2 = Inu . For a dynamic compensator Θ

with its outputs v1 and v2 affecting the unconstrained controller input and output

respectively, the corresponding dynamic Q and Q̄ are:

Q(s) = (Inz + UzuΘ2s + UzuDg,yΘ1s + UzuGv1sΘ1)
−1, (3.94)

Q̄(s) = (I + Θ2sŪzu + Dg,yΘ1sŪzu + Gv1sΘ1Ūzu)
−1 (3.95)

where:

H̃1 = Bp,u(Dg,yDΘ1 + DΘ2)H̃2, (3.96)

H̃2 = (Inz + Dp,zu(Dg,yDΘ1 + DΘ2))
−1, (3.97)

H̃1 = H̄2(Dg,yDΘ1 + DΘ2)Cp,z, (3.98)

H̃2 = (Inu + (Dg,yDΘ1 + DΘ2)Dp,zu)
−1, (3.99)

Gv1s(s) =




Ag Bg,y

Cg 0


 . (3.100)

Note that for this configuration Q (Q̄) is dynamic with nQ = np + ng + nΘ (nQ̄ =

np + ng + nΘ).

The case of a static override compensator Θ differs with its dynamic version in

that:

Q(s) = (Inz + UzuGv1sDΘ1)
−1, (3.101)

Q̄(s) = (Inu + Gv1sDΘ1Ūzu)
−1. (3.102)

Note that for this case Q (Q̄) is dynamic with nQ = np + ng (nQ̄ = np + ng) even

though the override compensator is static.
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c. GOC for controller state

Then Bg,v1 = Ing , Dg,v1 = 0 and Dg,v2 = 0. For a dynamic override compensator

Θ with its output v = v1 affecting only the unconstrained controller states, the

corresponding dynamic Q and Q̄ are:

Q(s) = (Inz + UzuGv1sΘ1)
−1, (3.103)

Q̄(s) = (Inu + Gv1sΘ1Ūzu)
−1, (3.104)

where:

H̃1 = 0, (3.105)

H̃2 = Inz , (3.106)

H̄1 = 0, (3.107)

H̄2 = Inu , (3.108)

Gv1s(s) =




Ag Ing

Cg 0


 . (3.109)

Note that for this configuration Q (Q̄) is dynamic with nQ = np + ng + nΘ (nQ̄ =

np+ng +nΘ). However, H̃1 and H̃2 (H̄1 and H̄2) are fixed, leaving no room for further

manipulation.

The case of a static override compensator Θ differs with its dynamic version in

that:

Q(s) = (Inz + UzuGv1sDΘ1)
−1, (3.110)

Q̄(s) = (Inu + Gv1sDΘ1Ūzu)
−1. (3.111)

Note that for this case Q (Q̄) is dynamic with nQ = np + ng (nQ̄ = np + ng) even

though the override compensator is static.
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d. GOC for controller input

Then Bg,v1 = Bg,y, Dg,v1 = Dg,y and Dg,v2 = 0. For a dynamic override compen-

sator Θ with its output v = v1 affecting only the unconstrained controller input, the

corresponding dynamic Q and Q̄ are:

Q(s) = (Inz + UzuDg,yΘ1s + UzuGv1sΘ1)
−1, (3.112)

Q̄(s) = (Inu + Dg,yΘ1sŪzu + Gv1sΘ1Ūzu)
−1, (3.113)

where:

H̃1 = Bp,uDg,yDΘ1H̃2, (3.114)

H̃2 = (Inz + Dp,zuDg,yDΘ1)
−1, (3.115)

H̄1 = H̄2Dg,yDΘ1Cp,z, (3.116)

H̄2 = (Inu + Dg,yDΘ1Dp,zu)
−1, (3.117)

Gv1s(s) =




Ag Bg,y

Cg 0


 . (3.118)

Note that for this configuration Q (Q̄) is dynamic with nQ = np + ng + nΘ (nQ̄ =

np + ng + nΘ).

The case of a static override compensator Θ differs with its dynamic version in

that:

Q(s) = (Inz + UzuGv1sDΘ1)
−1, (3.119)

Q̄(s) = (Inu + Gv1sDΘ1Ūzu)
−1. (3.120)

Note that for this configuration Q (Q̄) is dynamic with nQ = np + ng (nQ̄ = np + ng)

even though the override controller is static.
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e. GOC for controller output

Then Bg,v1 = 0, Dg,v1 = 0 and Dg,v2 = Inu . For a dynamic override compensator

Θ with its output affecting only the unconstrained controller output v = v2, the

corresponding dynamic Q and Q̄ are:

Q(s) = (Inz + UzuΘ2s)
−1, (3.121)

Q̄(s) = (Inu + Θ2sŪzu)
−1, (3.122)

where:

H̃1 = Bp,uDΘ2H̃2, (3.123)

H̃2 = (Inz + Dp,zuDΘ2)
−1, (3.124)

H̄1 = H̄2DΘ2Cp,z, (3.125)

H̄2 = (Inu + DΘ2Dp,zu)
−1. (3.126)

Note that for this configuration Q (Q̄) is dynamic with nQ = np +nΘ (nQ̄ = np +nΘ).

The case of a static override compensator Θ differs with its dynamic version in

that:

Q(s) = Inz , (3.127)

Q̄(s) = Inu . (3.128)

Note that for this case Q (Q̄) is static (i.e. Q = Inz , Q̄ = Inu).

C. Comparison of remedial architectures based on the internal structure

In this section the configurations presented in Section III.D are analyzed and com-

pared based on their internal structure and the results of Section III.C.
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1. Anti-windup compensation

a. Static anti-windup compensation

In the case of static anti-windup compensation, Q = Inu and the effect of anti-windup

compensation can be seen as the modification of the coprime factors of the uncon-

strained controller via H̃1 and H̃2 (equivalently DΛ1 and DΛ2) and the corresponding

configuration. This restriction to static anti-windup compensation was also consid-

ered in Kothare et al. [17], where the choice of H̃1 and H̃2 was seen to modify the

poles and zeros of Ĝy, as defined in Eqn. 3.1 herein.

Considering V and U as defined in Eqns. 3.5 and 3.6, H̃1 modifies the poles of the

coprime factors via Ag−H̃1Cg and H̃2 acts as an output gain matrix, neither changing

the poles nor zeros of the coprime factors. Considering the conditioned controller Ĝ,

it is desirable to change both its poles and zeros (this also permits maximum control

of the system via anti-windup compensation). The poles of Ĝy are modified via H̃1

and the zeros are modified via both H̃1 and H̃2. Hence, independently employing

both degrees of freedom (DOF) is desirable, as it permits maximum control over the

poles and zeros of Ĝy.

Considering the configurations in Section III.D for anti-windup compensation,

it can be seen that not all configurations employ both DOF independently. The

full-authority and external feedback anti-windup configurations employ both DOF

independently via the modification of DΛ1 and DΛ2 . This however is not the case for

the generic anti-windup configuration or dynamic conventional anti-windup. For the

generic anti-windup configuration DΛ1 = 0 and therefore H̃1 = 0 and the poles of the

coprime factors are just the poles of the unconstrained controller, and hence the poles

of Ĝy cannot be modified, with the zeros being modified only by the gain matrix H̃2

(or DΛ2). For the dynamic conventional anti-windup, DΛ2 = 0 and therefore H̃1 and
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H̃2 are not independent, with Ĝy having less freedom in the placement of its poles

and zeros. Note that the W&P and IMC configurations are not considered here, as

they do not correspond to static anti-windup compensation.

From the above observations, it is evident that for static anti-windup compen-

sation, the employment of either the full-authority or external feedback anti-windup

configurations is favorable, as it permits the greatest control of Ĝy and hence the

resulting anti-windup compensation system. In terms of their relative applicability,

it is evident that the two methods can only give the same anti-windup compensator

when: 


Bg,y 0

Dg,y Inu







DΛ1

DΛ2




EF

=




DΛ1

DΛ2




FA

, (3.129)

where (·)EF and (·)FA denote the external feedback and full-authority feedback anti-

windup cases, respectively. Representing this as Ax = b, this requires that b ∈ R(A),

which in turn requires DFA
Λ1

∈ R(Bg,y). Therefore, for a general b the matrix A

must be invertible, which requires Bg,y to be full row rank. Hence, in general, the

unconstrained controller part Gy must have as many inputs as states. Consequently,

choosing the full-authority feedback anti-windup configuration is preferable.

This comparison of full-authority and external feedback anti-windup configura-

tions shows that the choice of internal (v1 to states) or external (v1 to input) feedback,

respectively, does have an effect on the anti-windup compensator design problem and

hence the ability to alleviate the effects of saturation. Both configurations are more

likely to be equivalent when Gy is of low order and necessarily when it has as many

inputs as states. This is consistent with previous results [27] (Remark 3), arising from

a consideration of the LMI feasibility conditions.
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b. Dynamic anti-windup compensation

In the case of dynamic anti-windup compensation, Q 6= Inu and the effect of anti-

windup compensation can be seen to be the modification of the coprime factors of

the unconstrained controller, when either Λ1 or Λ2 are bi-proper, and the addition of

desirable dynamics. Hence when DΛ1 or DΛ2 are non-zero, the discussion above for

static anti-windup compensation applies in addition to the potential to provide for

additional dynamics. Therefore, in this section it is only necessary to consider the

additional effect of the strictly proper components of Λ1 or Λ2, being Λ1s and Λ2s,

and hence the effect of the resulting Q.

It is difficult to generally describe the effect of Q on the anti-windup closed-loop

system. Rather, here we compare the different configurations based on the order of

Λ1s and Λ2s. We consider the order of Λ1s and Λ2s necessary to give loop transmission

order anti-windup compensation, termed full order anti-windup compensation, and

the choice of Λ1s and Λ2s for reduced order (fixed) anti-windup compensator design.

The full order anti-windup compensation case corresponds to Q being loop trans-

mission (L = GyPyu) order. For the full-authority and external feedback anti-windup

configurations, the order added by Λ necessary to give full order anti-windup com-

pensation is that of the plant. This can be seen from Eqns. 3.42 and 3.46 for the

full-authority and external feedback anti-windup cases, respectively, where the con-

figurations can be seen to employ the dynamics of the unconstrained controller, via

its coprime factors, in the dynamics of Q. For the generic anti-windup configuration,

only Λ2s is employed and the order of Λ2s required is full order (loop transmission).

This is because the dynamics of the unconstrained controller part Gy are not exploited

in Q. For the dynamic conventional anti-windup configuration, only Λ1s is employed

but the order required is only that of the plant due to the employment of the dynamics
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of Gy in Q. For the configuration of W&P, both Λ1s and Λ2s are effectively employed,

being defined by the choice of M̂ . The order of Λ1s and Λ2s necessary to give full order

anti-windup compensation is again that of the plant, which corresponds to M̂ = Inu

or M̂ = Mo where Pyu = NoM
−1
o . From this, the IMC configuration (M̂ = Inu) and

the T&K configuration [19] in its linear version (M̂ = Mo) are restricted to full order

anti-windup compensation (note that in the IMC case there is no synthesis problem).

Based on this reasoning, for dynamic anti-windup compensation, the full-authority

and external feedback anti-windup configurations are preferable. The relative utility

of the configurations is not as clear as in the static anti-windup compensation. How-

ever, when the state and input matrices for each configuration are related through

a similarity transformation {AFA
Λ , BFA

Λ } → {T−1AEF
Λ T, T−1BEF

Λ }, Q clearly will differ

due to the presence of CΛ and either U or C in its dynamics, which seems to be

an additional consideration to that in the static case. Interestingly, under the pro-

posed consideration, the two configurations can only render the same anti-windup

compensator, or equivalently the same Q, U and V , when:




Bg,y 0

Dg,y Inu







DΛ1 CΛ1

DΛ2 CΛ2




EF 


Inu 0

0 T


 =




DΛ1 CΛ1

DΛ2 CΛ2




FA

, (3.130)

where T accounts for any nonsingular matrix transformation between BFA
Λ and BEF

Λ .

Hence, under the assumption that both configurations possess equivalent represen-

tations of the anti-windup compensator state and input matrices, the reasoning in

the previous section for static anti-windup compensation will apply to dynamic anti-

windup compensation, and this will be independent of Λ1 being bi-proper or not.

Therefore, again the full-authority feedback anti-windup configuration will be prefer-

able. The fact that the full-authority external anti-windup configuration is again

preferable agrees with intuition and the insight offered by Grimm et al. [27] for the
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case of plant order anti-windup compensation. Note that the existence of a similar-

ity transformation between both configurations is not too restrictive for comparison

purposes as it is intuitive to consider that both configurations add the same poles to

Q−1 via the eigenvalues of AΛ and also that it is always possible to find a nonsingular

transformation matrix T whenever rank(BFA
Λ ) = rank(BEF

Λ ) [62].

In addition to conditions for full order anti-windup compensation, it is also evi-

dent that for reduced order anti-windup compensation, which corresponds to Q being

less than loop transmission order, some configurations may be more favorable. This is

simply shown by noting that some configurations can be seen to give a set of possible

Q which is a subset of those of other configurations for a fixed order Λ. It is evident

that all configurations offer a set of possible Q which are a subset of those given by

the full-authority feedback anti-windup configuration, external feedback anti-windup

configuration, or both. Evidently the generic anti-windup configuration gives a set of

Q that is a subset of both. The dynamic conventional anti-windup gives a set of Q

that is a subset of the full-authority feedback anti-windup case. The W&P configu-

ration gives a set of Q which is a subset of the external feedback anti-windup case,

more specifically in the W&P configuration part of the anti-windup compensator dy-

namics is fixed through Po
yu. Note that, due to the employment of Po

yu, this approach

gives at least a full order anti-windup compensation. IMC only permits full order

anti-windup compensation, with only one possible Q which is also a subset of the

external feedback anti-windup case. From this perspective it is evident that for fixed

(low) order anti-windup compensation, either the full-authority and external feedback

anti-windup configurations should be employed. It should also be noted that other

fixed-order synthesis approaches exist [28], where fixed dynamic elements are added

to permit dynamic anti-windup compensator design via a static anti-windup synthe-

sis problem. Such approaches are similar to the W&P configuration, where a subset
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of the additional dynamics added by Q is fixed, in this case Po
yu. The advantage of

such approaches is that the static anti-windup compensation problem is convex, but

this is not necessarily feasible, and additionally optimality of the resulting dynamic

controller is lost2.

Remark 3.2. Note that in Grimm et al. [27], Remark 3, it is concluded that the full-

authority and external feedback anti-windup configurations possess equivalent LMI

feasibility conditions when Bg,y is full row rank. But this conclusion was limited to

the cases of full order and static anti-windup compensation. Importantly, Eqn. 3.130

shows that the choice of full-authority or external feedback anti-windup configuration

has no effect provided Bg,y is full row rank, and this is independent of the anti-windup

compensator order. C

2. Override compensation

a. Static override compensation

For static override compensation with Q = Inz and Q̄ = Inu , the poles of P̂zu (P̂yu)

are modified via H̃1 (H̄1) and the zeros are modified via both H̃1 and H̃2 (H̄1 and

H̄2). Hence independently employing both DOF is desirable, as it permits maximum

control over the poles and zeros of P̂zu (P̂yu). On the other side, for static override

compensation with Q = (Inz + UzuGv1sDΘ1)
−1 and Q̄ = (Inu + Gv1sDΘ1Ūzu)

−1, both

poles and zeros of Pzu (Pyu) are modified by H̃1, H̃2 (H̄1, H̄2) and the corresponding

Q (Q̄). From previous analysis, the override compensation problem here considered

does not permit independent control of H̃1 and H̃2 (H̄1 and H̄2), as they both depend

2It should be noted that, for fixed low order anti-windup compensator design, the
anti-windup compensation problem will generally not be convex, as it is not full order
[21, 63]. Looking at the anti-windup compensation design from the perspective of a
matrix inequality approach may then result in a set of BMIs rather than LMIs.
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on D̃Θ. Still, some configurations present certain advantages over others, specially

those that exploit all the available DOF, H̃1, H̃2 and Q (H̄1, H̄2 and Q̄), being GOC

for controller state/output and GOC for controller input/output. Note that these

configurations are the ones that take advantage of all the freedom provided by Gv.

Hence, by comparing these configurations in terms of their relative applicability, we

see that they provide the same override compensator when:




Bg,y 0

Dg,y Inu







DΘ1

DΘ2




IO

=




DΘ1

DΘ2




SO

, (3.131)

where (·)IO and (·)SO denote the override compensators affecting the input/output

and state/output of the unconstrained controller, respectively. The satisfaction of

the equality in Eqn. 3.131 requires Bg,y to be full row rank. This implies that the

unconstrained controller Gy must have as many inputs as states. In practice, this is

not always the case, hence we would prefer to choose static override compensation

affecting the unconstrained controller states and output.

b. Dynamic override compensation

As done in the previous case, to describe the effect of the strictly proper components

of Θ1 and Θ2 on Q and Q̄, we choose the configurations that provide more control

over the parameters H̃1, H̃2 (H̄1, H̄2) and the corresponding Q (Q̄). It is difficult to

generally describe the effect of Q (Q̄) on the override control system. Hence, here

an extra consideration for comparison is based on the order of Θ1s and Θ2s neces-

sary to give a Q (Q̄) being loop transmission (GyPyu) plus plant order (Pzu or Pyu),

termed full order override compensation, and the choice of Θ1s and Θ2s for reduced

order override compensation. Compared to the anti-windup compensation case, the

order of Q (Q̄) for the full order case in override compensation is bigger because,
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for override compensation, the unconstrained controller dynamics is embedded in Q

(Q̄). Then, Q (Q̄) is not only a function of the coprime factors of the plant and the

override compensator but also a function of the unconstrained controller. Based on

this reasoning, for full order override compensation, only one configuration requires

Θ to be loop transmission order, and this is the configuration that only affects the

unconstrained controller output, GOC for controller output, thus taking no advantage

of the unconstrained controller dynamics. For the other configurations that do so, the

order of Θ required for full order override compensation is that of the plant. From

these configurations, there are only two that provide the most control over H̃1 and H̃2

(H̄1 and H̄2), and they are the ones that exploit all the available freedom in Gv. The

relative utility of either of the latter configurations can be quantified after certain

assumptions. Suppose that the state and input matrices for each configuration are

related through a similarity transformation {ASO
Θ , BSO

Θ } → {T−1AIO
Θ T, T−1BIO

Θ }, then

Q (Q̄) in Eqns. 3.85 and 3.94 (Eqns. 3.86 and 3.95) will clearly differ due to the

presence of CΘ and Uzu (a function of H̃1 and H̃2) in its dynamics; this seems to be an

additional consideration to that in the static case. Interestingly, under the proposed

consideration, the two configurations can only render the same override compensator,

or equivalently the same Q (Q̄), Uzu and Vzu (Ū∗u and V̄∗u), when:




Bg,y 0

Dg,y Inu







DΘ1 CΘ1

DΘ2 CΘ2




SO 


Inz 0

0 T


 =




DΘ1 CΘ1

DΘ2 CΘ2




IO

, (3.132)

with (·)IO and (·)SO defined as in the static case. Therefore, again, dynamic override

compensation affecting the unconstrained controller states and output is preferable.

For reduced order override compensation either of the latter override configura-

tions analyzed should be employed, as they best employ the available DOF of override

compensation. Other fixed-order synthesis approaches may also be obtained, as in the
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case of anti-windup compensation, where some fixed dynamics elements were added

to the override compensator dynamics and the synthesis problem was defined only in

terms of static elements.

D. Comparison of remedial architectures based on the mismatch system

The mismatch structure has been proposed and considered by several researchers,

although the generalization to uncertain systems has differed. To analyze the effect of

the choice of configuration on robust remedial compensation, the general architecture

for remedial compensation can be considered within the mismatch setting.

For convenience the discussion is separated into three sections, which consider i)

analysis of the poles and zeros of the mismatch structure, for both open and closed-

loop transfer functions; ii) comparison of configurations based on the previous anal-

ysis; and iii) the mismatch system insights.

1. Analysis of the mismatch system poles and zeros

a. Anti-windup compensation

Poles of Lu
n, T u

n and PzuS
u
n

The equations for the mismatch system show that generally the poles of the open-

loop mismatch Lu
n system are a function of those of the loop transmission L = GyPyu,

V and Q, and the poles of the closed-loop mismatch system T u
n are a function of

those of the unconstrained closed-loop system and those of Q−1, V −1 and Pzu. To

be more precise, in the proceeding discussion, the poles of the open-loop are first

considered, followed by those of the closed-loop, for which the case of static anti-

windup compensation is first considered followed by the case of dynamic anti-windup

compensation.
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The poles of the open-loop mismatch system are easily defined through those of

Pyu and QU and therefore Λ1 and Λ2. Generally they are those of Pyu and Q for

dynamic anti-windup and those of Pyu and V for static anti-windup. Hence, it is

evident that the choice of the anti-windup compensation can be made such that the

open-loop mismatch system is stable provided that the poles of V are stable (requiring

stabilizability of Gy), Pyu is stable and the anti-windup compensator is also stable.

Conversely, as the poles of the closed-loop mismatch system are generally those of

the unconstrained closed-loop system, those of V −1Q−1 (except for any cancelation

of the poles of V −1Q−1 with the zeros of (Inu + GyPyu)
−1), and those of Pzu, there

is no freedom in the design to shift undesirable poles arising from the unconstrained

closed-loop system. One can only change the residual for the poles via the placement

of the transmission zeros of the closed-loop mismatch system. This reinforces the

idea that anti-windup is best employed when the unconstrained closed-loop system

has favorable properties. It also has important implications on stability and zero

placement, as discussed in the proceedings sections.

For a better understanding of the effect of the poles in the closed-loop mismatch

structure, below we perform an analysis through coprime factorizations of the plant

(Pyu = NM−1) and unconstrained controller (Gy = V −1U), and through the Bezout

identity (V M + UN = Inu). The analysis focuses on the poles of T u
n (see Eqn. 2.10),

as the poles of T u
n are also those of Su

n and PzuS
u
n, with the latter also having the

poles of the plant Pzu, which cannot be modified.

Considering the static anti-windup case (Q = Inu), T u
n from Eqn. 2.10, after

substitution of the corresponding coprime factors, gives:

T u
n = Inu − (Inu + V −1UNM−1)−1V −1 = Inu −M(V M + UN)−1. (3.133)

For the case when the coprime factorizations are of minimum order and the
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Bezout identity holds, the coprime factorizations are unique [23, 64]. The coprime

factorizations, with unique coprime factors, are defined as Gy = V −1
u Uu and Pyu =

NuM
−1
u , where the poles of Vu(Uu) and Nu(Mu) are distinct subsets of the poles of

the unconstrained closed-loop system. Consequently, Λ1 = DΛ1 and Λ2 = DΛ2 are

also uniquely defined, being Λu1 and Λu2, and there is no synthesis problem.

The objective of the anti-windup compensator is to synthesize a Λ1 and Λ2,

which will generally not be those Λu1 and Λu2 that satisfy the Bezout identity with

minimal coprime factor orders. When Λ1 and Λ2 are designed to satisfy some synthesis

problem, the minimum order coprime factors U = U1 and V = V1 are determined

and, M = M1 and N = N1 are then uniquely defined when the Bezout identity is

required to hold. Notably, the orders of M1 and N1 will be greater than those of Mu

and Nu [64]. This can be expressed as follows:

UuNu + VuMu = Inu ,

U1N1 + V1M1 = Inu ,
(3.134)

where:

V1 = KVu,

U1 = KUu,
(3.135)

N1 = NuK−1,

M1 = MuK−1,
(3.136)

K = V1V
−1
u , (3.137)

with the coprime factors of the plant Pyu (M1 and N1) being the order of the un-

constrained closed-loop system. Hence, while in the general case we have Eqn. 3.133

for T u
n , given U and V from the static anti-windup compensation synthesis problem

solution, it is always possible to choose M and N , without loss of generality3, such

3This analysis must be performed for each specific plant case in an uncertain plant
family. However, this does not limit the results of the analysis to nominal systems
and the results of this section hold for the entire plant family.
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that the Bezout identity holds, giving:

T u
n = Inu −M. (3.138)

In the case when Λ1 and Λ2 give U = Uu and V = Vu, then:

T u
n = Inu −Mu, (3.139)

and therefore T u
n has order equal to the plant and the poles are a proper subset of the

unconstrained closed-loop system. In the general case that Λ1 and Λ2 give U 6= Uu

and V 6= Vu, then:

T u
n = Inu −M1 = Inu −MuVuV

−1
1 , (3.140)

and T u
n is of order equal to that of the unconstrained closed-loop system and the poles

are those of the unconstrained closed-loop system.

For the case where a dynamic anti-windup compensation is employed (Q being

dynamic), T u
n is defined in terms of the coprime factorizations of the plant and the

unconstrained controller:

T u
n = Inu −M(V M + UN)−1Q−1. (3.141)

The reasoning for the poles of Tn whenever DΛ1 6= 0 and the Bezout identity

holds is similar to that as above, with the remaining poles defined by those of Q−1,

except for any cancelation of the poles of Q−1 with the zeros of M . This is seen in

the following expressions, where we can have either:

T u
n = Inu −MuQ

−1, (3.142)

or

T u
n = Inu −M1Q

−1 = Inu −MuVuV
−1
1 Q−1. (3.143)
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Notably, the poles of T u
n comprise the poles of the unconstrained closed-loop and

the poles of the anti-windup compensator. Hence, the order of T u
n is that of the

unconstrained closed-loop plus that of the anti-windup compensator.

Note that when DΛ1 = 0 (DΛ2 6= 0), it is not possible to modify the coprime

factors of the unconstrained controller, and therefore U = H̃2Gy and V = H̃2. It

is important to note that we can still try to satisfy the Bezout identity by following

similar reasoning as before for U1 and V1. Again, the resulting T u
n will have as its poles

those of the unconstrained closed-loop and those of the anti-windup compensator,

whenever the anti-windup compensator is dynamic. Otherwise, for the static anti-

windup compensator case, the poles of T u
n will be those of the unconstrained closed-

loop. Consequently, the implications of having DΛ1 = 0 are not directly seen in the

poles.

Remark 3.3. Observing Q from the previous definition of the general architecture

for anti-windup compensation, the poles of Q−1 are those of the coprime factors of

the unconstrained controller and those of anti-windup compensator Λ. Note that

for the general case of anti-windup synthesis, the poles of the coprime factors of the

unconstrained controller are canceled by the zeros of M in the equation for T u
n and

hence play no role through Q. Rather, the effect of the poles of the coprime factors

of the unconstrained controller is seen in the transmission zeros of the closed-loop

mismatch system, as observed in the analysis in the next subsection. C

Remark 3.4. Note that it is possible to choose Q to cancel poles of the unconstrained

closed-loop system in Tn. However, this will only hold for one specific case (i.e. one set

of the closed-loop poles) in the uncertain family of unconstrained closed-loop systems,

as discussed in the following subsections. C
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Zeros of Lu
n, T u

n and PzuS
u
n

The zeros of the mismatch system are more interesting. As anti-windup compensation

can be seen as a feedforward control problem, it is the zeros of the mismatch system

that are of particular interest. Here we restrict our attention to the zeros of the

closed-loop mismatch system, as with the poles of the closed-loop mismatch system

generally being invariant to anti-windup compensation, it is the zeros that must

be carefully chosen. Similar analysis could be done for the zeros of the open-loop

mismatch system.

For the closed-loop mismatch system, the zeros of PzuS
u
n and Su

n can be easily

defined, as described below. However, for the case of T u
n , the analysis is more difficult

and involved4. To overcome this, the zeros of T u
n are considered from two perspectives.

First, we consider the zeros of T u
n for an invertible MIMO system, and hence the

zeros are directly defined via the state-state matrices. However, only the static case

is considered for simplicity. The second perspective considers a SISO system. In this

case the zeros are defined for both static and dynamic anti-windup compensation, in

terms of the numerator and denominator polynomials for the system elements.

In a similar manner to the analysis for the poles, employing the coprime factors

of the plant and unconstrained controller, together with the Bezout identity, we have

the following for PzuS
u
n:

PzuS
u
n = Pzu(Inu + GyPyu)

−1V −1Q−1,

= PzuM(UN + V M)−1Q−1 = PzuMQ−1 = PzuMuVuV −1Q−1,
(3.144)

where for the static case (Q = Inu), the zeros of PzuSn are the zeros of Pzu, the zeros

of Mu (i.e. poles of the plant Pyu) and the poles of V , and for the dynamic case

4In general the transmission zeros of a transfer function matrix are difficult to
explicitly define in terms of the control parameters, as they arise from the solution of
a generalized eigenvalue problem.
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(Q 6= Inu) the zeros are those of Pzu, Mu and Q−1.

The equations for Su
n are similarly defined. The zeros of Su

n are those of Mu plus

the poles of V for the static case, and those of Mu and Q−1 for the dynamic case, as

seen from equation below:

Su
n = (Inu + GyP)−1V −1Q−1,

= M(UN + V M)−1Q−1 = MQ−1 = MuVuV −1Q−1.
(3.145)

The definition of the zeros of T u
n is performed as follows:

MIMO case (T u
n ). When T u

n is bi-proper, with its feedthrough matrix being invertible,

for either static or dynamic anti-windup compensation its zeros are given by the

solutions λ of the equation:

det(λI − An + BnD−1
n Cn) = 0, (3.146)

with (An, Bn, Cn, Dn) being the state space matrices for T u
n .

In this situation, it is possible to describe the zeros of T u
n as a function of the

static anti-windup variables DΛ1 and DΛ2 , and Q, and therefore Λ1s and Λ2s, for the

dynamic case. Limiting the consideration to the static case (Q = Inu) for simplicity,

the zeros are given by the solutions of the equation below, where, in addition to

static anti-windup compensation, it is assumed that (i) Dg,y = 0 and Dp,yu = 0 for

simplicity, and (ii) ñPyu = ñGy :

det(λΩλ− λΩAp − (Ag + H̃1(H̃2 − Inu)−1Cg)Ωλ

+AgΩAp + Bg,yCp,yu + H̃1(H̃2 − Inu)−1CgΩAp) = 0,
(3.147)

where λ = λInu , and

Ω = (Bp,yu(H̃2 − Inu)−1H̃2Cg)
−1. (3.148)

This representation is however not particularly insightful.
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SISO case (Tn). For the SISO case it is possible to describe the elements of T u
n via

their numerator and denominator polynomials. This gives:

T u
n =

σdΛ2sdΛ1s − dPyu(H̃−1
2 κdΛ2sdΛ1s + dGynΛ2sdΛ1s + dGyDg,vdΛ2snΛ1s + nCdΛ2snΛ1s)

σdΛ2sdΛ1s

,

(3.149)

where Pyu =
nPyu

dPyu

, Gy =
nGy

dGy

, V =
H̃2dGy

κ
, Λ2s =

nΛ2s

dΛ2s

, Λ1s =
nΛ1s

dΛ1s

, C =
nC

H̃2κ
,

κ = det(sIng − Ag + H̃1Cg) and σ = (dPyudGy + nGynPyu); with all the denominator

polynomials being monic.

From this expression for T u
n , it is possible to see how the zeros of T u

n can be

modified using the anti-windup compensation elements and selecting an appropriate

configuration. Note that this equation also serves to confirm the definition of the

poles of T u
n for the SISO case. Additionally, considering only the properness of T u

n ,

for a strictly proper plant (i.e. any physical system), it is clear that T u
n will be strictly

proper if H̃2 = 1 (D̃Λ2 = 0), otherwise T u
n will be bi-proper.

b. Override compensation

An analysis of poles and zeros of the mismatch system for override compensation is

quite similar to the anti-windup case.

Using coprime factorizations of the unconstrained controller (Gy = M̄−1
y N̄y) and

plant (Pzu = V −1
zu Uzu = ŪzuV̄

−1
zu , Pyu = ŪyuV̄

−1
yu ), along with the Bezout identity

(N̄yŪyu + M̄yV̄yu = Iny), Eqns. 2.16, 2.18 and 2.19 can be rewritten as:

Lz
n = (Inz + ŪzuV̄

−1
zu V̄yuM̄yGvΘ)−1 − Inz , (3.150)

T z
n = −ŪzuV̄

−1
zu V̄yuM̄yGvΘ, (3.151)

F y
n = −ŪyuM̄yGvΘ. (3.152)
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Different from the case of anti-windup compensation, the poles and transmission

zeros of the open-loop mismatch system Lz
n cannot be directly specified from the

corresponding equation above. Note that this implies having no extra assumptions on

the location of poles and zeros of the plant and unconstrained controller. Importantly,

the only assumption we have is that of well-posedness of the unconstrained closed-

loop. Moreover, implicit assumptions are the stabilizability and detectability of the

plant, and the stabilizability of the unconstrained controller.

Poles of T z
n and F y

n

From the uniqueness of the coprime factorizations [64], the poles of the mismatch

system (i.e. T z
n in Eqn. 3.151) are the poles of the unconstrained closed-loop system

plus additional poles introduced by the override compensator Θ. This is concluded

after observing that the coprime factors V̄zu and V̄yu are equal, the poles of Gv get

canceled with the zeros of M̄y, and Ūzu and Ūyu, coprime factors of different elements

of the plant, share the same poles. Notably, the smallest set of poles of the closed-loop

mismatch system corresponds to the static override compensation case, i.e. uncon-

strained closed-loop poles. Similar to the anti-windup case, there is no freedom in

the override design to shift undesirable poles arising from the unconstrained closed-

loop system. One can only change the residual for the poles via the placement of

the transmission zeros of the closed-loop mismatch system. This also reinforces the

fact that both anti-windup and override compensation as remedial strategies are best

employed when the unconstrained closed-loop system has favorable properties.

The poles of F y
n are those of the unconstrained closed-loop plus those of Θ (note

the cancelation of the zeros of M̄y with the poles of Gv).
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Zeros of T z
n and F y

n

Contrary to the anti-windup compensation case, for override compensation the zeros

of T z
n are well defined. The zeros of T z

n are those of Ūzu and Gv for static override

compensation, and those of Ūzu, Gv and Θ for dynamic override compensation. The

zeros of F y
n are also clearly defined, being those of Ūyu, Gv and Θ.

2. Comparison of remedial architectures based on the mismatch system poles and

zeros

In this section the configurations presented in Section III.B. are analyzed and com-

pared based on the results of Section III.D.I.

a. Anti-windup compensation

Poles of Lu
n and T u

n

The issue of the poles of the mismatch system is generally trivial. As discussed in

Section III.D.1.a., assuming no pole-zero cancelations related to the plant dynamics,

the poles of the open-loop mismatch system are simply those of Pyu and QU and

the poles of the closed-loop mismatch system are the poles of the unconstrained

closed-loop system plus any zeros of QV (with the exception of the zeros of (Inu +

GyPyu)
−1) and Pzu, accordingly. However, the case of pole-zero cancelations needs

to be considered, as it is implicitly built into the configuration of W&P in the case

of the closed-loop mismatch system. Here we first consider the issue of pole-zero

cancelation by analyzing the W&P configuration for the closed-loop mismatch system.

More specifically, T u
n is considered as the poles of Su

n and PzuS
u
n can be obtained with

similar considerations. Pole-zero cancelations in the open-loop mismatch system are

then briefly discussed.

In the case of W&P, the incorporation of the nominal plant Po
yu into the dynamics
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of Λ modifies Q correspondingly, such that it becomes:

Q =
[
(VW + UW P o

yu)M̂
]−1

, (3.153)

where UW and VW are defined accordingly via M̂ (i.e. Λ1 and Λ2).

Considering the analysis for the plant being nominal Pyu = Po
yu, Tn is defined as

in Eqn. 3.143 giving:

Tn = Inu −MW Q−1 = Inu −MuR−1VW (Inu + GyPo
yu)M̂

= Inu −MuVu(Inu + GyPo
yu)M̂ = Inu − M̂,

(3.154)

and the poles of T u
n are defined to be those of M̂ . In this case Q effectively cancels the

poles of the unconstrained closed-loop system and adds new poles to the closed-loop

mismatch system, being those of M̂ . Hence, this method exploits the potential of

pole-zero cancelations with plant dynamics involved, in the definition of the closed-

loop mismatch system.

Note that employing this cancelation results in the closed-loop transfer functions

defining the mismatch system possessing different poles to those defined above. This

can be seen from T u
n = Inu−M̂ and Sn = M̂ having the same poles but PzuS

u
n = PzuM̂

having the additional poles of Pzu.
5

For the specific case that M̂ is chosen such that it represents the denominator

Mo in a right coprime representation of the plant NoM
−1
o , the W&P configuration

[26] corresponds to that of T&K [19]. In this case T u
n is defined as

T u
n = Inu −Mo. (3.155)

The advantage of synthesizing Mo is that it represents a pole allocation problem given

5Hence, internal stability will not be guaranteed by simply ensuring that T u
n and

Su
n are stable, as the pole-zero cancelations may give rise to hidden unstable modes

in the mismatch system.
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by the calculation of a gain matrix F as defined in Eqns. 3.71 or 3.77.

From the calculations above, it may seem that the W&P and T&K configurations

provide favorable features compared to other configurations, in that they permit

arbitrarily allocation of the poles of T u
n . However, the basis for this is the cancelation

of the unconstrained closed-loop poles, as observed in Eqn. 3.89, and this does not

hold in the presence of uncertainty. When uncertainty is present, Eqn. 3.154 becomes:

Tn = Inu −MW Q−1 = Inu − (Inu + GyP∆
yu)

−1(Inu + GyPo
yu)M̂ (3.156)

and, as in the other configurations, the poles of T u
n are the poles of the unconstrained

closed-loop system plus the additional dynamic introduced by Q−1 (poles of Po
yu and

the unconstrained controller Gy and the poles of M̂). In the T&K configuration [19],

we have the poles of T u
n to be the poles of the unconstrained closed-loop together with

the poles of Mo and Gy. Hence, it can be concluded that the possibility of exploiting

pole-zero cancelation to permit arbitrary allocation of the poles of the closed-loop

mismatch system is limited in practice, as it does not hold for uncertain systems. It

is important to emphasize that in the case of the other configurations, the results

previously stated do not change whenever uncertainty is considered.

For the case of the open-loop mismatch system poles, these are given by those of

Pyu and QU , as seen in Eqn. 3.36 and discussed in Section III.D.2.a. In the dynamic

case, the choice of the zeros of Q offers the potential to arbitrarily define the poles

of the open-loop mismatch system by canceling the poles of P∆
yu. However, this is

again limited in practicality, as it does not hold for uncertain systems. Therefore, it

can be stated that, in practice, a subset of the poles of the closed-loop and open-loop

mismatch systems are invariant to the design of the ant-windup compensator. These

are given by the poles of the unconstrained closed-loop system plus the poles of the

plant Pzu and Pyu for the closed-loop and open-loop mismatch systems, respectively.
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Zeros of T u
n and PzuS

u
n

As described in Section III.D.1.a., the true effect of the anti-windup compensation

can be seen as the allocation of the zeros of the closed-loop mismatch system. Section

III.D.1.a. presented equations for zeros of T u
n for both the MIMO case (static) and

the SISO case, together with the MIMO descriptions of the zeros of Su
n and PzuS

u
n.

The equations for the MIMO case transmission zeros are not insightful for T u
n and

Lu
n in their current form, and are therefore not discussed. However, the equations for

Su
n and PzuS

u
n are simpler and are discussed below. The equations for the SISO case

of T u
n are more insightful and are considered here to analyze the zeros, for both the

dynamic and static anti-windup compensation, and to compare the configurations.

The equations for the zeros of PzuS
u
n are given in Section III.D.1.a, and the

equations for Su
n are similarly defined. As in the case of the poles of the closed-loop

mismatch system, the W&P configuration [26] is of interest, due to the pole-zero

cancelations that arise in this configuration. For W&P, the zeros of PzuS
u
n can be

derived from Eqn. 3.145, and given by:

PzuS
u
n = Po

zuM̂. (3.157)

In this case, the zeros of PzuS
u
n are the zeros of the nominal plant Po

zu and M̂ , the

latter of which are completely free. In the case that M̂ = Mo, where Mo is a modified

coprime factorization of the nominal plant Po
yu of plant order, we have the T&K

configuration [19] and:

PzuSn = Po
zuMo. (3.158)

In this case, the zeros of PzuS
u
n are simply the zeros of Po

zu and Mo. However, if

Po
zu = Po

yu, then Po
zuMo = No and the zeros of PzuS

u
n are simply those of the plant

Po
yu. Furthermore, as in the case of the poles of the closed-loop transfer matrices for
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the mismatch system, when uncertainty is considered, the pole-zero cancelations no

longer hold and the zeros will be those of the plant Pzu, the coprime factorization of

the plant Pyu (M) and Q−1, as for the other configurations.

For the SISO case, a comparison of the configurations can be performed in terms

of the allocation of the zeros of T u
n via an algebraic approach using the equations of

Section III.D.1.a. It can be observed from Eqn. 3.149 that, in general, the coefficients

of the zero polynomial of T u
n are nonlinearly dependent on the coefficients of the Λ1

and Λ2 that define the anti-windup compensator. Hence, it is difficult to make general

statements on the ability to arbitrarily define the zeros of T u
n through the design of

the anti-windup compensator. However, when the poles of Λ1 and Λ2 are predefined,

which they often are in frequency domain loop shaping and in robust low order design

procedures, as they are the poles of T u
n , the dependency becomes linear. For this

degenerate case it can be observed that, in general, it is not possible to arbitrarily

specify the zeros of T u
n , irrespective of the order of the anti-windup compensator.

This can be seen from Eqn. 3.149 in Section III.D.1.a. for T u
n , where importantly for

a dΛ1s and dΛ2s fixed and coprime there are ñGy + ñΛ1s + ñΛ2s + ñPyu +1 equations and

ñGy + ñΛ1s + ñΛ2s + 1 unknowns. Clearly this system of equations is overdetermined

and hence may not offer a unique solution. However, when dΛ1s = dΛ2s , then there are

ñGy + ñΛ1s + ñPyu +1 equations and ñGy +2ñΛ1s +1 unknowns. In this case, the system

of equations can be underdetermined, overdetermined or uniquely defined, depending

on ñΛ1s being greater than, less than, or equal to ñPyu , respectively. The uniquely

defined case corresponds to the full order anti-windup compensation problem, which

is the lowest order that provides convex feasibility conditions [21]. Hence, we see that

for orders greater than or equal to that of the plant, the anti-windup compensation

is convex and the zeros can be arbitrarily defined provided feasibility is achieved.

Note that the analysis performed has been done just by considering the number of
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equations and unknowns. More strictly speaking, for the uniquely defined case, we

can refer to a linear system of equations whose matrix of coefficients is nonsingular.

From Eqn. 3.149, this is not evident, as the matrix of coefficients is a function of dPyu ,

dGy , nPyu and nGy coefficients. Interestingly, full order anti-windup compensation is

always feasible when the plant is asymptotically stable [21].

In the case of static compensation, where ñΛ1s = ñΛ2s = 0, the system will be

overdetermined and therefore there may be no choice of H̃1 and H̃2 that solves for

a given zero polynomial (note that dΛ1s = dΛ2s = 1). This can be seen from the

following equations derived from Eqn. 3.149 in Section III.D.1.a.:

T u
n =

(dGydPyu + nGynPyu)− dPyu(H̃−1
2 κ)

dGydPyu + nGynPyu

. (3.159)

In the case of the zero polynomial (numerator of T u
n ), we observe that there exist

ñGy + 1 unknowns, being H̃2 and the coefficients of the monic polynomial κ, for

ñGy + ñPyu +1 number of equations. Hence the problem is overdetermined. Note that

this case corresponds to the anti-windup compensation problem being convex but not

necessarily feasible, this occurs even though the plant is asymptotically stable [21].

The previous analysis for the zeros was generic, in that it was based on the general

equations for the zeros in terms of the anti-windup compensator elements. However,

the choice of anti-windup configuration has an additional effect on the ability to

assign the zeros of T u
n . This can be seen for both static and dynamic anti-windup

compensation, as considered below.

For static anti-windup compensation there are ñGy + ñPyu + 1 equations to be

solved to define the zeros. The full-authority and external feedback anti-windup aug-

mentations possess ñGy + 1 unknowns, with the two configurations being equivalent

whenever the invertibility condition defined through Eqn. 3.129 holds. The generic

anti-windup configuration possesses only one unknown. The dynamic conventional
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anti-windup possess ñGy + 1 pseudo unknowns, in that they are related through the

definition of H̃1 and H̃2 (note that the W&P and IMC configurations do not give

static anti-windup compensators). This difference between configurations comes as

no surprise, as in the static case it is known from Section III.B.1. that some config-

urations are deficient in their ability to determine H̃1 and H̃2 independently via Λ1

and Λ2, and viceversa.

From dynamic anti-windup compensation, when dΛ1s = dΛ2s , then there are

ñGy + ñΛ1s + ñPyu + 1 equations to be solved to define the zeros. The difference

between the configurations is essentially the same as that for the static case. The

full-authority and external feedback augmentations possess ñGy +2ñΛ1s +1 unknowns,

being equivalent whenever the invertibility condition defined through Eqn. 3.130

holds. The generic anti-windup configuration possesses only 2ñΛ1s + 1 unknowns.

The dynamic conventional anti-windup configuration possess ñGy + 2ñΛ1s + 1 pseudo

unknowns, in that they are again related through the definition of H̃1 and H̃2. The

W&P configuration differs depending on the consideration of the nominal or uncertain

plant case. For the nominal case, there is a cancelation as discussed in Section

III.D.2.a, and there are ñM̂ +1 equations to be solved and ñM̂ +1 unknowns (note the

equality). For the uncertain plant case there is no cancelation, and with Po
yu strictly

proper, there are ñGy + ñP∆
yu

+ ñPo
yu

+ ñM̂ + 1 equations to be solved and ñM̂ + 1

unknowns (note that uncertainty has destroyed the desirable equality property). For

the IMC configuration, there is no synthesis problem.

From this consideration of the zeros of T u
n , it would appear that no configuration

generally provides a solvable set of equations (with the poles of Λ1 and Λ2 prede-

fined), and hence no configuration permits arbitrary zero placement. This situation

is typically worse for the static anti-windup case. Comparing the configurations, the

full-authority and the external feedback augmentations possess the most favorable
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properties. For these configurations, in the dynamic case with fixed and common

poles for Λ1 and Λ2, it is possible to have a solvable set of equations whenever ñΛ1s

(or ñΛ2s) is equal to ñPyu , hence full order anti-windup compensation. The W&P

and T&K configuration are again interesting, as they emphasize the importance of

uncertainty. For the nominal case the system of equations is uniquely solved but

when uncertainty is considered, the number of unknowns is much greater than the

unknowns. Hence the practical consideration of uncertainty is important.

b. Override compensation

Similar considerations to the case of anti-windup compensation have to be taken

whenever an override configuration arises. With the poles and zeros of T z
n and F y

n

clearly defined, the analysis is simpler and can be focused only on the conditioning

of the plant, and hence the configurations can be compared with respect to their

internal structures and the freedom to allocate poles and zeros of the coprime factors

of the plant. Care has to be taken when considering uncertainty, one can think about

employing the zeros of the override compensator Θ to cancel some undesirable poles

of the unconstrained closed-loop system in T z
n or in F y

n , however, this will only hold

for a specific case of unconstrained closed-loop poles in a plant family.

3. Mismatch system insights

The mismatch system considered in Section II.D offers an ideal setting to consider the

effect of the remedial compensators on the constrained systems, and hence compare

the configurations. The mismatch system quantifies the response of the remedial

closed-loop system relative to the unconstrained closed-loop (or output constrained)

system, and hence the ability of the remedial system to recover the unconstrained

(or output constrained) closed-loop system’s response. Here we present insights that
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are obtained by the consideration of remedial compensation through the mismatch

system. These insights will be given in terms of design trade-offs and in terms of the

clarity offered by both the LFT (Figs. 9 and 13) and feedforward (Fig. 11 and 15)

representations of the remedial closed-loop system comprised of the unconstrained

(or output constrained) closed-loop system and the mismatch system. This serves to

clarify the properties of, and/or reasons for difficulty in, previous (anti-windup case)

or potential (override case) designs.

a. Mismatch anti-windup insights

The mismatch system offers direct insight into the mechanisms involved in anti-

windup compensation. This is because it isolates the effect of the anti-windup com-

pensator on the ability of the anti-windup system response to recover the uncon-

strained responses. In the nominal plant case, the W&P configuration [26] is in a

mismatch structure and therefore the analysis performed provides insights into the

properties of the mismatch system. Namely, the modes of response and the quantifi-

cation of the effect of saturation on the measured output of the anti-windup system

via yd, as defined therein. To extend this work to uncertain systems, it is necessary to

consider the uncertain mismatch system as given by Eqns. 2.9-2.13 in Section II.D.1

and presented in Fig. 9, both for the general anti-windup architecture. From the

equations of Section II.D.1, it is evident that the fundamental equation T u
n +Su

n = Inu

holds with the corresponding loop transmission being Lu
n. As the fundamental equa-

tion holds, the usual situation in feedback control arises, where there is an inherent

trade-off between sensitivity and complementary sensitivity functions. As the mis-

match system, and anti-windup compensation, only permits 1 DOF control through

Λ, this is a very stringent trade-off.

Considering the W&P configuration [26] for the nominal plant case, this gives a
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Fig. 19. W&P configuration for additive unstructured uncertainty.

trade-off between the modes of response of the mismatch system, specifically modes

2 and 3, with the system response in mode 2 being governed by T u
n and in mode 3

being governed by PzuS
u
n, as seen in Fig. 11. In Weston and Potlethwaite [26] it was

stated that an ideal design for modes 2 and 3 would be T u
n = 0 and T u

n = Inu (i.e.

Su
n = 0), respectively. In the present formulation with Q, this corresponds to QV = S

and QV ' ∞, respectively. Clearly this represents a trade-off between modes.

From the graphical interpretation of the mismatch system, in both the LFT rep-

resentation [30], as shown in Fig. 9, and the standard feedforward representation for

nominal [26] and uncertain plant [65], as shown in Fig. 11, the underlying mechanism

of anti-windup compensation becomes clear. This is, the design of the anti-windup

compensator to minimize the effect of saturation on the output of the system, which

can be quantified by the map between ul and zd in Figs. 9 and 11. Considering

the graphical representation in Fig. 19, it can be seen that the representation of the

W&P configuration for uncertain system [29] is not the mismatch system, as noted

also therein (see also others [65]). The W&P in the mismatch system, accounting

for additive uncertainty, is shown in Fig. 20 and comparing Figs. 19 and 20 it is

clear why the design approach with Fig. 19 presented difficulties. Namely, the signals
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considered for the maps do not directly address the basic properties of anti-windup

compensation as stated in Section II.C.1.c. Specifically, using the signals in Fig. 19, it

is not possible to directly and independently address the robust stability and robust

performance goals in the design. As seen in Fig. 20, the relationship between ψu

and zd, which is PzuSn and defines the anti-windup system response in mode 3, is

defined by P∆
zu(Inu + GyP∆

yu)
−1(Inu + GyPo

yu)M̂ , which is not evident in Fig. 19 and

not considered in Turner et al. [29]. It is therefore evident that the design approach

of [29] could be improved through the consideration of Fig. 20 and inclusion of the

correct signal maps in the solution of the design problem.6 7

The understanding of anti-windup compensation that results from the standard

feedforward representation of Figs. 9 and 11 also provides insights into how the anti-

windup compensation should be parameterized in terms of the unconstrained closed-

6In terms of the presentation in Galeani et al. [66], for the feedback configuration
presented in Turner et al. [29], the anti-windup compensator is no longer recovering
the response of the unconstrained closed-loop system after saturation occurs, but
rather a perturbed unconstrained closed-loop system. As defined in Galeani et al.
[66]: the response of

∑
UAW is different from

∑
U .

7Note also that the T&K configuration [19], to the authors knowledge, has not
been employed for anti-windup compensation synthesis with explicit consideration of
robustness.
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loop system control elements. Considering Fig. 11 and Eqns. 2.9-2.12 it is evident

that the choice of a prefilter F , while affecting the response of the unconstrained

closed-loop system, does not affect the properties of the mismatch system whenever

the plant uncertainty is linear. For the nonlinear uncertainty case, it becomes evident

from Fig. 21 that the prefilter dynamics (incorporated in the exogenous input) is

not employed to described the mismatch system, but rather its effect can be seen

with the input ηl going to a nonlinear uncertainty perturbation. Such insights are

useful, as seen when considering some designs [30], which includes the prefilter in the

parameterization of the mismatch system and renders a conditioned controller Ĝ (or

equivalently Q) of increased order. By knowing the properties of the mismatch system

in advance, this increase in order of the anti-windup compensator is made evident

when placing the design of Grimm et al. [30] in the general anti-windup architecture,

as shown in Fig. 21: 


v1
1

v2
1

v2




=




Λ̃1
1

FiΛ̃
2
1

Λ̃2




︸ ︷︷ ︸
Λ

ψ(u), (3.160)

where v1
1 ∈ Rng is fed back to the unconstrained controller states, v2

1 ∈ Rnf is fed

back to the unconstrained controller input, v2 ∈ Rnu goes to the unconstrained con-

troller output, Fi = Cf (sInf
−Af )

−1 and Λ̃T =

[
Λ̃1T

1 Λ̃2T
1 Λ̃T

2

]
is the anti-windup

compensator designed in Grimm et al. [30]. Interestingly, the prefilter dynamics

that appear in part of the anti-windup compensator Λ modifies the corresponding Q

parameter to:

QF = (Inu + V Λ̃2s + CΛ̃1
1s + UFiΛ̃

2
1)
−1, (3.161)

where V , U and C are as defined in Eqns. 2.4, Eqn. 2.5 and Eqn. 3.9, respectively,

and the subscript (·)s denotes the strictly proper part of the transfer function matrix.
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One can recall that the anti-windup design in Grimm et al. [30] is nominal plant

order (ñPo) and therefore the minimum order of QF in Eqn. 3.134 becomes ñPo +

ñG + ñF . Moreover, from Section III.A.1. we know that a nominal plant order anti-

windup design for the full-authority configuration with an unconstrained controller

not including the prefilter provides a parameter Q of order equal to ñPo + ñG. It

is then evident the increase of ñF in the order of QF with respect to Q, the latter

obtained from a mismatch system not parameterized by the prefilter dynamics. One

may think that the increase in order for the conditioned controller given by Eqn.

3.134 provides a better level of global performance, however this is not necessary true

as observed from the following argument. The inclusion of the prefilter dynamics does

not, theoretically, offer any benefit, as the IMC controller is a feasible solution with

or without the prefilter. However, considering Q, we know that for the same order

of the anti-windup compensator Λ, the use of the prefilter does allow one to exploit

existing dynamics and arrive at anti-windup compensators Λ that are not possible

without the prefilter. Importantly, these compensators do not offer any benefit from

an optimal L2 setting when the anti-windup compensator Λ is plant order.

b. Mismatch override insights

The insights that the mismatch system provides for anti-windup compensation are

very similar to the override compensation case. Figure 13 presents the override system

in a cascade connection of the output constrained closed-loop system to the mismatch

system. The former is stable by assumption, hence the stability of the conditioned

system can be guaranteed by the stability of the mismatch system. The nonlinear

loop in the mismatch system consists of a sector bounded nonlinearity ϕ(·, zl)) in a

positive feedback loop with the transfer function matrix T z
n . The stability analysis

for this loop can be done by any well known stability criteria (e.g. Small Gain,
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MIMO Circle, Popov). Provided the nonlinear loop is stable, the disturbance filter

will be guaranteed stable if F y
n is also stable. Observing the Eqns. 2.18 and 2.19, a

requirement for stability is that the override compensator Θ ∈ RH∞. The analysis of

performance can be centered around the disturbance filter F y
n , and it is quite simple

because F y
n is a linear system. The objective of the disturbance filter is to reject

the input ψ(z) as quickly as possible. However, designing for F y
n is not an easy task

because the design parameter Θ, the override compensator, not only is present in the

disturbance filter F y
n , but also in the nonlinear feedback loop. Therefore designing for

both T z
n and F y

n involves a compromise between the nonlinear loop and the disturbance

filter.

Additional observations can also be made in terms of how the override design

problem should be parameterized, i.e. which elements of the unconstrained closed-

loop system have to be considered in the definition of the design problem. An impor-

tant consideration is that of including or not the prefilter or disturbance dynamics

corresponding to the exogenous input w in the design problem. Figure 15 shows

that a possible prefilter dynamics, while affecting the response of the unconstrained

closed-loop system and hence the input of the mismatch system ψ(zl), does not affect

the properties of the mismatch system.
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CHAPTER IV

GLOBAL, FINITE-GAIN ROBUST PERFORMANCE ANALYSIS OF

REMEDIAL COMPENSATION

The following systems are introduced and will be used throughout this dissertation.

Moreover, the finite performance gain of the remedial closed-loop augmented systems

is determined.

A. Realization of the mismatch system

The design of remedial compensators necessitates the model of the plant and the real-

ization of the modified unconstrained controller, the latter allowing for the inclusion

of remedial compensation. The state space representations are specified in accordance

with the definitions given in Chapter I. Then, the uncertain plant is given as:

P∆ =



P∆

zw P∆
zu

P∆
yw P∆

yu








ẋp = Apxp + Bp,ζζp + Bp,ww + Bp,uup

ηp = Cp,ηxp + Dp,ηζζp + Dp,ηww + Dp,ηuup

zp = Cp,zxp + Dp,zζζp + Dp,zww + Dp,zuup

yp = Cp,yxp + Dp,yζζp + Dp,yww + Dp,yuup

ζp = ∆ηp

, (4.1)

and the modified unconstrained controller is given as:

GM =

[
Gw Gy Gv

]




ẋg = Agxg + Bg,ww + Bg,yug + Bg,v1uv1

yg = Cgxg + Dg,ww + Dg,yug + Dg,v1uv1 + Dg,v2uv2

,

(4.2)

The corresponding dimensions of the state vectors, inputs and outputs of the plant

and modified unconstrained controller have been specified in Section I.B.1. and are:

xp ∈ Rnp , ζp ∈ Rnm , w ∈ Rnw , up ∈ Rnu , zp ∈ Rnz , yp ∈ Rny , ηp ∈ Rnm , xg ∈ Rng ,
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ug ∈ Rny , uv1 ∈ Rnv1 , uv2 ∈ Rnv2 , yg ∈ Rnu . We will also specify that the linear

nominal plant is order np and the modified modified unconstrained controller is order

ng, i.e. xp ∈ Rnp and ng ∈ Rng . Note that the order or the uncertain plant is related

to the order of the uncertainty perturbation ∆. The uncertainty perturbation is

modeled as a casual, bounded, linear operator in L2, restricted to have the following

spatial structure1:

∆ = diag [δ1Ik1 , ..., δLIkL
, ∆L+1, ..., ∆L+F ] with δq : R 7→ R, ∆q : C 7→ Ckq×kq , (4.3)

with k1+...+kL+kL+1+...+kL+F = nm. The perturbations can be normalized to size

% in an induced L2 norm (‖∆‖L2 7→L2 ≤ %). Note that for this L2 linear uncertainty,

with spatial structure as above, the description is consistent with the problem studied

in modern robust control (i.e. µ-synthesis). To distinguish the parametric uncertainty

from the non-parametric one, the corresponding matrices Bζ , Cη and Dηζ in Eqn. 4.1

will be partitioned appropriately, with the subscripts (·)p and (·)n corresponding to

parametric and non-parametric respectively, as follows:

Bζ =

[
Bp,ζp Bp,ζn

]
, Cp,η =




Cp,ηp

Cp,ηn


 , Dη =




Dp,ηpζp 0

0 Dp,ηnζn


 . (4.4)

where Bp,ζp ∈ Rnp×nmp , Bp,ζn ∈ Rnp×nmn , Cp,ηp ∈ Rnmp×np , Cp,ηn ∈ Rnmn×np , Dp,ηp ∈
Rnmp×nmp and Dp,ηn ∈ Rnmn×nmn , for nmp = k1 + ... + kL and nmn = kL+1 + ... + kL+F

with nm = nmp + nmn .

For the development of the synthesis procedure, it is useful to consider the mis-

match system previously depicted in Figs. 10 and 14 because, conveniently, this

system possesses as its inputs and outputs the signals necessary for the definition

1A wide variety of uncertainty models can be translated into this standard form
by an appropriate selection of the number, size, and dynamic nature of the blocks of
∆ (i.e. parameter variations, and unmodeled LTI dynamics).
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of remedial performance quantification. This is not a fortuitous fact, recall that the

mismatch system was defined to capture the difference between the actual and the

unconstrained (or output constrained) responses.

To show the realization of the mismatch system, the realization of the remedial

compensator is also necessary. Note that we have given the realization of the static

remedial compensator in Eqn. 2.4 and that of the dynamic remedial compensator in

Eqn. 2.5.

The dynamics of the mismatch system, as presented in Fig. 22 for anti-windup

compensation and Fig. 23 for override compensation, can be captured by the inter-

action of the uncertain plant P∆ in Eqn. 4.1, modified unconstrained controller GM
in Eqn. 4.2 and remedial compensator R in Eqn. 2.4 if static and in Eqn. 2.5 if

dynamic, via the equations:

ud = up = yg, zd = zp, yd = yp = ug, ηd = ηp, v1 = uv1 , v2 = uv2 . (4.5)

Then, the compact realization of the mismatch system can be written with the state

x =




xp,d

xg,d

xΛ




as detailed below, for Anti-windup Compensation:

W∆





ẋ = Ax + Bζζd + Bψψ0

ηd = Cηx + Dηζζd + Dηψψ0

zd = Czx + Dzζζd + Dzψψ0

ud = Cux + Duζζd + Duψψ0

ζd = ∆ηd

ψ0 = ψ(u) = ψ(ul − ud)

, (4.6)
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and Override Compensation:

W∆





ẋ = Ax + Bζζd + Bψ(ψ0 + ϕ0)

ηd = Cηx + Dηζζd + Dηψ(ψ0 + ϕ0)

zd = Czx + Dzζζd + Dzψ(ψ0 + ϕ0)

yd = Cyx + Dyζζd + Dyψ(ψ0 + ϕ0)

zd = zd − ψ0

ζd = ∆ηd

ψ0 = ψ(zl)

ϕ0 = ϕ(−zd, zl) = ψ(z)− ψ(zl)

, (4.7)

where the matrices A, Bζ , Bψ, Cz, Dzζ , Dzψ, Cu, Duζ , Duψ, Cη, Dηζ and Dηψ are

uniquely determined by the realization of the plant, modified unconstrained controller

and the remedial compensation. These matrices can be constructed via the following

Notation 4.1.
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Notation 4.1. Construction of compact representation of mismatch system.

Step 1. Define n = np + ng + nΛ and nCL = np + ng based on the state

vector dimensions of the linear plant P∆ , modified unconstrained controller

GM and anti-windup compensator in Eqns. 4.1, 4.2 and 2.5 (dynamic version)

respectively.

Step 2. On the basis of the realization for the plant P∆ in Eqn. 4.1 and

modified unconstrained controller GM in Eqn. 4.2, define Υp ∈ Rny×ny and

Υg ∈ Rnu×nu as:

Υp = (Iny + Dp,yuDg,y),

Υg = (Iny + Dg,yDp,yu).
(4.8)

Define v =




v1

v2


 ∈ Rnv , where nv = nv1 + nv2 . Also note that nr substitutes

nu or nz, depending on the anti-windup or override problem being solved. Then,

employing Υp and Υg and the matrices of the plant P∆ in Eqn. 4.1 and uncon-

strained controller G in Eqn. 4.2, define ACL ∈ RnCL×nCL , BCL,ζ ∈ RnCL×nm ,

BCL,v ∈ RnCL×nv , BCL,ψ ∈ RnCL×nu , CCL,η ∈ Rnm×nCL , DCL,ηζ ∈ Rnm×nm ,

DCL,ηv ∈ Rnm×nv , DCL,ηψ ∈ Rnm×nr , CCL,z ∈ Rnz×nCL , DCL,zζ ∈ Rnz×nm ,

DCL,zv ∈ Rnz×nv , DCL,zψ ∈ Rnz×nr , CCL,y ∈ Rny×nCL , DCL,yζ ∈ Rny×nm , DCL,yv ∈
Rny×nv , DCL,yψ ∈ Rny×nr , CCL,u ∈ Rnu×nCL , DCL,uζ ∈ Rnu×nm , DCL,uv ∈ Rnu×nv
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and DCL,uψ ∈ Rnu×nr as:

ACL =




Ap −Bp,uDg,yΥpCp,y Bp,uΥgCg

−Bg,yΥpCp,y Ag −Bg,yΥpDp,yuCg


 ,

BCL,ζ =




Bp,ζ −Bp,uDg,yDp,yζ

−Bg,yΥpDp,yζ


 ,

BCL,v =




−Bp,uΥgDg,v1 −Bp,uΥgDg,v2

−Bg,v1 + Bg,yΥpDp,yuDg,v1 Bg,yΥpDp,yuDg,v2


 ,

BCL,ψu =




Bp,uΥg

−Bg,yΥpDp,yu


 , BCL,ψz =




0

0


 ,

CCL,η =

[
Cp,η −Dp,ηuDg,yΥpCp,y Dp,ηuΥgCg

]
,

DCL,ηζ = Dp,ηζ −Dp,ηuDg,yDp,yζ ,

DCL,ηv =

[
−Dp,ηuΥgDg,v1 −Dp,ηuΥgDg,v2

]
,

DCL,ηψu = Dp,ηuΥg, DCL,ηψz = 0,

CCL,z =

[
Cp,z −Dp,zuDg,yΥpCp,y Dp,zuΥgCg

]
,

DCL,zζ = Dp,zζ −Dp,zuDg,yDp,yζ ,

DCL,zv =

[
−Dp,zuΥgDg,v1 −Dp,zuΥgDg,v2

]
,

DCL,zψu = Dp,zuΥg, DCL,zψz = 0,

CCL,y =

[
ΥpCp,y ΥpDp,yuCg

]
,

DCL,yζ = ΥpDp,zζ ,

DCL,yv =

[
−ΥpDp,yuDg,v1 −ΥpDp,yuDg,v2

]
,

DCL,yψu = ΥpDp,yu, DCL,yψz = 0,

CCL,u =

[
−Dg,yΥpCp,y ΥgCg

]
,

DCL,uζ = −Dg,yDp,yζ ,

DCL,uv =

[
−ΥgDg,v1 −ΥgDg,v2

]
,

DCL,uψu = Υg − Inu , DCL,uψz = 0.

(4.9)
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Step 3. Using the realization of the linear remedial compensator R shown in

Eqn. 2.4 if static and in Eqn. 2.5 if dynamic, define DR (where DR ∈ Rnv×nr)

via:

DR =




DR1

DR2


 . (4.10)

If the remedial compensation is linear and static then define A ∈ RnCL×nCL ,

Bζ ∈ RnCL×nm , Bψ ∈ RnCL×nu , Cη ∈ Rnm×nCL , Dηζ ∈ Rnm×nm , Dηψ ∈ Rnm×nu ,

Cz ∈ Rnz×nCL , Dzζ ∈ Rnz×nm , Dzψ ∈ Rnz×nu , Cy ∈ Rny×nCL , Dyζ ∈ Rny×nm ,

Dyψ ∈ Rny×nu , Cu ∈ Rnu×nCL , Duζ ∈ Rnu×nm , Duψ ∈ Rnu×nu , via:

A = ACL, Bζ = BCL,ζ , Bψ = BCL,ψ,

Cη = CCL,η, Dηζ = DCL,ηζ , Dηψ = DCL,ηψ,

Cy = CCL,y, Dyζ = DCL,yζ , Dyψ = DCL,yψ,

Cz = CCL,z, Dzζ = DCL,zζ , Dzψ = DCL,zψ,

Cu = CCL,u, Duζ = DCL,uζ Duψ = DCL,uψ.

(4.11)

However, if the remedial compensation is linear and dynamic, as shown in Eqn.

2.5, then define AR, BR and CR where AR ∈ RnR×nR , BR ∈ RnR×nr , and

CR ∈ Rnv×nR , and the latter is described via:

CR =




CR1

CR2


 . (4.12)

and A ∈ Rn×n, Bζ ∈ Rn×nm , Bψ ∈ Rn×nr , Cη ∈ Rnm×n, Dηζ ∈ Rnm×nm ,

Dηψ ∈ Rnm×nr , Cz ∈ Rnz×n, Dzζ ∈ Rnz×nm , Dzψ ∈ Rnz×nr , Cy ∈ Rny×n,
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Dyζ ∈ Rny×nm , Dyψ ∈ Rny×nr , Cu ∈ Rnu×n, Duζ ∈ Rnu×nm , Duψ ∈ Rnu×nr via:

A =




ACL BCL,vCR

0 AR


 , Bζ =




BCL,ζ

0


 ,

Bψ =




BCL,ψ + BCL,vDR

BR


 , Cη =

[
CCL,η DCL,ηvCR

]
,

Dηζ = DCL,ηζ , Dηψ = DCL,ηψ + DCL,ηvDR,

Cz =

[
CCL,z DCL,zvCR

]
, Dzζ = DCL,zζ ,

Dzψ = DCL,zψ + DCL,zvDR, Cy =

[
CCL,y DCL,yvCR

]
,

Dyζ = DCL,yζ , Dyψ = DCL,yψ + DCL,yvDR,

Cu =

[
CCL,u DCL,uvCR

]
, Duζ = DCL,uζ ,

Duψ = DCL,uψ + DCL,uvDR.

(4.13)

C

If Assumption 2.2 holds, the unconstrained closed-loop system is well-posed and

internally stable, then Υp and Υg are well-defined and all the steps in Notation 3.1.

can be completed.

Note that the mismatch system state space representation has been defined for

the general architecture for remedial compensation. Defining the remedial compensa-

tion synthesis problem in terms of the parameters of the general architecture external

structure (Bg,v1 , Dg,v1 and Dg,v2), besides the remedial compensator R, gives a differ-

ent insight into the remedial compensation problem. This insight becomes specially

important when we attempt to compare existing configurations, for example in the

anti-windup compensation case, as seen in the next chapter.
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1. Extremal input nonlinearities cases

The states of the mismatch system xp,d = xpl − xp and xg,d = xgl − xg correspond

to the difference between the unconstrained and remedial internal trajectories for the

plant and controller respectively. From Definition 1.16. we know that xpl(0) = xp(0),

xgl(0) = xg(0) and xR(0) = 0, then, at t = 0, we have that x(0) = 0. Hence from

Figs. 22 and 23, provided x(0) = 0, there are two special extreme input nonlinearities

we would like to consider.

a. Anti-windup compensation

1. Select φ(·) ≡ 0 in the anti-windup closed-loop system shown in Fig. 6. Then

ψ(u) ≡ u in the mismatch system, see Fig. 22, and this is valid for any anti-

windup compensator and any unconstrained controller. From Eqn. 4.7 after

appropriate substitutions for its matrices according to Eqns. 4.9, 4.11 and 4.13,

the mismatch system output response can be written as:

W∆
ψ(·)≡Inu





ẋp,d = Apxp,d + Bp,ζζd + Bp,uul

zd = Cp,zxpd + Dp,zζζd + Dp,zuul

ηd = Cp,ηxpd + Dp,ηζζd + Dp,ηuul

ζd = ∆ηd

. (4.14)

Note that, from Fig. 11, it can be directly concluded that for ψ(·) ≡ Inu ,

the mismatch control output and mismatch performance output responses are

(I + Lu
n)ul and P∆

zuul, respectively.

2. Select φ(·) ≡ Inu in the anti-windup closed-loop system shown in Fig. 6. Then

ψ(u) ≡ 0 in the mismatch system, see Fig. 22, and this is valid for any anti-

windup compensator and any unconstrained controller. From Eqn. 4.7 after
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appropriate substitutions for its matrices according to Eqns. 4.9, 4.11 and

4.13, the mismatch system output response can be written with state xCL,d =


xp,d

xg,d


 as:

W∆
ψ(·)≡0





ẋCL,d = ACLxCL,d + BCL,ζζd

zd = CCL,zxCL,d + DCL,zζζd

ηd = CCL,ηxCL,d + DCL,ηζζd

ζd = ∆ηd

. (4.15)

b. Override compensation

1. Select φ(·) ≡ 0 in the override closed-loop system shown in Fig. 7. Then

ψ(zl) ≡ zl and ϕ(−zd, zl) = ψ(z) − ψ(zl) = z − zl = −zd in the mismatch

system, see Fig. 23, and this is valid for any override compensator and any

unconstrained controller. From Eqn. 4.8 after appropriate substitutions for its

matrices according to Eqns. 4.9, 4.11 and 4.13, the mismatch system output

responses can be written as:

W∆
ψ(·)≡Inu





ẋ = Ax + Bζζd + Bψz

ηd = Cηx + Dηζζd + Dηψz

zd = Czx + Dzζζd + Dzψz

yd = Cyx + Dyζζd + Dyψz

zd = −z

ζd = ∆ηd

, (4.16)

Note that, from Fig. 15, it can be directly concluded that for ψ(·) ≡ Inu and

ϕ(·) ≡ Inu , the mismatch performance output and mismatch measured output

responses are −Lz
n(Inz + Lz

n)−1z and −P∆
yuSGvΘ, respectively.
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2. Select φ(·) ≡ Inu in the override closed-loop system shown in Fig. 7. Then

ψ(·) ≡ 0 and ϕ(·) ≡ 0 in the mismatch system, see Fig. 23, and this is valid

for any override compensator and any unconstrained controller. From Eqn. 4.8

after appropriate substitutions for its matrices according to Eqns. 4.9, 4.11

and 4.13, the mismatch system output responses can be written with state

xCL,d =




xp,d

xg,d


 as:

W∆
ψ(·)≡0,ϕ(·)≡0





ẋCL,d = ACLxCL,d + BCL,ζζd

zd = CCL,zxCL,d + DCL,zζζd

ηd = CCL,ηxCL,d + DCL,ηζζd

ζd = ∆ηd

. (4.17)

Remark 4.2. The mismatch system, compared to the constrained closed-loop sys-

tem, possesses additional inputs and outputs acting at different point locations of the

closed-loop. In particular, one of these inputs and outputs corresponds to the reme-

dial compensator. From the mismatch system showed in Figs. 22 and 23, when no

remedial compensator exists, we have that v = 0 and the connection of the resulting

mismatch system to the unconstrained closed-loop system is equivalent to the input

constrained system described in Fig. 4 and to the output constrained system in Fig.

5 for anti-windup and override compensation, respectively. C

B. Determining the finite unconstrained response gain

1. Anti-windup compensation

Algorithm 4.3 (Linear anti-windup performance analysis of robust unconstrained

response recovery gain)
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Step 1. Using the compact representation of the mismatch system W∆ in Eqn.

4.6, construct A, Bζ , Bψ, Cη, Dηζ , Dηψ, Cz, Dzζ , Dzψ, Cy, Dyζ , Dyψ, Cu, Duζ ,

and Duψ, according to Notation 4.1

Step 2. Find a solution (Q̄, Ū , V̄ , τ, γ) ∈ (R(nCL+nΛ)×(nCL+nΛ),Dnu×nu ,Dnmp×nmp ,

R,R), with γ > 0 as small as possible and %̃ ≥ 0, to the LMI problem:

Q̄ = Q̄T > 0, (4.18a)

Ū = diag[µ1, ..., µnu ] > 0, (4.18b)

V̄ = diag[ν1, ..., νnmp
] > 0, (4.18c)

He




AQ̄ BψŪ Q̄CT
z 0 Bζp V̄ τBζn %̃Q̄CT

ηn

−CuQ̄ −DuψŪ − Ū 0 Inu −Duζp V̄ −τDuζn 0
0 DzψŪ −γ

2 Inz 0 0 0 0
0 0 0 −γ

2 Inu 0 0 0
%̃CηpQ̄ 0 V̄ DT

zζp
0 %̃Dηpζp V̄ − V̄ 0 0

0 0 τDT
zζn

0 0 − τ
2Inmn

τ %̃DT
ηnζn

0 %̃DηnψŪ 0 0 0 0 − τ
2Inmn




< 0.

(4.18d)

Theorem 4.4 If (Q̄, Ū , V̄ , τ, γ) is a solution to the LMI in Eqn. 4.18, Step

2 of Algorithm 4.3, then the anti-windup augmented closed-loop system guarantees

the basic properties of anti-windup and has a robust finite unconstrained response

recovery.

Proof. The proof will be provided in Chapter VI.

2. Override compensation

Algorithm 4.5 (Linear override performance analysis of robust unconstrained re-

sponse recovery gain)

Step 1. Using the compact representation of the mismatch system W∆ in Eqn.

4.7, construct A, Bζ , Bψ, Cη, Dηζ , Dηψ, Cz, Dzζ , Dzψ, Cy, Dyζ , Dyψ, Cu, Duζ ,

and Duψ, according to Notation 4.1
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Step 2. Find a solution (Q̄, Ū , V̄ , τ, γ) ∈ (R(nCL+nΘ)×(nCL+nΘ),Dnu×nu ,Dnmp×nmp ,

R,R), with γ > 0 as small as possible and %̃ ≥ 0, to the LMI problem:

Q̄ = Q̃T > 0, (4.19a)

Ū = diag[µ1, ..., µnu ] > 0, (4.19b)

V̄ = diag[ν1, ..., νnmp
] > 0, (4.19c)

He


AQ̄ −BψŪ 0 0 −Bψ Bζp V̄ 0 %̃Q̄CT
ηn

−CzQ̄
−DzψŪ−

Ū
0 0 Dzψ −Dzζp V̄ 0 −%̃ŪDT

ηnψ

WyCyQ̄ −WyDyψŪ −γ
2 Iny 0 −WyDyψ WyDyζp V̄ τWyDyζn 0

WzCzQ̄ −WzDzψŪ 0 −γ
2 Inz −WzDzψ WzDzζp V̄ τDzζn 0

0 0 0 −W T
o W T

z −γ
2 Inz −DT

ηpψ 0 %̃DT
ηnψ

%̃CηpQ̄ −%̃DηpψŪ 0 0 −Dηpψ
−V̄ +

%̃Dηpζp V̄
0 0

τBT
ζn

−τDT
zζn

0 0 0 0 − τ
2Inmn

0
0 0 0 0 0 0 τ %̃Dηnζn − τ

2Inmn




< 0. (4.19d)

Theorem 4.6 If (Q̄, Ū , V̄ , τ, γ) is a solution to the LMI in Eqn. 4.19, Step 2 of

Algorithm 4.4, then the override augmented closed-loop system guarantees the basic

properties of override and has a robust finite unconstrained response recovery.

Proof. The proof will be provided in Chapter VI.
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CHAPTER V

GLOBAL, ROBUST REMEDIAL COMPENSATION FOR EXPONENTIALLY

STABLE PLANTS

In this chapter we consider the effect of both static and dynamic remedial compensa-

tions as detailed in Section II.B. The general architecture for remedial compensation

will be the reference for our design algorithms. The specific configurations for anti-

windup compensation and their corresponding conditions for design feasibility will

appear as special cases of the general architecture for anti-windup compensation. The

case of override compensation will be developed only for the corresponding general

architecture when the override compensator has access to the unconstrained con-

troller states and output. To guarantee global stability of the remedial compensation

closed-loop system we employ absolute stability guaranteed via quadratic stability.

All along, the anti-windup community, and lately the override community, has found

Lyapunov analysis tools useful in order to state the stability requirements together

with the performance properties. This work is no exception, as seen in the develop-

ment of this and following chapters. Notably, these typical analysis tools have the

advantage of being related to LMI conditions. Hence, the satisfaction of these LMI

conditions guarantees the global stability, with some performance measure, of the re-

medial compensation closed-loop system. The LMI conditions given throughout this

chapter utilize the notation and definition in Chapter IV.

For the following algorithms, the remedial compensator is allowed to have a static

internal structure first, and then a dynamic internal structure. Consideration will be

given in both cases to the optimal design based on the finite unconstrained response

recovery gain measure presented in Section II.C. The algorithms to be presented here

for anti-windup compensation are similar in spirit and structure to the ones presented
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in Grimm [56]. However, by presenting the general external structure, our idea is to

be able to obtain synthesis algorithms for all remedial compensation schemes and

further compare the advantages and disadvantages of employing one structure over

the other. The case of override compensation is given here for completeness and

comparison purposes with the anti-windup case. Importantly, structured uncertainty

is also considered in all synthesis algorithms.

Recall that this chapter will only state results, the proofs of the theorems will

be stated in the next chapter.

A. Static remedial compensation

Static anti-windup compensation as described in Section II.B possess a very appealing

structure because, with no dynamics involved, it is easy to implement. However, its

capabilities are limited [21]. Nevertheless, it is always good to have the algorithms for

static compensation at hand such that we can make use of them whenever is possible.

1. Static anti-windup

Static compensation for the input constrained problem will be considered in this part

of the dissertation. Recall from Section II.C that the finite unconstrained response

recovery gain for anti-windup compensation refers to the L2 gain from the signal ul (ul

comes from the unconstrained controller) to the difference of signals zl − z (zl comes

from the unconstrained closed-loop system and z is from the anti-windup closed-loop

system). Therefore, the algorithms presented in this section will guarantee that,

regardless of the exogenous disturbance w ∈ L2 and when the initial conditions of

the plant and controller in the mismatch system are zero, the following is satisfied:

‖zl(·)− z(·)‖2 ≤ γ‖ul(·)‖2, (5.1)
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with the finite unconstrained recovery gain γ as small as possible. More specifically,

the algorithms in this section are aimed at constructing the gains of a static linear

anti-windup compensator that guarantees an optimal finite unconstrained response

recovery gain.

a. General external structure static anti-windup

As introduced and described in Section II.B, static anti-windup compensation syn-

thesis amounts to obtaining the gain matrices DΛ1 and DΛ2 of the static anti-windup

compensator in Fig. 24. Algorithm 5.1 is now offered in order to provide the most

general case of static anti-windup compensation, which corresponds to using the gen-

eral external structure for anti-windup. In particular, this algorithm will be employed

to obtain the corresponding algorithms for the existing static anti-windup external

structures (configurations).

P Dw

w

y
u

-

z

Bg,w

Dg,w

Dg,y

Dg,v1

Cg

Ag

Bg,y1/s

Bg,v1

v
1

v
2

GM

Dg,v2

DL1

DL2

f(  )u

Fig. 24. Static anti-windup compensator is fed back in a general external structure.
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Ū

−
γ 2
I n

z
0

D
C

L
,z

ζ p
V̄

τ
D

C
L
,z

ζ n
0

0
0

0
−

γ 2
I n

u
0

0
0

V̄
B

T C
L
,ζ

p
%̃
D

C
L
,η

p
ψ
Ū
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Note, however, that due to the generality of the presentation in Algorithm 5.1.

no concluding remark can be done with respect to under what conditions global sta-

bility of the anti-windup closed-loop system is guaranteed. Interestingly, each static

anti-windup compensation scheme will require the satisfaction of certain conditions

in order to guarantee global stability of the anti-windup closed-loop system. More-

over, we will see that these conditions are necessary and sufficient for the successful

construction of anti-windup compensation employing Algorithm 5.1. The list of these

conditions is presented in Assumption 5.2.

Assumption 5.2.

1. Full-authority feedback static anti-windup augmentation

There exists a solution X̄ ∈ RnCL×nCL to the LMI problem:

X̄ =




X̄11 X̄12

X̄T
12 X̄22


 = X̄T > 0, (5.4a)

ApX̄11 + X̄11A
T
p < 0, (5.4b)

ACLX̄ + X̄AT
CL < 0. (5.4c)

2. External feedback static anti-windup augmentation

There exists a solution X̄ ∈ RnCL×nCL to the LMI problem:

X̄ = X̄T > 0, (5.5a)

MT







Ap 0

0 Ag


 X̄ + X̄




Ap 0

0 Ag




T 
 M < 0, (5.5b)

ACLX̄ + X̄AT
CL < 0, (5.5c)
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where M = diag[Inp , B
T
g⊥].

3. Generic static anti-windup configuration

Global stability conditions for this anti-windup scheme depend on the perfor-

mance level γ.

4. Conventional static anti-windup configuration for controller state

There exists a solution (X̄, ¯̄U) ∈ (RnCL×nCL ,Dnu) to the LMI problem:

X̄ = X̄T > 0, (5.6a)

¯̄U = diag[µ̄1, ..., µ̄nu ] > 0, (5.6b)



p̃T (ACLX̄ + X̄AT
CL)p̃ p̃T (BCL,ψ

¯̄U − X̄T CCL,u)

( ¯̄UBT
CL,ψ − CCL,uX̄)p̃ − ¯̄UDT

CL,uψ −DCL,uψ
¯̄U − 2 ¯̄U


 < 0, (5.6c)

ACLX̄ + X̄AT
CL < 0, (5.6d)

with p̃T =
[

Inp 0
]
.

5. Conventional static anti-windup configuration for controller input

There exists a solution (X̄, ¯̄U) ∈ (RnCL×nCL ,Dnu) to the LMI problem:

X̄ =




X̄11 X̄12

X̄T
12 X̄22


 = X̄T > 0, (5.7a)

¯̄U = diag[µ̄1, ..., µ̄nu ] > 0, (5.7b)

MT







Ap 0

0 Ag


 X̄ + X̄




Ap 0

0 Ag




T

X̄




0

CT
g


−




Bp,u

0


 ¯̄U

[
0 Cg

]
X̄ − ¯̄U

[
BT

p,u 0

]
−2 ¯̄U




M < 0,

(5.7c)
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ACLX̄ + X̄AT
CL < 0, (5.7d)

where M = diag[Inp ,

[
BT

g,y −DT
g,y

]

⊥
].

C

Observing the conditions that guarantee global stability of the anti-windup closed-

loop system, one can say that Assumption 5.2 corresponding to full-authority anti-

windup augmentation is the mildest one when compared to the other anti-windup

compensation schemes. In other words, Assumption 5.2 for external anti-windup

augmentation and conventional anti-windup configuration for controller input will

not hold if Assumption 5.2 for full-authority anti-windup augmentation does not hold.

Moreover, note that Assumption 5.2 for the conventional anti-windup configurations

emphasizes the well-posedness of the anti-windup closed-loop system.

In the following sections, we will concentrate on showing that, by appropriately

choosing the matrix elements Bg,v1 , Dg,v1 and Dg,v2 in the general structure, Algo-

rithm 5.1 permits to recover the algorithms for existing anti-windup compensation

schemes synthesis. Observe that L̄ is the parameter that carries the information of

the compensation schemes, and hence, Steps 1 and 2 of Algorithm 5.1 are the ones

that need to be rewritten for each corresponding scheme. The redefinition of Steps 1

and 2 will be considered next.



124

b
.

F
u
ll
-a

u
th

or
it
y

fe
ed

b
ac

k
st

at
ic

an
ti

-w
in

d
u
p

au
gm

en
ta

ti
on

S
te

p
1
.

C
on

st
ru

ct
th

e
m

at
ri

x
L̃
⊥

as
an

y
fu

ll
co

lu
m

n
ra

n
k

m
at

ri
x

th
at

sp
an

s
th

e
n
u
ll

sp
ac

e
of

L̃
T
,

w
h
er

e

L̃
T

=

[
0

I n
g

0
0

Υ
T g
B

T p
,u

−Υ
T g
D

T p
,y

u
B

T g
,y

−Υ
T g

Υ
T g
D

T p
,z

u

] .
L
et

L̄
=

d
ia

g[
L̃
⊥
,I

n
u
,I

n
m

p
,I

n
m

n
,I

n
m

n
].

S
te

p
2
.

F
in

d
a

so
lu

ti
on

(X
,V̄

,τ
)
∈

(R
n

C
L
×n

C
L
,D

n
n

m
,R

),
w

it
h

γ
>

0
as

sm
al

l
as

p
os

si
b
le

an
d

%̃
≥

0,
to

th
e

L
M

I

p
ro

b
le

m
:

X
=

[
X

1
1

X
1
2

X
T 1
2

X
2
2

] =
X

T
>

0,
(5

.8
a)

V̄
=

di
ag

[ν
1
,.

..
,ν

n
m

p
]>

0,
(5

.8
b)

H
e

        

A
p
X

1
1

0
X

1
1
C

T p
,z

%̃
X

1
1
C

T p
,η

p
τ
B

p
,ζ

n
%̃
X

1
1
C

T p
,η

n

B
T p
,u

−
γ 2
I n

u
D

T p
,z

u
0

0
%̃
D

T p
,η

n
u

0
0

−
γ 2
I n

z
D

p
,z

ζ p
V̄

τ
D

p
,z

ζ n
0

B
T p
,ζ

p
V̄

%̃
D

p
,η

p
u

0
%̃
D

T p
,η

p
ζ p

V̄
−

V̄
τ
%̃
D

p
,η

p
u
D

g
,y

D
p
,y

ζ n
0

0
0

0
0

−
τ 2
I n

m
n

τ
%̃
D

p
,η

n
ζ n

0
0

0
%̃
D

T p
,y

ζ p
D

T g
,y

D
T p
,η

n
u
V̄

0
−

τ 2
I n

m
n

        
<

0,
(5

.8
c)

H
e

        

A
C

L
X

0
X

C
T C
L
,z

%̃
X

C
T C
L
,η

p
τ
B

C
L
,ζ

n
%̃
X

C
T C
L
,η

n

0
−

γ 2
I n

u
0

0
0

0
0

0
−

γ 2
I n

z
0

0
0

V̄
B

T C
L
,ζ

p
0

D
T C

L
,z

ζ p
%̃
D

T C
L
,η

p
ζ p

V̄
−

V̄
0

0
0

0
τ
D

T C
L
,z

ζ n
0

−
τ 2
I n

m
%̃
D

T C
L
,η

n
ζ n

0
0

0
0

0
−

τ 2
I n

m

        
<

0.
(5

.8
d)



125

c.
E

x
te

rn
al

fe
ed

b
ac

k
st

at
ic

an
ti

-w
in

d
u
p

au
gm

en
ta

ti
on

S
te

p
1
.

C
on

st
ru

ct
th

e
m

at
ri

x
L̃
⊥

as
an

y
fu

ll
co

lu
m

n
ra

n
k

m
at

ri
x

th
at

sp
an

s
th

e
n
u
ll

sp
ac

e
of

L̃
T
,

w
h
er

e

L̃
T

=

[
D

T g
,y

Υ
T g
B

T p
,u

Υ
T p
B

T g
,y

−D
T g
,y

Υ
T g

D
T g
,y

Υ
T g
D

T p
,z

u

Υ
T g
B

T p
,u

−Υ
T g
D

T p
,y

u
B

T g
,y

−Υ
T g

Υ
T g
D

T p
,z

u

] .
L
et

L̄
=

d
ia

g[
L̃
⊥
,I

n
u
,I

n
m

p
,I

n
m

n
,I

n
m

n
].

S
te

p
2
.

F
in

d
a

so
lu

ti
on

(X
,V̄

,τ
)
∈

(R
n

C
L
×n

C
L
,D

n
n

m
,R

),
w

it
h

γ
>

0
as

sm
al

l
as

p
os

si
b
le

an
d

%̃
≥

0,
to

th
e

L
M

I

p
ro

b
le

m
:

X
=

[
X

1
1

X
1
2

X
T 1
2

X
2
2

] =
X

T
>

0,
(5

.9
a)

V̄
=

di
ag

[ν
1
,.

..
,ν

n
m

p
]>

0,
(5

.9
b)

H
e
L̄

T

          

A
p
X

1
1

X
1
2
A

T g
0

X
1
1
C

T p
,z

%̃
X

1
1
C

T p
,η

p
τ
B

p
,ζ

n
%̃
X

1
1
C

T p
,η

n

X
T 1
2
A

T p
A

g
X

2
2

0
0

0
0

0
B

T p
,u

0
−

γ 2
I n

u
D

T p
,z

u
0

0
%̃
D

T p
,η

n
u

0
C

p
,z
X

1
2

0
−

γ 2
I n

z
D

p
,z

ζ p
V̄

τ
D

p
,z

ζ n
0

B
T C
L
,ζ

p
V̄

%̃
C

p
,η

p
X

1
2

%̃
D

p
,η

p
u

0
%̃
D

T p
,η

p
ζ p

V̄
−

V̄
0

0
0

0
0

0
τ
%̃
D

T p
,y

ζ n
D

T g
,y

D
T p
,η

p
u

−
τ 2
I n

m
n

τ
%̃
D

p
,η

n
ζ n

0
%̃
C

p
,η

n
X

1
2

0
0

%̃
D

T p
,y

ζ p
D

T g
,y

D
T p
,η

n
u
V̄

0
−

τ 2
I n

m
n

          L̄
<

0,
(5

.9
c)

H
e

        

A
C

L
X

0
X

C
T C
L
,z

%̃
X

C
T C
L
,η

p
τ
B

C
L
,ζ

n
%̃
X

C
T C
L
,η

n

0
−

γ 2
I n

u
0

0
0

0
0

0
−

γ 2
I n

z
0

0
0

V̄
B

T C
L
,ζ

p
0

D
T C

L
,z

ζ p
%̃
D

T C
L
,η

p
ζ p

V̄
−

V̄
0

0
0

0
τ
D

T C
L
,z

ζ n
0

−
τ 2
I n

m
%̃
D

T C
L
,η

n
ζ n

0
0

0
0

0
−

τ 2
I n

m

        
<

0.
(5

.9
d)



126

d
.

G
en

er
ic

st
at

ic
an

ti
-w

in
d
u
p

co
n
fi
gu

ra
ti

on

S
te

p
1
.

C
on

st
ru

ct
th

e
m

at
ri

x
L̃
⊥

as
an

y
fu

ll
co

lu
m

n
ra

n
k

m
at

ri
x

th
at

sp
an

s
th

e
n
u
ll

sp
ac

e
of

L̃
T
,

w
h
er

e

L̃
T

=
[ Υ

T g
B

T p
,u

−Υ
T g
D

T p
,y

u
B

T g
,y

−Υ
T g

Υ
T g
D

T p
,z

u

] .
L
et

L̄
=

d
ia

g[
L̃
⊥
,I

n
u
,I

n
m

p
,I

n
m

n
,I

n
m

n
].

S
te

p
2
.

F
in

d
a

so
lu

ti
on

(X
,Ū
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Ū
0

0
%̃
X

C
T C
L
,η

p
τ
B

C
L
,ζ

n
0

−C
C

L
,u

X
−D

C
L
,u

ψ
Ū
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Ū

0
0

%̃
D

C
L
,η

p
ζ p

V̄
−

V̄
0

0
0

0
0

0
0

−
τ 2
I n

m
n

0
%̃
C

C
L
,η

n
X

%̃
D

C
L
,η

n
ψ
Ū
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Ū

−
γ 2
I n

z
0

D
C

L
,z

ζ p
V̄

τ
D

C
L
,z

ζ n
0

0
0

0
−

γ 2
I n

u
0

0
0

V̄
B

T C
L
,ζ

p
p̃

%̃
D

C
L
,η

p
ψ
Ū
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The next theorem states that Assumption 5.2 provides necessary and sufficient

conditions for the static linear anti-windup compensation to be successfully con-

structed.

Theorem 5.3 Assumption 5.2 is necessary and sufficient to guarantee that all steps

in Algorithm 5.1 can be completed for each anti-windup compensation scheme and

the corresponding resulting (DΛ1 , DΛ2) describe a static linear anti-windup compen-

sator that guarantees the anti-windup closed-loop satisfies the basic properties of anti-

windup and has finite unconstrained response recovery gain less than γ. C

Since Assumption 5.2 provides necessary and sufficient conditions for the success-

ful construction of a variety of anti-windup compensation schemes, one can say that

the success of the static anti-windup schemes synthesis algorithms may or may not

depend on the performance measure and on an additional parameter Ū . The cases

in which the success of static anti-windup compensation synthesis algorithms do not

depend on the measure of performance correspond to the full-authority and external

feedback anti-windup augmentations, and the conventional anti-windup configura-

tions. However, note that, in the case of the conventional anti-windup configura-

tions, there exists an additional parameter Ū that imposes further restrictions on the

achievement of global stability. We will show in the next chapter that the parameter

Ū in the conventional anti-windup configuration for controller state case is explicitly

enforcing well-posedness of the anti-windup closed-loop system. Notably, this require-

ment arises as this conventional configuration case only has a limited access to the

unconstrained controller. On the other side, the generic anti-windup configuration

stands as the only case where global stability of the anti-windup closed-loop system is

tied to the performance measure and also the enforcement of well-posedness appears

explicitly in the synthesis algorithm.
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2. Static override

Static compensation for the output constrained problem will be considered in this part

of the dissertation. Recall from Section II.C that the finite unconstrained response re-

covery gain for override compensation refers to the L2 gain from the difference signal

sat(zl) − zl (zl comes from the unconstrained closed-loop system and sat(zl) corre-

sponds to its saturated version) to the difference of signals




sat(zl)− z

yl − y


 (zl and yl

come from the unconstrained closed-loop system, sat(zl) is the saturated version of

zl and z comes from the anti-windup closed-loop system). Therefore, the algorithms

presented in this section will guarantee that, regardless of the exogenous disturbance

w ∈ L2 and when the initial conditions of the plant and controller in the mismatch

system are zero, the following is satisfied:

∥∥∥∥∥∥∥




sat(zl)− z

yl − y


 (·)

∥∥∥∥∥∥∥
2

≤ γ‖(sat(zl)− zl)(·)‖2, (5.13)

with the finite unconstrained recovery gain γ as small as possible. More specifically,

the algorithms in this section are aimed at constructing the gains DΘ1 and DΘ2 ,

shown in Fig. 25, of a static linear override compensator that guarantees an optimal

finite unconstrained response recovery gain. Algorithm 5.4 is now offered in order

to provide static override compensation synthesis. Recall that we will perform the

calculations for the GOC for controller state/output case.
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Ū

0
0

0
0

τ
%̃
D

C
L
,η

n
ζ n

−
τ 2
I n

m
n

            L̄
<

0,

(5
.1

4d
)

H
e

          

A
C

L
X

−X
C

T C
L
,z

X
C

T C
L
,y

W
T y

X
C

T C
L
,z
W

T z
%̃
Y

C
T C
L
,η

p
τ
B

C
L
,ζ

n
%̃
X

C
T C
L
,η

n

0
−

π 2
I n

z
0

Ū
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Fig. 25. Static override compensator is fed back to the unconstrained controller states

and output.

Note that, a simple inspection of Algorithm 5.4, Step 1, does not offer any

information with respect to under what conditions global stability of the override

closed-loop system is guaranteed. However, by employing the Finsler Lemma [14],

one can prove that the conditions stated below in Assumption 5.5 guarantee global

stability for the static override compensation with GOC for controller state/output.

Assumption 5.5. There exists a solution (X̄, ¯̄U) ∈ (RnCL×nCL ,Dnu) to the LMI

problem:

X̄ =




X̄11 X̄12

X̄T
12 X̄22


 = X̄T > 0, (5.16a)

ApX̄11 + X̄11A
T
p < 0, (5.16b)

ACLX̄ + X̄AT
CL < 0. (5.16c)

C

Observing the conditions that guarantee global stability of the override closed-

loop system, one can say that Assumption 5.5 requires, through Lyapunov inequali-

ties, that both the plant and the unconstrained closed-loop are asymptotically stable,
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and also there is a coupling of these Lyapunov inequalities to be satisfied.

Theorem 5.6 Assumption 5.5 is necessary and sufficient to guarantee that all steps

in Algorithm 5.4 can be completed and the corresponding resulting (DΘ1 , DΘ2) describe

a static linear override compensator that guarantees the override closed-loop satisfies

the basic properties of override and has finite unconstrained response recovery gain

less than γ. C

B. Dynamic remedial compensation

This section considers the effect of incorporating a dynamic, or arbitrary-order, linear

remedial compensator in the remedial closed-loop system. Dynamic linear remedial

compensation as described in Section II.B possesses a very appealing structure be-

cause it can be implemented easily and its capabilities are not limited as the static

linear anti-windup compensation case.

1. Dynamic anti-windup

Dynamic compensation for the input constrained problem will be considered in this

part of the dissertation. Recall from Section II.C that the finite unconstrained re-

sponse recovery gain for anti-windup compensation refers to the L2 gain from the

unconstrained controller output ul to the difference between the unconstrained closed-

loop system response and the anti-windup closed-loop system response zl− z. There-

fore, the algorithms presented in this section will guarantee that, regardless of the

exogenous disturbance w ∈ L2 and when the initial conditions of the plant, con-

troller and anti-windup compensator in the mismatch system are zero, the following

is satisfied:

‖zl(·)− z(·)‖2 ≤ γ‖ul(·)‖2, (5.17)
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with the finite unconstrained recovery gain γ as small as possible. More specifically,

the algorithms in this section are aimed at constructing the matrix elements of a

dynamic linear anti-windup compensator that guarantees an optimal finite uncon-

strained response recovery gain. The case when the dynamic anti-windup compen-

sation to be constructed is chosen to be of order equal to the plant, which is called

plant-order anti-windup compensation, is specially important because it provides very

useful synthesis algorithms [21]. Interestingly, plant-order anti-windup compensation

algorithms are computationally efficient because the corresponding steps are only

given in terms of LMI conditions. On the contrary, arbitrary-order anti-windup com-

pensation presents some steps where a non-convex optimization problem must be

solved .

a. General external structure dynamic anti-windup

As introduced and described in Section II.B, dynamic anti-windup compensation

synthesis amounts to obtaining the element matrices AΛ, BΛ, CΛ1 , CΛ2 , DΛ1 and DΛ2

of the dynamic anti-windup compensator. Figure 26 shows these elements matrices

in a compact form. Algorithms 5.7 and 5.8 are now offered in order to provide the

most general case of dynamic anti-windup compensation, which corresponds to using

the general external structure for anti-windup. Algorithm 5.7 is given for plant-

order dynamic anti-windup compensation and Algorithm 5.8 is given for arbitrary-

order dynamic anti-windup compensation. Moreover, Algorithms 5.7 and 5.8 will

be employed to obtain the corresponding algorithms for the existing dynamic anti-

windup configurations.
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Fig. 26. Dynamic anti-windup compensator is fed back in a general external structure.
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Algorithm 5.8 (Arbitrary-order1 dynamic anti-windup compensation design with

general external structure)

Step 1. Step 1 in Algorithm 5.7.

Step 2. Given nΛ, find a solution (X, Y, Ū , V̄ , τ) ∈ (RnCL×nCL ,RnCL×nCL ,Dnu ,

Dnnm ,R), with γ > 0 as small as possible and %̃ ≥ 0, to the LMI problem:

Eqns. 5.18a-5.18g, (5.20a)

rank(X − Y ) ≤ nΛ, (5.20b)

Step 3. Using m = nCL + nΛ + nmp + nu + nmn + nmn + nu + nz, construct the

matrices Ψ ∈ Rm×m, R̃ ∈ Rnu×m, and P̃ ∈ Rm×(nv1+nv2 ) via:

[Ψ, R̃, P̃ ] = VnΛ-dynamic(P∆,GM, X, Y, Ū , V̄ , τ, γ, nΛ),

where the function VnΛ-dynamic is given in Chapter VI.

Step 4. Find a solution (AΛ, BΛ, CΛ1 , CΛ2 , DΛ1 , DΛ2) ∈ (RnΛ×nΛ ,RnΛ×nu ,Rnv1×nΛ ,

Rnv2×nΛ ,Rnv1×nu ,Rnv2×nu) to the LMI problem:

Ψ + P̃ T




AΛ BΛ

CΛ1 DΛ1

CΛ2 DΛ2




R̃ + R̃T




AΛ BΛ

CΛ1 DΛ1

CΛ2 DΛ2




T

P̃ < 0. (5.21)

C

Note that, the generality of the presentation in Algorithms 5.7 and 5.8 hinders

from obtaining any concluding remark with respect to the conditions that guarantee

1This algorithm is related to the classic problem of with the It is usually expected
that nΛ < np.
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global stability of the anti-windup closed-loop system. Interestingly, for each dynamic

anti-windup compensation scheme certain conditions need to be satisfied in order to

guarantee global stability of the anti-windup closed-loop system. Moreover, we will

see that these conditions are necessary and sufficient for the successful construction

of anti-windup compensation employing Algorithms 5.7 and 5.8. The list of these

conditions is presented in Assumption 5.9.

Assumption 5.9.

1. Full-authority feedback dynamic anti-windup augmentation

There exists a solution (X̄11, Ȳ ) ∈ (Rnp×np ,RnCL×nCL) to the LMI problem:

X̄11 = X̄T
11 > 0, (5.22a)

Ȳ =




Ȳ11 Ȳ12

Ȳ T
12 Ȳ22


 = Ȳ T > 0, (5.22b)

ApX̄11 + X̄11A
T
p < 0, (5.22c)

ACLȲ + Ȳ AT
CL < 0. (5.22d)

2. External feedback dynamic anti-windup augmentation

There exists a solution (X̄, Ȳ ) ∈ (RnCL×nCL ,RnCL×nCL) to the LMI problem:

X̄ =




X̄11 Ȳ12

Ȳ T
12 Ȳ22


 = X̄T > 0, (5.23a)

Ȳ =




Ȳ11 Ȳ12

Ȳ T
12 Ȳ22


 = Ȳ T > 0, (5.23b)
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MT







Ap 0

0 Ag


 X̄ + X̄




Ap 0

0 Ag




T 
 M < 0, (5.23c)

ACLȲ + Ȳ AT
CL < 0, (5.23d)

where M = diag[Inp , B
T
g⊥].

3. Generic dynamic anti-windup configuration

Global stability conditions for this anti-windup scheme depend on the perfor-

mance level γ.

4. Conventional dynamic anti-windup configuration for controller state

There exists a solution (X̄, Ȳ , ¯̄U) ∈ (RnCL×nCL ,RnCL×nCL ,Dnu) to the LMI prob-

lem:

X̄ =




X̄11 Ȳ12

Ȳ T
12 Ȳ22


 = X̄T > 0, (5.24a)

Ȳ =




Ȳ11 Ȳ12

Ȳ T
12 Ȳ22


 = Ȳ T > 0, (5.24b)

¯̄U = diag[µ̄1, ..., µ̄nu ] > 0, (5.24c)



p̃T (ACLX̄ + X̄AT
CL)p̃ p̃T (BCL,ψ

¯̄U − X̄T CCL,u)

( ¯̄UBT
CL,ψ − CCL,uX̄)p̃ − ¯̄UDT

CL,uψ −DCL,uψ
¯̄U − 2 ¯̄U


 < 0, (5.24d)

ACLȲ + Ȳ AT
CL < 0, (5.24e)

with p̃T =
[

Inp 0
]
.

5. Conventional dynamic anti-windup configuration for controller input

There exists a solution (X̄, Ȳ , ¯̄U) ∈ (RnCL×nCL ,RnCL×nCL ,Dnu) to the LMI prob-
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lem:

X̄ =




X̄11 X̄12

X̄T
12 X̄22


 = X̄T > 0, (5.25a)

Ȳ =




Ȳ11 Ȳ12

Ȳ T
12 Ȳ22


 = Ȳ T > 0, (5.25b)

¯̄U = diag[µ̄1, ..., µ̄nu ] > 0, (5.25c)

MT







Ap 0

0 Ag


 X̄ + X̄




Ap 0

0 Ag




T

X̄




0

CT
g


−




Bp,u

0


 ¯̄U

[
0 Cg

]
X̄ − ¯̄U

[
BT

p,u 0

]
−2 ¯̄U




M < 0,

(5.25d)

ACLȲ + Ȳ AT
CL < 0, (5.25e)

where M = diag[Inp ,

[
BT

g,y −DT
g,y

]

⊥
].

C

Observing the conditions that guarantee global stability of the anti-windup closed-

loop system, one can say that Assumption 5.8 corresponding to full-authority and

external feedback anti-windup augmentation are the mildest ones when compared to

the other anti-windup compensation schemes. This is the case because they only re-

quire the plant to be exponentially stable (i.e. Ap is Hurwitz) and the unconstrained

closed-loop system to be exponentially stable (i.e. ACL is Hurwitz), as also observed

in Grimm [56]. This can be directly concluded from Eqns. 5.24a and 5.24b for the

full-authority feedback case, and from Eqns. 5.25a and 5.25b, after applying the

Finsler
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Lemma [67] to Eqn. 5.25b, for the external feedback augmentation case. The other

compensation schemes, although not so evident from the equations, also require both

the plant and the unconstrained closed-loop system to be exponentially stable, in

addition to other requirements that emphasize the well-posedness of the anti-windup

closed-loop system.

In the following sections, we will concentrate on showing that, by appropriately

choosing the matrix elements Bg,v1 , Dg,v1 and Dg,v2 in the general structure, Algo-

rithms 5.7 and 5.8 permit to recover the plant-order and arbitrary-order dynamic anti-

windup algorithms for the synthesis of existing anti-windup compensation schemes.

Observe that L̄ is the parameter that carries the information of the compensation

schemes, and hence, Steps 1 and 2 of Algorithm 5.7 are the ones that need to be

rewritten for each corresponding scheme. Note that when Steps 1 and 2 of Algorithm

5.7 are redefined, automatically Steps 1 and 2 of Algorithm 5.8 get redefined too.

The redefinition of Steps 1 and 2 of Algorithm 5.7 will be considered next.
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The next theorems states that Assumption 5.9 provides necessary and sufficient

conditions for the plant-order and arbitrary-order dynamic linear anti-windup com-

pensations to be successfully constructed.

Theorem 5.10 Assumption 5.9 is necessary and sufficient to guarantee that all steps

in Algorithm 5.7 can be completed for each anti-windup compensation scheme and the

corresponding resulting (AΛ, BΛ, CΛ1 , CΛ2 , DΛ1 , DΛ2) describe a plant-order dynamic

linear anti-windup compensator that guarantees the anti-windup closed-loop satisfies

the basic properties of anti-windup and has finite unconstrained response recovery gain

less than γ. C

Theorem 5.11 Assumption 5.9 is necessary and sufficient to guarantee that all steps

in Algorithm 5.8 can be completed for each anti-windup compensation scheme and

the corresponding resulting (AΛ, BΛ, CΛ1 , CΛ2 , DΛ1 , DΛ2) describe an arbitrary-order

dynamic linear anti-windup compensator that guarantees the anti-windup closed-loop

satisfies the basic properties of anti-windup and has finite unconstrained response

recovery gain less than γ. C

2. Dynamic override

Dynamic compensation for the output constrained problem will be considered in

this part of the dissertation. Recall from Section II.C that the finite unconstrained

response recovery gain for override compensation refers to the L2 gain from the dif-

ference signal sat(zl) − zl (zl comes from the unconstrained closed-loop system and

sat(zl) corresponds to its saturated version) to the difference of signals




sat(zl)− z

yl − y




(zl and yl come from the unconstrained closed-loop system, sat(zl) is the saturated

version of zl and z comes from the anti-windup closed-loop system). Therefore, the

algorithms presented in this section will guarantee that, regardless of the exogenous
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disturbance w ∈ L2 and when the initial conditions of the plant, unconstrained con-

troller and override compensator in the mismatch system are zero, the following is

satisfied: ∥∥∥∥∥∥∥




sat(zl)− z

yl − y


 (·)

∥∥∥∥∥∥∥
2

≤ γ‖(sat(zl)− zl)(·)‖2, (5.33)

with the finite unconstrained recovery gain γ as small as possible. More specifically,

the algorithms in this section are aimed at constructing the matrix elements AΘ, BΘ,

CΘ1 , CΘ2 , DΘ1 and DΘ2 , shown in Fig. 27, of a dynamic linear override compensator

that guarantees an optimal finite unconstrained response recovery gain. The case

when the dynamic override compensation to be constructed is chosen to be of order

equal to the plant, which is called plant-order override, is specially important be-

cause it provides very useful synthesis algorithms, similar to the case of anti-windup

compensation [21]. Interestingly, plant-order override compensation algorithms are

computationally efficient because the corresponding steps for compensation synthesis

are given only in terms of LMI conditions. On the contrary, arbitrary-order override

compensation presents some steps where a non-convex optimization problem must be

solved. Algorithms 5.12 and 5.13 are now offered in order to provide plant-order and

arbitrary-order dynamic override compensation synthesis, respectively. Recall that

we will perform the calculations for the GOC for controller state/output case.
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Ū
=

di
ag

[µ
1
,.

..
,µ

n
u
]>

0,
(5

.3
4d

)

V̄
=

di
ag

[ν
1
,.

..
,ν

n
m

p
]>

0,
(5

.3
4e

)

H
e
L̄

T

            

p̃T
A

C
L
X

p̃
−p̃

T
X

C
T C
L
,z

p̃T
C

T C
L
,y

W
T y

0
0

p̃T
%̃
X

C
T C
L
,η

p
p̃T

τ
B

C
L
,ζ

n
0

0
−Ū
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Algorithm 5.13 (Arbitrary-order dynamic override compensation)

Step 1. Given nΘ. Find a solution (X, Y, Ū , V̄ , τ) ∈ (RnCL×nCL ,RnCL×nCL ,Dnu ,

Dnnm ,R), with γ > 0 as small as possible and %̃ ≥ 0, to the LMI problem:

Eqns. 5.34a-5.34g, (5.36a)

rank(X − Y ) ≤ nΘ, (5.36b)

Step 2. Using m = nCL +nΘ +nz +ny +nz +nz +nmp +nmn +nmn , construct

the matrices Ψ ∈ Rm×m, R̃ ∈ Rnz×m, and P̃ ∈ Rm×(nv1+nv2 ) via:

[Ψ, R̃, P̃ ] = VnΘ-dynamic(P∆,GM, X, Y, Ū , V̄ , τ, γ),

where the function VnΘ-dynamic is given in Chapter VI.

Step 3. Find a solution (AΘ, BΘ, CΘ1 , CΘ2 , DΘ1 , DΘ2) ∈ (RnΘ×nΘ ,RnΘ×nz ,

Rnv1×nΘ ,Rnv2×nΘ ,Rnv1×nz ,Rnv2×nz) to the LMI problem:

Ψ + P̃ T




AΘ BΘ

CΘ1 DΘ1

CΘ2 DΘ2




R̃ + R̃T




AΘ BΘ

CΘ1 DΘ1

CΘ2 DΘ2




T

P̃ < 0. (5.37)

C

Note that, from a simple inspection of Algorithm 5.12, Step 1, no concluding re-

mark can be done with respect to under what conditions global stability of the override

closed-loop system is guaranteed. However, by employing the Finsler Lemma [14],

one can prove that the conditions stated below in Assumption 5.5 guarantee global

stability for the static override compensation with GOC for controller state/output.
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Fig. 27. Dynamic override compensation is fed back to the unconstrained controller

states and output.

Assumption 5.14

There exists a solution (X̄11, Ȳ , ¯̄U) ∈ (Rnp×np ,RnCL×nCL ,Dnu) to the LMI problem:

X̄11 = X̄T
11 > 0, (5.38a)

Ȳ = Ȳ T > 0, (5.38b)

ApX̄11 + X̄11A
T
p < 0, (5.38c)

ACLȲ + Ȳ AT
CL < 0. (5.38d)

C

Observing the conditions that guarantee global stability of the override closed-

loop system, one can say that Assumption 5.14 requires, through Lyapunov inequali-

ties, that both the plant and the unconstrained closed-loop are asymptotically stable.

The next theorems state that Assumption 5.9 provides necessary and sufficient

conditions for the plant-order and arbitrary-order dynamic linear anti-windup com-

pensations to be successfully constructed.

Theorem 5.15 Assumption 5.14 is necessary and sufficient to guarantee that all steps
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in Algorithm 5.12 can be completed and the corresponding resulting (AΘ, BΘ, CΘ1 , CΘ2 ,

DΘ1 , DΘ2) describe a plant-order dynamic linear override compensator that guaran-

tees the override closed-loop satisfies the basic properties of override and has finite

unconstrained response recovery gain less than γ. C

Theorem 5.16 Assumption 5.14 is necessary and sufficient to guarantee that all steps

in Algorithm 5.13 can be completed and the corresponding resulting (AΘ, BΘ, CΘ1 , CΘ2 ,

DΘ1 , DΘ2) describe an arbitrary-order dynamic linear override compensator that guar-

antees the override closed-loop satisfies the basic properties of override and has finite

unconstrained response recovery gain less than γ. C
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CHAPTER VI

QUADRATIC STABILITY AND PERFORMANCE OF CONSTRAINED

SYSTEMS

This chapter presents the analysis and typical design tools which will be employed

to guarantee stability and performance of the linear uncertain plant in feedback with

a nonlinear function. More specifically, a quadratic Lyapunov function will be useful

in order to guarantee absolute stability with the performance properties.

A. Preliminaries

The following definitions are given to assist in the system theoretic interpretation of

the matrix inequalities presented in this dissertation.

1. Absolute stability

Absolute stability is a classical method employed to guarantee the stability of a linear

system of the form:

L





ẋ = Ax + Bu

y = Cx + Du
, (6.1)

where u, y ∈ Rp interconnected with a (memoryless and, perhaps, time-varying) non-

linear function f : Rp × R 7→ Rp via:

u = f(y, t), (6.2)

as observed in Fig. 28. The basic idea of absolute stability is to avoid studying a

particular nonlinearity by embedding it inside a set of functions that is easily described

and studied. This set of functions are defined in terms of a sector, as defined as follows.



160

Lu y

f y,t( )

Fig. 28. Absolute stability. Linear system connected to a nonlinearity that belongs to

a bounded sector.

Definition 6.1. Let u ∈ Rnp ,U ⊂ Rnu ,M1, M2 ∈ Rnp×r, and a W ∈ Rnp×np . Define

the W − product of M1 and M2 as:

〈M1, M2〉W = MT
1 WM2.

Define the W − norm as |u|W = 〈u, u〉
1
2
W . We will use |u| = |u|I . Define:

dist(u,U) = infw∈U |u− w|I .

Definition 6.2. Let K, K̄, W be symmetric matrices in Rp×p where K̄ −K > 0 and

W > 0. The (nonlinear, time-varying) function f : Rp × R 7→ Rp is said to belong to

the sector [K, K̄]W if for all y ∈ Rp, t ∈ R:

〈f(y, t)−Ky, f(y, t)− K̄y〉 ≤ 0.

Moreover, f is said to belong to the incremental sector [K, K̄]W if f is locally Lipschitz

in the first argument, measurable in the second, belongs to the sector [K, K̄]W and

for almost all y ∈ Rp, t ∈ R:

〈Jyf(y, t)−K, Jyf(y, t)− K̄〉W ≥ 0,

where Jyf(y, t) is the Jacobian of f(·, t) evaluated at y.

The saturation nonlinearity is of our interest in the constrained problem. The



161

saturation nonlinearity has been denoted by φ : Rnu 7→ Rnu (standard decentral-

ized saturation function in Eqn. 2.2) and belongs to the incremental sector [0, I]W

whenever φ(0) = 0 and W is diagonal.

Definition 6.3. A function φ : Rnu 7→ Rnu is said to belong to ΦW (φ ∈ ΦW ) if

the function f is locally Lipschitz, belongs to the incremental sector [0, I]W , and

φ(0) = 0. Furthermore, φ ∈ ΦW is said to be bounded if there exists a b ∈ R such

that |φ(s)|W ≤ b for all s ∈ Rnu .

Note that any standard decentralized saturation function belongs to ΦW (φ ∈ ΦW )

if W is diagonal positive definite. Furthermore, if φ(·) is a standard decentralized

function then |u− φ(u)|I = dist(u,U).

Definition 6.4. The feedback interconnection of L in Eqn. 6.1 and u = φ(y, t),

as shown in Fig. 28, is said to be well-posed if there exists a unique function ς :

Rn × R 7→ Ru, locally Lipschitz in the first argument, measurable in the second,

such that ς(x, t) = φ(Cx + Dς(x, t), t) for all (x, t). Moreover, the interconnection is

said to be absolutely stable in the sector [K, K̄]W if for every φ that belongs to the

sector [K, K̄]W the system is well-posed and such that x = 0 is an uniformly globally

asymptotically stable equilibrium.

Lemma 6.5 [56] The feedback interconnection of L in Eqn. 6.1 and u = φ(y, t),

shown in Fig. 28, is well-posed for every φ that belongs to the incremental sector

[K, K̄]W if and only if:

He 〈I −KD, I − K̄D〉W > 0. (6.3)

2. Quadratic stability

Absolute stability is established by way of quadratic stability.

Definition 6.6. Consider a feedback interconnection of L in Eqn. 6.1 and u = φ(y, t),

shown in Fig. 28. The feedback interconnection is said to be quadratically stable if:



162

1. the interconnection is well-posed and

2. there exists a matrix P = P T > 0 and a scalar ε > 0 such that:

2xT P (Ax + Bu) < −εxT x

for all (x, u, t) 6= 0 such that:

u = φ(Cx + Du, t).

Moreover the feedback interconnection is said to be quadratically stable in the incre-

mental sector [K, K̄]W if:

1. the interconnection is well-posed for all φ belonging to the incremental sector

[K, K̄]W and

2. there exists a matrix P = P T > 0 and a scalar ε > 0 such that:

2xT P (Ax + Bu) < −εxT x

for all (x, u, t) 6= 0 and all φ in the incremental sector [K, K̄]W such that:

u = φ(Cx + Du, t).

Lemma 6.7 [56] Consider a feedback interconnection of L in Eqn. 6.1 and u =

φ(y, t), shown in Fig. 28. If the feedback interconnection is quadratically stable in

the incremental sector [K, K̄]W , then it is absolute stable in the incremental sector

[K, K̄]W .

Lemma 6.8 [56] Consider a feedback interconnection of L in Eqn. 6.1 and u = φ(y, t),

shown in Fig. 28. The following are equivalent:

1. The interconnection is quadratically stable in the incremental sector [K, K̄]W .
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2. The interconnection is well-posed for all φ belonging to the incremental sector

[K, K̄]W and there exists a matrix P = P T > 0 and a scalar ε > 0 such that:

2xT P (Ax + Bu) < −εxT x

for all (x, u, t) 6= 0 such that:

〈u−K(Cx + Du), u− K̄(Cx + Du)〉W ≤ 0.

3. There exists a matrix P = P T > 0 and a scalar τ > 0 such that:

He




PA− τCT KWK̄C PB + τCT KW (I − K̄D)

τ(I − K̄D)T WK̄C −τ(I −KD)T W (I − K̄D)


 < 0.

Corollary 6.9 [56] Consider a feedback interconnection of L in Eqn. 6.1 and u =

φ(y, t), shown in Fig. 28. The feedback interconnection is quadratically stable in the

incremental sector [0, I]W if and only if there exists a matrix P = P T > 0 and a scalar

τ > 0 such that:



PA + AT P PB + τCT W

τWC + BT P −τ(WD + DT W − 2W )


 < 0. (6.4)

3. Quadratic performance of constrained systems

In this section the tools employed to guarantee quadratic stability are expanded to

be used for performance. In particular, consider the system:

L̃





ẋ = Ax + B1u1 + B2u2

y1 = C1x + D11u1 + D12u2

y2 = C2x + D21u1 + D22u2

, (6.5)
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where u2, y2 ∈ Rp interconnected to a (memoryless and, perhaps, time-varying) sector-

bounded nonlinear function via:

u2 = φ(y2, t), (6.6)

as shown in Fig. 29.

L
u1

f( )y ,t2

u2

y1

y2

Fig. 29. Accounting for performance in the absolute stability setting.

The following definition merely extends the definition of well-posedness and

quadratic stability in Definition 6.4 to allow an additional input and output such

that performance can be quantified.

Definition 6.10. The interconnection of L̃ in Eqn. 6.5 and u2 = φ(y2, t), shown

in Fig. 29, is said to be well-posed if there exists an unique function ς : Rn × Ru ×
R 7→ Ru, globally Lipschitz in the first argument, measurable in the others, such

that ς(x, u1, t) = φ(C2x + D21u1 + D22ς(x, u1, t), t) for all (x, u1, t). The feedback

interconnection is said to guarantee quadratic performance level γ from u1 to y1 if:

1. the interconnection is well-posed and

2. there exists a matrix P = P T > 0 and a scalar ε > 0 such that:

2xT P (Ax + B1u1 + B1u2) < −ε|x|2 − 1

γ
|C1x + D11u1 + D12u2|2 + γ|u1|2

for all (x, u1, u2, t) 6= 0 such that:

u2 = φ(C2x + D21u1 + D22u2, t).
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Moreover the feedback interconnection is said to guarantee quadratic performance

level γ from u1 to y1 in the incremental sector [K, K̄]W if:

1. the interconnection is well-posed for all φ belonging to the incremental sector

[K, K̄]W and

2. there exists a matrix P = P T > 0 and a scalar ε > 0 such that:

2xT P (Ax + B1u1 + B1u2) < −ε|x|2 − 1

γ
|C1x + D11u1 + D12u2|2 + γ|u1|2, (6.7)

for all (x, u1, u2, t) 6= 0 and all φ belonging to the incremental sector [K, K̄]W

such that:

u2 = φ(C2x + D21u1 + D22u2, t).

Well-posedness is now established for the interconnection with performance con-

sideration, this is done following the ideas for the system without input.

Lemma 6.11 [56] Suppose φ belongs to the incremental sector [K, K̄]W . The feed-

back interconnection of L̃ in Eqn. 6.5 and u2 = φ(y2, t), shown in Fig. 29, is well-posed

if and only if:

He 〈I −KD22, I − K̄D22〉W > 0. (6.8)

Lemma 6.12 [56] If a feedback interconnection of L̃ in Eqn. 6.5 and u2 = φ(y2, t),

shown in Fig. 29, guarantees quadratic performance level γ from u1 to y1, then the

interconnection is quadratically stable (when u1 = 0) and the L2 gain from u1 to y1

is less than γ (when x(0) = 0).

Lemma 6.13 [56] Consider a feedback interconnection of L̃ in Eqn. 6.5 and u2 =

φ(y2, t), shown in Fig. 29. The following are equivalent:

1. The feedback interconnection guarantees quadratic performance level γ from u1

to y1 in the incremental sector [0, I]W .
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2. The interconnection is well-posed for all φ belonging to the incremental sector

[K, K̄]W and there exists a matrix P = P T > 0 and a scalar ε > 0 such that:

2xT P (Ax + B1u1 + B1u2) < −ε|x|2 − 1

γ
|C1x + D11u1 + D12u2|2 + γ|u1|2,

for all (x, u1, u2, t) 6= 0 and all φ belonging to the incremental sector [K, K̄]W

such that:

u2 = φ(C2x + D21u1 + D22u2, t).

3. There exists a matrix P = P T and a scalar τ > 0 such that:



PA + AT P PB2 + τC2W PB1 CT
1

BT
1 P + τWCT

2 τ(WD22 + DT
22W − 2W ) τWD21 DT

12

BT
1 P τDT

21W −γI DT
11

C1 D12 D11 −γI




.

4. Quadratic robust stability

This section requires the definition of the perturbation uncertainty characteristics.

Definition 6.14. Let C1, D11, D12, C2, D21 and D22 be given. Then the un-

certainty perturbation ∆ =




∆p

∆n


, where ∆p = diag [δ1Ik1 , ..., δLIkL

] and ∆n =

diag [∆L+1, ..., ∆L+F ] have the following properties:

1. The perturbation ∆p is a nonlinear diagonal perturbation (from y1 = C1x +

D11u1 + D13u3 to ∆p) in the incremental sector [0, %I]Wp , and

2. The dynamic nonlinear perturbation ∆n is said to have finite incremental gain
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% (from y2 = C2x + D22u2 + D23u3 to ∆n) if:

‖∆n(σo, y2)−∆n(σo, y
′
2)‖2 ≤ %

∥∥∥∥∥∥∥∥∥∥




C2(x− x′)

D22(u2 − u′2)

D23(u3 − u′3)




∥∥∥∥∥∥∥∥∥∥
2

, (6.9)

for all x, x′, y2, y
′
2, u2, u

′
2 ∈ L2.

With the uncertainty perturbation properly defined, we use absolute stability

theory to guarantee stability of a linear system of the form:

L∆





ẋ = Ax + B1u1 + B2u2

y1 = C1x + D11u1 + D13u3

y2 = C2x + D22u2 + D23u3

y3 = C3x + D31u1 + D32u2 + D33u3

, (6.10)

where u1, y1 ∈ Rp are interconnected to a (memoryless and perhaps, time varying)

sector-bounded nonlinear function via:

u1 = ∆p(y1, t), (6.11)

u2, y2 ∈ Rp are interconnected to a dynamic, possibly nonlinear, system with finite

incremental gain % via:

u2 = ∆n(σo, y2, t), (6.12)

and u3, y3 ∈ Rp are interconnected to a (memoryless and, perhaps, time-varying)

sector-bounded nonlinear function via:

u3 = φ(y3, t), (6.13)

as shown in Fig. 30.

For (global) remedial compensation, we are interested in the sector that the
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Fig. 30. Absolute stability accounting for model uncertainty.

saturation nonlinearity belongs to, namely the incremental sector [0, I]W , hence from

now on we will we will assume that φ ∈ ΦW .

Definition 6.15. Consider a feedback interconnection of L∆ in Eqn. 6.9 and, u1 =

∆p(y1, t) , u2 = ∆n(σo, y2, t) and u3 = φ(y3, t), shown in Fig. 30. The feedback

interconnection is said to be quadratically robustly stable if:

1. the interconnection is well-posed and

2. there exists a matrix P = P T > 0 and real scalars ε > 0, ρ ≥ 0 and β ≥ 0 such

that:

2xT P (Ax + B1u1 + B2u2) < −εxT x + β(〈u1, %y1 − u1〉Wp) + ρ(uT
2 u2 − %2yT

2 y2)

for all (x, u1, u2, u3, t) 6= 0 such that:

u3 = φ(C3x + D31u1 + D32u2 + D33u3, t).

Moreover the feedback interconnection is said to be quadratically robustly stable in

the incremental sector [0, I]W if:

1. the interconnection is well-posed for all φ belonging to ΦW and

2. there exists a matrix P = P T > 0 and real scalars ε > 0, ρ ≥ 0 and β ≥ 0 such
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that:

2xT P (Ax + B1u1 + B2u2) < −εxT x + β(〈u1, %y1 − u1〉Wp) + ρ(uT
2 u2 − %2yT

2 y2)

for all (x, u1, u2, u3, t) 6= 0 and all φ ∈ ΦW such that:

u3 = φ(C3x + D31u1 + D32u2 + D33u3, t).

Lemma 6.16. Consider a feedback interconnection of L∆ in Eqn. 6.9 and, u1 =

∆p(y1, t), u2 = ∆p(y2, t) and u3 = φ(y3, t), shown in Fig. 30. The following are

equivalent:

1. The interconnection is quadratically robustly stable in the incremental sector

[0, I]W .

2. The interconnection is well-posed for all φ ∈ ΦW and there exists a matrix

P = P T > 0 and real scalars ε > 0, ρ ≥ 0 and β ≥ 0 such that:

2xT P (Ax + B1u1 + B2u2) < −εxT x + β(〈u1, %y1 − u1〉Wp) + ρ(uT
2 u2 − %2yT

2 y2)

for all (x, u1, u2, u3, t) 6= 0 such that:

〈u, u3 − (C3x + D31u1 + D32u2 + D33u3)〉W ≤ 0.

3. There exists a matrix P = P T > 0 and a scalar τ > 0 such that:

He




PA + ρ
2%2CT

2 C2 PB1 PB2 PB3

β%WpC1 β(%WpD11 −Wp) 0 β%WpD13

ρ%2DT
22C2 0 ρ

2(%2DT
22D22 − I) ρ%2DT

22D23

τWC3 τWDT
31 τWDT

32

τ(WD33 −W )+
ρ

2
%2DT

23D23




< 0.

(6.14)
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5. Quadratic robust performance of constrained systems

In this section the tools employed to guarantee quadratic robust stability are expanded

to be used for performance. In particular, consider the system:

L̃∆





ẋ = Ax + B1u1 + B2u2 + B3u3 + B4u4

y1 = C1x + D11u1 + D13u3 + D14u4

y2 = C2x + D22u2 + D23u3 + D24u4

y3 = C3x + D31u1 + D32u2 + D33u3 + D34u4

y4 = C4x + D41u1 + D42u2 + D43u3 + D44u4

, (6.15)

where u1, y1 ∈ Rp are interconnected to a (memoryless and perhaps, time varying)

sector-bounded nonlinear function via:

u1 = ∆p(y1, t), (6.16)

u2, y2 ∈ Rp are interconnected to a dynamic, possibly nonlinear, system with finite

incremental gain % via:

u2 = ∆n(σo, y2, t), (6.17)

and u4, y4 ∈ Ru are interconnected to a (memoryless and, perhaps, time-varying)

sector-bounded nonlinear function via:

u4 = φ(y4, t), (6.18)

as shown in Fig. 31.

The following definition merely extends the definition of well-posedness and

quadratic robust stability in Definition 6.16 to allow an additional input and out-

put such that performance can be quantified.

Definition 6.17. The interconnection of L̃∆ in Eqn. 6.15 and, u1 = ∆p(y1, t) ,
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Fig. 31. Absolute stability accounting for model uncertainty and performance.

u2 = ∆n(σo, y2, t) and u3 = φ(y3, t), shown in Fig. 31, is said to be well-posed if there

exist unique functions ς1 : Rn×Rp×Ru×R 7→ Rp, ς2 : Rn×Rp×Ru×R 7→ Rp and ς4 :

Rn×Rp×Rp×Ru×R 7→ Ru, globally Lipschitz in the first arguments and measurable

in the last arguments, such that ς1(x, u3, u4, t) = φ(C1x+D11ς1(x, u3, u4, t)+D13u3 +

D14u4, t) for all (x, u3, u4, t), ς2(x, u3, u4, t) = ∆p(C2x + D22ς2(x, u3, u4, t) + D23u3 +

D24u4, t) for all (x, u3, u4, t) and ς4(x, u1, u2, u3, t) = ∆n(C4x+D41u1+D42u2+D43u3+

D44ς4(x, u1, u2, u3, t), t) for all (x, u1, u2, u3, t). The feedback interconnection is said

to guarantee quadratic robust performance level γ from u3 to y3 if:

1. the interconnection is well-posed and

2. there exists a matrix P = P T > 0 and real scalars ε > 0, ρ ≥ 0 and β ≥ 0 such

that:

2xT P (Ax + B1u1 + B2u2 + B3u3 + B4u4) < −ε|x|2 − 1
γ
|C3x + D31u1 + D32u2

+D33u3 + D34u4|2 + γ|u3|2 + β(〈u1, %y1 − u1〉Wp) + ρ(uT
2 u2 − %2yT

2 y2)

for all (x, u1, u2, u3, u4, t) 6= 0 such that:

u4 = φ(C4x + D41u1 + D42u2 + D43u3 + D43u4, t).

Moreover the feedback interconnection is said to guarantee quadratic robust perfor-

mance level γ from u3 to y3 in the incremental sector [0, I]W if:
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1. the interconnection is well-posed for all φ ∈ Φ and

2. there exists a matrix P = P T > 0 and real scalars ε > 0, ρ ≥ 0 and β ≥ 0 such

that:

2xT P (Ax + B1u1 + B2u2 + B3u3 + B4u4) < −ε|x|2 − 1
γ
|C3x + D31u1 + D32u2

+D33u3 + D34u4|2 + γ|u3|2 + β(〈u1, %y1 − u1〉Wp) + ρ(uT
2 u2 − %2yT

2 y2),
(6.19)

for all (x, u1, u2, u3, u4, t) 6= 0 and all φ belonging to the incremental sector

[K, K̄]W such that:

u4 = φ(C4x + D41u1 + D42u2 + D43u3 + D43u4, t).

Well-posedness is now established for the interconnection with performance con-

siderations, this is done following the ideas for the system without exogenous input.

Lemma 6.18. Suppose φ ∈ ΦW . The feedback interconnection of L̃∆ in Eqn. 6.15

and, u1 = ∆p(y1, t) , u2 = ∆n(σo, y2, t) and u4 = φ(y4, t), shown in Fig. 31, is

well-posed if and only if:

He




β(%WpD11 −Wp) 0 β%WpD14

0 ρ
2
(%2DT

22D22 − I) ρ%2DT
22D24

τWDT
41 τWD42 τ(WD44 −W ) + ρ

2
%2DT

24D24




< 0.

(6.20)

Lemma 6.19. If a feedback interconnection of L̃∆ in Eqn. 6.15 and, u1 = ∆p(y1, t)

, u2 = ∆n(σo, y2, t) and u3 = φ(y3, t), shown in Fig. 31, guarantees quadratic robust

performance level γ from u3 to y3, then the interconnection is quadratically robustly

stable (when u3 = 0) and the L2 gain from u3 to y3 is less than γ (when x(0) = 0).

Lemma 6.20. Consider a feedback interconnection of L̃∆ in Eqn. 6.15 and, u1 =

∆p(y1, t) , u2 = ∆n(σo, y2, t) and u3 = φ(y3, t), shown in Fig. 31. The following are

equivalent:
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1. The feedback interconnection guarantees quadratic robust performance level γ

from u3 to y3 in the incremental sector [0, I]W .

2. The interconnection is well-posed for all φ ∈ Ψ and there exists a matrix P =

P T > 0 and real scalars ε > 0, ρ ≥ 0 and β ≥ 0 such that:

2xT P (Ax + B1u1 + B2u2 + B3u3 + B4u4) < −ε|x|2 − 1
γ
|C3x + D31u1 + D32u2

+D33u3 + D34u4|2 + γ|u3|2 + β(〈u1, %y1 − u1〉Wp) + ρ(uT
2 u2 − %2yT

2 y2),

for all (x, u1, u2, u3, u4, t) 6= 0 and all φ ∈ ΦW such that:

u4 = φ(C4x + D41u1 + D42u2 + D43u3 + D43u4, t).

3. There exists a matrix P = P T > 0 and real scalars ε > 0, ρ ≥ 0 and β ≥ 0 such

that:

He




PA PB4 CT
3 PB3 PB1 PB2 ρ%CT

2

βWC4 τ(WD44 −W ) 0 τWD43 τWD41 τWD42 0
0 D34 −γ

2 I 0 D31 0 0
0 0 DT

33 −γ
2 I 0 0 0

β%WpC1 β%WpD14 0 0 β(%WpD11 −Wp) 0 0
0 0 DT

32 0 0 −ρ
2I 0

0 ρ%D24 0 0 0 ρ%D22 −ρ
2I




< 0.

B. Robust remedial compensation analysis

In this section, we plan to use Lemma 6.20 to guarantee quadratic robust performance

of the remedial closed-loop systems. In particular, we intend to apply Lemma 6.20 to

the mismatch systems presented in Chapter IV. Note that Figs. 22 and 23 show the

mismatch closed-loop systems with the corresponding input and outputs as defined

in Eqns. 4.6 and 4.7. The realization of the mismatch systems are rewritten at this

part for clarity of presentation.



174

1. Anti-windup compensation

The mismatch system for anti-windup compensation can be written with the state

x =




xp,d

xg,d

xΛ




, inputs ζd and ψ0, and outputs ηd, zd and ud as:

W





ẋ = Ax + Bζζd + Bψψ0

ηd = Cηx + Dηζζd + Dηψψ0

zd = Czx + Dzζζd + Dzψψ0

ud = Cux + Duζζd + Duψψ0

, (6.21)

interconnected with the feedback connections:

ζd = ∆(ηd),

ψ0 = ψ(u) = u− φ(u).

The following lemma shows that the function u 7→ u− φ(u) ∈ ΦW .

Lemma 6.21. Let W be symmetric positive definite. If φ : Rnu × R 7→ Rnu belongs

to the sector [0, I]W then the function ψ(u) = u−φ(u, t) belongs to the sector [0, I]W .

Moreover, if φ ∈ ΦW then the function ψ(u) = u− φ(u, t) ∈ ΦW .

Proof. The proof follows by applying the definitions.
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2. Override compensation

The mismatch system for override compensation can be written with the state x =


xp,d

xg,d

xΘ




, inputs ζd, ψ0 and ϕ0, and outputs ηd, zd, yd and zd as:

W





ẋ = Ax + Bζζd + Bψ(ψ0 + ϕ0)

ηd = Cηx + Dηζζd + Dηψ(ψ0 + ϕ0)

zd = Czx + Dzζζd + Dzψ(ψ0 + ϕ0)

yd = Cyx + Dyζζd + Dyψ(ψ0 + ϕ0)

zd = zd − ψ0

, (6.22)

interconnected with the feedback connections:

ζd = ∆(ηd),

ϕ0 = ϕ(−zd, zl) = ψ(z)− ψ(zl).

Lemma 6.22. Let W be symmetric positive definite. If φ : Rnz × R 7→ Rnz belongs

to the sector [0, I]W then the functions ψ(z) = z − φ(z, t) and ϕ(·, zl) = ψ(z)− ψ(zl)

belong to the sector [0, I]W . Moreover, if φ ∈ ΦW then the functions ψ, ϕ ∈ ΦW .

Proof. The proof follows by applying the definitions.

3. Quadratic robust unconstrained response recovery performance

As noted in Chapter IV, the mismatch systems furnish an effective way of ensuring the

satisfaction of the basic properties of remedial compensation together with explicit

quantification of performance. Having determined, from Lemmas 6.21 and 6.22, that

the nonlinear functions ψ, ϕ ∈ ΦW if and only if φ ∈ ΦW . We are now in position to

use Lema 6.20 to guarantee quadratic robust performance level, which due to Lemma

6.19 implies robust stability and unconstrained performance recovery.
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Property 6.23. Let W = W T > 0. The remedial augmented closed-loop system

is said to guarantee quadratic robust unconstrained response recovery performance

level γ if the feedback interconnection of Eqn. 6.21 and ψ0 = ψ(u), and of Eqn.

6.22 and ϕ0 = ϕ(−ud, ul), respectively for anti-windup and override compensation,

guarantees quadratic robust performance level γ from ul to zd, and from ψ0 to




yd

zd


,

respectively.

Lemma 6.24. Let W = W T > 0. The remedial augmented closed-loop system

guarantees quadratic robust unconstrained response recovery performance level γ

and %̃ ≥ 0 if and only if there exists a solution (Q̄, Ū , V̄ , τ, γ) to the LMI problem in

Eqns. 4.18 and 4.19 with Ū = τW−1 for some τ > 0, V̄ = αW−1
p for some α > 0 and

τ = 1/ρ for some ρ > 0, when the matrices are defined accordingly to Notation 4.1.

Proof. Based on the matrices according to Notation 4.1, given the solution (Q̄, Ū , V̄ , τ, γ)

to the LMI problem in Eqns. 4.18 and 4.19 with Ū = τW−1 and τ > 0, V̄ = αW−1
p

and α > 0, and τ = 1/ρ and ρ > 0, after premultiplying and postmultiplying each side

of Eqns. 4.18d and 4.19d by the nonsingular matrix diag = [P, τW, Inz , Inu , βWp, τ ],

where P = P T = Q̄−1 > 0, Lemma 6.20 guarantees quadratic robust unconstrained

response performance level γ. Reversing the arguments the converse can be proved.

Proof of Theorem 4.4. With the unconstrained closed-loop assumed to be expo-

nentially stable, the signal ul is well-defined, and bounded exogenous input w implies

bounded closed-loop trajectories and hence bounded ul. Lemma 6.24 further guaran-

tees the interconnection of Eqn. 6.21 and ψ0 = ψ(u) is quadratically robustly stable

with ‖z(·)− zl(·)‖2 ≤ γ‖ul(·)‖2, then the anti-windup closed-loop system guarantees

the basic-properties of anti-windup.

Proof of Theorem 4.6. With the unconstrained closed-loop assumed to be expo-

nentially stable, the signal zl is well-defined, and bounded exogenous input w implies
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bounded closed-loop trajectories and hence bounded zl. Lemma 6.24 further guaran-

tees the interconnection of Eqn. 6.21 and ϕ0 = ϕ(−ud, ul) is quadratically robustly

stable with ‖




yd

zd


 ‖2 ≤ γ‖zl(·)− sat(zl(·))‖2, then the override closed-loop system

guarantees the basic-properties of override.

C. Remedial compensation synthesis

For synthesis purposes, further manipulation can be performed in Eqns. 4.18d and

4.19d in Chapter IV, such that the parametrization of the mismatch system state

space matrices is affine in the remedial compensator Λ or Θ elements, respectively.

However, even employing this parametrization, Theorems 4.4 and 4.6 do not seem ap-

propriate for synthesis as the (unknown) remedial compensator Λ and Θ elements mul-

tiply the unknowns Q̄, Ū , V̄ and τ , and hence Eqns. 4.18d and 4.19d become a non-

linear matrix inequality. Converting 4.18d and 4.19d into LMI conditions amenable

for synthesis is the motivation for this section.

In order to isolate the dependence on the remedial compensators in the matrix

inequalities for analysis, we will use the following construction, detailed in Notation

6.25.

Notation 6.25. Construction of compact representation of mismatch system with

explicit presence of remedial compensator.

Step 1. Based on the matrices of the plant P∆ in Eqn. 4.1 and unconstrained

controller G in Eqn. 4.2, construct ACL, BCL,ζ , BCL,v, BCL,ψ, CCL,η, DCL,ηζ ,

DCL,ηv, DCL,ηψ, CCL,z, DCL,zζ , DCL,zv, DCL,zψ, CCL,y, DCL,yζ , DCL,yv, DCL,yψ,

CCL,u, DCL,uζ , DCL,uv and DCL,uψ.

Step 2. Define Ā ∈ R(nCL+nR)×(nCL+nR), B̄ζ ∈ R(nCL+nR)×nm , B̄ψ ∈ R(nCL+nR)×nr ,
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C̄η ∈ Rnm×(nCL+nR), D̄ηζ ∈ Rnm×nm , D̄ηψ ∈ Rnm×nr , C̄z ∈ Rnz×(nCL+nR),

D̄zζ ∈ Rnz×nm , D̄zψ ∈ Rnz×nr , C̄y ∈ Rny×(nCL+nR), D̄yζ ∈ Rny×nm , D̄yψ ∈ Rny×nr ,

C̄u ∈ Rnu×(nCL+nR), D̄uζ ∈ Rnu×nm , D̄uψ ∈ Rnu×nr via:

Ā =




ACL 0

0 0


 , B̄ζ =




BCL,ζ

0


 , B̄ψ =




BCL,ψ

0


 ,

C̄η =

[
CCL,η 0

]
, D̄ηζ = DCL,ηζ , D̄ηψ = DCL,ηψ,

C̄z =

[
CCL,z 0

]
, D̄zζ = DCL,zζ , D̄zψ = DCL,zψ,

C̄y =

[
CCL,y 0

]
, D̄yζ = DCL,yζ , D̄yψ = DCL,yψ,

C̄u =

[
CCL,u 0

]
, D̄uζ = DCL,uζ , D̄uψ = DCL,uψ.

(6.23)

and B ∈ R(nCL+nR)×(nR+nv), C ∈ R(nR+nr)×(nCL+nR), Dψ ∈ R(nR+nr)×nr , Dη ∈
Rnm×(nCL+nv), Dz ∈ Rnz×(nCL+nv), Dy ∈ Rny×(nCL+nv), Du ∈ Rnu×(nCL+nv) via:

B =




0 BCL,v

InR 0


 , C =




0 InR

0 0


 , Dψ =




0

Inr


 ,

Dη =

[
0 DCL,ηv

]
Dz =

[
0 DCL,zv

]

Dy =

[
0 DCL,yv

]
Du =

[
0 DCL,uv

]

(6.24)

Step 3. Define Ξ ∈ R(nR+nv)×(nR+nr) via:

Ξ =




AR BR

CR1 DR1

CR2 DR2




. (6.25)

Step 4. Define the matrices A ∈ R(nCL+nR)×(nCL+nR), Bζ ∈ R(nCL+nR)×nm ,

Bψ ∈ R(nCL+nR)×nr , Cη ∈ Rnm×(nCL+nR), Dηζ ∈ Rnm×nm , Dηψ ∈ Rnm×nr , Cz ∈
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Rnz×(nCL+nR), Dzζ ∈ Rnz×nm , Dzψ ∈ Rnz×nr , Cy ∈ Rny×(nCL+nR), Dyζ ∈ Rny×nm ,

Dyψ ∈ Rny×nr , Cu ∈ Rnu×(nCL+nR), Duζ ∈ Rnu×nm , Duψ ∈ Rnu×nr via:

A = Ā + BΞC, Bζ = B̄ζ Bψ = B̄ψ + BΞDψ,

Cη = C̄η + DηΞC, Dηζ = D̄ηζ , Dηψ = D̄ηψ + DηΞDψ

Cz = C̄z + DzΞC, Dzζ = D̄zζ , Dzψ = D̄zψ + DzΞDψ

Cy = C̄y + DyΞC, Dyζ = D̄yζ , Dyψ = D̄yψ + DyΞDψ

Cu = C̄u + DuΞC, Duζ = D̄uζ , Duψ = D̄uψ + DuΞDψ

. (6.26)

C

Note that the matrices constructed in Notation 6.25 , Step 4, are identical to the

like named in Notation 4.1, Step 3.

1. Design of the remedial compensator

Using definitions in Notation 6.25 and 4.1, the following algorithm can be employed

to obtain the remedial compensator such that the remedial closed-loop system guar-

antees quadratic robust unconstrained response recovery.

a. Anti-windup compensation

Algorithm 6.26 (Design of arbitrary-order dynamic anti-windup compensation with

general external structure)

Step 1. Step 1 in Algorithm 5.7.

Step 2. Given nΛ, find a solution (X, Y, Ū , V̄ , τ) ∈ (RnCL×nCL ,RnCL×nCL ,Dnu ,

Dnmp ,R), with γ > 0 as small as possible and %̃ ≥ 0, to the LMI problem:

Eqn. 5.18, (6.27a)
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rank(X − Y ) ≤ nΛ, (6.27b)

Step 3. Select any scalar ρ > 0 and define the matrix:

Ū = ρW−1,

if Ū was not obtained from Step 2.

Step 4. Using the solution (X,Y, Ū , V̄ , τ) from Step 2, define the Q̄12 ∈ RnCL×nΛ

as a solution of the following equation:

XY −1X −X = Q̄12Q̄
T
12.

define the matrix Q̄12 ∈ RnΛ×nΛ as:

Q̄22 = InΛ
+ Q̄T

12X
−1Q̄12.

Define the matrix Q̄ ∈ R(nCL+nR)×(nCL+nR) as:

Q̄ =




X Q̄12

Q̄T
12 Q̄22


 .

Step 5. Using the matrices defined Notation 6.25 and Notation 4.1, define

m = nCL + nu + nz + nu + nmp + nmn + nmn and Ψ ∈ Rm×m,R̃ ∈ Rnu×m, and
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P̃ ∈ Rm×(nv1+nv2 ) via:

Ψ = He




ĀQ̄ B̄ψŪ Q̄C̄T
z 0 B̄ζp V̄ τ B̄ζn %̃Q̄C̄T

ηn

−C̄uQ̄ −D̄uψŪ − Ū 0 Inu −D̄uζp V̄ −τD̄uζn 0
0 D̄zψŪ −γ

2 Inz 0 0 0 0
0 0 0 −γ

2 Inu 0 0 0
%̃C̄ηpQ̄ 0 V̄ D̄T

zζp
0 %̃D̄ηpζp V̄ − V̄ 0 0

0 0 τD̄T
zζn

0 0 − τ
2Inmn

τ %̃D̄T
ηnζn

0 %̃D̄ηnψŪ 0 0 0 0 − τ
2Inmn




,

P̃ =
[

BT −DT
u 0 DT

z %̃DT
ζp

0 %̃DT
ζn

]

R̃ =
[

CQ̄ ŪDψ 0 0 0 0 0
]

Step 6. Find a solution (AΛ, BΛ, CΛ1 , CΛ2 , DΛ1 , DΛ2) ∈ (RnΛ×nΛ ,RnΛ×nu ,Rnv1×nΛ ,

Rnv2×nΛ ,Rnv1×nu ,Rnv2×nu) to the LMI problem:

Ψ + P̃ T




AΛ BΛ

CΛ1 DΛ1

CΛ2 DΛ2




R̃ + R̃T




AΛ BΛ

CΛ1 DΛ1

CΛ2 DΛ2




T

P̃ < 0. (6.28)

C

Theorem 6.27 Let W = W T > 0. There exists an arbitrary-order anti-windup

compensator such that the anti-windup augmented closed-loop system guarantees

quadratic robust unconstrained response recovery with performance level γ and %̃ ≥ 0

if and only if there exists a feasible solution (X, Y, Ū , V̄ , τ) to Eqn. 6.27. Moreover,

given a feasible (X,Y, Ū , V̄ , τ) to Eqn. 6.27, the steps in Algorithm 6.27 can be

completed and the resulting nΛ-order anti-windup compensator is such that the anti-

windup augmented closed-loop system guarantees quadratic robust unconstrained

response recovery with performance level γ.

Proof. Proof can be carried out as in Theorem 13.23 [56], but employing the mis-

match system W∆ in Eqn. 4.6 which comprises an uncertain plant. First, the ex-

istence part of the anti-windup compensator is proved. For any W = W T > 0 and
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Lemma 6.24, anti-windup augmented closed-loop system guarantees quadratic robust

unconstrained response recovery with performance level γ and %̃ ≥ 0 if and only

if there exists a solution (Q̄, Ū , V̄ , τ, AΛ, BΛ, CΛ1 , CΛ2 , DΛ1 , DΛ2) to the LMI prob-

lem in Eqn. 4.18 with Ū = ρW−1, ρ > 0. Note that Eqn. 4.18d is equal to

Ψ + P̃ T ΞR̃ + R̃T ΞT P̃ < 0, the latter defined according to Notation 6.25. Hence,

there exists a suitable anti-windup compensator if and only if there exists a solu-

tion (Q̄, Ū , V̄ , τ, AΛ, BΛ, CΛ1 , CΛ2 , DΛ1 , DΛ2) that satisfies Ψ + P̃ T ΞR̃ + R̃T ΞT P̃ < 0,

Q̄ = Q̄T > 0, Ū = ρW−1 and ρ > 0. Note that Ψ depends on Q̄, Ū , V̄ , τ . Using the

elimination lemma [68], we are able to remove Ξ from the problem and reduce the

problem to that of there exists a suitable anti-windup compensator if and only if there

exists a solution (Q̄, Ū , V̄ , τ) that satisfies NT
P̃

ΨNP̃ < 0, NT
R̃

ΨNR̃ < 0, Ū = ρW−1 and

ρ > 0, where NP̃ and NR̃ are full column rank matrices that span the null space of P̃

and R̃ respectively. To complete this part of the proof , we work with NT
P̃

ΨNP̃ < 0

and NT
R̃

ΨNR̃ < 0 inequalities to show that these conditions are equivalent to the

existence of a solution to Step 2 of Algorithm 6.26

(NT
P̃

ΨNP̃ < 0). Using Notations 4.1 and 6.25, P̃ can be constructed:

P̃ T =




0 −Bp,uΥgDg,v1 −Bp,uΥgDg,v2

0 −Bg,v1 + Bg,yDp,yuΥgDg,v1 Bg,yΥpDp,yuDg,v2

InΛ 0 0
0 −ΥgDg,v1 −ΥgDg,v2

0 0 0
0 −Dp,zuΥgDg,v1 −Dp,zuΥgDg,v2

0 −%̃Dp,ηpuΥgDg,v1 −%̃Dp,ηpuΥgDg,v2

0 0 0
0 −%̃Dp,ηnuΥgDg,v1 −%̃Dp,ηnuΥgDg,v2




.

Define m = np +ng +nu +nz +nu +nm and note that the n =rank(P̃ )=nΛ +nv1 +nv2 ,

then the matrix that spans the null space of P̃ , NP̃ ∈ Rm×(m−n). With P̃ explicitly

defined as above, one can attempt to obtain directly a matrix whose columns form

the bases of the null space of P̃ . This was successfully done previously due to the
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special configurations employed [21, 27], however, for the general architecture for anti-

windup compensation, this is not possible. To define a matrix that spans the null

space of P̃ , the most we can do is try to take advantage of what is known and group

the unknowns in one single matrix. This is detailed in the following. Rearranging the

columns of the matrix P̃ through the following transformation matrix T :

P̃ = P̃o




Inp+ng 0 0 0 0 0

0 0 Inu 0 0 0

0 0 0 0 Inz 0

0 InΛ
0 0 0 0

0 0 0 Inu 0 0

0 0 0 0 0 Inm




︸ ︷︷ ︸
T

,

permits to rewrite NT
P̃

ΨNP̃ < 0 as indicated below:

NT
P̃

ΨNP̃ = NT
P̃
T T T−T ΨT−1︸ ︷︷ ︸

Ψ̄

TNP̃︸ ︷︷ ︸
NP̃o

= NT
P̃o

Ψ̄NP̃o
< 0,

where the null space of P̃o can be the image of:

NP̃o
=




L̃ 0 0

0 0 0

0 Inu 0

0 0 Inm




,

with L̃⊥ ∈ R(m−nΛ−nu−nm)×(m−n−nu−nm) being any matrix that spans the null space

of L̃T :

L̃T =




DT
g,v1

ΥT
g BT

p,u BT
g,v1

−DT
g,v1

ΥT
g DT

p,yuB
T
g,y −DT

g,v1
ΥT

g DT
g,v1

ΥT
g DT

p,zu

DT
g,v2

ΥT
g BT

p,u −DT
g,v2

ΥT
g DT

p,yuB
T
g,y −DT

g,v2
ΥT

g DT
g,v2

ΥT
g DT

p,zu


 .
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Additionally, assuming Q̄ =




X Q̄12

Q̄T
12 Q̄22


 where X ∈ RnCL×nCL , Q̄12 ∈ RnCL×nΛ and

Q̄22 ∈ RnΛ×nCL , then NT
P̃

ΨNP̃ if and only if:

NT
P̃

ΨNP̃ = He

L̄T




ACLX BCL,ψŪ 0 0 %̃XCT
CL,ηp

τBCL,ζn 0

−CCL,uX
−Ū−

DCL,uψŪ 0 Inu −DCL,uζp V̄ −τDCL,uζn 0

CCL,zX DCL,zψŪ −γ
2 Inz 0 DCL,zζp V̄ τDCL,zζn 0

0 0 0 −γ
2 Inu 0 0 0

V̄ BT
CL,ζp

%̃DCL,ηpψŪ 0 0 −V̄ +
%̃DCL,ηpζp V̄

0 0

0 0 0 0 0 − τ
2Inmn

0
%̃CCL,ηnX %̃DCL,ηnψŪ 0 0 0 τ %̃DCL,ηnζn − τ

2Inmn




L̄

< 0,

where L̄ = diag[L̃⊥, Inu , Inm ].

(NT
R̃

ΨNR̃ < 0) Note that R̃ = R̃oT̄ , where R̃o =




C Dψ 0 0

0 0 0


 and T̄ =

diag[Q̄, Ū , Inu , Inz , Inm ], where T̄ is invertible, then one can write NT
R̃

ΨNR̃ < 0 as:

NT
R̃

ΨNR̃ = NT
R̃
T̄ T̄−1ΨT̄−1︸ ︷︷ ︸

Ψ̄

T̄NR̃︸ ︷︷ ︸
NR̃o

= NT
R̃o

Ψ̄NR̃o
< 0,

where a matrix that spans the null space of R̃o is given by NR̃o
. If P = Q̄−1 and

W = ρŪ−1, then:

Ψ̄ = He




PĀ PB̄ψ C̄T
z 0 PB̄ζp V̄ τP B̄ζn %̃C̄T

ηn

−C̄u −WD̄uψ −W 0 WInu −D̄uζp V̄ −τD̄uζn 0
0 D̄zψ −γ

2 Inz 0 0 0 0
0 0 0 −γ

2 Inu 0 0 0
%̃C̄ηp 0 V̄ D̄T

zζp
0 %̃Dηpζp V̄ − V̄ 0 0

0 0 τD̄T
zζn

0 0 − τ
2Inmn

τ %̃D̄T
ηnζn

0 %̃D̄ηnψ 0 0 0 0 − τ
2Inmn




and:

R̃o =




0 0 InΛ
0 0 0 0 0 0

0 0 0 Inu 0 0 0 0 0


 ,
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thus a matrix that spans the null space of R̃o is NR̃o
∈ Rm×(m−nu−nΛ) is:

NR̃o
=




Inp 0 0 0 0 0 0

0 Ing 0 0 0 0 0

0 0 0 0 Inu 0 0

0 0 0 0 0 Inz 0

0 0 0 0 0 0 Inm




T

.

If P =




Ỹ Ỹ2

Ỹ T
2 Ỹ3


, where Ỹ ∈ RnCL×nCL , Ỹ2 ∈ RnCL×nΛ , Ỹ3 ∈ RnΛ×nΛ and M =

diag[Y, Inu , Inz , Inm ], where Y = Ỹ −1 then

MT NT
R̃

ΨNR̃M = MT NT
R̃o

Ψ̄NR̃o
M =

He




ACLY 0 Y CT
CL,z %̃Y CT

CL,ηp
τBCL,ζn %̃Y CT

CL,ηn

0 −γ
2 Inu 0 0 0 0

0 0 −γ
2 Inz 0 0 0

V̄ BT
CL,ζp

0 DT
CL,zζp

%̃DT
CL,ηpζp

V̄ − V̄ 0 0
0 0 τDT

CL,zζn
0 − τ

2Inm %̃DT
CL,ηnζn

0 0 0 0 0 − τ
2Inm




< 0

(Step 2). Given X and Ỹ −1 = Y , we wish to find conditions such that a Q̄ =

Q̄T > 0, Q̄ =




X Q̄12

Q̄T
12 Q̄22


 and Q̄−1 =




Ỹ Ỹ2

Ỹ T
2 Ỹ3


. Lemma 6 [68] shows that

a Q̄ exists if and only if there exist X = XT > 0, Y = Y T > 0, X − Y ≥ 0 and

rank(X−Y ) ≤ nΛ. Thus, there exists an anti-windup compensator such that the anti-

windup augmented closed-loop system guarantees quadratic robust unconstrained

response recovery performance level γ and %̃ ≥ 0 if and only if there exists a solution

(X, Y, Ū , V̄ , τ) to Eqn. 6.27.

To complete the other part of the proof, the algorithm is successful. Given the solution

(X, Y, Ū , V̄ , τ) to Eqn. 6.27. Steps 3 and 4 are constructive, then the resulting X, Y

are such that X = XT , Y = Y T , X − Y ≥ 0 and rank(X − Y ) ≤ nΛ. Thus,, there
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exists a Q̄12 such that Q̄12Q̄
T
12 = XY −1X − X and Q̄22 = InΛ

+ Q̄T
12X

−1Q̄12 can be

constructed. Then, Lemma 6 [68] can be employed for:

Q̄−1 =




X Q̄12

Q̄T
12 Q̄22


 =




Y ?

? ?




With Q̄ and Ū selected, then Ψ, P̃ and R̃ can be constructed as detailed in Step 5,

and there exists a solution to the LMI at Step 6. This conclude our proof. C

From Theorem 6.27 and its proof, the functions used in the algorithm for anti-

windup compensation can be given.

[Ψ, R̃, P̃ ] = VnΛ-dynamic(P∆,GM, X, Y, Ū , V̄ , τ, γ).

Construct the matrices Ψ, R̃, P̃ from Step 3 in Algorithm 6.26.

[Ψ, R̃, P̃ ] = Vnp-dynamic(P∆,GM, X, Y, Ū , V̄ , τ, γ).

Construct the matrices Ψ, R̃, P̃ from Step 3 in Algorithm 6.26, with nΛ = np.

[Ψ, R̃, P̃ ] = Vstatic(P∆,GM, X, Ū , V̄ , τ, γ).

Construct the matrices Ψ, R̃, P̃ from Step 3 in Algorithm 6.26 with nΛ = 0.

b. Override compensation

Algorithm 6.28 (Design of arbitrary-order dynamic override compensation with

GOC for controller states/input)

Step 1. Given nΘ, find a solution (X, Y, Ū , V̄ , τ, π) ∈ (RnCL×nCL ,RnCL×nCL ,Dnz ,

Dnmp ,R,R), with γ > 0 as small as possible and %̃ ≥ 0, to the LMI problem:

Eqn. 5.34, (6.29a)

rank(X − Y ) ≤ nΘ, (6.29b)
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Step 2. Using the solution (X, Y, Ū , V̄ , τ) from Step 2, define the Q̄12 ∈
RnCL×nΘ as a solution of the following equation:

XY −1X −X = Q̄12Q̄
T
12.

define the matrix Q̄12 ∈ RnΘ×nΘ as:

Q̄22 = InΘ
+ Q̄T

12X
−1Q̄12.

Define the matrix Q̄ ∈ R(nCL+nR)×(nCL+nR) as:

Q̄ =




X Q̄12

Q̄T
12 Q̄22


 .

Step 3. Using the matrices defined Notation 6.25 and Notation 4.1, define

m = nCL + nz + nz + nu + nmp + nmn + nmn and Ψ ∈ Rm×m, R̃ ∈ Rnz×m, and

P̃ ∈ Rm×(nv) via:

Ψ = He


ĀQ̄ −B̄ψŪ 0 0 −B̄ψ B̄ζp V̄ 0 %̃Q̄C̄T
ηn

−C̄zQ̄
−Ū−
D̄zψŪ 0 0 D̄zψ −D̄zζp V̄ 0 −%̃Ū D̄T

ηnψ

WyC̄yQ̄ −WyD̄yψŪ −γ
2 Iny 0 −WyD̄yψ WyD̄yζp V̄ τWyD̄yζn 0

WzC̄zQ̄ −WzD̄zψŪ 0 −γ
2 Inz −WzD̄zψ WzD̄zζp V̄ τD̄zζn 0

0 0 0 −W T
o W T

z −γ
2 Inz −D̄T

ηpψ 0 %̃D̄T
ηnψ

%̃C̄ηpQ̄ −%̃D̄ηpψŪ 0 0 −D̄ηpψ
−V̄ +

%̃D̄ηpζp V̄
0 0

τB̄T
ζn

−τD̄T
zζn

0 0 0 0 − τ
2Inmn

0
0 0 0 0 0 0 τ %̃D̄ηnζn − τ

2Inmn




,

P̃ =
[

BT −DT
z 0 DT

y W T
y DT

z W T
z %̃DT

ζp
0 %̃DT

ζn

]

R̃ =
[

CQ̄ −ŪDψ Dψ 0 0 0 0 0
]

Step 4. Find a solution (AΘ, BΘ, CΘ1 , CΘ2 , DΘ1 , DΘ2) ∈ (RnΘ×nΘ ,RnΘ×nu ,
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Rnv1×nΘ ,Rnv2×nΘ ,Rnv1×nu ,Rnv2×nu) to the LMI problem:

Ψ + P̃ T




AΘ BΘ

CΘ1 DΘ1

CΘ2 DΘ2




R̃ + R̃T




AΘ BΘ

CΘ1 DΘ1

CΘ2 DΘ2




T

P̃ < 0. (6.30)

C

Theorem 6.29 Let W = W T > 0. There exists an override compensator (GOC

for controller state/input) such that the override augmented closed-loop system guar-

antees quadratic robust unconstrained response recovery with performance level γ

and %̃ ≥ 0 if and only if there exists a feasible solution (X, Y, Ū , V̄ , τ) to Eqn. 6.29.

Moreover, given a feasible (X,Y, Ū , V̄ , τ) to Eqn. 6.29, the steps in Algorithm 6.28

can be completed and the resulting override compensator is such that the override

augmented closed-loop system guarantees quadratic robust unconstrained response

recovery with performance level γ.

Proof. This theorem can be proved following the ideas in Theorem 6.27.

D. Example: mass-spring-damper system

In this part, remedial compensation techniques are applied to the uncertain mass-

spring damper system. The results show that the remedial compensation schemes,

considered in this dissertation, are capable of improving the performance over the con-

strained closed-loop responses, for the anti-windup case, and over the unconstrained

closed-loop responses, for the override case.
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1. The uncertain plant and the unconstrained controller

The mass-spring-damper system has its dynamics governed by the following equations

of motion:

·xp =




0 1

−k/m −f/m


 xp +




0

1/m


 u

z =

[
1 0

]
xp performance output for anti-windup compensation

z =

[
0 1

]
xp performance output for override compensation

y =

[
1 0

]
xp

, (6.31)

where xp = [q, q̇]T represent the position and velocity of the body attached to the

spring. Moreover, m represents the mass of the body, k is the elastic constant of

the spring and f is the damping factor. The system is considered to be subjected

to external forces such as u and w, u usually corresponds to the actuation of the

controller on the mass and w is an exogenous input. To make the system more

realistic, we will consider that the values of the parameter are not precisely known,

but are believed to lie in known intervals. In particular, the actual mass m, elastic

constant k and damping factor f are within 10% of their corresponding nominal

values, mo, ko and fo. We choose the following nominal parameter values:

mo = 0.1kg, ko = 1
kg

s
, fo = 0.005

kg

s
. (6.32)

Assuming the w is an exogenous reference input corresponding to the desired mass

position, the following linear unconstrained controller has been designed:

u = Cfb(s)(Cff (s)w − y), (6.33)
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with:

Cfb(s) = 200
(s + 5)2

s(s + 80)
, Cff (s) =

5

s + 5
. (6.34)

Note that this controller was designed to provide a fast response with zero steady-state

error to step references change, robust to parametric uncertainties.

2. Robust anti-windup design

a. Unconstrained closed-loop responses

The response of the unconstrained closed-loop system, with zero initial conditions,

resulting from an input reference that switches between±0.9 meters every five seconds

and going back to zero permanently after 10 seconds, is shown in Fig. 32. Observe

that what seems to be a thick line is in fact the response of a family of plants generated

by randomly selecting parameter values within the intervals previously described. The

plant input has peaks of 8N for the first and third step changes, and of 16N for the

biggest step change that occurs after 5 seconds. Note that the peaks are almost

similar for all the plant cases.

b. Input constrained responses

When the actuator output, in this case the exerted force u, is limited to lie within the

interval [−1, +1]N, the closed-loop response of the plant family corresponds to the

dotted lines in Fig. 33. To show the degradation with respect to the unconstrained

responses, the latter are also shown with solid lines, Notably, the plant family re-

sponses converge to a limit cycle and present persistent oscillating responses, each

one with a different peak.
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Fig. 32. The response of the unconstrained uncertain mass-spring-damper system.

c. Anti-windup design

For the anti-windup design, the full-authority anti-windup augmentation is chosen as

the configuration scheme. Furthermore, the corresponding synthesis algorithms for

static and dynamic anti-windup compensation, presented in Chapter V, are applied.

Static anti-windup design was not possible due to the infeasibility of the LMI

conditions in Assumption 5.2. However a plant-order anti-windup design was success-

ful. An observation of our design is that the prefilter dynamics was embedded in the

unconstrained controller dynamics before employing Algorithm 5.7 for the synthesis

of the full-authority anti-windup compensator1. The unconstrained response recovery

gain obtained for this compensator is 63.3, exactly the same value as the H∞ norm of

the open-loop system from the plant input u to the performance output z. Note that

the performance output considered for the anti-windup compensation is the position

1As an aside comment, the inclusion of the prefilter dynamics resulted in an anti-
windup compensator with better closed-loop responses than one not including the
prefilter dynamics, recall the discussion in the mismatch insights section, Chapter
III.
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Fig. 33. The response of the input constrained uncertain mass-spring-damper system

(dotted lines).

of the mass q.

The resulting anti-windup augmented closed-loop trajectories are shown in Fig.

34. The trajectories present relative improvement with respect to the input con-

strained closed-loop trajectories presented in Fig. 33, and this occurs for all plant

cases randomly considered.

3. Nominal override design

a. Unconstrained closed-loop responses

The system is the mass-spring-damper, however, only the nominal plant case will

be considered. We select the velocity of the mass q̇ as the performance output,

constrained to lie within the interval [−2, +2]m
s
. Moreover, another design objective

will be that of keeping the plant output q as close as possible to the corresponding

unconstrained closed-loop plant response. The unconstrained controller is the one

previously described.



193

0 5 10 15

−1

0

1

P
la

nt
 o

ut
pu

t (
m

)

0 5 10 15

−1

−0.5

0

0.5

1
P

la
nt

 in
pu

t (
N

)

Time (s)

Fig. 34. Plant-order full-authority anti-windup augmented closed-loop system re-

sponse of the uncertain mass-spring-damper system (solid lines).

Figure 35 shows the unconstrained closed-loop responses of the system with a

thick solid line. These responses are caused by the same exogenous reference con-

sidered in the anti-windup design part. We observe that the performance output

overpasses the limits [−2, +2]m
s

during the step changes, hence override compensa-

tion will be designed to act at these time intervals. Note that a consideration during

the design is that system actuation will be able to provide the required control effort

such that the override goal is achieved.

b. Output constrained responses and override design

An static override compensator is first designed according to Algorithm 5.4 and its

equivalent representation for performance analysis described in Algorithm 4.5. The

proof of Theorem 6.29 further relates these two algorithms. The override closed-loop

trajectories obtained with this compensator are shown in Fig, 36. The solid thin lines

in the plant responses correspond to the ideal output constrained responses, namely
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Fig. 35. The response of the unconstrained nominal mass-spring-damper system. Per-

formance output is velocity, ·x, and plant output is amplitude x.

the saturated version of the unconstrained performance output and the unconstrained

plant output. The thick solid lines depict the closed-loop responses when override

control is employed. Notably, during steps changes, the performance output stays

within the bounds with an error of ±2%. Additionally, note the dependency between

plant output and performance output. With the performance output q̇ limited in

amplitude, the plant output q is also limited, but in slope. Then, by removing this

constrain on the plant output, we are left with a good match of the unconstrained

responses. The plant input responses for the override closed-loop system show the

high demand on the actuation of the system.

A plant-order override design was also attempted by following the steps in Al-

gorithm 5.12, however, the resulting compensator had very high poles, making the

implementation difficult.
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Fig. 36. The response of the output constrained nominal mass-spring-damper system

and the response of the override closed-loop system.
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CHAPTER VII

MULTIDIMENSIONAL POSITIONING SYSTEM (MPS)

The Multidimensional Positioning System (MPS) has been designed and assembled in

the Mechatronics Laboratory at Texas A&M University for inhouse research in multi-

degree-of-freedom positioning of a single magnetically levitated moving part (platen)

at micro and nano scales. The working principle of the MPS is a linear motor capable

of providing forces for both suspension and translation without contact. Reference

[69] and references therein give a detail description of the facility.

Positional control for the MPS consists of six degree-of-freedom (DOF) control

of the platen in the presence of external disturbances, model uncertainties and con-

straints. The platen has attached three windings (coils) on its bottom surface and

is levitated above a two-dimensional superimposed concentrated-field magnet ma-

trix (stator). The platen is modeled as a rigid body. The motion of a rigid body

undergoing six DOF is nonlinear, hence a linear, time invariant motion about an

equilibrium point is considered. Linear control design methods are then used based

on the linearized model without considering the presence of constraints. This linear

control design is the first step towards a second design that will take into account the

constraints and which will attempt to employ the anti-windup/override techniques

described in previous chapters.

This chapter is organized as follows: A description of the analytical model, and

the sensing and actuation systems is first presented. Model based controllers with

and without uncertainty considerations are then designed. For the controllers that

incorporate an uncertainty description in the design, approximate uncertainty bounds

are obtained. After a failed attempt in the implementation of the robust controllers,

improved uncertainty characterizations are urged. Not only identification of the MPS
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is considered, but also description of the uncertainty using model validation ideas is

presented. Finally, it would be ideal to employ the synthesis algorithms presented

in Chapter V to construct remedial compensation for this system, however, further

theory is required as the MPS is not an asymptotically stable system.

A. MPS model

Figure 37 depicts the MPS formed by the stator and the platen. On the stator, there

is attached a two-dimensional superimposed concentrated-field magnet matrix. On

the bottom surface of the platen are attached the windings (coils) that energize the

actuation of the system. The currents pass through the coils and generate forces and

torques in the center of mass of the platen due to the interaction between the current

distribution and the magnet array [70]. Subsequently, the platen has six DOF, namely

three displacements and three rotations. More specifically, the currents in the coils

flow in the orthogonally interwoven multi-phase η1 and η2 windings generating air gap

magnetic field traveling in the η1 and η2 directions, respectively. These η1 and η2 coil

currents interact only with the corresponding η1 and η2 magnet array components,

thus generating horizontal translation. The current distribution and equal magnetic

poles of the magnet array create a repulsive force that lifts the platen against gravity,

thus generating vertical translation. The motors (I and II) drive the platen in the

η2 direction, and the third motor (III), in the η1 direction. Rotational motion is

generated as the repulsion forces in the η3 direction and horizontal forces do not pass

through the center of mass of the platen. To avoid thermal problems the platen is

suspended by air bearings. The air bearings are modeled as three linear springs and

the platen is modeled as a rigid body. A set of orthogonal (b1, b2, b3) body fixed axes

defines the motion of the platen with respect to the inertial frame (stator) whereas a
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Fig. 37. 6 DOF positioner.

(η1, η2, η3) coordinate system is fixed to the stator.

1. Nonlinear model

Let the unitary vectors b̂i and η̂i denote the body and inertial coordinates which

are initially assumed to be collinear. Defining the following variables: angular ve-

locity vector of the platen with respect to body frame ~ω =
3∑

i=1

ωib̂i, linear centroid

velocity vector ~v =
3∑

i=1

viη̂i, linear position vector of centroid relative to inertial

frame ~x =
3∑

i=1

xiη̂i, angular position vector of centroid with respect to inertial frame

~β =
3∑

i=1

βiη̂i, magnetic force vector acting on the centroid of each coil attached to

the platen ~Fj =
3∑

i=1

Fjib̂i j = [I, II, III], disturbance force vector acting on the platen

centroid excluding any magnetic force ~Fd =
3∑

i=1

Fdiη̂i, magnetic torque vector about

the platen centroid ~τ =
3∑

i=1

τib̂i =
III∑
j=1

~rj× ~Fj, and disturbance torque vector acting on
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the platen centroid excluding any magnetic torque ~τd =
3∑

i=1

τdiη̂i. Let ~rj j = [I, II, III]

denote the position of each coil centroid with respect to the platen centroid.

The relation between the inertial and body coordinates is given by the Euler

angles, where b̂ = Eη̂ and E is a matrix transformation for a 3, 2, 1 (that is, η3, η2,

η1) rotation sequence.

The inertia tensor of the platen is defined as I, where I ij (i, j = [1, 2, 3]), is

an entry of the inertia tensor. The physical parameters, m, kx3 , kβ1 , kβ2 and g,

denote the mass of the platen, linear spring constant, rotational spring constants and

acceleration of the gravity, respectively. The spring constants are generated by the

air bearings action. The nonlinear equations of motion for the platen suspended by

the magnetic forces and the air bearings are given as follows:




ω̇1

ω̇2

ω̇3


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= −
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I i
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I i
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
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, (7.3)
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


ẋ1

ẋ2

ẋ3




=




v1

v2

v3




, (7.4)

where I i
ij denotes the ij-th element of the inverse of the inertia tensor.

The magnetic forces ~Fj j = [I, II, III] (related to each coil) depend on the instan-

taneous centroid location of the platen, ~x = [x1, x2, x3]
T , and the current applied to

the coils: 


iAj

iBj

iCj




=
2eγ1x3
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e−γ1xiJ


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Fj3

Fji


 , (7.5)

where iA, iB and iC are the three phase currents and eγ1xiJ is a transformation matrix

given by:

eγ1xiJ =




cos γ1xi sin γ1xi

− sin γ1xi cos γ1xi


 , (7.6)

with i = [1, 2]. The magnet remanence is µoMo, the winding turn density is ηo,

the number of active pitches is Nm, the pitch is l, the fundamental wave number is

γ1 = 2π
l

and the nominal air gap is x3o. See Table I in Appendix for the mechanical

and electromagnetic parameter values of the MPS.

For simplicity, the quadrature and direct currents iq and id can also be consid-

ered for analysis and synthesis of the controllers. The relation between the quadra-

ture/direct current and the phase currents is given by:


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
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idj

iqj


 , (7.7)

where j = [I, II, III].
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The R12×1 state vector is formed by the linear and rotational positions and the

corresponding velocities:

~ζ = [ ω1 ω2 ω3 β1 β2 β3 v1 v2 v3 x1 x2 x3 ]
T

. (7.8)

The external disturbance vector incorporates the disturbance forces and torques:

~q =

[
[ τd1 τd2 τd3 ]E

1

IT
O1×3

Fd1

m

Fd2

m

Fd3

m
O1×3

]T

. (7.9)

The control input vector may include the magnetic torques and forces acting on the

platen centroid or the direct and quadrature currents in each coil:

~u = [ τ1 τ2 τ3 F1 F2 F3 ]
T

. (7.10)

~i = [ iqI iqII iqIII idI idII idIII ]
T

. (7.11)

Finally, the equation of motion is nonlinear and can be written as:

~̇ζ = g(~ζ, ~u) + ~q = f(~ζ,~i) + ~q, (7.12)

where f(~ζ, ~u) and g(~ζ,~i) capture Eqns. 7.1 to 7.7 and 7.1 to 7.4, respectively.

2. Perturbed motion about equilibrium

Consider the following equilibrium state vector:

~ζo = [ 0 0 0 0 0 0 0 0 0 0 0 2.324mm ]
T

. (7.13)

This equilibrium state corresponds to the body frame being collinear with the inertial

frame with zero angular and translational velocities (the air bearings are off).

Considering the perturbed motion:

~ζ = ~ζo + δ~ζ, ~u = ~uo + δ~u, ~i =~io + δ~i, (7.14)
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the linearized equation about ~ζo is given by:

δ~̇ζ = Aδ~ζ + Buδ~u = Aδ~ζ + Biδ~i, (7.15)

where:

A =


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, (7.16)
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, (7.17)
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Bi = kD
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,

(7.18)

with kD = 1
2
µoMoηoNmGe−γ1x3o .

The quantities in brackets represent the interaction between the horizontal forces

Fi i = [1, 2] and the torques τj j = [2, 1] respectively, due to offset between the platen

and coils centroids.

From simple inspection, it can be concluded that the open loop system at the

equilibrium state is unstable (double integrator because the platen was modeled as a

rigid body). Furthermore, it can be shown that all states are controllable from the

magnetic torques and forces, and from the direct and quadrature coil currents.

Considering the values of the parameters of the system, shown in Table I, the

non-zero eigenvalues and corresponding eigenvectors can be calculated and the results

are presented in Table II in the Appendix part. From Table II, it can be seen that

three non-zero fundamental modes occur. Two of the modes (modes 1, 2) involve

rotations about the η1 and η2 axes, the remaining one (mode 3) involves motion

along the η3 axis. Physically, these modes result from the interactions between the

platen and the air bearings. Modes 1 and 2, which are oscillatory modes, are related

to the terms kβi
i = [1, 2]; kβ1 (kβ2) initiates a positive rotation in the η1 axis and a

positive (negative) rotation in the η2 axis after a negative (positive) η3 displacement.
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Mode 3, which is also a oscillatory mode, is related to the term kx3 .

3. Sensing and actuation

Nine physical variables can be indirectly measured, they are the translational veloci-

ties, the translational displacements and the rotations of the platen centroid.

For small angles, the rotation and displacements are actually perturbed rotations

and displacements around the equilibrium state. The vector of physical variables

sensed, denoted as ~y, is related to the states as:

~y = C δ~ζ, (7.19)

where:

C =




O3×3 I3×3 O6×3

O6×3 O6×3 I6×6


 . (7.20)

In laboratory, the actual measured outputs, denoted by y′, are voltages and rel-

ative displacements, which are sensed using optical displacement sensors and laser

interferometers, respectively. The optical displacement sensors relate voltages to the

vertical displacement in η3 axis and rotations about the η1 and η2 axes. The laser inter-

ferometers relate the relative displacements to the horizontal displacements/velocities

(η1 and η2 axes) and rotation/angular velocity about the η3 axis. Then it follows:

~y′ = [p2s] ~y, (7.21)

where [p2s] is a matrix transformation.

In the case of the laser interferometers, three lasers axes board working with

the corresponding receivers give relative position information with 0.6 nm resolution

for a plane mirror system. The position data is updated at rate of 10MHz and the

axis board provides velocity data up to 1 m
s
. The laser interferometer arrangement is
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described in Fig. 38.
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Fig. 38. Sensing and actuation systems.

In the case of the optical sensors, three non-contact ultra precision optical dis-

placement sensors are employed to obtain three measurement channels. The optical

sensors have 100µm of measurement range and a resolution of 15 nm. A clock is also

used to synchronize the measurements. See Fig. 38.

Figure 39 shows the input and output block diagram of the MPS plant. The

input consists of three currents (iA, iB and iC related to id and iq by the matrix

transformation T ) going into the three coils and the measured outputs involve three

voltages and six relative displacements. In short, the current into the coils generates
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a magnetic field which interacts with the magnet array and produces a net force and

torque on the suspended platen, see Fig. 39. The resulting motion of the platen can

be divided into horizontal (unstable) and vertical (stable) motion. The horizontal

motion involves displacements in the η1 and η2 axes and rotation about the η3 axis.

The vertical motion consists of rotation about the η1 and η2 axes and displacement

in the η3 axis. The horizontal motion is sensed by the laser interferometers that give

out relative displacement information and the vertical motion is sensed by the optical

sensors that produce output voltage signals.
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Fig. 39. Open loop block diagram.

B. Model based control of the MPS. A comparison of controller designs with exper-

imental validation

The present study investigates the controlled behavior of the MPS, under the ap-

plication of model based control techniques (lead-lag, LQR, LQG, LQG-LTR, H∞,

µ-synthesis and QFT). Particular attention is given to the design, analysis and sim-

ulation of the control laws that guarantee tracking performance under modeled un-

certainties. Closed-loop identification is used to derive bounds of the variations in

magnitude of the experimental data and mathematical models. Results obtained from

numerical simulations are presented and judged with respect to the performance and

stability achieved and the work needed to perform the designs. Laboratory experi-

ments indicate partial success in the implementation of the designed control systems.
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Hence, limited experimental results are presented to validate the performance of the

control systems.

The control systems are to be designed such that the MPS tracks simultaneous

position and rotation commands for all the six DOF. Similar command following and

disturbance rejection specifications in the frequency and time domain are posed for all

designs. For design purposes only H∞, µ-synthesis and QFT control techniques ex-

plicitly incorporate the system uncertainty in the controller design. This uncertainty

ideally accounts for the system dynamics not captured in the analytical model.

Using numerical simulations the merits of each controller are analyzed based on

the quality of the control system in nominal operation (tracking, disturbance rejec-

tion and stability) and under the inclusion of uncertainty (performance and stability

robustness) via H∞ (µ) constraints on certain frequency weighted transfer matrices.

The effort involved in the controller design is also considered (note that no tuning

is permitted). From the laboratory experiments shown, a comparison is performed

in terms of the agreement, or lack thereof, between simulations and experimental

results.

The remainder of this section is organized as follows. The validation of the analyt-

ical model is performed first. This validation through comparison with the identified

models permits the definition of the uncertainty models. The main differences among

the control design approaches are also explained. Following, the numerical results are

presented along with limited experimental results. The latter verifies that control ob-

jectives are achievable. Finally, the results are discussed and further necessary work

is proposed.
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1. Model validation and identification of the MPS

System identification is required to verify that the analytical model is valid for con-

troller design. Open loop tests cannot be performed due to the unstable nature of

the MPS. Subsequently, identification of the experimental system is carried on the

closed loop system with a lead-lag (decentralized) controller under the consideration

that the linear model is decoupled. Due to the diagonal dominance of the inertia

tensor (see Table I), the linear model corresponding to forces and torques as control

inputs can be decoupled and subsequently a decentralized single-input single-output

(SISO) control system design is feasible. The joint input-output approach [71] was

used for each DOF of the closed-loop. The input test signal, r reference, consisted of

a zero mean, white noise random signal with standard deviation of 0.01 and 0.05µm

for the horizontal and vertical motion, respectively. The total time of the excitation

signal is 2s at a 5kHz sampling rate. Observing the frequency response, Fig. 40,

significant mismatch between the analytical and experimental models is apparent,

especially at low and high frequencies. The mismatch at low frequencies is likely be-

cause the excitation signals did not contain much energy over that frequency range.

At high frequencies the mismatch is due to the unmodeled dynamics. Notably, for

the horizontal motion, the experimental models present resonances at around 90Hz.

a. Uncertainty model

The uncertainty models are determined by the discrepancy between the derived, sim-

ple analytical uncoupled model and the experimental model, with the analytical cou-

pled model serving as the nominal model for controller design. Knowing that for

systems such as the MPS the main source of errors are the high frequency dynam-

ics, additive uncertainty models are constructed as shown in Fig. 40. These high
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Fig. 40. Comparison of the analytical model (dotted) and the identified model

(dashed). Additive uncertainty model (solid line).

frequency dynamics may be caused by nonlinearities, mechanical-electrical couplings

and environmental noises. At low frequencies uncertainty is not that important since

high gain will be employed at those frequencies. Figure 41 shows the closed-loop sys-

tem where the uncertainty model maps force and torque inputs to physical outputs.

2. Unconstrained controller design

The main objective of the control systems is to stabilize the platen dynamics and

track1 a command signal about the equilibrium state with 2% steady state error.

The challenging aspect of the design is to guarantee a specific tracking performance

in spite of imperfect knowledge of the experimental system while accommodating the

physical limitations (sampling, etc). The controllers are also designed to attenuate

disturbances in the low frequency band from 0 to 30Hz and to have less than 30%

1An implicit performance requirement is disturbance rejection of constant inputs.
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overshoot with a rise time (to within 80% of the final value) of less than 0.1s for a

step change in the reference input, for all axes. For planar movement, the dynamic

performance objectives include hundreds of millimeters traveling with a maximum

speed capability of 1 m
s
.

In LQG-LTR [72], lead-lag [73], LQR [74] and LQG [74] designs, zero steady

state error for step inputs is achieved by inserting an integrating action. In the lead-

lag design, the SISO diagonal controller elements are designed independently and

have a phase margin of 40o. The total order of the controller is 12 and the loop

bandwidth is 30Hz and 140Hz for the horizontal and vertical motion, respectively.

For the LQR and LQG designs, information available from the experimental models

is used to choose the weighting matrices. The total order of the LQG-LTR controller

for each motion is 12 (horizontal and vertical), the loop bandwidth is 30Hz for the

horizontal motion and 100Hz for the vertical one. For the H∞ and µ-synthesis designs

[8], the uncertainty model is explicitly incorporated in the design. The order of the

controllers is reduced to 15, at most, for each motion. The loop bandwidth is 30Hz

for the horizontal motion and 110Hz for the vertical one. In the QFT design [75] (two

DOF design) the prefilter is designed to enforce closed-loop tracking requirements,

increasing the order of the controller. The total order of the QFT controller is 36.

3. Numerical simulation and experimental validation

This section presents the numerical simulations of the controlled MPS response and

limited experimental results2. The quality of the controllers is analyzed in both the

frequency and time domain.

2All the results and simulations are computed using the Control, µ-synthesis and
QFT Matlab Toolboxes.
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a. Numerical simulations comparison

In this section we compare the properties of the designed control systems. Notably,

there does not exist a general method to compare the designed control systems. How-

ever, the use of the H∞ norm or µ scalar of the frequency weighted transfer functions,

as it is done in the H∞ and µ-synthesis designs, proved to be useful for comparing the

performance and stability of the designs. In the following, the H∞ norm and µ scalar

are employed to facilitate comparison and all conclusions are given with respect to

the values of the norms (or scalars) associated to the weighted transfer functions, see

Fig. 41. The weighting functions employed for the H∞ and µ-synthesis designs are

also used when comparing the designs.

Frequency domain response

Nominal performance, robust stability and robust performance are investigated.
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Nominal performance (NP) The requirements for NP (∆ = 0) are ‖WeSGd‖∞ ≤ 1,

for disturbance rejection, and ‖WtT‖∞ ≤ 1, for reference tracking. S and T are the

sensitivity and complementary sensitivity function, respectively.

From Fig. 42(a) all controllers present good disturbance rejection properties,

except for H∞ and µ-synthesis controllers which violate the disturbance rejection

condition at very low frequencies. While minor in the case of QFT, aside from H∞

and µ-synthesis, the other controllers violate the tracking condition (see Fig. 42(b)).

Figure 43(a) shows that no controller presents an H∞ norm smaller than one

for the NP weighted transfer matrix. This is not surprising as previous plots (Fig.

42(a)-(b)) show that none of the controllers satisfy both performance conditions si-

multaneously. The worst performance is presented by the LQR-LQG controller that

possesses the highest peaks for tracking. The violation of the disturbance rejection by

the H∞ and µ-synthesis controllers is shown at low frequencies where the H∞ norms

are 4.5 and 3.0, respectively. For the other controllers, good tracking of signals at low

frequencies (H∞ norm about 1) and degraded behavior near the crossover frequencies

(H∞ norm increased by a factor of up to 5) can be seen in the plot. The peaks at

intermediate frequencies reflect the peaks the controllers present for tracking. Among

the controllers, the QFT controller achieves the best NP.

Robust stability (RS) The consideration of additive uncertainty enforces the condi-

tion ‖W∆KS‖∞ ≤ 1 for RS.

Figure 43(b) shows that only the H∞ and µ-synthesis controllers achieve RS.

This is to be expected as these controllers were designed considering the weighted

uncertainty model. For the H∞ and µ-synthesis controllers, the weighted sensor noise

amplification matrix, W∆KS, present a peak of 0.7. This implies that for diagonal

perturbations smaller than 1
0.7

the closed-loop system remains stable. For the other
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controllers it can be said that they are more sensitive to diagonal perturbations.

Specifically, the closed-loop system for the QFT controller becomes unstable for the

smallest diagonal perturbations. The LQR-LQG controller, which presented the worst

NP, has better RS properties than the other controllers, except for the H∞ and µ-

synthesis controllers. In particular, the RS condition is violated by all the controllers,

except H∞ and µ-synthesis in the high frequency region. This also can be visualized

in Fig. 42(c) where at high frequencies the singular values of KS are not below the

inverse of W∆.

Robust performance (RP) The closed-loop system achieves RP if it is internally stable

for all the plants G∆ = G + W∆∆ (‖∆‖∞ ≤ 1) and the following performance

objectives are satisfied:

∥∥∥∥We
I

I + G∆K
Gd

∥∥∥∥
∞
≤ 1 and

∥∥∥∥Wt
G∆K

I + G∆K

∥∥∥∥
∞
≤ 1.

Figures 43(a)-(b) show that no controller satisfies NP and RS conditions simulta-

neously, hence RP is not achievable, as confirmed in Fig. 43(c). Observing the peaks

attained for each controller, the µ scalar of the diagonal perturbations that cause

deterioration of performance can be calculated. Under this consideration, the H∞

and µ-synthesis controllers present better RP properties. This is not unexpected as

these controllers considered the performance weighting functions in the design. Figure

43(c) also shows that the NP characteristics of the controlled systems are maintained

at low frequencies, while at high frequencies the RS characteristics dominate.

It is worth recalling that the values obtained for the NP, RS and RP are only valid

with respect to the performance and stability definitions, and the model of uncertainty

considered in the design. If the family of plants considered in the design of the H∞

and µ-synthesis controllers, and in the comparison, is erroneous, the resultant RS and

RP cannot be reliable.
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Fig. 44. Numerical simulation results, step response, various controllers.

Time domain response

Figure 44 shows the step responses of the six position variables of the platen, for

the nominal model. In general, all controllers present fast tracking of the steps. As

stated in the previous analysis, the QFT controller is the one that gives the best

performance.

The large peaks in the frequency plots for LQR-LQG tracking are reflected in the

large overshoot and slow response presented in the corresponding step response. The

H∞, µ-synthesis and QFT controllers present well damped responses while the lead-

lag and LQG-LTR controllers present overshoot for the horizontal motion responses.
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b. Experimental results comparison

The lead-lag, LQR-LQG, LQG-LTR and H∞3 controllers have been implemented

and tested with a sampling rate of 5kHz. The performance of each control system

is compared with respect to the numerical results. Notably, the MIMO H∞, µ-

synthesis and QFT controllers have not been successfully implemented and hence are

not considered below.

Frequency domain response

Figure 45(a) shows that, except for LQR-LQG, the simulated closed-loop frequency

responses of the implemented controllers have good tracking properties for sinusoidal

references of frequencies up to 50 rad
s

(within a bound of ±0.01 for T ). After the imple-

mentation of the discretized controllers on the MPS, it is observed that the tracking

characteristics hold at the low frequencies but at intermediate and high frequencies

there is an increase in the magnitude. In particular, there is a resonance at about

90Hz in all the frequency responses, the same resonance that appeared during the

model validation. The discrepancy at high frequencies is believed to be due to high

frequency dynamics not considered in the analytical model (this difference was be-

lieved to have been accounted for in the uncertainty models employed in the H∞,

µ-synthesis and QFT designs). The requirement of a rise time of 0.1s for a step re-

sponse makes the controlled dynamics important under 100Hz. Hence, even without

a good match between simulated and experimental responses at high frequencies, it

was possible to implement the lead-lag, LQG-LQR, LQG-LTR and SISO H∞ con-

trollers. The MIMOH∞, µ-synthesis and QFT designs, which considered the modeled

uncertainty, were unstable in implementation.

3Implemented considering decentralized decoupled SISO H∞ designs.
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From the control effort plots, Fig. 45(b), the controller H∞ requires less energy

despite having equal or better tracking performance than the controllers lead-lag and

LQG-LTR.

Time domain response

From Fig. 45(c)-(d), there is a fairly close match between the numerical simula-

tion and the experimental results. However, there is a slight difference in transient

(damping) of the responses. This difference may be a consequence of high frequency

unmodeled dynamics as is evident from the frequency plots. The experimental re-

sponses show residual motions not apparent in simulations. The residual motions

have envelopes of approximately 0.05µm in all cases, except for the LQR-LQG con-

troller, which shows oscillations with amplitudes of 0.4µm and 0.15µm at about 2 and

1000Hz. The LQG-LTR and lead-lag controllers appear to achieve quicker responses

at the expense of higher values of control input.

4. Discussion of results

The present study considered the control of a MPS using a variety of control meth-

ods. The MPS employs three novel permanent-magnet linear motors. The employed

SISO and MIMO control approaches assumed linearized models that are uncoupled

for certain axes, with the actual system’s dynamic being nonlinear and coupled. The

effectiveness of the control methods was compared analytically, with consideration

given to the difference in how the problem is posed and solved for each methodology.

The H∞ norm and µ scalar of frequency weighted functions facilitated the compar-

ison. Stability robustness was incorporated in the analysis by considering diagonal

perturbations. This analysis was performed under the implicit assumption that the

uncertainty model considered captures the behavior of the experimental system. The
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results of the analysis showed that the H∞ and µ-synthesis controllers satisfied the

RS condition with acceptable performance over the uncertainty range. The remaining

controllers violated the RS condition by factors of up to 80, with LQR-LQG having

the best RS properties and QFT having the best NP of all the controllers.

Considering the implementation, the lead-lag, LQR-LQG, LQG-LTR and SISO

H∞ controllers successfully controlled the MPS with positioning capability. Despite

the fact that the H∞ and µ-synthesis controllers satisfied the RS condition, and were

the only ones, they failed in implementation along with the QFT controller. While

unexpected, this indicates that the uncertain model failed to capture the dynamics

of the real system. Notably, controllers that violated the RS condition were suc-

cessfully implemented and provided precise response at the operating condition. For

these controllers, the frequency and time domain simulations and experimental re-

sults confirmed the existence of a mismatch between the analytical model and the

real system.

a. Further work

The experimental results indicated that the present nominal model with associated

uncertainty is inadequate for reliable controller design. Similar work [76] confirms the

importance of both an accurate nominal model and uncertainty description. However,

while seemingly feasible [76], simply increasing the level of uncertainty is clearly not

sufficient, indicating that the directionality of the uncertainty may have to be taken

into account. Subsequently, further work aims to improve the uncertainty description

[77] and investigate the presence of unmodeled dominant dynamics that may have

contributed to the multivariable design failures. The redesign and implementation of

the considered controllers would then be undertaken.
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C. System identification and model validation through uncertainty bounds opti-

mization

Success was obtained when implementing the lead-lag, LQR-LQG, LQG-LTR and

single-input single-output (SISO)H∞ controllers [78], all obtained using the analytical

model. Notably, the analytical model presents uncoupling among certain axes even

though it was obvious from experimental implementation the existence of coupling

among all the axes. Importantly, the multivariable robust control H∞, µ-synthesis

and QFT designs based on the analytical model and unstructured uncertainty models

failed in implementation.

The underlying assumption in previous controller designs was that a sufficient

accurate system model and uncertainty models could be obtained from first principles

and experimental data. However, the selection of the uncertainty models was not

performed following any formal model validation criteria. The uncertainty models

were obtained employing the joint input-output identification approach [71] for each

input and the related (direct) output of the actual system, and taking the difference

in norm of these identified models with respect to their corresponding SISO analytical

models.

The aim of this part of the work is to determine improved mathematical rep-

resentations of the MPS using closed-loop experimental data to facilitate successful

control implementation. This data is acquired by operating the system with an ex-

isting feedback loop due to the unstable open loop dynamics. A decentralized SISO

controller, from a previous successful design, is employed to close the loop. From

the collected data, observer/controller based system identification and uncertainty

bound optimization methods are employed to determine models of the system and

validate these models based on some predefined structure of the uncertainty. The
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uncertainty bounds are given in a linear fractional transformation form that enables

a direct use in robust control design. Uncertainty bound optimization methods ad-

dress input directional dependence and differences with respect to each experiment by

maximizing uncertainty levels over multiple experimental data sets. Simulations are

performed to obtain uncertainty bounds and the effect of parametric uncertainty on

the non-modeled dynamics structured uncertainty is observed. There exists a strong

possibility that uncertainty bounds obtained using the methods herein shown would

overcome the drawback presented in actual implementation by previous designs.

The remainder of this section is organized as follows: the first part comprehends

the theory behind the obtention of the identified models of the system and the descrip-

tion of the uncertainty models using model validation ideas. Numerical simulations

and results are later shown to prove the potential on improving the modeling of the

system and its corresponding uncertainty.

1. System identification from closed-loop data

From the analysis developed in the previous sections, the unstable nature of the

actual system constrains the identification of the system to be performed in closed-

loop. The system can be operated with any of the previously successfully implemented

controllers. However, the decentralized lead-lag controller is employed. The closed-

loop is excited by a known excitation signal (gaussian noise) and the time histories of

the closed-loop response and feedback signals are measured. Using the time history

data, the Markov parameters of the open loop plant are recovered and, subsequently, a

state-space model of the open loop plant is realized (observer/controller identification

algorithm [79]).
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a. Observer/controller identification

Consider the observer/controller Kalman Filter identification algorithm [79]. A schematic

diagram of the existing or actual closed-loop system is given in Fig. 46 and shows

the measured quantities (output closed-loop response and feedback control signal)

and the open loop plant in state space representation. An algorithm is developed to

identify the open loop plant, an observer gain and an existing controller gain from

closed-loop data. The system input-output relation given in terms of the observer

and the controller in discrete time is:

x̂(k + 1) = Āx̂(k) + B̄ν(k), (7.22)




ŷ(k)

uf (k)


 = C̄x̂(k) + D̄ν(k), (7.23)

where:

Ā = A + GC, (7.24)

B̄ =

[
B + GD −G

]
, (7.25)

C̄ =




C

−F


 , (7.26)

D̄ =




D 0

0 0


 , (7.27)

ν(k) =




u(k)

y(k)


 , (7.28)

and the matrices A, B, C, D, G and F denote suitable state space matrices for the

open loop system, and the observer and feedback controller gains respectively.

The observer/controller Markov parameters are identified by solving a least
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squares problem directly from the input u(k) and the measured output y(k) time

response histories. The error to be minimized is the difference between the estimated

outputs and the measured outputs:

ē = ȳ − Ȳ V̄ , (7.29)

where:

ē = [ e(s) e(s + 1) ·· e(l − 1) ]T , (7.30)

ȳ = [ y(s) y(s + 1) ·· y(l − 1) ]T , (7.31)

Ȳ = [ D C̄B̄ C̄ĀB̄ ·· C̄Āp−1B̄ ], (7.32)

V̄ =




u(p) u(s + 1) ·· u(l − 1)

ν(s− 1) ν(s) ·· ν(l)

: :

ν(s− p) ν(s− p + 1) ·· ν(l − 1− p)




, (7.33)

and, the numbers s and l denote the time at which an existing observer has converged

to provide the correct state of the plant and the final measured time, respectively.

The number p denotes the number of observer/controller Markov parameters Ȳ (k) to

be solved from the available data. Note that there is an implicit requirement on the

Markov parameters after p time steps, they should vanish identically, i.e.

Ȳ (k) = C̄Āk+1B̄ ≡ 0, k > p. (7.34)

By moving the innovation process forward, the following open loop system, ob-
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Fig. 46. Existing control system.

server and controller gain Markov parameters:

Y (1,1)(0) = D

Y (k) =




C

F


 Ak−1[ B G ] =




CAk−1B CAk−1G

FAk−1B FAk−1G




=




Y (1,1)(k) Y (1,2)(k)

Y (2,1)(k) Y (2,2)(k)


 , k = 1, 2, ··

, (7.35)

are computed from the following identified observer/controller Markov parameters:

Ȳ (0) =




D

0


 ≡




Ȳ (1,1)(0)

Ȳ (2,1)(0)




Ȳ (k) =




C

−F


 (A + GC)k−1[ B + DG −G ]

=




Ȳ (1,1)(k) −Ȳ (1,2)(k)

−Ȳ (2,1)(k) Ȳ (2,2)(k)


 , k = 1, 2, ··

, (7.36)

The structure of the observer/controller system identification is shown in Fig. 47.

The realization of the open loop plant, observer and controller gains is performed
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using the eigensystem realization algorithm (ERA) and the combined Markov param-

eters Y (k) determined above. The following Hankel matrix is formed:

H(k − 1) =




Y (k) Y (k + 1) ·· Y (k + s)

Y (k + 1) Y (k + 2) ·· Y (k + s + 1)

: :

Y (k + r) Y (k + r + 1) ·· Y (k + r + s))




, (7.37)

and the realization below will simultaneously identify the open loop system matrices

A, B, C, the observer gain G and the controller gain F :

A = D
−1/2
r P T

r H(1)QrD
−1/2
r[

B G

]
= D

1/2
r QT

r E(m+q)




C

F


 = ET

(m+q)PrD
T
r

, (7.38)

where the order of the realization is determined by the singular value decomposition

of the Hankel matrix H(0) as defined by:

H(0) = PDQT = PrDrQ
T
r . (7.39)

The subscript r refers to the matrices formed by retained columns in P and Q, and

the retained singular values in D, respectively. The matrix E is made up of zeros and

identity matrices appropriately.

2. Uncertainty structure

The description of the uncertainty structure must provide physical motivation for

its selection. Consider the linearized system with an added weak nonlinearity and
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defined by the discrete time state equations:

x(k + 1) = AP x(k) + BP a(k) + f(x(k)), (7.40)

q(k) = CP x(k) + DP u(k) + d(k), sensor (7.41)

y(k) = g(q(k)) + w(k), output (7.42)

a(k) = h(u(k)), actuator (7.43)

where d(k) is the output disturbance (e.g. dynamics of the unmodeled umbilical cables

that act on the platen), w(k) is the output noise, u(k) is the control signal, and y(k)

is the measured output signal. The term f(x(k)) denotes the plant nonlinearities that

affect the linearized equation, e.g. nonlinearities such as the damping effect of the

air-bearings and the inaccurate knowledge of the spacial distribution of the magnetic

field. The h(u(k)) and g(q(k)) terms are included to incorporate hardware effects

such as quantization and saturation, also calibration errors and dynamic range of the

sensing system. With this description, the model structure assumed for the platen

is given in Fig. 48 with AP , BP , CP and DP denoting affine parameter dependent
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linear system matrices as represented below:




AP BP

CP DP


 =




Ao Bo

Co Do


 +

nA∑
i=1

δi




APi
0

0 0


 +

nB∑
i=nA+1

δi




0 BPi

0 0




+

nC∑
i=nB+1

δi




0 0

CPi
0


 +

nD∑
i=nC+1

δi




0 0

0 DPi




. (7.44)

As each of the matrices associated with each ∆i has rank one they can be factored

into row and column vectors using the singular value decomposition [8], then:




APi
0

0 0


 =




Ei

Fi


 [ Gi Hi ], (7.45)

and the following linear system with extra inputs and outputs can be defined:




x(k + 1)

y(k)

ηn1

:

ηnr




=




Ao Bo E1 .. En

Co Do F1 .. Fn

G1 H1 0 .. 0

: : : : :

Gn Hn 0 .. 0







x(k)

u(k)

ζn1

:

ζnr




. (7.46)
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In the derivation below of the uncertainty models we assume that ∆ belongs to

the set of structured uncertainty D, as defined by:

D =





∆ ∈ Cm×n : ∆ = diag(δ1In1 , .., δrInr ,

∆r+1︷ ︸︸ ︷
h(u)− u,

..︷ ︸︸ ︷
g(q)− q,

∆τ︷︸︸︷
f(x)),

δi ∈ Fi, ∆i ∈ Cmi×ni





, (7.47)

where τ denotes the number of uncertainty blocks and δi i = 1, ··, r denotes a set of

uncertain repeated scalar parameters. Then, the structure of the plant model can be

rewritten in the general form as depicted in Fig. 49.

The transfer function relation for this representation can be written as:

y = Fu(P, ∆)u + V v, (7.48)

with the upper linear transformation defined by:

Fu(P, ∆) = P22 + P21∆(I − P11∆)−1P12. (7.49)

From this equation note that, when ∆ = 0, the nominal (analytical or identified)

model can be recovered. Also notice that from system identification only P22 and V

are to be determined and the other matrices P12, P21 and P11 can be constructed from

the uncertainty structure.
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3. Bounding the uncertainty using model validation

To account for the discrepancies between the available measured outputs and the

outputs obtained from the observer/controller based system identification4, an a priori

knowledge of the possible source of uncertainties in the system will be used (see

previous subsection). Figure 50 shows the direct connection of the parameterized

uncertainties ∆ to the residuals between the true system responses and the responses

obtained using the identified models. Note that the plant shown in Fig. 50 is in

feedback loop with a controller. This goes in accordance with the system identification

ideas presented in the last sections due to the unstable nature of the system.

Closing the idealized loop (bottom feedback loop in Fig. 50), the canonical form

of the general block diagram can be presented as described in Fig. 51. Then, the

4The method to be presented here would also be employed to obtain uncertainty
bounds between the measured outputs and the outputs obtained using the analytical
model of the plant and the linear controller design.
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output error is given by:

ey = y −G23r︸ ︷︷ ︸
nominal error eo

y

uncertainty freedom︷ ︸︸ ︷
−G21ζ −G22β, (7.50)

with the uncertainty weights defined as:

W = diag(w1I1..wτIτ ), (7.51)

∆B = diag(∆B1I1..∆Bτ Iτ ), (7.52)

where W denotes the radii applied to the blocks of the structured uncertainty unit

ball. Since r and K are assumed to be known, the following is satisfied:

ey = 0 ⇒ eu = 0. (7.53)

Let DW be a bounded structured set. Does there exist ∆ ∈ DW , β =




ε

ν


 and

r, where ‖ε‖ ≤ 1, ‖ν‖ ≤ 1 such that:

y = Fu (G(P, K, V ), ∆)




ε

ν

r




? (7.54)

To solve this question, Lim et al. [77] addressed the feasibility question, “Does
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a model validation DW exist?”, instead of, “Is DW model validating?” The feasibil-

ity problem, followed by an appropriate parameterization, is then expressed in the

following way:

1. Does (ζ,β) exist, where ‖β‖ ≤ 1, such that ey = 0?

Yes, if and only if the following (constant matrix test) passes:

eo
y ∈ Im(M) ∀ω, (7.55)

‖TH
2 (M †)βeo

y‖ ≤ 1, ∀ω, (7.56)

where:

eo
y = y −G23r, (7.57)

M = [ G21 G22 ], (7.58)

Im(NM) = Ker(M), (7.59)

T2 ∈ Im((NM)ν)⊥, (7.60)

else, uncertainty structure and/or noise allowance is limiting and changes in

(P,D, V ) are required to increase the possibility of getting a feasible solution.

2. Parameterize all such (ζ,β) and η:

S = {(ζ(φ, ψ), η [ζ(φ, ψ), β(φ, ψ)]), φ ∈ Φ, ψ ∈ Ψ}, (7.61)

where (ζ,β,η) is affine in (φ,ψ).

3. Does ∆, ζ, η exists, where ∆ ∈ D, (ζ, β) ∈ S, such that ζ = ∆η and η =

G11ζ + G12β + G13r?

Yes, if and only if (ζ,η) is D-realizable. This condition aims to rule out ζi 6= 0

and ηi 6= 0,∀i. Fortunately, signal set S is typically well endowed in application.
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If a model validating DW exists, it can be shown that all model validating sets

can be parameterized by:

DWφψ = {∆ ∈ D : ∆ = W∆B, σ̄(∆B) ≤ 1}, (7.62)

where W = diag(w1In1 , .., wτInτ ) is any matrix satisfying:

|wi| ≥ ‖ζi(φ, ψ)‖
‖ηi(φ, ψ)‖ , i = 1, ··, τ (7.63)

with (ζi,ηi) parameterized by:

ζi = ζo,i + Ωi




φ

ψ


 , (7.64)

ηi = ηo,i + G11Ωi




φ

ψ


 , (7.65)

where ψ ∈ Cnψ , φ ∈ Cnφ , ‖φ‖ ≤ bo, and (ζ,η) is D-realizable, dist(Fi)(ζi, ηi) = 0 i =

1, .., r. For more explanations see Lim et al. [77]. The Appendix shows the smallest

model validating set algorithm employed for our calculations.

4. Numerical simulations

Consider the experiment (“truth model”) to be simulated with the twelfth order model

corrupted at the output with simulated measurement noise. The simulated system

consists of the platen having 5% of its weight lifted by some nominal direct current and

with the parameters values perturbed by 10%, all of these with respect to the values

described in Table I. The obtention of uncertainty bounds employing the smallest set

algorithm, and applied at each frequency point, will be elucidated with simulations

for the analytical model and an identified model as nominal models. Figures 52
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and 53 show two a priori structures of the uncertainty to be considered, additive

and multiplicative nonparametric uncertainties together with parametric uncertainty.

The scalar parametric uncertainty to be considered for the study will be modeled as

perturbations in the real and imaginary eigenvalues of the nominal system matrix A.

a. Data acquisition

The sampling rate assumed is 5000Hz and the data is recorded for 2s with 213 data

points used for FFT. The system excitation signal (for identification and calcula-

tion of uncertainty bounds) for all channels consists of two added random signals of

normal distribution with zero mean and 1 10−5, 5 10−5 standard deviations passed

trough a fourth order Butterworth filter with passband of 60%, 1% Nyquist frequency

respectively. The selection of the excitation signal is consistent with our interest of

covering dominant modes at relevant frequency ranges. For the case of system identi-

fication (nominal model identification), the excitation inputs are applied individually

and data is recorded for all channels. Additionally, measurement noise for all channels

is used with standard deviations of 1×10−6. The noise sequence was generated by

passing it through a second order Butterworth filter with passband of 90% Nyquist

frequency to simulate wideband noise. From sensor measurements, the source of

the closed-loop responses is the position (translational and rotational motion) of the

platen centroid. The output signals of the feedback control laws and the independent

input excitation signals, together with the closed-loop responses, provide the time

history necessary for identification and subsequently model validation of the MIMO

system. In the Appendix, a detailed description of the tests to be performed for the

system identification and uncertainty bounds determination is presented.
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multiplicative and parametric.

b. Case studies

It is important to point out that the study performed in this part of the work employs

a proposed “truth model” for formulating the data. Table III in Appendix presents

a number of cases to be considered for the obtention of model uncertainty bounds.

These cases (8) arise as a result of choosing either the analytical or identified model as

the nominal model, together with a variety of uncertainty structures. In all cases, the

uncertainty bounds are determined using the algorithm defined in Section D.3. For

the system identification part, the algorithm presented in Section D.1 is employed,

with the number of observer/controller Markov parameters set to 30 (p = 30) and

the assumption that the existing observer converges after 300 steps (s = 300).

Nominal model: analytical model

Figure 54 presents the singular value plots for the nominal (analytical) model and

the “truth model”. Observe some differences between the plots, specially at low and

resonance frequencies. To further evaluate the accuracy of the nominal model, the

predicted closed-loop responses based on the analytical model are compared to the

measured responses, this is shown in Fig. 55. From Fig. 55, we can see a small

discrepancy on the responses; however, this discrepancy is a little bigger for the

vertical motion variables.
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Figures 56 to 63 correspond to Cases 1 to 4 of Table III. Figure 56 shows

the additive uncertainty bound, for the no parametric perturbation case (δ = 0),

in contrast to the singular values of the nominal plant. It can be seen that the

uncertainty bound is slightly bigger than the minimum singular values but much

smaller than the maximum singular values, this at low and intermediate (resonance)

frequencies. This tendency changes at high frequencies where the uncertainty bound

becomes much greater than the maximum singular values of the nominal model.

Note that, noise has been employed to obtain the uncertainty bounds, hence at high

frequencies this noise could be the one appearing in this plot. Importantly, Fig. 57

complements the information provided by Fig. 56 and permits to distinguish the

uncertainty bounds for each output channel. These plots show that the uncertainty

bounds for the vertical motion are the ones that contribute more to the order of

magnitude of the uncertainty bound depicted in Fig. 56. Again, at high frequencies,

the effect of the simulated noise is present in all channels. Note that the validity of the

predicted additive uncertainty is assured only over all the excitation signal frequency

band.

Figures 58 and 59 show Case 2 of Table III with parametric scalar uncertainty

set to δ = 0.01I12×12. It is important to highlight that the inclusion of significant

neighboring eigenvalue allowance in the nominal system matrix resulted in decreased

additive uncertainty bounds at low frequencies. However, at high and intermediate

(resonance) frequencies, the additive uncertainty bounds maintained similar behavior

to the previous case of no parametric uncertainty.

From the multiplicative uncertainty bounds in Figs. 60 and 61 (Case 3 of Table

III), it is evident the influence of the vertical dynamics on the determination of

the uncertainty bounds. With the consideration of parametric uncertainty, Case 4 of

Table III with δ = 0.01I12×12, Figs. 62 and 63 show that the multiplicative uncertainty
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bounds can be decreased at low frequencies.

Nominal model: identified model

Figures 64, 65, 66 and 67 show two identified models and their corresponding observer

and plant Markov parameters. These two identified models differ in the generation

of simulated data, one set of data has been collected considering that the “truth

model” (system) has noisy outputs whereas the other set has been gathered in a

noise free setting. The computed plant Markov parameters, obtained from the ob-

server Markov parameters, are then used to determine a state space model of the

open loop plant, termed the identified model. The plots of the plant Markov param-

eters present responses increasing in amplitude with the time, these plots reveal the

open loop unstable nature of the “truth model”, see Figs. 65 and 67. A comparison

of Figs. 64 and 66 shows the effect that the consideration of noise has in the iden-

tification procedure, specifically at low and high frequencies. The difference in the

plots emphasizes the attention that should be given to the signal-to-noise ratio in the

identification of the actual dynamics of the platen.

Figure 68 presents a small discrepancy between the predicted responses based on

the identified model (with noise) and the measurements. However, when comparing

the order of magnitude of these discrepancies, the horizontal motion variables present

the bigger differences. This is in accordance to Fig. 66 where, at low frequencies,

significant mismatch exists between the “truth model” and the identified model. Re-

call that the dynamics of the platen at low frequencies is mainly described by the

horizontal motion.

From previous experimental closed-loop responses, it is clear the existence of

significant level of exogenous input and disturbance (at approximately 90Hz) on the

platen [78]. Following the ideas described in the uncertainty structure section, an
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Fig. 69. Case 5,6,7,8.

Identified noise per output chan-

nel.

equivalent noise can be identified in closed-loop. This equivalent noise may account

for the 90Hz disturbance and also for the acoustic noise generated by the air bear-

ings. Figure 69 shows the identified noise for each output channel, the knowledge of

this equivalent noise provides an extra freedom in the determination of uncertainty

bounds.

With respect to Case 5 in Table III, at very low frequencies, Figs. 70 and 71

present smaller additive uncertainty bounds in comparison to the bounds presented

in Case 1. This tendency changes at high frequencies where the uncertainty bounds

for Case 5 appear to be higher. The behavior for the uncertainty models at very low

frequencies is expected as the identified model was obtained from the data collected

for the “truth model” (system) whereas the analytical model (Case 1) incorporated a

double integrator as part of its dynamics. The high bounds at low frequencies can also

be expected from Fig. 69 because at this frequency range the identified model fails

to match the “truth model”. Notably, the incorporation of parametric uncertainty in

the uncertainty structure does not reflect an important improvement (decrement) in
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the uncertainty bounds, as observed in Case 6 of Table Table III (Figs. 72 and 73).

Hence, from Figs. 72 and 73, one can conclude that if a good system identification

is performed the necessity of having a high allowance for parametric uncertainty is

decreased.

Cases 7 and 8 of Table III are visualized in Figs. 74, 75, 76 and 77, they simply

corroborate what was previously stated for the additive uncertainty structure with

and without parametric uncertainty consideration. There is a significant mismatch

between the “truth model” and the identified model at low and high frequencies,

and no major improvement on the size of the bounds is achieved when parametric

uncertainty is considered.

5. Discussion of results

In the present study it was demonstrate a viable approach to determine identified

models and uncertainty bounds. The approaches mentioned here for closed-loop

identification and determination of model uncertainty bounds have been successfully

tested in experimental air and spacecraft tests, [80], [81]. This encourages us to think

that we can obtain illustrative results in the MPS.

An improved and optimal description of the uncertainty models, obtained through

model validation, could incorporate the actual difference between the experimental

system and the analytical model, and lead to a successful multivariable controller

implementation. The latter could also be achieved using a better model of the real

system (i.e. identified models). From simulations it was observed that the identified

models reduced the parametric uncertainty consideration relative to the analytical

models. Moreover, determining accurate models of the MPS will give us more insight

about some dynamics not considered in the analytical model and which, from prac-

tical implementation test, seems to be playing an important role when robust based
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control designs are implemented. Also the level of uncertainty will provide or justify

the need of robust controller design along with the acknowledgment of robustness

issues.

D. Remedial compensation

This part requires more theoretical work as the MPS is not an asymptotically stable

system.
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CHAPTER VIII

SUMMARY AND FUTURE WORK

The idea of this dissertation was to bring simplicity in constrained control. Control

theory has arrived to a stage in which the aim is to find unifying control theories. In

that sense, I hope our work has contributed to clarify some of the basic design prin-

ciples underlying the control of systems subject to constraints. However, a number

of issues still remain open.

A. Anti-windup compensation design

One can think that having identified three parameters, i.e. (H1, H2, Q), which con-

tribute to quantify the potential success of anti-windup compensation, presents an

advantage in terms of the synthesis problem. To see this, let’s take the case of static

anti-windup compensation with (H1, H2, Inu). H1 and H2 correspond to a certain

coprime factorization of the unconstrained controller, and then, by an appropriate

redefinition of the anti-windup closed-loop system1, the synthesis problem can be re-

duced to that of finding H1 and H2. With the unconstrained controller being fixed,

working directly in its coprime factorization representation seems interesting. Even

more when consideration of uncertainty is an emphasis. In this context, the idea of

a one-step anti-windup design can also be linked, maybe with some iterative pro-

cess. The more general case can also be considered by adding the effects of dynamics

through Q. However, is Q independent? one can say that H1 and H2 depend on

1In fact, this idea is related to the schemes that incorporate a model of the plant in
the design. They, further employ the Bezout identity and get the synthesis problem
redefined in terms of the coprime factors of the plant, or equivalently, some H1 and
H2. Note, however, that the issue of uncertainty must be considered, and hence
employing the Bezout identity does not look appealing.
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the configuration chosen but is this also true for Q?. Probably, Q needs to satisfy

extra requirements. These questions need to be resolved if one aims to design for

(H1, H2, Q) for anti-windup compensation. Additionally, an issue of convexity when

designing for Q needs also to be studied. If Q is general enough wouldn’t it contain

the structures that inherently render.

The advantages or disadvantages of employing the L2 gain can also be further

exploited. With the synthesis algorithms in Chapter V given in terms of LMIs,

results on the level of feasibility conditions for optimal global performance can be

pursued. We can contribute by showing that, when employing the L2 gain, under what

conditions, the variety of anti-windup compensation schemes are likely to provide the

same performance level.

Robust anti-windup compensation presented in this dissertation still does not

account for structured dynamic (non-parametric) uncertainty. Aiming for an anti-

windup compensator that guarantees a given level of uncertainty with those charac-

teristics is ideal when attempting to move towards the complete solution of the robust

ant-windup control problem.

The parametrization of the anti-windup control problem is also of importance,

some results show that embedding the dynamics of the prefilter in the unconstrained

controller can improve the overall level of performance. Can this effect be quantified?

Would it be of help to also incorporate some disturbance dynamics? These remain

as open questions.

Note that, when attempting to control the multidimensional positioning system,

we have to deal with unstable systems. Hence, an interesting problem to work on

is that of developing remedial compensation synthesis techniques to guarantee local

stability in the presence of uncertainty and constraints.
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B. Override compensation design

A first step has been given towards the systematization of solutions for override

compensation. However, still many details need to be worked out. In particular,

one regarding the implications of not having the parameters (H1, H2, Q) being all

independent. How does it constrain our design problem? Furthermore, working

with the conditioning of the plant does not seem a good idea in order to design

compensators, not at least if the issue of uncertainty is of importance. This idea also

holds for the plant model based anti-windup schemes. However, working with the

conditioning of the plant cannot be disregarded unless more concluding results are

obtained regarding the complications of incorporating uncertainty in the conditioning

of the plant. Other issues of importance are related to providing synthesis algorithms

for other override compensation schemes. At this point the general architecture for

remedial compensator can be of help.

C. Simultaneous problem of input and output constraints

This problem looks very challenging, being limited in both the plant output and

plant input further constrains or reduces the solution set. Importantly, to work on

this problem, a lot of the bases provided in this dissertation can be employed.
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APPENDIX A

A. Mechanical and electromagnetic parameters of the MPS

Table I. Mechanical and electromagnetic parameters of the MPS.

parameter value units

mechanical parameters

mass (m) 5.91 kg

inertia tensor (I)




0.0357 −0.0012 −0.0008

−0.0012 0.0261 0.0003

−0.0008 0.0003 0.0561




kgm2

linear spring constant (kx3) 106 N
m

rotational spring constant (kβ1) 1.065 104 N m
rad

rotational spring constant (kβ2) 1.131 104 N m
rad

electromagnetic parameters

turn density (ηo) 3.5246 106 turns
m2

number of magnet pitches (Nm) 2 -

magnet remanence (µoMo) 0.71 T

motor geometry constant (G) 1.0722 10−5 m3

fundamental wave number (γ1) 123.25 m−3
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B. Non-zero eigenvalues and eigenvectors for the open loop system

Table II. Non-zero eigenvalues and eigenvectors for the open loop system.

mode 1 mode 2 mode 3

eigenvalue eigenvalue eigenvalue

±659.85i ±545.44i ±411.35i

states eigenvector eigenvector eigenvector

ω1 -0.1060 -0.9949 0

ω2 -0.9944 +0.0999 0

ω3 0 0 0

β1 ±0.0002i ±0.0018i 0

β2 ±0.0015i ∓0.0002i 0

β3 0 0 0

v1 0 0 0

v2 0 0 0

v3 +0.0031 -0.01479 +1

x1 0 0 0

x2 0 0 0

x3 ∓0.000005i ±0.00003i ∓0.0024i
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C. A smallest model validating set algorithm

The following steps need to be followed for the obtention of the smallest model vali-

dating set.

1. Select (P, ∆, V ).

2. Test feasibility of (P, ∆, V ) against (r,y) (if infeasible, return to Step 1).

3. Select W .

4. Find the smallest w such that DW is model validating. Tradeoff, repeat Steps

3 and 4.

The introduction of nonparametric uncertainty is recommended to satisfy the feasi-

bility condition in Step 2. Parametric uncertainties can be included to reduce the

nonparametric uncertainty levels in Step 4.

a. Optimal Problem:

min w2

φ, ψ, δ1, .., δr, w
2 subject to

‖ζi(φ, ψ)− δiηi(φ, ψ)‖2 = 0, δi ∈ Fi, ∀i = 1, ··, r,
|δi|2 − |wi|2 ≤ 0, ∀i = 1, ··, r,
‖ζi(φ, ψ)‖2 − |wi|2‖ηi(φ, ψ)‖2 ≤ 0,∀i = r + 1, ··, τ,
‖φ‖2 ≤ b2

o.

(A.1)
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D. Approach to determine identified models and uncertainty bounds experimentally

The proposed approach to determine identified models and uncertainty bounds has

two well-defined phases: i) identification of state space realization of the plant by

obtaining the open loop Markov parameters from the closed-loop Markov parameters

and employing the observer/controller identification algorithm, and ii) calculation of

the uncertainty bounds by employing the smallest model validation set algorithm2.

For these two phases, time histories from the actual experiment need to be collected,

this can be done following the procedures described below.

a. Test for system identification (steps)

1. Use two added noise signals for one channel input and zero signal for the other

channel inputs.

Signal 1 : zero mean noise with 1×10−5 standard deviation filtered by a Butter-

worth filter of order 4 (n = 4), with break frequency of 60% Nyquist frequency.

Signal 2 : zero mean noise with 5×10−5 standard deviation filtered by a Butter-

worth filter of order 4 (n = 4), with break frequency of 1% Nyquist frecuency.

2. Total time excitation 2s at a sampling rate of 5000Hz.

Save input and output time histories.

3. Repeat Steps 1 and 2 ten times (N = 10).

4. Repeat Steps 1 to 3 interchanging the input signals (the total number of input

signals is 6).

2To solve the minimization problem, a nonlinear optimization approach based on
sequential quadratic programming techniques is used.
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b. Test for uncertainty bounds (steps)

1. Use two added noise signals for all the channels simultaneously. These added

noise signals could be the same of previous test.

2. Total time excitation 2s at a sampling rate of 5000Hz.

Save input and output time histories.

3. Repeat Steps 1 and 2 ten times (N = 10).

E. Case studies for uncertainty bounds generation

Table III. Description of case studies for uncertainty bounds generation.

case number nominal model uncertainty noise for ID

1 analytical, 12th order add -

2 analytical, 12th order add+par -

3 analytical, 12th order mult -

4 analytical, 12th order mult+par -

5 identified, 16th order add yes

6 identified, 16th order add+par yes

7 identified, 16th order mult yes

8 identified, 16th order mult+par yes
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