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Matemático, MSc Estad́ıstica

Code: 196619

Universidad Nacional de Colombia
Facultad de Ciencias

Departamento de Estad́ıstica
Bogotá, D.C.
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Title in English

Estimation and Inference for 2k−p Experiments with Beta response

T́ıtulo en español

Estimación e inferencia para experimentos 2k−p con respuesta beta

Abstract: Fractional factorial experiments are widely used in industry and engineering.
The most common interest in these experiments is to identify a subset of the factors with
the greatest effect on the response. With respect to data analysis for these experiments,
the most used methods include linear regression, transformations, and the Generalized
Linear Model (GLM). This thesis focuses on experiments whose response is measured
continuously in the (0, 1) interval (if y ∈ (a, b), then y−a

b−a ∈ (0, 1)). Analyses for factorial
experiments in (0, 1) are rarely found in the literature. In this work, advantages and
drawbacks of the three mentioned methods for analyzing data from experiments in
(0,1) are described. Here, as the beta distribution assumes values in (0,1), the beta
regression model (BRM) is proposed for analyzing these kinds of experiments. More
specifically, the necessity of considering variable dispersion (VD) and using linear
restrictions on parameters are justified in data from 2k and 2k−p experiments. Thus, the
first result in this thesis is to propose, develop, and apply a restricted VDBRM. The
restricted VDBRM is developed from frequentist perspective: a penalized likelihood (by
means of Lagrange multipliers), restricted maximum likelihood estimators with their
respective Fisher Information Matrix, hypothesis tests, and a diagnostic measure. Upon
applying the restricted VDBRM, good results were obtained for simulated data, and
it is shown that the hypothesis related to 2k and 2k−p experiments are a special case
of the restricted model. The second result of this thesis is to explore an integrated
Bayesian/likelihood proposal for analyzing data from factorial experiments using the
(Bayesian and frequentist) simple BRM’s. This was done upon employing flat prior
distributions in the Bayesian BRM. Thus, comparisons between confidence intervals
(frequentist case) and credibility intervals (Bayesian case) on the mean response are done
with good and promisory results in real experiments. This work also explores a technique
for choosing the best model among several candidates which combine the Half-normal
plots (given by the BRM) and the inferential results. Starting from the active factors
chosen from each plot, subsequently the respective regression models are fitted and,
finally, by means of information criteria, the best model is chosen. This technique was
explored with the following models: normal, transformation, generalized linear, and
simple beta regression for real 2k and 2k−p experiments: into the greater part of the
examples considered for the Bayesian and frequentist BRM’s, results were very similar
(using flat prior distributions). Moreover, four link functions for the mean response
in the BRM are compared: results highlight the importance to study each problem at hand.

Resumen: Los experimentos factoriales fraccionados se usan ampliamente en la in-
dustria y en la Ingenieŕıa. El interés más común en estos experimentos es identificar
el subconjunto de factores que tiene mayor efecto sobre la respuesta. Con respecto al
análisis de datos de dichos experimentos, los métodos más usados incluyen regresión
lineal, transformaciones y Modelo Lineal Generalizado (MLG). Esta Tesis se enfoca
en experimentos cuya respuesta está medida continuamente en el intervalo (0,1), (si
y ∈ (a, b), entonces y−a

b−a ∈ (0, 1)). En la literatura se encuentran pocos análisis de



experimentos con esta respuesta. En este trabajo, se describen ventajas y desventajas
de las tres metodoloǵıas mencionadas en experimentos con esta respuesta. Acá, como
la distribución beta asume valores en (0,1), se propone el modelo de regresión beta
(MRB) para analizar estos datos. Más espećıficamente, se justifica la necesidad de
modelar la dispersión variable y usar restricciones sobre los parámetros se justifican en
datos de experimentos 2k y 2k−p. De este modo, el primer resultado de esta Tesis es
proponer, desarrollar y aplicar un modelo de regresión beta con dispersión variable y
restricciones en los parámetros (MRBDV restringido). El modelo es desarrollado desde
la perspectiva clásica: una función de verosimilitud penalizada (con multiplicadores de
Lagrange), estimadores de máxima verosimilitud restringidos con su respectiva matriz
de Información de Fisher, tests de hipótesis y una medidad de bondad de ajuste. Al
aplicar el MRBDV restringido, se obtuvieron buenso resultados para datos simulados y
se mostró que las hipótesis asociadas con experimentos 2k y 2k−p son un caso especial
del modelo restringido. El segundo resultado de esta Tesis es explorar una propuesta
integrada bayesiana/verosimil para analizar datos de experimentos factoriales usando
los dos MRB (bayesiano y clásico). Esto se hizo al emplear distribuciones a priori
planas (poco informativas) en el modelo bayesiano. Aśı, las comparaciones entre
intervalos de confianza y de credibilidad presentaron buenos resultados y promisorios
en experimentos factoriales reales. Esta Tesis tambien explora una técnica para elegir
el mejor modelo entre varios candidatos, el cual combina los Half-normal plots (dados
por el BRM) y resultados inferenciales. Partiendo de los efectos activos sgún cada
gráfico, posteriormente se ajustan los modelos de regresión respectivos y, finalmente, por
medio de criterios de información, se escoge el mejor modelo. Esta técnica fue explorada
con los siguientes modelos: normal, transformaciones, MLG y MRB simple para datos
reales de experimentos 2k y 2k−p: en la mayor parte de los ejemplos considerados, los
MRB bayesiano y clásico presentaron resultados muy similares (usando distribuciones
a priori planas). Además, se compararon cuatro funciones de enlace para el submod-
elo de la media: los resultados resaltan la importancia de estudiar cada problema espećıfico

Keywords: factorial designs, restricted variable dispersion beta regression model,
confidence regions, credibility regions, transformations

Palabras clave: diseños factoriales, modelo de regresión beta de dispersión variable re-
stringido, regiones de confianza, regiones de credibilidad, estimadores restringidos
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Introduction and motivation

Factorial experiments are widely used in industry, engineering, the sciences, and product

and process improvement. The 2k experiments contain k factors at two-levels each, and

several factors are evaluated simultaneously. When all possible factors cannot be evalu-

ated, it is usual to perform only a fraction of the complete experiment, which leads to a

2k−p fractional factorial experiment. The most common interest in these experiments is

to identify the subset of the factors that has the greatest effect on the response, y. With

respect to the response, this thesis focuses on experiments whose response is measured

continuously in the (0, 1) interval (if y ∈ (a, b), then y−a
b−a ∈ (0, 1)). A lot of empirical

data with these conditions are encountered in the statistical literature. Usually, the first

statistical analysis for these data is the normal model (using ANOVA). Although linear

normal model is widely applied, it has the difficulty of achieving normality and constant

variance for the errors in several empirical experiments.

The traditional method of solving is to employ data transformations to induce three prop-

erties: to obtain approximate normality in the response, to stabilize variance, and to

simplify the empirical model. A few times the three properties are found in one transfor-

mation. There are some potential problems associated with using data transformation, for

instance, there is no guarantee that a single transformation will induce all the desirable

properties, and some difficulties have been found when the inverse transformation is made

back to the original scale. Two examples of appropriate transformations for data in (0,1)

are arcsin and logit, and they are applied in this thesis in order to compare approaches. In

cases where the first two approaches do not fit well, the next alternative is the generalized

linear model (GLM) which neither models errors nor transforms the response; it models

V



INTRODUCTION AND MOTIVATION VI

a function of the mean response.

Data analysis from factorial experiments by means of these three approaches, linear nor-

mal model, data transformations, and GLM can be encountered in the literature. Both,

good and bad results for these approaches and comparisons between them can be studied

in Myers & Montgomery (1997), Lewis et al. (2001b), and more recently in Patil & Kulka-

rni (2011), Myers et al. (2011), and Bonat et al. (2012).

Now, considering that y lies in (0,1) and the beta distribution assumes values there, the

beta regression model (BRM) might be an option so as to improve analysis or to offer

additional comparisons with regard to the three mentioned approaches.

The possibilities of the BRM in factorial and fractional factorial experiments are illustrated

afterwards by two examples and one discussion: 1) the simple BRM; 2) the variable dis-

persion BRM (VDBRM); and 3) the restricted VDBRM.

Example 1. Justifying the simple BRM in a 24 experiment. Half-normal plots.

The Drill experiment consists of a 24 unreplicated factorial investigating the response

variable advance rate which assumes values in (0, 100). This experiment is quite well

known in the literature. The design matrix and response data are shown in Table 2 at

the end of this chapter. 14 effects are analyzed (4 main effects, 6 two-interaction effects,

and 4 three-interaction effects). Initially, Daniel (1976) analyzed this data to illustrate

the usefulness of normal probability plotting in order to identify large and potentially

important factor effects. Also, Torres (1993), Montgomery (2001), Lewis et al. (2001b),

Box et al. (2005), Montgomery (2009), and Myers et al. (2011) reanalyzed this data

using linear normal model, logarithm transformation, rank transformation and GLM with

gamma link. Here, Half-normal plots for normal, log(y) transformation, and generalized

linear models are shown in the three graphics of Figure 1. This Figure indicates that the

B, C, and D main effects appear as active in the three models mentioned. Note that BC

and CD effects only were active for the normal model. The active effects visually chosen

coincide with those reported in the literature, and they are shown in the first part of

Table 1. (Notation A = x1,..., BCD = x2x3x4).

Therefore, a problem (and opportunity) is latent: different methods can yield different

active effects. Could the BRM be another option?. 2�. Now, in this thesis, taking

y/100 as the response, data is reanalyzed by means of the simple beta regression model

(simple BRM)(Ferrari & Cribari-Neto (2004)). Initially, upon fitting a simple BRM
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Table 1. Analysis of the Drill experiment

Authors (year) Response Method Active factors

Daniel (1976) y Linear reg. B,C,D, BC, CD
Box et al. (1978), Montgomery (2001) log(y) Linear reg. B, C, D

Torres (1993) y rank transf. Plot B, C, D
Lewis et al. (2001b), Myers et al. (2011) y GLM.gamma B, C, D

(fixing dispersion parameter), four link functions were employed for the mean response:

logit, probit, cloglog and cauchit. The first three link functions present similar results to

those considered in Table 1. Instead, the cauchit link yielded a very interesting result,

the active effects were: B, C, D, BC, BD, CD, and BCD. Therefore, although this is

an empirical result, at the same time, it is an encouraging opportunity to pose some

questions. With respect to the data analysis from factorial experiments with response

in (0,1), two questions arise: if the beta regression model turns out to be empirically

appropriate, can the BRM be proposed as a good alternative?. Can the graphical results

be supported by the statistical inference of the BRM?.

Analyses were done using R software (R Development Core Team (2014)). The computa-

tional routine is shown in the Appendix 7.1

The inferential analysis of this example will be presented in chapter 4.6 2�

The two previous questions lead to an interesting challenge from theoretical and applied
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Figure 1. Drill data. Half-normal plots. Four simple BRM’s

viewpoints. This challenge will be assumed in this thesis with two additional issues which

are commented afterwards (variable dispersion, and restrictions on parameters).
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An additional issue for the simple BRM: variable dispersion.

In the simple BRM fitted in Example 1, the dispersion parameter is taken as fixed.

The generalization of this model allows for modelling the dispersion to try to ex-

plain the variability of the response through several covariates. It is known as the

variable (varying) dispersion beta regression model (VDBRM). Several authors have

discussed the advantages of this model with respect to the simple one. For instance,

Bayer & Cribari-Neto (2014) present a simulation study to exemplify that efficiency loss

takes place when the dispersion parameter is incorrectly taken as a constant. Therefore,

in this thesis the variable dispersion BRM will be employed.

Example 2. Justifying variable dispersion in the BRM for a 24 experiment.

In example 1, the Drill data from a 24 experiment is described. Starting from Half-

normal plots, the best model was the simple BRM with the cauchit link. Now, in order

to illustrate the advantage of the Variable Dispersion BRM, two BRM’s were fitted using

the cauchit link (g1) for the mean in both models, as follows:

• Simple BRM:

g1(µ) = β0 + β2x2 + β3x3 + β4x4 + β23x2x3 + β24x2x4 log(φ) = α0 (1)

• VDBRM:

g1(µ) = β0+β2x2+β3x3+β4x4+β23x2x3+β24x2x4 log(φ) = α0+α3x3+α4x4 (2)

After fitting the models and doing the residual plots, results are shown in figure 2. An

inspection of figure 2 indicates that the VDBRM fits better than the simple one. 2�

Up to here, the variable dispersion beta regression model (VDBRM) has been motivated

to be used in factorial experiments.

The last issue is commented on afterwards.

Restrictions on parameters for the VDBRM.

Under the normal linear model, a common methodology in 2k−p experiments is to assume

as negligible the higher-order interaction factors (3, 4, 5,... order: this assumption is re-

lated to the partial derivatives of Taylor series ∂y
∂A∂B∂C , ..., Box et al. (2005)). When this
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Figure 2. Half-normal residuals for Drill data. Simple and variable dispersion BRM

assumption is done, the estimations of main or low-order interactions effects can be ex-

pressed exactly. For instance, if we have the estimation Â+B̂CD , and BCD is considered

negligible, then we are assuming that BCD=0, and hence Â provides the estimation of the

main effect A explicitly. In this thesis, using the VDBRM for analyzing data from 2k−p

experiments with response in (a,b), is proposed avoiding this assumption upon considering

some restrictions on parameters associated to the higher-order interaction factors, that is

to say, a restricted VDBRM. Thus, by means of hypothesis tests will be taken decisions

as if certain interactions effect can be considered zero or not.

Finally, the objective of this thesis is to propose, develop, and apply a restricted variable

dispersion BRM. After developing the general expressions for the inferential (restricted)

results: estimation, hypothesis tests, and goodness of fit, the model will be applied in

general problems, and in 2k−p experiments with response in (a,b) also.

This thesis is organized as follows: Chapter 1 summarizes basic concepts, notation and

literature review; also, models preceding the BRM for analyzing data from factorial ex-

periments are presented. Chapter 2 introduces the proposed restricted variable dispersion

BRM, with its specifications and estimates. Inferential aspects for the proposed model are

detailed in Chapter 3 within a frequentist framework. Special cases (unrestricted models)

for analyzing empirical and simulated data from fractional factorial experiments are dis-

cussed in Chapter 4.

Although discussions and conclusions given by for each considered method are presented

throughout all the document, final conclusions are shown in Chapter 5. Chapter 6 indicates

some future works based on the methods proposed, applied and discussed in this thesis;
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also, some exploratory Bayesian solutions for the restricted VDBRM are presented. In the

Appendix, some computational routines are presented; additional routines are available

for the interested readers.

Table 2. Drill data: design matrix and response.

Run x1 x2 x3 x4 y

1 - - - - 1.68
2 + - - - 1.98
3 - + - - 3.28
4 + + - - 3.44
5 - - + - 4.98
6 + - + - 5.70
7 - + + - 9.97
8 + + + - 9.07
9 - - - + 2.07
10 + - - + 2.44
11 - + - + 4.09
12 + + - + 4.53
13 - - + + 7.77
14 + - + + 9.43
15 - + + + 11.75
16 + + + + 16.30



CHAPTER 1

Framework

The primary purpose of this thesis is to propose and develop a restricted variable dispersion

Beta regression model (Restricted VDBRM).

The secondary purpose is to apply this restricted VDBRM for analyzing data derived from

2k and 2k−p experiments whose response is measured continuously in (a, b) or (0, 1). This

chapter presents the basic concepts related to these kinds of experiments: the features of

their design, and, the methods for analyzing data from these experiments. The restricted

VDBRM will be introduced in the following chapter.

1.1 2k and 2k−p experiments: design and features.

In many scientific and industrial investigations, the interest lies in evaluating the effects of

several factors, simultaneously. The two levels of a factor are denoted as +1 and -1. A 2k

design is an experiment with k factors of two-level each; this known as a full (complete)

factorial design, and it has all combinations of the factor levels. A run is a combination

of factor levels at which an experiment is to be carried out. Thus, with 8 factors, the full

28 factorial experiment requires 256 runs in a single replicate. In situations where a large

number of factors is being investigated, and at the same time, it is necessary to take into

account economy of space or material, it is not possible to perform a complete experiment.

The solution is to evaluate a part of all possible factors. Performing a (1
2)p fraction of

1
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a 2k experiment is extremely useful due to it leads to design a 2k−p fractional factorial

experiment. This fraction is favored because it needs only 2k−p runs of the experiment. In

this thesis, only unreplicated 2k and 2k−p experiments are studied. In works such as Fisher

(1926), Box & Hunter (1961a), and Dey (1985) the advantages of the fractional factorial

experiments are highlighted: i) some of the higher order interactions can be assumed to

be zero from previous or historical knowledge, ii) in screening situations, it is expected

that the effects of all but a few of the factors studied will be negligible, iii) groups of

experiments are run in sequence and, ambiguities, which remain at a given stage of exper-

imentation, can be resolved by a later group of experiments, iv) certain variables, which

may interact, are studied simultaneously along with other variables whose influence, if

any, can be described by main effects only, and v) using fewer runs, it is possible to detect

which factors affect the variability of the response.

A summary of works related to experiments can be investigated in Steinberg & Hunter

(1984) (optimal design, computer-aided design, robustness, response surfaces, mixtures,

factorial design, blocking, nonlinear models, consulting, and teaching), and Dossou-Gbété

& Tinsson (2005)(factorial experiments and generalized linear models).

A brief overview of the history of experiments designed under the normal theory is pre-

sented subsequently. The role of statistics in experimental design, and viceversa, was

firmly established by Fisher’s pioneering work in the United Kingdom (at Rothamsted

Experimental Station) in the 1920’s and 1930’s. His monumental work was guided by the

key insight that data analysis could be informative only if the data itself were informative,

and that informative data could best be assured by applying statistical ideas to the way

in which the data were collected. Fisher radically altered the role of the statistician: from

one of after-the-fact technician to one of active collaborator at all stages of an investiga-

tion. He developed his insights concerning randomization, blocking, and replication; he

invented new kinds of experimental designs; also, his contributions to genetical statistics,

multivariate analysis, and Bioassays, among other areas, have been reported. He worked

together with scientists who applied his ideas in their experiments; by mail, he advised

experimenters in other places. According to Billard (2014), Fisher is considered as one of

the two fathers of Statistics. Fisher was a Founder of the International Biometric Society.

Several tributes have been carried out regarding Fisher’s work, see Box (1978) and Billard

(2014).

Factorial designs were first developed by Fisher and Yates at Rothamsted. Fisher (1926)
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observed the advantages of factorial designs. A further advance was the introduction by

Finney (1945) of fractional factorial designs. Plackett & Burman (1946) described a useful

class of highly fractionated orthogonal designs, in which the main effects of n−1 two-level

factors are estimated just using n runs. Box & Hunter (1961a) and Box & Hunter (1961b)

described in detailed how to construct, apply, and analyze the 2k−p fractional factorial

designs. In the chemical, physical, and engineering sciences, the important contributions

to experimentation made by factorial and fractional factorial designs were clearly evident.

Several books describe and analyze two-level factorial and fractional factorial designs, for

example, John (1971), Daniel (1976), Box et al. (1978), Box et al. (2005), and Mont-

gomery (2009). With respect to some journals, Biometrika, Biometrics, Technometrics

and Journal of Quality Technology have presented numerous papers regarding factorial

experiments. Nowadays some papers suggest considering simulation studies for screening

designs (see Anderson-Cook & Hamada (2014)).

In this short review, obviously, many contributors to the factorial experiments have not

been intentionally omitted. The following step is to consider the data analysis from frac-

tional factorial experiments but first the design matrix is described below.

The list of experimental runs in factorial experiments is called the design matrix, and

is denoted by X. There is a column for each of the k or k − p variables, and each

row gives the combinations of versions for each run. Here, X is a n × p1 matrix with

xi = (xi0, xi1, . . . , xi,p1−1) as its i-th row, and x0 = 1n is an n-vector of ones. The rest

of components of X belong to {−1, 1} and their columns are orthogonal; X can be con-

structed from the columns of Hadamard matrices. An Hadamard matrix of order n, MMM , is

an orthogonal matrix with elements ±1, that is, MTM = nIn, where In is the nth-order

identity matrix.

1.2 2k and 2k−p experiments: data analysis

The fractional and factorial experiments previously summarized are based on the normal

theory, i.e., data from these experiments are analyzed mainly by linear regression, assum-

ing normality for the errors, and this assumption is, consequently, associated with the

normality of the observed responses.

Some examples of designs under the nonnormal perspective can be encountered in works

such as Pearson (1931), Chaloner & Verdinelli (1995), and Wu et al. (2005). Under the
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normal theory, efficiency and importance of 2k−p trials have been quite justified and ex-

plained by Fisher (1926), Box & Hunter (1961a), and Dey (1985). Gaussian (normal)

analysis of these trials appears in books such as Daniel (1976) (Drill experiment), Box

et al. (2005) (Paint Trial Data), and Melo et al. (2007) (semiconductors data). The main

feature of fractional factorial experiments is to yield models with more parameters than

observations (supersaturated models). For instance, a full 24 experiment yields 16 observa-

tions and 16 effects can be estimated. However, these same 16 effects have to be estimated

only with the 8 observations yielded by a 24−1 experiment. Hence, a statistical problem

appears, parameters are not identifiable (in the case of the 24−1 experiment, it is clearly

impossible to obtain 16 independent estimates with 8 observations). Theoretically, under

normal designs, this problem is solved for regular fractional factorial experiments with a

simple aliasing structure (two effects are either orthogonal or fully aliased ). Two aliased

effects are represented by the same parameter in the model. Knowing which effects are

aliased depends on the resolution of each design and this has as a plausible consequence

that the number of parameters has been reduced and, now, the data can be fitted by a

non-saturated model with identifiable parameters.

In this thesis, designs of resolution III and IV are considered. More resolutions are de-

tailed in Box & Hunter (1961a), Dey (1985), and Myers & Montgomery (1995), (i) A

resolution-III plan is one in which no main-effect is aliased with any other main-effect,

but main effects could be aliased with two-factor interactions. Also, two-factor interac-

tions can be aliased amongst themselves; (ii) in a resolution-IV design the main-effects are

not contaminated by the presence of main-effects and two-factor interactions, but could

be aliased with three-factor interactions, (iii) resolution-V designs: these are designs in

which no main effect or two-factor interaction is aliased with any other main effect or two-

factor interaction, but two-factor interactions are aliased with three-factor interactions. In

general, a design of resolution R is one in which no p factor effect is confounded with any

other effect containing less than R−p factors. According to Box & Hunter (1961a), partic-

ularly important designs are those for testing three variables in four runs, seven variables

in eight runs and fifteen variables in sixteen runs. In this thesis, two real experiments, a

28−4
IV experiment (15 variables, 16 runs), and a 24−1

III experiment (7 variables, 8 runs) are

analyzed. Moreover, some simulated data are based on these experiments. In the case

of the semiconductors trial, a 24−1
III experiment, the importance of resolution-III can be

summarized as follows: i) 16 original effects had to be estimated with only 8 observations
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(runs); ii)the following 8 pairs of effects are confounded :

µ� ABCD, A� BCD, B � ACD, C � ABD, D � ABC,

AB � CD, AC � BD, AD � BC. (1.1)

The notation A� BCD means that the A effect is confounded with the BCD effect.

For instance, µ� ABCD means that: i) µ is completely confounded with ABCD; ii) it is

not possible to separate µ from ABCD; iii) when we estimate µ, we are really estimating

µ + ABCD. (Myers & Montgomery (1995)). Denoting β1 and β234 as the parameters

associated to the effect of x1 (or A) and x2x3x4 (or BCD), respectively.

A special case: as µ � ABCD, if the effect of ABCD, the four-factors interaction, is

considered negligible then µ can be specified completely. Similarly, if BCD is considered

negligible, the estimator of A should be completely specified.

As a notation: two or more effects that have the property shown in (1.1) are called aliased.

Thus, upon choosing one parameter from each pair of confounded effects in (1.1), and upon

assuming that the effect of ABCD interaction factor is negligible (its effect is zero), only

7 effect have to be estimated with the same 8 observations.

With respect to analysis of 2k and 2k−p experiments in the literature, linear regression is

the primary analysis for these data. Also, experiments with response in the (a, b) interval

(Daniel (1976), Box et al. (2005), and Montgomery (2009)) are analyzed with the linear

normal model. The linear regression is a method that involves two heavy conditions for

the errors, normality and constant variance (homoscedasticity). The difficulty of achieving

these assumptions was previously discussed in Chapter . Then, if a normal model turns

out to be inappropriate for analyzing some data from experiments with response in (0,1),

what if alternative models are proposed?.

Alternative methods such as transformations of y, GLM, and some approaches less em-

ployed or reported, can be encountered in Box & Cox (1964), McCullagh & Nelder (1989),

and Bonat et al. (2012). One objective of this thesis is to propose the BRM as another

option for analyzing factorial experiments with response in (0,1).

A summary of the alternative methods, transformations, GLM, and BRM are presented

forthwith:

1) Transformations. In works such as Box & Cox (1964) and Aranda-Ordaz (1981),

transformations mainly to y in order to get normality and homoscedasticity were pro-
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posed. These transformations return responses with values on the real line, and subse-

quently they are modeled by means of linear normal model. For y in (0,1), there are

two common transformations: arcsin and logit. These two transformations already have

been applied in this thesis and are detailed in the unrestricted models chapter. Now,

transformations have some drawbacks, for example: i) it is difficult to correct for both

heteroscedasticity (non-constant variance) and normality, ii) the parameters of the model

cannot be easily interpreted in terms of the original response, and iii) sometimes, inverse

transformations yield nonsensical values.

2) Generalized linear models (GLM). Nelder & Wedderburn (1972) and McCullagh

& Nelder (1989) are benchmarks for advances in an wide class of regression models, unify-

ing several model specifications under the flexible class of GLM for distributions belonging

to the exponential family, including the normal distribution. Some authors have analyzed

data from experiments in (a,b) by GLM and they have compared their results to other

approaches. For instance, Lewis et al. (2001b) and Lewis et al. (2001a) analyzed real

fractional and factorial experiments by means of the lengths of confidence intervals on the

mean response. They present the advantages of using GLM instead of normal models.

Also, Patil & Kulkarni (2011) present an analysis of 2n experiments with response in the

exponential family, comparing GLM against normal and transformations models; in Myers

et al. (2011) normal, transformation and a GLM for some experiments with continuous

response in (a,b) are compared, see the Table 1.

Due to the beta distribution (µ, φ) does not belong to the (one parameter) exponential

family, it is difficult to find a satisfactory distribution within this family for modelling

responses in (0,1).

3) The work of Bonat et al. (2012) deserves special attention. The authors present two

lesser reported distributions, the Simplex and Kumaraswamy, which assume values in

(0,1). They fit some regression models with these two mentioned distributions as the re-

sponse and compare their fittings to three models for analyzing empirical data: the linear

normal, the simple beta regression, and some transformations models.

4) When the response is in (0,1), it is natural to think of beta distribution because it as-

sumes its values in the unity interval. The most common parametrization of its density

involves µ, the mean parameter, and φ the dispersion parameter.

In the simple BRM, the mean response is related to a linear predictor that includes co-

variates and unknown regression parameters through a link function, and the dispersion



CHAPTER 1. FRAMEWORK 7

parameter is taken to be constant. The simple BRM was explicitly developed by many

authors, such as Paolino (2001) and Ferrari & Cribari-Neto (2004). These latter provide a

more detailed mathematical and computational description of the simple BRM developing

the statistical inference from a frequentist perspective (parameter estimation, hypothesis

tests, goodness of fit, and diagnostic measures, among others). Ferrari (2013) is a good

review regarding the BRM, and according to her, many areas where the BRM model was

applied such as percentage of time devoted to an activity, fraction of income spent on

food, unemployment rate, fraction of surface covered by vegetation, can be found in the

literature. The simple BRM has contributed to special topics such as optimal design (Wu

et al. (2005)), diagnostics (Espinheira et al. (2008b), Espinheira et al. (2008a), and Chien

(2011), and Figueroa Zuniga (2011)), bias correction (Ospina et al. (2006), Kosmidis &

Firth (2010)), response involving ones and zeros (inflated BRM, Ospina & Ferrari (2010)),

and size-corrected tests (Bayer & Cribari-Neto (2013)).

In this thesis, one of the proposals is to fit the simple BRM for data from 2k−p experiments

with response in (0,1). Results are presented in Chapter 4.

Thus far, with regard to the classical analysis using linear normal model, transformation,

GLM or BRM, only simple models have been considered, i.e., only the mean of the re-

sponse variable is explained by means of a structure regression. Thus, the dispersion (or

precision) parameter φ is assumed constant across observations. It means that the vari-

ability of the response: i) it is not important to be considered, or ii) none of the covariates

(factors) can explain the variability. This is not realistic in many cases.

With respect to the GLM, when the first edition of McCullagh & Nelder (1983) was re-

viewed by Pregibon (1984), he stated that to assume the dispersion parameter φ as a

constant was overly restrictive and suggested further generalizations to consider variable

dispersion. As a consequence, the authors followed the suggestion made by Pregibon, in

the second edition, explored the consequences of constructing and fitting formal models

for the dependence of both µi and φ on several covariates. Additionally, within the moti-

vation for this chapter, McCullagh & Nelder (1989) stated that the impetus for studying

these extended models derived from the surge of interest in industrial quality-improvement

experiments, in which both mean and dispersion were of substantive interest. The aim

very often was to select that combination of factor levels that keeps the mean at a pre-

determined ideal value, while at the same time keeping the variability in the product at a

minimum. Then, it was necessary to study not just how the mean response is affected by
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factors under study, but also how the variance is affected by these factors. That chapter

was entitled joint modelling of mean and dispersion.

Now, an extension of the simple BRM is the Variable Dispersion BRM (VDBRM). In this

model, the precision (dispersion) parameter is not constant for all observations but instead

modelled in a similar fashion as the mean parameter. The variable dispersion BRM (VD-

BRM) has been justified by several authors; for example, Bayer & Cribari-Neto (2014)

undertake an example using a Montecarlo simulation; they note that efficiency loss takes

place when the dispersion parameter is incorrectly taken to be constant. Additionally,

they comment on dispersion modelling may be of direct interest since it allows for the

statistician to identify the sources of data variability.

In this thesis, the necessity of considering the VDBRM in factorial experiments was ex-

emplified in the Introduction and Motivation.

The VDBRM has been used under frequentist and Bayesian perspectives, by Cepeda

(2001), Smithson & Verkuilen (2006), Simas et al. (2010), Ferrari et al. (2011), and Bayer

& Cribari-Neto (2014), among others.

In the studied literature, works applying beta regression models to data from experiments

are rarely encountered. Smithson & Verkuilen (2006) analyzed a replicated 22 experiment

applied in psychology (n = 104), where the original response was measured in (0,100) in-

terval. They used a VDBRM and presented a solution from a classical perspective. Also,

they compared the results against normal and transformation models.

Finally, the use of restrictions to handle the higher order interaction factors in 2k and

2k−p experiments was explained in the Introduction and Motivation. There, a restricted

VDBRM is presented as an alternative strategy for analyzing data from 2k−p experiments

with response in (0,1). Although in the literature restricted models for different kinds of

responses can be encountered, a the restricted VDBRM has not yet known in the studied

literature.

Thus, it is necessary to propose and develop an explicit restricted variable dispersion beta

regression model (restricted VDBRM). After solving the model, a specific goal will be to

analyze some 2k−p experiments with response in (0,1) using all parameters involved within

a theoretical 2k experiment.

The restricted VDBRM proposed here will be introduced in next Chapter (specifically,

expressions (2.6)-(2.7)). But before, a brief review of restricted models in another

scenario will be described. As a starting point, when restrictions on parameters are
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needed, the common mathematical solution involves some additional parameters known as

Lagrange multipliers, (see Stein (1984)). These new parameters constitute a key point in

the solutions because when they can be separated from the parameters of interest. These

multipliers do not have to be estimated; however, on the other hand, it is necessary to

consider the multipliers in the solutions. In the statistical literature, these multipliers are

a special case of nuisance parameters; so this concept will be dealt with in Chapter 2.

A brief overview of the restricted models for response different from beta is presented

further on. The common restricted linear regression model, with equality constraints is

given by

y = Xβ + ε subject to Rβ = δ (1.2)

where R matrix and δ are a matrix and a vector are given, respectively.

i) Under normal response and constant varibility, the common solution is to use the least

square criterium to minimize (y −Xβ)T (y −Xβ) + 2λT (Rβ − δ) with respect to β, λ

being the vector associated with the Lagrange multipliers. Using appropriate algebra, the

restricted solution β̂r includes R and δ, but it does not depend on Lagrange multipliers.

ii) Silvey (1959), Gourieroux et al. (1982), Wolak (1987), and Neuenschwander & Flury

(1997), among others, consider maximum likelihood estimates under different types of

constraints in the parameter space; some of these restrictions are considered under the

normal model, and their solutions include estimates of Lagrange multipliers.

iii) Edwards et al. (2001) present a normal mixed model with restrictions for fixed

and random effects. If the model contains p parameters, they use the singular-value

decomposition on the two constraints matrices achieving the expression of c parameters

in terms of the remaining p − c parameters only. With this, and, given the observations,

they estimate these p − c unrestricted (linearly independent) parameters by the usual

least square method. Their methodology has as a key point the difference between two

normally distributed vectors, which is normal. This result is not possible in vectors of

beta distributed variable. iv) Tian (2010) used the restricted normal model. He applied

linear algebra to avoid the Lagrange multipliers and compared some estimable functions

between the unrestricted and the restricted models.

v) In the case of exponentially distributed response, Nyquist (1991) proposed a penalty

function to solve a restricted GLM. Using matrix algebra and the orthogonality between

mean and dispersion in the GLM, he found the restricted estimates for the parameters of
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interest without estimating the Lagrange multipliers; his approach cannot be used here

to solve the equations (2.6)-(2.7) because, in beta regression, mean and dispersion are

non-orthogonal. In another work, Cysneiros & Paula (2005) used the Nyquist solution

to their restricted model for symmetrical distributions where mean and dispersion are

orthogonal.

Remark: An important subject, types of constraints (restrictions), appears discussed in

Neuenschwander & Flury (1997). They distinguish between three types of restrictions,

model constraints, identifiability constraints, and basic constraints. Their definitions are

summarized as follows:

i) Model constraints, reduce an identifiable parameter space Θ ⊂ Rs to a subspace of

smaller dimension.

ii) Identifiability constraints, guarantee that for any two different parameters the two

corresponding distributions are different.

iii) Basic constraints guarantee that for any θ ⊂ Θ, there exists a Fθ distribution.

In this thesis, using the previous definitions, the main problem is associated to the

identifiability restrictions, because the set of parameters derived from a 2k−p experiment

is unidentifiable and only becomes identifiable when a restriction is imposed on parameters

in order to get a reduced (identifiable) model.

In the following chapter, concepts and expressions required for the proposed model are

detailed. But first, the Bayesian simple BRM will be commented on.

In general, fractional factorial experiments involve small sample sizes. Paradoxically,

upon analyzing experimental by means of GLM or BRM, inferential results are based on

the condition of large sample sizes. Therefore, it is necessary to consider some methods

which do not depend on this condition. Bayesian statistics is a methodology which has

this condition. A summary of this methodology is presented fortwith.

(Bayesian simple BRM). Within the Bayesian framework, parameters are modeled as

random variables, and the concepts can be studied in books such as Bernardo & Smith

(2000) and Kruschke (2011). As a summary, in the Bayesian simple BRM, parameters

of the simple BRM are modelled as random variables by means of a prior distribution.

Afterwards, using this distribution and the data likelihood, a posterior distribution

is computed. Then, Bayesian inference is done employing the posterior distribution.

The Bayesian simple BRM has been applied in works as Branscum et al. (2007) and

Figueroa Zuniga (2011). With respect to the computational aspect, some packages in R
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software perform the Bayesian simple BRM. For example, the Bayesianbetareg package

(Marin et al. (2013)) can be used fixing the dispersion parameter in the algorithm. There

are other softwares available for BRM, gamlss (Stasinopoulos & Rigby (2007)) and betareg

package (Cribari-Neto & Zeileis (2010), Grün et al. (2012)) in R software (R Development

Core Team (2014)). Also, according to Ferrari (2013), the Bayesian and frequentist BRM

can be fitted in other softwares: SPLUS, SPSS, and SAS (the Procedure NLMIXED has

the Beta regression macro, Swearingen et al. (2011) and Swearingen et al. (2012)). Now,

frequentist or Bayesian analyses of factorial experiments by means of simple BRM are

rarely found in the literature.

As a preliminary result of this thesis, for some 2k−p experiments, the following models

have been fitted: normal, two transformations, the simple BRM (with four link functions),

and the Bayesian simple BRM (4 link functions). These models were compared by means

of credibility and confidence intervals on mean response. Results and comparisons appear

in Chapter 4. Upon using the restrictions yielded for the respective resolution of the

experimental design, 11 implicitly restricted models have been fitted.
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Restricted Beta Regression Model.

2.1 Beta distribution

Beta distribution is a good alternative when response is in (0,1) because it assumes values

in this interval. The common expression for its density contains the p and q parameters

and is given by

f(y; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1, y ∈ (0, 1), (2.1)

where p > 0, q > 0 and Γ(·) is the mathematical gamma function. The mean and variance

of y are, respectively, E(y) = µ = p
p+q and V ar(y) = pq

(p+q)2
(p+ q + 1).

Beta distributions are very versatile and have different empirical uses and applications.

Many practitioners have used the BRM when the response is in (0,1) and is related to

covariates, (see Johnson et al. (1995), Bury (1999), and Ferrari (2013)). Some examples

of beta densities are exemplified in 2.1.

In order to impose a regression structure for the beta response, several parameteriza-

tions for p and q have been proposed: Jorgesen (1997) (four parameters), Cepeda (2001)

(Bayesian purposes), Paolino (2001), Kieschnick & McCullough (2003), and Ferrari &

Cribari-Neto (2004), among others. With the parametrization µ = p
p+q and φ = p+ q, the

probability density of a variable y in terms of its mean µ and its precision φ is given by

f(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, y ∈ (0, 1), (2.2)

12
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Figure 2.1. Some beta densities.

In that case, E(y) = µ (0 < µ < 1), V ar(y) = µ(1−µ)
1+φ , where φ > 0 that can be interpreted

as a precision parameter. If y has the density expressed in (2.2), and y1, . . . , yn denotes a

random sample of size n, two situations are possible,

i) yi ∼ beta(µiφ, (1− µi)φ), (variable mean and fixed dispersion, simple BRM).

ii) when each µi and φi can be different, it is written yi ∼ beta(µiφi, (1− µi)φi), (Varying

dispersion BRM).

2.2 Variable dispersion BRM.

In the variable dispersion beta regression model the mean µi as well as the precision φi

are modelled through covariates. The VDBRM was employed by Smithson & Verkuilen

(2006), formally introduced (along with further extensions) by Simas et al. (2010), and

again justified by means of Monte Carlo simulation in Bayer & Cribari-Neto (2014), and

in this thesis in example 2. The model is specified as follows.

Let y1, . . . , yn be a random sample such that yi ∼ beta(µiφi, (1− µi)φi), i = 1, ..., n. The

VDBRM is defined as

g1(µi) = η1i =

p1−1∑
l=0

xilβl = xiβ g2(φi) = η2i =

p2−1∑
l=0

zilαl = ziα (2.3)
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where β = (β0, . . . , βp1−1)T and α = (α0, . . . , αp2−1)T are the sets of regression coef-

ficients in the two equations, with (p1 + p2 < n). xi = (xi0, xi1, . . . , xip1−1), zi =

(zi0, zi1, . . . , zip2−1) are regressor vectors associated with the means and the precisions,

respectively. zi usually is a set of some columns of xi (then, Z is a n × p2 matrix of

covariates). g1(·) and g2(·) are monotonic link functions, preferably with the property of

mapping the range of µi and of φi to the real line, (µi ∈ (0, 1), and φi ∈ (0,∞), i=1,...n.).

A suitable candidate for g1(·) is any inverse of a cumulative distribution function, and for

g2(·), the log function is the common election. In this thesis, the following four canonical

link functions will be used for g1(·):

logit: g1(µi) = log(µi/(1− µi)).

probit: g1(µi) = Φ−1(µi), where Φ(·) is the cumulative distribution function of a stan-

dard normal random variable.

cloglog: g1(µi) = log(−log(1− µi)).

cauchit: g1(µi) = tan(π[µi − 0.5]), where π = 3.14159.

A graphical summary of these link functions is shown in figure 2.2, however, other canonical

and non-canonical link functions are possible, see Cribari-Neto & Zeileis (2010).

For φ, the common link functions are log(φi), and
√
φi. In this work, the log(φi) link is
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Figure 2.2. Four link functions for the mean.
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The log-likelihood function for the VDBRM defined in figure (2.3) is given by

l(β,α) =
n∑
i=1

li(µi, φi) (2.4)

where

li(µi, φi) = logΓ(φi)−logΓ[(µiφi)]−logΓ[(1−µi)φi]+(µiφi−1)logyi+[((1−µi)φi−1)]log(1−yi)

(2.5)

with µi = g−1
1 (η1i), and φi = g−1

2 (η2i) defined in (2.3). Within the frequentist perspective,

theoretical developments for the estimations of parameters in the BRM can be found

in Ferrari & Cribari-Neto (2004) (for fixed φ), Espinheira (2007), Cribari-Neto & Souza

(2011), and Bayer & Cribari-Neto (2014). The frequentist estimation in the BRM is similar

to the GLM, both based on the maximum likelihood estimation.

In the GLM, the parameters φ and β are orthogonal, which does not occur in the BRM.

Inference for the BRM is based on asymptotic results under regularity conditions, the

solutions do not have closed-form.

2.3 A Restricted Variable Dispersion Beta Regression

Model: a proposal.

Suppose that, in addition to the VDBRM (2.3), there are q linearly independent restric-

tions on the parameter vector β, yielding the Restricted VDBRM):

g1(µi) = η1i = xiβ g2(φi) = η2i = ziα (2.6)

subject to

rTj β = δj , j = 1, . . . , q (2.7)

In matrix form,

g1(µ) = Xβ, g2(φ) = Zα s.t. Rβ = δ

Dimension: βp1×1, αp2×1, δq×1 (known fixed numbers), Rq×p1 , with q rows linearly inde-

pendent (known fixed numbers). Condition: (p1 + p2 − q < n).

Remark: the columns of Z are usually some columns of X.
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In that follows: i) a penalized likelihood is proposed in order to estimate the (restricted)

parameters, ii) inferential aspects of the model are presented: hypothesis tests, and good-

ness of fit.

The problem now with the restricted VDBRM is to maximize the log-likelihood (2.4) over

β and α under restrictions (2.7). Therefore, it is necessary to propose some solutions for

the restricted VDBRM (2.6) - (2.7). Initially, the classical solution is introduced, which is

based on Nyquist (1991). After, a Bayesian solution is explored as a future work.

2.4 Frequentist solution for the restricted VDBRM.

One approach to solve restricted optimization problems is the penalty function method,

(Lange 2010), and it is used for the frequentist solution of (2.6)-(2.7). The first step is to

consider the quadratic penalty function

P (λ,β,α) =

n∑
i=1

li(µi, φi)−
1

2

q∑
k=1

λk(δk − rTk β)2 (2.8)

and the second step is to find a solution to the unrestricted problem maxβ,αP (λ,β,α)

for fixed and positive values of λk, k = 1, ..., q (Lagrange multipliers). The notation is

summarized as follows, and the concepts can be studied in Atkinson (1985):

1. bT = (λT ,βT ,αT )T is the parameter vector of (p1 + p2 + q) × 1 order. In some

discussions, b also will be written as (β,α,λ).

2. Q(b) = ∂P (λ,β,α)
∂b is the score vector of (q + p1 + p2) × 1 order. The score vector

can be partitioned as QT = (Q(λ)T , Q(β)T , Q(α)T )T .

3. Maximum likelihood estimate of b is defined by the q+ p1 + p2 equations Q(b̂) = 0.

4. The expected information or Fisher information matrix is

K(b) = K(λ,β,α) = −Eb

[
∂2P (λ,β,α)
∂b∂bT

]
.

In some cases, it may be easier to use the observed information

I(b) = −
[
∂2P (λ,β,α)
∂b∂bT

]
.

Both information matrices are square of q + p1 + p2 dimension.
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To solve the penalty function (2.8) from a classical perspective, the Fisher scoring method

is employed. In this case, for the (m+ 1) step

K(b(m+1),λ)b(λ)(m+1) = K(b(m),λ)b(λ)(m) +Q(b(m),λ) (2.9)

or equivalently

b(λ)(m+1) = b(λ)(m) +K−1(b(m),λ)Q(b(m),λ) (2.10)

where K−1(b(m),λ) is the inverse of the K matrix. Calculus for the score vector and the

K matrix is shown in the following sections.

2.4.1 Calculus for (Q) score vector in the restricted VDBRM.

Initially, in order to simplify the notation, y∗ and µ∗ are defined as vectors of n dimension

with components

y∗i = log

(
yi

1− yi

)
µ∗i = ψ(µiφi)− ψ[(1− µi)φi] (2.11)

where ψ(·) indicates the digamma function, ψ(z) = dlogΓ(z)
dz for z > 0. (See Abramowitz

& Stegun (1965)).

Subsequently, it will be demonstrated that the score vector has the expression

Q(λ,β,α) =


0q×1

XTT1(y∗ − µ∗) +RTΛ(δ −Rβ)

ZTT2ν

 (2.12)

where

T1 = diag

(
φi

g′1(µi)

)
T2 = diag

(
1

g′2(φi)

)
Λq×q = diag(λk) (2.13)

ν is a n×1 vector with components, νi = ψ(φi) +µi(y
∗
i −µ∗i )−ψ((1−µi)φi) + log(1− yi).

First-order derivatives: score vector.
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Rewriting the penalty function (2.8) as P (β,λ,α) = P1(β,α) + P2(λ,β), where

P1(β,α) =
n∑
i=1

li(µi, φi)

P2(λ,β) = −1

2

q∑
k=1

λk(δk − rTk β)2 (2.14)

= −1

2

q∑
k=1

λk

(
δk −

p1∑
s=1

rskβs

)2

= −1

2

q∑
k=1

λk

δ2
k − 2δk

p∑
s=1

rskβs +

(
p∑
s=1

rskβs

)2


each component of the (partitioned) score vector (2.12) can be computed as

Qλ:

∂P (λ, β, α)

∂λk
=
∂P2(λ, β)

∂λk
= −1

2

(
δk −

p1∑
s=1

rskβs

)2

, k = 1, . . . , q. (2.15)

Qβ:
∂P (λ,β,α)

∂βj
=
∂P1(β,α)

∂βj
+
∂P2(λ,β)

∂βj
, j = 1, . . . , p1. (2.16)

• For P1(β,α): having the log-likelihood (2.4), some algebraic results and nota-

tions from Ferrari & Cribari-Neto (2004):

∂P1(β,α)

∂βj
=

n∑
i=1

∂li(µi, φi)

∂µi

∂µi
∂η1i

∂η1i

∂βj

Denoting g1(µi) = η1i:

∂li(µi, φi)

∂µi
= φi

[
log

(
yi

1− yi

)
− {ψ(µiφi)− ψ[(1− µi)φi]}

]
dµi
dη1i

=
dg−1

1 (η1i)

dη1i
=

1

g′1(µi)

∂η1i

∂βj
= xij

Thus,

Qj(β, α) =
∂P1(β,α)

∂βj
=

n∑
i=1

φi[y
∗
i − µ∗i ][1/g′1(µi)][xij ], j = 1, . . . , p. (2.17)
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• Now, for P2(λ,β) in (2.14):

∂P2(λ,β)

βj
=

q∑
k=1

λkδkrj′k −
q∑

k=1

λkrj′k

(
p1∑
s=1

rskβs

)
(2.18)

=

q∑
k=1

λkδkrj′k −

(
q∑

k=1

λkr
2
sk

)
βs −

q∑
k=1

p1∑
s 6=j′=1

λkrskrj′kβj′ (2.19)

=

q∑
k=1

λkrj′k

(
δk −

p1∑
s=1

rskβs

)
(2.20)

Thus, the complete expression for Qβ is:

Qβj′ =
n∑
i=1

φi(y
∗
i−µ∗i )[1/g′1(µi)][xij′ ]+

q∑
k=1

λkδkrsk−

(
q∑

k=1

λkr
2
sk

)
βs−

q∑
k=1

p1∑
s 6=j′=1

λkrskrj′kβj′′

(2.21)

The first part of Qβj′ can be written in matrix form as:∑n
i=1 φi(y

∗
i − µ∗i )[1/g′1(µi)][xij′ ] = xTj′T1(y∗ − µ∗), and the second part of Qβj′ as

rTj′Λ (δ −Rβ). Then

Qβ = XTT1(y∗ − µ∗) +RTΛ (δ −Rβ).

(Getting Qα): Deriving (2.5) partly with respect to each αs, s = 1, ..., p2, we obtain

Qs(β, α) =
∂l(β, α)

∂αs
=

n∑
i=1

∂li(µi, φi)

∂φi

∂φi
∂η2i

∂η2i

∂αs
(2.22)

where ∂η2i/∂αs = zis, and from (2.4), ∂φi/∂η2i = 1/g′2(φi) = dg−1
2 (η2i)/dη2i. In ad-

dition, deriving partly (2.5) with respect to each φi, for i = 1, . . . , n, and substituting

y∗i and µ∗i given in (2.11), we have that

∂li(µi, φi)

∂φi
=
∂ log Γ(φi)

∂φi
− µi

∂ log Γ(µiφi)

∂φi
− (1− µi)

∂ log Γ((1− µi)φi)
∂φi

+ µi log(yi) + (1− µi) log(1− yi)

=ψ(φi)− µi(ψ(µiφi)− ψ((1− µi)φi)) + µiψ((1− µi)φi)

+ µi log

(
yi

1− yi

)
+ log(1− yi)

=ψ(φi) + µi(y
∗
i − µ∗i )− ψ((1− µi)φi) + log(1− yi) (2.23)
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Therefore, the final expression for Qα is

Qαs =

n∑
i=1

[ψ(φi) + µi(y
∗
i − µ∗i )− ψ((1− µi)φi) + log(1− yi)]

1

g′2(φi)
zis′ = zTs′T2ν

(2.24)

Then, Qα = ZTT2ν, with ZZZ, T2, and ν previously defined in (2.12). Therefore, as already

has been expressed, the maximum likelihood estimators of b = (λ,β,α) are obtained

from the equations Q(b) = 0. In the current case, although solutions exist, they do not

have closed-form. Hence, they need to be obtained by numerical methods, using some

optimization procedure, such as Newton algorithm, (Lange (2010)).

The solutions are denoted as b̂ = (λ̂, β̂, α̂). In order to have some inferential results, it is

necessary to compute the covariance matrix of b, which is the same (symmetric) Fisher

information matrix, and it can be expressed in partitioned form as,

K(λ,β,α) =


Kλλ Kλβ Kλα

Kβλ Kββ Kβα

Kαλ Kαβ Kαα

 (2.25)

In the following section, it is demonstrated that the matrices of K are,

Kλλ = 0q×q Kλβ = KT
βλ = AR = 0q×p1 (2.26)

Kλα = 0q×p2 = KT
αλ (Kββ)p1×p1 = XTWX +RTΛR (2.27)

(Kβα)p1×p2 = XTV Z = KT
αβ (Kαα)p2×p2 = ZTDZ (2.28)

where

Aq×q = diag(δk − rTk β) Wn×n = diag(wi) Vn×n = diag(ci) (2.29)

Dn×n = diag

(
bi

(g′2(φi))2

)
(2.30)
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for i = 1, ..., n, and for k = 1, ..., q, and the components of the matrices are

ai =
(
ψ′(µiφi) + ψ′((1− µi)φi)

) 1

(g′1(µi))2
(2.31)

bi = µ2
iψ
′(µiφi) + (1− µi)2ψ′[(1− µi)φi]− ψ′(φi) (2.32)

ci = φi
(
µiai − ψ′[(1− µi)φi]

)( 1

(g′1(µi))(g′2(φi))

)
(2.33)

wi = φ2
i ai (2.34)

where ψ′(·) indicates the trigamma function.

2.4.2 Calculus for the Fisher Information (K) in the restricted VDBRM.

This section presents the calculations done to obtain the components of K matrix. Sub-

matrices of K are obtained starting from the Q(β,α,λ) vector.

1. Kλλ = 0q×q, because Qλ = 0 (see (2.12)).

2. For Kββ , consider the sums for Qβ in (2.21):

On the first sum of (2.21): using E
[
∂li(µi,φi)

∂µi

]
= 0, the chain rule, and definition

for η1i:

∂2P1(β,α)

∂βj′βj
=

n∑
i=1

∂

∂µi

[
∂li(µi, φi)

∂µi

dµi
dη1i

]
dµi
dη1i

∂η1i

∂βj
xij

=

n∑
i=1

[
∂2li(µi, φi)

∂µ2
i

dµi
dη1i

+
∂li(µi, φi)

∂µi

∂

∂µi

dµi
dη1i

]
dµi
dη1i

xij′xij

Upon deriving twice with respect to µi in (2.4),

∂2li(µi, φi)

∂µ2
i

= −φ2
i

(
ψ′(µiφi) + ψ′[(1− µi)φi]

)
(2.35)

and taking expectations,

E

(
∂2P1(λ, β, φ)

∂βj′βj

)
=

n∑
i=1

E

(
∂2li(µi, φi)

∂µ2
i

)(
dµi
dη1i

)2

xij′xij = −
n∑
i=1

wixij′xij

(2.36)
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Having defined wi in (2.29).

For the remaining sums in (2.21)): note that s 6= j′ for the last sum, and it follows

that:

∂2P2(β,λ)

∂βj′βj
= −

q∑
k=1

λkrikrjk

Finally, using expressions for WWW and Λ in (2.29), one can express in matrix form,

Kββ = −E
[
∂2P (λ, β, φ)

∂β∂βT

]
= XTWX +RTΛR (2.37)

3. Now Kαβ = −E
[
∂2P (λ,β,φ)
∂α∂βT

]
. Starting from (2.21),

∂2l(β, α)

∂αs∂βj
=

n∑
i=1

∂

∂φi

(
∂li(µi, φi)

∂µi

dµi
dη1i

)
dφi
dη2i

∂η2i

∂αs
xij′

=

n∑
i=1

(
∂2li(µi, φi)

∂φi∂µi

dµi
dη1i

+
∂li(µi, φi)

∂µi

∂

∂φi

dµi
dη1i

)
dφi
dη2i

zisxij′

Taking expected values on both sides of the above expression, we have

E

(
∂2l(β, α)

∂αs∂βj

)
=

n∑
i=1

E

(
∂2li(µi, φi)

∂φi∂µi

)(
dµi
dη1i

)(
dφi
dη2i

)
zisxij′

On the other hand, deriving (2.4) twice, partly with respect to φi, we obtain

∂2li(µi, φi)

∂φi∂µi
= y∗i − µ∗i − φi{µi[ψ′(µiφi) + ψ′((1− µi)φi)]− ψ′((1− µi)φi)}

= y∗i − µ∗i − φi[µiwi − ψ′((1− µi)φi)]

and then

E

(
∂2l(β, α)

∂αs∂βj

)
= −

n∑
i=1

φi[µiai − ψ′[(1− µi)φi]]
(
dµi
dη1i

)(
dφi
dη2i

)
zisxij′ (2.38)

where ai = wi

φ2i
, with wi defined in (2.29).
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4. For Kαα.

Upon calculating the partial derivative of the expression (2.24) with respect to φi,

we obtain

∂2l(β, α)

∂αs∂αs′
=

n∑
i=1

∂

∂φi

(
∂li(µi, φi)

∂φi

dφi
dη2i

)
dφi
dη2i

∂η2i

∂αs
zis′

=
n∑
i=1

(
∂2li(µi, φi)

∂φ2
i

dφi
dη2i

+
∂li(µi, φi)

∂φi

∂

∂φi

dφi
dη2i

)
dφi
dη2i

ziszis′

Since E(∂li(µi, φi)/∂φi) = 0, and taking expected values on both sides of the above

expression, we have

E

(
∂2l(β, α)

∂αs∂αs′

)
=

n∑
i=1

E

(
∂2li(µi, φi)

∂φ2
i

)(
dφi
dη2i

)2

ziszis′ (2.39)

Deriving (2.4) twice, partly with respect to φi, we have

∂2li(µi, φi)

∂φ2
i

=ψ′(φi)− µi[µiψ′(µiφi)− (1− µi)ψ′((1− µi)φi)]− (1− µi)ψ′((1− µi)φi)

=ψ′(φi)− µ2
iψ
′(µiφi)− (1− µi)2ψ′((1− µi)φi)

and then

E

(
∂2l(β, α)

∂αs∂αs′

)
= −

n∑
i=1

[
(1− µi)2ψ′((1− µi)φi) + µ2

iψ
′(µiφi)− ψ′(φi)

]( dφi
dη2i

)2

ziszis′

= −
n∑
i=1

bi

(
dφi
dη2i

)2

ziszis′

where bi defined in (2.31).

5. For Kλβ, starting from (2.21), considering terms depending on λ :

∂

∂λk

(
∂P (λ,β,φ)

∂βj

)
= δkrjk − r2

jkβj −
p∑

j 6=s=1

rskrjkβs = rjk

(
δk −

p∑
s=1

rskβs

)
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which yields the following matrix:

(Kλβ)q×p = AR

where Rq×p is a matrix for restrictions and A is expressed in (2.29). It is noteworthy

that A is a q × q zero matrix, taking into account the conditions in the restricted

VDBRM (2.7).

Finally, the following results are easily obtained using definitions of second deriva-

tives, and (2.13):

6. Kαλ = KT
λβ = 0p2×q

7. Kβα = KT
αβ.

The expression for the K matrix in (2.26) has been demonstrated.

Note that the matrices of the first row and the first column of partitioned matrix (2.25)

now are null. That is

K(λ,β,α) =


0q×q 0q×p1 0q×p2

0p1×q Kββ Kβα

0p2×q Kαβ Kαα

 (2.40)

Observing the final K in (2.40) two aspects can be appreciated:

i) Using the Fisher-scoring method in (2.9) and extracting the first equations:

0q×qλ
(m+1) = 0q×qλ

m + 0q×1 indicating that λ can be any vector in Rq.

ii) K is singular, unfortunately.

After doing the appropriate algebra, the new Fisher-scoring system is generated,

θ(m+1) = θ(m) +K−1Q(θ(m)) (2.41)

where

• K is a (p1 + p2)× (p1 + p2) matrix. Explicitly,

K(λ,β,α) =

 XTWX +RTΛR XTV Z

ZTV TX ZTDZ

 (2.42)
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with the same matrices established in (2.26) and (2.29) .

• θT = (βT ,αT )T is the parameter vector of (p1 + p2)× 1 order.

• Q(λ,β,α) is a (p1 + p2)× 1 vector. Explicitly,

Q(λ,β,α) =

 XTT1(y∗ − µ∗) +RTΛ(δ −Rβ)

ZTT2ν

 (2.43)

With the same matrices and vectors defined in (2.12).

Therefore, in the new system,

i) As the X matrix has full column rank, and WWW is a nonsingular diagonal matrix, then

XTWX + RTΛR is also a nonsingular matrix. This result can be demonstrated doing

an analysis of the Λ diagonal matrix. On one hand, if Λ is a null matrix, the restricted

VDBRM is reduced to the VDBRM, which has a solution, see Espinheira (2007) or Bayer &

Cribari-Neto (2014). On the another hand, if only one λk is nonzero, then XTWX+RTΛR

is a scalar nonzero. Also, if more than one λk is nonzero, the matrix will be nonsingular.

ii)As a consequence of i), K−1 exists (applying the result 2.1.3 of Ravishanker & Dey

(2003)). Then, calculations for K−1 are considered.

2.4.3 Obtaining K−1

Writing the K matrix (2.42) as

K =

 A11 A12

A21 A22

 (2.44)

we can write the inverse of K, K−1 as

K−1 =

 B11 B12

B21 B22

 (2.45)

B11 = A−1
11 +A−1

11 A12B22A21A
−1
11 (2.46)

B12 = −A−1
11 A12B22 (2.47)

B21 = BT
12 (2.48)

B22 = (A22 −A21A
−1
11 A12)−1 (2.49)
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And specifically

K−1 =

 B11 B12

B21 B22

 (2.50)

B11 = Ω−1 + Ω−1XTV ZB22Z
TV TXΩ−1 (2.51)

B12 = −Ω−1XTV ZB22 (2.52)

B21 = BT
12 (2.53)

B22 = (ZTDZ − ZTV TXΩ−1XTV Z)−1 (2.54)

where Ω = XTWX +RTΛR. Several expressions can be found for (XTWX +RTΛR)−1;

for instance, as XTWX is nonsingular, applying the equation (17) from Henderson &

Searle (1981), the following inverse matrix is obtained:

(XTWX +RTΛR)−1 =

(XTWX)−1 − (XTWX)−1RT [Λ−1 +R(XTWX)−1RT ]−1R(XTWX)−1

It is noteworthy that the estimated parameters by means of frequentist method involve

the λ parameter vector. This parameter vector is known in the statistical inference as a

nuisance parameter.

Remark:Nuisance parameters. When the penalty function (2.8) was proposed to solve

the restricted VDBRM (2.6) - (2.7), it contained the (λ,β,α) parameters. According to

Basu (1977), due to the inference problem at hand relates only to β and α parameters,

and because information gained on λ is of no direct relevance to the problem, then λ can

be classified as the nuisance parameter, (β and α are named the parameters of interest).

The same author expresses that the methods for eliminating these parameters began with

Fisher. With respect to nuisance parameters there are several works from frequentist and

Bayesian perspectives; for instance, Cox (2006) deals the subject in the starting point

of his book and, moreover he introduces some analyses for these parameters. Aitkin

(2010) presents a wide analysis integrating the frequentist and Bayesian perspectives re-

garding this subject. (Bernardo & Smith (2000), p.479) indicate that, within a Bayesian

framework, the presence of nuisance parameters does not have any theoretical problems.

However, they consider that the problem posed by the presence of nuisance parameters

can only be satisfactorily solved within a pure frequentist framework in those few cases
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where the optimality criterion used leads to a procedure which depends on a statistics

whose sampling distribution does not depend on the nuisance parameter.

Next chapter deals with the frequentist inferential aspects of the restricted VDBRM.



CHAPTER 3

Inferential aspects for the Restricted VDBRM.

This chapter deals with the inferential aspects related to the solutions for the restricted

VDBRM proposed in the expressions (2.6) - (2.7). Solutions are considered from a fre-

quentist perspective, based on asymptotic results, which is common in fitted models for

nonnormal response. In the first part, a simulated restricted BRM is used to exemplify

the inferential concepts. In the second part, a real 2k−p experiment is introduced to show

a special case of hypothesis for restricted models. Some Bayesian ideas to analyze the

restricted VDBRM are presented in Chapter 6.

A comment on notation. In order to solve the restricted VDBRM (2.6) - (2.7), the penalty

function (2.8) was proposed, which contains the b vector, which was defined in (2.4).

This parameter vector can be broken into two parts, (βT ,αT ,λT )T = (θT ,λT )T , where

θ = (βT ,αT )T is the vector with p1 + p2 parameters of interest and λ is a vector that

contains q nuisance parameters. (This notation is based on Aitkin (2010)). The proposal

of the inference for the restricted VDBRM is developed afterwards. But before, a sum-

mary of the regularity conditions is discussed.

Remark : The regularity conditions assumed in this work can be encountered in texts as

Gourieroux et al. (1982) (Vol. 1, p. 181 and 184):

1. The variables Yi, i=1,...,n are independent and identically distributed with density

f(y;θ), θ ∈ Θ ⊂ <p.

2. The parameter space Θ is compact.

28
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3. The true but unknown parameter value parameter θ0 is identified.

4. The log-likelihood function

Ln(y;θ) =
n∑
i=1

log f(yi,θ)

is continuous in θ.

5. Eθ0 log f(Yi,θ) exists.

6. The log-likelihood function is such that (1/n)Ln(y;θ) converges almost surely to

Eθ0 log f(Yi,θ) uniformly in θ ∈ Θ.

Property 1 : under assumptions 1-6, there exists a sequence maximum likelihood

estimators converging almost surely to the true parameter value θ0.

7. The log-likelihood function Ln(θ) is continuously differentiable in an open neighbor-

hood of θ0

8. The matrix

I(θ0) = Eθ0

(
−∂

2 log f(Yi,θ0

∂(θ)θT

)
exists and is nonsingular.

Property 2 : Under the assumptions of Property 1, suppose that assumptions 7-8 hold.

Then a consistent sequence θ̂n of local maxima is such that
√
n(θ̂n − θ0) converges in

distribution to a normal distribution with mean zero and covariance matrix I(θ0)−1.

3.1 Large sample inference to the restricted VDBRM.

Denoting the solution of the restricted VDBRM (2.6) - (2.7) as θ̂r = (β̂
T

r , α̂
T
r )T , and

assuming that the regularity conditions 3 are also satisfied under the restricted model,

then θ̂r is asymptotically normal with mean θr and covariance matrix given by (2.50)

(here it depends upon λ). When the large sample inference is applied to analyze data

without nuisance parameters, three tests are widely employed: likelihood ratio(LR),

Wald(W), and score statistics(S). The asymptotic equivalence of the three tests is shown

in books such as Cox & Hinkley (1974), and Shao (2003). Some geometric relationships
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between these three tests are commented on in Atkinson (1985), and additionally graphed

in Cox (2006). Additional details can be found in Atkinson (1985) and Cox (2006), and

these can be summarized as follows:

i) The asymptotic properties of the score test are not changed if the observed information

is substituted by the expected information.

ii) Unlike the other two tests, the score test requires only quantities calculated under the

null hypothesis.

iii) Some guidance on the choice among the three tests for finite samples is given by

Cox & Hinkley (1974) in Section 9.3, they do not recommend the Wald test because it

depends on the parameterizations of the problem.

Now, in the presence of nuisance parameters, the respective three tests are analogous to

those given in absence of the nuisance parameters (Atkinson (1985), p. 95)

3.2 Hypothesis about restrictions.

3.2.1 A special case: Hypothesis Rβ = 0.

(Useful for testing hypothesis about effects in 2k and 2k−p experiments). Starting from

the VDBRM (2.6) - (2.7), the interest focuses in the hypothesis

Rβ = 0 (3.1)

with R a q × p1 matrix, with (q ≤ p1) , and rank (R) = q

Remark. The rows of matrix R are linearly independent in order to avoid redundant

hypothesis. Subsequently, it is possible to find a matrix R0 of (p1 − q)× p1 order, and to

construct the partitioned Fp1×p1 matrix, with F =


R

−−−

R0

 so that the first part of

(2.6) can be reparameterized as follows

g1(µ) = Xβ = XF−1Fβ (3.2)

Moreover, upon writing F−1 =
[
ST

... ST0

]
, (3.2) can be written as
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g1(µ) = X
[
ST

... ST0

]
R

−−−

R0

β
and,

g1(µ) = XSTRβ + XST0 R0β (3.3)

upon doing X(1) = XST , X(2) = XST0 , Rβ = β(1), and R0β = β(2), it is possible to

reparameterize (3.3) as

g1(µ) = X(1)β(1) + X(2)β(2) (3.4)

Two details with respect to equation (3.4) can be highlighted:

i) The test of H0 : Rβ = 0 is then equivalent to the test H0 : β(1) = 0, i.e. whether the

constructed variable X(1) should be included in the model or not.

ii) Under H0, g1(µ) = X(2)β(2). Now, denote the matrix B as

B = X
[
ST

... ST0

]
= XF−1

BTB =
(
F−1

)T
XTXF−1 =

 S
(
XTX

)
ST S

(
XTX

)
ST0

S0

(
XTX

)
ST S0

(
XTX

)
ST0

 (3.5)

(
BTB

)−1
= F

(
XTX

)−1
F T =

 R
(
XTX

)−1
RT R

(
XTX

)−1
RT0

R0

(
XTX

)−1
RT R0

(
XTX

)−1
RT0

 (3.6)

and finally, B
(
BTB

)−1
BT = XF−1F

(
XTX

)−1
F T
(
F T
)−1

XT

= X
(
XTX

)−1
XT (3.7)

the common Hat matrix in linear normal model. (Ravishanker & Dey (2003)). Therefore,

it is verified that rank (B) = rank (X) = p1
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If, additionally RT
0 is constructed so that R

(
XTX

)−1
RT0 = 0, then in (3.6)

(
BTB

)−1
=

 R
(
XTX

)−1
RT 0

0 R0

(
XTX

)−1
RT0


and then, using expressions in (3.4)

BTB =

 S
(
XTX

)
ST 0

0 S0

(
XTX

)
ST0

 (3.8)

=

 XT
(1)X(1) 0

0 XT
(2)X(2)

 (3.9)

Hence, the model (3.4) can be expressed in an orthogonal form.

Note: If the expression for F matrix is constructed as F ? =


R0

−−−

R

 an orthogonal

expression similar to (3.8) is obtained.

A very important remark. The equality in (3.8) indicates the independence between

the subsets of covariates X(1) and X(2) with respect to the estimation spaces. This result

is very important to show that in 2k−p experiments, when we need to know if effects are

active or not (parameters significantly different to zero or not), we have a hypothesis of

the kind Rβ = 0, and statistical analysis for the fractional experiments is a special case

of the restricted VDBRM. The next examples can exemplify this.

Example 3. Hypothesis Rβ = 0 for Semiconductors data.

The Semiconductors is an experiment described in Melo et al. (2007). It is a 24−1
III

design with a resolution-III. It contains the main effects A, B, and C. (D is confounded

with ABC, AB is confounded with CD, ...). The design matrix and response are presented

in Table 3.1. In the inferential part, in order to know if effects are active or not, consider

the restrictions on parameters associated to the two-factor interactions, AB, AC, and AD.

Then, the hypothesis can be presented as H0 : Rβ = 03×1 versus H1 : Rβ 6= 03×1 where

β = (β0, β1, β2, β3, β4, β12, β13, β14)T . Thus, the relationship among R, R0, and F matrices

is
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Table 3.1. Semiconductors: design matrix and response.

Run x1 x2 x3 x4 y

1 - - - - 0.07
2 + - - + 0.10
3 - + - + 0.32
4 + + - - 0.55
5 - - + + 0.18
6 + - + - 0.20
7 - + + - 0.40
8 + + + + 0.61

i) R3×8 =


0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

,

R is a nilpotent matrix. (Ravishanker & Dey (2003)). ii)R0 =
[
I5

... 05×3

]
; thus,

iii) F8×8 = I8. Then F TF = I8, and F−1 = F T , i.e.,

F−1 =
[
RT

... RT0

]
(3.10)

Hence, iv) S = R, and S0 = R0, which simplifies the calculations for matrices X(1), and

X(2).

v) The matrix X(1) has 5× 8 order, and the matrix X(2) has 8× 3 order. 2�.

Then, a general test to contrast H0 : Rβ = δ versus H1 : Rβ 6= δ, for δ 6= 0 is considered

afterwards.

3.2.2 Hypothesis: Significance of the restricted BRM.

Consider the hypothesis H0 : Rβ = δ versus H1 : Rβ 6= δ. A common procedure for

testing hypotheses about parameters in GLM is the Wald Test Statistics:

ξS = (Q(θ0, λ̂0))TK−1(θ0, λ̂0)Q(θ0, λ̂0)

Under H0 true, ξS in (3.2.2) follows an asymptotic χ2 distribution with q degrees of

freedom.
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3.3 Hypothesis: Significance of the restricted BRM.

Consider the null hypothesis

H0 : b = bT0 = (θ0)T = (β0, α0)T (3.11)

(where H0 indicates that the mean and dispersion of the response are not explained for

any covariate.)

Under the null hypothesis, the constrained maximum likelihood estimator of λ will be

denoted as λ̂0. The vector of score statistics for b evaluated at the null hypothesis is

Q(θ0, λ̂0). In general, the information matrix of parameter vector (θ,λ), partitioned

according to the partition of the parameter vector, is the following square matrix of p1 +

p2 + q order

K(θ) =

 K11(θ) K12(θ)

KT12(θ) K22(θ)

 (3.12)

Then, specifically, the proposed statistics to evaluate the hypothesis (3.11), Likelihood

Ratio, Wald, and Score tests are given upon calculating

ξLR = 2{L(θ̂, λ̂)− L(θ0, λ̂0)} (3.13)

ξW = (θ̂ − θ0)TK−1(θ0)(θ̂ − θ0) (3.14)

ξS = (Q(θ0, λ̂0))TK−1(θ0, λ̂0)Q(θ0, λ̂0) (3.15)

where K−1 denotes the inverse matrix given in (3.12), and it can be computed by means

of the expression for the inverse of partitioned matrix given in (2.45). In all cases, the

null hypothesis is rejected at the 100α level if the computed statistic is greater than

χ2
(p1 + p2, α). According to (Shao (2003), p. 435), in a particular application, one may

choose one of these tests that is easy to compute. Therefore, for the hypothesis (3.11), it

is more appropriate to choose the score test, which does not require to estimate θ nor λ.

In the current work, the score test was used for the examples.

For a restricted GLM, the asymptotic equivalence of the three tests in 3.13 is shown in

Gourieroux et al. (1982), and Cysneiros (1997).
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3.4 A goodness-of-fit measure

After fitting the model, in order to check the goodness-of-fit of the restricted estimated

model, it is necessary to perform a diagnostic analyss. A global measure to explain the

percentage of total variation due to the relationship between the mean of y and the covari-

ates given by the linear predictor (2.3) can be obtained by computing R2
rest,p (a restricted

pseudo R2), which here is defined as

R2
rest,p = r2(η̂1,rest, g1(y)), 0 ≤ R2

rest,p ≤ 1 (3.16)

That is, the square of the sample correlation coefficient (of Spearman) between

η̂1,rest = Xβ̂r and g1(y). When there is a perfect agreement between η̂1,rest and g1(y),

R2
rest,p ≈ 1 (then a perfect agreement between µ̂ and y).

Example 4. A simulated restricted simple BRM.

Suppose that y1, . . . , yn are random variables where yi ∼ beta(µiφ, (1 − µi)φ), and

consider the following restricted simple BRM:

g1(µi) = log

(
µi

1− µi

)
= β0 + β1x1i + β2x2i + β3x3i + β4x4i

(3.17)

subject to

β1 + 5β2 = 0, and β3 + β4 = −0.2 (3.18)

i = 1, . . . , n.

Hence, according to the notation used in (2.7),

• p1 = 5, q = 2, β = (β0, β1, β2, β3, β4)T , λ = (λ1, λ2)T ,

• R =

 0 1 5 0 0

0 0 0 1 1

, and δ = (0,−0.2)T
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• Specifically, the simulations for the covariates were done as follows:

x1 ∼ uniform(0, 1)

x2 ∼ exponential(2)

x3 ∼ normal(7, 1)

x4 ∼ χ2
6

• Initial values for parameters were: (β0, β1, β2, β3, β4) = (1,−1/2, 1/10, 0.3,−0.5).

The routines for simulations are shown in (7.2). An example of the n = 8 simulated

observations are shown in Table (3.2). 2�

In order to evaluated the simulated observations, two examples are presented. In the first,

Table 3.2. Simulated restricted VDBRM: response and covariates.

Observation y x1 x2 x3 x4

1 0.46 0.47 0.19 6.99 8.33
2 0.24 0.21 2.39 8.58 9.18
3 0.76 0.80 0.29 6.64 2.66
4 0.29 0.65 1.24 7.22 10.64
5 0.74 0.32 0.87 7.27 2.25
6 0.20 0.72 0.30 5.47 4.52
7 0.38 0.29 1.58 7.07 7.49
8 0.67 0.93 0.22 6.37 3.19

relative bias of the estimators for different sample sizes and values of Lagrange multipliers

are computed. In the second example, the evaluation for observations is done by means of

a Bayesian BRM with a flat prior distribution to be compared against a frequentist BRM.

Example 5. Invariance for estimations in the simulated simple BRM.

For simulated data, in order to evaluate the property of invariance for estimates, with

regards to λ′s values, firstly, a VDBRM model was fitted, and estimates were obtained;

secondly, the relative biases of estimates were computed. The strategy was as follows:

1. The sample sizes considered were: 8, 20, 60, 100, and 250.

2. The penalty function proposed was:

n∑
i=1

li(µi, α0)− 1

2

2∑
k=1

λk(δk − rTk β)2 (3.19)
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3. The logit link for µ was employed. (The simulated data used this same link.)

4. The pairs of values for λ = (λ1, λ2) were (1, 1), (2, 1), (2, 3), (10, 3), and (1, 20).

5. For each estimate, its relative bias was computed as: rel.bias(β̂i) =
β̂i−βi,true
βi,true

, and

rel.bias(α̂0) =
α̂0−α0,true

α0,true

The computed relative biases are shown in Table (3.3).

Remark. Although each pair of values for (λ1, λ2) yields 25 estimates, and hence 25

relative biases, they can be summarized with only 5 relative biases because the estimates

were almost the same for the different pairs of (λ1, λ2).

Table 3.3. Simulated Restricted BRM: relative bias (r.b.). logit link.

n r.b.(β̂0) r.b.(β̂1) r.b.(β̂2) r.b.(β̂3) r.b.(β̂4) r.b.(α̂0)

8 2.93 1.27 -0.33 -1.20 0.18 0.58
20 0.36 2.14 2.47 0.24 0.29 0.32
60 0.21 0.33 0.06 -0.25 -0.17 0.03
100 0.06 -0.08 0.08 -0.12 -0.06 0
250 -0.01 0.07 0.49 0.04 0.05 0.03

An inspection of the relative biases of estimates in Table (3.3) indicate that, for all

the pairs of Lagrange multipliers, only when a large sample size is used, it is possible to

achieve the true parameters (excepting for β̂2 in 250 observations, although the variation

coefficient for the five estimates β̂2,8,..., β̂2,250 was lower than 0.0001, the relative bias

for the estimate presents an unsatisfactory value. This result was found for several

seeds used in the computational routines.). However, it is possible to see the importance

of having presented the inferential aspects for the VDMRB based on asymptotic results. 2�.

Example 6. Estimates (a) and hypothesis (b) about the restricted VDBRM.

Using 100 observations of the response variable from the simulated restricted VDBRM,

in order to evaluate the behaviour of LR test upon comparing both models, the restricted

and the unrestricted, the following Restricted VDBRM was fitted:

g1(µi) = logit(µi) = β0+β1x1i+β2x2i+β3x3i+β4x4i g2(φi) = α0+α1z1i+α2z2i (3.20)
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subject to

β1 + 5β2 = 0, β3 + β4 = −0.2 (3.21)

where z1 = x1, and z2 = x2.

a) Using the penalty function (2.8), with different values for (λ1, λ2), the parameter esti-

mates where approximately the same. In Table (3.4) the estimates for both, the restricted

VDBRM and the VDBRM are shown for λ1 = 1, λ2 = 20), and the logit link. Moreover,

the computed p − values for the restricted model are presented. Upon interpreting the

p-values of this Table, it is possible to conclude that the simulated data are good because

the parameters which were considered nonzero in the simulation, are significantly different

to zero according to the p-values.

Table 3.4. Parameter Estimates: restricted and unrestricted. VDBRM.

Parameter unrestricted estimate restricted estimate (p− value)

β0 0.855 1.061 (0.014)

β1 -0.423 -0.461 (< 0.001)

β2 0.137 0.108 (< 0.001)

β3 0.287 0.263 (< 0.001)

β4 -0.477 -0.470 (< 0.001)

α0 2.063 2.320 (< 0.001)

α1 -0.116 -0.005 (0.25)

α2 0.150 -0.004 (0.17)

b) Now, consider the hypothesis about restrictions: H0 : Rβ = δ versus H1 : Rβ 6= δ.

After applying the penalty function (2.8), with different values for (λ1, λ2), the LR test

introduced in Section (3.2) was applied, and the respective p-values were computed. A

summary of some values are shown in Table (3.5) is obtained. Upon analyzing the Table,

p-values indicate that i)H0 is rejected for all combinations of λ1, and λ2 considered. This

results indicate that does exist a restricted model. 2�.

NA: Not Apply.

Example 7. A diagnostic measure for the simulated Restricted VDBRM.

The estimated R2
rest,p for the fitted model was 0.81 indicating a moderate agreement

between µ̂ and y. R2
rest,p was computed by means of the square of the correlation coefficient

between Xβ̂r and logit(y) vectors. 2�.

Remark: Exploring the Bayesian Analysis for the Restricted VDBRM .
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Table 3.5. p-values for Restrictions Hypothesis, VDBRM.

λ1 λ2 D p− value

0 0 NA NA
5 10 6.87 0.031
10 5 6.90 0.032
2 3 6.86 0.032
20 1 6.97 0.031
2 20 6.86 0.032
30 20 7.039 0.030
1 0 2.62 0.105
0 1 2.61 0.106

Due to the fractional factorial experiments have a small number of runs, the sample-size of

experiment is small. Hence, a criticism to the development of the (2.4) for data from 2k−p

experiments is to base the inferential results on large-samples theory, which is not realistic

in experimental designs. Hence, the next task is to search for new alternatives analyses

for the restricted VDBRM which are not have any problems with the small sample-sizes.

One option is encountered in the Bayesian Statistics, where the parameters are modeled

as random variables. It uses conjointly prior information and the data likelihood in order

to get the estimates. Although some Statistic users prefer not to combine their results

with the frequentist ones, many authors do works where it is possible to integrated both

perspectives, Casella & Berger (1987), Samaniego & Reneau (1994), Bayarri & Berger

(2004), Aitkin (2010), and Xie & Singh (2013). In this work, some Bayesian ideas for

the Restricted VDBRM are proposed in Chapter (6). On another hand, the unrestricted

simple BRM, a Bayesian analysis will be considered for in Section (4.6), where the basic

concepts and notation of the Bayesian statistics will be presented.



CHAPTER 4

Unrestricted models.

In order to present several options for analyzing and comparing data from several real and

simulated experiments, the unrestricted models considered here are: i) linear regression

for original response; ii) linear regression for the arcsin and logit transformations; iii)

Frequentist simple beta regression and iv) Bayesian simple beta regression. For frequentist

methods, comparing methods the estimated mean responses (µi = E(yi|Xi = xi)) have

been used by many authors, Myers & Montgomery (1997), Lewis et al. (2001b), and Lewis

et al. (2001a), among others.

4.1 Linear regression model.

Denoting yi as the response for the ith experimental run (unit), i = 1, . . . , n, the normal

regression model is expressed as:

yi =

p1−1∑
l=0

xilβl + εi (4.1)

or in matrix form

y = Xβ + ε (4.2)

where ε denotes the vector of random errors, and β = (β0, β2, . . . , βp1−1)T is the vec-

tor of unknown regression parameters. For estimating the β, the strategy of ordi-

40
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nary least squares is used. It requires the minimization of the quadratic form εT ε =

(y−Xβ)T (y−Xβ). Upon differentiating the quadratic form with respect to β and equat-

ing the derivative to zero, the following normal equations are obtained: XTXβ = XTy.

If rank(XTX) = p1, a unique solution of normal equations is

β̂ = (XTX)−1XTy (4.3)

When the εi errors are assumed as independent and normally distributed with mean zero

and constant variance σ2, y and β̂ are random vectors normally distributed (in multivariate

form). The covariance matrix for β̂ is given by Cov(β̂) = σ2(XTX)−1, and an unbiased

estimator of σ2 is σ̂2 = yTy−β̂T
XTy

n−p .

In a normal model, a confidence interval of (1 − α) × 100% for µi, the mean response,

can be obtained as follows: i) using the normality of β̂; and ii) having ŷ(xi) = Xiβ̂ as an

unbiased estimator of µi, the confidence interval for the mean response is obtained as:

xiβ̂ ∓ t(α/2,n−p)
√
σ̂2(xi(XTX)−1xTi ), (4.4)

where t(α/2, n− p) is the percentile of the t distribution, with n − p degrees of freedom,

corresponding to a cumulative probability of (1−α/2), α is the significance level. In linear

regression models, for i=1,...,n:

hii = xi(X
TX)−1xTi (4.5)

are the diagonal entries of Hat matrix. Due to the characteristics of X in 2k−p experiments

analyzed as classical linear models, the length of confidence intervals (4.4) is constant (it

is due to observations are within the same combination of the levels of the factors).

The confidence interval in (4.4) was constructed based on hard assumptions for the errors

in (4.1); however, when the response y is in (0,1), usually the variance is not constant, and

it is difficult of achieving normality. A proposal to solve this problem is the transformation

method, which is detailed as follows.
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4.2 Transformations.

Transformations have been handled in different works, such as Box & Cox (1964) and

Aranda-Ordaz (1981) where transformations families mainly to y are proposed, in order

to get normality and homoscedasticity; generally it is desirable to find a function f(y)

(transformation of y) which will stabilize the variance. In this thesis, for y in (0,1), two

appropriate transformations are used, arcsin and logit, which return values on the real

line and then are modelled by the Gaussian model; the strategy is: i) to transform y appro-

priately, ii) to apply the normal model (4.1) for the transformed y, and iii) to present and

to interpret in the original scale the results, doing the appropriate inverse transformation.

Although, transformations have some drawbacks in some situations, Myers & Montgomery

(1997), Lewis et al. (2001b), and Lewis et al. (2001a), it is also possible to find some posi-

tive results as in Patil & Kulkarni (2011), and Bonat et al. (2012). In this thesis, in order

to provide more discussions regarding this subject for 2k−p experiments, two transforma-

tions for y in (0,1) are analyzed: logit, ỹ = log(y/(1− y)) and arcsin, y� = arcsin(
√
y).

With these transformed variables as response, the normal models were applied, and the

confidence intervals for mean response, µi, were computed. The confidence interval of

(1− α)× 100% for µi using the normal model and logit transformation is given by:

xi
̂̃
β ∓ t(α/2,n−p)

√̂̃σ2hii (4.6)

Similarly, the confidence interval of (1 − α) × 100% for µi using the normal model and

arcsin transformation is given by:

xiβ̂� ∓ t(α/2,n−p)
√
σ̂2
�hii (4.7)

Finally, the solution is presented in the original scale, using the appropriate inverse

transformation in each case: y = 1
1+exp(−ỹ) for the logit, and y = sin2(y�) for the arcsin

transformation. Also, hii is presented in 4.5.

Remark: with respect to transformations, as suggested by Bonat et al. (2012), it is

necessary to analyze each specific problem.

Nelder & Wedderburn (1972) and McCullagh & Nelder (1989) are benchmarks for advances
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in generalized linear models, unifying several model specifications under the flexible class

of distributions belonging to the exponential family, including the normal distribution.

Some authors have analyzed the data with response on (a,b) by GLM (nonnormal link)

and compare their results with the normal approaches. For instance, Lewis et al. (2001b)

and Lewis et al. (2001a) analyzed real fractional and factorial experiments throughout the

length of the confidence intervals on the mean response, (they compared normal vs GLM).

Also, Patil & Kulkarni (2011) presented an analysis of 2n experiments with response in the

exponential family, comparing GLM against normal and transformations models; in Myers

et al. (2011) several models are compared for some experiments with continuous response

in (a,b). In this thesis, some of those results have been summarized and augmented in

Table (1), Chapter ().

Now, considering different options for modeling response in (0,1), a logical approach is the

beta distribution, which has its values in the (0,1) interval and is versatile for modeling.

4.3 Frequentist simple BRM.

In the simple BRM, only µ is modelled, and the parameter φ is taken as fixed (φ = exp(α0)

in the VDBRM. Thus,

g1(µi) = η1i =

p1−1∑
l=0

xilβl = xiβ (4.8)

The log-likelihood function for the simple BRM (4.8) is given by

l(β, φ) =
n∑
i=1

li(µi, φ) (4.9)

where

li(µi, φ) = logΓ(φ)−logΓ[(µiφ)]−logΓ[(1−µi)φ]+(µiφ−1)logyi+[((1−µi)φ−1)]log(1−yi)

(4.10)

with µi = g−1
1 (η1i) defined in (4.8). This model is completely detailed in Ferrari & Cribari-

Neto (2004). As a special case in (2.3), inference in the simple BRM (4.8) is based on

asymptotic results under regularity conditions (Because properties of estimators of BRM

are similar to those of a GLM). The solutions do not have closed-form. Thus, when the
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sample size is large, asymptotically,

(β̂, φ̂)T ∼ Np+1

(
(β, φ)T ,K−1

)
(4.11)

where K−1 is the inverse of Fisher information matrix, so, if θT = ((β, φ)T ), and µi =

g−1
1 (xiβ), and using the likelihood (4.10), for s, j = 1, . . . , p+ 1, then,

K(β, φ) = −Eθ
[
∂2 [l(β, φ)]

∂θs∂θj

]
=

 Kββ Kβφ

Kφβ Kφφ

 (4.12)

That is, the submatrix nonzero of matrix (2.40).

Now, for computing the confidence interval of µi in the simple BRM, the strategy is as

follows: i) using the asymptotic results in (4.11), note that

xiβ̂ ∼ N(xiβ, Cov(xis.e.(β̂)xTi )) (4.13)

where s.e.(β̂) denotes the standard error of the estimated parameter.

ii) with appropriate algebra, the confidence interval of (1 − α) × 100% for µi is obtained

(it was proposed in Ferrari & Cribari-Neto (2004)). Explicitly, for each link function

considered, the expressions for confidence intervals of µi are:

1. logit link:

(
1

1 + exp{−η̂i + Zα/2 s.e.(η̂i)}
,

1

1 + exp{−η̂ − Zα/2 s.e.(η̂)}

)

2. probit link: [
Φ(η̂i − Zα/2 s.e.(η̂i)), Φ(η̂i + Zα/2 s.e.(η̂i))

]
3. cloglog link:

[
1− exp{− exp(η̂i − Zα/2 s.e.(η̂i))}, 1− exp{− exp(η̂i + Zα/2 s.e.(η̂i))}

]
4. cauchit link:[

1

2
+

tan−1(η̂i − Zα/2 s.e.(η̂i))

π
,
1

2
+

tan−1(η̂i + Zα/2 s.e.(η̂i))

π

]



CHAPTER 4. UNRESTRICTED MODELS. 45

where: Zα/2 = Φ−1(1 − α/2) indicates the upper α/2 percentage point of the standard

normal distribution; η̂i = xiβ̂ is the fitted linear predictor; s.e.(η̂i) =
√

xicôv(β̂)xTi ;

where, côv(β̂) is obtained from the inverse of the Fisher information matrix evaluated

at the maximum likelihood estimates by excluding the row and column of this matrix

corresponding to the precision parameter.

4.4 Frequentist variable dispersion BRM.

In the previous chapter the inference for the restricted VarD BRM (2.6) - (2.7) was de-

veloped. In the current section only the equations (2.6) are considered. Therefore, the

inference for the unrestricted VarD BRM only refers to the θ = (βT ,αT )T vector, which

contains the interest parameters, with p1 + p2 dimension.

One of first frequentist theoretical developments for the variable dispersion BRM is found

in Espinheira (2007), although Smithson & Verkuilen (2006) already had applied the model

without theoretical details. Later on works such as Cribari-Neto & Souza (2011), Cribari-

Neto & Queiroz (2012), and Bayer & Cribari-Neto (2014) is dealt widely with this subject.

The basic inferential aspects can be summarized as follows:

i) The log-likelihood function associated to the model is given by `(θ) as is expressed in

(2.4).

ii) Similar to the calculus done in (2.13), the p1 + p2 partial derivatives of the P1 penalty

(the first part of (2.8)) form the vector of scores

Q(β,α) = Q(θ) =
∂P1(θ)

∂θ
(4.14)

iii) Under regularity conditions the maximum likelihood estimates of (β,α) are defined

by the p1 + p2 equations

Q(θ̂) = 0 (4.15)

iv) The distribution of θ̂ is then asymptotically normal with mean θ and the covariance

matrix is the inverse of the K(θ) matrix. This (K(θ))(p1+p2)×(p1+p2) matrix can be ob-

tained from (2.40) doing λ = 0. K(θ) is known as the expected information for the variable
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dispersion BRM. In some cases, it may be easier to use the observed information

I(θ) = −∂
2P (θ)

∂θj∂θs
(4.16)

In practice, the value of θ will not be known and so the estimate θ̂ will be substituted by

the values K(θ̂) and I(θ̂).

v) To test the null hypothesis θ = θ0, where θ0 is a known vector, there are three tests

which are asymptotically equivalent, likelihood ratio test, Wald test, and Score test. The

expressions for the respective statistics are

2{L(θ̂)− L(θ0)} (4.17)

(θ̂ − θ0)TK(θ0)(θ̂ − θ0) (4.18)

(Q(θ0))TK−1(θ0)Q(θ0) (4.19)

In all cases, the null hypothesis is rejected at the 100α % level if the computed statistic is

greater than χ2
(p1+p2;α) .

Now, considering the restricted VarD BRM, an additional notation will be employed. Let

β̂r and α̂r be the maximum likelihood estimates of the restricted VarD BRM (2.6) - (2.7),

and then θ̂r = (β̂r, α̂r). The maximum likelihood estimate of λ is denoted as λ̂.

Due to 2k−p experiments arising from situations with not many runs, using asymptotic

results of the classical BRM can be questionable. Hence, in order to expand the options

to analyze the mean response, here the Bayesian BRM is also considered, which takes the

parameters as random variables and it does not require large sample sizes.

4.5 Bayesian simple BRM.

The main idea of this work is not to generate discussion regarding frequentist and

Bayesian paradigms, but analyzing the data from two different perspectives, frequentist

and Bayesian. Philosophical and methodological discussions between these two branches

have been presented in many papers, see Casella & Berger (1987), Samaniego & Reneau

(1994), Bayarri & Berger (2004), Aitkin (2010), and Xie & Singh (2013).

The basic concepts of Bayesian statistics can be studied in books such as Bernardo &

Smith (2000), and Kruschke (2011). Here, is presented a summary of some concepts and
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functions inherent to the Bayesian methodology. Other aspects can be investigated in the

mentioned books.

• Parameter vector is denoted as θ.

• Before performing the experiment, users of the Bayesian Statistics employ some

previous knowledge about θ, and it is specified by means of one prior distribution,

denoted p(θ), and it is based on the history of a specific problem or application, and

it is chosen before analyzing the real data or performing the experiment.

• L(y|θ) is the likelihood function. It contains the information about the study or

experiment.

• After applying (sometimes partly) the Bayes’ theorem, p(θ|y) ∝ L(y|θ)p(β), and

then, the function p(θ|y) is called the posterior distribution, and it indicates the

distribution of θ, after using the data and the previous information in the model.

• The design matrix employed in the frequentist analysis, is used in the Bayesian

analysis too.

• Generally, when a flat prior distribution is employed, Bayesian estimates are similar

to the frequentist ones.

Initially, similar to the frequentist approach, the Bayesian BRM studies how, and how

some covariates affect the response; in that sense, the linear predictor (Xβ) is common

for both approaches. (β is considered as fixed parameter in the frequentist approach).

Remark : In this thesis, the Bayesian examples are done for the unrestricted BRM and

VDBRM. The complete development of the Bayesian analysis for the restricted BRM

is left as future work. The illustrative Bayesian examples are done from the integrated

Bayesian/likelihood framework.

4.6 Unrestricted Models: Applications.

Example 8. Example 1 continued (BRM and Half-normal plots for a 24 experiment).

In Example 1 was presented the Drill data experiment. Active effects yielded for

several non-beta methods were summarized in Table 1. In this thesis, four link functions
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for the BRM were employed to reanalyze the data and three aspects can be highlighted:

i) Among the four link functions, cauchit was the best in terms of the Akaike and Bayesian

information criteria (AIC and BIC).

ii) Among the seven applied models for constructing the Half-normal plots, the cauchit

simple BRM had more active effects than any other model (see Figure 1, bottom-right).

iii) Among the seven compared models, with respect to the inferential aspects, the cauchit

simple BRM was the unique model that yielded the p-values lower than 0.05 for the active

effects from the Half-normal plot. For the other six models, p− values were much greater

than 0.10 for all effects.

Then, the new summary for Drill data is shown in 4.1:

Table 4.1. New analysis of the Drill experiment

Authors (year) Response Method Active BIC (smaller X)

Daniel (1976) y Linear reg. B,C,D, BC, CD 47.72
Montgomery (2001) log(y) Linear reg. B, C, D -36.54
Lewis et al. (2001a)) y GLM.gamma B, C, D 14.58

Grajales (2015)
BRM y/100 logit.link B, C, D -133.15
BRM y/100 probit B, C, D -126.4
BRM y/100 cloglog B, C, D -134.86
BRM y/100 cauchit 7 effects -212.68

The 7 active effects for BRM.cauchit: B, C, D, BC, CD, BD, BCD.

A conclusion taken of the 4.1 is that the BRM’s presented the best fits for this specific

experiment, which allows for proposing the simple BRM as a alternative for analyzing

factorial experiments using the simple BRM from a inferential viewpoint also. Analyses

were done using R software (R Development Core Team (2014)). The computational

routine is shown in the Appendix 7.1. 2�

Some examples for the unrestricted models are presented. Two real fractional facto-

rial experiments: semiconductors, and paint trial are analyzed. Seven specific models are

described and applied for real and simulated data. The Semiconductors is a 24−1
III experi-

ment, and it was introduced in chapter 3.

The paint trial experiment.

The paint trial is a 28−4
IV experiment and it can be encountered in Box et al. (2005). In

order to develop a paint for certain vehicles a customer requires that the paint has high

glossiness and acceptable abrasion resistance. Glossiness was measured on a scale of 1 to
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100, then we consider y−1
99 which lies on (0,1). The experimenters were helped by paint

technologist to decide that was necessary to include eight factors each with two levels. To

carry out the complete factorial experiment 28, they required 256 runs or experimental

units; however, they only had sixteen experimental units. The solution was to do a frac-

tional factorial, a 28−4
IV experiment, which requires exactly sixteen experimental units, and

all (8) factors can be analyzed. In Box et al. (2005), this data were analyzed by a linear

regression model where with β0, β1, and β2 as parameters significantly different to zero.

The design matrix taken from Box et al. (2005), and glossiness (appropriately modified)

for the paint trial experiment are shown in Table 4.2. Seven fitted models.

Table 4.2. Design matrix and response for paint trial data.

Run x1 x2 x3 x4 x5 x6 x7 x8 (y − 1)/99

1 - - - - - - - - 0.525
2 + - - - + + + - 0.596
3 - + - - + + - + 0.677
4 + + - - - - + + 0.778
5 - - + - + - + + 0.475
6 + - + - - + - + 0.667
7 - + + - - + + - 0.545
8 + + + - + - - - 0.778
9 - - - + - + + + 0.485
10 + - - + + - - + 0.677
11 - + - + + - + - 0.606
12 + + - + - + - - 0.808
13 - - + + + + - - 0.515
14 + - + + - - + - 0.697
15 - + + + - - - + 0.646
16 + + + + + + + + 0.818

Seven models were fitted, and compared: three normal (original response, arcsin and logit

transformations), and four simple BRM’s (one for each link). Specifically:

1. yi = η1i + εi (normal).

2. logit(yi) = η1i + εi (logit tranformation).

3. arcsin(
√
yi) = η1i + εi (arcsin transformation).

4. log( µi
1−µi ) = η1i (beta logit).

5. Φ−1(µi) = η1i (beta probit).

6. log(− log(1− µi)) = η1i (beta cloglog).
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7. tan(π[µi − 1
2 ]) = η1i (beta cauchit).

The statistical methodologies applied in this Section can be summarized as follows. The

first method is the combining of the Half-normal plots and statistical inference, as it was

exemplified in (1); this method is applied for two fractional factorial experiments (Semi-

conductors and paint trial). The second method (estimated mean response) is based on

comparing confidence intervals on mean response for observations; this methodology is

justified in works such as Myers & Montgomery (1997), Lewis et al. (2001b), and Lewis

et al. (2001a). Within a frequentist framework, these authors show that the coverage of

asymptotic intervals on mean response for small samples remains very close to theoretical

coverage claims. In the current work, for the simple BRM, Bayesian credibility intervals

on mean response are proposed in order to compare against the frequentist confidence

intervals. As the Bayesian credibility intervals were built using a flat prior in the simple

BRM, its results should be very similar to the frequentist results, (Aitkin (2010)). The

third method dealts with intervals coverage for parameters from a simulated model under

different replications, it will be applied in the paint trial experiment. The fourth method-

ology explores to recover the mean response for a simulated experiment whose response is

in (0,1).

4.6.1 Applied unrestricted models: Paint trial, a 28−4
IV experiment

Example 9. The paint trial experiment. Half-normal plot and Inference.

In paint trial data seven models were fitted: three normal (original response, arcsin

and logit transformations), and four simple BRM’s (one for each link). Initially, the Half-

normal plots were done and they are shown in Figure 4.1, for normal and transformations

models, and Figure 4.2 presents the plots for the BRM’s.

Afterwards, active effects extracted from each plot to fit the three normal models were

used. For the simple BRM was dropped the two-factor interaction x1x4 because its es-

timate was near to zero in the Half-Normal plots for the normal models. A summary of

results appears in Table (4.3). Two aspects to highlight from this Table:

1) For the simple BRM, the x7 effect was not used.

2) Using the AIC and BIC criteria, the best model was the BRM with cloglog link.
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Figure 4.1. paint trial data. Half-normal plots. Normal and transformations
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Figure 4.2. paint trial data. Half-normal plots: four BRM’s

Table 4.3. paint trial. Half-normal plots and inference

Model p-value < 0.05 AIC BIC

Normal All 92.51 95.60
arcsin All -44.93 -41.84
logit All -5.4 -2.3

beta.logit All -54.14 -51.05
beta.probit All -54.54 -51.45

beta.cloglog All -55.53 -52.44
beta.cauchit All -50.80 -47.71

2�.

An additional analysis, comparing Bayesian results against Half-normal plots for paint

trial data is done. The objective of next example is to explore the simple Bayesian BRM

as an alternative to identify active effects in 2k−p experiments. Theoretically, this example



CHAPTER 4. UNRESTRICTED MODELS. 52

is thought as follows: i) a simple Bayesian BRM is fitted for data from a 2k−p experiment,

using a flat prior distribution; ii) the credible intervals for the parameters are constructed;

iii) We will call Bayesian active effects to those effects associated to parameters whose

credibility intervals do contain to zero. Subsequently, a comparison with active effects

from Half-normal plot can be done.

Here, the method is exemplified using data from the paint trial experiment.

Example 10. The paint trial experiment. Bayesian and frequentist analysis, and Half-

normal plot.

First, β the parameter vector with 14 dimension (the parameter for x7 was not

included for the simple BRM) was considered. Second, a simple Bayesian BRM for

data from paint trial was applied with the logit link for the mean parameter, and

using a flat prior distribution for β. Third, the 14 credibility intervals are computed.

Summary of results can be seen in Table (4.4). An interpreting of the results indicates that:

• Both methods, Bayesian and Half-normal yield the same active effects, A and B.

• Only two effects present discordant results: the two-factor interactions, AE and AH.

In the first case, the credibility interval does not contains to zero but its parameter

was not significantly different to zero (p-value= 0,80) within the frequentist inference.

In the case of the AH factor, although it is considered as active effect for two methods

(the credibility interval for its associated parameter does not include to zero, and

the respective p-value is 0,07), this effect is not considered as active by means of the

Half-normal plot.

Finally, from an integrated Bayesian/likelihood approach, the Bayesian BRM is a

potential method for choosing best models based on the active effects yielded by its

credibility intervals. 2�.

Example 11. The paint trial experiment. Mean response by confidence intervals.

For the paint trial experiment Box et al. (2005) fitted a normal model with original y

as response and the systematic part β0 +β1xi1 +β2xi2. Based on this model, in this thesis
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Table 4.4. Table paint trial. Bayesian and frequentist BRM active effects. logit link.

FACTOR β̂Bayes CredIntLow CredIntUpp β̂freq p-value graphically active?

A 0.36 0.27 0.44 0.34 0.01 YES
B 0.26 0.19 0.33 0.27 0.07 YES
C 0.003 -0.10 0.08 -0.002 0.98 NO
D 0.06 -0.03 0.152 0.06 0.70 NO
E 0.007 -0.09 0.13 -0.002 0.98 NO
F -0.005 -0.11 0.07 -0.01 0.92 NO
H 0.06 -0.04 0.17 0.04 0.78 NO

AB 0.02 -0.09 0.13 0.02 0.88 NO
AC 0.05 -0.04 0.16 0.05 0.72 NO
AD 0.05 -0.04 0.16 0.04 0.78 NO
AE -0.04 -0.10 0.04 -0.03 0.80 NO
AF 0.002 -0.08 0.07 0 0.99 NO
AG 0.06 -0.008 0.17 0.05 0.17 NO
AH 0.006 -0.08 0.07 -0.01 0.07 NO

were computed the confidence intervals on mean response for each observation. Also, in

order to compare the mean response between models, the seven model presented in (4.6)

were fitted using the same systematic part. The lengths of confidence intervals (CI) on

mean response were computed for these seven models. Lengths of CI are shown in Table

4.5. ᵀ.

Table 4.5. Lengths of the 95% confidence Intervals on the Mean Response in paint trial Data.
Normal, transformed and beta models.

Transformed Transformed Beta Beta Beta Beta

RUN Normal logit arcsin link=logit probit cloglog cauchit

1 17.73 20.27 18.81 6.43 6.29 5.82 7.49
2 17.73 17.98 17.72 5.94 5.86 5.73 6.67
3 17.73 18.92 18.19 6.15 6.04 5.84 7.04
4 17.73 13.77 15.35 4.95 4.96 4.99 4.94
5 17.73 20.27 18.81 6.43 6.29 5.82 7.49
6 17.73 17.98 17.72 5.94 5.86 5.73 6.67
7 17.73 18.92 18.19 6.15 6.04 5.84 7.04
8 17.73 13.77 15.35 4.95 4.96 4.99 4.94
9 17.73 20.27 18.81 6.43 6.29 5.82 7.49

10 17.73 17.98 17.72 5.94 5.86 5.73 6.67
11 17.73 18.92 18.19 6.15 6.04 5.84 7.04
12 17.73 13.77 15.35 4.95 4.96 4.99 4.94
13 17.73 20.27 18.81 6.43 6.29 5.82 7.49
14 17.73 17.98 17.72 5.94 5.86 5.73 6.67
15 17.73 18.92 18.19 6.15 6.04 5.84 7.04
16 17.73 13.77 15.35 4.95 4.96 4.99 4.94

Example 12. The paint trial experiment. The mean response by Bayesian and frequentist

confidence intervals.
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In this example both approaches, Bayesian and frequentist are integrated upon com-

paring the confidence intervals with credibility intervals on mean response for the 16

observations in the paint trial experiment.

The Bayesian BRM fitted here can be summarized as follows:

i) The linear predictor β0 + β1xi1 + β2xi2, i=1,..., 16, was considered.

ii) the normal was chosen as the prior distribution for parameter vector, thus

(β)T ∼ Np

(
0px1, 106Ip

)
(4.20)

where Ip is the Identity matrix of p order. This (chosen) covariance matrix indicates that

a flat prior distribution for the parameter vector

iii) with independent data, starting from (4.9), the likelihood function is

L(β, φ) =
n∏
i=1

Γ(φ)

Γ(F (xTi β)φ)Γ(φ(1− F (xTi β))
y

(φF (xTi β))−1

i (1− yi)φ(1−F (xTi β))−1
(4.21)

where F (·) represent the inverse link function g−1
1 (·).

iv) The joint posterior distribution is given by

p(β, φ|y) =
L(β, φ)p(β, φ)∫

L(β, φ)p(β, φ)dβdφ
(4.22)

and eliminating terms not depending on y:

p(β, φ|y) ∝ p(β, φ)[Γ(φ)]n
n∏
i=1

[Γ(F (xTi β)φ)Γ(φ(1−F (xTi β)))]−1y
(φF (xTi β))−1

i (1−yi)φ(1−F (xTi β))−1

(4.23)

which is analytically untractable, i.e., it does not present closed form. Thus, it must be

approximated numerically with methods based on, for instance, Markov chains Monte

Carlo (MCMC), such as Metropolis-Hasting or the Gibbs sampler, see Robert & Casella

(2004). According to Branscum et al. (2007), and Figueroa Zuniga (2011), Gibbs sampling

can be used to generate a Monte Carlo sample from (4.23). In this context, the Gibbs

sampler involves iteratively sampling the full conditional distributions:

p(β|φ,y) ∝ L(β, φ)p(β) (4.24)

p(φ|β,y) ∝ L(β, φ)p(φ) (4.25)
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In this Example, the Random Walk for Metropolis Hasting (RWMH)’s method (Robert &

Casella (2004)) was used, and it was implemented in software R Development Core Team

(2012). The general WRMH’s method appears detailed in (7.3.1).

The Bayesian BRM was used to compute the (Bayesian)credibility intervals of (1− α)×

100% for µi in paint trial experiment. The process to compute the length of credibility

intervals on mean response for the four link functions considered in BRM can be detailed,

thus: i) 50000 Monte Carlo iterations were considered, and the first 5000 were taken

account of burning-time, therefore the analyses were done with the last 45000 simulated

posterior distributions, and having 45000 (Bayesian) estimated β’s, say βB, that is, values

of the estimated posterior distribution, were computed 45000 mean responses which are

percentiles of an unknown distribution. Finally, those 45000 mean response are sorted,

and the 2.5 and 97.5 percentiles are taken; these percentiles are the limits of the credibility

interval.

The necessary diagnostics tests were performed (convergence, autocorrelation, history):

desirable behaviors were observed; Figure 4.3 shows the diagnostics for the β1 parameter

with cauchit link: the upper graph presents the convergence of the chain; on another

hand, because we observed high autocorrelation (20th order) in chains, we used each 20

observations and got low autocorrelation, see Figure 4.3 (middle and lower graphs). A

similar behaviour was encountered in the other parameters.

The four links described in (2.2) were used for both Bayesian and frequentis models.

Results and comparisons are shown in Table 4.6. The analysis on estimated mean response

by Bayesian BRM is different to the frequentist one: at taking each βi as random variable,

an estimation of βi is not a real value but a percentile of a (posterior) distribution. In that

case, on Bayesian statistics is not possible to speak about the true value of the parameter,

a term used in the interpretation of a confidence interval. Hence, an appropriate way to

estimate the mean response by means of the Bayesian model is through a credibility interval

of (1 − α) × 100% for µi, (denoted as µi,B) with limits L1 and L2, whose interpretation

is: the probability that the mean response lies between L1 and L2 is 1 − α. Note that is

not necessary to say after repeating many times the experiment, which must be expressed

in the interpretation regarding the (frequentist) confidence interval. Inspecting Table 4.6

we can observe similar values for Bayesian and frequentist intervals for the logit link. The

Bayesian BRM with probit link had the worst lengths because they are greater than the

normal lengths. This bad result is surprisingly because the Akaike’s Information Criterium
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Figure 4.3. Some diagnostic tests for Bayesian analysis.

(AIC) for the frequentist fit, in the BRM, presented similar values for both link functions:

logit (AIC = -54.14) and probit (AIC = -54.55). These contradictory results leads to

suggest a more detailed study using the probit link for the BRM.

The Bayesian models with cloglog and cauchit links had intermediate results: wider lengths

and also narrower intervals than frequentist’s lengths for some experimental units. It is

contradictory because the cloglog link achieved the best AIC, (-55.53) and the cauchit link

got the worst AIC, (-50.80) which could lead to judging these link functions as unstable in

Bayesian analysis on mean response. 2�. Due to in this work only unreplicated 2k and 2k−p

experiments are considered, the next example deals with simulated data in order to analyze

the effect yielded in the estimated parameters when two, three, and four replications of the

experiment are considered. The simulated data are based on the paint trial experiment.

The seven models presented in (4.6) are fitted in the simulation scenario.

Example 13. The paint trial experiment. Coverage for parameters.

For the paint trial experiment a 16×1 response vector distributed beta was generated,

based on an target BRM with covariate matrix Xpt = (1, x1, x2), x1 and x2 being the

first and second columns of the design matrix in paint trial data, i.e., the systematic part

considered was: ηi = β0 + β1xi1 + β2xi2, and for this case was used the logit link function,

µi = 1/(1 + exp(−ηi)). Then, the model contains a known mean µi for each experimental
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Table 4.6. Lengths of 95% frequentist and Bayesian confidence intervals on Mean. paint trial
Data.

logit logit probit probit cloglog cloglog cauchit cauchit

RUN Normal freq Bayes freq Bayes freq Bayes freq Bayes

1 17.73 6.43 6.83 6.29 22.47 5.82 10.02 7.49 7.54
2 17.73 5.94 6.42 5.86 20.14 5.73 7.67 6.67 6.76
3 17.73 6.15 6.69 6.04 21.35 5.84 8.87 7.04 6.87
4 17.73 4.95 5.33 4.96 16.92 4.99 3.02 4.94 4.47
5 17.73 6.43 6.83 6.29 22.47 5.82 10.02 7.49 7.54
6 17.73 5.94 6.42 5.86 20.14 5.73 7.67 6.67 6.76
7 17.73 6.15 6.69 6.04 21.35 5.84 8.87 7.04 6.87
8 17.73 4.95 5.33 4.96 16.92 4.99 3.02 4.94 4.47
9 17.73 6.43 6.83 6.29 22.47 5.82 10.02 7.49 7.54
10 17.73 5.94 6.42 5.86 20.14 5.73 7.67 6.67 6.76
11 17.73 6.15 6.69 6.04 21.35 5.84 8.87 7.04 6.87
12 17.73 4.95 5.33 4.96 16.92 4.99 3.02 4.94 4.47
13 17.73 6.43 6.83 6.29 22.47 5.82 10.02 7.49 7.54
14 17.73 5.94 6.42 5.86 20.14 5.73 7.67 6.67 6.76
15 17.73 6.15 6.69 6.04 21.35 5.84 8.87 7.04 6.87
16 17.73 4.95 5.33 4.96 16.92 4.99 3.02 4.94 4.47

run (sixteen runs in a replication of the experiment). By Monte Carlo simulation, the

actual simulated response yi is obtained by adding an error drawn at random from a

specified distribution to the linear predictor, yi = 1/(1 + exp(−ηi)) + ξi is generated with

some initial values for (β0, β1, β2). When the beta regression model is applied throughout

the sixteen rows of Xpt, the 16 × 1 response vector, y is finally generated. This 16 × 1

simulated vector is called a replication of the experiment. Each of the replications of

the experiment is simulated 5000 times, and after, the seven models presented in (4.6)

were fitted. The precision parameter used was φ = 50 for all experimental scenario.

Summarizing, the ideal beta regression model has logit link and the inappropriate use of

other models is measured by coverage of confidence intervals on the parameters. For each

of the mentioned seven models, and for each of the three β parameters, 95% confidence

intervals are examined; therefore, for one replication of the experiment (16 runs) a total

of 80000 points observational are used in the coverage calculations for each parameter,

and for each model. Moreover, in order to study how much the results are affected for

the sample size; we considered simulations for 2, 3, and 4 replications of the experiment,

concatenating the design matrix one, two and three times horizontally leading to have 32,

48, and 64 observations, respectively. Also, each experimental situation was simulated

5000 times and the final result is, again, coverage of confidence intervals. For instance,

in the experimental design situation for 64 observations, 5000× 7 models are fitted. The
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coverage of confidence intervals on β parameters are shown in Table (4.7) (16, 32, 48,

and 64 runs). (For the following four models: normal, arcsin transformation, and BRM

Table 4.7. Coverage (%) for the three parameters in fitted models for simulated data. 1, 2, 3,
and 4 replications of the experiment.

Transformed Beta Beta

Runs βi logit logit cauchit

16 β0 92.22 89.62 78.60
16 β1 92.98 90.20 87.02
16 β2 92.84 90.28 88.10

32 β0 93.54 92.78 70.82
32 β1 93.36 92.90 86.24
32 β2 93.50 92.74 87.62

48 β0 92.42 93.02 60.78
48 β1 93.12 93.04 84.26
48 β2 93.92 93.38 86.56

64 β0 92.52 93.70 52.44
64 β1 93.18 93.56 81.44
64 β2 94.20 93.98 84.92

with probit and cloglog links had bad results, its coverage were lower than 37%, and their

values are not shown). The Table (4.7) indicates that, in spite of logit transformation

model had yielded a bad performance when the lengths of confidence intervals for mean

response were analyzed (see the Table (4.5)), this model yielded the best coverage, near to

the target percentage, in the three parameters for each sample size. The beta model with

logit link, although was the target model, had only a satisfactory performance because it

needed more sample sizes to achieve better coverage. At this point, as some asymptotic

results are assumed for the distribution of β̂ in the BRM, this could justify the latter

result. On another hand, the logit transformation could have achieved the normality

and homogeneous variance for response which would lead to β̂ normally distributed with

variance constant, and in that case, a good coverage should be achieved with a little

sample size, too. The BRM with cauchit link had an acceptable coverage for the β1 and

β2 parameters for all sample sizes; however, for the intercept parameter, his coverage

was illogically decreasing as sample size was increasing. Three models had bad results:

normal, beta with probit and cloglog links. Their intervals never achieved coverage greater

than 37% and some of them had coverage equal to zero%. A special analysis deserves the

behavior of the arcsin transformation model because in all simulations for all sample sizes,

and, for the three parameters, the model had a coverage of zero percent indicating that all

confidence intervals never included the true parameter. This result is surprisingly, taking
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into account that the logit transformation model presented the best performance and both

transformations have the same theoretical objectives, getting normality and homogeneous

variance; this result does not surprise upon analyzing that this model yielded bad lengths

of the confidence intervals on mean response. (see the Table (4.5). 2�

The next example studies the four link functions of the BRM presented in (2.2) with

regards to its ability of recovering the mean response throughout subintervals of the (0,1).

Example 14. The paint trial experiment. Recovering the mean response.

This simulation has as objective to study the behaviour of the link functions for the

simple BRM that was fitted to the paint trial data. The links’ behaviour is analyzed

throughout the subintervals of unity interval. The procedure can be summarized as follows:

1. The systematic part was ηi = β0 + β1xi1 + β2xi2, with x1 and x2 covariates taken

from the paint trial data. Notation in matrix form: ηpt = Xptβ, pt:paint trial.

2. Initial values were given for parameters: (β0, β1, β2)T = (1, 0.2, 2)T .

3. Therefore, the η vector can be computed as ηtrue = g(µ) = Xptβ

4. Consequently, the true mean response for each link is computed as µtrue =

g−1(Xptβ). for example, for logit link: µtrue = 1/(1 + exp(−ηtrue)).

5. Parameter φ was fixed as 10.

6. Interval (0,1) is partitioned in four subintervals as: (0,0.25), [0.25, 0.5), [0.5,0.75),

and [0.75,1)

7. 2000 random numbers from a beta(a,b) distribution are simulated (a = µφ, b =

φ(1− µ)), and they are assigned to the respective subinterval.

8. In each subinterval a simple BR Model g(µi) = β0 + β1xi1 + β2xi2 is fitted, with

its values of link, simulated yi, and concatenating Xpt to equalize the sample size of

simulated y.

9. Each fit yields a parameter estimate (β̂0, β̂1, β̂2)T . Hence, there are four estimated

vector for each link, (one for each subinterval).
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10. For each link the mean response is estimated as µ̂ = g−1(Xptβ̂), in each subinterval.

Summarizing, for a specific link, there are four estimates on mean response, one for

each subinterval.

11. For each link, within each subinterval, is computed the Euclidean distance between

µ̂ and its respective µtrue.

The results are shown in Table 4.8. Upon analyzing the results of this simulation, the

mean response can be recovered easier when values of y are in [0.75,1), modeling the mean

with logit, probit, and cloglog links. When the mean was modeled by the cauchit link, it

was impossible to recovery the mean response in the four subintervals. Also, at subinterval

(0,0.25) it was not possible to recover the mean response for the four link functions. 2�.

Table 4.8. Euclidean distance between estimated vs true mean response for links and subinter-
vals. Simulated Data from a simple BRM.

Link (0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1)

logit NC 0 106.83 3.16
probit NC 0 106.83 3.16
cloglog NC 47.63 106.86 3.16
cauchit NC NC NC NC

NC: Not converged.

4.6.2 Applied unrestricted models: semiconductors, a 24−1
III experiment

Example 15. The Semiconductors experiment. Half-normal plot and inference.

In semiconductors data the seven models introduced in (4.6) were fitted. Initially,

the Half-normal plots were performed and they are shown in Figure 4.4 for normal and

transformations models, and the Figure 4.5 presents the plots for the BRM. Subsequently,

the active effects extracted from each plot were used to fit the three normal models. For

the simple BRM, the x1x4 effect was dropped because it presented an estimate near to

zero in the Half-Normal plots for the normal models. A summary of results appears in

Table (4.9). An inspection of this Table indicates that:

1) From Half-normal plots, the same four active effects for all models. A,B,C, and AB.

2) The three fitted normal models achieved normality (Shapiro test was nonsignificant in
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Figure 4.4. Semiconductors data. Half-Normal plots. Normal and transformations
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Figure 4.5. Semiconductors data. Half-Normal plots. Four Beta Regression Models

all models) and homoscedasticity (Breusch-Pagan test).

3) According to AIC and BIC criteria, the transformation arcsin was the best model. 2�.

Table 4.9. Semiconductors. Half-normal plots and inference

Model p-value < 0.06 AIC BIC

Normal All 34.05 34.52
arcsin All -44.39 -43.90
logit Not AB 6.18 6.65

beta.logit All -24.19 -23.71
beta.probit All -26.13 -25.65
beta.cloglog All -21.41 -20.93
beta.cauchit Not AB -17.77 -17.3

Example 16. The Semiconductors experiment. Mean response by confidence intervals.
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For semiconductors data, Melo et al. (2007) applied a common linear regression model

using the response on a 0 to 100 scale. Their fitted normal model had the covariates

x1, x2, x3, and the interaction x1x2. In the current work, using the same covariates, re-

sponse was modeled as (y/100), and using the same seven models studied in previous

section, and the 95% confidence intervals on mean response were calculated. Hence, us-

ing the notation ζi = β0 + β1xi1 + β2xi2 + β3xi3 + β12xi1xi2 for the linear predictor, and

E(yi) = µi, we explicitly fitted the following seven models for the semiconductors data:

1. yi = ζi + εi (normal)

2. logit(yi) = ζi + εi (logit tranformation)

3. arcsin(
√
yi) = ζi + εi (arcsin transformation)

4. log( µi
1−µi ) = ζi (beta logit)

5. Φ−1(µi) = ζi (beta probit)

6. log(− log(1− µi)) = ζi (beta cloglog)

7. tan(π[µi − 1
2 ]) = ζi (beta cauchit)

The lengths of confidence intervals on mean response for semiconductors data are shown

in Table 4.10. Upon analyzing this Table, the best results were encountered in the beta

models. The logit transformation was the worst, producing greater lengths than the normal

model; however, it is not surprisingly because the parameter for interaction, β12, was not

significant (p-value=0.20). This characteristic was also encountered in the beta model

with cauchit link, (p−value=0.70) for β12; this fact explains why some lengths are greater

than in the normal model. A little consideration should be had with regards to the BRM

with the cloglog link: two experimental units had lengths greater than the normal model,

(p−value=0.057) for β12. 2�
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Table 4.10. Lengths of the 95% confidence intervals on the mean response in semiconductors
data. Systematic part for the seven models: β0 + β1x1 + β2x2 + β3x3 + β12x1x2.

Normal Transform Transform BRM BRM BRM BRM

RUN logit arcsin logit probit cloglog cauchit

1 0.13 0.19 0.16 0.03 0.03 0.04 0.05
2 0.13 0.23 0.18 0.07 0.06 0.07 0.08
3 0.13 0.44 0.26 0.12 0.10 0.15 0.30
4 0.13 0.51 0.29 0.12 0.10 0.16 0.36
5 0.13 0.29 0.21 0.07 0.06 0.08 0.11
6 0.13 0.34 0.22 0.08 0.07 0.09 0.12
7 0.13 0.50 0.28 0.10 0.09 0.12 0.16
8 0.13 0.47 0.28 0.10 0.08 0.12 0.15



CHAPTER 5

Conclusions.

In this work, a restricted variable dispersion beta regression model (restricted VDBRM)

is justified, developed, and applied. Using a restricted likelihood by Lagrange multipli-

ers, a solution for the restricted VDBRM from the frequentist perspective is explicitly

done. Some solutions from the Bayesian framework are explored and left as a future work.

Although the model is justified within the theory of the resolution for 2k−p designs, the

model can be applied in areas where the mean and the dispersion of a response variable in

(0,1) need be explained by means of covariates in scenario when parameters are restricted:

for example, relationship between covariates, higher order effects considered as negligible

in factorial experiments.

A simulated restricted VDBRM was employed to exemplify the inferential aspects of the

model. The main result indicates that when the model is applied in large sample sizes

are obtained good estimates, in terms of the relative biases. Also is shown that the hy-

pothesis about the 2k and 2k−p are special cases of the general hypothesis of the restricted

VDBRM.

As the unrestricted VDBRM is used for analyzing data from unreplicated 2k−p exper-

iments, in this thesis is shown that the unrestricted VDBRM is a special case of the

restricted VDBRM. It was done using a general expression for the hypothesis about pa-

rameters.

In this thesis, data from 2k−p experiments with response in (0,1) under several kinds of
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resolution were analyzed. Thus, unrestricted VDBRM and simple BRM where applied in

order to analyze real and simulated fractional factorial experiments. Using these BRM’s,

three real data were analyzed: a complete factorial 24 experiment, and two fractional

factorial experiments, a 24−1
III , and a 28−4

IV . Also, simulated data based on the fractional

experiments were analyzed. With respect to the link functions, for the mean response,

four functions were employed: logit, probit, cloglog, and cauchit. For the dispersion of the

response, only the log link was used.

The results of these four BRM’s were compared with other three models known in the

literature: the linear normal, and the logit and arcsin transformations. In some specific

cases, both, frequentist and Bayesian analyses were compared in a integrated way, similar

to Aitkin (2010). For instance, the main integrating concept between Bayesian/likelihood

approaches was obtained in the greater part of the examples: the frequentist analysis

yielded similar results when a flat prior distribution was used in the Bayesian BRM’s.

In the paint trial data (a 28−4
IV experiment), three analysis were done: frequentist and

Bayesian beta regression for empirical data and frequentist analysis for simulated data in

scenarios based on the empirical data. In the paint trial data.For Comparing the frequen-

tist results, the lengths of confidence intervals from beta models were better than normal

and transformed models for empirical Paint Trail data in all observations; for the semi-

conductors data, the cloglog and cauchit links for beta models had some greater lengths

than the normal models for some observations, which is considered an unexpected result.

After simulating with 1, 2, 3 and 4 replications of the beta logit model, using the system-

atic part of the paint trial data, were computed the intervals coverage for βs parameters

applying the same seven models already mentioned; results for the simulated data can be

summarized as follows: i) the logit transformation model presented the best result because

coverage was greater than 90% for the three parameters of the fitted model in all sample

sizes (replications) of the experiment; ii) the beta cauchit model was barely acceptable;

iii) the other four models: normal, arcsin , beta probit , and beta cloglog presented very

bad results. Finally, considering the bad results for frequentist BRM’s with respect to the

small sample sizes, also was fitted a Bayesian BRM for the paint trial data computing the

lengths of credibility intervals on mean responses. The lengths were compared against the

lengths of frequentist confidence intervals for the same observations produced for the four

mentioned BRM’s. The logit link presented similar results for Bayesian and frequentist

fits; the cloglog and cauchit links had contradictory results and, unfortunately, the probit
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link had credibility intervals greater than the normal confidence intervals for almost ob-

servations. Upon joining these results with the AIC values for the frequentist models, it

is suggested to do further studies in order to elucidate some contradictory findings in the

current simulated and real data. Studying the behaviour of link functions with respect to

subintervals of (0,1) for y, in simulated data was found that the mean response is easily

recovered within the subinterval [0.75, 1) for 3 out of 4 link functions; besides, the subin-

terval (0, 0.25) did not allow to recovery the mean response for any link function. As

a final conclusion, one objective of this work was fulfilled: to present the restricted and

unrestricted VDBRM as alternative methods for analyzing data from 2k− experiments

in (0,1). Also, in order to decide what method is the best, we suggest to analyze each

particular application with the different methods. One method that is good in one specific

data can not be good in other data. This conclusion also was obtained upon analyzing

the semiconductors data (a 24−1
III experiment). This conclusion is similar to those obtained

in works such as Bonat et al. (2012), and Patil & Kulkarni (2011), these results highlight

the importance to study each problem at hand. Finally, I expect to see some promissory

uses for the restricted variable dispersion beta regression model in several areas. Some

additional subjects related to the restricted VDBRM will be considered in Chapter (6).



CHAPTER 6

Future work.

This chapter presents some Bayesian ideas to solve the restricted VDBRM and additional

subjects to work based on the restricted VDBRM. Some results of these ideas are being

developed in a next paper and the initial proposals were presented in Grajales et al. (2014).

6.1 Bayesian ideas for the restricted VDBRM

.

6.1.1 Complete Bayesian analysis for the restricted VDBRM

To develop completely the Bayesian analysis of the restricted VDBRM. To propose prior

distributions, inferential results and diagnostic measures. The next example explores a

comparison between a Bayesian analysis for a specific simulated restricted VDBRM against

a frequentist analysis.

Example 17. A simulated restricted simple BRM, Bayesian vs frequentist evaluations.

This example uses the data from 3.17. Two models were fitted, one frequentist an un-

restricted variable dispersion beta regression models one frequentist, and another Bayesian
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were fitted. The models employed were,

g1(µi) = β0+β3x3i+β4x4i+β34x3ix4i log(φi) = α0+α4x4i, z0 = x0 , and z4 = x4.

for i = 1, ..., 8. As the logit link was used for the mean response in the simulated model,

here, in both frequentist and Bayesian models, the same link was employed. In the

Bayesian case, a flat prior distributions for (β0, β3, β4, β34)T and (α0, α4)T were employed

(N6

(
0, 106I6

)
). The classical VDBRM was fitted by the betareg package (see Cribari-Neto

& Zeileis (2010)), and the Bayesian fit by the Bayesianbetareg package, which uses the

methodology presented in Cepeda & Gamerman (2005). Results are shown in Table (6.1)

and the routine in R is presented in Appendix 4. On one hand, frequentist results in (6.1)

indicate that the mean response is explained by means of the x3, x4, and x34 covariates.

With respect to the dispersion parameter of the response, it can explained by the x4 co-

variate, using the log link.

Also, the Bayesian results indicate that the credibility intervals for the six parameters do

not include to zero. This coincides with p − values lower than 0.05 in the frequentist

analysis for the same parameters. Because a flat prior distribution were considered for the

parameters, Bayesian inference based on the posterior distributions present results closer

to the frequentist inference (based on the likelihood function)), see Aitkin (2010).

Note. Only the intercept in the dispersion submodel presented an unsatisfactory result

(the credibility interval does not contain the zero, even it was not significatively different

to zero in the frequentist analysis.)

2�

Table 6.1. Evaluating data from simulated restricted VDBRM

Parameters Frequentist estimates p.value Bayesian estimates CredIntLow CredIntUpp

β0 -12.68 < 0.05 -11.32 -14.64 -7.75
β3 1.97 < 0.05 1.81 1.31 2.27
β4 1.65 < 0.05 1.46 0.90 1.87
β34 -0.26 < 0.05 -0.24 -0.30 -0.16
α0 0.002 < 0.05 1.64 0.79 2.57
α4 0.65 < 0.05 0.40 0.21 0.52
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6.1.2 A Bayesian analysis for the nuisance parameters

Consider the restricted VDBRM (2.6) - (2.7), the penalty function (2.8), also (β, α)T as

the parameters of interest, and λ the nuisance parameter. Within the Bayesian framework,

in order to have inferential results, it is necessary to have a posteriori distribution of the

parameters of interest. A strategy appears in books as Aitkin (2010) and Bernardo &

Smith (2000). First to get a posterior distribution for the complete vector, (λ,β, α)T ,

that is p(λ,β, α|y). Second, the posterior (of interest) distribution can be computed as,

p(β, α|y) =

∫ ∞
0

p(λ,β, α|y)dy (6.1)

Now the questions arising are how to model the prior for λ and how to justify the manda-

tory orthogonality between λ and β, taking account of the restrictions yielded for the

confounded effects in fractional factorial experiments.

6.2 Additional topics

6.2.1 A library in R for the restricted VDBRM

To do a library for the R package using the computational routines presented in this work.

6.2.2 To extend the restricted VDBRM

• Restrictions on parameters for the dispersion parameter. When the parameters as-

sociated to the dispersion of the response variable are restricted, this information

generates a more general model than the restricted VDBRM:

g1(µ) = Xβ, g2(φ) = Zα s.t. R1β = δ1 and R2α = δ2
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Information matrix (square of (p1 + p2 + q1 + q2) order) to develop and compute:

K(λ1,λ2,β,α) =


Kλ1λ1 Kλ1λ2 Kλ1β Kλ1α

Kλ2λ1 Kλ2λ2 Kλ2β Kλ2α

Kβλ1 Kβλ2 Kββ Kβα

Kαλ1 Kαλ2 Kαβ Kαα


• To propose and develop a restricted VDBRM which includes some random effects.

• Restricted Dirichlet regression. To propose and develop a restricted VDBRM for a

multivariate response which can be modelled by means of the Dirichlet distribution.

Beta distribution is a special case of it. In that case, an unrestricted multivariate

BRM can be encountered in the literature.

• A bivariate variable dispersion beta regression model with restrictions (frequentist

and Bayesian approach).

6.2.3 The restricted VDBRM in 2k−p experiments

In 2k−p experiments with response in (0,1), some aspects can be explored using the re-

stricted VDBRM: methods to select covariates, more diagnostics measures, outliers de-

tecting, and response surface, among others.

6.2.4 Theoretical aspects

In this thesis the regularity conditions are assumed to do the inferential analysis. With

respect to it, the regularity conditions in the restricted may be studied (proved) from the

theoretical viewpoint.
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Appendix

Some computational routines of R are presented here. They are organized according to

each Chapter. For interested readers, all routines are available .

7.1 Appendix 1. Introduction and motivation.

7.1.1 Program for Example 1.

#=======================================================================

# ----------------------------------------------------------------------

# ------------ BETA REGRESSION MODELS FOR 2^4 EXPERIMENT: DRILL DATA ----

# --------------------------------------------------------------------

# Luis Fernando Grajales Hernandez

# Department of Statistics

# Universidad Nacional de Colombia, Bogota - Colombia

# contact: lfgrajalesh@unal.edu.co

##

#=======================================================================

library(MASS)

library(betareg)

library(lmtest)

library(Matrix)
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library(Bayesianbetareg)

Advance<-read.csv2("d:/Advance_2a4.csv")

Advance <- data.frame(data_Advance)

attach(Advance)

Advance

summary(y)

y_origin <- y*100

y_origin

x0= as.matrix(rep(1,16)) # Intercepto

x1<-as.matrix(Advance[,2])

x2<-as.matrix(Advance[,3])

x3<-as.matrix(Advance[,4])

x4<-as.matrix(Advance[,5])

x12<-x1*x2

x13<-x1*x3

x14<-x1*x4

x23<-x2*x3

x24<-x2*x4

x34<-x3*x4

x123<-x1*x2*x3

x124<-x1*x2*x4

x134<-x1*x3*x4

x234<-x2*x3*x4

x1234<-x1*x2*x3*x4

###############

########################## Zi for Half normal plots 14 observations

index <-as.vector(1:14)

index

probab<-(index -0.5)/16

probab

Zi <- qnorm((index -0.5)/16)

Zi

######################

par(mfrow=c(2,2))

####################

######################## 1) NORMAL MODEL WITH ORIGINAL RESPONSE
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############ SIMILAR RESULTS TO TABLE 3 LEWIS ET AL. 2001 a) (2*B4+x3ETA.HERE)

fit.adva.normal <-lm(y_origin ~

-1+x1+x2+x3+x4+x12+x13+x14+x23+x24++x34+x123+x124+x134+x234, data=Advance)

summary(fit.adva.normal)

summary(fit.adva.normal)$coefficients

### ESTIMATIONS ARE THE HALF OF THE TRUE VALUE. Montgomery (2004) Example 6.3

betas.adva.normal<-2*summary(fit.adva.normal)$coefficients[,1]

coef.adva.normal <-as.vector(sort(betas.adva.normal))

coef.adva.normal

## PLOT WITH ONLY ESTIMATIONS (LIKE MONTGOMERY (2004))

plot(coef.adva.normal, Zi, main="normal model",

xlab="coef.adva.normal", ylab="Quantiles of Standard Normal")

text(coef.adva.normal +0.15, Zi, names(sort(betas.adva.normal)))

################### 2) NORMAL MODEL TRANSFORMATION LOG(Y)

y_log<- log(y_origin)

y_log

fit.adva.log.y <-lm(y_log ~

-1+x1+x2+x3+x4+x12+x13+x14+x23+x24++x34+x123+x124+x134+x234, data=Advance)

summary(fit.adva.log.y)

summary(fit.adva.log.y)$coefficients

### ESTIMATIONS ARE THE HALF OF THE TRUE VALUE. Montgomery (2004) Example 6.3

betas.adva.log.y<-2*summary(fit.adva.log.y)$coefficients[,1]

betas.adva.log.y

coef.adva.log.y <- as.vector(sort(abs(betas.adva.log.y)))

coef.adva.log.y

## PLOT ONLY WITH ESTIMATIONS

plot(coef.adva.log.y, Zi, main="log(y) model",

xlab="coef.adva.log.y", ylab="Quantiles of Standard Normal")

text(coef.adva.log.y +0.02, Zi, names(sort(betas.adva.log.y)))

## logLik(fit.adva.log.y)

## AIC(fit.adva.log.y)

## BIC(fit.adva.log.y)
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## shapiro.test(residuals(fit.adva.log.y))

######################### 3) GLM WITH Gamma LINK

fit.adva.GLM.gamma <- glm(y_origin ~

-1+x1+x2+x3+x4+x12+x13+x14+x23+x24+x34+x123+x124+x134+x234,

family=Gamma(link="log"), data =Advance)

summary(fit.adva.GLM.gamma)

summary(fit.adva.GLM.gamma)$coefficients

coef.adva.GLM <- summary(fit.adva.GLM.gamma)$coefficients[,1]

s.e.coef.adva.GLM <- summary(fit.adva.GLM.gamma)$coefficients[,2]

ratio.coef.adva.GLM<-as.vector(sort(abs(coef.adva.GLM)/s.e.coef.adva.GLM))

ratio.coef.adva.GLM

plot(ratio.coef.adva.GLM, Zi, xlim=c(0,0.25), main="GLM.gamma model",

xlab="ABS(coef.GLM.gamma)/Std Error", ylab="Quantiles of Standard Normal")

text(ratio.coef.adva.GLM +0.01, Zi, names(sort(coef.adva.GLM)))

##logLik(fit.adva.GLM.gamma)

##AIC(fit.adva.GLM.gamma)

##BIC(fit.adva.GLM.gamma)

################## 4) SIMPLE BETA REGRESSION MODELS FOUR LINKS

fit.adva.beta.logit <-betareg(y ~

-1+x1+x2+x3+x4+x12+x13+x14+x23+x24+x34+x123+x124+x134+x234, data=Advance)

fit.adva.beta.logit

summary(fit.adva.beta.logit)$coefficients

coef.adva.beta.logit <-summary(fit.adva.beta.logit)$coefficients$mean[,1]

coef.adva.beta.logit

s.e.coef.adva.beta.logit <- summary(fit.adva.beta.logit)$coefficients$mean[,2]

s.e.coef.adva.beta.logit

ratio.coef.adva.beta.logit<-

as.vector(sort(abs(coef.adva.beta.logit)/s.e.coef.adva.beta.logit))

ratio.coef.adva.beta.logit

plot(ratio.coef.adva.beta.logit, Zi,

xlab="ABS(coef.adva.beta.logit)/Std Error", ylab="Quantiles of Standard Normal")

text(ratio.coef.adva.beta.logit +0.01, Zi, names(sort(coef.adva.beta.logit)))
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################### OTHERS LINKS

fit.adva.beta.probit <-betareg(y ~

-1+x1+x2+x3+x4+x12+x13+x14+x23+x24+x34+x123+x124+x134+x234,

link="probit", data=Advance)

fit.adva.beta.probit

summary(fit.adva.beta.probit)$coefficients

coef.adva.beta.probit <-summary(fit.adva.beta.probit)$coefficients$mean[,1]

coef.adva.beta.probit

s.e.coef.adva.beta.probit <- summary(fit.adva.beta.probit)$coefficients$mean[,2]

s.e.coef.adva.beta.probit

ratio.coef.adva.beta.probit

<-as.vector(sort(abs(coef.adva.beta.probit)/s.e.coef.adva.beta.probit))

ratio.coef.adva.beta.probit

plot(ratio.coef.adva.beta.probit, Zi,

xlab="ABS(coef.adva.beta.probit)/Std Error", ylab="Quantiles of Standard Normal")

text(ratio.coef.adva.beta.probit +0.01, Zi, names(sort(coef.adva.beta.probit)))

########################## CLOGLOG LINK

fit.adva.beta.cloglog <-betareg(y ~

-1+x1+x2+x3+x4+x12+x13+x14+x23+x24+x34+x123+x124+x134+x234,

link="cloglog", data=Advance)

fit.adva.beta.cloglog

summary(fit.adva.beta.cloglog)$coefficients

coef.adva.beta.cloglog <-summary(fit.adva.beta.cloglog)$coefficients$mean[,1]

coef.adva.beta.cloglog

s.e.coef.adva.beta.cloglog <- summary(fit.adva.beta.cloglog)$coefficients$mean[,2]

s.e.coef.adva.beta.cloglog

ratio.coef.adva.beta.cloglog<-

as.vector(sort(abs(coef.adva.beta.cloglog)/s.e.coef.adva.beta.cloglog))

ratio.coef.adva.beta.cloglog

plot(ratio.coef.adva.beta.cloglog, Zi,

xlab="ABS(coef.adva.beta.cloglog)/Std Error", ylab="Quantiles of Standard Normal")
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text(ratio.coef.adva.beta.cloglog +0.01, Zi, names(sort(coef.adva.beta.cloglog)))

########################## CAUCHIT LINK

fit.adva.beta.cauchit <-betareg(y ~

-1+x1+x2+x3+x4+x12+x13+x14+x23+x24+x34+x123+x124+x134+x234,

link="cauchit", data=Advance)

fit.adva.beta.cauchit

summary(fit.adva.beta.cauchit)$coefficients

coef.adva.beta.cauchit <-summary(fit.adva.beta.cauchit)$coefficients$mean[,1]

coef.adva.beta.cauchit

s.e.coef.adva.beta.cauchit <- summary(fit.adva.beta.cauchit)$coefficients$mean[,2]

s.e.coef.adva.beta.cauchit

ratio.coef.adva.beta.cauchit<-

as.vector(sort(abs(coef.adva.beta.cauchit)/s.e.coef.adva.beta.cauchit))

ratio.coef.adva.beta.cauchit

plot(ratio.coef.adva.beta.cauchit, Zi, xlim=c(0,2.5), main="betareg.cauchit model",

xlab="ABS(coef.adva.beta.cauchit)/Std Error", ylab="Quantiles of Standard Normal")

text(ratio.coef.adva.beta.cauchit +0.1, Zi + 0.02, names(sort(coef.adva.beta.cauchit)))

7.2 Appendix 3. Frequentist Inference for the Restricted

BRM.

7.2.1 Simulated Restricted VDBRM. Routines: Evaluating data. Ex-

ample 7

beta_rest<-function(datos_r, formula, formula_phi, R, lambda,

link="logit", prec=0.001){

X<-model.matrix(formula, data=datos_r)

Z<-model.matrix(formula_phi, data=datos_r)

Y<-c()

for(i in 1:length(colnames(datos_r))){

if(formula[[2]]==colnames(datos_r)[i]){

Y<-datos_r[,i]}

}
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p1<-ncol(X)

p2<-ncol(Z)

fit.r = betareg(formula, data=datos_r)

theta_old<-c(coef(fit.r)[1:p1], log(coef(fit.r)[p1+1]), rep(0, p2-1))

### 1)Creation of mu’s with diferents link functions

muF<- function(beta, X, link=link){

eta <- X %*% beta

etas<-c()

for (i in 1:length(eta)){

if(link=="logit"){

etas[i] <- 1/(1+exp(-eta[i]))

}else{

if(link=="probit"){

etas[i]<-pnorm(eta[i])

}else{

if(link=="cloglog"){

etas[i]<-1-exp(-exp(eta[i]))

}else{

if(link=="cauchit"){

etas[i]<-atan(eta[i])/pi+1/2

}else{

print("link function not supported!")

}

}

}

}

}

etas

}

###################### 2) For g’(mu)

gpF<-function(mu, link=link){

gp<-c()

for(i in 1:length(mu)){
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if(link=="logit"){

gp[i]<-1/(mu[i]*(1-mu[i]))

}else{

if(link=="probit"){

gp[i]<-dnorm(mu[i])

}else{

if(link=="cloglog"){

gp[i]<--mu[i]/((1-mu[i])*log(1-mu[i]))

}else{

if(link=="cauchit"){

gp[i]<-pi*1/(cos(pi*(mu[i]-1/2))^2)

}else{

print("link function not supported!")

}

}

}

}

}

gp

}

###### 3) Diagonal Matrix W 8x8

KINV<-function(theta, X, Y, lambda, Z){

mu<-muF(beta = theta[1:p1], X = X, link = link)

phi<-exp(Z%*%theta[(p1+1):(p1+p2)])

d<-c()

for(i in 1:length(mu)){

d[i]<-((mu[i]^2)*trigamma(mu[i]*phi[i])+

((1-mu[i])^2)*trigamma((1-mu[i])*phi[i])-

trigamma(phi[i]))*(phi[i]^2)

}

D<-diag(d)

w<-c()

for(i in 1:length(mu)){

w[i]=(phi[i]^2/(gpF(mu[i], link = link)^2))*
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(trigamma(mu[i]*phi[i])+trigamma((1-mu[i])*phi[i]))

}

W<-diag(w)

Lamb<-diag(lambda)

a<-c()

for(i in 1:nrow(X)){

a[i]<-(1/(gpF(mu[i], link = link)^2))*(trigamma(mu[i]*phi[i])

+trigamma((1-mu[i])*phi[i]))

}

c<-c()

for(i in 1:nrow(X)){

c[i]<-phi[i]*(mu[i]*a[i]-trigamma((1-mu[i])*phi[i]))*

(phi[i]/gpF(mu[i], link = link))

}

V<-diag(c)

B22<-solve(t(Z)%*%D%*%Z-t(Z)%*%t(V)%*%X%*%solve(t(X)%*%W%*%X+

t(R)%*%Lamb%*%R)%*%t(X)%*%V%*%Z)

B11<-solve(t(X)%*%W%*%X+t(R)%*%Lamb%*%R)+

solve(t(X)%*%W%*%X+t(R)%*%Lamb%*%R)%*%t(X)%*%

V%*%Z%*%B22%*%t(Z)%*%t(V)%*%X%*%

solve(t(X)%*%W%*%X+t(R)%*%Lamb%*%R)

B12<--solve(t(X)%*%W%*%X+t(R)%*%Lamb%*%R)%*%t(X)%*%V%*%Z%*%B22

cbind(rbind(B11, t(B12)),rbind(B12, B22))

}

Q<-function(theta, X, Y, Z, lambda){

mu<-muF(beta = theta[1:p1], X = X, link = link)

phi<-exp(Z%*%(theta[(p1+1):(p1+p2)]))

T1<-diag(as.vector(phi/gpF(mu, link = link)))

T2<-diag(as.vector(phi))

y_ast<-log(Y/(1-Y))

mu_ast<-digamma(mu*phi)-digamma((1-mu)*phi)

nu<-c()

for(i in 1:nrow(X))

nu[i]<-digamma(phi[i])+mu[i]*(y_ast[i]-mu_ast[i])

-digamma((1-mu[i])*phi[i])+log(1-Y[i])
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Q1<-t(X)%*%T1%*%(y_ast-mu_ast)

Q2<-t(Z)%*%T2%*%nu

c(Q1, Q2)

}

i<-1

theta<-theta_old+5*prec

while(max(abs(theta-theta_old))>=prec){

theta<-theta_old+KINV(theta_old, X, Y, lambda, Z)%*%

Q(theta_old, X, Y, Z, lambda)

theta_old<-theta

i<-i+1

print(i)

}

names(theta)<-c(colnames(X), colnames(Z))

VAR<-abs(KINV(theta, X, Y, lambda, Z))

estand<-c()

for(i in 1:length(theta))

estand[i]<-theta[i]/sqrt(VAR[i,i])

p_value<-(1 - pnorm(abs(estand), 0, 1))/2

list(parameters=data.frame(params=theta[1:p1],

z=estand[1:p1] ,p.value=p_value[1:p1]),

parametrs_phi=data.frame(params=theta[(p1+1):(p1+p2)],

z=estand[(p1+1):(p1+p2)],p.value=p_value[(p1+1):(p1+p2)]), niter=i)

}

7.2.2 Simulated Restricted VDBRM. Routines: Bayesian and frequen-

tist analysis. Example 8

# Frequentist BRM

fit.simula.vardbeta.logit<-betareg(y~x3+x4+x34 | x4, data=simulated1,

link = "logit", link.phi = "log")

summary(fit.simula.vardbeta.logit)

fit.simula.vardbeta.probit<-betareg(y~x3+x4+x34 | x4, data=simulated1,
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link = "probit", link.phi = "log")

summary(fit.simula.vardbeta.probit)

fit.simula.vardbeta.clog<-betareg(y~x3+x4+x34 | x4, data=simulated1,

link = "cloglog", link.phi = "log")

summary(fit.simula.vardbeta.clog)

fit.simula.vardbeta.cau<-betareg(y~x3+x4+x34 | x4, data=simulated1,

link = "cauchit", link.phi = "log")

summary(fit.simula.vardbeta.cau)

# Bayesianbetareg

X_Bayes=cbind(x0,x3,x4,x34)

Z0 <- x0

Z <- cbind(x0,x4)

n <- length(y)

burn <- 0.3

jump <- 4

nsim <- 600

bpri <- c(0,0,0,0)

Bpri <- diag(100,nrow=ncol(X_Bayes),ncol=ncol(X_Bayes))

gpri <- c(0,0)

Gpri <- diag(10,nrow=ncol(Z),ncol=ncol(Z))

Bayes.vard.simula2<-Bayesianbetareg(y,X_Bayes,Z,

nsim,bpri,Bpri,gpri,Gpri,0.3,3,graph1=FALSE,graph2=FALSE)

summary(Bayes.vard.simula2)

7.3 Appendix 4. Unrestricted models.

7.3.1 Random Walk Metropolis-Hasting for Example 10: Description.

Although is difficult to order the concepts, here they are introduced according to Robert & Casella

(2004). A Markov chain Monte Carlo method, (MCMC), for the simulation of a distribution

f is any method producing an ergodic Markov chain (W (t)) whose stationary distribution is f .

(Current use: It is possible to obtain a sample W1, . . . ,Wn approximately distributed from f

without directly simulating from f). An ergodic Markov chain is a particular stochastic process.

The Metropolis-Hasting (MH) is an algorithm to sample MCMCs, and is preferred rather Gibbs

sampling when the prior p(θ) and the Likelihood L(y|θ) do not belong to the same distributional
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family, i.e., they are not a conjugate pair. The Metropolis-Hasting algorithm (MH) starts with the

(target) objective density f . A conditional density q(y|w), defined with respect to the dominating

measure for the model, is then chosen. The MH algorithm can be implemented when q(·|w) is

easy to simulate from and is either explicitly available or symmetric (q(y|w) = q(w|y)). The target

density f must be available to some extent; a general requirement is that the ratio f(y)
q(y|w) is known

up to a constant independent of w. The MH algorithm associated with the target density f and

the conditional density q produces a Markov chain (W (t)) through the following transition, named

Algorithm.24 in Robert & Casella (2004). Given w(t),

1. Generate Yt ∼ q(y|w(t))

2. Take W (t+1) =

 Yt with probability ρ(w(t), Yt)

w(t) with probability 1− ρ(w(t), Yt)

where ρ(w, y) = min{ f(y)
f(w)

q(w|y)
q(y|w) , 1}. The q distribution is called the proposal distribution and the

probability ρ(w, y) the Metropolis-Hasting acceptance probability. The Random walk Metropolis-

Hasting (RWMH) is a modification of the (MH) algorithm taking into account the value previously

simulated to generate the following value; that is, to consider a local exploration of the neighborhood

of the current value of the Markov chain. The change consists in the first choice to simulate Yt,

according to

Yt = X(t) + εt (7.1)

where εt is a random perturbation, independent of X(t). Then the Markov chain in the MH

algorithm associated with q is a random walk on the support of f density; in the RWMH method,

is chosen a symmetric function g (that is, such that g(t) = g(−t)), which leads to the following

simpler algorithm:

Given w(t),

1. Generate Yt ∼ g(|y − w(t)|)

2. Take W (t+1) =

 Yt with probability min{1, f(Yt)
f(w(t))

}

w(t) otherwise.
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