
Improving Android Applications
Searching and Browsing by using
Information Retrieval and Static

Bytecode Analysis

Carlos Eduardo Bernal-Cárdenas

Universidad Nacional de Colombia

Facultad de Ingenieŕıa

Departamento de Ingenieŕıa de Sistemas e Industrial

Bogotá D.C., Colombia

2014

Improving Android Applications
Searching and Browsing by using
Information Retrieval and Static

Bytecode Analysis

Carlos Eduardo Bernal-Cárdenas

Thesis Work to Obtain the Degree of:

Magister in Systems and Computing Engineering

Advisor:

Ph.D.(c) Mario Linares-Vásquez

Co-Advisor:

Ph.D. Jairo Hernán Aponte Melo

Research Line:

Software Engineering

Research Group:

Colectivo de Investigación en Ingenieŕıa de Software - ColSWE

Universidad Nacional de Colombia

Facultad de Ingenieŕıa

Departamento de Ingenieŕıa de Sistemas e Industrial

Bogotá D.C., Colombia

2014

Dedication

“Your work is going to fill a large part of your

life, and the only way to be truly satisfied is to

do what you believe is great work. And the only

way to do great work is to love what you do. If

you haven’t found it yet, keep looking. Don’t

settle. As with all matters of the heart, you’ll

know when you find it.”

— Steve Jobs

A mis padres por su apoyo incondicional en

cada una de las decisiones que he tomado

durante toda mi vida.

A Karen y Thomas quienes son mi fuente

de inspiración diaria y me da fuerzas para

seguir adelante.

Finalmente a todos aquellos que no están

conmigo pero que están en mi memoria y que

siempre me haran recordar, que la alegŕıa

es algo fundamental que siempre debemos

transmitir a los que nos rodean, sin importar

las circunstancias en las que nos encontremos.

Acknowledgements

To my advisor, without whom this would not be possible. Professor Mario has always

been a person that motivates you to be better every day. I have never seen a person so ded-

icated and passioned for his work, moreover he inculcates the job well done and the passion

for what you do. I do not have words to say, thank you my mentor!.

In addition, I want to thanks all members of SEMERU group from whom I have learned

many things during my stay in 2013, specially professor Denys.

ix

Abstract

A plethora of mobile applications have been developed to satisfy users needs. These appli-

cations help users to complete different activities like read books, access to bank accounts,

listening to music, write notes, translate text, among others. All the applications are usually

published on mobile markets, in which users can download the binary/byte-code that will

be executed on the device. These markets provides information such as application descrip-

tion, rating, and related applications that is used when users perform a search. Nonetheless,

most of the applications search engines only use textual information extracted from descrip-

tions, applications names, software documentation, and source code. This thesis presents

an approach that uses byte-code information such as sensors, permissions, and intents from

Android APKs to augment the data that is used to perform the search. We surveyed 9

mobile developers to evaluate the effectiveness of our approach comparing it with other two

search engines. As a result we obtained that there is no significant difference in the values of

confidence level, precision, and normalized discounted cumulative gain compare to the other

search engines. In addition we provided an in-depth analysis to validate and give reasoning

about the obtained results.

Keywords: information retrieval, android, search engines, static analysis, bytecode

x

Resumen

Un gran número de aplicaciones móviles se han desarrollado para satisfacer las necesidades

de los usuarios. Estas aplicaciones ayudan a los usuarios a completar diferentes actividades

como leer libros, acceder a cuentas bancarias, escuchar música, escribir notas, traducir texto,

entre otras. Todas las aplicaciones se publican por lo general en mercados de aplicaciones

móviles, en los cuales los usuarios pueden descargar el código binario que se ejecutaráen el

dispositivo. Estos mercados de aplicaciones proporcionan información como la descripción

de la aplicación, clasificación y aplicaciones relacionadas que es usada cuando los usuarios re-

alizan un búsqueda. Sin embargo, la mayoŕıa de los motores de búsqueda de aplicaciones solo

utilizan la información textual extráıda de las descripciones, los nombres de las aplicaciones,

la documentación del software y el código fuente. Esta tesis presenta un enfoque que utiliza

la información de código binario tales como sensores, permisos e “intents”de archivos APK

de Android para aumentar los datos que se utilizan para realizar la búsqueda. Se encuestó a

9 desarrolladores móviles para evaluar la efectividad de nuestro enfoque comparándolo con

otros dos motores de búsqueda. Como resultado se obtuvo que no hay diferencia significativa

en los valores de nivel de confianza, la precisión, y el normalizado de ganancia acumulada

comparada con los otros motores de búsqueda. Además, se provee un análisis en profundidad

para validar y dar el razonamiento sobre los resultados obtenidos.

Palabras clave: recuperación de información, android, motores de búsqueda, análisis

estático, bytecode.

Contents

Acknowledgements vii

Abstract ix

Resumen x

List of Tables xii

List of Figures xiii

1 Introduction 2

1.1 Motivation . 3

1.2 Goals . 5

2 Related Work 7

2.1 Static Code Analysis . 7

2.2 Code Reuse Recommenders . 8

2.3 Search Engines for Applications . 9

3 Approach 11

3.1 APK Structure . 11

3.2 Choosing Relevant Attributes . 11

3.2.1 Intents . 11

3.2.2 Sensors . 12

3.2.3 Permissions . 12

3.2.4 API Calls . 12

3.3 Bag of Words . 13

3.3.1 Term Frequency - Inverse Document Frequency 13

3.4 Implementation . 14

3.5 Static Analyzer . 15

3.5.1 APK Information Extraction . 15

3.5.2 Google Play Information Extraction 15

3.5.3 API Documentation Information Extraction 16

xii Contents

3.6 Search Engine Core . 17

3.6.1 Lucene Configuration . 17

4 Evaluation 20

4.1 Case study: Evaluating Search Engines . 20

4.1.1 Study Design . 20

4.1.2 Survey Design . 22

4.1.3 hypotheses . 24

5 Empirical Results 27

5.1 Variables . 27

5.2 Survey Results . 27

5.3 Testing the Null Hypotheses . 27

5.3.1 Null Hypothesis - Confidence level . 28

5.3.2 Null Hypothesis - Precision . 28

5.3.3 Null Hypothesis - NDCG . 28

5.3.4 Analysis per Query . 28

5.4 Research Questions . 34

5.4.1 RQ1 . 34

5.4.2 RQ2 . 35

5.4.3 RQ3 . 35

6 Conclusions and Future Work 38

Bibliography 39

List of Tables

3-1 Urls from where we extracted descriptions for packages, classes, methods,

sensors, permissions and intents . 18

4-1 Queries extracted from 13 categories of Google Play 21

4-2 Queries created based on low-level requirements 22

4-3 Surveys’ Distribution . 24

4-4 Search Engines to Evaluate . 24

List of Figures

1-1 Results for 3 different queries . 4

3-1 Web Application Architecture . 14

3-2 Static database structure. 19

4-1 Overlap for different values of top-k of the API Calls 23

5-1 Results of some demographic questions . 28

5-2 Statistical summary of the results od the study for confidence level, precision,

and NDCG . 29

5-3 Alpha values . 34

5-4 Confidence level obtained from the first 9 queries. The red point represents

the average . 36

5-5 Confidence level obtained from 15 queries . 37

1 Introduction

A plethora of mobile applications (apps) have been developed to support several activities.

Examples of apps that are widely used on mobile devices are calculators, maps, notes, draw-

ings, remote access, books, translators, games, among others. Nowadays it is possible to

download and use mobile apps anywhere because of the existence of mobile devices such as

smartphones and tablets.

These apps are usually distributed through closed source repositories that are known as app

stores or markets; app stores gather applications in one place in such a way that it is not

necessary to surf the Internet to find useful/relevant applications. Moreover, closed source

repositories are used to store apps in binary/byte-code files and provide the users with some

services as searching, browsing, and rating.

Nowadays, multiple companies have created several app markets such as App1, App World2,

Google Play [10], Market Place3, OVI4, Samsung Apps5, among others. Users looking for

apps can use those markets to download relevant apps, and app developers can in some cases

get revenues as result of their sales.

Users search for apps in the markets by using a query, and the market retrieves the apps

that are relevant to the query by matching it to textual attributes. In addition, browsing

capabilities are supported by domain categories; it makes the browsing easier when the users

are looking for apps belonging to a specific category. Most of the markets provide users with

the same information (attributes) about the apps such as name, developer, price, description

and ratings.

Although the markets provide similar information to the users, there are some facts and

features that are specific for each market:

• Samsung market place (Samsung Apps) is for apps developed for Android OS. However,

1http://itunes.apple.com/us/genre/ios/id36?mt=8
2http://appworld.blackberry.com/webstore/
3http://www.windowsphone.com/en-us/store
4http://store.ovi.com/
5http://www.samsungapps.com/

1.1 Motivation 3

most of Samsung devices used Bada6 at the beginning.

• Nokia has been continuously working with Symbian OS and publishing apps in his own

market called OVI. Nowadays, Nokia was bought by Microsoft, so most of new devices

use Windows Phone. However there are Nokia devices that use Android, but these

ones use the official Android market by default.

• Apple has its own OS for mobiles devices called iOS and its applications can be found

at the App Store.

• BlackBerry (BB) has been making several changes since they launched his own OS.

With the release of its new tablet called PlayBook, Android and iOS apps can be

ported to BB.

• Google has been leading the development of Android OS; all applications developed for

Android can be published at Google Play or unofficial market places like AppBrain7.

• Microsoft released Windows Phone 8.1 on April of current year. Apps for this OS can

be found at Market Place.

1.1 Motivation

According to the Google IO 20138 keynote, Android has got more than 900 millions of active

devices, and according to AppBrain15, Google Play has more than 700.000 applications in

his market place. The amount of apps is increasing daily, because developers find mobile

markets as a great opportunity to deliver a solution to huge amount of potential users. Other

fact that helps the growth of the amount of apps, in particular Android apps, is that Android

markets do not validate the apps before publishing them. Therefore, there is no restriction

about the type of apps that can be published in Android Markets.

The market of mobile devices is evolving and users are expecting more from market places

to retrieve better results when using code search engines. However, current search engines

for code and apps have some weaknesses, in particular for the case of mobile apps:

• Previous works have been focused only in code search engines for desktop applications

but not in mobile apps.

• Code search engines use only textual information extracted from descriptions, appli-

cations names, software documentation, or source code.

6http://www.bada.com/
7http://www.appbrain.com/
8https://developers.google.com/events/io/

4 1 Introduction

• Apps markets provide the users with byte-codes (e.g., APKs in the case of Android

Apps, or Jars in the case of JME apps) and previous works have not used information

extracted from byte-codes to support code searching and browsing.

• The performance (i.e., precision and recall) of application search engines, such as

Google Play, is some cases is low, because the retrieval is based on the description

provided by the developers; thus, relevant applications are not retrieved when the

keywords in the query are not in the application description.

The following scenarios help to illustrate some of the issues when looking for mobile apps

using Google play. Asphalt 7: Heat9 is a racing game developed by Gameloft. Main charac-

teristics of the game are:

• It appears in the Best Selling in Games10 list.

• It belongs to the Racing category.

• It uses the gyroscope in the mobile device.

(a) Results for query “racing

car fastest”

(b) Results for query “gyro-

scope racing car fastest”

(c) Results for query “gyro-

scope game”

Figure 1-1: Results for 3 different queries

When using the query “racing car fastest”in Google Play, it retrieved more tan 1.000 ap-

plications (Figure 1-1a) with Asphalt 7: Heat in the third position because the query

words appear frequently in the description. When using the query “gyroscope racing car

fastest”(Figure 1-1b), Google Play only three games (without Asphalt). The reason is that

Asphalt uses the gyroscope but it is not mentioned in the description, and the Drift Mania

Championship 2 description has the word gyroscope. Therefore, application/code search

engines that only use textual information (i.e., app name and description) in some cases do

9https://play.google.com/store/apps/details?id=com.gameloft.android.ANMP.GloftA7HM
10https://play.google.com/store/apps/collection/topselling paid game

1.2 Goals 5

not retrieve all the relevant results.

For the second scenario we wanted to search for a game that uses the gyroscope. Therefore,

we used the query “gyroscope game”. In Figure 3 the first result is a game called GYRO11

but it does not use the gyroscope and it does not appear in description; thus, probably stem-

ming was used for the retrieval because it is widely used in Information Retrieval. We guess

that after stemming, the root word of gyroscope is “gyro”, consequently the app is relevant

to the query because the word “gyro”appears several times in the GYRO app description.

Other possibility could be that the Google Play search engine use textual comparison algo-

rithms that rank “gyro”as a very similar word to gyroscope.

Both scenarios exemplify how results can be affected when using only textual information.

Results from scenario 1 could be improved using features extracted from byte-code. For

example, analyzing the API calls in am app, we can infer that the app provides features

related to using the gyroscope sensor because the app calls the SensorManager class with the

Sensor.TYPE GYROSCOPE option. Moreover, API calls can be extracted from byte-codes by

using several tools and byte-code libraries.

1.2 Goals

The main goal is to provide users with a search engine, which allows them to search/prototype

apps using two levels of requirements: high-level requirements and system specifications.

High-level requirements describe the features developers are looking for, and the system

specs describe low-level programming elements such as sensors, permissions and intents.

The searching process is simple, the user has to enter a query which represents a feature

that the user want to see implemented in an app. The process uses information from two

requirement levels described as follows:

High-level requirements formulation: When a user enters a high-level requirement as a

query, the search will take into account apps’ descriptions in order to retrieve the best results.

Low-level requirements formulation: When a user enters a low-level requirement as a

query, the search will take into account intents, sensors, permissions, and API calls

descriptions in order to retrieve the best results.

Specific Goals are the following:

• Implement a ranking model that uses textual and bytecode information extracted from

APK files.

11https://play.google.com/store/apps/details?id=pl.submachine.gyro

6 1 Introduction

• Implement an application retrieval model based on Information Retrieval techniques

(i.e., Vector Space Model) and static bytecode analysis.

• Compare the proposed approach to state of the art code search engines (i.e., F-Droid

and Google Play).

2 Related Work

2.1 Static Code Analysis

Bläsing et al. [3] used static and dynamic analysis for searching patterns in decompiled

byte-code and trace system calls respectively; dynamic analysis was made with a tool called

AASandbox that creates a log of all system calls; static analysis focused on finding patterns

in byte-code of suspicious apps.

A similar approach to Bläsing et al. was used by Gibler et al. [9] to check whether a mobile

application is violating android privacy settings. Dex2jar[6] was used to check if methods

from byte-code required location, network or Internet permissions. This approach only took

in consideration permissions detected in class files. Di Cerbo et al. [8] concentrates in per-

missions only declared in the manifest.xml file.

Mojica Ruiz et al. [22] analyzed 4,323 mobile apps downloaded from Google Play. To mea-

sure the amount of reused code in the apps; the authors analyzed the apps using a process

inspired by the Software Bertillonage presented in [7]. To extract the information they used

dex2jar[6] and APKTool[2] to extract the code from APKs from analyzing reuse. Among the

results, the authors found that almost the 50% of all apps they downloaded from 5 different

categories inherit from the same base class.

Desnos et al. [5] developed an algorithm to identify similarities and differences between

methods in two applications. The process consists in extracting method signatures and fur-

thermore detecting what the identical, similar, new and deleted methods are. Desnos et

al. [5] tested their approach using two Skype versions (a version and a hot-fix version) to

identify how a bug was fixed.

Shabtai et al. [27] proposed an approach based on Machine Learning (ML) techniques to

analyze byte-code of apps in order to classify these ones. The authors used 2,285 apps and

they extracted features from from .dex, and .xml files using a dex dissasembler. In the

results using static code analysis along with ML classification techniques gave good results,

the precision was 0.918 and the false positive rates were 0.172.

Linares-Vasques et al. [18] analyzed 24,379 free apps from Google Play to see the impact of

8 2 Related Work

third-party libraries on analyzing clone detections. They used tools such as dex2jar[6] and

APKTool[2] to extract the code from APKs for analyzing clones. In addition the perform an

evaluation about the impact of code obfuscation on class clone detection. As a result there is

significant difference in the amount of class cloning between obfuscated and non-obfuscated

classes.

In summary we have seen there are several works on extracting information from Android

applications[3, 22, 5, 18]. This information can be used to extract features as shown by

Shabtai[27] or detected components that are reused through different apps[22, 18]. We find

useful the information from previous work to use the data extracted from APKs as first step

for our approach on improving searching of Android apps.

2.2 Code Reuse Recommenders

Several approaches have worked on recommending code for reusing purposes. Heninger et

al. [11] proposed a tool called CodeFinder that recommends pieces of code to be reused in

a program. CodeFinder reformulates queries suggesting terms to narrow the search using

code from software repositories, aiming in the expansion of the query scope.

Michail et al. [21] implemented a tool called CodeWeb that discovers library reuse patterns.

CodeWeb is a tool based on browsing generalized association rules that takes into account

inheritance relationships. Moreover, CodeBreaker [31] is a tool proposed by Ye et al. that

uses the comments and methods’ signatures in source code to retrieve methods in order to

reuse them.

Holmes et al. [13] developed a tool called Strathcona. This tool extracts the structural

context of the code under development and applies an structural matching to recommend

structural examples of an specific framework.

Mandelin et al. [24] introduce a tool called Prospector that defines a query which describes

the wanted code in terms of Tin and the output type Tout. The results of the query are

code snippets that instantiates an object of Tout from an input type Tin. Sahavechaphan et

al. [26] present a tool named XSnippet, which extends Prospector[24]. XSnippet provides

developers with code fragments using a graph-based code algorithm. In addition this tool

aims to support the range of queries and enable mining within and across method boundaries.

Thummalapenta et al. [30] proposed a tool called SpotWeb. This tool that mines code ex-

amples using an approach based on coldspots, and hotspots. SpotWeb mine code examples

in the web and can help developers to understand how to reuse an specific framework.

2.3 Search Engines for Applications 9

MAPO [32] is a framework that helps developers to find useful code snippets. It combines

frequent subsequence mining with clustering to mine and extract API usage patterns auto-

matically from code snippets. As a result MAPO helps developers to write API client code

effectively compared with two other code search engines.

Several code search engines have been implemented having into account textual information

in metadata, source code, and software documentation, or structural information extracted

from source code. Bajracharya et al.[4] created a search engine called Sourcerer, which

uses information from source code. Sourcerer supports keyword-based and structure-based

querying. It helps developers explore and reuse a large set of open source projects. This tool

extracts projects from known repositories like Sourceforge [28] and storage them in a local

copy. For the indexing phase, Sourcerer uses Apache Lucene [29].

Hsu et al. [12] developed a prototype named MACs. It provides an alternative method for

retrieving related code snippets of API usages patterns. In addition it supply reuse patterns

relevant to the current developer’s task using a context-sensitive environment (i.e. code

snippets, and API usages results).

McMillan et al. [19] created an code search engine called Portfolio, which combines Natu-

ral Language Processing techniques (NLP), with a variation of Page Rank and Spreading

Activation Network (SAN). Portfolio helps developers to visualize relevant functions to a

query and its usages; 49 professionals evaluated portfolio and the results show that there is

strong statistical significance when comparing the accuracy of Portfolio to other code search

engines (i.e. Google Code and Koders).

In summary there are different approaches for retrieving relevant code snippets; some of

them try to find API usage patterns [32, 12, 21]. On the other hand, we have seen code

search engines that uses code under development as the context to query the search engine

a retrieve results[31, 24, 26].

2.3 Search Engines for Applications

McMillian et al.[20] present a tool called Exemplar, which matches keywords in a query with

apps description and keywords in description of APIs documentation; after the users write

a query, Exemplar retrieves relevant applications from a ranked engine that processes these

applications using description and meta-data in API documents.

Little work has been done on code search engines for mobile apps. Panorama is one of the

tools for mobile apps implemented by Jiang et al.[17] that proposes an Application Topic

Model (ATM) in order to identify latent semantics in apps and then generate code snip-

10 2 Related Work

pets. Three metrics (centrality, formality and usefulness) were used to evaluate differences

between application descriptions. Panorama combines the Term Frequency - Inverse Docu-

ment Frequency (TF-IDF) [23] and the topic score evaluating 12 features. Topic score allows

evaluating a relevance of an app according to a query. As a result, Panorama had better

performance generating code snippets than some commercial applications markets.

In summary state of art code search engines have used textual and lexical information ex-

tracted from the source code or artifacts. However, previous works have been focused to

desktop/web applications. Therefore, there is no evidence of code search engines that are

based on binary files in mobile environments.

3 Approach

The main idea of our approach is to use all the information that can be extracted from

and Android app, that can improve the effectiveness whether we search for an app. In

Section 3.2 we explained how we chose the attributes. Then in Section 3.3 we explained the

implementation of the bag of words we used in our approach.

3.1 APK Structure

The APK of an application contains all the information that allows an app to be exe-

cuted. This contains data such as resources, layouts, Java code, images and libraries. Each

APK contains a manifest, which is the descriptor of the app describing all components or

Activities1 that an app has. We will explain later what is an Activity. When a devel-

opers creates an application, this has to contain some folders; res which is the one that

contains all the layouts, translations, themes, and images. assets which is the one that

contains data that will be loaded in the app (e.g. databases in JSON format). Last but not

the least src that contains all the Java classes of the app.

An Activity is a class that implements some methods to handle states in an screen (i.e.

onCreate, onStart, onResume, onPause, onStop, onDestroy, onRestart). These methods

are used in the lifecycle on every activity depending on the state of the screen. Activity is

one of the most important class on Android, if we want to create a new screen in one app.

3.2 Choosing Relevant Attributes

In our approach we want to extend the search not only using descriptions but including

relevant information from internal functionalities of an app. That is the why we choose

Intents, Sensors, and Permissions as attributes we want to use to augment the search.

3.2.1 Intents

All screens in one app have to extend the Activity class in order to use it as screen. More-

over, whether we want to go to a different Activity we need to use the intent class. This

1http://developer.android.com/reference/android/app/Activity.html

12 3 Approach

class will create a new instance of the screen we need, which is the only way to do this. So,

when we want to use for instance the camera we need to create an intent object and call

the Activity that will launch the screen of the camera. All the Intents we used, have to be

declared in the manifest.

We selected this attribute because it will provide information about internal interactions of

the app with other Android components.

3.2.2 Sensors

Nowadays most of the apps contains different hardware configurations per device version

and vendor[14]. One of these components are the Sensors that can be used by developers

through the API provided by Android. Sensors are divided in three different categories:

• Motion Sensors: Sensors in this category measure rotational and acceleration forces

in the three axes.

• Environmental Sensors: Sensors in this category measure ambient temperature,

pressure, illumination, and humidity.

• Position Sensors: Sensors in this category measure physical position of the device.

We selected this attribute because it will provide information about internal hardware com-

ponents used by the app.

3.2.3 Permissions

Android is based in a privilege-separated OS where each app run in a different Linux user

ID, group ID, and identities in some cases. Android provides a fine-grained security level

called permissions. These permissions allow the application interact and perform operations

that could impact other applications, the OS or the user. Android apps that want to share,

access resources and data must explicitly declare Permissions to use it.

We selected this attribute because it will provide information about resources and data share

actions within the app and other apps.

3.2.4 API Calls

State of the art has shown that using documentation of API Calls[20] can improve the ef-

fectiveness of search for applications. So, we decided to include Android API descriptions in

our approach. We extracted this information from the official web page of Android documen-

tation2. We extracted the description of packages, classes, and methods. Moreover we

2http://developer.android.com/reference/packages.html

3.3 Bag of Words 13

extended each method description adding the corresponding class and package description.

Finally the corpus will be a file containing a list of methods with its description that will be

used in the bag of words (See 3.3).

3.3 Bag of Words

For our approach we want to augment the description of apps, so we decided to use of bag

of words model [23]. A document is defined as a set of words or terms. Each term appears

multiple times on a document, so we can compute the term frequency that will tell as the

importance of each term in a document. Bag of words model ignores the order of terms but

the number of occurrences is a key here. In this model we need to take in consideration

the fact that some terms can not contribute to the model, for instance in English language

articles the, for, a, etc. called stop words are removed from the bag of words.

3.3.1 Term Frequency - Inverse Document Frequency

Term Frequency

This is the simplest weighting scheme where we map each term t the number of occurrences

in a document d.

Document Frequency

This weight scheme of documents is defined as the number of documents in the corpus that

contains the term t and is denoted as dft

Inverse Document Frequency

This weight scheme assigns to the rare terms a high score, whereas the idft of a frequent

term will be low. The idft is computed as shown in Equation (3-1).

idft = log
N

dft
(3-1)

Tf-idf Weighting

For computing the weight of each term t in a document d. The total weight of t in d is

computed as shown in Equation (3-2). It makes that the total weight be:

• highest when t occurs multiple times in few documents.

• lower when t occurs few times in d or t occurs in many documents.

• lowest when term occurs in all documents

14 3 Approach

Besides that we need to compute the score of each document for a given query this can be

seen as the similarity between document1 d1 and document2 d2, which is the same if we see

a document as a query.

tf idft,d = tft,d × idft (3-2)

We can compute the similarity between two documents using cosine similarity for the doc-

ument d and query q represented as vectors
−→
V (d), and

−→
V (q) respectively. So, the score of d

for a given query is computed as shown in Equation (3-3).

score(q, d) =

−→
V (q) ·

−→
V (d)

|
−→
V (q)||

−→
V (d)|

(3-3)

3.4 Implementation

We developed a web application composed by 2 main modules as shown in figure 3-1. The

first module is Static Analyzer that extracts meta data information from Google Play and

APKs. The second is Search Engine Core that applies IR techniques to based on VSM

to retrieve apps combining description information from Sensors , Intents , Permissions

and API Calls .

2. Search Engine Core1. Static analyzer

Meta data
extraction

(WebCrawler)

API calls
extraction
(jclassinfo)

Android API doc.
extraction

(WebCrawler)

MySQL
DB

Sensors, Intents, and
Permissions Extraction
(APKTool, and dex2jar)

Search Engine
(Index info from
bag of words)

File with methods’
description

File with API
calls

Bag of words
per application

Query

Retrieve applications

Index

Figure 3-1: Web Application Architecture

3.5 Static Analyzer 15

3.5 Static Analyzer

This module is implemented in java and extracts information from APKs, Google Play and

Android API documentation.

3.5.1 APK Information Extraction

We collect information of Sensors , Intents and Permissions . There are different ways

to extract information from sensors. the first one is using the manifest because all Sensors

that are used in an APK should be declared there. However, it is not mandatory to follow

that rule, so we focused on a different approach. We extracted this information from byte-

code, most specifically smali code, which is an intermediate representation for the Dalvik

Virtual Machine (DVM).

Moreover we used APKTool[2] to extract smali code and from this code look for the binary

instantiation of a SensorManager class using grep linux command. To do this we need to

look for the string

Landroid/hardware/SensorManager;->getDefaultSensor(I)Landroid/hardware/Sensor;

which is the smali translation for the following Java code

mSensorManager.getDefaultSensor(Sensor.<SENSOR TYPE>);

and then we look in the next lines the value assigned to const/4. Finally we compared that

value con the values defined in Android documentation3.

By the other hand for Permissions and Intents we do not need to look for them in

the byte-code. It is mandatory to define these attributes in the manifest. To extract

Permissions we need to look for the XML tag uses-permission in order to extract all

nodes that declare the usage of an specific permission in it. Besides that for Intents we

use the tag intent-filter to extract all nodes that declare an intent in it.

Finally all the information is storing in a MySQL database (see 3.5.2).

3.5.2 Google Play Information Extraction

We extracted meta-data information that which is the one that an user can see in a web

page of an specific Google Play app. This meta-data contains information about each app

such as name, description, developer, category, rating, downloads, version, related apps and

apps from the same developer. Besides all the information is stored in a MySQL database

(see 3.5.2).

3http://developer.android.com/reference/android/hardware/Sensor.html

16 3 Approach

Database Structure

The database is designed to store all information showed in a single web page from an app.

It is composed by 13 tables (see figure 3-2) and the information stored in every table is

described at following:

• APP INFO FULL: This table stores information such as name, description, downloads,

package and more of the app.

• SENSOR: This table has information of all possible sensors that Android supports.

• APP INFO FULL SENSOR: This table has information of sensors that every app can

use.

• APP INFO SHORT: Every single app has related and other developer apps, this table

store that information.

• VERSION: It contains versions of the app.

• REVIEW: This table store all reviews for every app.

• PERMISSION: It contains information from permissions supported by Android.

• CHANGE LOG: It contains information that occurs; like new update of application,

new range of downloads and so on.

• INTENT: It contains internal information extracted from Android PacKage (APK)

that contains information from execution of other applications or internal components.

• RATING: This table contains information about rating of the app per range from 1 to

5.

3.5.3 API Documentation Information Extraction

We extracted description of packages, classes and methods. In addition we need to extract

descriptions of sensors, permissions, and intents.

Sensors, Permissions and Intents Extraction

We created a mini-crawler to extract these descriptions, but in the case of Intents there

are a lot of types that are defined outside Intent.java from Android SDK. Consequently

we had to manually look for all the Android classes that contains the descriptions of different

intents’ types. the list of classes is presented in Table 3-1. The output of this crawler

are three files that for each line contains the name of the <package,description> in the case

of package information, <class,description> in the case of classes description, and <class,

3.6 Search Engine Core 17

method signature, description> in the case of methods information. Finally we merge these

three files in one, that in each it contains <return type#package.class.method#parameters

type&&&package description+class description+method description> in order to make the

comparison with API calls easier.

API Calls Extraction

In order to extract API calls we use jclassinfo [15] to achieve it. First we used dex2jar [6]

to generate a .jar file from the APK, then we extract all API calls traversing the .class

files inside the jar and filter calls by packages that only belongs to the Android SDK (i.e.

packages that start with android.*).

Corpus Generation

Finally we generate five files per app; The first only contains description extracted from

Google Play, the second one descriptions of all sensors, the third one descriptions of all

intents, the fourth one descriptions of all permissions, and the last one contains descrip-

tions of all API Calls per app. These files are used in the Section 4 for evaluating our

approach.

3.6 Search Engine Core

This component uses information pre-processed by the static analyzer. This module uses

the combination of all corpus generated aforementioned. We implemented this engine using

a project from The Apache Software Foundation called Lucene[29] with an implementation

of the Vector Space Model (VSM) in order to rank the list of apps relevant for a query.

Therefore we created a bag of words per application, that contains information such as API

calls, permissions, sensors, and intent descriptions. Then using Lucene we index and

rank the corpus for all applications using TF-IDF and cosine similarity. Later when a de-

veloper enters a query that is based on a feature which interested in, or a feature of a new

application that the developer wants to implement. It retrieves a top-5 related apps for a

given query as in Exemplar.

3.6.1 Lucene Configuration

In the configuration of Lunece we are using the EnglishAnalizer that by default includes

the following:

• It uses and standard tokenizer.

18 3 Approach

Table 3-1: Urls from where we extracted descriptions for packages, classes, methods, sensors,

permissions and intents
Url (http://developer.android.com) Type

.../reference/packages.html Packages

.../reference/classes.html Classes and Methods

.../guide/topics/sensors/sensors overview.html Sensors

.../reference/android/Manifest.permission.html Permissions

.../reference/android/content/Intent.html Intents

.../reference/android/provider/Telephony.Sms.Intents.html Intents

.../reference/android/app/admin/DeviceAdminReceiver.html Intents

.../reference/android/view/accessibility/AccessibilityNodeInfo.html Intents

.../reference/android/accounts/AccountManager.html Intents

.../reference/android/appwidget/AppWidgetManager.html Intents

.../reference/android/nfc/NfcAdapter.html Intents

.../reference/android/nfc/NfcAdapter.html Intents

.../reference/android/bluetooth/BluetoothAdapter.html Intents

.../reference/android/bluetooth/BluetoothHeadset.html Intents

.../reference/android/bluetooth/BluetoothDevice.html Intents

.../reference/android/provider/MediaStore.html Intents

.../reference/android/hardware/usb/UsbManager.html Intents

.../reference/android/net/ConnectivityManager.html Intents

.../reference/android/net/wifi/WifiManager.html Intents

.../reference/android/speech/tts/TextToSpeech.Engine.html Intents

.../reference/android/text/style/SuggestionSpan.html Intents

• It uses an English possessive filter.

• It uses a lower case filter.

• It uses a basic stop word list defined in StopAnalyzer.java.

• It uses the PorterStemmer [25].

3.6 Search Engine Core 19

Figure 3-2: Static database structure.

4 Evaluation

This section explains the design and the evaluation of a survey that aimed at answering

research questions formulated in Section 4.1.1.

4.1 Case study: Evaluating Search Engines

The goal of this study is survey Android developers with the purpose of understanding the

benefits of including Android specific attributes (i.e. Sensors, Intents, Permissions, and

API Calls) on searching apps. The context consists on 1,209 open source apps downloaded

from F-Droid market. The quality focus is on users’ perception and the impact that searches

can have using only apps descriptions.

4.1.1 Study Design

In the following, we present the design and planning of the study, by explaining the context

selection, research questions, data collection and analysis method.

Context Selection

We downloaded 1,212 APKs from F-Droid but we discarded 3 of them because we could not

get the jar file from these ones to extract the API calls due to errors in the extraction. So,

we use 1,209 APKs in our corpus.

This study consist on evaluating the effectiveness of our approach comparing it with other

two search engines. For doing this we need to generate some queries to evaluate the results

retrieved by them. So, we followed these process to generate the tasks used in the case

study. First, we went to the top two applications in 13 categories on Google Play and

extracted manually the description of features. In addition we split in sentences the text

because in most of the cases, we had one feature per line. Finally we randomly chose one of

these sentences as query. This process was repeated for all the top-2 apps in each of the 13

categories. As a result we ended up with 26 queries (see Table 4-1) extracted from Google

Play descriptions in order to avoid biased queries. In addition we added 6 low level queries

in Table 4-2 (i.e. Q27, Q28, Q29, Q30, Q31, Q32) to see the behavior of search engines

using features close related with hardware components.

4.1 Case study: Evaluating Search Engines 21

Table 4-1: Queries extracted from 13 categories of Google Play
Query Id Task

Q1 GENERATE PLOTS

Q2 SHARE TEXT

Q3 ACCEPT CREDIT CARD PAYMENTS

Q4 SHARE IMPORTANT PHOTOS, VIDEOS AND OTHER DOCUMENTS

Q5 SAVE YOUR FAVORITE COMICS

Q6 READING EXPERIENCE WITH HORIZONTAL-VERTICAL

Q7 SHARE YOUR PHONE’S INTERNET

Q8 SEARCH FOR PEOPLE AND GROUPS

Q9 MANAGING THE FLOW OF ASSIGNMENTS

Q10 ANSWER SHORT QUIZZES

Q11 SEND PHOTOS, MUSIC, AND VIDEOS ON YOUR ANDROID

Q12 RATE YOUR FAVORITE SHOWS AND MOVIES

Q13 TRACK YOUR PAYMENTS

Q14 PAY BILLS AND CREDIT CARDS

Q15 PERSONALIZED FITNESS PLAN

Q16 SHOW YOU ALL OF YOUR FITNESS DATA

Q17 DOWNLOAD PHOTOS IN ORIGINAL SIZE

Q18 STICKERS TO SLAP ALL OVER YOUR PHOTOS

Q19 SHARE SPECIFIC LOCATIONS

Q20 RECORD VIDEOS

Q21 CUSTOMIZABLE WIDGETS

Q22 AUTO CORRECTION

Q23 SHARE YOUR MEDIA WITH FRIENDS

Q24 RECORD A NEW AUDIO CLIP TO EDIT

Q25 CUSTOMIZABLE THEME-SKINS

Q26 ORGANIZE IMPORTANT CONTACTS

Research Questions

Our study aims at empirically answering the following research questions (RQs):

RQ1: What kind of information extracted from byte-codes could be used to improve the

results of textual-based application code search engines? This RQ is designed to evalu-

ate recommendations of other search engines that are based only on apps’ description

versus our approach.

RQ2: What ranking models can be used to build an Android apps search engine when

combining textual information and information extracted from byte-codes? This RQ is

designed to evaluate whether results can help the user to understand how the feature

entered in the query works.

RQ3: Will we retrieve better results when combining textual information and information

22 4 Evaluation

Table 4-2: Queries created based on low-level requirements
Query Id Task

Q27 ALARM ACCELEROMETER

Q28 CHANGE ORIENTATION

Q29 MEASURE TEMPERATURE

Q30 TAKE A PICTURE

Q31 WRITE INTO THE DISK

Q32 SEND SMS

extracted from byte-codes? This RQ is designed to evaluate which of the approaches

retrieves better results.

4.1.2 Survey Design

This survey will help to answer RQ1 and RQ2. For this study we will compare Exemplar

[20], Google Play and our approach. We are comparing our approach with the state of the

art. We implemented the approach of Exemplar using Lucene and the same corpus of our

approach.

Generating Exemplar Results

To validate our approach we need to have a base line. We selected Exemplar which is one

search engine from the state of the art. For implementing Exemplar[20] we use Lucene[29].

First, we extracted all the descriptions for all methods from Android SDK. Then we indexed

the description of each method using Lucene. Moreover we need to define a fixed top-k

number of API Calls to be used in the ranking model of Exemplar. One of the versions

od Exemplar implements a combined ranking model using description of the system and

descriptions from documentation extracted from the APIs used in each system.

Furthermore, to implement this model we set the top-k API Calls to a large number see

Figure 4-1 for all queries, then we found that the maximum number of API Calls that a

query retrieves was 14700. So, we computed the overlap with the API Calls for all the

queries as in Exemplar [20]. In order to cover more than the 80% of the API Calls we need

to set the top-k to 4000. In the case of exemplar they used 200, our guessing is that the

difference is due to the number of APIs in the Android SDK.

Furthermore, we used Equation (4-1) to compute the score of every app based on its API

Calls . Where p is the number of APIs retrieved for the query, |A|j is the total number of

API Calls in one application j, n is the number of occurrences of that specific API call

4.1 Case study: Evaluating Search Engines 23

in the app and C is the score of the API.

Sj
app =

p∑
i=1

nj
i · C

j
i

|A|j
(4-1)

Then we compute the total score (i.e. Stotal) for all the apps see (4-2). We fixed the value of

α to 0.5 to compute the final score for each app using Exemplar’s approach. For the Study

we use top-5 apps for Exemplar.

Sj
total = α · Sj

app + α · Sj
descr. (4-2)

0 5000 10000 15000

0.
0

0.
4

0.
8

Number API Calls

C
ov

er
ed

 A
pp

s
(%

)

Figure 4-1: Overlap for different values of top-k of the API Calls

Generating Google Results

We manually executed all the queries and extracted the top-5 apps that Google Play re-

trieved.

Generating Our Approach Results

We automatically extracted the top-5 applications of all queries using our approach, so it

uses the information from Sensors, Intent, Permissions, API Calls, and app description.

Creating the Survey

Each question of the survey has a set of five mobile Android applications, that were the result

of a search using an specific query (i.e. Q1, Q2, Q4, Q7, Q8, Q12, Q14, Q16, Q19, Q21,

24 4 Evaluation

Table 4-3: Surveys’ Distribution

Group1 Group2 Group3

Queries from 1-5 for ALL Queries from 1-5 for EXE Queries from 1-5 for GOO

Queries from 6-10 for GOO Queries from 6-10 for ALL Queries from 6-10 for EXE

Queries from 11-15 for EXE Queries from 11-15 for GOO Queries from 11-15 for ALL

Q24, Q27, Q29, Q30, and Q31). The task for the participants is to evaluate how relevant

are the applications on containing/implementing each query. This survey uses a four-level

Likert scale.

Table 4-4: Search Engines to Evaluate

Id Search Engine Corpus description

EXE Exemplar Corpus created with API calls description and app descriptions

GOO Google Play Results from Google Play

ALL Our approach
Corpus created with sensors, intents, permissions, API calls, and

app descriptions

Furthermore, we defined hypotheses to evaluate the results in the survey in Section 4.1.3.

4.1.3 hypotheses

In this section we defined a null hypotheses Ha−null and an alternative hypotheses Ha−alte.

where a is one of the attributes we want to evaluate. Moreover we want to see if there is

a significant difference between the group of our 3 search engines within confidence level,

precision, and Normalized Discounted Cumulative Gain (NDCG).

Here we describes separately the hypotheses for each attribute we want to analyze from the

results of the study. These hypotheses will aim to answer RQ1 and RQ2.

Confidence Level

The confidence level is the value assigned by participants in the study and is based on a

four-level Likert scale. The guidelines for assigning the confidence level are the following:

1. Completely Irrelevant: The is participant is confident that the application does not

implements the feature described in the query

2. Mostly Irrelevant: there is a very small chance that the application implements the

feature described in the query

4.1 Case study: Evaluating Search Engines 25

3. Mostly Relevant: There is a chance that the application implements the feature

described in the query

4. Highly Relevant: The participant is confident that the application implements the

feature described in the query

We defined the confidence level hypotheses as the following:

• H0−null: There is no significant difference in the value of confidence level per task

between participants who use EXE, GOO, and ALL.

• H0−alte.: There is significant difference in the value of confidence level per task between

participants who use EXE, GOO, and ALL.

Once we tested the null hypotheses and if only if there is significant difference we will test

the following hypotheses that compares all the 6 search engines with the confidence level

value:

• H01 : There is no significant difference in the value of confidence level between EXE

and GOO.

• H02 : There is no significant difference in the value of confidence level between EXE

and ALL.

• H03 : There is no significant difference in the value of confidence level between GOO

and ALL.

Precision

The precision is computed as shown in Equation (4-3), where retrieved will be always 5

because we are using top 5 results and relevant are the number of apps per query that

received an score of 3 and 4 (i.e. Mostly relevant and Highly relevant).

Precision =
Relevant

Retrieved
(4-3)

We defined the precision hypotheses as the following:

• H1−null: There is no significant difference between the precision per task between

participants who use EXE, GOO, and ALL.

• H1−alte.: There is significant difference between the precision per task between partic-

ipants who use EXE, GOO, and ALL.

26 4 Evaluation

Once we tested the null hypotheses and if only if there is significant difference we will test

the following hypotheses that compares all the 6 search engines with the precision value:

• H11 : There is no significant difference in the value of precision between EXE and GOO.

• H12 : There is no significant difference in the value of precision between EXE and ALL.

• H13 : There is no significant difference in the value of precision between GOO and ALL.

Normalized Discounted Cumulative Gain

We used Normalized Discounted Cumulative Gain (NDCG) proposed by Järvelin et al.[16]

which Al-Maskari et al. [1] showed that these metrics can be used to analyze the effectiveness

of search engines. The NDCG is computed as shown in Equation (4-5) and it evaluates the

effectiveness of one recommendation giving a higher ranking based on the position in the

top-k than the irrelevant results.

DCG = S1 +
5∑

i=2

Si

log2 i
(4-4)

S1 represents the score of the first result, Si represents the score in ith position. NDCG is

calculated as shown in Figure (4-5).

NDCG =
DCG

iDCG
(4-5)

We defined the NDCG hypotheses as the following:

• H2−null: There is no significant difference between the NDCG per task between par-

ticipants who use EXE, GOO, and ALL.

• H2−alte.: There is significant difference between the NDCG per task between partici-

pants who use EXE, GOO, and ALL.

Once we tested the null hypotheses and if only if there is significant difference we will test

the following hypotheses that compares all the 6 search engines with the precision value:

• H21 : There is no significant difference in the value of NDCG between EXE and GOO.

• H22 : There is no significant difference in the value of NDCG between EXE and ALL.

• H23 : There is no significant difference in the value of NDCG between GOO and ALL.

5 Empirical Results

This section reports the results of the study aimed at answering the research questions

formulated in Section 4.1.1.

5.1 Variables

The main independent variable is the search engine (i.e. EXE, GOO, ALL) that the par-

ticipants used for finding Android apps. The dependent variables are the confidence level,

precision, and NDCG. We report the result of these variables in this section.

5.2 Survey Results

We had 9 participants in our study in which each participant analyzed results for 15 different

queries. In each query the participants answer the level of confidence regarding to whether

the app contains/implements the feature described in the query. According to the demo-

graphic questions 100% of the participants have used a mobile market, 100% of participants

have used a mobile app, 11.1% of participants mostly develop for Windows Phone while the

rest 88.9% mostly develop for Android see Figure 5-1a.

Regarding to the knowledge they have in mobile apps development, 66.7% of the participants

have been a mobile developer between 1 and less than a year and the rest 33.3% have been

a mobile developer between 0 and less than a year see Figure 5-1b.

In the next section we are going to show the results for each of the three null hypotheses.

5.3 Testing the Null Hypotheses

We used Kruskal-Wallis Test to evaluate the 3 null hypotheses (i.e. H0−null, H1−null, H2−null).

As shown in Figure 5-2, we visually present three metrics a confidence level, precision, and

NDCG in the boxplot that compares the 3 search engines. In Figure 5-4 and Figure 5-5 is

shown the distribution of the confidence level per query.

28 5 Empirical Results

88.9%

11.1%

Android
Windows Phone

(a) Operating system of ex-

pertise

66.7%

33.3%

1 and less than 2
0 and less than 1

(b) Years of mobile develop-

ment

Figure 5-1: Results of some demographic questions

5.3.1 Null Hypothesis - Confidence level

The results from the Kruskal-Wallis Test confirm that there is no statistical significant be-

tween the search engines ALL, GOO, EXE for the confidence level with a p−value = 0.7035

at α = 0.05. Based on these results we accept the null hypothesis H0−null

5.3.2 Null Hypothesis - Precision

The results from the Kruskal-Wallis Test confirm that there is no statistical significant be-

tween the search engines ALL, GOO, EXE for the confidence level with p− value = 0.8429

at α = 0.05. Based on these results we accept the null hypothesis H1−null

5.3.3 Null Hypothesis - NDCG

The results from the Kruskal-Wallis Test confirm that there is no statistical significant be-

tween the search engines ALL, GOO, EXE for the confidence level with p− value = 0.5281

at α = 0.05. Based on these results we accept the null hypothesis H2−null

5.3.4 Analysis per Query

In this section we provided an in-depth analysis through all the 15 queries used in the study.

It will help to understand the results shown in Figure 5-2. We want to give some possible

explanations about the results obtained per search engine by query.

Q1: GENERATE PLOTS

• ALL: Apps from the results contains an screen that shows the utilization of plots.

5.3 Testing the Null Hypotheses 29

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(a) Confidence Level

All Goo Exe

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Precision

All Goo Exe

0.
4

0.
6

0.
8

1.
0

(c) NDCG

Figure 5-2: Statistical summary of the results od the study for confidence level, precision,

and NDCG

• GOO: Three of the applications generate plots for actresses and actors, the rest gen-

erates graphs.

• EXE: According to the screenshots one of the applications does not generate any plot.

Additionally in the descriptions there is not insight that this app generates plots.

According to the observation we can say the following; the ambiguity of the query can refer

to two different features that can affect the evaluation in the case that users were focused in

only one meaning, or multiple minings.

Q2: SHARE TEXT

• ALL: According to the screenshots and the descriptions 3 out of 5 apps implement the

feature of share text. However 1 application can share complete files and the last one

is not related.

• GOO: According to the screenshots and the descriptions 2 of the applications imple-

ments the feature, other two share different things that a text and the last one is not

related

• EXE: According to the screenshots and the descptions 3 out of 5 apps implements the

feature, one of them don’t and the last ones is not clear the purpose of the app. So

it is confusing if this apps implements the feature, after installing the app is not clear

how the app works.

According to the observation we can say the following; first for 3 of ALL’s apps implement

the feature share text. Second, the functionality of some applications is confused or not well

described.

30 5 Empirical Results

Q4: SHARE IMPORTANT PHOTOS, VIDEOS AND OTHER DOCUMENTS

• ALL: According to the screenshots and descriptions 4 apps clearly are able to share

files, images, videos, etc. The other app is no related with the query.

• GOO: According to the screenshots and the descriptions 4 of the 5 apps implement

the feature.

• EXE: According to the screenshots and the descriptions 4 of the 5 apps implement the

feature.

According to the observation we can say the following; first, for all the search engines 4 of

the 5 apps implements the feature. Second, the answer from participants compare to one of

the authors doesn’t not agree, even when 4 of 5 apps contains the intents to share files for

ALL approach.

Q7: SHARE YOUR PHONE’S INTERNET

• ALL: According to the descriptions only one app implements the feature, the rest are

not related.

• GOO: According to screenshots and description 2 of the 5 apps implement the feature.

Other two apps share files, and the last one contains the word share in the description

but it invites users to share thought with developers.

• EXE: None of the results implement the query, however they share content or file

types. According to the observation we can say the following; first, for EXE apps from

results does not implement the feature but they are related with share content or files.

Second, for the other search engines only few of the results implements the feature.

Finally, in our dataset there are not apps that share phone’s Internet.

Q8: SEARCH FOR PEOPLE AND GROUPS

• ALL: None of the results implement this feature.

• GOO: All of the results implement this feature

• EXE: None of the results implement this feature. According to the observation we can

say the following; first, in GOO we have much more apps than in our data set. Second,

none of the apps in our dataset are related with this query. we performed a search in

our entire corpus to check this

5.3 Testing the Null Hypotheses 31

Q12: RATE YOUR FAVORITE SHOWS AND MOVIES

• ALL: Only one app implements the feature.

• GOO: All of the apps implement the feature

• EXE: Onlye two apps implement the feature, there is one app that allows you to rate

songs. The rest are not related According to the observation we can say the following;

first, in GOO we have much more apps than in our data set. Second, only few of the

apps in our dataset are related with this query. we performed a search in our entire

corpus to check this

Q14: PAY BILLS AND CREDIT CARDS

• ALL: Base on descriptions only one app imlement the feature. There is other app that

is related with money but in its description has a sentence with keywords related with

the query, however it does not implement the query.

• GOO: Base on descriptions and screenshots apps from results implement the feature.

• EXE: Base on descriptions only one app imlement the feature. There is other app

that is related with money but in its description has a sentence with keywords related

with the query, however it does not implement the query. There is another app that

is related with the query but does not implement its functionality. According to the

observation we can say the following; first, in GOO we have much more apps than in

our data set. Second, only few of the apps in our dataset are related with this query.

we performed a search in our entire corpus to check this

Q16: SHOW YOU ALL OF YOUR FITNESS DATA

• ALL: None of the apps implement the feature.

• GOO: All of the apps are related to the query, how ever only one implements the query.

• EXE: None of the apps implement the feature.

According to the observation we can say the following; first, in GOO they have much more

apps than in our data set. Second, some queries are domain specific. Finally, none of the

apps in our dataset are related with this query. we performed a search in our entire corpus

to check this

32 5 Empirical Results

Q19: SHARE SPECIFIC LOCATIONS

• ALL: Apps from the results implement this feature base on the descriptions.

• GOO: Apps from the results implement this feature base on the descriptions.

• EXE: Only one application implements the feature. There rest of the apps contains

the word share.

According to the observation we can say the following; first, in GOO and ALL we got good

results. Second, EXE did not perform very well in this query, it retrieved apps that contain

the word share.

Q21: CUSTOMIZABLE WIDGETS

In this query ALL obtained the best results, because in the case of EXE using API calls is

not enough because of the type of Android application. The only way to know the type of

application is extracting information from Manifest.xml

Q24: RECORD A NEW AUDIO CLIP TO EDIT

• ALL: Based on the screenshots and descriptions 4 of the five apps implement this

feature.

• GOO: Based on the screenshots and descriptions only 3 of the 5 apps implement this

feature. The rest of the apps contains the word record but in other contexts.

• EXE: Based on the screenshots and descriptions only 3 of the 5 apps implement this

feature. The rest of the apps contains the word record but in other contexts.

According to the observation we can say the following; first, in overall most of the results are

implements the feature. Second, some queries are domain specific and contains words that

are ambiguous. In GOO and EXE we found that other apps contains the word record but in the

context of record information in general

Q27: ALARM ACCELEROMETER

• ALL: Two of the apps are related with the query, however none of them implement

the query.

• GOO: Based on the screenshots and descriptions 4 of the 5 apps implement the query.

However all these 4 apps contain the words in the query on the descriptions.

• EXE: Based on descriptions and screenshots only 2 apps are realted with the query,

however none of the apps implement the query.

5.3 Testing the Null Hypotheses 33

According to the observation we can say the following; first, GOO has a larger number of apps.

Second, we look for apps that contains the word alarm in the description and inside the app

use the accelerometer and only 3 from all the corpus achieve this criterion.

Q29: MEASURE TEMPERATURE

This query is very general because some retrieved applications give the temperature of the

phone and some others give the temperature of the place where the user is located.

Q30: TAKE A PICTURE

• ALL: Based on screenshots and description only 2 applications implement the query.

• GOO: Based on screenshots and descriptions only 3 applications implement the query.

• EXE: Based on the screenshots an descriptions 4 of the applications implement the

query

According to the observation we can say the following; first, EXE retrieved better results than

the other search engines. Second, we look for apps that contains the intent android.permi-

ssion.CAMERA in the app and we found that 56 apps in our corpus use this intent. However,

it does not mean that the app take pictures, because the camera can be also used to record

videos.

Q31: WRITE INTO THE DISK

This query is very general because the apps that has the permission android.permission.

WRITE EXTERNAL STORAGE not necessarily used the permission. This is one of the easiest way

to check if the app implement this query but it is still difficult to be sure about this.

Additional Study

We decided to perform an additional study with two senior developers in order to see the

impact of alpha value in the combined ranking model. We evaluated Exemplar and a new

version of our approach. This approach includes the combined ranking model and the use

of information of Permissions, Sensors and Intents.

For the implementation of our new approach (NEW) we treat each permission, sensor, and

intent as an API call. Then, we rank all the API calls, permissions, sensors, and intents

based on the query and next we compute the score per application. Finally, we calculate the

total score combining description and the extended API call score using an alpha to give a

weight to each score.

34 5 Empirical Results

Alpha Values We evaluated results with five alpha values from 0.0 to 1 every 0.25 for the

weight of description score. After an alpha value of 0.5 for description score there is not

difference on the results. Moreover we run Mann-Whitney U test to evaluate the difference

in the confidence level to a four-level Likert scale. We did not find a statistically significant

difference at p ≤ 0.05 between EXE and NEW. However, on average NEW is better. In

Figure 5-3 we show the boxplots for different values of alpha for EXE and NEW.

During the evaluation of the results the senior developers agree in that ranking of apps

are affected by the length of the query. Due to that all the words on the query must be

contained into the bag of words we created per each application. In addition some queries

did not retrieve any related results, as aforementioned in the observations.

●

●

●

●

●●●●●

●

●

●

●

●

0.0 0.25 0.5 0.75 1

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(a) Confidence Level Exem-

plar

●●

●

●

●●●●●●

●●●●●

0.0 0.25 0.5 0.75 1

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(b) Confidence Level Our Ex-

emplar extension

Exe New

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(c) Confidence Level Sum-

mary of EXE and NEW

Figure 5-3: Alpha values

In summary we presented an in-depth analysis for each query to find possibles causes of the

results obtained in the survey. The main reasons are the following; first, some of the queries

are domain specific and related to functionalities in which our dataset does not contain apps

related. Second, some of the queries are ambiguous and short, which in our additional study

has shown to have better results according to the two experts. Moreover we found couple of

cases where some terms in the query can have multiple meanings affecting the perception of

the user at evaluating results.

5.4 Research Questions

5.4.1 RQ1

What kind of information extracted from byte-codes could be used to improve the results of

textual-based application code search engines? In the state of the art Exemplar[20] used

5.4 Research Questions 35

API Calls and shows that it can be used to improve the results on search application.

In our approach we augmented the description of the application adding Intents, Sensors,

Permissions, and API Calls descriptions to include valuable information that can be taken

into account in the search. Based on the results this information can be used, however it

did not improve or decreased the effectiveness of the results.

5.4.2 RQ2

What ranking models can be used to build an Android apps search engine when combining

textual information and information extracted from byte-codes? According to the state of

the art there exists different models such as combined ranking-model-based, VSM based, and

topic model based. Exemplar[20] is one of the approaches, which uses a combined ranking

model for each app attribute (i.e. app description, API call) that ranks the apps and

combines all the scores for each app. In our approach we proposed an augmented model

that generates a document with all descriptions for the attributes we used (i.e. Intents,

Sensors, Permissions, API Calls) and we used VSM to generate the ranking model of our

search engine.

5.4.3 RQ3

Will we retrieve better results when combining textual information and information extracted

from byte-codes? In our approach we augmented the descriptions for each app and we added

also descriptions for Intents, Sensors, and Permissions. However, according to the results of

the study we did not find any significant difference between the results obtained in ALL, EXE,

GOO for the variables confidence level, precision and NDCG. In addition we presented and

in-depth analysis in Section 5.3.4 that gives some insights and possible explanations about

the results. In the next Section 6 we present the conclusions of our work.

36 5 Empirical Results

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(a) Q1

●●

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(b) Q2

●●

●●

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(c) Q4

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(d) Q7

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(e) Q8

●●●

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(f) Q12

●●●

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(g) Q14

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(h) Q16

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(i) Q19

Figure 5-4: Confidence level obtained from the first 9 queries. The red point represents the

average

5.4 Research Questions 37

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(a) Q21

●●●

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(b) Q24

●

●

●

●

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(c) Q27

●

●

●

●●●

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(d) Q29

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(e) Q30

●

●●●

All Goo Exe

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

(f) Q31

Figure 5-5: Confidence level obtained from 15 queries

6 Conclusions and Future Work

This thesis presents an approach for searching Android applications based on descriptions

of Sensors, Intents, Permissions, and API Calls. Our approach extract this information

using decompilers to be able to know the specific internal information that each application

implements.

We proposed an approach that augments the description of the apps with the descriptions of

the attributes aforementioned. We conducted an evaluative survey in which 9 mobile devel-

opers evaluated the effectiveness of three different search engines. The dependent variables

that we have are confidence level, precision, and NDCG that helps to evaluate the results

of our approach. Finally as a result we obtained that our approach does not increase the

effectiveness of the results compare to the others search engines.

Furthermore, we presented an in-depth analysis for each query to find possibles causes of

the results obtained in the survey. The observations that we have are the following; first,

some of the queries are domain specific, so in those cases our corpus of apps is too small to

have a variety of apps that satisfies these kind of queries. Second, some of the queries are

ambiguous because we found couple of cases where some terms in the query can have two

different meanings, so the results of these queries can be affected because of the perception

of the participants according to the query.

Moreover in the additional study we found out that the length of the query can affects the

results, in the case of the ones that are short and general. Finally, in some cases we saw that

in apps descriptions some of the terms of the query appears but those words are used in a

different context, like promoting an app, giving suggestions or adding extra information not

related with the application.

For future work we plan to include a dynamic analysis. So, we want to add traces collected

from the execution of applications, and present to an user developer snippets about how one

feature can be implemented using the source code of open source applications.

Bibliography

[1] Al-Maskari, Azzah ; Sanderson, Mark ; Clough, Paul: The relationship between IR

effectiveness measures and user satisfaction. In: Proceedings of the 30th annual interna-

tional ACM SIGIR conference on Research and development in information retrieval -

SIGIR ’07 . New York, New York, USA : ACM Press, Juli 2007. – ISBN 9781595935977,

S. 773

[2] android-apktool: A tool for reverse engineering Android apk files.

http://code.google.com/p/android-apktool/

[3] Bläsing, T ; Batyuk, Leonid ; Schmidt, Aubrey-derrick A.-D. ; Camtepe, Seyit A. ;

Albayrak, Sahin ; Bl, Thomas ; Universit, Technische: An android application sandbox

system for suspicious software detection. In: Proceedings of the 5th IEEE International

Conference on Malicious and Unwanted Software, Malware 2010 . Technische Univer-

sität Berlin, DAI-Labor, Germany, 2010. – ISBN 9781424493562, S. 55–62

[4] Bajracharya, Sushil ; Ossher, Joel: Sourcerer: An internet-scale software repository.

2009 ICSE Workshop on Search-Driven Development-Users, Infrastructure, Tools and

Evaluation (2009), S. 1–4. ISBN 978–1–4244–3740–5

[5] Desnos, Anthony: Android: Static Analysis Using Similarity Distance. In: 2012 45th

Hawaii International Conference on System Sciences , IEEE, Januar 2012. – ISBN

1530–1605 VO –, S. 5394–5403

[6] dex2jar: Tools to work with android .dex and java .class files.

http://code.google.com/p/android-apktool/

[7] Davies, J ; German, D M. ; Godfrey, M W. ; Hindle, A: Software Bertillonage Determin-

ing the Provenance of Software Development Artifacts. Empirical Software Engineering

(2012), S. to appear

[8] Di Cerbo, Francesco ; Girardello, Andrea ; Michahelles, Florian ; Voronkova, Svetlana:

Detection of malicious applications on android OS. In: 4th International Workshop on

Computational Forensics, IWCF 2010, November 11, 2010 - November 12, 2010 Bd.

6540 LNCS. Bd. 6540 LNCS. Center for Applied Software Engineering, Free University

of Bolzano-Bozen, Bolzano-Bozen, Italy : Springer Verlag, 2011. – ISBN 03029743, S.

138–149

40 Bibliography

[9] Gibler, C ; Crussell, J ; Erickson, J ; Chen, H. AndroidLeaks: Automatically detecting

potential privacy leaks in Android applications on a large scale. 2012. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics)

[10] Google. Google Play. http://play.google.com

[11] Henninger, Scott: Information access tools for software reuse. Journal of Systems and

Software 30 (1995), September, Nr. 3, S. 231–247. – ISSN 0164–1212

[12] Hsu, Sheng-Kuei ; Lin, Shi-Jen: MACs: Mining API code snippets for code reuse.

Expert Systems with Applications 38 (2011), Juni, Nr. 6, S. 7291–7301. – ISSN 09574174

[13] Holmes, R. ; Murphy, G.C. C.: Using structural context to recommend source code

examples. In: 27th IEEE/ACM International Conference on Software Engineering

(ICSE’05). St. Louis, MO, USA : IEEe, 2005. – ISBN 1–59593–963–2, S. 117–125

[14] Han, Dan ; Zhang, Chenlei ; Fan, Xiaochao ; Hindle, Abram ; Wong, Kenny ; Stroulia,

Eleni: Understanding Android Fragmentation with Topic Analysis of Vendor-Specific

Bugs. In: 19th Working Conference on Reverse Engineering (WCRE’12), IEEE, 2012.

– ISBN 978–0–7695–4891–3, S. 83–92

[15] jclassinfo: Extracts information from .class files. http://jclassinfo.sourceforge.net/

[16] Järvelin, Kalervo ; Kekäläinen, Jaana: Cumulated gain-based evaluation of IR tech-

niques. ACM Transactions on Information Systems 20 (2002), Nr. 4, S. 422–446. –

ISSN 10468188

[17] Jiang, Di ; Vosecky, Jan ; Leung, K.W.-T. Kenneth Wai-ting ; Ng, Wilfred: Panorama :

A Semantic-Aware Application Search Framework. In: ACM International Conference

Proceeding Series , 2013. – ISBN 9781450315975, S. 371–382

[18] Linares-Vásquez, Mario ; Holtzhauer, Andrew ; Bernal-Cárdenas, Carlos ; Poshyvanyk,

Denys: Revisiting Android Reuse Studies in the Context of Code Obfuscation and

Library Usages. In: 11th IEEE Working Conference on Mining Software Repositories

(MSR’14). Hyderabad, India : ACM Press, 2014. – ISBN 9781450328630, S. to appear

10 pages

[19] McMillan, C ; Grechanik, M ; Poshyvanyk, D ; Xie, Q ; Fu, C: Portfolio: Finding Rel-

evant Functions And Their Usages. In: 33rd IEEE/ACM International Conference on

Software Engineering (ICSE’11). Honolulu, Hawaii, USA, 2011. – ISBN 9781450304450,

S. 111–120

Bibliography 41

[20] McMillan, Collin ; Grechanik, Mark ; Poshyvanyk, Denys ; Fu, Chen ; Xie, Qing:

Exemplar: A Source Code Search Engine for Finding Highly Relevant Applications.

IEEE Transactions on Software Engineering (TSE) 38 (2012), September, Nr. 5, S.

1069–1087. – ISSN 0098–5589

[21] Michail, A: Data Mining Library Reuse Patterns Using Generalized Association Rules.

In: 22nd International Conference on Software Engineering (ICSE’00). Limerick, Ire-

land : IEEE Computer Society: Los Alamitos CA, 2000, S. 167–176

[22] Mojica Ruiz, Israel J. ; Nagappan, Meiyappan ; Adams, Bram ; Hassan, Ahmed E.: Un-

derstanding reuse in the Android Market. In: 2012 20th IEEE International Conference

on Program Comprehension (ICPC), IEEE, Juni 2012. – ISBN 978–1–4673–1216–5, S.

113–122

[23] Manning, Christopher D. ; Raghavan, Prabhakar ; Schütze, Hinrich: Introduction to

Information Retrieval . Bd. 1. 2008 496 Seiten. – ISBN 0521865719

[24] Mandelin, D ; Xu, L ; Bod́ık, R ; Kimelman, D: Jungloid mining: helping to navigate

the API jungle. In: ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’05), 2005, S. 48–61

[25] Porter Stemmer. http://tartarus.org/˜martin/PorterStemmer

[26] Sahavechaphan, N ; Claypool, K: XSnippet: mining for sample code. In: Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’06),

2006, S. 413–430

[27] Shabtai, A ; Fledel, Y ; Elovici, Y: Automated Static Code Analysis for Classifying

Android Applications Using Machine Learning. In: 2010 International Conference on

Computational Intelligence and Security (CIS), IEEE, 2010, S. 329–333

[28] Sourceforge: Open source repository. http://sourceforge.net/

[29] The Apache Software Foundation. Lucene: Java search engine library. 2008.

http://lucene.apache.org

[30] Thummalapenta, S ; Xie, T: SpotWeb: Detecting Framework Hotspots and Coldspots

via Mining Open Source Code on the Web. In: 23rd IEEE/ACM International Confer-

ence on Automated Software Engineering (ASE’08). L’Aquila, Italy, 2008

[31] Ye, Y ; Fischer, Gerhard: Supporting Reuse by Delivering Task-Relevant and Person-

alized Information. In: IEEE/ACM International Conference on Software Engineering

(ICSE’02). Orlando, FL, 2002, S. 513–523

42 Bibliography

[32] Zhong, H ; Xie, T ; Zhang, L ; Pei, J ; Mei, H: MAPO: Mining and Recommending

API Usage Patterns. In: 23rd European Conference on Object-Oriented Programming

(ECOOP’09). Genova, Italy, 2009, S. 318–343

	Acknowledgements
	Abstract
	Resumen
	List of Tables
	List of Figures
	Introduction
	Motivation
	Goals

	Related Work
	Static Code Analysis
	Code Reuse Recommenders
	Search Engines for Applications

	Approach
	APK Structure
	Choosing Relevant Attributes
	Intents
	Sensors
	Permissions
	API Calls

	Bag of Words
	Term Frequency - Inverse Document Frequency

	Implementation
	Static Analyzer
	APK Information Extraction
	Google Play Information Extraction
	API Documentation Information Extraction

	Search Engine Core
	Lucene Configuration

	Evaluation
	Case study: Evaluating Search Engines
	Study Design
	Survey Design
	hypotheses

	Empirical Results
	Variables
	Survey Results
	Testing the Null Hypotheses
	Null Hypothesis - Confidence level
	Null Hypothesis - Precision
	Null Hypothesis - NDCG
	Analysis per Query

	Research Questions
	RQ1
	RQ2
	RQ3

	Conclusions and Future Work
	Bibliography

