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Abstract 

Mobile applications equipped with Global Positioning Systems have generated a huge quantity 

of location data with sampling uncertainty that must be handled and analyzed. Those location 

data can be ordered in time to represent trajectories of moving objects. The data warehouse 

approach based on spatio-temporal data can help on this task. For this reason, we address the 

problem of personalized reconstruction of low-sampling trajectories based on criteria over a 

graph for including criteria of movement as a dimension in a trajectory data warehouse solution 

to carry out analytical tasks over moving objects and the environment where they move. 

 

KeyWords: Personalized Routing, Graph Theory, Imputation process, Trajectory Data 

Warehouse, Low sampling trajectories, Criteria based Trajectory Reconstruction. 
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INTRODUCTION 

 

The easy acquisition and spreading of devices with incorporated GPS have highlighted the active 

use of location based services. Those applications and devices are characterized by the delivering of 

location data which ordered in time represent trajectories. Trajectories provide information to 

understand moving objects and the space where they move. Research and computer technologies for 

processing, retrieving, and extracting knowledge from those trajectories are needed. 

 

Although, some GPS systems can log the movement in a high sampling rate, others log the data in a 

low sampling rate describing the movement poorly and generating uncertainty. This is because of 

issues such as privacy (people do not share their location every time), energy saving, or simply, 

because the location based application only delivers location when a user arrives a place, e.g., the 

check-in in Foursquare and the geo-tagged photos in Flicker. As a result, the trajectory must be 

reconstructed to know how the movement was between no location-data availability. 

 

This thesis deals with the reconstruction problem of low sampling trajectories in a network restrained 

environment. From the premise that each moving object has a lot of possibilities for moving in a 

road network (because of the roads complexity), a reconstruction operator is provided considering 

the possible criteria that an object follows when it moves and the underlying road network where the 

movement occurs. The criteria based reconstruction addressed here argues that a user deals with a 

path selection problem: shortest distance is not always the criterion for moving in a city. Time, 

simplicity of the road, and touristic criteria are also considered by the user. 

 

The goal of reconstruction is to impute the movement between two location points to deal with the 

uncertainty. The reconstruction transforms “raw trajectories” in an appropriate form for the 

subsequent analysis. Because of the criterion of movement change, the resulting reconstructed 

trajectories can be different and; therefore, the analysis derived from those reconstructed trajectories 

can also change. For that reason, we explore the change in the analysis using approaches of data 

warehouse specialized in the management of spatiotemporal data to understand the reconstruction 

of trajectories based on criteria. 

 

In the following paragraphs, each chapter that make up this thesis are sketched out and their purpose 

is summed up.  
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Chapter 1. “Statement of the Research Problem”. States the research problem addressed by this 

thesis. The research question including specific research questions are also explained using a 

motivating example. The general and specific objectives are enunciated. A basic motivation for the 

research is also depicted and the scope of the research work is stated. 

 

Chapter 2. “Personalized Trajectory Reconstruction Problem with low-sampling data – A 

review”. Describes the state of art of the topics related to the development of this thesis. The related 

research works considered here includes topics such as: Routing/Route Planning, Low-sampling 

trajectories, Data warehouse, Trajectory Data warehouse, Trajectory reconstruction. 

 

Chapter 3. “Trajectory Reconstruction using criteria based routing over a Graph” describes the 

solution related to the operator to reconstruct trajectories. Using a formal approach, a function is 

formulated and developed. The graph theory, route planning theory, and trajectory concepts are 

carefully included to accomplish the goals of the function. The delimitation of the scope of the 

solution proposed is also stated. 

 

Chapter 4. “Using Criteria Reconstruction of Low-sampling trajectories as a tool for analytics” 

extends the solution proposed in Chapter 3, for including criteria of movement as a dimension of 

analysis in a trajectory data warehouse solution to enhance the analytics using dimensional 

modelling and graphical analysis. 

Chapter 5. “Technical Details” describes the technical documentation to provide a more 

comprehensive understanding of the solution. It also pretends to provide the technical details to 

replicate the executed experiments and examples.  

 

Both, the conclusions and the main contributions to the overall specific objectives of this thesis 

proposal are separated and located at the end of each chapter. Those chapter are: Chapter 2, Chapter 

3, Chapter 4, and Chapter 5. 
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CHAPTER 1. STATEMENT OF THE RESEARCH PROBLEM 

 

 

1.1 STATEMENT OF THE RESEARCH PROBLEM  

 

The current availability of GPS equipped devices, mobile phones and other mobile computing 

technologies [1] that use location data as a functionality is becoming fundamental to carry out the 

everyday actions of people and businesses. This has opened up the possibility for the collection, 

representation, exploration, and analysis of moving data which demands applications for new and 

enhanced location-based services such as tourism, marketing, sales, location-based gaming, and 

transportation systems [2] e.g., Google Maps, Flicker or Foursquare. These applications and 

technologies keep constant the underlying concept of the movement in space. The movement has to 

do with the notion of change in the physical position of a spatial object, called Moving Object (MO), 

respect to some reference system [3], [4].  

The delivering of location data ordered in time describe trajectories [5], [6], [7], which, in turn, 

represent the movement of a MO in space. However, because of the characteristics of some location 

based applications (e.g., the sharing of location data are done when a user arrives to representative 

places [6]; the energy saving of devices or, simply, the privacy requirements of users [8]) the 

movement is poorly described by low-sampled logged data. Although, sources of uncertainty are 

multiple (e.g., the measurement of the GPS equipped devices), the low sampling rate of trajectories 

is only addressed here because it involves a preprocessing stage of reconstruction of the trajectories 

that approximates the movements between localization points [9] later called by [10] as silent 

durations. 

The route planning problem (i.e., the problem of finding the optimal path for a user) [11] is a related 

problem considered here. However, systems are limited regarding route planning [12] because they 

are mainly focused on a single criterion, i.e., the shortest distance. The problem of route planning 

considering a set of metrics different from distance and the integration of user criteria is a still an 

open research issue [12] and requires the adaptations of new customized metrics, and possibly 

combinations of them, for finding the route between two places. [11] and [12] offer a brief taxonomy 

to build the “best” route based on criteria like shortest distance, time, point of interest (POI), and 

simplicity for traversing the RN.  
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Addressing this same need of route planning theory, i.e., the integration of user criteria to get “better 

routes” [14], [15], [16], a novel and relevant task is the reconstruction of low-sampling trajectories 

based on particular properties of the movement, such as the criteria of the MO (i.e., user) and the 

geographical space where it occurs, e.g., the road network (RN) of a city (the possible whereabouts 

of the MO are delimited by the geometry of the RN [17], [18], [19]: the movement is constrained 

along the edges (streets) of the RN) to handle with the uncertainty derived from the low-sampling 

rate generation of location data.  

The reason for trajectory imputation process, i.e., the reconstruction, is being a previous step of 

preprocessing before knowledge extraction and analysis of location data [20]. However, a great 

challenge lies in the knowledge discovery (of the environment where the movement occurs and the 

MO in consideration) using spatio-temporal data [21], especially about trajectories [10], even more 

when those trajectories are characterized by the uncertainty [6].  

The resulting trajectories should be stored in appropriate repositories to accomplish this task [9]. 

Also, it must be done because a great number of MO providing data and the reconstruction process 

themselves can result in a huge data generation. Data Warehouse (DW) approaches [22] might be 

used to deal with these huge volumes of data and analyze it. Because many of the characteristics, 

such as hierarchies and aggregations, and techniques such as mining and visualization have been 

adapted to the spatio-temporal data into a new concept called Spatio-Temporal Data Warehouse 

(STDW) [23], [24], [25], the analysis of the imputation process (i.e., reconstruction) over low-

sampling trajectories considering different criteria as an analysis dimension is based on this 

approach. Specifically, this thesis proposal, only deals with a particular case of the STDW approach 

called Trajectory Data Warehouse (TDW) fed by time-dependent location data describing 

movements of MO, i.e., trajectories [26], [27]. 

From the above expressed research needs and functionalities, in this thesis proposal, four main issues 

for managing MO data are considered: 

• Trajectories derived from location data are low-sampling because of the characteristics of 

location based application such as: people sharing location is only done when a user arrives to a POI 

(make check-in), privacy issues, energy saving or communication problems. When reconstructing a 

trajectory, it is also necessary deal with the uncertainty of low-frequency data [6], [7]. 
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• Dealing with multiple metrics expressing user criteria in a nontrivial way for the 

reconstruction of low-sampling trajectories is still an open research issue and is still expressed as a 

need [10], [12], [28]. 

• The environment in which movements take place and the characteristics of MO have 

significant influence on the movement; therefore, they need to be considered when the movements 

are studied [5], [29]. 

• The DW based on spatio-temporal data still lacks of analytical tasks related, e.g., to the 

reconstruction of low-sampling trajectories [6], [7], [10]. 

1.1.1 Research Problem 

 

According to the issues outlined, the research problem to be addressed in this thesis is: 

 

The spatio-temporal data systems still lacks of analytic tasks related to the dynamic possibilities of 

route planning based on the reconstruction of low-sampling trajectories considering different user 

criteria. 

 

1.1.2 Research Question 

 

And its corresponding research question is: 

Can an operator be developed for the reconstruction of low-sampling trajectories considering 

different user criteria to increase the possibilities of analytical tasks over trajectories? 

 

This question arise the following research questions to be developed: 

 Can data of low-sampling trajectories be reconstructed considering user criteria? 

 Which analysis tasks could be performed using a criteria based operator over low-sampling 

trajectories? 
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1.2 MOTIVATING EXAMPLE 

 

A motivating example is developed to clarify the research problem: 

See the Figure 1.1, two sample points generated by an app, e.g., Foursquare. An origin located in 

the point A (“Parque Berrio”) and a destiny located in point B (“Alpujarra”) of the city of Medellín.  

The Figure 1.1-a presents the basic notion of road distance. The figure shows the minimum distance 

between point A and B. In real life, it is not possible for a car follows this path because, for example, 

the streets have restrictions of mobility such as the direction of movement. 

The Figure 1.1-b is based on the relevance of time. The path shown is the best route, because, for 

example, the traffic flow is fastest between the point A and point B.  

The Figure 1.1.c presents a notion of distance based on the "easiest” path, evading the most of the 

turns in the path. It is based on the idea that the presence of the turns implies the reductions of 

velocity and unnecessary maneuvers. 

Another perspective is presented in the Figure 1.1-d. it is based on the notion of touristic perspective 

and POI. The idea is to travel from A to B trying to visit the more touristic places as possible in an 

optimal way.  
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Figure 1.1. Different perspectives of "better routes" 

 

All these kinds of perspectives of “the better routes” are detailed in the state-of-art section where the 

possibilities, such as time and touristic criteria define the reconstruction of the trajectory. 

As shown in the Figure 1.1, the trajectory from point A to point B has a lot of possibilities due to 

different movement criteria of the users. Now, suppose you must to reconstruct a similar dataset of 

low-sampling trajectories of a dataset of MOs. What methods do you use? Which analytical task 

could be performed over some MOs which follows similar trajectories in a city? 

Using a determined criterion parameter as a basis, the path is reconstructed using an operator over a 

set of trajectories. An analysis task in a TDW could be the comparison of the different reconstructed 

approaches to analyze the differences and tendencies of the MO to determine the characteristics of 

the movement, e.g., in a city, to support decisions like how effective the mobility regarding the "best 

(a) (b) 

(c) (d) 
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routes" is, and implement advertising campaigns by companies of location based marketing such as 

billboards based on the density of trajectories.  

As an example, Figure 2.1 shows the basic reconstruction of a simple trajectory from a set of points 

based on linear interpolation [30]; however, simple linear interpolation as a method of reconstruction 

of low-sampling location data of users, does not represent people real movement because users move 

according to a determined goal or criteria. 

 

Figure 1.2. Reconstruction of a trajectory from a set of points 
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1.3 OBJECTIVES 

 

1.3.1  General Objective 

 

Formulate an operator considering the dynamic possibilities of the reconstruction of low-sampling 

trajectories based on user criteria. 

 

1.3.2 Specific Objectives 

 

1. Identify the different perspectives of reconstruction of low-sampling trajectories. 

2. Develop a user criteria based operator for the reconstruction of a low-sampling trajectory.  

3. Identify opportunities of analytical tasks using an operator over low-sampling trajectories 

considering the limitations of Network Constrained Environment.  

4. Validate the effectiveness of the proposal using a functional prototype for testing. 
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1.4 SCOPE OF THE RESEARCH WORK 

 

The theory of trajectories has a wide range of research issues. However, as presented in above cited 

works and the identification of the research problem we only deal with the imputation 

(reconstruction) of low-sampling trajectories in network constrained environments.  

A criteria based operator is built to reconstruct low-sampling trajectories, i.e., an operator for 

computing the trajectory between two locations points when data are not present using an explicit 

parameter that describes the intention of the movement. This is a useful tool to approximate a low-

sampling trajectory previously knowing certain kind of data as the type of movement followed by 

the MO and the underlying RN.  

The imputation (reconstruction) of a low sampled trajectory based on criteria such distance, time, or 

speed and the limitations of space are the main contributions of this thesis. So, this research will not 

address the problem of how to know, in real-time, the location of a MO.  

Some analysis tasks are also derived. The proposed operator is added in a TDW environment to show 

the effects of the reconstruction criteria over the low-sampling data. Visualizations and measures 

over the resulting trajectories are analyzed when the reconstruction criteria changes. So, other main 

contributions of this thesis proposal are aimed to enhance the TDW with other possibilities that 

hasn´t been (or are been poorly) explored. 

The functional prototype referred in the specific objectives is intended to show the proposed operator 

over low-sampling trajectories where the criteria variation can be simulated and the possibility of 

comparison options allow to determine the relative importance of the criteria. Those results can be 

developed over specific platforms such as available open-source DBMS and geo-data displayers. A 

set of the cases of studies are used to illustrate the effects of the proposed operator. 
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CHAPTER 2. STATE OF THE ART: “TRAJECTORY 

RECONSTRUCTION PROBLEM WITH LOW-SAMPLING DATA 

USING A CRITERIA BASED APPROACH FROM ROUTE 

PLANNING THEORY – A REVIEW FOR ANALYTICS” 

 

 

2.1 INTRODUCCION 

 

The evolving wireless communication systems and mobile computing technologies equipped with 

GPS systems have favored the exploitation of geo-positioning data [20] to meet a variety of 

requirements such as route finder applications and location based advertising management based 

applications. The way people live and move is daily recorded by those mobile devices [9] where the 

core information is the movement of people over time [31]. In a most accurate way, the movement is 

described when location data are ordered in time and it represents trajectories [5], [7] 

Being able to choose the most convenient route to travel from one place to another is a desirable 

possibility when planning activities. For example, in a city the tourists usually ask for the best routes 

for visiting attractive places. Fields such as logistic, traffic control, and location based advertising 

also demand solutions in this regard to meet a variety of requirements, such as quality of road, cost 

of fuel, effectiveness of an advertising campaign, and user preferences, among others [6], [7], [16]. 

Current commercial solutions for finding best routes, e.g., Bing Maps are usually slow, inaccurate, 

or limited regarding route planning [12] because they are mainly focused on a single criterion: the 

shortest path routing. On the other hand, open source applications, e.g., Routino [32] or MapQuest 

[33] have incorporated specialized features such as road type (pedestrian, bicycle, car) or criteria 

based routing (simplest path, i.e., ease of description and execution of the path, or fastest path) for 

enhancing and improving the possibilities already provided by the commercial ones.  

User criteria are not considered in these applications [11], [16], [34]. Several authors have recently 

been focused on the incorporation of user preferences and multi-criteria decision-making aspects in 

light of the route personalization [16]. Other approaches have used GPS data representing historical 

movements of users based on individual [34] or collective behavior [35]. The resulting routes are 

usually closer to the ones actually followed by users than those suggested by the route planners as 

optimal (the shortest, the fastest)  [36], [37]. 
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In this chapter, the request for a route to travel from one place to another in the route finding problem 

(RFP) is akin to the one of finding a trajectory between low-sampled points. Low-sampled points 

occur when the time interval between consecutive GPS points of some trajectories is higher than a 

threshold determined by the application analysts [6]. Therefore, the reviewed research works are 

analyzed in relation to the RFP, paying special attention to those taking into account user criteria or 

low-sampling-rate data. When low-sampling-rate data are present, the reconstruction of trajectories 

may be needed [20], i.e., the description of the movement of the object between the two points where 

no data points are available to know where the object is while travelling.  

The need for reconstructing trajectories has a reason: It is a previous step for a better analysis of 

trajectory data in knowledge discovery environments [20], [21]. A great challenge for the knowledge 

discovery (both, of the environment where the movement occurs and the objects in consideration 

[5]) using spatiotemporal data [21] is demanding for techniques that enable the analysis of 

trajectories [38], especially the ones characterized by the uncertainty [6]. Conceptualization in 

analytics over trajectories is addressed in this state of art review but deeper oriented in the arising 

field of Trajectory Data warehouse (TDW) [26] as a way to deal with this analysis proposal.  

The rest of this chapter is organized as follows. Section 2.2 describes routing planning systems. 

Section 2.3 describes personalization, i.e., incorporation of user criteria, in routing planning systems. 

Section 2.4 addresses personalized route finding based on the concept of trajectories but focusing in 

the reconstruction of trajectories under low-sampling-rate data. Section 2.5 describe de problem of 

uncertainty of trajectories. Section 2.6 addresses the related works and methods regarding analytical 

task over trajectories. Section 2.7 concludes the chapter establishing the relationship between the 

personalized route planning with the reconstruction of low-sampling trajectories proposing future 

works, one of them addressed in the following chapters. 

 

2.2 ROUTING PLANNING SYSTEMS 

 

Routing (or Route) planning systems RPS are commonly recognized as decision support systems 

[39], [40]. These systems sometimes are referred to as geo-related decision support tools [15]. In 

Table 2.1, some variations of the term referring to RPS found in the literature review are presented. 

Conventional solutions provided to RFP are limited because they use an analysis based on just one 

dimension (criterion): the cost [41], [42], [43], [44].  
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Author Term Definition 

[11] Routing systems 

Routing systems aim to help users on finding the 

optimal path to their destination regarding travel 

distance, travel time, among other criteria. 

[15] 
Route planning 

technique 

A route planning technique is an essential geo-related 

decision support tool in a GIS (Geographic Information 

System) whose goal is the accurate route finding. 

[15] 
Personalized user-

centric route finding 

A personalized user-centric route finding application 

incorporates user preferences and the environmental 

features around a user. User preferences and 

environmental features are the key elements to assess a 

route. 

[16] 
Personalized route 

planning systems 

A personalized route planning system provides a route 

based on minimizing a combination of user defined 

criteria such as travel distance, travel time, the number 

of traffic lights, and road types. 

[41] 
Route guidance 

systems 

Route guidance systems refer to all driver decision 

factors considered before and during a trip to choose a 

route, as well as unexpected factors that may happen 

during the trip to adjust the route. Route guidance 

systems are recognized as a fundamental component of 

intelligent transportation systems. 

Table 2.1. Common terms referring to routing planning systems 

 

Many definitions include, explicitly or implicitly the notion of personalization, suggesting that user 

interaction is required. Recent researches have been carried out to improve these models through 

their personalization and the incorporation of multi-criteria decision-making including preference 

models [11], [16], [39], [45]. Indeed, the personalization of route finding by the incorporation of 

user criteria is one of the most desired features in RPS [39]. A brief schema review of the RFP in 

RPS is shown in Figure 2.1. The RPS are supported by Routing Planning Algorithms. When the 

personalization is included, incorporating preferences or decision strategies originates the concept 

of Personalized Routing Planning Systems. 
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Figure 2.1. Schema review of the RFP according to personalization in RPS 

Early approaches to the RFP focused on the cost of the path represented by the distance between two 

points. The classical algorithm for RFP based on the shortest path issue was proposed by Dijkstra [14] 

and it has been used widely in many applications to find the shortest path between an origin vertex 

and a destination vertex in a weighted graph exploring the entire graph to determine the lowest cost 

route. Similarly, the A* algorithm (a modification of Dijkstra’s algorithm) finds the optimal path 

using an appropriate heuristic (that avoids exploring the entire graph) that defines which is the best 

node to be visited next based on the lowest heuristic cost [46], e.g., some Minkowski metrics [47]. 

The general Minkowski distance dij of order p between two points (xi, yi) and (xj, yj) in a two-

dimensional space is dij = {|(xi - xj)|p +|(yi - yj)|p}1/p. Minkowski distance is typically used with p 

being 1 or 2. When p = 1, it is called Manhattan distance, when p = 2 is called Euclidean distance. 

All these early approaches are based on algorithms that use an edge cost, i.e., they performed a one-

dimensional analysis. For this reason, these algorithms are inadequate or incomplete since users 

generally have different purposes and they do not share the same preferences of movement behavior, 

highlighting the need to personalize and allow the user to interact with RPS. 

 

2.3 PERSONALIZATION 

 

The personalization is a term widely used in many fields. The technology-based definition provided 

by the Personalization Consortium (2005) is “the use of the technology and customer information to 

tailor electronic commerce interactions between a business and each individual customer”.  

An experiment conducted by Golledge[48] showed that the criteria used by humans to deal with path 

selection problems may be a complex task that covers a wide spectrum of choices. The route choice 

behavior based on route selection was analyzed in a real environment and in a laboratory. The routes 

were determined using criteria selection such as shortest distance and fewest turns. Variables such 

Routing Planning Algorithms 

Routing Planning Systems 

Adaptable Routing 

Planning Systems 
Adaptive Routing 

Planning Systems 

Incorporation of user 

preferences 

Incorporation of 

decision strategies 

Personalized Routing Planning Systems 

Personalization 
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as orientation and the possibility of retracing the route (i.e., interchange the origin and the 

destination) were also studied to determine the change of the user route criteria selection when 

traveling in one direction or the other. This set of exercises provides evidence that route selection is 

not a simple process that can be solved by traditional algorithms. Instead, it shows that it is a process 

that requires the support of decision strategies and preference models to back personalization. 

Indeed, their experiment showed that users not always choose the shortest route.  

To illustrate the above problem, Figure 2.2 represents a simple example of RFP in a RN. Two 

possible routes between an origin O and a destination D are shown. The route O-C-D is usually 

suggested by common RPS without considering the probability of a traffic jam or local restrictions 

for moving between streets. However, most users would select the route O-A-B-D even though path 

O-C-D has the minimum distance because more points of interest (POI) can be found along it ( 

supermarkets, parks, or gasoline stations). This is already evidenced by Duckham and Kulik [49], 

showing how a simple path solution offers considerable advantages over shortest paths in terms of 

their ease of description and execution. Several researchers have stated the importance of the 

personalization when solving routing planning tasks [16], [34], [40].  

 

 
Figure 2.2. Problem of route finding in a road network 1 

The goal of personalization is the automatic adaption of an information service in response to the 

implicit or explicit needs of a specific user [40]. That is, automatic identification of preferences from 

                                                           
1 All image usage rights are labeled for use with modification. 
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http://www.google.com/support/bin/answer.py?answer=29508&p=adv_usagerights&hl=en
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the user movement behavior history [36], [37] or explicit requests of the user [15], [16]. Also, Fischer 

[50] stated that personalization can be described by adaptable and adaptive methods, and Oppermann 

[51] gives the following definition: in adaptable systems the user controls the adaptation process 

whereas in adaptive systems the process is automatic, i.e., without user intervention. Nadi and 

Delavar[16] define adaptable and adaptive personalized route guidance systems in the context of 

RPS. Examples of adaptable [15], [16] and adaptive [52], [53], [54], [55], [56] RPS can be widely 

found in the literature. 

 

In [15], static and dynamic systems; deterministic and stochastic systems; reactive and predictive 

systems; and centralized and decentralized systems are distinguished. In [41], descriptive and 

prescriptive guidance; and static and dynamic guidance are reviewed. In [42], route guidance systems 

are classified as infrastructure-based and infrastructure-less systems. Infrastructure-based systems 

are based on two components: i) hardware devices deployed in streets/roads and ii) computer systems 

installed in moving objects (e.g., a GPS). Infrastructure-less systems require only the second 

component. Personalization can also be defined in terms of user route choice criteria. Typical route 

algorithms are optimized regarding only one criterion [57], e.g., route length or travel time (i.e., a 

one-dimensional analysis). A special issue of the personalization in RPS is the characterization and 

incorporation of several criteria. Table 2.2 shows some of them, classified as quantitative (they are 

measured from a map or any other source) and qualitative (they are no-numeric criteria that are 

ranked according to the impact on the user). 

 

Author Criteria Quantitative Qualitative 

[11],[16] Distance, Travel Time x  

[11], [13], [37] Traffic x  

[11], [16], [49] Costs of Turns/ Simplest Paths x  

[58], [59] 
Number of Scenic Landscapes / 

POIs 
x  

[16] 

Number of Junctions, Travel 

Reliability, Directness, Road 

Width, Number of Stop Signs 

x  

[16] Quality of Road, Type of Road  x 

Table 2.2. Quantitative and qualitative criteria of RFP 
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Previous research [11], [13], [16] found that route selection criteria can be grouped into four general 

criteria: speed (time, distance), safeness, simplicity, and attractiveness (scenic path POIs-based): 

 

2.3.1 Speed: Distance 

 

Distance is normally considered the most important criterion for route choosing. Even without route 

planning systems, the path with the shortest distance is intuitively chosen with a minimum previous 

knowledge of the RN structure; however, the presence of known POIs may lengthen the road trip. See 

attractiveness.  

 

2.3.2 Speed: Time 

 

Time is a variable that depends of several factors such as length (the time is directly proportional to 

the length of road), average speed (higher in main avenues than in small streets), and quality of roads, 

weather conditions (e.g. when it rains, travel time is higher due to traffic conditions derived from it) 

or quality of traffic as described in [11]. 

 

2.3.3 Safeness 

 

It groups a series of criteria based on characteristics (bike lane availability, area safeness, nighting, 

traffic level), possibilities (lack of busy intersections, public transport, roundabouts), and features of 

the road (presence or lack of pavement, slope angle) [13]. 

 

2.3.4 Simplicity 

 

The simplest path is based on the idea that the turns imply reductions of velocity and unnecessary 

maneuvers. Thus, the path is “better” if it has less turns [11]. Moreover, the description of the path 

is easier when a simplest path approach is followed, as the explanation, depiction, understanding, 

memorizing, or execution of it [49], which is useful for users who are navigating through an 

unfamiliar geographic environment. 
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2.3.5 Attractiveness  

 

Criteria such as distance, time, or turns are common route criteria for navigating a street network, but 

computation of the most scenic route is a special issue [60]. The scenic path notion is defined from 

the touristic perspective. The main idea is to travel from A to B trying to visit as much touristic places 

as possible and minimizing route length at the same time. The cost is related with the number of 

touristic attractions between the two points. A previous step for modify the cost of the edges must be 

done (for instance, the streets with a considerable number of POIs have the lowest cost) before a 

shortest path algorithm is executed if the goal is to find a route that traverses as much POIs  as possible, 

and at the same time, the shortest route between two POIs.  

 

Figure 2.3 (Previously shown as a Motivating example) exhibits a section of  Guarne, a small town 

in Colombia, with a route between two points using the shortest path algorithm. Figure 2.3-a shows 

the minimum distance between point A and B. Figure 2.3-b shows the route with the minimum travel 

time between point A and point B. Figure 2.3-c shows the route between the two former points using 

the simplest path approach. The turns in the path are less, even though the whole path may be longer. 

Figure 2.3-d shows the route between the two points using the scenic path approach: the route is draw 

along the street nearest to the town river where touristic attractions are (restaurants, beach games, etc.) 
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Figure 2.3. Different route finding criteria from point A to point B: (a) Shortest Path distance from 

point A to point B; (b) Fastest Path distance from point A to point B; (c) Simplest Path distance 

from point A to point B; (d) Scenic Path distance from point A to point B 

 

2.4 PERSONALIZED ROUTE FINDING BASED ON TRAJECTORIES 

 

The RFP reviewed here is related with the problem of reconstruction of trajectories, i.e., the problem 

of tracing a route that pass by a set of locations. Pattern-based and greedy searches approaches has 

been considered to solve this problem (Preference-based Greedy search, NaïVe Greedy search, 

Pattern+Greedy search) [61]. Pattern-based approaches allow the offline processing of historical 

trajectory data to discover mining patterns to infer routing information [6], while greedy search 

approaches make optimal local choices at every decision stage providing a dynamic/online 

recommendation on the best immediate location to be visited for constructing the route, instead of 

prepossessing historical data [61]. The most of these works deal with a general mining/prediction 

Shortest Path distance from point A to point B. 
 

(b)  

(c) (d)  

(a)  
  

Fastest Path distance from point A to point B. 
  

Simplest Path distance from point A to point B. 
  

Scenic Path distance from point A to point B. 
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problem over historical trajectories [35], [37], [61], [62]. The personalization aspect in the reviewed 

works is based on the trajectory history data of a particular user. Thus, these could be considered as 

adaptive approaches.  

 

In [63], the problem of searching the k-Best Connected Trajectories (k-BCT) is addressed. A small 

set of locations (queried points) is given as an input to an incremental k-NN (K-Nearest Neighbor) 

based algorithm, which progressively retrieves trajectories nearest to each location, using best-first 

and depth-first k-NN algorithms. The quality of the connection between locations provided by the 

discovered trajectories is given by a similarity measure which determines how well a trajectory 

connects to the locations. A dataset of Beijing collected by the Microsoft GeoLife Project was used 

to analyze the efficiency of the IKNN algorithm, showing a better search performance if the best-

first k-NN algorithm is chosen.  

 

In [35], the problem of discovering the most popular route between two given locations using 

historical user trajectories is addressed. A Coherence Expanding Algorithm is proposed for mining 

users’ movements together with a popularity indicator. Then, an algorithm for searching the most 

popular route given two locations is applied. Considering 276 truck trajectories used in Athens and 

applying the proposed algorithm, the most popular routes were identified. Then, these findings were 

compared against those obtained with the shortest path approach. 

 

In [34], a Pattern-aware Personalized routing framework (PPT) is proposed using a two-step method 

to compute personalized routes. First, a set of frequent road segments are derived from a user’s 

historical trajectories database to construct a familiar RN followed by a specific user. Then, while a 

route is computed between a specific source and a destination, a second algorithm is proposed to 

discover the top-k personalized routes connecting some segments that a user has previously traveled. 

The algorithms were tested using a real trajectory dataset from one user over a period of four months 

in Kaohsiung, Taiwan. The proposed algorithms derive the top-k personalized routes that 

approximate the real top-k personalized routes.  

 

In [37], smart driving directions are mined from taxi drivers experience. They propose a routing 

algorithm to provide the fastest route from a given origin to a given destination. Thus, a time-

dependent graph is built where nodes are recognized as landmarks, i.e., road segments traversed by 

a significant number of taxis and edges represent taxi routes between landmark roads. The method 



21.          A Criteria based Function for Reconstructing Low-Sampling Trajectories as a Tool for Analytics  

 

is compared with speed-constraint and real time traffic-based methods. This demonstrates that about 

16% of time can be saved with this method. 

 

In [36], fast routes are also mined from taxi traces and are customized for a particular driver behavior. 

A mobile client device learns a user’s driving behavior from the user’s driving routes and finds the 

fastest route for the user. This model outperformed the previous work [37].  

 

In [61], the construction of a preferred route using location check-in data are done based on the 

popularity of a certain route and the preferences ranked by a set of users. The goal is to build a 

trajectory where the reconstruction meets the preferred locations to be visited by a group of persons 

using Gowalla check-in data and a Pattern+Greedy method (this combination of Pattern and Greedy 

route search outperforms both methods when used separately). Similarly, in [62], the top-k 

Trajectories are extracted from interesting regions with higher scores (attractiveness) mined from 

historical GPS trajectories. A Framework for trajectory search is developed called Pattern-Aware 

Trajectory Search (PATS) which includes an off-line pattern discovery module and an online pattern-

aware trajectory search module. This framework only searches for the top-k maximal trajectories 

with higher scores according to the number of interesting regions and does not infer new routes.  

 

2.5 UNCERTAINTY IN TRAJECTORIES 

 

Most of the former research works do not deal with trajectory uncertainty explicitly. When 

reconstructing a trajectory, it is also necessary consider basic characteristics of trajectories such as 

its low-sampling-rate to deal with the uncertainty of low-frequency data [6], [7]. Previous works 

[34], [35], [37], [63] relied on high-sampled trajectories. The effectiveness of inferred routes is poor 

due to its inadequate management of low-sampling trajectories where uncertainty is reflected.  

 

The causes for low-sampling trajectories include: the lack of users sharing their position or taking 

geo-tagged photos from every place and every second. This is due to the privacy concerns publishing 

personal location data to potentially untrustworthy service providers may pose [64]. Research works 

has been carried out to preserve publishing data of a moving object to a third party for data analysis 

purposes because it could have serious privacy concerns [8], [65], [66]. Privacy-preserving 

techniques has been studied based on false location [67], space transformations [68] or spatial 

cloaking, i.e., the individual´s location according to the number of individuals within the same 

quadrant [69]. However, those works are not aimed to reduce low-sampling directly. Instead, they 
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provide privacy – preserving techniques to promote location sharing information. The uncertainty of 

trajectories has been studied intensively [7], [70], [71], [72]. The main features of the trajectories 

regarding to uncertainty are highlighted in [10]: 

 

1. Spatial Biases: The locations of data points in two trajectories are different, i.e., two similar 

trajectories can be depicted by means of different location data points. 

2. Temporal Biases: The occurrence time of two trajectories are different, i.e., two similar 

trajectories visiting the same POIs could be done in two different periods. 

3. Silent Durations: The periods when no data points are available to describe the movements 

of the users. 

Relevant data are usually missing during silent durations. User movement criteria can fulfill partially 

those silent durations. For the best of our knowledge, the low-sampling-rate trajectory reconstruction 

problem has not considered the user preferences. We strongly believe this is a rich research area with 

application in several domains. For example, for location-based advertising, it might mean the 

possibility of advertising strategies based on data about routes followed by the users from a POI A 

to a POI B.  

 

In [73], uncertainty from different sources is evidenced: i) GPS observations (accuracy of the GPS 

observation) and ii) the uncertainty derived between low sampled points of a trajectory. Those are 

also referred to the measurement and the sampling errors [70]. The first is addressed by map 

matching techniques and the quality of the measurement depends largely on the technique used. The 

second one uses notions such as space-time prisms which delimit the movement based on some 

background knowledge, like, for instance, a speed limit or a RN. The second one is the case of mobile 

social network applications enriched with geo-tagged media information where low-sampling data 

are common.  

 

Several studies [61], [74], [75] infer routes from a sequence of POIs but a detailed route between 

two consecutive POIs is not specified. The underlying assumptions of these works are that the user 

movement is free. However, the infrastructure, e.g., buildings, streets direction, may be considered 

to obtain a reduced overall uncertainty and inaccuracy in the data.  

 

In [7], a Route Inference framework based on Collective Knowledge (RICK) is developed. Given a 

set of locations and a time span, a two-step method is followed: first, a “routable graph” is built and, 
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then, the top-k routes according to the route inference algorithm are constructed. Two real dataset 

are used: registers of Foursquare check-in application used in Manhattan city and trajectories used 

in Beijing. The main is to demonstrate the effectiveness and efficiency of RICK. 

 

In [6], the problem of reducing uncertainty for a given low-sampling-rate trajectory is addressed. 

Historical data are used to discover popular routes as an estimation of low-sampling trajectories. A 

real trajectory dataset generated by taxis in Beijing in a period of three months is used to validate the 

effectiveness of their proposal and shows higher accuracy in comparison with the existing map-

matching [76], [77]. 

 

2.6 THE DW FOR TRAJECTORIES 

 

The transformation of raw trajectories into valuable information is a requirement that can be used 

for decision-making purposes [27]. This is the mean reason for low-sampling trajectory imputation 

process, i.e., the reconstruction, addressed in the current state of the art: completing the low-sampling 

trajectories for knowledge extraction and analysis tasks [20].  

There are a variety of techniques in the field of knowledge discovery to extract valuable information 

from spatiotemporal data [21] adapted from the traditional ones [78], [79] (e.g., data mining with 

clustering, classification, and regression techniques). However, this thesis only addresses the ones 

based on DW concepts [22]. Therefore, the basic concepts of DW are outlined but the analysis and 

conceptualization are oriented to the SpatioTemporal Data Warehouse (STDW) especially, in the 

arising field of Trajectory Data warehouse (TDW), see Figure 2.4. 

 

 
Figure 2.4. Taxonomy of Data Warehouse (DW) 

 

Data Warehouse (DW) 

Spatio-Temporal Data 

Warehouse (STDW) 

Trajectory Data 

Warehouse (TDW) 

Spatial Data 

Warehouse (SDW) 
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Inmon [80] was the first who defined the concept of DW as a subject oriented, integrated, time variant 

and non-volatile collection of data in support of management’s decision-making process. However, 

there are two main approaches in the design of a DW: the Inmon approach and the Kimball approach 

[22]. The Inmon approach states for the integration of a centralized place where to store the 

information to support analysis tasks. This is known as the top-down approach because having a 

centralized DW, the analytical need of the business units can be supplied using subsets of the 

centralized DW (later called by Kimball [81] as data marts).  

 

2.6.1 Multidimensional Modeling  

 

The DW is modeled in a multidimensional way (according to Kimball structure) to facilitate a 

complex analysis. The multidimensional modeling starts with the factors that affect the decision-

making process in the specific area of business called measures of interest, such as the number of 

sales in a store. This information is analyzed using diverse perspectives called dimensions, which in 

turn, are organized in hierarchies on which aggregations are performed. For instance, the sales can 

be analyzed by date and product. The product can be organized hierarchically by type and brand; 

and the date can be analyzed by year, semester, and month. 

 

2.6.2 Spatial Data Warehouse (SDW) and Spatiotemporal Data warehouse (STDW) 

 

The growing popularity of spatial information generated from satellites and materialized in maps, 

has opened up the SDW as an interesting topic of research [82]. SDW are based on the concepts of 

DW presented above and the combination of spatiality which provide some characteristics to 

aggregate, analyze, and visualize spatial data based on spatial dimension with levels represented by 

geometries [83]. 

While SDW considers types and dimensions adding the spatial context, the considerations of the 

temporal aspects are also needed to analyze events like the movement of entities. [84] Offer a sight 

of STDW as a relationship between GIS systems and concepts of DW (facts and dimensions) 

highlighting the time to form spatiotemporal databases.  
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2.6.3 Trajectory Data Warehouse (TDW) 

 

A special case of the spatiotemporal domain of STDW is related to the integration of the movement 

described by MO, i.e., trajectories, in a TDW. The main goal of a TDW is to transform raw data of 

trajectories into valuable information to support decision-making process in applications based on 

MO [27]. 

 

In [26], a DW is proposed to deal with the issue of huge data generation of MO by mobile 

applications. They focus on concepts related to trajectories to support tasks that involve data 

generated by modern devices like GPS and other huge amount of spatiotemporal data to support 

Knowledge Discovering Tasks (KDD) [85] 

In [86], a TDW proposal is also provided for analyzing mobility data that takes into consideration 

the complete flow of tasks required for the development of a TDW and the application of trajectory-

inspired mining algorithms to extract traffic patterns. The trajectory reconstruction problem is also 

included in a module using parameters such as temporal and spatial gap between trajectories, 

maximum speed, and tolerance distance. 

2.6.4 The analysis goals in a TDW 

 

The measures about trajectories have characteristics to be analyzed in a TDW. Pelekis and Raffaeta 

[27] distinguish some of them: 

 

1- Numeric Characteristics: such as Average of the speed, direction, and duration of the 

trajectory. 

2- Spatial Characteristics: such as the geometric shape of the trajectory. 

3- Temporal Characteristics: such as the timing of the movement. 

 

With regarding to the spatial characteristics of trajectories, Pelekis and Raffaeta [27] stated that most 

of the proposals [87], [88] distinguish three types of spatial dimensions about the incorporation of 

spatiality on members levels: non-geometric, which uses nominal spatial references (e.g. name of 

streets and cities); geometric-to-non-geometric, which at lower levels member has an associated 

geometry up to a certain level member where it becomes non-geometrics, i.e., it becomes nominal; 

and, fully geometric where all levels have an associated geometry. However, [89] stated that a 

dimension can be fully spatial even if some members’ levels do not have an associated geometry. 
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The handling of geography also could include a simple grid, a RN or even coverage of the space 

with respect to the mobile cell network [90]. 

 

There is still an open research issue regarding to TDW operations for enhancing traditional ones. 

Pelekis and Raffaeta [27] prospect some of them, such as: trajectory clustering, extraction of a 

representative trajectory from a set of trajectories and operators to propagate/aggregate the 

uncertainty and imprecision present in the data. This thesis suggests the analysis of some measures 

based on a criteria based imputation process over low sampling trajectories to deal with the 

uncertainty and explore the possibilities of analysis over those reconstructed trajectories. 

 

2.7 CONCLUSIONS AND FUTURE WORK 

 

The trajectory reconstruction problem is still an open research issue, especially what is related to 

uncertainty due to low-sampling data and the incorporation of user preferences. Simple linear 

interpolation [30], as a method of reconstruction of low-sampling location data, does not represent 

user real movement because they move according to a certain criteria such as time or the amount of  

touristic/scenic places. Indeed, the reconstruction of trajectories using user preferences is expressed 

as a need in recent research works [10], [28], [91]. 

 

To the best of our knowledge, there are no research work that involve several criteria as a way to 

reconstructing low-sampling trajectories. This approach can also be enhanced considering the 

restriction of the movement in a RN [19], [92] and methods to predict the location of moving objects 

in a RN [93]. Location data are low-sampling because people do not share data in a high rate due to 

security and privacy issues [8], energy saving, communication problems, or it is only an action done 

one time when a user arrives to a POI [64]. Again, considering user criteria to infer movement 

between consecutive points of a trajectory to deal with low-sampling issues is a task that deserves to 

be explored.  

 

On the other hand, the current availability of GPS loggers gathered from mobile devices are useful 

in a variety of ways to make driving better [20], but effective usage of the huge amount of data 

generated by GPS is still a challenge [94]. Considering the different possibilities of user criteria 

reconstruction of trajectory and the huge amount of low-sampling data, data analysis tasks related to 

these possibilities of reconstruction can be conducted using e.g., TDW aproaches. Therefore, 

analytic results over reconstructed trajectories can vary if different criteria of reconstruction are used. 
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For example, if a trajectory is reconstructed based on the criterion of minimize turns, the main 

avenues can be interesting for analysis tasks because those are the longest without less deviations 

but if the amount of POIs are used as a criterion of reconstruction, then the avenues nearest to tourist 

attractions might be the interesting ones.  

 

The main contributions of this chapter are: 

 

 The characterization of the route finding problem through the route planning systems. 

 The characterization of user criteria in the route finding problem as a personalization feature. 

 The establishment of the relationship between the problem of personalized route planning 

and the reconstruction of low-sampling trajectories. 

 The characterization of the current state of the treatment of uncertainty in trajectories  

 The establishment of the treatment of spatiotemporal data, especially the trajectories, in the 

data warehouse theory.  

 This chapter develops the specific objective “Identify the different perspectives of 

reconstruction of low-sampling trajectories” from the route planning theory. 
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CHAPTER 3. LOW – SAMPLING TRAJECTORY 

RECONSTRUCTION USING CRITERIA BASED ROUTING OVER A 

GRAPH 

 

3.1 INTRODUCTION 

 

Due to the fast development of technologies and mobile applications, the need of analyzing the huge 

amount of geo-location data recorded regarding moving objects (MO) has arisen. For example, users 

in mobile social networks such as Foursquare and Flickr use the options of checking-in and sharing 

geo-tagged photos to indicate their location. However, usually it is not possible to get detailed data 

about the movement of a user due to privacy issues [64], energy saving, or simply because people 

do not share the position (make check-in) in every place where they are or do not take a geo-tagged 

photo every second. Each of these situations deals with movement uncertainty.  

As a consequence, source (raw) trajectory data have a lot of uncertainty because data are not very 

accurate since there are missing data during the silent durations, i.e., the time durations when no data 

are available to describe the movement of an object [10]. Thus, the trajectory between two 

consecutive data records is uncertain. As a result, the following are some possible questions to be 

addressed: How does a MO moved during a silent duration? How well do the current methods 

describe the real trajectory of a MO? Is a MO moving according to a certain criterion? 

Previous works have focused on trajectory history (a trajectory dataset of the same MO [34] or GPS 

historical data provided by several MOs [35]) as a way of inferring the routes or the movement 

patterns based on the density of the data. For trajectory reconstruction (i.e., the imputation process 

for silent durations) some authors [7], [72] use an uncertainty reinforcement approach (i.e., uncertain 

+ uncertain → certain). However, these approaches may be inadequate if the silent durations in the 

trajectories of a same MO are relatively large and recurrent (i.e., there are recurrent trajectory 

segments where no data are present). 

 

The management of uncertainty for low-sampling data is a hard task to tackle. To facilitate this task, 

the trajectory reconstruction can rely on user preferences (a criterion) such as (minimize) distance 

or (visit) touristic places to try to fill those silent durations. As expressed in the Chapter 2 of the 

state-of-art review, the request for a route to travel from one place to another in the route finding 

problem (RFP) is akin to the one of finding a trajectory between low-sampled points. The claim of 

this thesis is that the movement of an object based on user preferences would generate some clues 
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which may help in the trajectory reconstruction [10]. To the best of our knowledge, user preferences 

have not considered in the low sampling rate trajectory reconstruction problem. 

 

The problem of trajectory reconstruction is usually addressed from describing the trajectory by a set 

of GPS points temporally ordered [26], [34]. However, most route planners do not consider the time 

dimension, i.e., they generate a sequence of geo-referenced data points without timestamps.  

 

The trajectories considered here are network-constrained, i.e., it is assumed that the movements of 

the objects are restricted to the road networks (RN) of the cities. Thus, the trajectory reconstruction 

between two consecutive check-in records is limited to the geometry of the streets. This reduces the 

search space and the reconstruction possibilities according to a certain criterion in favor of reduction 

of trajectory uncertainty because the MO cannot move further than the network (streets) limits. 

 

The route among check-in data of a trajectory is built by filling in the check-in order sequence (which 

represents the raw trajectory) with additional geo-referenced data points and timestamps. To help in 

this task, a graph, inferred from the RN is built, where the vertices save geo-related information and 

the edges describe the cost for reaching two vertices [29]. The routing algorithms rely on this 

representation to build the trajectory between two points to facilitate computational efficiency. This 

representation is used for the imputation process.  

 

The rest of this chapter is organized as follows. Section 3.2 describes the trajectories model 

representation followed in this proposal. Section 3.3 discusses the reconstruction of trajectories using 

a formal approach. Section 3.4 describes the proposed function and the algorithm used for 

reconstructing trajectories giving an application example and comparing results with the original 

datasets. Section 3.5 concludes the chapter establishing the operator possibilities and proposing 

future works, one of them addressed in the following chapter. 
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3.2 A REPRESENTATION FOR TRAJECTORIES 

 

Several models for trajectories have been proposed in the literature [3], [26], [34]. Most of them 

(except for [3]) agree in the representation of a trajectory as a set of geo-referenced points temporally 

ordered. 

 

According to [26], a trajectory is a pair 𝑇𝑖 = (IDi, Li) where IDi is the unique identification of the MO 

and Li is a sequence of M observations = {Li
1, Li

2, … , Li
M}. Each observation Li

j
=  (xi

j
, yi

j
, ti

j
) 

represents the presence of an object at location (xi
j
, yi

j
) where xi

j
, yi

j
ℝ, and at time ti

j
  𝕋, where 𝕋 

is a set of time points. The sequence of observations Li is temporally ordered, i.e., ti
j

< ti
j+1

. A 

sampling of 2D trajectories is defined as TS = {𝑇𝑖}. Note that Li 2𝐿, where L is the set of all 

possible observations. 

 

3.3 ADDING TRAJECTORIES CHARACTERISTICS TO ROUTES – A 

FORMAL APPROACH 

 

 

HELP: First, the way some index notations are used is shown:  

Index i is used to identify a given moving object IDi until n moving objects. 

Index j is used to identify the sequence of observations of a given moving object IDi until m 

observations. 

Index k is used to identify the sequence of vertices obtained from certain criterion c until p vertices. 

Index l is used to identify una determinada criterio 𝐶𝑙 va hasta q criterios. 

 

Given a trajectory 𝑇𝑖 of a MO where some points may be separated spatially or temporally in such a 

way that they exceed a given application threshold, our goal is to infer the sub-trajectories based on 

a set of reconstruction criteria from the personalized route planning theory, which in turn, is based 

on graph theory, i.e., we use a set of criteria widely studied in the literature [11], [13], [16] such as 

time and distance to reconstruct trajectories using graph modelling. Those criteria are represented 

by the set Cset. 
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Consider the network-constrained trajectories (TS, Ga), where TS is a set of trajectories and Ga ∈

 G (G is the set of graphs) is a directed and labeled graph representing the underlying constrained 

RN where the set of trajectories is constrained. The graph Ga is a two-tuple Ga = (V, E), where V is 

a set of vertices {𝑣𝑖} and E is a set of edges {𝑒𝑘} (representing the segments of the streets). An edge 

𝑒𝑘 has a source vertex (the initial part of an edge), which is denoted by 𝑣𝑘,𝑠, a target vertex (the end 

part of an edge) denoted by 𝑣𝑘,𝑡 (the edge 𝑒𝑘 is traversed from the 𝑣𝑘,𝑠 to the 𝑣𝑘,𝑡, but not the other 

way around), and an associated cost for traversing it denoted by 𝑐𝑘  ℝ, i.e., an edge is a tuple 𝑒𝑘  =

 (𝑣𝑘,𝑠, 𝑣𝑘,𝑡 , 𝑐𝑘). Each vertex v  V can be described by a location x, y (longitude, latitude). Note that 

we consider the graph Ga, which is derived from a RN, to be fully connected and without any isolated 

network segments.  

 

Consider the following functions:  

 

𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒: E →  V. Function applied to an edge to get its source vertex.  

𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡: E →  V. Function applied to an edge to get its target vertex. 

𝑔𝑒𝑡_𝑐𝑜𝑠𝑡: E → ℝ . Function applied to an edge to get the cost of traversing the edge. 

𝑔𝑒𝑡_𝑥: V →  X. Function applied to a vertex to get its longitude. 

𝑔𝑒𝑡_𝑦: V →  Y. Function applied to a vertex to get its latitude. 

In Figure 3.1, some of these functions are illustrated. 

 

Figure 3.1. Some components of a RN 

 

𝑒𝑘 

get_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘) 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘) 

(𝑔𝑒𝑡_𝑥(𝑣𝑘,𝑠), 𝑔𝑒𝑡_𝑦(𝑣𝑘,𝑠)) (𝑔𝑒𝑡_𝑥(𝑣𝑘,𝑡), 𝑔𝑒𝑡_𝑦(𝑣𝑘,𝑡)) 

=  𝑣𝑘,𝑠 =  𝑣𝑘,𝑡 

street segment 
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The function 𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: L X L X Cset →  ℝ receives a pair of consecutive observations and a c 

criterion movements and generates the road distance between them according to the given criterion. 

The road distance refers to the distance of a particular path followed by a MO between two 

observations. In this case, it depends on the underlying RN and on the c criterion preferred by the 

MO (i.e., the user); therefore, the road distance may change varies when the criterion of movement 

change. Figure 3.2 shows the possible roads (depicted in solid lines) between observations A and B 

according to some criterion. The c1 criterion used in the road drawn in green line has the lowest road 

distance, followed by the road distance from the road drawn in blue line using the c2 criterion. Finally, 

the road distance is the longest when the c3 criterion is preferred: 𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵, 𝑐1) ≤

 𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵, 𝑐2) ≤  𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵, 𝑐3). Note how the distance between these 

observations changes according to the movement criterion and the RN that were used. And also that 

the Euclidean distance, depicted in a dashed line, does not correspond to the road distance in any of 

the three cases. 

 

 

Figure 3.2. The concept of road distance according to different criteria vs the Euclidean distance 

between two observations A and B 

𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵, 𝑐1) ≤  𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵, 𝑐2) ≤  𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵, 𝑐3) 
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We regard the trajectory 𝑇𝑖 as low-sampled if ∃𝑗, 1  𝑗  M, (𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (Li
j
, Li

j+1
, 𝑐) ≥

 β ⋀  ti
j+1

− ti
j

≥ τ) , i.e., the road distance according to a c criterion between two consecutive 

observations is greater than β (a distance threshold) and their time difference (ti
j+1

−  ti
j
) is greater 

than τ (a user time threshold).  

 

We consider the 𝑡𝑟𝑎𝑗(𝐿𝑖, c) function where Li 2𝐿, is the sequence of M observations of a trajectory 

𝑇𝑖 and c ∈ 𝐶𝑠𝑒𝑡 is a reconstruction criterion. The result of the 𝑡𝑟𝑎𝑗 function is a more detailed 

sequence of observations 𝐿′𝑖  so that the thresholds β and τ are met j, 1  j < M. The idea behind the 

trajectory reconstruction function is to fill in the trajectory with inferred observations between Li
j
 

and Li
j+1

 (j, 1  j < M, where both thresholds β and τ are not met) considering the criterion c ∈

𝐶𝑠𝑒𝑡. Next, we explain the effect of the traj function over a pair of observations Li
j
 and Li

j+1
 (where 

thresholds β and τ are not met) to show how the sequence of low sampling data is filled in (imputation 

process). Note that when a section of a trajectory is not considered low sampling, the imputation 

process adds this section to the whole reconstructed trajectory without imputing additional 

observations. 

As presented by [95] for the correct (cleaned) network-constrained trajectory datasets, given any of 

its spatio-temporal observations (xi
j
, yi

j
, ti

j
), its location (xi

j
, yi

j
) should be over a road edge  E (set 

of edges of Ga). Consider two sampled consecutive observations Li
j
 and Li

j+1
 where the thresholds β 

and τ are not met. Each observation is associated with the nearest edge in a road map (represented 

by a graph Ga) using the 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒 function, i.e., 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗
, 𝐺𝑎) and 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖

𝑗+1
, 𝐺𝑎). The 

signature of the 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒 function is L X G →  E . Here, the nearest edge in the graph Ga = (V, E) 

is the output of the 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒 function. Therefore, a point (xi
j
, yi

j
, ti

j
) that is not over an edge  E is 

replaced by a point (x′i
j
, y′i

j
, ti

j
) where (x′i

j
, y′i

j
) is over an edge of E, see Figure 3.3. 
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Figure 3.3. Edges where 𝐿𝑖
𝑗
 and 𝐿𝑖

𝑗+1
 fit better 

That is, when we consider raw trajectories with a RN, each point is mapped over a road segment by 

searching for its closest road segment. For this reason, and following the approach of [95], the 

minimum distance between Li
j
 and a road segment 𝑒𝑘 is computed as follows.  

 

Equation 3.1. Minimum distance between 𝐿𝑖
𝑗
 and a road segment 𝑒𝑘 

 

𝑑(Li
j
, 𝑒𝑘) =  {

𝑑(Li
j
, 𝑒𝑘) 𝑖𝑓 L′

i
j
 ∈  𝑒𝑘 

𝑚𝑖𝑛 {𝑑 (Li
j
, 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘)) , 𝑑 (Li

j
, 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘))}  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Where L′
i
j
 is the projection of Li

j
 over 𝑒𝑘 and 𝑑(Li

j
, 𝑒𝑘) is the perpendicular distance between 

Li
j
 and 𝑒𝑘, and 𝑑 (Li

j
, 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘)) and 𝑑 (Li

j
, 𝑔𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘)) are the 

Euclidean distance between Li
j
 and the source/target vertex of 𝑒𝑘. Note that the d function 

is overloaded with the signatures L X E → ℝ and L X V → ℝ. The 𝑒𝑘 segment, which has the 

minimum distance 𝑑(Li
j
, 𝑒𝑘) among all the RN segments is where the point Li

j
is mapped. 

That is, 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗
, 𝐺𝑎) = 𝑒𝑘. The main reason of the outcome of the 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒 function 

is being used as an input of a routing algorithm applied over the RN 𝐺𝑎 as a tool for the 

imputation process. 

 

 

 

 

Li
j
 

Li
j+1

 

𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗
, 𝐺𝑎) 

𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗+1

, 𝐺𝑎) 

L′i
j 

L′i
j+1 
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3.3.1 Getting the location point from routing algorithms 

 

Let a and b observations where a = 

(𝑔𝑒𝑡_𝑥 (𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡 (𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗
, 𝐺𝑎))) , 𝑔𝑒𝑡_𝑦 (𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡 (𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖

𝑗
, 𝐺𝑎))) ,

𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝐿𝑖
𝑗
) ) and b = (𝑔𝑒𝑡_𝑥 (𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒 (𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖

𝑗+1
, 𝐺𝑎))) ,

𝑔𝑒𝑡_𝑦 (𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒 (𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗+1

, 𝐺𝑎))) , 𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝐿𝑖
𝑗+1

)), where we use the 

𝑠𝑒𝑡_𝑡𝑖𝑚𝑒: V → 𝕋 function to assign a timestamp to vertices a and b. This function is explained in 

the section 3.3.2.  

Then the traj({𝐿𝑖
𝑗
, 𝐿𝑖

𝑗+1
}, c) function returns a sequence of observations {a, o1, o2, …, op, b} 

describing the route between 𝐿𝑖
𝑗
 and 𝐿𝑖

𝑗+1
 according to a c criterion, see Figure 3.4. Note that the 

sequence of observations is inferred from the application of a routing algorithm over the Ga Graph 

between its edges 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗
, 𝐺𝑎) and 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖

𝑗+1
, 𝐺𝑎). 

 

Figure 3.4. Imputed observations between the observations a and b 

 

 

In this way, the (sub)trajectory obtained between Li
j
 and Li

j+1
 according to a criterion c ∈ 𝐶𝑠𝑒𝑡 can 

be described as: 

 

 

 

 

 

 

… 

o
1
 o

2
 o

p
 a b 

Imputed observations 

𝐿𝑖

𝑗
 𝐿𝑖

𝑗+1
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Equation 3.2. Computation of the (sub)trajectory between 𝐿𝑖
𝑗
 and 𝐿𝑖

𝑗+1
 

𝑡𝑟𝑎𝑗({𝐿𝑖
𝑗
, 𝐿𝑖

𝑗+1
}, 𝑐) = {𝐿𝑖

𝑗
, 

((𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒1)), 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒1)), 𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒1))), …, 

((𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)), 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)), 𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘))), …, 

((𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑝−1)), 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑝−1)), 𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑝−1))),

 𝐿𝑖
𝑗+1

}  

 

The 𝑡𝑟𝑎𝑗({𝐿𝑖
𝑗
, 𝐿𝑖

𝑗+1
}, 𝑐) can be overwritten using 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘) = 

𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘+1). According to the RN mapping defined by [29] the end vertex of an edge 

𝑒𝑘 is the initial vertex of the edge 𝑒𝑘+1, see Figure 3.5. Therefore, 𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)) 

= 𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘+1)) and 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘))  =

 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘+1)). Note that 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗
, 𝐺)  =  𝑒1 and 

𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗+1

, 𝐺𝑎)  =  𝑒𝑝. 

 

 
Figure 3.5. The end vertex of an edge 𝑒𝑘is the initial vertex of the edge 𝑒𝑘+1 

 

For each imputed observation used for reconstruct the trajectory between 𝐿𝑖
𝑗
 and 𝐿𝑖

𝑗+1
 a timestamp 

must be inferred. For this goal, we define the 𝑠𝑒𝑡_𝑡𝑖𝑚𝑒 function. 

 

3.3.2 Getting the timestamps from routing algorithms 

 

To compute the timestamp of each imputed observation of the reconstructed trajectory segment, the 

difference 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒 (Li
j+1

) −  𝑔𝑒𝑡_𝑡𝑖𝑚𝑒 (Li
j
) is to be proportionally assigned to each of them. 

Then, the time-stamp of an imputed point can be computed as follows 

Let: 

𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘) = 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘+1) 

𝑒𝑘 𝑒𝑘+1 

Street 

Edges in the RN represented by Graph Ga 
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𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: E → R. Function applied to an edge to get the road distance of the edge. 

𝐷
𝐿𝑖

𝑗 = The distance from the observation 𝐿𝑖
𝑗
 to 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒 (𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖

𝑗
, 𝐺𝑎))  

𝐷
𝐿𝑖

𝑗+1 = The distance from 𝐿𝑖
𝑗+1

 to 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒 (𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗+1

, 𝐺𝑎)) 

Let: 

 

Equation 3.3. The total distance between two observations 𝐿𝑖
𝑗
 and 𝐿𝑖

𝑗+1
 

𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐿𝑖
𝑗
, 𝐿𝑖

𝑗+1
) = 𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖

𝑗
, 𝐺𝑎)) - 𝐷

𝐿𝑖
𝑗 + ∑  𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒𝑘)

𝑝−1
𝑘=2  + 𝐷

𝐿𝑖
𝑗+1. 

 

Note that the summation begins at k = 2 because we suppose that 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗
, 𝐺)  =  𝑒1 and ends 

at p-1 since 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗+1

, 𝐺𝑎)  =  𝑒𝑝. Both, 𝑒1and 𝑒𝑝 of them are part of the resulting sequence. 

Then, the timestamp of a 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘) vertex is computed as follows: 

 

Equation 3.4. The timestamp of a 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘). 

𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘))  

=  𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(Li
j
)  +  

(∑ 𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒𝑘)
𝑝−1
𝑘=1 )  −  𝐷

𝐿𝑖
𝑗

𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(Li

j
, Li

j+1
)

∗ (𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(Li
j+1

)  −  𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(Li
j
)) 

 

In Figure 3.6, the reconstructed trajectory between two observations Li
j
 and Li

j+1
 is shown using the 

𝑡𝑟𝑎𝑗 function according to a criterion 𝑐.  

 



38.          A Criteria based Function for Reconstructing Low-Sampling Trajectories as a Tool for Analytics  

 

 
Figure 3.6. Inference of time stamp of edge 𝑒𝑘 

 

Example. Let us consider the reconstructed trajectory between the observations 𝐿1
1  and 𝐿1

2 shown in 

the Figure 3.7 where we get the edges 𝑒1, 𝑒2 , 𝑒3, 𝑒4. Let the 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐿1
1) = 02:00:00 and 

𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐿1
2) = 03:00:00, then 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐿1

2) - 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐿1
1) = 1 hour must be proportionally 

divided among the edges. 

 

Let the 𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒1) = 12, 𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒2) = 10, 𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒3) = 10, 

𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒4) = 10, 𝐷𝐿1
1 = 2 , 𝐷𝐿1

2  = 2. Also, note that 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿1
1 , 𝐺) =  𝑒1 

and 𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(L1
1 , L1

2 )  = 40. 

 

For k = 1  

𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒1))  =  𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(L1
1 )  +

𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒1) − 𝐷
𝐿1

1

𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(L1
1,L1

2)
 * (𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐿1

2)  −

 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐿1
1 ) ) =02:00:00 + 

1

4
= 0,25 = 02:15:00 

 

For k = 2 

𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒2))  = 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(L1
1 ) +

𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒1) + 𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒2) − 𝐷
𝐿1

1

𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(L1
1,L1

2)
 * 

(𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐿1
2)  − 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐿1

1 ) ) =02:00:00 + 
2

4
= 02:30:00 

 

 

 

Li
j
 Li

j+1
 

𝑒2 
𝑒𝑝−1 

𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗
, 𝐺𝑎) 

𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗+1

, 𝐺𝑎) 
𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖

𝑗
, 𝐺𝑎)) 

𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗+1

, 𝐺𝑎)) 

𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗+1

, 𝐺𝑎)) 

… 

𝐷
𝐿𝑖

𝑗 
𝐷

𝐿𝑖
𝑗+1 

𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗
, 𝐺𝑎)) 
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For k = 3 

 

𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒3))  = 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(L1
1 ) +

 
𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒1) + 𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒2) + 𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒3) − 𝐷

𝐿1
1

𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(L1
1,L1

2)
 ∗ (𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐿1

2)  −  𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐿1
1 ) ) = 

02:00:00 + 
3

4
= 02:45:00 

 

Figure 3.7. Example of time assignation to a reconstructed (sub)trajectory 

Note that, after the reconstruction, it is possible that the imputed data points do not met the β and τ 

thresholds. In this case, the longitude of the street segments are longer than the β threshold because 

this imputation process stage only gets location points based on the edges of a graph that represents 

the segments of a RN where a MO moves. Additional imputed data points can be gotten using 

interpolation methods between the inferred points, i.e., start and end vertex of an edge. The following 

equations find additional data points over a segment 𝑒𝑘 based on the line equation. 

 

Equation 3.5. Line equation over the segment represented by 𝑒𝑘 

y = 
𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)) − 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘))

𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)) −𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘))
∗ (𝑥 −  𝑔𝑒𝑡_𝑥 (𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)) )  +

 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)) 

 

 

Where get_x and get_y are found slicing the segment 𝑒𝑘 in such a way that A ≤ β ⋀ 

road_distance(Li
j
 , Li

j+1
, 𝑐) ≤ A*β. Where A is the amplitude of the sub segments of 𝑒𝑘. 

 

Equation 3.6. The get_x function slicing of the segment represented by 𝑒𝑘 

xi = 𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘))  +  
𝑑𝑖

𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(L
i
j
,L

i
j+1

,   c)
∗ (𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘))  −

 𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘))) 

 

𝑒1 

𝑒2 𝑒3 

𝑒4 

02:00:00  

 

02:15:00  

𝑒1 

02:30:00  

𝑒1 

02:45:00  

𝑒1 

03:00:00  

𝑒1  𝐿1
1  𝐿1

2  



40.          A Criteria based Function for Reconstructing Low-Sampling Trajectories as a Tool for Analytics  

 

Equation 3.7. The get_y function slicing of the segment represented by 𝑒𝑘 

yi = 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘))  + 
𝑑𝑖

𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(L
i
j
,L

i
j+1

,   c)
∗ (𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘))  −

𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘))) 

 

where di = A* i , 1 ≤ i ≤ N -1. N is the number of intervals so that road_distance(Li
j
,Li

j+1
, c) = N * A 

 

Example. In Figure 3.8, we show an example for finding additional data points for a segment 𝑒𝑘 

where 𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘)) = 3, 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘)) = 1, 

𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)) = 6 , 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)) = 5 

Let β = 1.25, 𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(Li
j
, Li

j+1
, c) = 5, then we choose A = 1.25. Then N = 4. 

 

d1 = 1.25 

 

x1 = 3 + 
1,25

5
 * (6-3) = 3 + 

1.25

5
 * 3 = 3.75 

 y1 = 1 + 
1,25

5
 * (5-1) = 1 + 

1.25

5
 * 4 = 2 

 

d2 = 2.5 

 

x1 = 1 + 
2.5

5
 * (6-3) = 3 + 

2.5

5
 * 3 = 4.5  

 y1 = 1 + 
2.5

5
 * (5-1) = 1 + 

2.5

5
 * 4 = 3 

 

d3 = 3.75 

 

x1 = 1 + 
3.75

5
 * (6-3) = 3 + 

3.75

5
 * 3 = 5.25  

 y1 = 1 + 
3.75

5
 * (5-1) = 1 + 

3.75

5
 * 4 = 4 
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Thus, the set of additional data point between (3, 1) and (6, 5) is {(3.75,2),(4.5,3),(5.25,4)}, see 

Figure 3.8.  

 

The timestamps for each of these points can be found by the proportional assignment of the time 

difference between observations. The results are shown in Figure 3.9, where we suppose that 

𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒(𝑒𝑘))  = 12:00:00 and 𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘))  = 

16:00:00. 

 

Figure 3.8. Additional imputed data points for an edge 𝑒𝑘 

 

 

Figure 3.9. Additional timestamps data points the start and end vertex of a same edge 

 

3.4 IMPLEMENTATION OF THE “TRAJ” FUNCTION 

 

The application of the 𝑡𝑟𝑎𝑗 function, according to a criterion 𝑐, between two observations gives as a 

result a set of points derived from the edges of the resulting reconstructed route. It should be noted 

that the first stage of the imputations process (trajectory reconstruction) uses the RN for finding the 

segments where the trajectory traverses, i.e., a set of vertices. If the location data points found do no 

met the thresholds, the edge depicted between two vertices is used to meet those thresholds as a 

second stage. 

(3,1)  

𝑒1 

(6,5) 

𝑒1 

(3.75,2)  

𝑒1 

(4.5,3)  

𝑒1 

(5.25,3)  

𝑒1 

(3,1)  

𝑒1 

(6,5) 

𝑒1 

(3.75,2)  

𝑒1 

(4.5,3)  

𝑒1 

(5.25,3)  

𝑒1 

12:00:00 

𝑒1 

16:00:00 

𝑒1 

13:00:00 

𝑒1 

14:00:00 

𝑒1 

15:00:00 

𝑒1 
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Given (a) users check-in records describing a set of 2D low-sampling trajectories TS = {Ti} from a 

certain LBS and (b) a user criteria preference 𝑐 we claim that a “good” route should (a) meet the user 

criteria preferences, and (b) returns a more detailed trajectory T’i ∈ TS. Algorithm 1 calls the 

Function 1 (traj) for each pair of observations that make up the trajectory in a determined dataset 

TS. 

 

3.4.1 Algorithm 1: Reconstruction of a Trajectory 

 

 

Algorithm 1: Reconstruction of a Trajectory  

 

INPUT: {TS | ∀ 𝑇𝑖  ∈ TS , ∃ Li
j
, Li

j+1
 | 𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(Li

j
, Li

j+1
, 𝑐) ≥  β ∧ ti

j
− ti

j+1
 ≥ τ } 

𝑐 ∈ Cset 

OUTPUT: {TS ´ | ∀ 𝑇𝑖  ∈ TS ´ | 𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(Li
j
, Li

j+1
, 𝑐) ≥  β′ ∧ ti

j
− ti

j+1
 ≥ τ′∧ β′≤ β ∧ τ′≤ τ} 

TS ´ ← ø 

𝑇𝑖 ′ ← ø 

For each 𝑇𝑖  in TS  

 For each Li
j
 in 𝑇𝑖  

   if 𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(Li
j
, Li

j+1
, 𝑐) ≥  β ∧ ti

j
− ti

j+1
 ≥ τ then 

  𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ← 𝑡𝑟𝑎𝑗({Li
j
, Li

j+1
}, 𝑐) 

Append 𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 to 𝑇𝑖′ 
else  

Append {Li
j
, Li

j+1
} to 𝑇𝑖 ′ 

Next  Li
j
 

  end 
End 

Append 𝑇′𝑖  to TS ´ 

End 

Return TS ´ 
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3.4.2 Function 1: “traj” function for imputation data between two observations of a 

trajectory 
 

Function 1: traj: Function for imputation data between two observations of a trajectory 

 

INPUT: { Li
j
, Li

j+1
 | 𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(Li

j
, Li

j+1
, 𝑐) ≥  β ∧ ti

j
− ti

j+1
 ≥ τ } 

 𝑐 ∈ Cset 

OUTPUT: {Li
j
, Li

j+1
 | 𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(Li

j
, Li

j+1
, 𝑐) ≥  β′ ∧ ti

j
− ti

j+1
 ≥ τ′∧ β′< β ∧ τ′< τ} 

// To apply a routing algorithm according to c criterion between 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗
, 𝐺𝑎) and 

𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐿𝑖
𝑗+1

, 𝐺𝑎) 

For each 𝑒𝑘 

 

// Use set_time function for setting the time to each vertex resulting from the routing algorithm  
Ok ← ((𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)), 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)), 𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘))) 

 

If 𝑟𝑜𝑎𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂𝑘 , 𝑂𝑘+1, 𝑐) ≥  β ∧ 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝑂𝑘+1) − 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝑂𝑘)  ≥ τ then 
 // interpolate between 𝑂𝑘 and 𝑂𝑘+1 

Use the equation 3.6 and equation 3.7 

end 
 
Trajectory ←  

{Li
j
, ((𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒1)), 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒1)), 𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒1))), …, 

((𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)), 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘)), 𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑘))), …, 

((𝑔𝑒𝑡_𝑥(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑝−1)), 𝑔𝑒𝑡_𝑦(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑝−1)), 𝑠𝑒𝑡_𝑡𝑖𝑚𝑒(𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑒𝑝−1))) , Li
j+1

} 

 

end 
Return Trajectory 

 

Example. To explain how the traj function works, let us consider a set of check-in data describing 

a trajectory of a particular user as shown in Table 3.1 and the RN of the city of Medellín, Colombia 

(described by the graph Ga) shown in Figure 3.10. We also get the nearest edges 

_𝑒𝑑𝑔𝑒(𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐴, 𝐺𝑎) , 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐵, 𝐺𝑎) and 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝑐ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐶, 𝐺𝑎), for 

each check-in. Those road segments are depicted in solid lines in Figure 3.10: 

 

User Data point POI name (x,y,t) 

15307763 Check-in A Shop (-75.562555,6.249437,20140809134345) 

15307763 Check-in B Restaurant (-75.576790,6.244406;20140809145517) 

15307763 Check-in C Shop  (-75.591672,6.257514,20140809173745) 

Table 3.1. Check – in data of a particular user. 
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Figure 3.10. Portion of the city of Medellín, Colombia. 

 

Next, the change of the imputed data of the reconstructed trajectories is shown when the criterion 

changes. Let β less than the actual road distance between each pair of check-in and τ less than the 

actual difference between time check-ins. The Distance, Time, and Touristic criteria are used: 

 

Imputed trajectory using the Distance criterion 

 

From Check-in A to Check-in B, the (sub)trajectory is computed using the traj function 

𝑡𝑟𝑎𝑗({𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐴 , 𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐵}, 𝑐) with c = Distance. The A * algorithm is used to find the 

imputed location data between 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐴, 𝐺𝑎)) and 

𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐵, 𝐺𝑎)) using the 𝑔𝑒𝑡_𝑥 and 𝑔𝑒𝑡_𝑦 functions. At the 

same time, the timestamps for those location data were set using the 𝑠𝑒𝑡_𝑡𝑖𝑚𝑒 function and assigning 

proportionally the difference 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐵)  −  𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐴). A partial 

result of the imputed observations is listed in Table 3.2. The first part of the trajectory can be seen 

in Figure 3.11. 
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User ((𝒈𝒆𝒕_𝒙(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌)), 𝒈𝒆𝒕_𝒚(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌)), 𝒔𝒆𝒕_𝒕𝒊𝒎𝒆(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌))) 

User 1 (-75.5625555,6.2494373,20140809134345) 

User 1 (-75.5620212,6.2491409,20140809134656) 

User 1 (-75.5629924,6.2496343,20140809134717) 

User 1 (-75.5635239,6.2488592,20140809135054) 

User 1 (-75.5620212,6.2491409,20140809134717) 

User 1 … 

User 1 (-75.5754726,6.2450224,20140809144727) 

User 1 (-75.5759484,6.2450904,20140809144748) 

User 1 (-75.5760523,6.2451252,20140809144748) 

User 1 (-75.5767275,6.2437119,20140809145314) 

User 1 (-75.576790,6.244406,20140809145517) 

Table 3.2. Imputed observations using the Distance criterion between Check-in A to Check-in B. 

 
Figure 3.11. Reconstructed Trajectory between Check-in A and Check-in B using Distance 

criterion from the user 1. 

Next, the sub(trajectory) from Check-in B to Check-in C is computed using 𝑡𝑟𝑎𝑗({𝐶ℎ𝑒𝑐𝑘 −

𝑖𝑛 𝐵, 𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐶}, 𝑐) with c = Distance. A partial result of the imputed observations of this 

trajectory section is listed in Table 3.3. The last part of the imputed trajectory can be seen in Figure 

3.12.  

 

 

 

 

 



46.          A Criteria based Function for Reconstructing Low-Sampling Trajectories as a Tool for Analytics  

 

User ((𝒈𝒆𝒕_𝒙(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌)), 𝒈𝒆𝒕_𝒚(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌)), 𝒔𝒆𝒕_𝒕𝒊𝒎𝒆(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌))) 

User 1 (-75.576790,6.244406,20140809145517) 

User 1 (-75.5767275,6.2437119,20140809150356) 

User 1 (-75.5776115,6.244002,20140809150903) 

User 1 (-75.5777403,6.2440447,20140809150948) 

User 1 (-75.5783803,6.2442404,20140809151329) 

User 1 … 

User 1 (-75.5924922,6.2564856,20140809172702) 

User 1 (-75.5925836,6.2566938,20140809172817) 

User 1 (-75.5921396,6.2577242,20140809173431) 

User 1 (-75.5916435,6.2574905,20140809173732) 

User 1 (-75.591672,6.257514,20140809173745) 

Table 3.3. Imputed observations using the Distance criterion between Check-in B to Check-in C. 

 
Figure 3.12. Reconstructed Trajectory between Check-in B and Check-in C using Distance 

criterion from the user 1. 

The whole reconstructed trajectory using the Distance criterion is shown in Figure 3.13. 
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Figure 3.13. Reconstructed Trajectory using Distance Criteria from the user 1 

 

Imputed trajectory using the Time criterion 

 

Now, the criterion c = Time is set. The (sub)trajectory from Check-in A to Check-in B is computed 

using the traj function 𝑡𝑟𝑎𝑗({𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐴 , 𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐵}, 𝑐). The Dijkstra's algorithm is used to 

find the imputed location data between 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐴, 𝐺𝑎)) and 

𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡(𝑔𝑒𝑡_𝑒𝑑𝑔𝑒(𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐵, 𝐺𝑎)) using the 𝑔𝑒𝑡_𝑥 and 𝑔𝑒𝑡_𝑦 functions. The 

difference 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐵)  −  𝑔𝑒𝑡_𝑡𝑖𝑚𝑒(𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐴) was proportionally assigned 

using the 𝑠𝑒𝑡_𝑡𝑖𝑚𝑒 function. A partial result of the imputed observations is listed in Table 3.4. This 

first part of the imputed trajectory can be seen in Figure 3.14. 

 

User ((𝒈𝒆𝒕_𝒙(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌)), 𝒈𝒆𝒕_𝒚(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌)), 𝒔𝒆𝒕_𝒕𝒊𝒎𝒆(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌))) 

User 1 (-75.5625555,6.2494373,20140809134345) 

User 1 (-75.5620212,6.2491409,20140809134656) 

User 1 (-75.5623187,6.2483562,20140809134924) 

User 1 (-75.5623576,6.2482814,20140809134939) 

User 1 (-75.5635619,6.2487949,20140809135331) 

User 1 … 

User 1 (-75.5754726,6.2450224,20140809144819) 

User 1 (-75.5759484,6.2450904,20140809144838) 

User 1 (-75.5760523,6.2451252,20140809144838) 

User 1 (-75.5767275,6.2437119,20140809145314) 

User 1 (-75.5767905,6.2444064,20140809145517) 

Table 3.4. Inferred observations using the Time criterion between Check-in A to Check-in B. 
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Figure 3.14. Reconstructed Trajectory between Check-in A and Check-in B. using the Time 

criterion from the user 1. 

 

Next, from Check-in B to Check-in C the (sub)trajectory is computed using 𝑡𝑟𝑎𝑗({𝐶ℎ𝑒𝑐𝑘 −

𝑖𝑛 𝐵, 𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐶}, 𝑐) with c = Time. A partial result of the imputed observations of this trajectory 

section is listed in Table 3.5. The last part of the imputed trajectory can be seen in Figure 3.15.  

 

User ((𝒈𝒆𝒕_𝒙(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌)), 𝒈𝒆𝒕_𝒚(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌)), 𝒔𝒆𝒕_𝒕𝒊𝒎𝒆(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌))) 

User 1 (-75.5767905,6.2444064,20140809145517) 

User 1 (-75.5767275,6.2437119,20140809150317) 

User 1 (-75.5776115,6.244002,20140809150801) 

User 1 (-75.5777403,6.2440447,20140809150843) 

User 1 (-75.5783803,6.2442404,20140809151207) 

User 1 … 

User 1 (-75.5924922,6.2564856,20140809172750) 

User 1 (-75.5925836,6.2566938,20140809172900) 

User 1 (-75.5921396,6.2577242,20140809173445) 

User 1 (-75.5916435,6.2574905,20140809173733) 

User 1 (-75.5916722,6.2575147,20140809173745) 

Table 3.5. Inferred observations using the Time criterion between Check-in B to Check-in C. 
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Figure 3.15. Reconstructed Trajectory between Check-in B and Check-in C. using the Time 

criterion from the user 1. 

 

The whole reconstructed trajectory using the Time criterion is shown in Figure 3.16. 
 

 
Figure 3.16. Reconstructed Trajectory using the Time criterion from the user 1. 
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Imputed trajectory using the Touristic criterion 

 

Again, the criterion to c = Touristic is set. The (sub)trajectory from Check-in A to Check-in B is 

computed using 𝑡𝑟𝑎𝑗({𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐴 , 𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐵}, 𝑐). A partial result of the imputed 

observations is listed in Table 3.6. This first part of the imputed trajectory can be seen in Figure 

3.17. 

 

User ((𝒈𝒆𝒕_𝒙(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌)), 𝒈𝒆𝒕_𝒚(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌)), 𝒔𝒆𝒕_𝒕𝒊𝒎𝒆(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌))) 

User 1 (-75.5625555,6.2494373,20140809134345) 

User 1 (-75.5620212,6.2491409,20140809134717) 

User 1 (-75.5629924,6.2496343,20140809134717) 

User 1 (-75.5635239,6.2488592,20140809135050) 

User 1 (-75.5620212,6.2491409,20140809135050) 

User 1 … 

User 1 (-75.5760523,6.2451252,20140809144731) 

User 1 (-75.5759484,6.2450904,20140809144753) 

User 1 (-75.5760523,6.2451252,20140809144753) 

User 1 (-75.5767275,6.2437119,20140809145300) 

User 1 (-75.5767905,6.2444064,20140809145517) 

Table 3.6. Imputed observations using the Touristic criterion between Check-in A to Check-in B. 

 

 
Figure 3.17. Reconstructed Trajectory between Check-in A and Check-in B using the Touristic 

criterion from the user 1. 
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Next, the (sub)trajectory from Check-in B to Check-in C is computed using 𝑡𝑟𝑎𝑗({𝐶ℎ𝑒𝑐𝑘 −

𝑖𝑛 𝐵, 𝐶ℎ𝑒𝑐𝑘 − 𝑖𝑛 𝐶}, 𝑐) with c = Touristic. A partial result of the imputed observations of this 

trajectory section is listed in Table 3.7. The last part of the imputed trajectory can be seen in Figure 

3.18.  

 

User ((𝒈𝒆𝒕_𝒙(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌)), 𝒈𝒆𝒕_𝒚(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌)), 𝒔𝒆𝒕_𝒕𝒊𝒎𝒆(𝒈𝒆𝒕_𝒗𝒆𝒓𝒕𝒆𝒙_𝒔𝒐𝒖𝒓𝒄𝒆(𝒆𝒌))) 

User 1 (-75.5767905,6.2444064,20140809145517) 

User 1 (-75.5767275,6.2437119,20140809150344) 

User 1 (-75.5760523,6.2451252,20140809150344) 

User 1 (-75.5767275,6.2437119,20140809151211) 

User 1 (-75.5758606,6.2456828,20140809151211) 

User 1 … 

User 1 (-75.5924922,6.2564856,20140809172717) 

User 1 (-75.5925836,6.2566938,20140809172830) 

User 1 (-75.5921396,6.2577242,20140809173435) 

User 1 (-75.5916435,6.2574905,20140809173732) 

User 1 (-75.5916722,6.2575147,20140809173745) 

Table 3.7. Inferred observations using the Touristic criterion between Check-in B to Check-in C. 

 
Figure 3.18. Reconstructed Trajectory between Check-in B and Check-in C. using the Touristic 

criterion from the user 1. 

The whole reconstructed trajectory using the Touristic criterion is shown in Figure 3.19. 

 



52.          A Criteria based Function for Reconstructing Low-Sampling Trajectories as a Tool for Analytics  

 

 
Figure 3.19. Reconstructed Trajectory using the Touristic criterion from the user 1. 

 

Note that the reconstruction changes when a RN and a set of criteria are considered. Other 

(sub)trajectories described by others imputed observations can be found if other criteria are used. 

Now, the original trajectory registered by this user in the city of Medellín is presented, see Figure 

3.20. It differs slightly in some segments streets from the imputed ones. 

 

 
Figure 3.20. Original Trajectory for user 1. 

Measuring and comparing the resulting reconstructed trajectories using different criteria with the 

original one 
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There are many approaches for measuring the similarity between trajectories in the literature review 

[96], [97], [10]. A similar approach proposed by [96] is followed: 

 

Two trajectories T1 and T2 are spatio-temporally similar, iff a) Trajectories T1 and T2 have the same 

temporal granularity, and the trajectories are spatially similar, i.e., 𝑆𝐼𝑀𝑃𝑂𝐼(𝑇1, 𝑇2, 𝜃) <  𝜃 , where 

𝑆𝐼𝑀𝑃𝑂𝐼(𝑇1, 𝑇2, 𝜃) =  
𝑃𝑂𝐼𝑇1  ∩ 𝑃𝑂𝐼𝑇2  

𝑃𝑂𝐼𝑇1  ∪ 𝑃𝑂𝐼𝑇2

 is the a spatial similarity measure, 𝜃 is a threshold to consider a 

trajectory spatially similar with other and that the POI regards to important roads or places. 

 

The reconstructed trajectories have the same temporal granularity according to [96] because they 

have similar time stamp assignment according to the method proposed here, in which the timestamps 

are assigned proportionally. We consider the POIs as the road segments that a trajectory traverses. 

The 𝑆𝐼𝑀𝑃𝑂𝐼 is computed for the reconstructed trajectories, and then compared with the original one, 

see Figure 3.21. Note that the user 1 tends to move using the Touristic criterion instead of the criteria 

generally provided by common route planners (the shortest distance). 

 
Figure 3.21. The similarity measure between the inferred trajectories and the original one for the 

user 1. 
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Next, the computation of the 𝑆𝐼𝑀𝑃𝑂𝐼 measure for 80 highly sample rate trajectories in the city of 

Medellín, Colombia is carried out. The check-in data were simulated (time and location data were 

deleted) for those trajectories to get low sampled trajectories and the (sub)trajectories were computed 

based on some criteria using the traj function between the simulated check-ins, see Figure 3.22. 

Note how the average 𝑆𝐼𝑀𝑃𝑂𝐼 is higher when the Distance criterion is used followed by the Touristic 

criterion, i.e., the best imputation process for this 80 trajectories can be achieved when some of these 

criteria are used. However, remember that the purpose of the trajectory reconstruction proposed here 

is to discover the new possibilities of reconstruction as an imputation process to infer the original 

trajectories. The trajectory reconstruction procedure takes place in order to transform low sampled 

location data into trajectories with a better sampling so that we can acquire some useful knowledge. 

In this case, based on reconstruction criteria. 

 
Figure 3.22. The average similarity measure between the reconstructed trajectories and the 

original ones for a set of 80 users. 
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3.5 CONCLUSION AND FUTURE WORK 

 

Valuable information can be extracted from trajectories. It can be useful for location-based services 

applications including trip planning, personalized navigation routing services, mobile commerce, 

and location-based recommendation services. In this chapter, low-sampling trajectories were 

reconstructed using the personalization features of the routing theory based on a criterion decision 

over a graph. Using the traj function with different criteria can be used as an input for different 

mining algorithms over trajectories as a way to deal with analytics using uncertain trajectories. Here, 

it is claimed that analytics over reconstructed trajectories can change depending on the criterion used 

for the trajectory reconstruction. Also, this criteria based reconstruction can be used to perform 

analytical tasks and offer the possibility of answers questions based on user criteria, such as: 

 

 How the presence measure (the number of distinct trajectories that lie in a spatial region) [26] 

varies according to the reconstruction criterion selected?  

 How do regions of interest [98] vary according to a chosen reconstruction criterion during a 

determined time? 

 What are the main bottlenecks in the city in a determined time according to a certain 

reconstruction criterion of movement? 

 What would be the fuel consumption of movement if the people moved according to a certain 

criterion in a determined period? 

 

The main contributions of this chapter are: 

 

 The development of a method of reconstructing low-sampling trajectories according to user 

criteria. 

 The modeling of the incorporation of user criteria for the reconstruction of low-sampling 

trajectories. 

 The reconstruction process can be used in an imputation process [99] over low-sampling 

trajectory data. 

 This chapter develops the specific objective “Develop a user criteria based operator for the 

reconstruction of a low-sampling trajectory” using the traj function. 
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CHAPTER 4. USING CRITERIA RECONSTRUCTION OF LOW-

SAMPLING TRAJECTORIES AS A TOOL FOR ANALYTICS 

 

4.1 INTRODUCTION 

 

Today, a lot of applications with incorporated Geo Positional Systems (GPS) deliver huge quantities 

of spatio-temporal data. Trajectories followed by MOs can be generated from this data. However, 

these trajectories may have silent durations, i.e., time durations when no data are available for 

describing the route of a MO [10]. As a result, the movement during silent durations must be 

described and the low sampling data trajectory need to be filled in using specialized techniques of 

data imputation to study and discover new knowledge based on movement. 

 

A novel and relevant task when MOs are analyzed is the characterization of trajectories based on 

some criteria and the geographical space where they occur. In [11], the authors offer a brief 

taxonomy to build the “best” trajectory based on criteria like shortest distance, time, point of interest 

(POI) and simplicity of the road network (RN). Multiple options regarding to the user decision 

strategies must be also integrated [16]. The problem of route reconstruction using a set of metrics 

different from distance is still an open research issue [12] and requires the adaptation of new 

customized metrics, and possibly combinations of them, for reconstructing the trajectories.  

 

In Chapter 3, we proposed a function called “traj” for reconstructing low-sampling trajectories based 

on user criteria. An imputation process is carried out for handling uncertainty for trajectories 

followed by a set of MO in a RN. The function is defined using an explicit criterion parameter that 

describes the intention of the movement with metrics. The inclusion of the movement criteria in the 

analysis of trajectories is an important contribution. It will be even greater when uncertainty 

trajectory data is reconstructed and analyzed as a whole for studying and discovering knowledge. In 

this chapter, we propose several analytics possibilities using several tools of analysis such as: 

graphics and data warehouse (DW). 

As expressed by [5], the movement expressed by trajectories themselves are not always the main 

focus of analysis. The trajectories can be analyzed with the aim of gain knowledge about MO or 

about the environment where trajectories take place, e.g., the RN. For this reason, some measures 

are explored and some questions are sketched out to show their variation and results according to a 

given criterion using tools such as DW techniques. Basic properties of the trajectories such as 

travelled distance, travel time including fuel consumption (if the trajectories under consideration are 
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done by vehicles) can be object of analysis. Our interest is to show other opportunities of analytical 

tasks using a criteria based operator over reconstructed low-sampling trajectories. Also, a simple 

visual analysis of the reconstructed trajectories is done to offer a simple analytic perspective of the 

reconstruction and how the criterion of movement can change the analysis. To the best of our 

knowledge, this work is the first attempt to use the different reconstruction of trajectories criteria to 

identify the opportunities of analytical tasks over reconstructed low-sampling trajectories as a whole. 

Although in Chapter 3 uncertainty is handled using the criteria based method for reconstructing 

trajectories, analytical tasks are not applied to these reconstructed trajectories. As expressed in 

previous chapters, the ultimate objective of reconstructing trajectories is to perform better analysis 

tasks over trajectories. DW approaches might be used to deal with these tasks. Elements such as 

hierarchies and aggregations, and techniques such as mining and visualization have been adapted to 

the spatiotemporal data to support such analysis into a new concept called Spatio-Temporal Data 

Warehouse (STDW) [24]. One step further from modeling a STDW is related to the integration of 

the movement described by a MO, i.e., trajectories, in a trajectory data warehouse (TDW) [26], [27], 

[87]. 

Because of the DW based on spatiotemporal data still lacks of analytical tasks [10], [27] we extend 

the approach proposed in Chapter 3 for analytic tasks to determine how analysis changes when the 

movement criterion is incorporated in the reconstruction of low-sampling trajectories. 

 

The rest of this chapter is organized as follows. Section 4.2 describes the analytical proposal 

including visualization in Section 4.2.1 and analysis tasks in a DW architecture in Section 4.2.2. 

Some analytical question are addressed to show analytical possibilities. Section 4.3 concludes the 

chapter describing the results of the proposed analysis task and proposing future works. 

 

4.2 THE PROPOSAL OF ANALYSIS  

 

The idea behind the trajectory reconstruction proposed in Chapter 3, is to be applied to a set of 

trajectories to impute missing data in a preprocessing stage. This approach is extended here for 

analytic tasks to determine how analysis of MOs change when a movement criterion is incorporated 

for reconstructing low-sampling trajectories. Analysis tool such as: graphical and TDW approaches 

are used to accomplish this task. The first is referred to a simple visual analysis of the reconstructed 

trajectories. In the second, we use the traj function in a stage of a TDW solution to support analytics 
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over a set of reconstructed trajectories. The traj function is used for preprocessing the location data 

trajectory for each criterion of interest and then each criterion is mapped as a member in a dimension.  

The reasons for using a TDW approach are: 

- In a TDW environment, the criteria can be represented in a dimension of analysis. 

- A huge data generation from GPS based application. 

- The analyst must slice and dice the trajectory data in every possible way. 

- Companies based on location marketing or mobility can use trajectory data information to 

support more fact-based decision making. 

 

Next, the approach proposed in Chapter 3 is summarized: 

 

 First, cost is applied to each segment of the RN to represent the criteria needed. The survey 

made in Chapter 2 highlights three main routing criteria: time, distance, and attractiveness 

(scenic path POIs-based). 

 The RN where the observations occurs are mapped into a graph representation. 

 Each observation of each low-sampling trajectory is mapped into a road segment by 

searching for its closest road segment. 

 The traj function is applied between the mapped observations for each trajectory. Here, a 

routing algorithm such as Dijkstra is called passing as a parameter the cost of each edge and 

each pair of observations for each trajectory of the data set. 

 A set of edges is retrieved describing the route in the RN between the observations of each 

trajectory. We get the longitude and latitude of each vertex of each edge and set the time for 

each vertex proportionally according to the total distance following the criteria applied. 

 Additional imputed data points can be gotten using interpolation methods between the 

inferred points, i.e., the start and the end vertex of an edge if the previous steps do no met 

the thresholds of time and distance required. 

 

4.2.1 A Graphical analysis  

 

A basic visual analysis of the reconstructed trajectories for each criterion offers a simple analytic 

perspective for the reconstruction proposed here. Check-in data in the city of Medellín, Colombia 

on August 14, 2014 is used for proposing visual analysis. See Figure 4.1, the name and time-stamp 
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of each check-in is shown. The details of how this source data were obtained are explained in Section 

3.5.2. Additional data check-in points by days of the collected dataset are drawn in Chapter 5.  

 
Figure 4.1. A set of check-in points on August 4, 2014 (Medellín) 

 

The traj function proposed in the Chapter 3, is applied to the set of low-sampling data on August 4, 

2014 using criteria such as distance, time, and touristic. The resulting reconstructed trajectories are 

shown in the Figure 4.2, Figure 4.3, and Figure 4.4 when distance, time, and touristic criteria are 

applied, respectively. Additional reconstructed trajectories by criteria and days of the collected 

dataset are drawn in the Chapter 5 for more analysis tasks. 

Note that some routes are not used when the criterion changes, see some examples highlighted with 

the gray dashed ellipses in the Figure 4.2, Figure 4.3, and Figure 4.4. Some of those road segments 

can be the representative ones for each criterion such as in the Figure 4.3, where that segment seems 

to be the fastest choice when time criterion is considered. Also, note that some segments of streets 

remains used whatever the criterion of movement is selected. See examples highlighted with the red 
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dashed ellipses in Figure 4.2, Figure 4.3, and Figure 4.4. Common segments present in all the 

criteria can be target as possible bottlenecks if they do not change when criterion of movement 

change.  

 

Figure 4.2. Reconstructed trajectories using Distance criterion on August 4, 2014 (Medellín) 
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Figure 4.3. Reconstructed trajectories using Time criterion on August 4, 2014 (Medellín) 
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Figure 4.4. Reconstructed trajectories using Touristic criterion on August 4, 2014 (Medellín) 

 

A visual analysis with a color gradient shows the segments with the most trajectories traversing them, 

see Figure 4.5, Figure 4.6, and Figure 4.7. Those simple gradient visualization can help to identify 

the streets where a possible bottleneck can be formed if all the users follow the same movement 

criteria. Again, segments with a higher color gradient in each criterion can help to identify, possible 

bottlenecks.  

 

In Figure 4.5, the reconstruction of the trajectories based on the distance criterion is shown. Note 

that the segments of the Medellín RN with the most visible color, shows a higher traffic for those 

streets/avenues.  
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Figure 4.5. A color gradient of reconstructed trajectories using Distance criterion 

 

In Figure 4.6, the trajectories are built using the time criterion. Note that a higher number of 

trajectories are passing through a long segment traversing the city from north to south. This is a 

highway with three lanes in Medellín, Colombia city (Regional Avenue, as presented in the detailed 

image from OpenStreetMap); therefore, it is considered to have a fastest traffic flow.  

 

This segment street is the most 

traversed when the distance is used 

as the reconstruction criterion.  
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Figure 4.6. A color gradient of reconstructed trajectories using Time criterion 

 

In Figure 4.6, the trajectories are built using the touristic criterion. Note that a higher number of 

trajectories are passing through the downtown ("La Alpujarra" administrative center and "San Juan" 

street) and “El Poblado” sector (including the avenue leading to this sector), where the most 

restaurants and clubs are located (see the images attached to the map). In a marketing campaign, the 

most visible segments can be targeted for visual directed advertising or for enhancing mobile 

applications such as Foursquare helping merchants to boost his/her business nearest to those 

segments. 

 

This segment street is the most 

traversed when the time is used as the 

reconstruction criterion.  
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Demographic information (e.g. description, gender, date of birth, profession) and device-related 

techno-graphic information (e.g. GPS or Cell type) can be also included to slice the data by user 

profile. 

 

 

Figure 4.7. A color gradient of reconstructed trajectories using Touristic criterion 
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4.2.2 A Trajectory Data Warehouse analysis 

 

Another possible tool for showing the analysis variation of the criteria is a TDW architecture, where 

the criteria can be considered dimensionally. Here, the traj function is used in a data preprocessing 

step in the stage of data transformation. Every low-sampled trajectory is imputed and marked for 

each criteria and then stored in the fact table, i.e., each trajectory is reconstructed and stored as many 

times as the number of criteria are incorporated to the analysis. In Figure 4.8 a basic a TDW 

architecture is shown including low-sampling trajectory reconstruction. In the following we expand 

and explain each stage of the TDW proposed architecture.  

 
Figure 4.8. A Data warehouse architecture including traj function 

 

4.2.2.1 Source Data 

 

The source location data may come from diverse location based data such as: GPS Logs, Check-in 

data and geotagged photos. For the purpose of this thesis, a set of Foursquare check-ins of 80 random 

active users during a week in the city of Medellín, Colombia were collected using the public API 

from Foursquare [100], see Chapter 5 for technical details. A basic distribution of the data is shown 

in Table 4.1 (other data details are included in Chapter 5). The check-in data are used to show with 

examples the change of the analysis according to movement criteria. In Figure 4.1, those check-in 

points on August 14, 2014 were shown. Note that the check-in data have a lot of uncertainty due to 

the characteristics and purposes of these mobile applications.  
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Date Min Time Max Time Check-in 

Quantity 

User Quantity 

2014-08-04 06:07:06 19:53:26 257 79 

2014-08-05 06:00:30 19:55:45 232 75 

2014-08-06 06:04:35 21:57:38 222 76 

2014-08-07 06:00:25 22:56:26 188 73 

2014-08-08 06:01:14 22:46:38 224 77 

2014-08-09 00:00:31 22:53:25 235 77 

2014-08-10 00:00:00 19:34:43 242 78 

Table 4.1. Quantity of check-in´s users by day (Medellín) 

Also, we need to load the graph Ga that represents the RN where the trajectories take places 

according to the parameters of the traj function. The RN is then mapped into a spatial dimension of 

the TDW proposal. In order to get the RN graph Ga of the city of Medellin, we use osm2po's [101] 

converter that uses OpenStreetMap's [102] XML-Data and makes it routable. It generates SQL files 

for PostGIS [103] databases, compatible with pgRouting [104]. The TDW was implemented using 

Postgress 9.2 DBMS [105]. 

4.2.2.2 Data Staging area 

 

The storing and transformation of data between the sources of information and a (DW) is done in 

the staging area. The stage tables that stores the data were loaded, cleaned, and standardized from 

the described sources developing an ETL process (check Chapter 5 for technical details). Functions 

for computing the imputed data were also developed. Those are: 

 

 Road Network Graph: The XML files generated by osm2po's converter are loaded in the 

stage area and the Ga is now represented by a stage table containing data of road connection, 

directions, and cost of the streets segments. 

 The whole functions described in Chapter 3 are implemented in Postgress 9.2 DBMS using 

functions and view objects [105]. 

 Each observation is mapped into the nearest edge. 

 Cost is applied to each segment of the RN according to the set criteria. 

 In a Postgis database, the traj function is implemented. Each trajectory is computed for each 

criterion and stored using the traj function. 

The trajectory reconstruction procedure takes place to impute low sampled location data originated, 

e.g., from GPS recordings into trajectories with a better sampling. The ETL process that feeds the 
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TDW is implemented using Pentaho Data Integration 5.0.1 [106]. The technical details of the ETL 

developed are explained in Chapter 5. 

 

4.2.2.3 Data Presentation area 

 

As it usually happens in data management world, the challenge after storing the data is to make the 

right analysis that could extract useful knowledge [91]. Considering that a trajectory is a spatial 

object whose location changes in time [27], a TDW should include a spatial and a temporal 

dimension describing geography and time, respectively [87]. As such, different features need to be 

described: numeric, spatial, and temporal [27], [87]. Another dimension regarding to conventional 

data about MO (including demographic data, such as gender, age, occupation etc.) could be 

considered as well. 

 

From Figure 4.8 we zoom in the TDW model in Figure 4.9, the model is composed by the Dimension 

of MO (dimMovingObject), that stores the objects that describes the trajectory; the dimension of 

trajectories (dimTrajectory), that stores the ID for each raw trajectory to differentiate them from its 

reconstructed ones; the dimension of criteria (dimCriteria) that stores the description for each 

criterion of reconstruction; the dimension of time (dimTime); the geometric dimension of the 

underlying RN (dimRoadNetwork); and the fact table of reconstructed trajectories (factTrajectory), 

that stores a set of measures of interest for each segment/edge that make up the reconstructed 

trajectory.  

 
Figure 4.9. Dimensional Model of the Data warehouse proposal 

 

In Table 4.2, we zoom in the factTrajectory entity. It shows an example of a fact table with the 

reconstructed trajectories according to a set of criteria after the traj function is applied in a 

preprocessing stage. Each low sampled trajectory Tj of the object IDi is reconstructed for each c 

criterion considered, computed and stored. Similarly, each measure of interest is computed for each 

segment of the trajectory delimited by the interval of the two consecutive observations. For the 

FactTrajectory 

Measure 1 
… 
Measure n 

DimTrajectory DimTime 

DimCriteria 

DimRoadNetwork DimMovinObject 
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purpose of this thesis, we assume explicitly that a trajectory portion can be mapped into a RN 

segment. 

 

MO 

ID 

Trajectory 

ID 

Observation RN ID time Criterion 

ID 

Measure1 … Measure

n 

 … 

IDi Tj [L1
1 , L1

2] RNx [t1
1, t1

2] C1    

IDi Tj … … … C1    

IDi Tj [L1
j

, L1
j+1

] RNx [t1
j
, t1

j+1
] C1    

IDi Tj … … … C1    

IDi Tj [L1
M−1, L1

M] RNx [t1
M−1, t1

M] C1    

   …  …    

IDi Tj [L1
1 , L1

2] RNx [t1
1, t1

2] Cp    

IDi Tj … … … Cp    

IDi Tj [L1
j

, L1
j+1

] RNx [t1
j
, t1

j+1
] Cp    

IDi Tj … … … Cp    

IDi Tj [L1
N−1, L1

N] RNx [t1
M−1, t1

M] Cp    

 … 

Table 4.2. Fact table of reconstructed trajectories of a set of objects for each criterion. 

 

In Figure 4.10, a sample of this fact table is shown with some measures of interest. The query 

sentence is also shown next: 

SELECT movingobjectid, trajectoryid, criterionid, roadnetworkid, observationlinitial, 

observationlfinal, distance, fuelconsumption,  

FROM facttrajectory 

 
Figure 4.10. A factTrajectory fact table example 
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Note that this is a simple dimensional model. The idea behind this proposal is the aggregation of 

each measure along each criteria and evidencing the change of the analysis if a specific criterion is 

considered such as the total distance when the criteria of POIs is used or the total fuel consumption 

if the time is considered. The measures are properties of interest about each one of the segments of 

the trajectories. As it is shown in Figure 4.8, the level of granularity, i.e., the detail of the units of 

data in the DW, is given by the segment between inferred observations and the time intervals 

determined by those observations. Note also that the aggregations of the measures have a semi-

additive behavior (the measures only make sense if they are added up when this dimension is 

included) [82] with the criteria dimension. In Table 4.3, some measures of interest about trajectories 

are shown.  

Measure Description 

Quantity of 

trajectories 

Count all distinct trajectory ids that pass through a street segment 

Quantity of users Count all the MO IDs that pass through a street 

Total Distance 

Traveled 

Adds up the computed distance for each segment of the reconstruction 

trajectory. The total distance of a set the trajectories is the sum of the distance 

of each one. 

Total Travel 

Duration 

Adds up the computed time for each segment of the reconstruction trajectory. 

The total distance of a set the trajectories is the sum of the distance of each 

one. 

Fuel 

consumption 

Adds up the fuel consumption according to the distance traveled 

CO2 emissions Adds up the co2 emission according to the distance traveled 

Table 4.3. Some measures of interest in a TDW 

If the comparison of fuel consumption using a reconstruction criterion against another is needed, a 

measure of fuel consumption for each segment traveled can be defined. Of course, vehicle´s fuel 

consumption changes according to vehicle types and other variables such as road, traffic, and 

weather conditions, driving style, vehicle speed, load, and condition. However, manufacturers 

provide average fuel consumption data. In most countries, this ratio is given in litres / 100km as the 

most commonly used measure of fuel consumption [107] In a most accurate way, many vehicles are 

fitted with a trip computer that provides an average fuel consumption function. However, for the 

goal of this thesis, the MOs are supposed as vehicles of the same type, i.e., they have the same fuel 

consumption. The fuel consumption is estimated based on the distance travelled. This method offers 
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a reasonably accurate means of determining actual fuel usage for a particular trip. Suppose that the 

set of MO analyzed here use 10 Litres / 100km. In Figure 4.11, fuel consumption (litres / 100km) 

sliced are by criteria and day between August 4, 2014 and August 10, 2014 are shown. 

 
Figure 4.11. Fuel Consumption (litres / 100km) sliced by day and criteria 

 

Also, measures such as CO2 emissions can be used for analysis in function of distance traveled 

[107]. Suppose that the set of MO analyzed here emit 300 grams of CO2 per km. In Figure 4.12, 

CO2 emissions (grams per km) are sliced by criteria and day between August 4, 2014 and August 

10, 2014 are shown. 

SELECT  criteria.CriterionDesc, TimeIni.IdDate, 

SUM(fact.FuelConsumption) 

FROM  factTrajectory fact  

INNER JOIN  dimCriteria criteria 

ON    fact.criterionid = criteria.criterionid 

INNER JOIN  dimTime TimeIni 

ON    fact.(observationlinitial).t = TimeIni.IdTime 

INNER JOIN  dimTime TimeFin 

ON    fact.(observationlfinal).t = TimeFin.IdTime 

WHERE   TimeIni.IdTime >= 20140804 AND TimeFin.IdTime <= 20140810  

GROUP BY   criteria.CriterionDesc, TimeIni.iddate 
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Figure 4.12. CO2 emissions (grams per km) sliced by day and criteria 

 

As we have done with the fuel consumption and CO2 emissions, we performed a series of queries 

and show some results to explore the analytical possibilities in function of the criterion variation.  

How many MO are traversing the “Exposiciones” roundabout in the city of the Medellín, Colombia 

on August 5, 2014 (Tuesday) between 07:00:00 am and 07:00:00 pm according to time criterion? 

The correspondent query and the resulting query answer are shown in Figure 4.13. 

SELECT   dim.DescCriteria, TimeIni.IdDate,  SUM(fact.co2emision) 

FROM  factTrajectory fact  

INNER JOIN  dimCriteria criteria 

ON    fact.idCriteria = criteria.idCriteria 

INNER JOIN  dimTime TimeIni 

ON    fact.(observationlinitial).t = TimeIni.IdTime 

INNER JOIN  dimTime TimeFin 

ON    fact.(observationlfinal).t = TimeFin.IdTime 

WHERE   TimeIni.IdTime >= 20140804  

AND    TimeFin.IdTime <= 20140810  

GROUP BY   criteria.DescCriteria, TimeIni.iddate 
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Figure 4.13. How many MO are traversing the “Exposiciones” Street in the city of the Medellín, 

Colombia on August 5, 2014 (Tuesday) between 07:00:00 am and 07:00:00 pm according to time 

criterion? 

 

What are the top 5 most traversed streets between 07:00:00 am and 09:00:00 pm on August 9, 2014 

(Saturday) according to touristic criterion? The correspondent query and the resulting query answer 

are shown in Figure 4.14. 

 

SELECT   COUNT(DISTINCT movingobjectid) 

FROM   factTrajectory fact 

INNER JOIN  dimroadnetwork rn 

ON    fact.roadnetworkid = rn.roadnetworkid 

INNER JOIN  dimcriteria criteria 

ON    fact.criterionid = criteria.criterionid 

WHERE  (fact.observationlinitial).t >= 20140805070000  

AND   (fact.observationlfinal).t <= 20140805190000 

AND    criteria.criterionid = 2 -- Time Criterion 

AND   rn.roadnetworkdesc = 'Glorieta Exposiciones' 

 

Answer: 21 
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Figure 4.14. What are the top 5 most used segment streets on August 9, 2014 (saturday) according 

to touristic criterion? 

 

What is the average distance travelled on August 8, 2014 (Friday) grouped by criteria? The 

correspondent query and the resulting query answer are shown in Figure 4.15. 

 

SELECT   rn.roadnetworkdesc 

FROM   factTrajectory fact 

INNER JOIN  dimroadnetwork rn 

ON    fact.roadnetworkid = rn.roadnetworkid 

INNER JOIN  dimcriteria criteria 

ON    fact.criterionid = criteria.criterionid 

WHERE  (fact.observationlinitial).t >= 20140809070000  

AND   (fact.observationlfinal).t <= 20140809210000 

AND   criteria.criterionid = 3 – Touristic criterion 

GROUP BY   roadnetworkdesc 

ORDER BY COUNT(DISTINCT trajectoryid) DESC 

LIMIT 5; 

 

Order Road Network Street 

1 Avenida del Ferrocarril 

2 Carrera 65 

3 Calle 44 

4 Carrera 43 

5 Carrera 70 
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Figure 4.15. What is the average distance travelled on August 8, 2014 (Friday) sliced by criteria? 

 

4.2.2.4 Data Access 

 

In order to present the data, we used a tool called Quantum Gis [108] Free and Open Source 

Geographic Information System application that provides data viewing, editing, and analysis 

capabilities. Layers of a PostGis database [103], [105] were added and drawn in a desktop platform. 

Figures shown in this chapter were generated with this tool.  

 

 

 

 

 

 

SELECT   criteria.CriterionDesc, AVG(fact.distance) 

FROM  factTrajectory fact  

INNER JOIN  dimCriteria criteria 

ON    fact.criterionid = criteria.criterionid 

INNER JOIN  dimTime TimeIni 

ON    fact.(observationlinitial).t = TimeIni.IdTime 

INNER JOIN  dimTime TimeFin 

ON    fact.(observationlfinal).t = TimeFin.IdTime 

WHERE   TimeIni.IdTime >= 20140808  

AND    TimeFin.IdTime <= 20140808  

GROUP BY   criteria.CriterionDesc 

 



76.          A Criteria based Function for Reconstructing Low-Sampling Trajectories as a Tool for Analytics  

 

4.3 CONCLUSION AND FUTURE WORK 

 

In this chapter, we lay the groundwork for enhance the analysis of trajectories where low-sampling 

is present. We extend the approach proposed in Chapter 3 for analytic tasks to find how the analysis 

change when the movement criterion is incorporated to reconstruct low-sampling trajectories. A 

complete flow of task required during a TDW developing were described. 

 

The results shown here evidence the variation of the analysis of the imputation process when criteria 

of movement is considered. A simple graphical analysis can find the segments in the RN with the 

most concurrence of MO during a period. This approach can be useful for support decision-making 

in companies with location based advertising for make advertising campaigns or in tourism 

companies for determining the routes with the most touristic POIs visited. The analysis supported 

by TDW including criteria as a dimension for measuring trajectory characteristics such distance 

Travel distance or fuel consumption can also be helpful for companies such as logistic for expenses 

saving or traffic control division for determining the segments with the most MO flow.  

The analysis proposed here can be enhanced when trajectories are not considered low-sampling (the 

ones from mobile applications such as Foursquare or Flickr), i.e., a process of integration between 

imputed data derived from traj function and most detailed information gotten from devices with 

higher configured sampling such as GPS loggers. 

Although, a DW approach has been followed here, in the last years a new paradigm has been adopted 

to deal with huge amount of data: Big Data. The big data is about finding new value within and 

outside conventional data sources as a complementary extension to current TDW architectures to 

support new data types [109]. This proposal can be enhanced by Big Data techniques and data mining 

tasks can also be carried out over the fact table factTrajectory showing the variation of the mining 

analysis over all trajectories when the reconstruction criteria is changed. 

 

The main contributions of this chapter are: 

 

 The mapping of the traj function in a data warehouse architecture. 

 The incorporation of user criteria as a dimension in a dimensional modelling. 

 The development of a trajectory data warehouse to show the different variations of the criteria 

in the analysis of low-sampling trajectories. 
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 The different visualizations proposals of the reconstructed trajectories according to the criteria. 

 This chapter develops the specific objective “Identify opportunities of analytical tasks using 

an operator over low-sampling trajectories considering the limitations of Network 

Constrained Environment” using a data warehouse approach. 
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CHAPTER 5. TECHNICAL DETAILS. 

 

5.1 INTRODUCTION 

 

This chapter details each one of the components of the traj function and the Trajectory Data 

Warehouse proposal presented in the Chapter 3 and Chapter 4. This technical documentation is 

intended to offer a more comprehensive understanding of the solution and it serves as a reference 

for future implementation of the system. It also pretends to provide the technical details to replicate 

the previously executed experiments. 

 

With this proposal, the aiming is to create a DW based on the low-sampling trajectories reconstructed 

according the proposal of the Chapter 3 and Chapter 4. Each detail of the TDW are explained here 

as well as the implementation of the traj function. 

 

5.2 TECHNICAL REQUIREMENTS 

In this section, all software are listed. 

Apigee. The leading infrastructure for creating & operating APIs and apps [110]. 

Foursquare API. Foursquare for developers. Access to world-class places database of Foursquare. 

Understanding the intersection of social data and the physical world [100]. 

Openstreetmap is a map of the world free to use under an open license [102]. 

Osm2po-4.8.8. Routing On OpenStreetMap, is both, a converter and a routing engine, converter 

parses OpenStreetMap's XML-Data and makes it routable [101].  

Pentaho Data Integration 5.0.1: Delivers Extraction, Transformation, and Loading (ETL) 

capabilities, using a groundbreaking, metadata-driven approach [106]. 

PgRouting. Extends the PostGIS / PostgreSQL geospatial database to provide geospatial routing 

functionality. The “cost” parameter can be dynamically calculated through SQL and its value can 

come from multiple fields or tables [104]. 

Postgress 9.2. An object-relational database management system (ORDBMS) [105]. 

http://www.openstreetmap.org/
http://openstreetmap.org/
http://osm2po.de/


79.          A Criteria based Function for Reconstructing Low-Sampling Trajectories as a Tool for Analytics  

 

Qgis Desktop 2.0.1. A Free and Open Source Geographic Information System. Create, edit, 

visualise, analyse, and publish geospatial information on Windows, Mac, Linux, BSD [108]. 

 

5.3 SOURCE DEFINITION 

 

In this section, all needed sources are defined. 

 

5.3.1 Foursquare data 

As it have been said before, the source data can be extracted from multiple location-based devices 

and applications. For this technical proposal, Json files are generated using Foursquare API [100] 

and then read using Pentaho Data Integration [106]. 

The Foursquare API has been accessed using Apigee, An API management and predictive analytics 

platform that helps to create and operate APIs and apps [110]. The technical details of the 

components of the Json file can be found in [100]. Some interesting foursquare API responses related 

to the thesis proposal are listed: 

5.3.1.1 User 

 

Get details of the users of Foursquare (https://developer.foursquare.com/docs/users/users). Figure 

5.1 shows an instance of this file gotten with this response. Information of the venues (find this file 

in \sources\UsersList1.js) registered in Foursquare in the city of Medellín, Colombia were collected. 

 
Figure 5.1. Example of a Json File of the user response from the API Foursquare. 
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5.3.1.2 Venues 

Get details of the venues of Foursquare (The points where the people make check-in). 

(https://developer.foursquare.com/docs/responses/venue). Figure 5.2 shows an instance of the file 

gotten with this response. Information of 80 active random users (find this file in: 

\sources\VenuesListi.js where 0<i<21) living in the Medellin, Colombia city were collected. 

 

Figure 5.2. Example of a Json File of the venue response from the API Foursquare 

 

5.3.1.3 Check-in 

Get details of a check-in (https://developer.foursquare.com/docs/checkins/checkins). Figure 5.3 

shows an instance of the file gotten with this response. Information of a List of check-in of the users 

described above were gathered during a week. A file by day was generated (find this file in 

\sources\DSFoursquare201408XX.js) 
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Figure 5.3. Example of a Json File of the check-in response from the API Foursquare. 

 

5.3.2 Point of Interest. 

A list of touristic points of Medellín, Colombia city were defined. Those were extracted from 

OpenStreetMap were people can tagged those places as touristic. Find this file in 

\sources\map_pois_nodes.xml. A process of standardization and filtering where also done (find the 

file used in \DBObjects\SQLsentences\CleanPOIS.sql). See an example of this file in Figure 5.4. 

The location for each one was also included. The idea behind this definition is to assign a lower cost 

to segments of the streets near to those touristic points. 
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Figure 5.4. Points of Interest of the city of Medellín 

 

5.3.3 The Graph Map 

The Graph Map was gotten using osm2po-4.8.8 [101]. osm2po's converter parses OpenStreetMap's 

XML-Data and makes it routable. The OpenStreetMap of the Country of Colombia was downloaded 

from http://download.geofabrik.de/south-america/colombia.html. Find this file in: 

\sources\colombia-latest.osm.pbf. Both executable and resulting .sql file from osm2po are available 

in \Software\osm2po-4.8.8  

The specifically data for Medellín, Colombia city were gotten performing geometry operation in 

Postgress 9.2. This .sql sentence can be found in \DBObjects\SQLsentences\GetMedellinRN.sql 

 

5.4 STAGING DEFINITIONS 

 

The storing data between the sources of information and a DW is done in the staging area. Next, the 

objects used for load the sources and the ETL process built to extract, transform (mapping and 

reconstruction) and load the TDW are defined. 

 

 

 

 

 

Tagged as Tourism Place 

Tagged as Amenity Place 

http://download.geofabrik.de/south-america/colombia.html
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5.4.1 Tables 

 

5.4.1.1 colombiarn_2po_4pgr  

The colombiarn_2po_4pgr table stores the RN of Colombia. It is the result of the process explained 

in section 5.3.3. The colombiarn_2po_4pgr table definition can be found in \DBObjects\staging 

schema\tables\colombiarn_2po_4pgr.sql.  

5.4.1.2 colombiarn_2po_4pgr_medellin 

The colombiarn_2po_4pgr_medellin table stores the RN definition of Medellin, Colombia. This 

table is the outcome of the next SQL sentence.  

CREATE TABLE colombiarn_2po_4pgr_medellin AS 

SELECT  * 

FROM  colombiarn_2po_4pgr 

WHERE ST_INTERSECTS( ST_MAKEENVELOPE(-75.6488, 6.1887, -75.5317, 

6.3238,4326) , geom_way ) = TRUE 

 

The longitude and latitude values are the delimiter coordinates of the Medellín city. The table 

definition can be found in \DBObjects\staging schema\tables\ colombiarn_2po_4pgr_medellin.sql. 

An example of the colombiarn_2po_4pgr_medellin table is shown in Figure 5.5.  

 
Figure 5.5. An example of “colombiarn_2po_4pgr_medellin” table 
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5.4.1.3 stg_users 

The stg_users table stores the content of the file of the response of the venues method of foursquare 

API, see Section 5.3.2 and Section 5.3.3. The stg_users table definition can be found in 

\DBObjects\staging schema\tables\stg_users.sql. An example of the stg_users table is shown in 

Figure 5.6.  

 

Figure 5.6. An example of “stg_users” table 

5.4.1.4 stg_venues 

The stg_venues table stores the content of the file of the response of the venues method of foursquare 

API, see section 5.3.1.2. The stg_venues table definition can be found in \DBObjects\staging 

schema\tables\stg_venues.sql. An example of the stg_venues table is shown in Figure 5.7.  

 
Figure 5.7. An example of “stg_venues” table 
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5.4.1.5 stg_check_in_data 

The stg_check_in_data table stores the content of the file of the response of the check-ins method of 

foursquare API, see Section 5.3.1.3. The stg_check_in_data table definition can be found in 

\DBObjects\staging schema\tables\stg_check_in_data.sql. An example of the stg_check_in_data 

table is shown in Figure 5.8.  

 
Figure 5.8. An example of “stg_check_in_data” table 

5.4.1.6 stg_pois 

The stg_pois table stores the content of the most representative POIs of the city of Medellin. See 

Section 5.3.2. The stg_pois table definition can be found in \DBObjects\staging 

schema\tables\stg_pois.sql. An example of the stg_pois table is shown in Figure 5.9. 
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Figure 5.9. An example of “stg_pois” table 

5.4.1.7 stg_pointprojection 

The stg_pointprojection table stores the result of the vw_stg_pointprojection view. It is intended to 

be used as an input with all projected check-in for the reconstruction process. This table stores 

information of 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒, 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡, 𝑔𝑒𝑡_𝑥 and 𝑔𝑒𝑡_𝑦 functions. 

The stg_pointprojection table definition can be found in \DBObjects\staging 

schema\tables\stg_pointprojection.sql. An example of the stg_pointprojection table is shown in 

Figure 5.10. 

 

Figure 5.10. An example of “stg_pointprojection” table 



87.          A Criteria based Function for Reconstructing Low-Sampling Trajectories as a Tool for Analytics  

 

5.4.1.8 stg_notfoundroutes 

The stg_notfoundroutes table is an auxiliary table used for storing the not found routes. 

5.4.2 Views 

Some staging tables were mapped in to a view respectively. The Table 5.1 show the respective table, 

the view assigned and the source file to be executed.  

Table view source 

stg_users vw_stg_users \DBObjects\staging 

schema\views\vw_stg_users.sql 

stg_venues vw_stg_venues \DBObjects\staging 

schema\views\vw_stg_venues.sql 

stg_check_in_data 

 

vw_stg_checkindata \DBObjects\staging 

schema\views\vw_stg_checkindata.sql 

stg_pois vw_stg_pois \DBObjects\staging schema\views\ 

vw_stg_pois.sql 

colombiarn_2po_4pgr_medellin vw_roadnetwork \DBObjects\staging schema\views\ 

vw_roadnetwork.sql 

Table 5.1. Staging schema views 

5.4.2.1 vw_stg_setTouristicCost 

The vw_stg_setTouristicCost view finds every nearest edge to the POIs defined in table stg_pois. 

5.4.2.2 vw_stg_pointprojection 

The vw_stg_pointprojection view implements implicitly the 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒, 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑜𝑢𝑟𝑐𝑒 

𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑎𝑟𝑔𝑒𝑡, 𝑔𝑒𝑡_𝑥 and 𝑔𝑒𝑡_𝑦 functions joining the set of check in data stored in the 

stg_check_in_data table the the RN network data of the vw_roadnetwork view. The view definition 

can be found in \DBObjects\STAGING schema\views\vw_stg_pointprojection.sql 

For a set of check-in data the 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒 function finds its nearest edge of the RN as presented in 

section 3.3 of the Chapter 3 but setting a rectangle around the check-in point with a longitude of 

0.0025 units from the check-in point. It is done to reduce the searching time of the possible nearest 

edges. 
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5.4.2.3 vw_settime 

 

The vw_settime view implements implicitly the proportional assignation of the time of the 

reconstructed trajectories proposed by set_time function. The view definition can be found in 

\DBObjects\STAGING schema\views\vw_settime.sql 

 

5.4.3 Functions/Procedures 

 

5.4.3.1 set_pointprojection 

The set_pointprojection function inserts the outcome of vw_stg_pointprojection view. The definition 

of the set_pointprojection function can be found in \DBObjects\STAGING 

schema\functions\set_pointprojection.sql 

5.4.3.2 set_costforcriteria 

The set_costforcriteria function uses the vw_stg_setTouristicCost view to set a lower cost for the 

edges nearest to each point defined in the stg_pois table. The definition of the set_costforcriteria 

function can be found in \DBObjects\STAGING schema\functions\set_costforcriteria.sql 

5.4.3.3 traj 

The traj function is implemented implicitly and carries out the reconstruction task proposed by this 

thesis. The definition of the traj function can be found in \DBObjects\STAGING 

schema\functions\traj.sql 

5.4.3.4 set_time 

The set_time function implements the function set_time proposed by this tesis. The definition of the 

set_time function can be found in \DBObjects\STAGING schema\functions\set_time.sql 

5.4.3.5 load_dimRoadNetwork 

The load_dimRoadNetwork function loads the dimroadnetwork dimension. The definition of the 

load_dimRoadNetwork function can be found in \DBObjects\STAGING 

schema\functions\load_dimroadnetwork.sql 
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5.4.3.6 load_dimcriteria 

The load_dimcriteria function loads the dimcriteria dimension. The definition of the 

load_dimcriteria function can be found in \DBObjects\STAGING 

schema\functions\load_dimcriteria.sql 

5.4.3.7 load_dimmovingobject 

The load_dimmovingobject function loads the dimmovingobject dimension. The definition of the 

load_dimmovingobject function can be found in \DBObjects\STAGING 

schema\functions\load_dimmovingobject.sql 

5.4.3.8 load_dimtrajectory 

The load_dimtrajectory function loads the dimtrajectory dimension. The definition of the 

load_dimtrajectory function can be found in \DBObjects\STAGING 

schema\functions\load_dimtrajectory.sql 

5.4.3.9 load_factrajectory 

The load_factrajectory function loads the factrajectory fact table. The definition of the 

load_factrajectory function can be found in \DBObjects\STAGING 

schema\functions\load_factrajectory.sql 

5.5 DATA WAREHOUSE DEFINITIONS  

Next Database tables that make up the dimensional model of the TDW are listed and defined. Also, 

auxiliary views are also shown. 

5.5.1 Types 

 

5.5.1.1 Observation 

 

The observation type describes the observation. It is composed by longitude x, latitude y, and a 

timestamp t. The definition of the observation type can be found in \DBObjects\TDW 

schema\types\Obervation.sql 
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5.5.2 Tables 

 

5.5.2.1 Facttrajectory 

The factTrajectory table is the fact table of the dimensional model of the TDW. It stores the facts of 

the reconstructed trajectory, i.e., the outcome of the transformations and computations in the staging 

area. Measures are reported by trajectory section between imputed observations. See Section 4.2.2. 

The factTrajectory table definition can be found in \DBObjects\TDW 

schema\tables\factTrajectory.sql. An example of the factTrajectory table is shown in Figure 5.11. 

 
Figure 5.11. An example of the factTrajectory fact table 

5.5.2.2 Dimroadnetwork 

The Dimroadnetwork table stores the information about the RN here (Medellín, Colombia). Each 

trajectory segment can be mapped in to a RN Segment. The Dimroadnetwork table definition can be 

found in in \DBObjects\TDW schema\tables\dimroadnetwork.sql. An example of the 

Dimroadnetwork dimension table is shown in Figure 5.12. 
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Figure 5.12. An example of the dimroadnetwork dimension table 

5.5.2.3 Dimcriteria 

The DimCriteria table is the criteria dimension. This is an essential table in the TDW analysis. It 

stores the criteria of reconstruction and it distinguish each distinct reconstructed trajectory according 

to criteria. The DimCriteria table definition can be found in \DBObjects\TDW 

schema\tables\dimCriteria.sql. An example of the dimCriteria dimension table is shown in Figure 

5.13. 

 
Figure 5.13. An example of the dimcriteria dimension table 

5.5.2.4 Dimtrajectory 

The Dimtrajectory table stores the information about the whole trajectories registered here. For the 

simplicity of the problem addressed here, we set the trajectoryid identificator according each day, 

i.e., each day, a user makes a different trajectory. The Dimtrajectory table definition can be found in 

\DBObjects\TDW schema\tables\dimtrajectory.sql. An example of the Dimtrajectory dimension 

table is shown in Figure 5.14. 



92.          A Criteria based Function for Reconstructing Low-Sampling Trajectories as a Tool for Analytics  

 

 
Figure 5.14. An example of the dimTrajectory dimension table 

 

5.5.2.5 DimMovingObject 

The DimMovingObject table stores the information about the whole MOs (users) considered here. 

The DimMovingObject table definition can be found in \DBObjects\TDW 

schema\tables\DimMovingObject.sql. An example of the DimMovingObject dimension table is 

shown in Figure 5.15. 

 
Figure 5.15. An example of the dimMovingObject dimension table 

5.5.2.6 Dimtime 

The Dimtime table stores the information about the kind of timestamps considered here. The level 

of granularity is seconds. Each timestamp has the YYYYMMDDHHMMSS format. The Dimtime 

table definition can be found in \DBObjects\TDW schema\tables\dimtime.sql 

5.5.3 Views 

 

5.5.3.1 vw_reconstructedtrajectory_congestion 

The vw_reconstructedtrajectory_congestion view lets to rate the road segments with the most 

trajectories traversing them. The vw_reconstructedtrajectory_congestion view definition can be 

found in \DBObjects\TDW\schema\tables\ vw_reconstructedtrajectory_congestion.sql 
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5.6 ETL PROCESS  

 

For implementing the ETL process we use Data Integration of the Pentaho suite [106]. Next the 

orchestration of the load of a low-sampling trajectory dataset is documented: 

 

5.6.1 Jobs 

 

5.6.1.1 Job: jobPrincipal 

 

File \ETL Solution\jobs\jobPrincipal.kbj 

Name jobPrincipal 

Description Principal Job than orchestrates the Stage loading and TDW loading together. 

 

 

Table 5.2. Job: jobPrincipal 

5.6.1.2 Job: jobLoadStage 

 

File \ETL Solution\jobs\jobLoadStage.kbj 

Name jobLoadStage 

Description Job that orchestrates the load and transformation in the stage data area 

 

Table 5.3. Job: jobLoadStage 



94.          A Criteria based Function for Reconstructing Low-Sampling Trajectories as a Tool for Analytics  

 

5.6.1.3 Job: jobLoadTDW 

 

File \ETL Solution\jobs\jobLoadTDW.kbj 

Name jobLoadTDW 

Description Job that orchestrates the load of TDW 

 

Table 5.4. Job: jobLoadTDW 

5.6.1.4 Job: jobExtractData 

 

File \ETL Solution\jobs\ jobExtractData.kbj 

Name jobExtractData 

Description Job that orchestrates the extract of user, venues, pois and check in data 

 

Table 5.5. Job: jobExtractData 
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5.6.1.5 Job: jobReconstructTrajectories 

 

File \ETL Solution\jobs\jobReconstructTrajectories.kbj 

Name jobReconstructTrajectories 

Description Job that orchestrates the reconstruction of trajectories 

 

Table 5.6. Job: jobReconstructTrajectories 

5.6.1.6 Job: jobLoadDimensions 

 

File \ETL Solution\jobs\ jobLoadDimensions.kbj 

Name jobLoadDimensions 

Description 
Job that orchestrates the load of Trajectory Datawarehouse  

Dimensions 

 

Table 5.7. Job: jobLoadDimensions 
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5.6.1.7 Job: jobLoadFactTrajectory 

 

File \ETL Solution\jobs\jobLoadFactTrajectory.kbj 

Name jobLoadFactTrajectory 

Description Job that orchestrates the load of TDW FactTrajectory 

 

Table 5.8. Job: jobLoadFactTrajectory 

5.6.2 Transformations 

 

5.6.2.1 Transformation: traExtractUserData 

 

File \ETL Solution\transformations\traExtractUserData.ktr 

Name traExtractUserData 

Description Transformation that load the user data from foursquare 

 

Table 5.9. Transformation: traExtractUserData 
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5.6.2.2 Transformation: traExtractVenuesData 

 

File \ETL Solution\transformations\traExtractVenuesData.ktr 

Name traExtractVenuesData 

Description Transformation that load the venues data from foursquare 

 

Table 5.10. Transformation: traExtractVenuesData 

5.6.2.3 Transformation: traExtractCheckinData 

 

File \ETL Solution\transformations\traExtractCheckinData.ktr 

Name traExtractCheckinData 

Description Transformation that load the check-in data from Foursquare 

 

Table 5.11. Transformation: traExtractCheckinData 
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5.6.2.4 Transformation: traExtractPOIData 

 

File \ETL Solution\transformations\traExtractPOIData.ktr 

Name traExtractPOIData 

Description Transformation that load the POI data from OpenstreetMap 

 

Table 5.12. Transformation: traExtractPOIData 

5.6.2.5 Transformation: traSetCostforCriteria 

 

File \ETL Solution\transformations\ traSetCostforCriteria.ktr 

Name traSetCostforCriteria 

Description Transformation set the Cost for Criteria in the RN 

 

Table 5.13. Transformation: traSetCostforCriteria 
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5.6.2.6 Transformation: traSetPointProjection 

 

File \ETL Solution\transformations\traSetPointProjection.ktr 

Name traSetPointProjection 

Description Transformation that finds the nearest edge 

 

Table 5.14. Transformation: traSetPointProjection 

5.6.2.7 Transformation: traSetPointProjection 

 

File \ETL Solution\transformations\traSetPointProjection.ktr 

Name traSetPointProjection 

Description Transformation that finds the nearest edge 

 

Table 5.15. Transformation: traSetPointProjection 
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5.6.2.8 Transformation: traReconstructTrajectory 

 

File \ETL Solution\transformations\traReconstructTrajectory.ktr 

Name traReconstructTrajectory 

Description 
Transformation that implements the reconstruction of trajectories. It calls the 

traj function. 

 

Table 5.16. Transformation: traReconstructTrajectory 

5.6.2.9 Transformation: traLoadDimRoadNetwork 

 

File \ETL Solution\transformations\traLoadDimRoadNetwork.ktr 

Name traLoadDimRoadNetwork 

Description Transformation that load the dimension of Road Network 

 

Table 5.17. Transformation: traLoadDimRoadNetwork 
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5.6.2.10 Transformation: traLoadDimCriterion 

 

File \ETL Solution\transformations\ traLoadDimCriterion.ktr 

Name traLoadDimCriterion 

Description Transformation that load the dimension of Criteria 

 

Table 5.18. Transformation: traLoadDimCriterion 

5.6.2.11 Transformation: traLoadDimMovingObject 

 

File \ETL Solution\transformations\traLoadDimMovingObject.ktr 

Name traLoadDimMovingObject 

Description Transformation that load the dimension of Moving Objects 

 

Table 5.19. Transformation: traLoadDimMovingObject 
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5.6.2.12 Transformation: traLoadDimTrajectory 

 

File \ETL Solution\transformations\traLoadDimTrajectory.ktr 

Name traLoadDimTrajectory 

Description Transformation that load the dimension of Trajectories 

 

Table 5.20. Transformation: traLoadDimTrajectory 

5.6.2.13 Transformation: traLoadFactTracjectory 

 

File \ETL Solution\transformations\traLoadFactTracjectory.ktr 

Name traLoadFactTracjectory 

Description 
Transformation that load the reconstructed the low-sampling trajectories to 

the factrajectory fact table 

 

Table 5.21. Transformation: traLoadFactTracjectory 
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5.7 RECONSTRUCTED TRAJECTORIES BY CRITERIA AND DAY 

 

In the following section, some images about the check-in collected by day and the reconstructed 

trajectories by criteria along those days are shown. The dataset were collected from August 4, 2014 

to August 10, 2014. Both, the check-in data and the reconstructed trajectories were visualized and 

analyzed using layers in Qgis Desktop 2.0.1 [108]. For further description of how analyses were 

made, see the proposal of the Chapter 4. 

 

5.7.1 Check-in by day 

 

Next, images about the collected check-ins by days in the city of Medellín, Colombia are shown. 

 

5.7.1.1 Check-in data on August 4, 2014 (Medellín) 

 

 
Figure 5.16. Set of check-in points on August 4, 2014 (Medellín) 
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5.7.1.2 Check-in data on August 5, 2014 (Medellín) 

 
Figure 5.17. Set of check-in points on August 5, 2014 (Medellín) 
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5.7.1.3 Check-in data on August 6, 2014 (Medellín) 

 

 
Figure 5.18. Set of check-in points on August 6, 2014 (Medellín) 
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5.7.1.4 Check-in data on August 7, 2014 (Medellín) 

 

 
Figure 5.19. Set of check-in points on August 7, 2014 (Medellín) 
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5.7.1.5 Check-in data on August 8, 2014 (Medellín) 

 

 
Figure 5.20. Set of check-in points on August 8, 2014 (Medellín) 
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5.7.1.6 Check-in data on August 9, 2014 (Medellín) 

 

 
Figure 5.21. Set of check-in points on August 9, 2014 (Medellín) 
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5.7.1.7 Check-in data on August 10, 2014 (Medellín) 

 

 
Figure 5.22. Set of check-in points on August 10, 2014 (Medellín) 

 

5.7.2 Reconstructed trajectories by criteria and days 

 

Next, images about the reconstructed trajectories of the dataset of check-ins by days and criteria in 

the city of Medellín, Colombia are shown. 
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5.7.2.1 The reconstructed trajectories on August 4, 2014 

 
Figure 5.23. Reconstructed trajectories using Distance criterion on August 4, 2014 (Medellín) 

  
Figure 5.24. Reconstructed trajectories using Time criterion on August 4, 2014 (Medellín) 
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Figure 5.25. Reconstructed trajectories using Touristic criterion on August 4, 2014 (Medellín) 

5.7.2.2 The reconstructed trajectories on August 5, 2014 

 
Figure 5.26. Reconstructed trajectories using Distance criterion on August 5, 2014 (Medellín) 
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Figure 5.27. Reconstructed trajectories using Time criterion on August 5, 2014 (Medellín) 

 
Figure 5.28. Reconstructed trajectories using Touristic criterion on August 5, 2014 (Medellín). 
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5.7.2.3 The reconstructed trajectories on August 6, 2014 

 
Figure 5.29. Reconstructed trajectories using Distance criterion on August 6, 2014 (Medellín) 

 
Figure 5.30. Reconstructed trajectories using Time criterion on August 6, 2014 (Medellín) 
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Figure 5.31. Reconstructed trajectories using Touristic criterion on August 6, 2014 (Medellín) 

5.7.2.4 The reconstructed trajectories on August 7, 2014. 

 
Figure 5.32. Reconstructed trajectories using Distance criterion on August 7, 2014 (Medellín) 
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Figure 5.33. Reconstructed trajectories using Time criterion on August 7, 2014 (Medellín) 

 
Figure 5.34. Reconstructed trajectories using Touristic criterion on August 7, 2014 (Medellín) 
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5.7.2.5 The reconstructed trajectories on August 8, 2014. 

 
Figure 5.35. Reconstructed trajectories using Distance criterion on August 8, 2014 (Medellín) 

 
Figure 5.36. Reconstructed trajectories using Time criterion on August 8, 2014 (Medellín) 
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Figure 5.37. Reconstructed trajectories using Touristic criterion on August 8, 2014 (Medellín) 

5.7.2.6 The reconstructed trajectories on August 9, 2014. 

 
Figure 5.38. Reconstructed trajectories using Distance criterion on August 9, 2014 (Medellín) 
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Figure 5.39. Reconstructed trajectories using Time criterion on August 9, 2014 (Medellín) 

 
Figure 5.40. Reconstructed trajectories using Touristic criterion on August 9, 2014 (Medellín) 
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5.7.2.7 The reconstructed trajectories on August 10, 2014. 

 

Figure 5.41. Reconstructed trajectories using Distance criterion on August 10, 2014 (Medellín) 

 
Figure 5.42. Reconstructed trajectories using Time criterion on August 10, 2014 (Medellín) 
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Figure 5.43. Reconstructed trajectories using Touristic criterion on August 10, 2014 (Medellín) 

 

5.8 BACKUP FOR TESTING 

 

5.8.1 Database Back up 

 

In order to reproduce the tests carried out in this thesis, the next backup must be restored in Postgress 

9.2 [105]: \DBObjects\DBBackup\BackupTar.backup. Remember create a database with PostGIS 

[103] capabilities (It is a requirement for the restoring).  

 

5.8.2 QGIS visualizations 

 

In order to reproduce the visualizations analysis carried out in this thesis, load the file 

\QGis\MedellinLastChapterProofs in QGIS Desktop 2.0.1 [108] after the restoring of the backup 

as explained in the Section 5.8.1. 

 

The main contributions of this chapter are: 

 

 This chapter develops the specific objective “Validate the effectiveness of the proposal using 

a functional prototype for testing”. 
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GENERAL CONCLUSIONS 

 

Next, the overall conclusions are summed up. 

 

The trajectory reconstruction problem is still an open research issue, especially what is related to 

uncertainty due to low-sampling data and the incorporation of user preferences. Simple linear 

interpolation [30], as a method of reconstruction of low-sampling location data, does not represent 

user real movement because they move according to a certain criteria such as time or the amount of  

touristic/scenic places. To the best of our knowledge, there are no research work that involve several 

criteria as a way to reconstructing low-sampling trajectories. In this thesis, low-sampling trajectories 

were reconstructed using the personalization features of the routing theory based on a criterion 

decision over a graph. Although, the real trajectories are not guessed, a useful imputation process 

can be developed for specific analysis. 

 

Considering the different possibilities of user criteria reconstruction of trajectory and the huge 

amount of low-sampling data, data analysis tasks related to these possibilities of reconstruction were 

conducted using e.g., TDW aproaches. Therefore, analytic results over reconstructed trajectories 

vary if different criteria of reconstruction are used.  Using the traj function with different criteria can 

be used as an input for different mining algorithms over trajectories as a way to deal with analytics 

using uncertain trajectories. Here, it is claimed that analytics over reconstructed trajectories can 

change depending on the criterion used for the trajectory reconstruction. 
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