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Abstract 

High contents of sucrose (non-reducing sugar), glucose and fructose (reducing sugars) 

in potato tubers represent an undesirable trait for fry processing because reducing sugars 

lead to potato darkening and the production of toxic compounds such as acrylamide that 

reduce consumer’s acceptance and generate risks for human health. Association 

genetics analysis is a strategy to study the molecular basis of complex traits as tuber 

sugar contents. Colombia leads the production of diploid genotypes named “Creole 

potato”, which belong to the cultivated Group Phureja and present outstanding 

organoleptic and nutritional properties. Currently, there are not Phureja cultivars 

suitable for chip processing because of high levels of reducing sugars in the tubers. The 

main purpose of this research is to determine the candidate gene regions influencing 

sucrose, glucose and fructose contents in Solanum tuberosum Group Phureja. Tubers 

from 108 accessions of the Colombian Core Collection and four commercial cultivars 

were sown in pots in Soacha (Cundinamarca, 2850 m above the sea level) for sugar 

content analyses. The harvest of three plants of each genotype constituted three 

biological replicates. The sugar contents of Phureja genotypes were quantified through a 

liquid chromatographic method developed and validated using an AMINEX87H column 

with sulfuric acid 10 mM as eluent. Sucrose, glucose and fructose genotypic mean 

values varied from 6.39-29.48 mg/g tuber dried weight (DW), 0.46-28.04 mg/g tuber 

DW, and 0.29-27.23 mg/g tuber DW, respectively. Association analysis was carried out 

with 111 SNP markers identified in candidate genes with key function in carbohydrate 

metabolism. This analysis revealed four SNP markers in the locus InvGE from an 

apoplastic invertase and one SNP marker in the locus SssI from a soluble starch 

synthase with significant effect in sugar content variation. These enzymes have not been 

found expressed in mature tubers, therefore these SNP-trait associations might be 

indirect resulting from the linkage disequilibrium with causal variants, or direct through 

a potential novel role of these candidate genes controlling sugar contents in tubers. 

 

Keywords: Reducing sugars, frying quality, association mapping, HPLC 
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Resumen 

 

El alto contenido de sacarosa (azúcar no reductor), glucosa y fructosa (azúcares 

reductores) en los tubérculos de papa representa un rasgo indeseable en la industria del 

procesamiento en frito, pues lo azúcares reductores conducen al ennegrecimiento de la 

papa frita y a la producción de compuestos tóxicos como la acrilamida que reducen la 

aceptación por los consumidores y ocasionan riesgos para la salud humana. El análisis 

de asociación genética es una estrategia para estudiar las bases moleculares de rasgos 

complejos como la acumulación de estos azúcares en tubérculos. Colombia lidera la 

producción de genotipos diploides conocidos como “papa criolla”, que pertenecen al 

grupo cultivado Phureja y presentan propiedades organolépticas y nutricionales 

sobresalientes. Actualmente, no existen cultivares de Grupo Phureja aptos para el 

procesamiento en frito debido a la alta acumulación de azúcares en los tubérculos. El 

objetivo de esta investigación fue establecer las regiones de genes candidatos con 

influencia en los contenidos de sacarosa, glucosa, y fructosa en Solanum tuberosum 

Grupo Phureja. Tubérculos de 108 accesiones de la Colección Central Colombiana y 

cuatro cultivares comerciales fueron sembrados en macetas en Soacha (Cundinamarca, 

2850 m sobre el nivel del mar). La cosecha de tres plantas de cada genotipo 

constituyeron tres replicas biológicas. Los azúcares se cuantificaron con cromatografía 

líquida utilizando una metodología que fue desarrollada y validada con una columna 

AMINEX HPX 87H utilizando ácido sulfúrico 10 mM como eluyente. Se encontraron 

valores medios genotípicos de sacarosa, glucosa, y fructosa variando entre 6.39-29.48 

mg/g peso seco (PS) de tubérculo, 0.46-28.04 mg/g PS de tubérculo, y 0.29-27.23 mg/g 

PS de tubérculo, respectivamente. El análisis de asociación genética se efectuó con 111 

marcadores SNP identificados en genes candidatos que codifican para enzimas en el 

metabolismo de carbohidratos. Este análisis reveló cuatro marcadores SNP en el locus 

InvGE de una invertasa apoplástica y un marcador en el locus SssI de un almidón 

sintasa soluble con efecto significativo en la variación del contenido de azúcares. Estas 

enzimas no han sido encontradas expresadas en tubérculos maduros, en consecuencia 

estas asociaciones rasgo-marcador pueden ser indirectas resultado del desequilibrio de 

ligamiento con variantes causales, o directa a través de un potencial rol novedoso de 

estos genes candidatos en el control de la acumulación de azúcares en tubérculos.  

 

 

Palabras claves: Azúcares reductores, calidad de fritura, mapeo por asociación, HPLC 
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Introduction 

Potato (Solanum tuberosum) is the third crop of global relevance after wheat and rice 

thus playing an important role in worldwide food security and nutrition as it is a 

supplement or a substitute in cereal-based diets (Camire et al., 2009; Mosquera and 

Cuéllar, 2013). S. tuberosum Group Phureja is distributed from central Bolivia to 

western Venezuela and represents an important genetic resource for Colombia as in the 

south region of Nariño is located a center of diversity (Estrada, 1996; Spooner et al., 

2007). This cultivated group consists primarily on diploid potatoes with short day 

adaptation and tubers sprouting at harvest (Huamán and Spooner, 2002; Spooner et al., 

2007).  

Colombia leads the production, consumption and export of diploid Phureja genotypes 

commonly known as “Creole potato”, which are characterized for their round tubers 

with yellow flesh and skin (Bonilla et al., 2009; Rodríguez et al., 2009). These 

genotypes present an interesting possibility for their widespread use because of their 

outstanding nutritional and organoleptic properties and their processing potential 

(Rivera et al. 2006; Rodríguez et al., 2009; Peña et al., 2015). In Colombia this crop is 

an important source of income for small farmers (Rodríguez et al., 2009). The 

generation of basic information for Group Phureja is therefore relevant to promote its 

processing alternatives.    

Currently, the demand for potato chips and French fries continues to grow because of 

changes in consumption habits (Faulkner, 2015; Kirkman, 2007). High contents of 

sucrose (non-reducing sugar), glucose, and fructose (reducing sugars) in potato tubers 

represent an undesirable trait for fry processing because reducing sugars are precursors 

of the Maillard Reaction and sucrose is the main source of glucose and fructose during 

its enzyme-catalyzed hydrolysis in cold storage below 10 ºC (Eck, 2007; Isla et al., 

1998). The Maillard Reaction refers to a series of non-enzymatic reactions between 

non-reducing sugars and principally amino groups from amino acids during the thermal 

processing of potatoes that lead to the production of dark pigments, the development of 

off-flavours, and the production of toxic compounds such as acrylamide that reduces 

consumer’s acceptance and also generates risks for human health (Eck, 2007; Halford et 

al., 2012).  

There are not Phureja cultivars suitable for fried processing, thus crops for frying 

purposes must be grown less than 2,600 meters above the sea level to decrease the 

probabilities of high or accelerated accumulation of reducing sugars in tubers due to 

lower temperatures (Ñústez-López, 2011). Because of the lack of dormancy in tubers, 

the development of Phureja cultivars with tolerance to cold-induced sweetening will 

have the additional advantage of allowing the storage at low temperatures of tubers for 

processing to avoid sprouting (Sowokinos, 2008). The aforementioned considerations 

show the importance of guiding breeding programs towards the development of 

cultivars specific for processing. 

  

The phenotypic assessment of potato frying quality has been performed frequently by 

means of visual scales of frying color (Werij et al., 2012; Li et al., 2013). 

Notwithstanding, it is relevant for potato breeders the evaluation of genotypes for their 

sugars profiles through the measurement of sucrose, glucose, and fructose contents. 

This type of evaluation also constitutes a quantitative approach for the understanding of 

the frying quality trait as it is possible to identify the potential of different genotypes for 

the synthesis of dark pigments and acrylamide (Muttucumaru et al., 2014).  
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Chromatographic methods are the most powerful analytical techniques for the 

identification and quantification of monosaccharides and oligosaccharides in foods. 

High Performance Liquid Chromatography (HPLC) is currently the most common 

chromatographic method for analyzing these compounds as it is capable of rapid, 

specific, sensitive, and precise measurements (McClements, 2003). However, there are 

neither details on method development nor in validation steps for sugar extraction and 

chromatographic analysis in potato. Therefore, it is necessary the development, 

validation and implementation of an extraction method and a HPLC method for the 

identification and reliably quantification of sucrose, glucose, and fructose in Phureja 

raw tubers. 

 

The generation of such quantitative data of the frying quality phenotype in Group 

Phureja is also important to implement association mapping strategies where precise 

quantification of the trait phenotype in the population is imperative for the genetic 

association analyses (Ersoz et al., 2007). These analyses are relevant to understand the 

polygenic control of sugar accumulation in diploid genotypes of interest for Colombia 

as this trait is regulated by several pathways that influence starch-sugar equilibrium. 

The knowledge of genomic regions with influence on sugar contents can provide 

advantages in the increase of the speed of developing new cultivars through the use of 

marker assisted selection. This strategy can contribute in the decrease of the number and 

the extent of field trials by the identification of genotypes with desirable frying quality 

before measuring frying phenotype or sugar contents in field trials (Ramakrishnan et al., 

2015).  

 

Association mapping uses populations of diverse individuals to assess alleles of each 

locus for association, assuming that one or more of the considered loci are in linkage 

disequilibrium with the genomic region that is causal of the variation of the trait of 

interest (Rafalski, 2010). Using this approach there is a major record of ancient 

recombination events than in a bi-parental population, that lead to the reorganization of 

the chromosomes in small regions. Thus, there is a greater possibility that the marker 

associated significantly with the phenotype will be located near the causal region, 

therefore allowing a higher mapping resolution (Ersoz et al., 2007; Hamblin et al., 

2011). This strategy has shown to be a less time-consuming approach for the discovery 

of marker-trait associations compared with linkage mapping (Álvarez et al., 2015). The 

use of natural populations or sets of breeding materials in association mapping analysis 

is useful in the generation of diagnostic molecular markers that can be readily 

implemented in breeding schemes for the selection of outstanding genotypes (Gebhardt 

et al., 2007). 

 

There is a significant knowledge on the metabolic pathways and enzymes involved in 

starch synthesis, degradation and transport in potato. Sixty nine functional genes in 

carbohydrate metabolism have been mapped in potato (Chen et al., 2001).  From these 

candidate genes, a set have been tested for association of natural DNA variation with 

frying quality or reducing sugar contents in tetraploid potato germplasm (Baldwin et al., 

2011; Li et al., 2005, 2008, 2013; Schreiber et al., 2014). These studies have revealed 

the multiloci genetic architecture of sugar contents and frying color related to genes 

coding enzymes functional in carbohydrate metabolism in tetraploid potato populations. 

Therefore, it is relevant to identify the candidate gene loci that underlie these traits in 

Group Phureja that represent a potato gene pool with a particular metabolic behavior 

regarding sugar accumulation in tubers. 
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The main purpose of this research is to establish the genetic association of sucrose, 

glucose, and fructose contents, measured with a HPLC method, with a set of SNP 

markers identified in candidate genes with key function in carbohydrate metabolism and 

influence in potato frying color and sugar contents in tetraploid potatoes (Baldwin et al., 

2011; Fisher et al., 2013; Li et al., 2005, 2008, 2013; Schreiber et al., 2014). This 

document presents in Chapter 1 the development and validation of a HPLC method to 

quantify sucrose, glucose, and fructose in tubers of Group Phureja. In Chapter 2 this 

method is implemented to reveal the natural variation of sucrose, glucose, and fructose 

contents in a Colombian germplasm collection. Chapter 3 analyzed the association 

between these accurate sugar measurements and a set of SNP markers identified in ten 

candidate gene loci. This research is the first attempt to understand the molecular basis 

of sugar accumulation in Group Phureja tubers through an association mapping strategy 

with phenotypic data obtained from the application of analytical chemistry 

methodologies. 
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ABSTRACT 

A High Performance Liquid Cromatography (HPLC) method was developed and 

validated to quantify sucrose (non-reducing sugar), glucose, and fructose (reducing 

sugars) in raw tubers of Solanum tuberosum Group Phureja. Chromatographic analysis 

was performed using an AMINEX HPX 87H column, at 18 ºC, linked to a refraction 

index detector, at 35 ºC. The eluent was 10 mM sulfuric acid. The conditions 

established for the method provided an optimum separation of sugars, citric acid, and 

malic acid, with resolution values higher or equal to one. Among the four sugar 

extraction methods tested, the double 50 % (v/v) aqueous methanol extraction gave the 

highest level of analytes. Recovery of this extraction method ranged between 94.14 to 

99.77 %. The HPLC method was validated for repeatability, reproducibility, linearity, 

and limits of detection, and quantification. Relative standard deviation was found to be 

lower than five, when testing repeatability and reproducibility, which is suitable 

considering a range of acceptability from 5.3 to 7.3. Additionally, the regression 

analyses supported the method linearity in a range of quantification from 3 to 100 mg/L 

with regression coefficients values greater than 0.998 for the three analytes. Limits of 

detection were 3.0 mg/L for the three sugars and limits of quantification were 2.0 mg/L 

for sucrose and 3.0 mg/L for glucose and fructose. Four Colombian commercial 

cultivars (Criolla Guaneña, Criolla Paisa, Criolla Galeras, and Criolla Colombia) and 

five landrace accessions from the Colombian Core Collection of Group Phureja were 

grown in the district of Usme (Bogotá) fields to analyze their sugar contents. Sucrose, 

glucose, and fructose contents were found ranging from 0.93 to 3.11 g/100 g tuber dried 

weight (DW), from 0.25 to 4.53 g/100 g tuber DW, and from 0.10 to 1.49 g/100 g tuber 

DW, respectively.  Therefore, a high range in the variability of sugar contents was 

found among genotypes. However, the variability was low among technical replicates of 

the same genotype, revealing an accurate quantification of sugars in Group Phureja. 

This method can be used to assess the amount of reducing and non-reducing sugars 

accumulation in potato germplasm.  

Keywords: HPLC, reducing sugars, non-reducing sugars, Group Phureja. 

mailto:tmosquerav@unal.edu.co
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1. Introduction 

Potato (Solanum tuberosum) plays an important role in worldwide food security and 

nutrition as it is the third crop of global relevance [1]. Tetraploid potatoes are the most 

cultivated worldwide, however, there is an interesting potential for the widespread use 

of diploid genotypes, ‘Creole potato’, that are known for their round tubers with yellow 

flesh and skin, and outstanding organoleptic properties [2]. Creole potato genotypes 

belong to the cultivated Solanum tuberosum Group Phureja, consisting primarily on 

diploid potatoes, that present a center of diversity in the south Andean region of 

Colombia and the north of Ecuador [3]. This cultivated group is characterized by lack of 

tuber dormancy, short day growing period, and short vegetative season (120 days) [4]. 

Colombia is positioned as the greatest producer, consumer, and exporter of these 

genotypes [5]. As owners of a high diversity of Phureja potatoes, it is crucial to generate 

knowledge on the processing quality, especially the sugar type and contents. 

 

Glucose and fructose (reducing sugars) accumulation is a phenomenon that increases at 

low temperatures, as these compounds contribute to freezing tolerance [6]. The plant 

uses sucrose (non-reducing sugar) as the main source for the accumulation of reducing 

sugars in the tuber. Non-enzymatic browning is the result of the reaction between free 

amino acids and reducing sugars at high temperatures during frying process, generating 

the production of dark pigments and rancid flavors in chips or French fries, due to the 

Maillard reaction [7]. Reducing sugars contents are conditioned by the levels of starch 

synthesis, degradation, and transport, which depend on the genotype and the 

temperatures at which the tubers are stored [7,8].       

 

A creole potato cultivar for frying has yet not been developed and the current cultivars 

show several undesirable properties for processing, mainly because of the accumulation 

of high levels of reducing sugars in tubers leading to non-enzymatic browning [9]. Due 

to a worldwide increase in the demand of processed food, the potato processing industry 

is a fast growing sector [5]. Hence, Colombia has a big challenge in the development of 

Phureja cultivars for frying. The phenotypic assessment of potato frying quality has 

been performed frequently by means of visual scales of frying color [9-11]. There is no 

report on the concentration of sucrose, glucose, and fructose of Phureja germplasm 

collections. Such quantitative data are important for the breeding programs, to 

implement strategies such as association mapping where precise quantification of the 

phenotype is imperative for the genetic association analyses [12].   

   

Chromatographic methods are the most powerful analytical techniques for the 

identification and quantification of monosaccharides and oligosaccharides in foods. 

High Performance Liquid Chromatography (HPLC) is currently the most common 

chromatographic method for analyzing these compounds as it is capable of rapid, 

specific, sensitive, and precise measurements [13]. For method validation it is necessary 

to demonstrate that a particular protocol applied to a sample is suitable for obtaining 

analytical results with an acceptable uncertainty level [14], including the protocol for 

the extraction of the analytes of interest.  

 

Sugar extraction methods for potato tubers include the use of e.g. 80 % (v/v) aqueous 

ethanol either at 80 ºC [15] or at 60 ºC [16], 50 % (v/v) aqueous methanol [17], 100% 

(v/v) methanol with activated charcoal at room temperature [18], or water [19]. Ion 

exchange resin columns are of widespread use in carbohydrate HPLC analysis since 

they do not require complex eluents for effective separations [20,21]. Extracts of sugars 

from potato tubers have been analyzed using these columns, e.g. with a Carbopac PA1 

column using gradient elution with sodium hydroxide [17,19], an Inertsil NH2 column 
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with 80% (v/v) aqueous acetonitrile as eluent [22], and with an AMINEX HPX 87H 

column using sulfuric acid 8 mM for elution [23]. In the mentioned studies, 

nevertheless, there are neither details on method development nor in validation steps for 

sugar extraction and chromatographic analysis. This study, therefore, reports the 

development and validation of an extraction method and a HPLC method for the 

identification and quantification of sucrose, glucose, and fructose in S. tuberosum group 

Phureja raw tubers, involving the method implementation using an AMINEX HPX 87H 

ion exchange column in the analysis of nine genotypes. 

 

2. Materials and methods  

2.1. Chemicals 

Sulfuric acid (98% analytical grade) and methanol (99.96% analytical grade) were from 

J.T. Baker (Center Valley, Pennsylvania, USA). Sucrose, glucose, and fructose HPLC 

standards were provided by Sigma-Aldrich (St. Louis, Missouri, USA). Water was 

obtained from a Water ProPs purification system (Labconco, Kansas, Missouri, USA).  

 

2.2. Plant material and field design 

 

Potato tubers were produced in the field in a loam soil (pH 5.02), in the district of Usme 

(Bogotá, Colombia; with an altitude of 3,400 meters above sea level, latitude of 

4°20′23′′N and longitude of 74°10′55′′W). Tubers were sown on the beginning of April 

2013 and plants were harvested on the mid of August 2013. Tuber maturity was 

assessed at the end of the growth season (140-150 days in these altitudes), when foliage 

was senescent and the skin was set to the tubers [24,25]. A randomized block design 

with three replicates was used to study the sugar content of four Colombian commercial 

cultivars (Criolla Guaneña, Criolla Paisa, Criolla Galeras, and Criolla Colombia) and 

five landraces from the Colombian Core Collection of Group Phureja (CCC) (CCC 8, 

CCC 52, CCC 80, CCC 108, and CCC 123). Each experimental unit consisted of tubers 

from one to three plants from each genotype in each block. Tubers from the three blocks 

were bulked to generate a composite sample of each genotype. Then, sugar content 

analyses were done with three technical replicates. 

 

2.3. Tuber sample preparation 
 

After harvest, mature and healthy tubers without mechanical damages were washed with 

distilled water and stored at 18°C. Two days later, the tubers were cut into slices (0.3-

0.5 cm) and stored at -20°C. The frozen slices were freeze-dried for 72 h using a freeze 

drier model Free Zone 7806020 (Labconco, Kansas, Missouri, USA), homogenized 

using a domestic blender, and fine ground using a pestle and a mortar. Homogenized 

tissue was sieved with a mesh, obtaining a particle size of maximum 0.8 mm. 

 

2.4. Optimization of sugar extraction and chromatographic analysis 

2.4.1. Optimization of sugar extraction 

 

Four extraction methods were tested using 0.5 g of freeze-dried tubers of Criolla 

Galeras: i) extraction with 4 mL HPLC grade water  at 92 ºC [26]; ii) extraction with 4 

mL 50% (v/v) aqueous methanol using reflux [27]; iii) extraction with 4 mL aqueous 

methanol in activated charcoal [18]; iv) double extraction with 4 mL aqueous methanol 

[28]. Each of these four extraction methods were repeated three times, thus three 

technical replicates were performed. Methanol was removed from the extracts by roto-

evaporation and diluted to 10 mL in a volumetric flask with 10 mM sulfuric acid. 

Extracts were purified using 500 mg of C-18 cartridges (Agilent Technologies, Santa 
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Clara, California, USA), to remove less polar compounds and avoid possible co-elution 

with sugars during HPLC analysis [29]. Cartridges were activated with 2 mL of 

methanol and washed with 3 mL of 10 mM sulfuric acid. Then, 1 mL of extract was 

loaded into the cartridge and washed with 3 mL of 10 mM sulfuric acid. The aqueous 

eluate was taken to a 10 mL volumetric flask and topped up with 10 mM sulfuric acid. 

 

Recovery of the selected method was calculated in extractions of raw tissue from 

Criolla Guaneña, by analyzing triplicate samples spiked with a standard mixture of 10 

mg/L and three un-spiked samples, according to Eq. (1).  

 

           
       

   
           

 (1) 

 

Where Cspk is the average concentration of spiked samples, Cs is the average 

concentration of sugars from the original sample, and Cad is the concentration of 

standards added to spiked samples. 

 

2.4.2. Optimization of chromatographic analysis 

 

The samples were analyzed in an UHPLC Ultimate 3000 (Dionex, Sunnyvale, 

California, USA) equipped with a pump, an autosampler and a refraction index (RI) 

detector (Shodex, New York, New York, USA), at 35 ºC, using an AMINEX HPX 87H 

column (300 mm length x 7.8 mm particle size) (Biorad, Hercules, California, USA), 

with a pre-column (30mm x 4.6 mm). Column temperature and concentration of sulfuric 

acid were tested in an interval from 18 to 35 °C and from 5 to 12 mM sulfuric acid. 

Those conditions that yielded the best resolution in compound separation were selected 

for sugar content analysis. The elution was isocratic during 35 min. A volume of 20 μL 

was injected per sample. The compound identification was based on comparison of 

retention time and co-elution after spiking with authentic standards. Quantification was 

performed by the external standard method. Calibration curves were established using a 

mixture of sucrose, glucose, and fructose standards, at concentrations ranging from 5 to 

100 mg/L. Operation of the instrument and data processing were implemented using 

Chromeleon v. 7.1.2. (Dionex, Sunnyvale, California, USA). 

 

Area of the peaks was integrated according to the maximum peak width from the 

baseline. Compound separation was determined based on the resolution for each pair of 

peaks, in injections of three mixtures of standards, at a concentration of 100 mg/L, using 

the European Pharmacopeia formula shown in Eq. (2).    

 

           |
           

                   
|       

 (2) 

 

Where tR is the retention time of the current peak; tRefPeak is the retention time of the 

reference peak which by default is the peak after the current peak; W50%,R and 

W50%,RefPeak are the width of these two peaks at 50% of the peak height.  

 

 

2.5. Chromatographic method validation and analysis of sugar content in a set 

of group Phureja genotypes 
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The method developed above was validated for repeatability, reproducibility, linearity, 

and limits of detection (LOD), and quantification (LOQ). Inter-day repeatability was 

assessed over three days using a different 40 mg/L mixture of standards. Similarly, the 

reproducibility was evaluated based on five injections in the same day of a 40 mg/L 

mixture of standards. The Relative Standard Deviation (RSD) was used to evaluate the 

repeatability and reproducibility. AOAC’s Peer Verified Method Program (PVMP) 

levels of acceptability of RSD values for given concentrations of the analyte, were used 

as a reference to analyze the precision of the method [30]. 

 

Linearity was evaluated based on linear regression analyses of three calibration curves 

run in different days, at concentrations of 5, 10, 20, 40, 60, 80, and 100 mg/L. The peak 

areas for the same concentration were averaged. Using this data a linear regression 

model was developed, and a regression coefficient greater than 0.998 was considered to 

have a linear relationship between the peak area and the concentration of the analyte 

[31,32]. LOD and LOQ were established using a mixture of standards with 

concentrations of 0.5, 1, 2, 3, 4, and 5 mg/L, prepared and injected in triplicates. LOD 

was visually assessed by identifying the minimum concentration at which each analyte 

was reliably detected in the three injections. Likewise, LOQ was determined based on 

the minimum concentration of analyte to which the peak area response and 

concentration showed linearity [32]. Thus, a regression model was settled using the 

average areas of the injections with lower concentrations. Using this validated method, 

three technical replicates, for each freeze-dried tuber samples, of nine genotypes were 

analyzed. 

 

2.6. Statistical analyses 

 

First, an analysis of variance of a completely randomized design was carried out to 

determine if at least one sugar extraction method was different from the others. Then, 

the Tukey’s test was employed to identify differences among mean values, to select the 

extraction method that gave the highest level of extraction. Regression analyses for 

linearity and LOQ included testing the hypothesis for the model significance using the F 

statistic and testing the significance of the model’s slope using a two-tailed t test. 

Hypotheses were tested with a level of significance of p < 0.05. All the analyses were 

carried out using R software v. 3.1. [33]. 

 

 

3. Results and discussion  

3.1. Optimization of sugar extraction and chromatographic analysis 

3.1.1. Optimization of sugar extraction 

 

The analysis of variance revealed that for each sugar content at least one sugar 

extraction methodology was significantly different from the others. Table 1 shows the 

average contents of sucrose, glucose, and fructose for each method. Double extraction 

with 50% (v/v) aqueous methanol yielded the highest extraction levels for each analyte 

as well as it was determined that the mean value for this extraction method was 

significantly different from the others in glucose and fructose contents according to the 

Tukey’s test. Despite sucrose mean value in this method was not significantly different 

from reflux with 50% (v/v) aqueous methanol, it is important to underline that the mean 

value for the other two sugars was significantly different, and that double extraction 

method allows carrying out an easier parallel processing of more samples than reflux. 
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Table 1. Average concentrations of sugars for each extraction method. Averages with 

different letters in each column indicate significant differences according to Tukey’s test 

(p <0.05). Bold values show the highest contents of each analyte. 

  

 

Karkacier et al. [28] compared the sugar contents of apple samples extracted using 

water and the methanol extraction method adapted herein. Contrary to our results, these 

authors concluded that water was a more effective solvent than methanol for sugar 

extraction, since in the latter not all the sugars were soluble, because of solvent 

vaporization. In contrast, Johansen et al. [34] concluded that water and 50% alcohol 

(methanol or ethanol) produced similar sugar extraction levels and that during water 

extraction there was the risk of starch and oligosaccharides degradation due to 

enzymatic action.  

 

Whether enzymatic degradation of starch occurred during water extraction, this 

phenomenon was overcome by the higher extraction power of 50% (v/v) aqueous 

methanol, since in all cases methanol extractions yielded higher sugar contents than 

those with water extraction. This result can be explained because the method used with 

water was with a temperature (92 ºC) that caused tuber protein denaturation, which later 

might have trapped soluble sugars and diminished their extractions [35]. From the 

methods that use methanol, the one using activated charcoal yielded less sugar contents 

suggesting that charcoal could have adsorbed sugars into its carbon surface due to its 

preference towards organic molecules [36].        

 

Thus, recovery analysis was performed with the double extraction method, revealing the 

highest percentages for sucrose (99.77 ± 1.98) and glucose (99.69 ± 1.55). The lowest 

recovery was found for fructose (94.14 ± 1.00), indicating that this compound was more 

prone to be lost during sample processing. This analysis demonstrates that extraction 

and sample purification interfere somehow in the loss of sugar contents during those 

procedures. Fructose data presented were not adjusted by its recovery value. Recovery 

values presented were within the acceptability range (90 – 107%, w/v) for analytes at a 

concentration of 100 mg/L [14].     

 

3.1.2. Optimization of chromatographic analysis 

 

From the different concentration values of sulfuric acid and temperatures of the column 

that were tested, a concentration of 10 mM sulfuric acid, at a flow rate of 0.3 mL/min, 

and a column temperature of 18 ºC were the conditions that resulted in the best 

resolution for the compounds analyzed. The conditions established for chromatographic 

analysis allowed not only the separation of sucrose, glucose, and fructose, but also the 

separation and identification of two additional peaks corresponding to citric acid and 

malic acid (Figure 1A). Selectivity of the method was assessed by checking the UV-vis 

Method 
Average sucrose 

concentration (mg/L) 

Average glucose 

concentration (mg/L) 

Average fructose 

concentration (mg/L) 

Water 2,566.22 ± 81.29 a 308.2 ± 3.14 a 747.44 ± 3.36 a 

Methanol double 

treatment 
4,925.64 ± 240.2 b 1,035.36 ± 50.74 b 1,487.26 ± 81.24 b 

Methanol  with 

activated charcoal 
3,479.68 ± 189.74 c 672.42 ± 60.28 c 939.16 ± 82.79 ac 

Methanol  with 

reflux 
4,322.76 ± 417.87 b 817.85 ± 91.58 c 1,169.59 ± 135.31 c 
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answer of each chromatographic peak. The absence of UV-vis response in the peaks 

corresponding to the sugars studied was an indicative of the absence of compounds such 

as organic acids or phenolic compounds co-eluting with the sugars, compounds that are 

expected to be present in potato tuber extracts [37]. 

 

Resolution for each pair of the identified peaks is shown in Figure 1A, using a mixture 

of sugars and organic acid standards in a concentration of 100 mg/L. Less resolved 

peaks were those from citric acid/glucose and fructose/malic acid with resolution values 

close to one. Authors as Kupiec [38] have reported that resolution values equal or 

greater than one indicate appropriate quality in compound separation. Figure 1B shows 

a chromatogram of a potato extract from accession CCC 52 with sucrose, glucose, and 

fructose quantifications revealing as well an adequate separation of the compounds 

analyzed. Thus, the chromatographic method established provides good separation as 

well as proper quantification of sugars, supported by a satisfactory measurement of 

glucose and fructose containing citric acid and malic acid in the mixture of standards 

and in the sample.  

 

Citric acid and malic acid play important roles in the Krebs cycle and are the most 

abundant organic acids in potato tubers [39,40]. It was expected, therefore to detect 

these compounds in Phureja tubers eluting close to sugars using an AMINEX 87H 

column [21]. Authors do not agree in specific malic acid and citric acid roles and 

accumulation trends in the physiological processes during storage [39,41,42]. Even 

though, it is reported that both acids increases their amounts when the tubers are stored 

at low temperatures [41]. Consequently, for the better understanding of the dynamics of 

sugars and major organic acids during storage in diploid potatoes, it might be 

appropriate to use this chromatographic method, as it is possible to simultaneously 

quantify sugars and major potato organic acids using the RI detector. It is important to 

underline, however, that UV detection is more sensitive than RI detection for the 

quantification of organic acids. In addition, the simultaneous quantification of sugars 

and organic acids are useful in the characterization of food products as wine because 

these contents analyses are required for quality evaluation [43]. 

 

Using the same type of column to quantify sugars in the Colombian tetraploid cultivar 

R-12 (Diacol Capiro), Fonseca & Urueña [23] did not report the presence of additional 

peaks corresponding to organic acids. This fact can be explained because of lower 

concentration of sulfuric acid (8 mM) and higher column temperature (35 ºC) used by 

them, did not allow resolving acids from sugars or due to the existence of non-

detectable amounts of citric acid and malic acid in the cultivar studied. In contrast, 

Eyéghé-Bikong et al. [44] reported the co-elution of fructose and malic acid, using 

AMINEX 87H column, operated at 55 ºC with 5 mM sulfuric acid in wine and 

grapevine samples. The chromatographic method used in our research shows the 

possibility to resolve fructose from malic acid without using organic modifiers in 

sulfuric acid solutions as proposed by Castellari et al. [43], but by increasing acid 

concentration and diminishing column temperature. In this scenario, it is expected an 

accurate quantification of fructose with RI detection as it separates from malic acid in 

the RI detection. This approach is more suitable than those that comprise the 

quantification by RI detection of sugars and UV detection of organic acids, without 

resolving organic acids from sugars in RI detection [45,46].  
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Figure 1. HPLC-Chromatograms illustrating: 1) Sucrose; 2) Citric acid; 3) Glucose; 4) 

Fructose; 5) Malic acid. A) Mixture of sugars and organic acid standards in a 

concentration of 100 mg/L. Insert shows resolution for each pair of peaks from 

chromatogram (e.g. resolution for peaks 1-2 means resolution for sucrose and citric 

acid). B) Sample of Solanum tuberosum group Phureja accession CCC 52. 

Concentrations found in accession were as follows: 1) 153.90 mg/L; 3) 225.32 mg/L); 

4) 21.72 mg/L. µRIU: micro refractive index units. 
 

3.2. Chromatographic method validation and analysis of sugar content in a set 

of group Phureja genotypes 

3.2.1. Method validation 

 

Reproducibility and repeatability were determined for each analyte according to the 

RSD values shown in Table 2. As injections were performed on three different days, the 

repeatability assay revealed a higher RSD values than reproducibility. Taverniers et al. 

[14] indicated that the AOAC’s PVMP proposes levels of acceptability of RSD values 

with greater accuracy than the Horwitz function [47]. Hence, for an analyte in a 

concentration ranging from 10 to 100 mg/L, a RSD between 5.3 and 7.3 is acceptable. 

Mixtures of 40 mg/L standards were used for both assays, yielding RSD values even 

lower than the range previously mentioned. The RSD values obtained when testing 
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reproducibility and repeatability, assures the precision of the method developed for the 

quantification of sucrose, glucose, and fructose. 

 

Table 2. Reproducibility and repeatability analysis of each analyte using a 40 mg/L 

mixture of standards.  

 

 

RSD, relative standard deviation. 
 

The averaged regression coefficients for the independent calibration curves analyzed 

revealed values greater than 0.998 (Table 1 of Supplementary Data), indicating an 

acceptable fit of the data to the regression curves which supports a proportional 

relationship between the response of the analyte and its concentration [31]. Using the 

averaged values of areas in different concentrations, a regression model was fitted for 

each sugar. The regression coefficients obtained revealed an acceptable fit of the 

averaged data for all sugars; as well, the F tests for the regression showed significance 

(p < 0.05). The two-tailed t test for the slope (p < 0.05) demonstrated that the values 

were different from zero which indicated that the sugar concentration had a significant 

effect on peak area (Table 1 of Supplementary Data). These analyses supports the 

significance of the adjusted models, which reinforces the linearity of the analyte 

response in the range studied and the accuracy in sample quantification performed at 

different times with different calibration curves.   
 

LOD and LOQ showed the same values for both parameters in glucose and fructose (3 

mg/L) and a lower value for sucrose in LOD (2 mg/L). The adjusted models for LOQ 

analysis and their slopes were significant according to the t and F tests respectively, 

indicating that the method quantification was linear at concentrations ranging from 3 to 

100 mg/L for the three sugars (Table 2 of Supplementary Data). To summarize, the 

validation analyses performed demonstrated the method precision in a range of linearity 

from 3 mg/L to 100 mg/L. 

 

3.2.2. Sugar content in group Phureja genotypes based on validated method 

 

The sugar contents of nine Phureja genotypes were calculated and shown in Table 3. 

According to the AOAC’s levels of acceptability of RSD (5.3 - 7.3), two values were 

out of  range, but considering the Horwitz function these values are acceptable [14,47]. 

Besides, these RSD values belong to glucose and fructose, and the quantification of 

these compounds showed greater variability which was reinforced by higher RSD 

means and higher RSD deviations with respect to sucrose values. Thus, the reliability 

found in the quantification of these genotypes supported the method validation 

presented here.  

 

Glucose and fructose contents found in Phureja potatoes were not equimolar as fructose 

amounts were lower. This result agrees with a potential high activity of fructokinase 

which is the responsible for fructose metabolism into hexose-phosphate cycle, thus 

Sugar 

Reproducibility Repeatability 

Average (mg/L) RSD  Average (mg/L) RSD 

Sucrose 40.08 ± 0.49 1.21 42.06 ± 2.40 5.71 

Glucose 40.42 ± 0.34 0.83 41.33 ± 1.52 3.67 

Fructose 40.41 ± 0.29 0.72 40.49 ± 1.80 4.44 
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diminishing the fructose content in tubers [48]. There was a high variability in the sugar 

content among the four commercial and five CCC landraces studied (e.g. sucrose 

content ranged from 0.93 to 3.11 g/100 g tuber DW). McCann et al. [16] analyzed, 

based on HPLC, the sugar content of two group Phureja accessions stored at 2 ºC during 

three months. As these authors studied tubers from plants grown from botanical seeds of 

these accessions subjected to cold storage, wider ranges for sugar contents were found, 

especially for sucrose (ranging from 1.6 to 16.9 g/100 g tuber DW). A detailed multi-

environmental study of sugar contents of all genotypes from CCC using this HPLC 

method is necessary to conclude about the current extent of the natural variation of 

sugar contents in Colombian Phureja germplasm. 

 

4. Conclusions 

 

The chromatographic method developed and validated allows a simple and appropriate 

quantification of sucrose, glucose, and fructose in Solanum tuberosum Group Phureja, 

also offering the possibility of their simultaneous quantification with the most abundant 

organic acids (citric acid and malic acid) in potato using a RI detector. In addition, in 

comparison with water extraction and 50% (v/v) aqueous methanol extractions with 

reflux and activated charcoal, the double extraction method with 50% (v/v) aqueous 

methanol provides higher sugar contents, an appropriate recovery, and it is easy to 

implement when having a large number of samples as required for the assessment of 

germplasm collections. With the purpose of a wider knowledge of the natural variation 

of sugar contents in Group Phureja, it is necessary to include all genotypes from CCC. 

Therefore, the chromatographic method established will contribute to an accurate 

phenotypic characterization of this collection that will impact in the understanding of 

the process of reducing and non-reducing sugars accumulation in tubers of Phureja 

potatoes from Colombia.   
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Table 3. Average content of sugars in tubers of commercial cultivars and landraces from CCC. Bold numbers indicate those RSD values out of 

the levels of acceptability established by the AOAC [14,30].  

 
 

CCC, Colombian Core Collection of Solanum tuberosum group Phureja; DW, dried weight; RSD, relative standard deviation.  

 

 

 

    

 

 

 

 

Genotype Sucrose  Average Glucose Average Fructose Average Reducing sugars Total sugars 

(g/100 g tuber DW) RSD (g/100 g tuber DW) RSD (g/100 g tuber DW ) RSD (g/100 g tuber DW ) (g/100 g tuber DW ) 

Guaneña 1.47 ± 0.04 3.02 0.27 ± 0.02 8.13 0.10 ± 0.01 4.88 0.36 ± 0.04 1.83 ± 0.08 

Paisa 2.10 ± 0.05 2.24 0.26 ± 0.01 4.89 0.13 ± 0.01 4.61 0.39 ± 0.01 2.49 ± 0.04 

Galeras 0.93 ± 0.05 5.74 0.29 ± 0.02 5.98 0.12 ± 0.01 8.50 0.40 ± 0.03 1.33 ± 0.08 

Colombia 1.31 ± 0.04 2.76 0.25 ± 0.01 2.53 0.15 ± 0.01 5.05 0.40 ± 0.01 1.71 ± 0.05 

CCC 8 1.05 ± 0.05 4.65 0.70 ± 0.04 5.60 0.32 ± 0.01 3.33 1.00 ± 0.07 2.05 ± 0.11 

CCC 52 3.11 ± 0.04 1.16 4.53 ± 0.03 1.06 0.44 ± 0.01 2.17 4.97 ± 0.04 8.09 ± 0.07 

CCC 80 1.36 ± 0.05 3.52 0.44 ± 0.02 4.36 0.14 ± 0.01 5.38 0.59 ± 0.02 1.94 ± 0.07 

CCC 108 1.92 ± 0.04 1.98 2.79 ± 0.08 2.74 1.49 ± 0.02 1.10 4.28 ± 0.09 6.19 ± 0.13 

CCC 123 1.99 ± 0.05 2.73 1.50 ± 0.06 4.17 0.35 ± 0.01 2.62 1.89 ± 0.02 3.85 ± 0.01 

Average 1.46 ± 0.44 3.09 ± 1.40 1.23 ± 1.50 4.38 ± 2.11 0.36 ± 0.44 4.18 ± 2.18 1.59 ± 1.80 3.28 ± 2.35 

Maximun 3.11 5.74 4.53 8.13 1.48 8.50 4.97 8.09 

Minimum 0.93 1.16 0.25 1.06 0.10 1.10 0.36 1.33 
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Supplementary Data 

 

Supplementary Table 1 indicates linearity analyses performed for the method and 

Supplementary Table 2 shows limit of detection and limit of quantification analyses for 

each sugar. 

Supplementary Table 1. Linearity analyses.   

 
 

 

 

 

a 
Average regression coefficients of three models fitted for three calibration curves of 

each sugar.  
b 

Regression coefficients of the regression models fitted with the average areas of the 

sugars in each concentration.  
c
 Slopes of the regression models fitted with the average areas of the sugars in each 

concentration.  
**

 Significant p-values (p < 0.05) of the F test for the regression model and the two-

tailed t test for the slope hypothesis.  

 

 

Supplementary Table 2. Limit of detection (LOD) and limit of quantification (LOQ) 

analyses. 

 

Sugar LOD (mg/L) LOQ  (mg/L) a
 R² 

b
 Slope 

Sucrose 2.00 3.00 0.9984
**

 0.0089
**

 

Glucose 3.00 3.00 0.9980
**

 0.0102
**

 

Fructose 3.00 3.00 0.9992
**

 0.0105
**

 

 
a 
Regression coefficients for the models fitted with the average areas of the sugars in the 

concentrations considered.  
b
 Slopes of the regression models fitted.  

**
 Significant p-values (p < 0.05) of the F test for the regression model and the two-

tailed t test for the slope hypothesis.  

 

 

 

 

 

Sugar 
a
 Average R² 

 b
 R²

 c
 Slope

 

Sucrose 0.9997 ± 0.0002 0.9994
**

 0.0084
**

 

Glucose 0.9998 ± 0.0002 0.9996
**

 0.0105
**

 

Fructose 0.9997 ± 0.0002 0.9994
**

 0.0098
**
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Abstract 

 

Potato light frying color is dependent on the reduced accumulation of sugars in the 

tubers. Contents of sucrose, glucose, and fructose were studied in 108 landraces and 

four commercial cultivars of Solanum tuberosum Group Phureja in a single 

environment. Sucrose, glucose and fructose genotypic mean values, analyzed based on 

liquid chromatography, ranged from 6.39 to 29.48 mg/g tuber dried weight (DW), from 

0.46 to 28.04 mg/g tuber DW, and from 0.29 to 27.23 mg/g tuber DW, respectively. 

Sugar content analysis in Group Phureja revealed an extensive variability and it is 

consistent with previous frying color data from the landraces. Glucose content was 

higher than fructose in genotypes, which indicates that this reducing sugar might be the 

most relevant in defining frying color of Phureja genotypes at harvest. Five clusters of 

genotypes with biological significance were recognized and the results showed that high 

accumulation of sucrose and low accumulation of reducing sugars is the common 

feature of Group Phureja. 

 

Keywords: Sucrose, reducing sugars, glucose, fructose, sugar ratios, frying quality.  

 

1. Introduction  

Potato (Solanum tuberosum L.) is the third crop of global relevance after wheat and rice 

thus it plays an important role in worldwide food security and nutrition (Camire, 

Kubow, & Donnelly, 2009; Mosquera & Cuéllar, 2013). The demand for potato chips 

and French fries continues to grow because of changes in consumption habits (Faulkner, 

2015; Kirkman, 2007). High contents of sucrose (non-reducing sugar), glucose, and 

fructose (reducing sugars) in potato tubers represent an undesirable trait for fried 

processing because they tend to accumulate during cold storage at temperatures below 

mailto:lprestrepos@unal.edu.co
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10 ºC. Reducing sugars are precursors of the Maillard reaction and sucrose is the main 

source of glucose and fructose during its enzyme-catalyzed hydrolysis (Eck, 2007; Isla, 

Vattuone, & Sampietro, 1998). 

 

The Maillard reaction refers to a series of non-enzymatic reactions between non-

reducing sugars and principally amino groups from amino acids during the thermal 

processing of potatoes. This reaction leads to the production of dark pigments, the 

development of off-flavours, and the production of toxic compounds such as acrylamide 

that reduce consumer’s acceptance and generate risks for human health (Eck, 2007; 

Halford et al., 2012). The fact that there is a wide range of sugar concentrations among 

different potato genotypes indicates that these contents are under polygenic control, 

therefore highly influenced by environmental conditions such as tuber storage 

temperature (Halford et al., 2012).  

 

The phenotypic assessment of potato frying quality has been performed frequently by 

means of visual scales of frying color (Li et al., 2013; Ñústez-López, 2011a; Werij, 

Furrer, Eck, Visser, & Bachem, 2012). Nevertheless, it is relevant for potato breeders 

the evaluation of genotypes for their contents of precursors of the Maillard reaction, 

such as sugars. This type of evaluation also constitutes a quantitative approach for the 

understanding of the frying quality trait as it is possible to identify genotypes prone to 

the synthesis of dark pigments and acrylamide (Muttucumaru, Powers, Elmore, 

Briddon, Mottram, & Halford, 2014). Such improved quantitative phenotypic data are 

also important to implement strategies as association mapping, where accurate 

quantification of the phenotypic trait in the population is crucial to find highly reliable 

associated variants (Ersoz, Yu, & Buckler, 2007; Manolio et al., 2009). 

 

S. tuberosum Group Phureja consists primarily of diploid genotypes with short day 

adaptation and tuber sprouting at harvest that represent an important genetic resource 

for Colombia as in the south region of Nariño is located a center of diversity (Estrada, 

1996; Huamán & Spooner, 2002; Spooner, Núñez, Trujillo, Herrera, Guzmán, & 

Ghislain, 2007). Colombia leads the production, consumption and export of diploid 

Phureja genotypes commonly named “Creole potato”, which are known for their round 

tubers with yellow flesh and skin (Bonilla, Cardozo, & Morales, 2009; Rodríguez, 

Ñústez, & Estrada, 2009). These genotypes present an interesting possibility for their 

widespread use because of their outstanding nutritional and organoleptic properties and 

their processing potential (Bonilla et al., 2009; Peña, Restrepo-Sánchez, Kushalappa, 

Rodríguez-Molano, Mosquera, Narváez-Cuenca, 2015; Rivera, Herrera, & Rodríguez, 

2006). The crossability of Group Phureja with tetraploid potatoes, the most cultivated 

worldwide, is notable, therefore this cultivated group constitutes an important gene pool 

with prospective use in tetraploid breeding programs (Ñústez-López, 2011a). 

 

Currently, there are not Phureja cultivars suitable for fried processing, thus crops for 

frying purposes must be grown less than 2,600 meters above the sea level (masl) to 

decrease the probabilities of high or accelerated accumulation of reducing sugars in 

tubers due to lower temperatures (Ñústez-López, 2011a). Because of the lack of 

dormancy in tubers, the development of Phureja cultivars with tolerance to cold-induced 

sweetening would have the additional advantage of allowing the storage at low 

temperatures of tubers for processing to avoid sprouting (Sowokinos, 2008). Therefore, 

it is relevant to guide breeding programs towards the development of specific cultivars 

for processing.  
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Accessions from the Colombian Core Collection of Group Phureja (CCC) were 

characterized previously for their frying quality in a multi-environmental trial using a 

visual scale with equivalence of darkening percentage, identifying a wide genetic base 

for the trait (Ñústez-López, 2011a). Recently, a high performance liquid 

chromatographic (HPLC) method for the analysis of sugars in Phureja tubers was 

validated (Duarte-Delgado, Narváez-Cuenca, Restrepo-Sánchez, Kushalappa, & 

Mosquera-Vásquez, 2015). The aim of this study was to introduce the natural variation 

of sucrose, glucose, and fructose contents measured with a chromatographic technique 

in Phureja landraces, with the future perspective of elucidating the molecular basis of 

sugar accumulation in Phureja tubers through an association mapping strategy. 

 

2. Materials and methods 

2.1. Germplasm  

A set of 108 diploid landrace accessions from CCC (previously studied by Ñústez-

López, 2011a) and four commercial diploid cultivars (Criolla Colombia, Criolla Latina, 

Criolla Galeras, and Criolla Guaneña) (Ñústez-López, 2011b; Rodríguez et al., 2009) 

were studied for their sugar contents. Landrace accessions have been maintained 

through vegetative propagation. 

 

2.2. Field trial  

The field trial was located in a plot in the municipality of Soacha (Cundinamarca, 

Colombia; with an altitude of 2,850 masl, latitude of 4°28′40′′N and longitude of 

74°11′48′′W). Tubers from the landrace accessions and the commercial cultivars were 

sown in pots with a substrate of three parts of soil by one of sand. To prepare the 

substrate, organic moor soil with loam texture was brought from a close area of the plot. 

A tuber per pot was sown at the end of September 2013 and plants were harvested after 

137 days at tuber physical maturity, when foliage was senescent and tubers had 

developed a degree of skin set (Kumar, Singh, & Kumar, 2004). Plants were irrigated 

when required. Potato tubers from three pots of each genotype constituted three 

biological replicates in a completely randomized design. 

 

2.3. Tuber sample preparation and HPLC analysis  

Sugar content analysis was carried out after harvest. Mature and healthy raw tubers 

without mechanical damages were prepared for freeze-drying as described previously 

(Duarte-Delgado et al., 2015). Sucrose, glucose, and fructose were extracted with 50% 

(v/v) aqueous methanol from freeze-dried tissue and measured using an HPLC method. 

This method was developed and validated for Phureja potatoes using an AMINEX 87H 

column, 10 mM sulfuric acid as eluent, and refraction index detection (Duarte-Delgado 

et al., 2015).  

 

Calibration curves were evaluated every 48 samples. The lack of carryover in the long-

term HPLC analysis was verified by injecting blanks every eight samples. The stability 

of the HPLC system during independent experiments was assessed by the injection of a 

40 mg/L mixture of standards every nine samples; the mean relative standard deviation 

(RSD) values were 10.09 ± 0.84, 3.94 ± 1.24, and 3.97 ± 0.85 for sucrose, glucose, and 

fructose, respectively. These RSD values (below 11.30) assured the data reliability 

through long-term HPLC runs, according to levels of acceptability of RSD values 
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proposed in the Horwitz function for analytes in concentrations ranging from 10 to 

100 mg/L (Codex Alimentarius Commission, 2001; Taverniers, De Loose, & Van 

Bockstaele, 2004).   

 

2.4. Statistical analyses 

 

Mean values of each sugar content were established for each genotype and expressed as 

mg/g of dried weight (DW) tuber. Reducing sugar contents values were obtained from 

the sum of glucose and fructose, and total sugar contents were calculated from the sum 

of glucose, fructose, and sucrose. Average and standard deviation values of reducing 

and total sugars were also calculated for each genotype. Mean values of 

glucose/fructose and sucrose/reducing sugars ratios were calculated for each genotype 

with the purpose of analyzing the differential genotype metabolism regarding the 

proportion of sugars accumulated.  

 

Data of CCC accessions from a multi-environmental Bayesian estimate of mean chip 

darkening % calculated using the International Potato Center scale of frying color 

(Ñústez-López, 2011a), were included as an additional variable in the correlation 

analysis. Spearman`s correlation among sugar contents, sugar ratios, and chip darkening 

% was carried out considering a level of significance of α = 0.05. Correlation analysis 

was performed using SAS v.9.2 software (SAS Institute Inc., Cary, NC, USA). 

 

A normed Principal Component Analysis (PCA) was employed with mean genotypic 

data of sugar contents and sugar ratios, to illustrate a biplot representing the amount of 

inertia accumulated in the first two principal components together with a correlation 

circle showing the direction of the increase of the variables represented by vectors and 

their degree of correlation. Norm of the vectors was also calculated to conclude about 

the degree of representation of the variables in the factorial space, thus values greater 

than 0.6 indicated an appropriate representation of the variable in the biplot 

(Supplementary Data 2). A factor-based hierarchical cluster analysis was implemented 

using the nearest neighbor method, to incorporate in the PCA biplot the information of 

clusters. Number of clusters was determined from the analysis of a dendrogram that was 

partitioned at the level of five groups with biological significance. These multivariate 

analyses were performed using SPAD v. 5.6 (Coheris, Suresnes, France).  

 

3. Results and discussion  

 

3.1. Sugar contents 

 

Sugar content analysis showed an extensive range of variation among the three sugars, 

and among reducing sugar and total sugar contents studied in all accessions (Table 1; 

Supplementary Data 1), supporting that these contents at harvest are genetically 

influenced (Kumar et al., 2004). The most abundant sugar found in tubers was sucrose, 

followed by glucose and fructose, as sucrose is the predominant sugar in potato tubers 

during growth and development.  

 

Sucrose contents of commercial cultivars are close to the average value of CCC (Table 

1). Potato genotypes capable of storing low sucrose levels before harvest have high 

potential for processing as these genotypes have greater ability to control sucrose 

accumulation as growth stage is completed (Kumar et al., 2004). Criolla Guaneña is the 
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commercial cultivar with highest sucrose content, indicating that this cultivar might be 

the one with greatest potential of reducing sugars accumulation during low temperature 

storage. It is possible that the Phureja clones with lower sucrose accumulation at harvest 

would also accumulate less reducing sugars during low temperature storage, thus should 

have better frying qualities than the current cultivars. 

 

Commercial cultivars show values closer to minimum values of reducing sugars from 

CCC, with the exception of Criolla Colombia that tends to accumulate higher amounts 

of glucose and fructose (Table 1). A previous analysis of commercial cultivars sown in 

a higher plot at 3,400 masl, showed an increased accumulation of reducing sugars at 

harvest (from 3.6 to 4.0 mg/g tuber DW; Duarte-Delgado et al. 2015). This reveals that 

commercial cultivars have a similar trend in reducing sugar accumulation under a high 

pressure of the environment at high altitudes. The outstanding accumulation of reducing 

sugars found in Criolla Colombia in the current assessment in a low altitude (2,850 

masl) supports that this cultivar that corresponds to an earlier clonal selection from 

landraces of CCC is not suitable for frying (Rodríguez et al., 2009; Ñústez-López, 

2011a). 

 

The five Phureja landraces with the lowest sucrose contents are: CCC 80, CCC 61, CCC 

2, CCC 20, and CCC 4 (from 6.39 to 8.65 mg/g tuber DW), while the five landraces 

with the lowest reducing sugar contents are: CCC 27, CCC 4, CCC 91, CCC 35, and 

CCC 41 (from 0.87 to 0.98 mg/g tuber DW). The nine landraces aforementioned are of 

interest for further analysis in breeding programs that consider frying quality, as it is 

relevant to include genetic diversity that shows not only low reducing sugars levels but 

also a diminished potential for the generation of reducing sugars through the low 

accumulation of sucrose. Noteworthy, CCC 27 and CCC 35 are the landraces with the 

lowest multi-environmental estimates of chip darkening of 3.33% and 4.45%, 

respectively (Ñústez-López, 2011a). The genotype CCC 4 is also of great importance 

because it accumulates both low amounts of sucrose and reducing sugars, thus this 

genotype might present specific genetic mechanisms that contribute to the reduced 

accumulation of sugars in tubers.  

 

3.2. Sugar ratios 

The glucose/fructose ratio range found revealed that landrace genotypes and 

commercial cultivars presented values greater than 1.00, indicating that fructose tends to 

accumulate in lesser amounts than glucose (Table 1). Glucose concentration can be 

found up to six times higher than fructose as in the case of CCC 2 (Figure 1; 

Supplementary Data 1). Accessions CCC 42 and CCC 108 were the exception, as 

glucose and fructose contents were nearly equimolar (Supplementary Data 1). The 

variability of glucose and fructose contents in cold-stored tubers at 2 ºC have also been 

shown across wild Solanum species, revealing similar amounts of glucose and fructose 

or higher contents of fructose than of glucose (McCann, Bethke, & Simon, 2010). 

 

The range of glucose/fructose ratio found in Group Phureja at harvest suggests 

differential activities and affinities of fructokinases and hexokinases, which are 

enzymes responsible of fructose and glucose irreversible phosphorylation before their 

use in metabolic processes (Davies & Oparka, 1985; Granot, David-Schwartz, & Kelly, 

2013; Kumar et al., 2004; Sowokinos, 2001). The previous finding suggests that 

Phureja landraces possess a heterogeneous metabolism regarding the initiation of 

respiratory process because of the lack of a tuber dormancy period in these genotypes 
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(Rodríguez & Moreno, 2010; Spooner et al., 2007). Therefore, the greater contents of 

glucose than those of fructose observed in landraces, reflected in the mean ratio of 1.79 

± 0.71, supports that fructose 6-phosphate might be preferentially used in glycolysis 

(Junker et al., 2006).       

 

McCann et al. (2010) in the study of the sugar content of 22 genotypes from a botanical 

seed accession of Group Phureja found a mean glucose/fructose ratio of 0.52. These 

contrasting results suggest an important influence of the low temperatures of storage (2 

ºC) in the tubers analyzed (McCann et al., 2010). The storage temperature might 

contribute to the potential preferential enzymatic action of sucrose synthase, which is 

related to cold stress response and converts sucrose into UDP-glucose and fructose, thus 

generating higher concentrations of fructose in tubers and with different effect from that 

of invertase that produces equimolar amounts of both sugars (McCann et al., 2010; 

Sturm & Tang, 1999).   

 

The range observed for the sucrose/reducing sugars ratio (Table 1) indicated the 

presence of genotypes with values lower than 1.00, representing individuals with greater 

accumulation of reducing sugars than that of sucrose. Besides, there were genotypes 

accumulating up to 14 times more sucrose than reducing sugars as was the case of CCC 

41 (Table 1; Supplementary Data 1), which is caused by the low reducing sugar content 

present in this accession. The variability in this ratio has been correlated with the 

invertase activity in cold-stored tubers (Zrenner, Schüler, & Sonnewald, 1996), hence 

there might be a differential enzymatic activity in Phureja accessions. 
 

3.3. Correlation among variables 

Table 2 shows the correlation coefficients that were found among the eight variables 

considered in the current study. A strong and significant correlation was found between 

glucose and fructose contents. Sucrose is significantly correlated with reducing sugar 

contents revealing that the disaccharide content has a moderate relationship with the 

reducing sugar contents in Phureja genotypes at harvest, which is contrary to results of 

Zhu, Cai, Ke, & Corke (2010) that also performed tuber analysis at harvest (r < 0.14, p 

> 0.05, n=16). Notwithstanding, Halford, Muttucumaru, et al. (2012) in the analysis of 

ten tetraploid potato cultivars stored at temperatures ranging from 8.5 to 9.5 ºC, found a 

significant correlation between sucrose and reducing sugars (r = 0.921, p ≤ 0.001) 

which reveals that strong correlations between these variables are also possible in 

nature. Sucrose/reducing sugar ratio presents a strong negative correlation with reducing 

sugar contents and a non-significant correlation with sucrose contents. These results 

indicate that ratio variability is more related to reducing sugars variation.   

Chip darkening % presents between weak to moderate significant correlations with each 

sugar contents and with sucrose/reducing sugar ratio. The positive correlations with 

sugar contents suggest that each sugar is related to frying color, showing sucrose the 

lowest correlation value, and glucose the greater correlation coefficient. Therefore, it is 

proposed that non-reducing sugars and reducing sugars measured in a single 

environment weakly influence the variation of the multi-environmental estimate of chip 

darkening % as sucrose represents the potential for the production of glucose and 

fructose in cold environments. These correlation results show that despite of the specific 

interactions of the genotypes and the environment, there is a defined relationship 

between sugar contents and frying color in Group Phureja.   
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Furthermore, these weak to moderate correlations also suggests the influence in chip 

color variation of other precursors of the Maillard reaction as the free amino acids 

contents in tubers or other unidentified compounds that also can participate in these 

non-enzymatic reactions (Halford et al., 2012; McCann et al., 2010; Muttucumaru et 

al., 2014). This observation is relevant because genotypes with low amino acid contents 

will present light frying color even if accumulate high contents of sugars.   

3.4. Principal component analysis  

Data revealed the extensive variation present in Phureja genotypes regarding sugar 

contents and sugar ratios, which is of potential use in breeding programs. This variation 

is depicted in the PCA biplot (Figure 1), where the two principal components explain 

77.1% of the total inertia thus displaying a high amount of the total variability. The 

norm calculated for the vectors that denote the variables in the biplot (with values 

higher than 0.6, Supplementary Data 2), supports that all the variables are well 

represented in the factorial space as well. Less represented variables correspond to 

glucose/fructose and sucrose/reducing sugars ratios and variables with greater 

representation are glucose and reducing sugar contents.  

 

The disposition of the vectors in the biplot is representative of the correlation 

coefficients found among the variables (Table 2, Section 3.3). The proximity of the 

vectors representing glucose, fructose, and reducing sugar contents supports the high 

positive correlation found among them. The opposite direction of the sucrose/reducing 

vector reflects the negative correlation with reducing sugar and total sugar contents. 

Finally, the independent variation that shows the orientation of the vector of 

glucose/fructose ratio reveals the non-significant or poor correlation between this ratio 

and the other variables. Therefore, the PCA biplot (Figure 1) is an appropriated tool to 

demonstrate the relationships among all the analyzed variables and to show their 

variability. 

 

3.5. Cluster analysis  

The factor-based cluster analysis incorporated in PCA analysis, shows five groups in the 

factorial space (Figure 1). These clusters are influenced by the direction of the variables 

represented by the vectors in the factorial space. Supplementary Data 1 presents the 

group corresponding to each genotype. Group Five (2.7% of genotypes) is the scarcest 

and relates to genotypes with an outstanding accumulation of reducing sugars and 

sucrose. Accessions CCC 108 and CCC 120 that present the highest reducing sugars 

contents, also had an outstanding multi-environmental estimate of chip darkening of 

79.46 % and 68.26 %, respectively (Ñústez-López, 2011a), indicating that extreme 

phenotypes with undesirable estimate of chip darkening also coincide with present 

higher contents of glucose and fructose.  

 

Group One (3.6% of genotypes) represents the clones with outstanding glucose/fructose 

ratios, revealing that this superior accumulation of glucose at harvest is a rare 

phenomenon in the natural variation of Phureja landraces. This cluster includes four 

genotypes with a glucose/fructose ratio higher than 3.5 (Supplementary Data 1), 

suggesting that these landraces might have undergone through a respiratory metabolism 

that favored fructose phosphorylation as discussed in Section 3.2. Group Two (9.8% of 

genotypes) covers clones with high contents of sucrose and intermediate values of 

reducing sugars. 
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Table 1. Average content of sugars and average glucose/fructose and sucrose/reducing sugars ratios from landraces of CCC (108 genotypes) and 

four commercial cultivars from Solanum tuberosum Group Phureja.  

Genotypes Sucrose
a
 Glucose

a
 Fructose

a
 

Reducing 
Total sugars

a
 Glucose/Fructose

b
 

Sucrose/ 

sugars
a
 Reducing sugars

b
 

CCC 14.32 ± 4.70 2.68 ± 4.27 1.77 ± 3.76 4.45 ± 7.98 18.77 ± 10.25 1.79 ± 0.71 5.65 ± 2.91 

Criolla Guaneña
c 

 14.87 ± 3.49 0.80 ± 0.14 0.41 ± 0.10 1.21 ± 0.22 16.07 ± 2.24 1.95 ± 0.36 12.32 ± 2.24 

Criolla Latina
c
 10.44 ± 1.35 0.69 ± 0.14 0.37 ± 0.07 1.05 ± 0.20 11.49 ± 2.53 1.88 ± 0.14 9.94 ± 2.53 

Criolla Galeras
c
 11.15 ± 0.32 0.79 ± 0.11 0.38 ± 0.14 1.17 ± 0.25 12.32 ± 2.01 2.07 ± 0.58 9.51 ± 2.01 

Criolla Colombia
c
 12.00 ± 1.26 1.67 ± 0.14 1.31 ± 0.33 2.99 ± 0.47 14.99 ± 1.07 1.28 ± 0.22 4.02 ± 1.07 

Minimum 6.39 0.46 0.29 0.87 7.53 1.01 0.27 

Maximum 29.42 28.04  27.23 55.25 74.05 6.67 14.48 

 

CCC, Colombian Core Collection of Solanum tuberosum Group Phureja.  
a
 Average sugar contents are expressed in mg/g of dried weight tuber. 

b
 Ratios are given in w/w. 

c 
Commercial cultivars. 
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Group Four (30.3% of genotypes) comprises individuals with high values of 

sucrose/reducing sugar ratios, which includes the Phureja genotypes with lowest 

contents of reducing sugars. Group Three (53.6% of genotypes) is the most frequent and 

defines genotypes with lower sucrose/reducing sugar ratios than Group Four, thus these 

genotypes tend to present greater contents of reducing sugars. The biplot shows that 

Groups Three and Four are closely related clusters, mainly conditioned by glucose 

contents, which is the variable that influences greatly the variation of sucrose/reducing 

sugar ratio as proposed in Section 3.3. 

 

Cluster analysis indicates that in fact the most common feature of Phureja landraces in 

the current environment assessed, is a high accumulation of sucrose and a low 

accumulation of reducing sugars (represented in Groups Three and Four), which is also 

reflected in the PCA biplot by the dense cumulus of genotypes towards the minimum 

values of this variable in the factorial space. These results support the use of accessions 

of Group Phureja in tetraploid potato breeding programs, to produce offspring with 

improved chip color scores (Hamernik, Hanneman, & Jansky, 2009; Jakuczun & 

Zimnoch-Guzowska, 2004). The rare Phureja genotypes with extreme phenotypic 

values are of great interest for deeper studies because they are often enriched with 

uncommon causal variants that can contribute to explain complex trait variability and 

present a large effect on the trait (Korte & Farlow, 2013; Lee, Abecasis, Boehnke, & 

Lin, 2014).  

 

Conclusions 

 

Sugar content analysis in Group Phureja revealed an extensive variability and is 

consistent with previous data of frying color from the collection. The correlation 

analysis supports that each sugar individually is related to frying color, showing sucrose 

the lowest correlation value, and glucose the greater correlation coefficient. Analysis of 

glucose/fructose and sucrose/reducing sugar ratios disclosed also a wide range that is 

related to differential metabolism in sugar accumulation in Group Phureja. Glucose was 

the sugar predominantly found in tubers, which indicates that this reducing sugar might 

be the most relevant in defining frying color of Phureja genotypes at harvest. The lack 

of tuber dormancy and the heterogeneous respiratory metabolism in Phureja germplasm 

represent the main factors that might influence their sugar contents and frying quality at 

harvest.  

 

This single-environment analysis revealed five clusters of genotypes with biological 

significance and shows that the most common feature of Group Phureja is a high 

accumulation of sucrose and a low accumulation of reducing sugars. Nevertheless, 

Phureja landraces with extreme phenotypes are scarce and are of great interest to 

understand complex trait variability. The landraces that represent the genotypes for 

further analysis in breeding programs that consider frying quality were identified. For 

breeding schemes it would be relevant to study the accumulation of sugars in these 

genotypes under cold-storage conditions to contribute in the understanding of the cold-

induced sweetening trait in Group Phureja, as commercial cultivars are inclined to 

accumulate high contents of sucrose that can be hydrolyzed during storage. 
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Table 2. Spearman`s correlation coefficients among average sugar contents, average sugar ratios, and average chip darkening % studied in 

landraces of CCC (108 genotypes) and four commercial cultivars from Solanum tuberosum Group Phureja. 

  
Sucrose

a
 Glucose

a
 Fructose

a
 Reducing sugars

a
 Total sugars

a
 Glucose/Fructose

b
 

Sucrose/ Reducing 
Chip darkening %

c
 

  sugars
b
 

Sucrose
a
   0.48*** 0.51*** 0.49*** 0.94*** -0.10

ns
 -0.02

ns
 0.34** 

Glucose
a
 0.48*** 

 
0.90*** 0.99*** 0.72*** -0.05

ns
 -0.85*** 0.44*** 

Fructose
a
 0.51***

 
0.90*** 

 
0.94*** 0.72*** -0.40*** -0.78*** 0.38*** 

Reducing sugars
a
 0.49*** 0.99*** 0.94*** 

 
0.73*** -0.14

ns
 -0.85*** 0.43*** 

 Total sugars
a
 0.94*** 0.72*** 0.72*** 0.73***  -0.13

ns
 -0.31** 0.43*** 

 

Glucose/Fructose
b
 -0.10

ns
 -0.05

ns
 -0.40*** -0.14

ns
 -0.13

ns
 

 
-0.11

ns
 0.04

ns
 

Sucrose/Reducing 
-0.02

ns
 -0.85*** -0.78*** -0.85*** -0.31** -0.11

ns
 

 
-0.32** 

sugars
b
 

Chip darkening %
c
 0.34** 0.44*** 0.38*** 0.43*** 0.43*** 0.04

ns
 -0.32** 

 

 

CCC, Colombian Core Collection of Solanum tuberosum Group Phureja.  
a
 Average sugar contents were expressed in mg/g of dried weight tuber. 

b
 Average ratios were given in w/w. 

c 
The mean chip darkening % from 108 genotypes from CCC are data that come from a Bayesian estimation from the assessment of multi-

environmental trials as described by Ñústez-López (2011a).   

p-values: ***, p ≤ 0.0001; **, p ≤ 0.001; *, p ≤ 0.05; ns, p > 0.05 the coefficient is not significant.  
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Figure 1. Principal component analysis biplot with cluster analysis incorporated of sugar contents and sugar ratios in Solanum tuberosum Group 

Phureja genotypes. The axes present the percentage of variance accounted in the first two principal components. Two scales were generated in 

the X axis to provide detail in the high-populated X axis up to 2.5 units. The blue spots represent 108 genotypes from CCC (Colombian Core 

Collection of Group Phureja), and the other colors in parenthesis correspond to commercial cultivars as follows: Criolla Latina (red), Criolla 

Galeras (green), Criolla Colombia (purple), and Criolla Guaneña (orange).The grey arrows represent the vectors indicating the direction of the 

increase of the variables and the magnitude in which each one is represented in the factorial space. The extreme genotypes in variables are 

labeled in the biplot and are shown in parenthesis as follows with the number of the grey vectors: 1) Glucose, reducing sugars, and fructose (CCC 

108), 2) total sugars (CCC 120), 3) sucrose (CCC 131), 4) sucrose/reducing sugars (CCC 41), and 5) glucose/fructose (CCC 2). The white spots 

indicate the clusters of genotypes, being their size proportional to the abundance of genotypes in each cluster. Each cluster is noted with G, thus 

G1, G2, G3, G4, and G5 group together the 3.6%, 9.8%, 53.6%, 30.3%, and 2.7% of the genotypes respectively. 
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Supplementary Data  

Supplementary Table 1. Average content of sugars and average glucose/fructose and sucrose/reducing sugars ratios from landraces of CCC 

(108 genotypes) and four commercial cultivars from Solanum tuberosum Group Phureja. The genotypic group from cluster analysis of Section 

3.4 is also shown for each genotype.   

 

Genotype Sucrose
a
 Glucose

a
 Fructose

a
 

 Reducing 
Total sugars

a
 Glucose/fructose

b
 

Sucrose/ 
Group 

 sugars
a
  reducing sugars

b
 

CCC 2 8.05  ± 1.96 5.40 ± 2.28 0.81 ± 0.34 6.21 ± 2.16 14.26 ± 3.68 6.67 ± 2.92 1.29 ± 0.15 1 

CCC 3 16.96 ± 2.97 2.46 ± 0.28 1.62 ± 0.36 4.07 ± 0.64 21.03 ± 3.61 1.52 ± 0.17 4.16 ± 0.08 3 

CCC 4 8.65  ± 0.60 0.62 ± 0.16 0.30 ± 0.00 0.92 ± 0.07 9.57 ± 0.77 2.05 ± 0.22 9.43 ± 1.86 4 

CCC 5 12.69 ± 3.63 1.50 ± 0.06 1.01 ± 0.35 2.51 ± 0.40 15.21 ± 5.45 1.49 ± 0.97 5.05 ± 1.23 3 

CCC 6 16.64 ± 3.79 3.88 ± 1.35 0.85 ± 0.39 4.73 ± 1.25 21.37 ± 4.86 4.58 ± 2.87 3.52 ± 0.58 1 

CCC 7 13.53 ± 5.28 2.19 ± 0.98 0.98 ± 0.06 3.17 ± 1.01 16.70 ± 6.27 2.24 ± 0.99 4.28 ± 0.39 3 

CCC 8 16.79 ± 1.55 1.65 ± 0.63 1.50 ± 0.34 3.16 ± 0.98 19.94 ± 2.77 1.10 ± 0.17 5.31 ± 1.08 3 

CCC 9 16.54 ± 2.50 1.57 ± 0.07 0.84 ± 0.04 2.41 ± 0.08 18.95 ± 2.48 1.86 ± 0.13 6.87 ± 1.11 4 

CCC 11 14.55 ± 2.13 0.92 ± 0.03 0.64 ± 0.05 1.56 ± 0.03 16.11 ± 2.14 1.44 ± 0.16 9.35 ± 1.32 4 

CCC 13 17.60 ± 2.28 1.35 ± 0.33 0.79 ± 0.06 2.14 ± 0.38 19.74 ± 2.65 1.71 ± 0.34 8.23 ± 0.56 4 

CCC 14 12.83 ± 1.20 1.56 ± 0.13 1.16 ± 0.25 2.72 ± 0.38 15.55 ± 0.83 1.35 ± 0.19 4.71 ± 1.18 3 

CCC 15 25.55 ± 5.14 2.45 ± 0.37 1.88 ± 0.26 4.33 ± 0.63 29.88 ± 5.77 1.31 ± 0.02 5.90 ± 0.36 2 

CCC 16 11.66 ± 1.02 0.91 ± 0.12 0.55 ± 0.08 1.46 ± 0.20 13.12 ± 1.64 1.66 ± 0.02 7.98 ± 0.12 4 

CCC 17 14.58 ± 3.27 1.04 ± 0.24 0.86 ± 0.19 1.90 ± 0.43 16.49 ± 3.70 1.20 ± 0.03 7.66 ± 0.10 4 

CCC 19 14.02 ± 3.99 1.75 ± 0.01 1.30 ± 0.28 3.05 ± 0.29 17.07 ± 3.76 1.34 ± 0.29 4.60 ± 0.65 3 

CCC 20 8.23 ± 1.42 1.03 ± 0.25 0.85 ± 0.22 1.89 ± 0.46 10.11 ± 1.85 1.22 ± 0.04 4.36 ± 0.51 3 

CCC 21 19.00 ± 2.59 1.89 ± 0.44 1.39 ± 0.15 3.27 ± 0.59 22.28 ± 3.17 1.36 ± 0.17 5.80 ± 0.25 3 

CCC 23 15.35 ± 4.81 1.61 ± 0.16 1.28 ± 0.24 2.89 ± 0.39 18.24 ± 4.64 1.25 ± 0.13 5.31 ± 2.28 3 



44 
 

CCC 24 9.61 ± 1.10 1.48 ± 0.49 1.09 ± 0.50 2.57 ± 0.98 12.18 ± 2.01 1.35 ± 0.23 3.74 ± 0.95 3 

CCC 27 9.45 ± 0.85 0.46 ± 0.01 0.41 ± 0.05 0.87 ± 0.06 10.32 ± 0.54 1.13 ± 0.09 10.89 ± 0.18 4 

CCC 30 11.34 ± 2.24 1.93 ± 0.33 1.15 ± 0.07 3.08 ± 0.40 14.42 ± 2.64 1.67 ± 0.20 3.68 ± 0.28 3 

CCC 31 13.10 ± 1.13 1.60 ± 0.62 1.12 ± 0.45 2.72 ± 1.07 15.82 ± 1.68 1.43 ± 0.04 4.81 ± 2.77 3 

CCC 32 13.23 ± 0.92 1.91 ± 0.15 1.32 ± 0.06 3.23 ± 0.20 16.45 ± 0.86 1.44 ± 0.05 4.10 ± 0.46 3 

CCC 33 10.04 ± 0.31 1.04 ± 0.33 0.76 ± 0.31 1.81 ± 0.63 11.85 ± 0.82 1.37 ± 0.13 5.55 ± 1.74 3 

CCC 34 11.73 ± 0.62 1.15 ± 0.22 0.77 ± 0.16 1.92 ± 0.38 13.64 ± 0.96 1.49 ± 0.05 6.12 ± 0.99 4 

CCC 35 11.87 ± 1.99 0.58 ± 0.15 0.38 ± 0.04 0.96 ± 0.19 12.83 ± 2.44 1.52 ± 0.26 12.36 ± 0.10 4 

CCC 36 14.37 ± 1.96 1.00 ± 0.02 0.74 ± 0.17 1.74 ± 0.19 16.11 ± 0.04 1.35 ± 0.29 8.24 ± 0.92 4 

CCC 37 22.78 ± 2.85 1.22 ± 0.16 0.68 ± 0.20 1.90 ± 0.36 24.68 ± 3.03 1.78 ± 0.31 11.99 ± 2.34 4 

CCC 38 11.44 ± 2.34 1.02 ± 0.02 0.84 ± 0.14 1.86 ± 0.16 13.30 ± 2.46 1.21 ± 0.17 6.17 ± 0.96 4 

CCC 40 15.14 ± 1.83 2.30 ± 0.24 1.52 ± 0.23 3.82 ± 0.47 18.96 ± 1.74 1.51 ± 0.10 3.96 ± 0.83 3 

CCC 41 14.14 ± 0.70 0.62 ± 0.06 0.35 ± 0.04 0.98 ± 0.10 15.12 ± 0.79 1.77 ± 0.15 14.48 ± 0.77 4 

CCC 42 11.35 ± 2.69 0.98 ± 0.38 0.97 ± 0.22 1.95 ± 0.49 13.30 ± 3.16 1.01 ± 0.01 5.81 ± 0.16 3 

CCC 43 14.18 ± 2.60 2.26 ± 0.40 1.25 ± 0.13 3.51 ± 0.51 17.68 ± 2.94 1.81 ± 0.21 4.04 ± 0.57 3 

CCC 44 12.37 ± 2.65 2.69 ± 0.35 1.46 ± 0.27 4.14 ± 0.60 16.52 ± 3.08 1.84 ± 0.16 2.99 ± 0.47 3 

CCC 45 12.54 ± 1.36 1.81 ± 0.06 1.01 ± 0.09 2.82 ± 0.13 15.36 ± 1.37 1.79 ± 0.14 4.45 ± 0.54 3 

CCC 47 9.40 ± 0.45 1.23 ± 0.25 0.74 ± 0.13 1.97 ± 0.38 11.37 ± 0.81 1.67 ± 0.05 4.77 ± 0.70 3 

CCC 51 13.53 ± 0.29 2.01 ± 0.09 1.37 ± 0.14 3.38 ± 0.22 16.92 ± 0.47 1.47 ± 0.09 4.00 ± 0.23 3 

CCC 52 9.36 ± 0.57 1.53 ± 0.11 0.95 ± 0.07 2.48 ± 0.04 11.83 ± 0.59 1.61 ± 0.25 3.78 ± 0.19 3 

CCC 53 9.63 ± 2.77 1.31 ± 0.36 0.74 ± 0.29 2.05 ± 0.65 11.68 ± 3.26 1.78 ± 0.20 4.69 ± 1.35 3 

CCC 56 13.17 ± 3.62 2.37 ± 0.46 1.44 ± 0.35 3.81 ± 0.81 16.98 ± 3.25 1.65 ± 0.10 3.45 ± 1.36 3 

CCC 57 12.23 ± 3.25 2.43 ± 0.36 1.48 ± 0.32 3.91 ± 0.67 16.14 ± 3.60 1.65 ± 0.18 3.13 ± 0.85 3 

CCC 59 17.79 ± 1.34 3.41 ± 1.26 2.00 ± 0.17 5.41 ± 0.72 23.20 ± 1.84 1.71 ± 0.11 3.29 ± 0.15 3 

CCC 61 7.43 ± 0.44 1.25 ± 0.50 0.66 ± 0.21 1.92 ± 0.71 9.34 ± 1.15 1.89 ± 0.18 3.88 ± 1.28 3 

CCC 62 13.77 ± 3.11 2.31 ± 0.10 1.66 ± 0.07 3.96 ± 0.17 17.73 ± 2.71 1.39 ± 0.00 3.47 ± 0.50 3 

CCC 63 11.73 ± 0.71 0.91 ± 0.06 0.53 ± 0.05 1.44 ± 0.10 13.17 ± 0.81 1.71 ± 0.08 8.12 ± 0.18 4 

CCC 65 12.96 ± 2.17 2.77 ± 0.91 1.31 ± 0.38 4.08 ± 1.27 17.05 ± 3.39 2.11 ± 0.29 3.18 ± 0.70 3 



45 
 

CCC 66 10.69 ± 0.90 1.50 ± 0.17 0.80 ± 0.05 2.31 ± 0.22 13.00 ± 0.95 1.87 ± 0.09 4.63 ± 0.58 3 

CCC 67 11.06 ± 1.18 0.80 ± 0.10 0.42 ± 0.06 1.22 ± 0.15 12.27 ± 1.73 1.92 ± 0.02 9.10 ± 0.13 4 

CCC 69 10.65 ± 2.41 0.79 ± 0.10 0.29 ± 0.05 1.09 ± 0.14 11.74 ± 2.54 2.72 ± 0.20 9.82 ± 1.24 4 

CCC 70 20.02 ± 2.67 2.71 ± 0.88 1.80 ± 0.66 4.51 ± 1.54 24.53 ± 1.13 1.51 ± 0.09 4.44 ± 2.90 3 

CCC 71 21.80 ± 4.15 5.41 ± 1.12 3.61 ± 1.09 9.02 ± 2.21 30.81 ± 2.80 1.50 ± 0.15 2.42 ± 1.15 2 

CCC 72  22.60 ± 4.25 2.68 ± 0.15 1.27 ± 0.39 3.95 ± 0.54 26.55 ± 0.80 2.10 ± 0.55 5.72 ± 1.05 3 

CCC 73 25.71 ± 3.99 2.00 ± 0.81 1.21 ± 0.50 3.21 ± 1.30 28.92 ± 5.11 1.65 ± 0.23 8.01 ± 2.33 2 

CCC 74 15.72 ± 0.58 1.14 ± 0.11 0.53 ± 0.02 1.67 ± 0.12 17.38 ± 0.63 2.16 ± 0.20 9.43 ± 0.71 4 

CCC 76 12.01 ± 1.12 1.20 ± 0.21 0.58 ± 0.23 1.78 ± 0.44 13.80 ± 0.85 2.08 ± 0.47 6.74 ± 1.96 4 

CCC 79 13.14 ± 4.99 0.74 ± 0.19 0.45 ± 0.05 1.19 ± 0.25 14.32 ± 1.68 1.66 ± 0.24 11.07 ± 0.63 4 

CCC 80 6.39 ± 1.52 0.70 ± 0.13 0.44 ± 0.21 1.14 ± 0.34 7.53 ± 1.33 1.57 ± 0.40 5.61 ± 2.73 3 

CCC 81 16.33 ± 1.09 1.39 ± 0.40 0.61 ± 0.12 2.00 ± 0.52 18.33 ± 1.61 2.29 ± 0.22 8.16 ± 1.49 4 

CCC 83 15.72 ± 0.44 0.91 ± 0.01 0.44 ± 0.01 1.35 ± 0.00 17.07 ± 0.45 2.06 ± 0.07 11.63 ± 0.30 4 

CCC 86 12.18 ± 1.27 1.10 ± 0.26 0.69 ± 0.24 1.79 ± 0.50 13.98 ± 1.75 1.60 ± 0.26 6.80 ± 1.46 4 

CCC 87 19.87 ± 1.64 1.46 ± 0.18 1.08 ± 0.25 2.54 ± 0.43 22.41 ± 2.07 1.35 ± 0.17 7.81 ± 0.77 3 

CCC 88 12.42 ± 1.92 0.79 ± 0.08 0.34 ± 0.05 1.13 ± 0.13 13.54 ± 2.05 2.35 ± 0.14 11.02 ± 0.51 4 

CCC 89 25.85 ± 1.93 2.36 ± 0.21 1.88 ± 0.12 4.24 ± 1.41 30.09 ± 19.21 1.26 ± 0.90 6.10 ± 3.90 2 

CCC 91 9.57 ± 1.94 0.65 ± 0.14 0.31 ± 0.03 0.96 ± 0.17 10.54 ± 2.11 2.11 ± 0.30 9.94 ± 0.40 4 

CCC 92 17.10 ± 0.87 1.23 ± 0.24 0.68 ± 0.26 1.91 ± 0.50 19.01 ± 0.37 1.81 ± 0.32 8.94 ± 2.58 4 

CCC 93 16.58 ± 4.55 0.86 ± 0.04 0.41 ± 0.09 1.27 ± 0.02 17.85 ± 5.49 2.12 ± 0.26 13.11 ± 4.29 4 

CCC 94 13.91 ± 4.93 1.35 ± 0.41 0.81 ± 0.38 2.16 ± 0.79 16.07 ± 5.66 1.66 ± 0.26 6.44 ± 1.17 4 

CCC 96 16.16 ± 2.89 22.83 ± 9.55 17.81 ± 7.87 40.64 ± 17.35 56.80 ± 20.14 1.28 ± 0.08 0.40 ± 0.16 5 

CCC 98 13.08 ± 3.47 1.71 ± 0.84 0.45 ± 0.12 2.17 ± 0.28 15.24 ± 4.31 3.79 ± 0.37 6.04 ± 1.02 1 

CCC 99 18.63 ± 2.25 5.41 ± 1.85 3.40 ± 0.78 8.81 ± 2.57 27.44 ± 4.19 1.59 ± 0.27 2.12 ± 0.61 2 

CCC 100 15.46 ± 0.30 1.52 ± 0.20 1.18 ± 0.24 2.70 ± 0.43 18.16 ± 0.71 1.29 ± 0.12 5.72 ± 0.92 3 

CCC 101 10.18 ± 0.51 1.12 ± 0.36 0.59 ± 0.25 1.71 ± 0.61 11.89 ± 1.12 1.88 ± 0.21 5.95 ± 1.72 4 

CCC 102 18.08 ± 3.51 5.38 ± 0.97 2.57 ± 0.49 7.96 ± 1.46 26.04 ± 4.11 2.09 ± 0.06 2.27 ± 0.50 2 

CCC 103 17.60 ± 5.51 2.86 ± 1.01 1.90 ± 0.74 4.76 ± 1.74 22.36 ± 7.25 1.51 ± 0.08 3.69 ± 0.20 3 
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CCC 104 10.36 ± 4.34 1.49 ± 0.27 1.07 ± 0.27 2.55 ± 0.54 12.91 ± 4.88 1.40 ± 0.13 4.06 ± 1.00 3 

CCC 106 12.91 ± 0.83 1.96 ± 0.83 1.35 ± 0.42 3.31 ± 1.25 16.22 ± 1.92 1.46 ± 0.15 3.90 ± 1.17 3 

CCC 108 14.98 ± 1.58 28.03 ± 2.77 27.23 ± 2.55 55.25 ± 5.31 70.23 ± 3.78 1.03 ± 0.01 0.27 ± 0.05 5 

CCC 109 13.01 ± 0.76 4.01 ± 0.87 2.82 ± 0.60 6.83 ± 1.45 19.83 ± 2.20 1.42 ± 0.09 1.91 ± 0.32 3 

CCC 110 14.07 ± 4.91 9.30 ± 3.29 3.88 ± 1.54 13.18 ± 4.83 27.26 ± 9.22 2.39 ± 0.13 1.07 ± 0.06 2 

CCC 112 14.15 ± 2.43 1.47 ± 0.44 1.03 ± 0.25 2.50 ± 0.68 16.65 ± 3.10 1.43 ± 0.08 5.66 ± 0.59 3 

CCC 113 14.60 ± 4.44 1.59 ± 0.63 1.11 ± 0.52 2.70 ± 1.15 17.30 ± 5.56 1.43 ± 0.18 5.40 ± 1.24 3 

CCC 114 10.63 ± 1.01 3.43 ± 0.92 2.61 ± 0.38 6.04 ± 1.26 16.67 ± 1.83 1.31 ± 0.23 1.76 ± 0.11 3 

CCC 115 26.55 ± 6.04 2.04 ± 0.03 1.74 ± 0.08 3.78 ± 0.10 30.34 ± 5.96 1.17 ± 0.05 7.02 ± 1.72 2 

CCC 116 15.32 ± 7.11 3.44 ± 1.46 1.41 ± 0.56 4.85 ± 2.01 20.16 ± 7.59 2.44 ± 0.25 3.16 ± 1.59 3 

CCC 117 15.38 ± 2.48 1.37 ± 0.1 1.03 ± 0.14 2.40 ± 0.23 17.78 ± 2.70 1.32 ± 0.08 6.41 ± 0.45 3 

CCC 118 18.56 ± 5.93 2.79 ± 1.29 1.30 ± 0.53 4.09 ± 1.82 22.65 ± 7.23 2.15 ± 0.15 4.54 ± 2.33 3 

CCC 119 13.82 ± 3.05 1.45 ± 0.57 0.67 ± 0.19 2.12 ± 0.76 15.94 ± 3.81 2.15 ± 0.25 6.51 ± 0.95 4 

CCC 120 21.31 ± 3.27 28.04 ± 11.44 24.69 ± 11.18 52.73 ± 22.62 74.05 ± 21.94 1.14 ± 0.06 0.40 ± 0.22 5 

CCC 121 10.2 ± 4.00 2.80 ± 0.57 0.94 ± 0.23 3.74 ± 0.78 13.94 ± 3.24 2.97 ± 0.45 2.73 ± 1.57 3 

CCC 122 22.28 ± 4.72 6.86 ± 2.83 1.89 ± 0.52 8.75 ± 3.27 31.03 ± 7.19 3.63 ± 0.84 2.54 ± 0.80 1 

CCC 123 9.22 ± 0.90 1.27 ± 0.23 0.85 ± 0.18 2.12 ± 0.41 11.34 ± 1.09 1.49 ± 0.03 4.35 ± 0.75 3 

CCC 124 11.66 ± 2.45 3.43 ± 1.44 1.10 ± 0.32 4.52 ± 1.75 16.18 ± 4.18 3.12 ± 0.47 2.58 ± 0.61 3 

CCC 125 11.97 ± 3.65 1.74 ± 0.68 0.98 ± 0.36 2.72 ± 1.04 14.69 ± 4.53 1.77 ± 0.07 4.41 ± 0.86 3 

CCC 126 11.26 ± 4.96 0.94 ± 0.10 0.53 ± 0.17 1.47 ± 0.27 12.73 ± 4.10 1.77 ± 0.41 7.66 ± 1.52 4 

CCC 127 10.66 ± 1.63 1.25 ± 0.18 0.75 ± 0.13 2.00 ± 0.31 12.66 ± 1.93 1.68 ± 0.10 5.34 ± 0.14 3 

CCC 128 9.64 ± 0.54 1.03 ± 0.01 0.48 ± 0.08 1.50 ± 0.09 11.15 ± 0.66 2.14 ± 0.32 6.41 ± 0.86 4 

CCC 129 28.98 ± 6.55 3.84 ± 1.54 2.08 ± 0.49 5.93 ± 1.91 34.90 ± 8.17 1.85 ± 0.52 4.89 ± 0.84 2 

CCC 131 29.42 ± 4.74 4.42 ± 0.13 2.66 ± 0.15 7.08 ± 0.27 36.50 ± 4.47 1.66 ± 0.06 4.15 ± 0.85 2 

CCC 132 26.90 ± 1.05 10.76 ± 1.56 7.96 ± 1.63 18.72 ± 3.19 45.62 ± 4.57 1.35 ± 0.08 1.44 ± 0.17 2 

CCC 133 9.08 ± 1.13 3.33 ± 1.32 2.05 ± 1.25 5.38 ± 3.02 14.46 ± 4.60 1.63 ± 0.07 1.69 ± 0.90 3 

CCC 135 12.79 ± 2.62 1.47 ± 0.46 0.96 ± 0.36 2.43 ± 0.81 15.22 ± 3.42 1.54 ± 0.11 5.27 ± 0.75 3 

CCC 136 12.63 ± 3.48 1.19 ± 0.29 0.74 ± 0.29 1.93 ± 0.58 14.55 ± 4.05 1.61 ± 0.22 6.55 ± 0.24 4 
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CCC, Colombian Core Collection of Solanum tuberosum Group Phureja  
a
 Average sugar contents are expressed in mg/g of dried weight tuber 

b
 Ratios are given in w/w 

c 
Commercial cultivars 

 

 

CCC 137 11.75 ± 0.68 1.73 ± 0.13 1.02 ± 0.12 2.75 ± 0.21 14.50 ± 0.64 1.70 ± 0.19 4.27 ± 0.45 3 

CCC 138 9.92 ± 1.07 0.99 ± 0.10 0.66 ± 0.11 1.65 ± 0.22 11.58 ± 1.26 1.50 ± 0.10 6.01 ± 0.45 3 

CCC 140 11.46 ± 0.94 1.28 ± 0.10 0.79 ± 0.13 2.07 ± 0.23 13.53 ± 1.06 1.63 ± 0.16 5.53 ± 1.25 3 

CCC 141 9.37 ± 1.46 1.15 ± 0.24 0.78 ± 0.14 1.93 ± 0.37 11.30 ± 1.82 1.46 ± 0.08 4.85 ± 0.23 3 

CCC 142 12.93 ± 1.29 2.28 ± 0.22 1.52 ± 0.06 3.80 ± 0.27 16.73 ± 1.56 1.50 ± 0.09 3.41 ± 0.09 3 

CCC 145 15.65 ± 0.66 1.87 ± 0.51 1.32 ± 0.42 3.19 ± 0.93 18.84 ± 0.28 1.42 ± 0.06 4.91 ± 1.48 3 

Criolla Guaneña
c 14.87 ± 3.48 0.80 ± 0.14 0.41 ± 0.10 1.21 ± 0.22 16.07 ± 3.63 1.95 ± 0.36 12.32 ± 2.24 4 

Criolla Latina
c
 10.44 ± 1.35 0.68 ± 0.14 0.37 ± 0.07 1.05 ± 0.20 11.49 ± 1.35 1.87 ± 0.14 9.94 ± 2.53 4 

Criolla Galeras
c
 11.15 ± 0.32 0.79 ± 0.11 0.38 ± 0.14 1.17 ± 0.25 12.32 ± 0.41 2.07 ± 0.58 9.51 ± 2.01 4 

Criolla Colombia
c
 12.00 ± 1.26 1.67 ± 0.14 1.31 ± 0.33 2.99 ± 0.47 14.99 ± 0.79 1.41 ± 0.22 3.76 ± 1.07 3 
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Supplementary Table 2. Norm values of vectors representing variables in the principal 

component analysis. Values greater than 0.6 indicate an appropriate representation of 

the variable in the factorial space.   

Variable Norm value 

Sucrose
a
 0.80 

Glucose
a
 0.99 

Fructose
a
 0.96 

Reducing sugars
a
 0.99 

Total sugars
a
 0.98 

Glucose/Fructose
 b

 0.62 

Sucrose/Reducing 
0.74 

sugars
 b

 
 

a
 Average sugar contents were expressed in mg/g of dried weight tuber 

b
 Average ratios were given in w/w 
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Abstract 

Potato frying color is an agronomic trait dependent on sugar accumulation in tubers. A 

candidate gene approach was implemented to elucidate the molecular basis of sugar 

contents and frying color variation in Group Phureja, through the study of candidate 

gene regions coding functional enzymes in carbohydrate metabolism using an 

association mapping strategy to find associated variants. Association analysis was 

carried out with 111 SNP markers identified in ten candidate genes with key function in 

carbohydrate metabolism. This analysis revealed four SNP markers in the locus InvGE 

from an apoplastic invertase and one SNP marker in the locus SssI from a soluble starch 

synthase with significant effect in sugar content and frying color. These enzymes have 

not been found expressed in mature tubers, therefore these SNP-trait associations might 

be indirect resulting from the linkage disequilibrium with causal variants, or direct 

through a potential novel role of these candidate genes controlling sugar contents in 

tubers. Three markers from InvGE were found in strong linkage disequilibrium; the 

presence of a larger haplotype block with associations needs to be proven through the 

study of the variation in closer genomic regions. Most of the associated SNPs were low-

frequency variants, thus revealing that these types of variants present important effects 

on sugar contents and frying color in Group Phureja. These results suggest that despite 

the differences in carbohydrate metabolism in both diploid and tetraploid germplasm, 

there are conserved genes related to sugar content and frying color variation.  
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1. Introduction 

Potato frying quality depends on sugar contents in the tuber, because the hydrolysis of 

sucrose (non-reducing sugar) is the main source of glucose and fructose (reducing 

sugars), which are precursors of the Maillard reaction. This reaction produces dark 

pigments and toxic products as acrylamide during the non-enzymatic reaction of 

reducing sugars and free amino acids at high temperatures (Halford et al., 2012; Isla et 

al., 1998). Sucrose, glucose, and fructose are important metabolic signals in 

transduction pathways that affect the expression of several classes of genes involved in 

all stages of plant development and related to stress response, therefore sugar contents 

of storage organs are complex traits controlled by multiple genetic and environmental 

factors (Roitsch and González, 2004; Ruan, 2014; Schreiber et al., 2014; Sturm and 

Tang, 1999).  

 

Reducing sugars tends to accumulate in tubers in response to cold tolerance when there 

are low respiration rates at temperatures below 8ºC (Hertog et al., 1997; Kumar et al., 

2004; Malone et al., 2006); consequently, of particular interest for frying purposes, it is 

the development of potato cultivars with little accumulation of reducing sugars after 

harvest and during cold storage. Association mapping is a strategy for the study of the 

molecular basis of complex traits that has shown to be a less time-consuming approach 

for the discovery of marker-trait associations compared to linkage mapping (Álvarez et 

al., 2014). Using this approach there is major record of ancient recombination events 

than in a bi-parental linkage population, that lead to the reorganization of the 

chromosomes in smaller regions consequently increasing mapping resolution (Ersoz et 

al., 2007; Hamblin et al., 2011). The use of natural populations or sets of breeding 

materials in association mapping analysis is useful in the generation of diagnostic 

molecular markers that can be readily implemented in breeding schemes for the 

selection of outstanding genotypes (Gebhardt et al., 2007). 

  

There is a significant knowledge on the metabolic pathways and enzymes involved in 

starch synthesis, degradation and transport in potato. Sixty nine functional genes in 

carbohydrate metabolism have been mapped (Chen et al., 2001).  From these candidate 

genes, a set has been found to be associated with natural variation for frying quality or 

reducing sugar contents (Baldwin et al., 2011; Li et al., 2005, 2008, 2013; Schreiber et 

al., 2014). These studies have revealed the multiloci genetic architecture for sugar 

contents and frying color related to genes coding for functional enzymes in 

carbohydrate metabolism in tetraploid potato populations (2n = 4x = 48). Therefore, it is 

relevant to identify the loci that underlie these traits and are located in genes with key 

function in carbohydrate metabolism in other potato populations of current use in 

breeding programs and with different metabolic behaviors.     

 

S. tuberosum Group Phureja is mainly constituted by diploid genotypes (2n = 2x = 24) 

with short day adaptation and tuber sprouting at harvest (Huamán and Spooner, 2002). 

Genotypes with round tubers, yellow flesh and skin present an interesting potential for 

their extensive use due to their desirable organoleptic properties and processing quality 

(Bonilla et al., 2009; Rivera et al., 2006; Rodríguez et al., 2009). This cultivated group 

is also a valuable genetic resource for the introgression of genes of agronomic 

importance to tetraploid potatoes that are the most consumed worldwide (Straadt and 

Rasmussen, 2003; Ghislain et al., 2006; Faostat, 2012). In Andean countries, Group 

Phureja constitutes an important crop, especially for small farmers; also this potato 
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group has shown important properties for its nutritional content (Peña et al., 2015). The 

sequencing of the doubled-monoploid genotype DM1-3516 R44 from Group Phureja 

represents the potato reference genome and its analyses has contributed to the 

understanding of the genetic basis of various agronomic traits in tetraploid potato (Jupe 

et al., 2013; Potato Genome Sequencing Consortium et al., 2011; Schreiber et al., 

2014). 

 

Accessions from the Colombian Core Collection of Group Phureja (CCC) were 

characterized for their frying quality, using a color scale, through an evaluation in a 

multi-environmental trial (Ñústez-López, 2011a). Recently, a liquid chromatographic 

method was applied to measure the sucrose, glucose, and fructose contents in these 

accessions in a single-environment trial (see Chapter II). These phenotypic assessments 

were used in the current study to implement an association mapping strategy in order to 

elucidate the molecular basis of sugar accumulation and frying color in Phureja tubers 

using a candidate gene approach. Association analysis was performed with SNP 

markers identified in candidate genes with key function in carbohydrate metabolism and 

influence in potato frying color and sugar contents in tetraploid potatoes (Baldwin et al., 

2011; Fischer et al., 2013; Li et al., 2005, 2008, 2013; Schreiber et al., 2014).   

2. Materials and methods 

 

2.1. Plant material and phenotypes  

A set of 108 diploid landrace accessions from CCC and four commercial diploid 

cultivars (Criolla Colombia, Criolla Latina, Criolla Galeras, and Criolla Guaneña) 

(Ñústez-López, 2011b; Rodríguez et al., 2009) were used in this study for the 

association analysis. These genotypes were characterized previously for their frying 

quality using a multi-environmental Bayesian estimate of mean chip darkening % 

(Ñústez-López, 2011a). Recently, these genotypes were also assessed for their sucrose, 

glucose, fructose, reducing and total sugar contents, and for their glucose/fructose and 

sucrose/reducing sugars ratios in a single environment (see Chapter II). Mean genotypic 

values of these eight variables were used for the independent association analysis for 

each trait.  

 

2.2.Candidate gene amplicon sequencing and SNP calling 

  

Genomic DNA was isolated with DNeasy Plant Mini Kit™ (Qiagen) from plant young 

leaf tissue. DNA was quantified with a Thermo Scientific NanoDrop 2000c and 

adjusted to a concentration of 10 ng μL
-1 

for the Polymerase Chain Reaction (PCR) 

amplification. A set of candidate gene loci were selected to manually design primers for 

amplicon sequencing using the potato reference genome (Potato Genome Sequencing 

Consortium, 2011) in the SPUD data base (Hirsch et al., 2014). In addition, primers in 

other candidate gene regions analyzed by Fischer et al. 2013 and Schreiber et al. (2014) 

were also tested in Group Phureja. Amplicons with appropriated sequence quality in 

eight genotypes and with four or more SNP markers identified were selected for 

amplicon sequencing in the whole population (Table 1). A total of 50 ng of genomic 

DNA template in 25 μL of 1X PCR buffer (Invitrogen), 2.5 mM MgCl2, 0.2 mM each 

dNTP, and 0.5 mM each forward and reverse primers were amplified with 1 unit Taq 

polymerase (Incitrogen). Amplification cycling conditions used were the same 
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described by Schreiber et al. (2014). Annealing temperatures of each primer are 

specified in Table 1.  

 

Amplicons were visualized in 1.5% (w/v) agarose gels in 1X TAE buffer and stained 

with ethidium bromide (0.4 μg mL
-1

). PCR products were cleaned using the ExoSAP 

mix of enzymes (Affymetrix) and sequenced at the Max-Planck-Genome-Center 

Cologne using the dideoxy chain-termination sequencing method, an ABI PRISM Dye 

Terminator Cycle Sequencing Ready Reaction Kit, and an ABI PRISM 3730 automated 

DNA Sequencer (Applied Biosystems, Weiterstadt, Germany). SNPs were detected by 

visual examination of the sequence trace files for overlapping base calling peaks using 

Geneious Software (Biomatters, Auckland, New Zealand). The SNP allele dosage was 

estimated first manually and after with Data Acquisition and Analysis Software (DAx) 

(Van Mierlo Software Consultancy, Eindhoven, The Netherlands); in the case of 

heterozygous individuals, overlapping base calling peaks were identified. These 

analyses allowed the identification of 111 SNP markers in ten candidate gene regions 

shown in Table 1.   

2.3. Association analysis 

 

Association analysis was carried out assuming that Phureja accessions studied do not 

present a marked population structure as described previously (Juyó et al., 2015). 

Markers included in the analysis were those with a minimum allele frequency higher 

than 0.05. A compressed mixed linear model (Zhang et al., 2010) and an enriched 

compressed mixed linear model (Li et al., 2014) were implemented with GAPIT R 

Package (Lipka et al., 2012) for the analyses. These models included population 

structure and kinship estimates from molecular markers analyzed. Quantile-quantile 

(QQ) plots of the expected and observed F-test probabilities for the SNP markers were 

assessed to identify the appropriate model in controlling type I errors caused by 

population structure and familial relatedness (Sukumaran et al., 2012) (Supplementary 

Figure 1).  

 

The threshold for significant marker-trait association is expressed on a -log10 scale, 

being the SNP markers with a p-value higher than two considered with significant effect 

on the variable studied. To support the associations found for the SNP markers with the 

mixed model approach, an analysis of variance (ANOVA) was performed using Genstat 

software (VSN International, Hemel Hempstead, United Kingdom) to assess the effect 

of the allele dosage in the trait, considering a level of significance of α = 0.05. Linkage 

disequilibrium (LD) was estimated between pairs of SNP markers that were found with 

significant associations in the same chromosome, using the r
2 

statistic (Hill and 

Robertson, 1968).    

 

3. Results  

The analysis of amplicon sequences with appropriate quality, allowed the identification 

of 111 SNP markers in ten candidate gene regions. The mixed model analysis generated 

seven significant marker-trait associations that were supported by single-marker 

ANOVAs. Thus, five SNP markers in two chromosomes were associated with sugar 

contents and chip darkening in Group Phureja (Table 2). From ten candidate gene 

regions studied, two loci were found with significant associations. The QQ-plots 

showed that the models adjusted for each phenotype were effective in controlling type I 



53 
 

error (Supplementary Figure 1). The box plots in Figure 1 supported the consistency of 

the associations by showing the effect of the SNP allele dosage in the trait variation.  

Four markers were found in the locus InvGE from an apoplastic invertase in the 

chromosome IX. The average distance between adjacent markers was of 88 bases 

(Supplementary Data 1). The minor frequency alleles of these loci were not common 

enough to be found in homozygous state in the population (Figure 1A-F), which 

indicated that these alleles correspond to low-frequency variants (Mitchell et al., 2004). 

Finally, one SNP marker trait-association was found in the locus SssI from a soluble 

starch synthase in the chromosome III (Supplementary Data 1). In this case, the three 

genotypic classes observed reflect the highest minor allele frequency found for this 

associated SNP marker (Figure 1G). 

The SNP InvGE-C2476550T had a negative effect in chip darkening variation (Figure 1A). 

This marker presented the minor allele with the lowest frequency and with the highest 

effect in the trait variation. The markers InvGE-G2476660A and InvGE-C2476709A were 

associated with a positive and similar effect in fructose contents (Figure 1B-C). Both 

markers also shared a similar minor allele frequency. The SNP InvGE-G2476817A showed 

significant associations with positive effect in fructose, glucose, and total sugar contents 

(Figure 1D-F). InvGE-G2476660A, InvGE-C2476709A, and InvGE-G2476817A were found in 

strong LD, which is reflected in the similar effects in the trait and the similar 

distributions of the markers in the population. The marker SssI-C45603698T is associated 

with a negative effect in sucrose variation and it is also outstanding for the amount of 

variance that explains of the trait (Figure 1G).  

 

4. Discussion 

 

The study of ten candidate genes with key function in carbohydrate metabolism allowed 

the identification of SNP markers in two genes associated with sugar contents and 

frying color in Group Phureja. This result demonstrates the effectiveness of the 

candidate gene approach to find associated variants in Group Phureja through the 

exploration of regions with known function in carbohydrate metabolic pathway and 

associated in previous studies to sugar contents and chip color variation in tetraploid 

populations. The association analysis validated the relevance of the InvGE and SssI loci 

in the variation of frying color and sugar contents in diverse potato genetic backgrounds 

including different ploidy levels. The association of SNP markers from InvGE locus 

with chip darkening, fructose, glucose, and total sugar contents supports the 

relationships among these variables that were discussed in Chapter II.  

 

InvGE and InvGF in chromosome IX are apoplastic invertase genes tandem duplicated 

and separated by 1.8 kb of DNA that co-localize with the cold-sweetening QTL Sug9a, 

which is highly reproducible among environments (Maddison et al., 1999; Menéndez et 

al., 2002). Experimental evidence reveals that these genes conform a haplotype block 

associated to chip quality described previously by Li et al., 2008 and Draffehn et al., 

2010. The presence of SSR alleles located in both genes, with positive or negative effect 

in reducing sugar contents under cold-storage, have been observed in studies in 

tetraploid potato landraces from Argentina and in a collection of cultivars and breeding 

lines from New Zealand (Baldwin et al., 2011; Colman et al., 2009). The current results 

in Phureja support the assumption that the genomic region that includes InvGE has an 

important effect in potato tuber sugar accumulation that is consistent in this cultivated 

group.    
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Table 1. Candidate gene PGSC0003DMG loci analyzed from the potato reference genome (Potato Genome Sequencing Consortium, 2011; 

Hirsch et al., 2014), chromosome (Chr.), primer sequences, annealing temperature (Ta), amplicon sizes, and number of SNP markers scored in 

Group Phureja. 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Primer strand used for amplicon sequencing 
a 
From the promoter region of the Pain1 candidate gene 

b 
From Schreiber et al., 2014 

c
 From Fischer et al., 2013 

 

 

Gene Acronym Locus  
Chr. Primer Sequences 5'-3' Ta (°C) 

Amplicon  No. SNPs  

(GenBank Accesion No.) PGSC0003DMG size (bp) scored 

 

Stp23 (D00520) 400007782 III *f-cagatatgttacatactctacc 59 998 4 

   

r-tcattagtcacaactttatcgg 

   StpL (X73684) 400028382 V *f-ttacattgcacaagcacaagc 57 984 14 

   

r-gtgtacatacaatactctatcc 

   SssI (Y10416) 402018552 III *f-aacaataggaatttaccataacc 57 970 12 

   

r-atattcccaaacaaaacagagc 

   InvGE (AJ133765) 400008943 IX f-caattcttcgattcttcatagg 57 797 9 

   

*r-aattgaagcagatcatgtagg 

   Pain1 (X70368) 400013856 III f-catacattacactatagatcc 56 926 5 

   

*r-aattgaagcagatcatgtagg 

   

   

f-caaaatgaatacatattaagagg
a 

56 711 4 

   

*r-cttaagcagttgcttagagc 

   UGPase (D00667) 401013333 XI f-atgatgttctccacttaaaagc 56 807 11 

   

*r-tttcagattttcagaagagagg 

   

   

*f-tgattaacgatactatacgtcc 56 933 12 

   

r-ttaaaacttccttatactatatgg 

   GWD (Y09533) 400007677 V f-ttctgttatctacttagttacg 56 994 7 

   

*r-gttttatatcttgcttctttgg 

   BMY-8/2 (AF393847) 400001855 VIII f-gctactggacatggtgacaga
b 

57 560 9 

   

*r-ttacatagaggtctgtcctgcttgag 

   PWD (AY747068) 400016613 IX *f-ggtctgatgatctatctgattgc
b 

57 871 16 

   

r-gacatcttgaggagaaccaaactt 

   LapN (X77015) 400007831 XII f-gcttcctggtcttggctc
c 

60 985 8 

      *r-gataggcatacgcagccaggtcagaaatcaa       

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=nucleotide&term=D00520
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Studies in tetraploid potatoes have shown InvGE and InvGF alleles associated with 

better chip quality, explaining less amount of the trait variation than in the current work 

(Li et al., 2005, 2008). The higher percent of variance explained on the trait variation 

found for Group Phureja might reflect a large phenotypic effect of the low-frequency 

variants in InvGE locus, thus adding evidence that these variants can present important 

effects on complex trait architecture (Panoutsopoulou et al., 2013). These alleles are 

likely to be rare because of purifying selection; consequently these alleles are removed 

from the population because they might not be advantageous for the carrier individuals 

(Lee et al., 2014). The magnitude of the effect is relevant considering that genotypes 

with these minor frequency alleles in homozygous state were not found. The current 

study shows the opposite effects in the trait variation of the SNP marker InvGE-

C2476550T and the haplotype block constituted by the markers InvGE-G2476660A, InvGE-

C2476709A, and InvGE-G2476817A. The results reveal that both regions are inherited 

independently; additional research is required to validate the opposite effect for the low-

frequency variants present in these regions given the outstanding positive effect of the 

lowest allele frequency of InvGE-C2476550T in frying color.      

Apoplastic invertases are considered key enzymes in plant source/sink balance, thus 

regulating the import of glucose and fructose for tuber initiation (Fotopoulos, 2005; 

Minhas et al., 2004). It is remarkable that vacuolar acid invertases rather than apoplastic 

invertases have been found to control sucrose/reducing sugar ratio in cold-stored tubers 

(Li et al., 2005; Zrenner et al., 1996). Transcripts of InvGE and InvGF have been found 

expressed in leaves and flowers but not in mature tubers. Furthermore, functional 

analyses of potato alleles are not consistent with their statistical association with chip 

quality (Draffehn, 2010; Maddison et al., 1999). The aforementioned observations 

suggest a novel regulatory role for these genes in sugar accumulation of mature tubers 

or the existence of a large haplotype block associated to chip quality including both 

InvGE and InvGF (Draffehn, 2010; Li et al., 2005). 

 

The potential functional effect of apoplastic invertases in sugar contents of mature 

tubers is yet to be determined but it might be an effect earlier during tuber initiation. 

Transcription analyses have shown that invertase genes are expressed in a genotype 

specific manner (Draffehn, 2010) therefore it is relevant the design of appropriate 

experiments to reveal the functional influence of apoplastic invertases in sugar 

accumulation of tubers from Group Phureja. The association of the SNP InvGE-

G2476817A with total sugar contents and reducing sugar contents bring up the potential 

effect of the gene in a process upstream the glucose and fructose accumulation in tubers. 

This potential effect is supported by the effect of the QTL Sug9a in sucrose contents as 

well as reducing sugar contents (Menéndez et al., 2002).  

 

The presence of a haplotype block in the distal region of chromosome IX is supported 

by the co-segregation of two microsatellite loci in landraces from Argentina. One locus 

is located in a region of the gene InvGF while the other is in the gene SbeII which 

encodes a starch branching enzyme (Colman et al., 2009; Feingold et al., 2005). Even 

though SbeII is not the predominant starch branching enzyme expressed in tubers, 

antisense inhibition experiments have shown that it has a major effect on starch 

structure (Jobling et al., 1999; Larsson et al., 1998); recently, an association study 

revealed the effect of the polymorphisms in this gene with the degree of starch 

phosphorylation, which is a process related to starch degradation (Carpenter et al., 

2015).  
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Table 2. Candidate gene SNP markers associated with sugar contents and chip 

darkening in Solanum tuberosum Group Phureja. Associations presented are significant 

with a mixed model approach and with an analysis of variance (ANOVA).   

Gene-SNP
 a

 Trait 
Minor Allele 

-log10(p-value)
b
 

Percent variance  

Frequency, % explained 
c
 

InvGE-C2476550T Chip darkening 9.0 (T) 2.4** 15.6 ↓ 

InvGE-G2476660A
d 

Fructose 19.6 (A) 2.2** 7.2 ↑ 

InvGE-C2476709A Fructose 19.2 (C) 2.2*** 7.0 ↑ 

InvGE-G2476817A Fructose 18.2 (A) 2.7*** 8.5 ↑ 

InvGE-G2476817A Glucose 18.2 (A) 2.0* 6.6 ↑ 

InvGE-G2476817A Total sugars 20.0 (A) 2.0*** 8.8 ↑ 

SssI-C45603698T Sucrose 35.9 (C) 2.0* 13.5 ↓ 
 

a 
SNP reference allele is followed by its position in the chromosome and the nucleotide 

from the allelic variant.  
b 

SNP markers with a -log10(p-value) higher than two were considered with significant 

effect on the variables studied with the mixed model approach. These markers were 

tested with an ANOVA considering a level of significance of α = 0.05. p-values: ***, p 

≤ 0.001; **, p ≤ 0.01; *, p ≤ 0.05. 
c
 The percent variance explained expresses the effect of the minor frequency allele in 

the trait. Arrows indicate the direction of the effect on the trait, upwards for a positive 

effect (high sugar contents or dark chip color) and downwards for a negative effect (low 

sugar contents or light chip color). 
d
 Bold SNP markers were in strong linkage disequilibrium, showed similar effects in the 

trait, and presented similar distributions in the population. 

 

These previous remarks stand for a conserved linkage disequilibrium region in 

chromosome IX containing SbeII, whose potential function in sugar accumulation and 

chip color variation in potato has to be proven. Therefore it is relevant to explore the 

presence in Group Phureja of a larger haplotype block than the one reported here in 

InvGE, through the evaluation of markers in InvGF, SbeII, and other close genomic 

regions. The identification of associated regions in large haplotype blocks is favorable 

for breeding purposes because it might allow the design of diagnostic markers with high 

predictive value due to the low recombination rates in the region (Li et al., 2008).     

 

The association of the SNP SssI-C45603698T reflects the effect of a marker with three 

genotypic classes and consequently with a minor allele with a higher frequency than the 

minor alleles frequencies from markers in InvGE. The association of SssI locus with 

sucrose is novel since this gene has been reported previously with effects in tuber starch 

content and chip quality after harvest and after storage (Li et al., 2008; Schreiber et al., 

2014). Starch synthases catalyze the glycosyl transfer from ADP-glucose to glucan. The 

expression of SssI in tubers is low, therefore suggesting a minor role of this particular 

enzyme in starch synthesis in storage organs (Kossmann et al., 1999). As in the 

previous case, this SNP-trait association might be indirect resulting from the LD with 

causal variants, or direct through a potential novel role of SssI in the control of starch 

degradation in tubers. 
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Figure 1. Box plots representing the effect of the allele dosage in seven significant SNP 

marker-trait associations. Each plot is labeled with the SNP identification indicated in 

Table 2. Y-axis: Values for chip darkening (%) and sugar contents (mg/g DW or g/100g 

DW). X-axis: Allelic dosage in the locus analyzed. Box plots from A to F show the 

effect of SNP markers in locus InvGE in chromosome IX. Box plot G indicates the 

effect of the SNP marker located in locus SssI in chromosome III.   

 



58 
 

5. Conclusions 

 

The candidate gene approach allowed the identification of SNP markers in two genes 

associated with sugar contents and frying color in Group Phureja that were previously 

reported with associations in tetraploid germplasm. This might suggest that despite the 

differences in carbohydrate metabolism in both genetic backgrounds, there are 

conserved genes related to sugar content and frying color variation. The enzymes coded 

by these genes have not been found expressed in mature tubers, therefore these SNP-

trait associations might be indirect resulting from the linkage disequilibrium with causal 

variants, or direct through a novel role of these candidate genes controlling sugar 

contents in tubers. Most of the associated SNPs were low-frequency variants, thus 

revealing that these types of variants present important effects on sugar contents and 

frying color in Group Phureja.  

 

The loci found with associations explain a limited amount of the overall trait variability 

in Group Phureja. Therefore, selecting the individuals combining the superior alleles for 

these loci will not guarantee per se better chip quality because there are other regions 

influencing the trait and the interaction with other loci might affect its expression. The 

study of additional candidate gene regions with key function in carbohydrate 

metabolism that were not tested here is relevant to support the presence of a haplotype 

block in chromosome IX and to evaluate the variation in other relevant enzymes that 

could not be included in the current work. The implementation of a genome wide 

approach is necessary to include genomic regions in other pathways that control starch-

sugar equilibrium as well. The genome wide study is also required to assess the 

distribution of LD regions in all the chromosomes to establish the mapping resolution. 

These strategies will contribute to the understanding of the genetic architecture of sugar 

accumulation and frying color of Group Phureja from Colombia.    
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Supplementary Data  

Supplementary Data 1. Amplicon sequences of candidate genes with associations, 

SNP alleles and SNP positions from the potato reference genome (Potato Genome 

Sequencing Consortium, 2011). The sequences were retrieved from pseudomolecules 

v4.03 (http://potato.plantbiology.msu.edu/cgi-bin/gbrowse/potato/) in the SPUD data 

base (Hirsch et al., 2014). Primer positions are underlined and SNP markers with 

associations are highlighted blue. 

 

1. InvGE, Apoplastic invertase (PGSC0003DMG400008943) 

chr09:2476346...2477143 

acaattcttcgattcttcatagggtcatagaatgacttagatgcatagaaattcccatagtcaagcctcaatcccttcgaaccatcg

atagaattgttatcaggaatgtacctatcttttttggtgtcatacataccaatagtgtaatactcaaacctattaacatcaaggctattc 

                 2476534                    .6550                                              .6574                                  .6595 

ttaaggacat[g/a]tttgacattttttcc[g/a]cgatacgatgcatctaagccatt[a/t]gtattttttaatgatacagg[g/a]aaaa 

                                                                                                   .6660 

aatcaggacattcccaatttccagtatgaggagatgaatgaagtggatgttgggctttgg[c/t]ccatttaatgaagtctctacttc 

                                       .6709 

tatacaataatgccatccctctatg[g/t]tttctcatacttcctattacaattctccaaagcccatcttggcccatccatgcggttgtt 

                                                                          .6817 

ggatcacgaaatttggttttgttgatgctattgtcaggtacaatcaa[c/t]gggttgttattaggtttgatccatttacgaagaaatg 

                                                                                                                                  .6934 

gatcagacaagttagccgggattgcataattttgaacttgagaatcatgagaatctactactccggtgtataagataac[a/g]gg 

.6937 

[t/c]ttgttatttggtagaatagttgctgacccggaccaagcaccatatttgtcaaattttttagatggataaattgcgggttctaaat

ggatccaatttatcaagtcttttgagactgaatgagcccaaacaatattgccccatactgatccttttggattgtattgatagaataa

atgatatactccattataatacataggtgctgt 

 

2. Sss1, Soluble starch synthase (PGSC0003DMG402018552) 

 

chr03:45603327…45604297 
 

atattcccaaacaaaacagagctttcccaaatactaaaacgatgtcgttctgagtatctgtccacctctttctaggtacttgtgttctt

catcagatcctatactagtactgtagtagtagaatatagaatgagtgtttcattttcactttttttcactttttcagattttctatattgaaa 
                                                      45603548   
gattttgtctttacatgattcttgattttacagcaggtg[t/c]caataccaaatggggtctctgcaaacacccacaaatcttagcaat 
                                                                                                                    .3662 

aagtcatgtttatgtgtgtcagggagagttgtgaggggtttgagggtagaaagacaagtggggttggg[a/g]ttttcttggttgtt 
                                       .3698                                                                                    .3744 
gaagggacgaagaaacagaaa[g/a]gttcaatctttgtgtgttacaagtagtgtttcagatggttcatca[a/g]ttgctgaaaat 
        .3761 
aagaa[a/t]gtgtcagaagggcttcttttgggtgctgagagagatggttctggctctgttgttggttttcaattgattccacattctg

gtactgcccctttttgttttcttgaatttgaagttaacattcagtaatttttttgtatttaattttatccggatatggttttcaagttgctctaa 
.3936                                                         .3968                                      .3991                   .4002 
[t/c]tagtgaaaaatctgttttttaagatatcata[a/g]ttcatagtttcctatttgatta[a/t]acaatgcccc[a/g]tgctgccaat 

http://potato.plantbiology.msu.edu/cgi-bin/gbrowse/potato/
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                                                            .4050                                                      

tttagtaacaacctcaacttctacgaataatggatgg[t/c]tattagaagctttgctcaatggatagagttacactgtattttgtagttt 
                                                                                            .4158 
gtcaaatgctcactcgctcttctgatggctaaagtgatcatatgactttgtttacggc[a/t]ttatgctgaagtttgtatctgatgaag 
                      .4198 
cgaacagaggct[a/g]ggaacacttagctttttaatcacactatatgagctctgtccaggtgttcgggatgatgttagaattcaac

tatatggttatggtaaattcctattgtt  
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Supplementary Figure 1. Quantile-quantile (QQ) plots representing the observed (X-axis) and expected (Y-axis) F-test probabilities for the SNP markers 

tested for association in the five traits that showed significant markers. The grey area shows the 95% confidence interval for the QQ-plot under the null 

hypothesis of no association between the SNP and the trait. 
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General discussion 

 
The chromatographic method developed and validated allowed to perform an accurate 

and exact phenotypic characterization of sugar contents of tubers from accessions of 

Group Phureja. This analysis revealed an extensive variability regarding sugar contents 

and sugar ratios that reflected the existence of variation regarding sugar accumulation 

metabolism in Phureja germplasm. This variability of sugar contents is consistent with 

multi-environmental data of frying color from the collection (Ñústez-López, 2011), thus 

showing the association of both experimental approaches.  

 

Glucose was the predominant sugar found in tubers, which indicates that this reducing 

sugar might be the most relevant in defining frying quality at harvest and supports that 

fructose 6-phosphate might be preferentially used in glycolysis (Junker et al., 2006). 

The unequal amount of both reducing sugars suggests the effect of the lack of tuber 

dormancy in this cultivated group (Huamán and Spooner, 2002) and shows a potential 

variation in the activities and affinities of fructokinases and hexokinases, which are 

enzymes responsible of fructose and glucose irreversible phosphorylation before their 

use in metabolic processes (Davies & Oparka, 1985; Granot et al., 2013; Kumar et al., 

2004; Sowokinos, 2001). Further association and expression studies are necessary to 

establish the specific enzymes that influence the glucose/fructose ratio in Group 

Phureja.    

 

The multivariate analysis allowed the identification of two clusters with few 

individuals. Group One represents four genotypes with outstanding values of 

glucose/fructose ratio and Group Five includes three genotypes with the highest 

contents of reducing sugars. This rare Phureja genotypes with extreme phenotypic 

values are of great interest for deeper studies because they are often enriched with 

uncommon causal variants that can contribute to explain complex trait variability and 

present a large effect on the trait (Lee et al., 2014). Accordingly, it is important to 

highlight that most of the associated SNPs were low-frequency variants, thus revealing 

that these types of variants present important effects on sugar contents and frying color 

in Group Phureja.  

 

The HPLC assessment and the implementation of a candidate gene approach enabled 

the identification of two genes with key function in carbohydrate metabolism with 

association to sugar contents that were previously reported with associations in 

tetraploid germplasm. This might suggest that despite of the differences in carbohydrate 

metabolism in both genetic backgrounds influenced by divergences in the dormancy 

period (Huamán & Spooner, 2002), there are conserved genes related to sugar contents 

and frying color variation. Although a relationship was found between the variation of 

sugar contents and frying color, the haplotype block in InvGE with association was 

obtained through the mixed model analysis with the HPLC measurements. This result is 

relevant because the identification of associated regions in haplotype blocks is favorable 

for breeding purposes because it might allow the design of diagnostic markers with high 

predictive value due to the low recombination rates in the region (Li et al., 2008).     

 

The loci found with associations explain a limited amount of the overall trait variability 

in Group Phureja and the validation of the effect of the associated SNP markers is 
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necessary in a different population. Selecting the individuals combining the superior 

alleles for these loci will not guarantee per se better chip quality because there are other 

regions influencing the trait and the interaction with other loci might affect its 

expression (Li et al., 2005). Therefore, for a comprehensive understanding of the 

genetic architecture of sugar accumulation and frying color of Group Phureja, the 

implementation of a genome wide approach is necessary to include genomic regions in 

other pathways that control starch-sugar equilibrium.  
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Conclusions and perspectives 

 
A HPLC-RI method for sugar content analysis has been developed and validated for 

accurate measurements in S. tuberosum Group Phureja tubers. This method is relevant 

because it offers the opportunity to obtain an accurate phenotypic assessment of sugar 

contents that impacted in the reliability of association analysis. Sugar content results 

revealed variability in Group Phureja and are consistent with previous data of frying 

color. Similarly, analysis of glucose/fructose and sucrose/reducing sugar ratios 

disclosed also an extensive variability regarding metabolisms in sugar accumulation. 

The generation of this basic information of sugar profiles of Phureja germplasm is 

important for breeding programs to identify genotypes with little accumulation of the 

three sugars.  

 

Sugar accumulation profiles are particular for the specific environment of assessment; 

therefore, it is of great interest the understanding of the changes in sugar accumulation 

in the genotypes caused by differential environmental conditions and to study their 

stability. Likewise, it is important to evaluate the potential of the different genotypes for 

sucrose hydrolysis under cold storage as in the current study most of the genotypes tend 

to accumulate higher contents of sucrose than of reducing sugars. This information is 

also necessary for the breeding programs, as Phureja commercial cultivars tend to 

accumulate high contents of sucrose, which can be hydrolyzed during storage 

consequently diminishing frying quality.    

  

According to the knowledge of the author, this is the first study that uses a biochemical 

approach and analytical chemistry methodologies to perform accurate sugar 

quantifications to find associated regions to frying quality using a candidate gene 

approach. These results should contribute to advance in the design of molecular markers 

easy-to-hand for the implementation of marker assisted selection. 


