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THEOREM AND THE DISJOINT AMALGAMATION

PROPERTY
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Abstract. In this paper we prove that cats (compact abstract theories,

see [Be03]) satisfy a version of Tarski-Vaught test (Theorem 3.1), a version

of DLST (downward Löwenheim-Skolem Tarski) theorem using density

character instead of cardinality (Theorem 3.3) and the DAP property

(disjoint amalgamation property, Theorem 4.3).

Resumen. En este art́ıculo demostramos que las cats (teoŕıas abstractas

compactas, ver [Be03]) satisfacen una versión del test de Tarski-Vaught

(Teorema 3.1), una versión del Teorema DLST (Lowenheim-Skolem Tarski

descendente) usando el carácter de densidad en lugar de la cardinalidad

(Teorema 3.3) y la propiedad DAP (propiedad de amalgamación disyunta,

Teorema 4.3).
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1. Introduction

Itay Ben-Yaacov studied existentially closed (ec) models working with the
positive fragment of Lωω called ∆0. This fragment is the positive closure of
atomic formulas and change of variables in these formulas (see [Be03]).
Cats correspond to a very interesting categorical generalization of the notion
of abstract elementary class (aec). Some of the abstract elementary class (aec)
axioms do not directly hold in this context. In fact, the closure under the union
of ≺-chains does not hold in some cat examples (a very known example of cat
is the category of Banach spaces, see [Be03]). We can regard cats as the class
of existentially closed models of a positive Robinson theory (see [Be03]), so we
consider them in this way throughout this paper.

In the cat context we work with the density character notion instead of the
cardinality notion, in a way similar to the positive bounded formulas context
(see [HeIo02]). Although a cat does not satisfy some of the aec axioms, in this
paper we prove a version of the downward Löwenheim-Skolem-Tarski theorem.
In our version of this theorem, we work with the density character notion in-
stead of the cardinality notion.

Ben-Yaacov has proved some interesting properties of cats (for example, he
proved that cats satisfy a version of the categoricity Morley theorem but work-
ing with density character instead of cardinality and with a countable positive
Robinson theory, see [Be05]).

We prove in this paper the disjoint amalgamation property (DAP) in the cat
context.

2. Positive Robinson theories

Cats were introduced by I. Ben-Yaacov as a possible model theoretic gen-
eralization of Banach space structures. Ben-Yaacov centers his attention in
density character instead of cardinality as in the context of positive bounded
formulas (see [HeIo02]). Ben-Yaacov proved a version of the Morley theorem
working with density character. In our proof of the downward Löwenheim-
Skolem-Tarski theorem we focus on the density character notion.

Although Ben-Yaacov defined the density character notion as in the context of
positive bounded formulas (using topological notions), he constructed a metric
(in the topological sense) using the language.
C. W. Henson and J. Iovino based their work on abstract metrics.
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The framework of cats is given in [Be03]. However, for the sake of complete-
ness we enunciate some basic definitions and facts which are given in [Be03]
and [Be05] which are necessary for defining the density character notion given
in [Be05]

Definition 2.1 (change of variables). Let ϕ(x∈I) be a formula (with I a finite
set), J ⊆ ω finite and f : I → J a mapping. We define the semantics of
f∗(ϕ(x∈I)) in the following way: for a∈J := 〈aj : j ∈ J〉 ∈ MJ we define
f∗(a∈J) := 〈af(i) : i ∈ I〉 ∈ M I and f∗(A) := (f∗−1)(A) for A ⊆ M I . Then,
we define M |= f∗(ϕ(a∈I)) if and only if M |= ϕ(f∗(a∈J))

Definition 2.2. An almost atomic formula is the result of a change of variables
on an atomic formula.

Definition 2.3. ∆ ⊆ Lωω is called a positive fragment if every atomic formula
belongs to ∆ and if ∆ is closed under subformulas, change of variables and pos-
itive combinations. Given ∆ a positive fragment, Σ(∆) denotes the closure of
∆ under existential quantification (we can easyly prove that Σ(∆) is a positive
fragment). Also, we define Π(∆) := {¬ϕ | ϕ ∈ Σ(∆)}.
We can write Σ and Π instead of Σ(∆) and Π(∆) respectively, if it is not
ambiguous.

Definition 2.4. Let ∆ ⊆ Lωω be a positive fragment. A mapping f : M → N

(where M,N are first order L-structures) is called ∆-homomorphism if and
only if M |= ϕ[a] implies N |= ϕ[f(a)] for every ϕ(x) ∈ ∆ and every tuple a in
M .
A mapping f : M → N (where M,N are first order L-structures) is called
∆-embedding if and only if M |= ϕ[a] ⇔ N |= ϕ[f(a)] for every ϕ(x) ∈ ∆ and
every tuple a in M .

Definition 2.5. Let ∆ be a positive fragment. If T is a Π-theory, we say
that M |= T is existentially closed (ec) if and only if every ∆-homomorphism
f : M → N (where N |= T ) is a Σ(∆)-embedding. The category of ec models
of T is denoted byM(T ).

Definition 2.6. A Π-theory T is called positive Robinson theory if given Mi ∈
M(T ) and ai ∈ M I

i (i < 2) such that tpM0
∆ (a0) ⊆ tpM1

∆ (a1), then tpM0(a0) =
tpM1(a1).
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We can not work with syntactic types in some non-elementary classes be-
cause the class may not have a logic associated to it. However, Shelah gave a
very interesting generalization of the syntactic type notion called Galois-type
(see [Sh394]). These notions of types coincide in the first order context. Al-
though cats are not abstract elementary classes, we can consider the Galois-type
notion in the cat context. As we have a logic associated to cats (see [Be03])
then we can consider the syntactic type notion. In this context, the syntac-
tic type notion (without parameters) is equivalent to the Galois-type notion
(without parameters) as in the first order case.

Fact 2.7. Given Mi ∈ M := M(T ) and ai ∈ M I
i (i < 2), the following are

equivalent:

(1) There exist N ∈ M and morphisms fi : Mi → N (i < 2) such that
f0(a0) = f1(a1).

(2) tpM0(a0) = tpM1(a1).
(3) tpM0(a0) ⊆ tpM1(a1).

We stress the following fact because a model M |= T (where T is a Π-
theory) may not be existentially closed, however the model can be extended to
an existentially closed model.

Fact 2.8. If M |= T , then there exists N ∈ M(T ) and a ∆-homomorphism
f : M → N .

Definition 2.9. A pre-model of T is a subset M of an universal domain of T
(or a subset of an ec model of T ) such that for every n < ω the realized n-types
are denses in Sn(M).

The following definitions are taken from [Be05]. We stress them because the
density character notion is based on them.

Definition 2.10. A distance is a reflexive type-definable relation ε(x, y), with-
out parameters. If ε(x, y) is a distance, we define←−ε (x, y) := ε(y, x). It is called
symmetric if ←−ε = ε. Otherwise, we define ←→ε := ε ∧←−ε .

The minimal distance is {x = y} and the maximal one is {T}, where T is
the true formula (denoting them 0 and ∞, respectively).

Definition 2.11. We say that ε ≤ ε′ if ε ` ε′. Also, we say that ε < ε′ if
ε ⊆ (ε′)◦, where we interpret ε and ε′ as subsets of S2(T ) and (ε′)◦ is the
interior of ε′ there (we can interpret δ as δt := {tp(a, b) | a, b |= δ}, with
δ ∈ {ε, ε′}).
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Definition 2.12. A distance ε is called positive if ε > 0. We say that d(a, b) ≤ ε
if tp(a, b) ∈ ε and d(a, b) < ε if tp(a, b) ∈ ε◦.

Definition 2.13. Fix a sort and X a set of elements in that sort, we say F ⊆ X
is closed in the logic topology if it is defined in X by some partial type with
parameters. Thus, an open set is one defined by the negation of some partial
type.

Definition 2.14. For a distance ε > 0 and an element b, we define BX(b, ε) :=
{c ∈ X | d(b, c) ≤ ε}.

Fact 2.15. A subset U ⊆ X is open if and only if for every a ∈ U there is
ε > 0 such that BX(a, ε) ⊆ U .

Definition 2.16. ε>0 := {ε | ε > 0} is the set of all positive distances. A
base of positive distances is a family ε ⊆ ε>0 which is co-final in the sense that
for every ε > 0 there exists ε′ ∈ ε such that ε > ε′. cfdist(T ) is the minimal
cardinality of a base of positive distances. If cfdist(T ) ≤ ω, we say that T is
metric.

Definition 2.17. Assume that T is metric. Let (εq | q ∈ Q ∩ [0, 1]) be a
sequence of distances such that q > r implies εq > εr and

∧
ε1/n = 0. Define

h(a, b) := inf{q : d(a, b) ≤ εq} = sup{q : d(a, b) ≥ εq} (taking inf ∅ := 1 and
sup ∅ := 0). That sequence can be constructed. For more details, see [Be05].

We have h is not a metric (in the topological sense), however Ben-Yaacov
discovered a technical way for constructing a metric based on h.

Notation 2.18. Let D denote the set of dyadic numbers in [0, 1]

Fact 2.19. Let g : [0, 1]2 → [0, 1] be a symmetric, non-decreasing mapping
that satisfies g(0, t) = t for every t ∈ [0, 1] and if g(u,w) < t then there exists
u < v ≤ 1 such that g(v, w) < t for every u,w, t ∈ [0, 1]. Then there exists a
function f : D → [0, 1] such that:

(1) f is strictly increasing
(2) For all n we have f( 1

2n ) ≤ 1
2n

(3) For every t, u ∈ D ∩ [0, 1] we have t + u ≤ 1 implies g(f(t), f(u)) <
f(t+ u).
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Fact 2.20. Define g : [0, 1]2 → [0, 1] by g(t, , u) := sup{h(a, b) | there exists
c such that h(a, c) ≤ t and h(c, b) ≤ u}. Then g satisfies the assumptions of
fact 2.19.

It follows that there exists a function f as the conclusion of fact 2.19.

Fact 2.21. Define d(a, b) := inf{t | h(a, b) < f(t)} = sup{t | h(a, b) > f(t)}.
Then d is a metric (in the topological sense).

Definition 2.22. A complete model is the closure M of a pre-model M .

Fact 2.23. Every ec model of T is a pre-model.

Definition 2.24. Let M be a complete model. We define the density character
of M (we denote it by dc(M)) by the least cardinal of a dense subset of M .
Let A be a subset, we define

dc(A) := min{dc(M) | A ⊆ dcl(M) and M is a complete model}

3. DLST in cats

The following facts hold in every positive fragment, though we are interested
in the fragment ∆0. We will assume that T is a positive Robinson theory in a
positive fragment ∆.

First, we will prove a version of the Tarski-Vaught test.

Theorem 3.1 (Tarski-Vaught test). Taking C := M(T ), the following are
equivalent:

(1) M �C N .
(2) M ⊆L N and given ϕ ∈ Σ(∆) and a ∈ |M |, if there exists b ∈ |N | such

that N |= ϕ(b, a) then there exists b′ ∈ |M | such that N |= ϕ(b′, a).

Proof. (2. ⇒ 1.) We have M �C N is equivalent to M |= ϕ(a) ⇔ N |= ϕ(a)
for every ϕ ∈ Σ := Σ(∆) and every a ∈ |M |. We prove this fact by induction
over formulas.

(1) If R is a L-relational symbol and a ∈ |M |arity(R), we haveM |= R(a)⇔
N |= R(a) because M ⊆L N .
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(2) If ϕ = ψ1 ∧ ψ2, M |= ϕ(a) ⇔ M |= ψ1(a) ∧ ψ2(a) ⇔ M |= ψ1(a)
and M |= ψ2(a) ⇔ N |= ψ1(a) and N |= ψ2(a) (inductive hypothesis)
⇔ N |= ψ1(a) ∧ ψ2(a)⇔ N |= ϕ(a)

(3) If ϕ = ψ1 ∨ ψ2, we can prove it in a way similar to the previous case.
(4) If ϕ = ¬ψ ∈ Σ we have ψ ∈ Σ because Σ is closed over subformulas.

So M |= ϕ(a) ⇔ M |= ¬ϕ(a) ⇔ M 6|= ψ(a) ⇔ N 6|= ψ(a) (inductive
hypothesis) ⇔ N 6|= ψ(a)⇔ N |= ϕ(a)

(5) If ϕ = ∃xψ ∈ Σ, we have ψ ∈ Σ. So N |= ϕ(a) implies there exists
b ∈ |N | such that N |= ψ(b, a). By hypothesis, there exists b′ ∈ |M |
such that N |= ψ(b′, a) and by inductive hypothesis we have M |=
ψ(b′, a), so M |= ϕ(a). In the other way, if M |= ϕ(a) then there exists
c ∈ |M | such that M |= ψ(c, a) and by inductive hypothesis we have
N |= ψ(c, a). We have c ∈ |M | ⊆ |N |, so M |= ϕ(a).

(1.⇒ 2.) We have M �C N , so M ⊆L N (because Σ has every atomic formula).
Let ϕ ∈ Σ and a ∈ |M |. Assume there exists b ∈ |N | such that N |= ϕ(b, a),
thereforeN |= ∃xϕ(x, a). ∃xϕ(x, a) ∈ Σ, then by hypothesisM |= ∃xϕ(x, a). If
b′ ∈ |M | is a witness of the previous claim, then M |= ϕ(b′, a); so by hypothesis
we have N |= ϕ(b′, a). �

We can prove a version of the downward Löwenheim-Skolem-Tarski theorem
using our version of Tarski-Vaught test. We must prove that the model we
construct is also existentially closed, a step that was not needed in the first order
case. First, we will prove a version of this theorem working with cardinality.

Theorem 3.2. If M ∈ C :=M(T ) and A ⊆ |M |, there exists N �C M such
that A ⊆ |N | and ‖N‖ ≤ |A|+ |L|+ ℵ0.

Proof. Consider Σ := Σ(∆). We obtain an ec model N ⊆L M such that
‖N‖ ≤ |A| + |L| + ℵ0 and A ⊆ |N |, where i : N ↪→ M is a Σ-embedding. Fix
< a well-order in |M | and denote by b0 its first element. For every ϕ(x, y) ∈ Σ
and every a ∈ |a| we define:

Gϕ(a) :=

{
min {b ∈ |M | : M |= ϕ(b, a)} if M |= ∃xϕ(x, a)
b0 otherwise

Also, we construct An ⊆ |M | (n < ω) such that

(1) A0 = A

(2) For every n < ω, An ⊆ An+1
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(3) For every n < ω, |An| ≤ |L|+ |A|+ ℵ0

(4) For every n < ω, every formula ϕ(x, y) ∈ Σ and every a ∈ An, we have
Gϕ(a) ∈ An+1.

Taking S :=
⋃

n<ω An, notice that S is the domain of an L-structure (where
we denote it by N) and N �C M (if ϕ(x, y) ∈ Σ, b ∈ |M | and a ∈ S (therefore
exists N < ω such that a ∈ AN ) are such that M |= ϕ(b, a), so M |= ∃xϕ(x, a)
and therefore Gϕ(a) ∈ AN+1 ⊆ S and M |= ϕ(Gϕ(a), a), by theorem 3.1 we
have N �C M).

We can construct this sequence, taking A0 := A and An+1 := An ∪{Gϕ(a) :
a ∈ An, ϕ ∈ Σ}, where by construction we have ‖N‖ ≤ |A|+ |L|+ ℵ0.

We will prove that N is existentially closed. Let M ′ |= T (wlog we can assume
it is existentially closed, by fact 2.8) and f : N → M ′ a ∆-homomorphism
such that M ′ |= ϕ(f(a)), where ϕ(x) ∈ Σ and a ∈ |N |. We have tpM (a) ⊆
tpM ′

(f(a)): if ψ(x) ∈ tpM (a) then M |= ψ(a), as i : N ↪→ M is a Σ-
embedding then N |= ψ(a), as f : N → M ′ is a ∆-homomorphism then it
is a Σ-homomorphism and M ′ |= ψ(f(a)); i.e., ψ(x) ∈ tpM ′

(f(a)). By fact 2.7
there exists N ′ ∈ M(T ) and f0 : M ′ → N ′, f1 : M → N ′ ∆-homomorphisms
such that f0(f(a)) = f1(a). So, N ′ |= ϕ(f0(f(a))), as f0(f(a)) = f1(a) and M
is existentially closed (as M ∈ M(T )) then M |= ϕ(a). As i : N ↪→ M is a
Σ-embedding, we have N |= ϕ(a). Therefore N ∈M(T ). �

Theorem 3.3 (DLST in cats). If M ∈ C :=M(T ) and A ⊆ |M |, there exists
N �C M such that dc(N) ≤ (|A|+ |L|+ ℵ0)ω and A ⊆ |N |.

Proof. By theorem 3.2, we obtain an existentially closed model N such that
A ⊆ |N | and N �C M . By fact 2.23 we have N is pre-model, therefore N is a
complete model such that dc(N) ≤ |N | ≤ |N |ω ≤ (|A|+|L|+ℵ0)ω andN ⊆ N ⊆
dcl(N). So, dc(N) = min{dc(M) | N ⊆ dcl(M) and M is a complete model} ≤
(|A|+ |L|+ ℵ0)ω. �

4. Cats and DAP

In this section, we will work with the fragment ∆0 because we can not work
with negations in the cat context. But it is not a problem because we work
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with that fragment in the cat context. We assume that T is a positive Robinson
theory in a fragment ∆0.

Notation 4.1.

DC(M) := {ϕ(a) : ϕ(x) is almost atomic, a ∈ |M | and M |= ϕ(a)}.

For proving N �C M with M,N ∈ C, we only need to prove M |= DC(N)
(modulo renaming; intuitively, renaming is a technique for obtaining an iso-
morphic model to a given model M that contains a set which is embedded into
the original model M).

Lemma 4.2. Let M,N ∈ C :=M(T ) such that M |= DC(N). Then N �C M

(using renaming in M).

Proof. We will prove for all ϕ(x) ∈ ∆0 and for all a ∈ |N |, N |= ϕ(a) implies
M |= ϕ(a′), where a′ := aM .

(1) If ϕ is almost atomic, obviously N |= ϕ(a) implies M |= ϕ(a′), as
M |= DC(N).

(2) If ϕ = ψ0 ∧ ψ1, suppose the result holds for ψi (i ∈ {0, 1}). If N |=
ϕ(a) then N |= (ψ0 ∧ ψ1)(a). Therefore N |= ψ0(a) and N |= ψ1(a);
by inductive hypothesis we have M |= ψ0(a′) and M |= ψ1(a′); i.e.,
M |= (ψ0 ∧ ψ1)(a′).

(3) If ϕ = ψ0 ∨ ψ1, suppose the result holds for ψi (i ∈ {0, 1}). If N |=
ϕ(a) then N |= (ψ0 ∨ ψ1)(a). Therefore N |= ψ0(a) or N |= ψ1(a);
by inductive hypothesis we have M |= ψ0(a′) or M |= ψ1(a′); i.e.,
M |= (ψ0 ∨ ψ1)(a′).

Therefore, f : N → M defined by f(a) := a′ is a ∆0-homomorphism. As
N is existentially closed (as N ∈ M(T )) we have f is a Σ(∆0)-embedding.
Renaming M , we can assume N �C M . �

In the following lines, we will give a proof of the disjoint amalgamation prop-
erty in the cat context. We need to prove that the model which we construct
is also existentially closed. We did not need to prove this step in the first order
case.

Theorem 4.3 (DAP in cats). Let M,N0, N1 ∈ C := M(T ) such that
M �C N0 and M �C N1. Then there exists N ∈ C such that N0 �C N

and g : N1 → N an elementary embedding such that g(|N1|) ∩ |N0| = |M |.
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Proof. Wlog, we can assume |N0|∩|N1| = |M |. Let T1 := DC(N0)∪DC(N1)∪
{¬ϕ(b, d) : ϕ ∈ ∆0, b ∈ N0, d ∈ N1, N0 6|= ϕ(b, a) for all a ∈ M} ∪ T . Assume
T1 does not have a model. We can use the first order compactness theorem
because T1 is a first order theory. By first orden compactness theorem, there
exists a ∈ M , d ∈ N1 −M , b ∈ N0, θ(a, d) ∈ DC(N1), ϕ ∈ T and ¬ϕi(b, a, d)
(i < k with fixed k < ω and N0 6|= ϕi(b, a, a′) for all a, a′ ∈ M) such that
DC(N0) ∪ {θ(a, d), ϕ} |=

∨
i<k ϕi(b, a, d). As N1 |= θ(a, d), so N1 |= ∃yθ(a, y),

and as M �C N1 then there exists a′′ ∈ M such that M |= θ(a, a′′). We have
M �C N0, so N0 |= θ(a, a′′). Also N0 |= ϕ, as N0 |= T , then there exists
i < k such that N0 |= ϕi(b, a, a′′) (contradiction). So, there exists N |= T1

(therefore N |= T ). Wlog we can assume N is e.c. by fact 2.8 (however, the
required intersection is not going to grow because T1 is codifying that fact).
As N |= DC(N0) ∪ DC(N1) we have N0 �C N and there exists g : N1 → N

an elementary embedding such that g(c) = cN for all c ∈ N1. Obviously
|M | ⊆ g(|N1|) ∩ |N0|. If b ∈ N0 is taken such that N |= b = g(c) for some
c ∈ N1, then there exists a ∈ M such that N0 |= b = a (otherwise taking the
formula x = y we have N0 |= ¬(b = a) for every a ∈M , so N |= ¬(b = g(c)) as
¬(b = g(c)) ∈ T1, contradiction), therefore |M | ⊇ g(|N1|) ∩ |N0| �
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