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ABSTRACT

Thermal Study of Vulnerable Atherosclerotic Plaque. (December 2007)

Taehong Kim, B.S., Ajou University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Obdulia Ley

Atherosclerotic plaques with high probability of rupture show the presence of

a hot spot due to the accumulation of inflammatory cells. This study utilizes two

and three dimensional (2-D and 3-D) arterial geometries containing an atherosclerotic

plaque experiencing different levels of inflammation and uses models of heat transfer

analysis to determine the temperature distribution in the plaque region.

The 2-D studies consider three different vessel geometries: a stenotic straight

artery, a bending artery and an arterial bifurcation which model a human aorta, a

coronary artery and a carotid bifurcation, respectively. The 3-D model considers

a stenotic straight artery using realistic and simplified geometries. Three different

blood flow cases are considered: steady-state, transient state and blood flow reduc-

tion. In the 3-D model, thermal stress produced by local inflammation is estimated

to determine the effect of inflammation over plaque stability. For fluid flow and

heat transfer analysis, Navier-Stokes equations and energy equation are solved; for

structural analysis, the governing equations are expressed in terms of equilibrium

equation, constitutive equation, and compatibility condition, which are are solved

using the multi-physics software COMSOL 3.3 (COMSOL, Inc.).

Our results indicate that the best location to measure plaque temperature in

the presence of blood flow is recommended between the middle and the far edge of

the plaque. The blood flow reduction leads to a non-uniform temperature increase

ranged from 0.1 to 0.25 oC in the plaque/lumen interface. In 3-D realistic model,
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the multiple measuring points must be considered to decrease the potential error in

temperature measurement even within 1 or 2 mm at centerline region of plaque. The

most highly thermal stressed regions with the value of 1.45 Pa are observed at the

corners of lipid core and the plaque/lumen interface.

The mathematical model developed provides a tool to analyze the factors af-

fecting heat transfer at the plaque surface. The results may contribute to the under-

standing of the relationship between plaque temperature and the likelihood of rupture,

and also provide a tool to better understand arterial wall temperature measurements

obtained with novel catheters.
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CHAPTER I

INTRODUCTION

A. Background

1. Clinical significance of atherosclerosis

Atherosclerosis refers to lesions in which there is an increase in the thickness of the

vessel wall. The atherosclerotic lesion is characterized by the accumulation of lipid

and connective tissue, which can eventually obstruct blood flow producing stenosis,

an abnormal narrowing in a blood vessel, predisposing the vessel to thrombosis, and

impairing the vessel’s elastic response. Atherosclerosis is a pathological process lead-

ing to several important human vascular disorders, including coronary artery disease,

cerebrovascular disease, and diseases of the aorta and the peripheral arterial circu-

lation. These disorders, that occur when plaques rupture, are responsible for more

deaths than any other diseases in humans [1]. In the United States, nearly 1.1 million

patients suffer from acute myocardial infarction (AMI) every year [2], and almost two

thirds of the acute coronary syndromes pass undetected [3]. Since 1900, cardiovascu-

lar disease (CVD) has been the number-one killer in the United States and accounted

for about 37% of all 2.4 million deaths in 2003 [2]. More than 71 million American

adults have one or more type of CVD and 13 million suffer from coronary artery

disease (CAD) in the United States. More than 60% of these thrombi are caused by

sudden rupture of an unstable or vulnerable plaque [4, 5, 6].

Atherosclerosis develops over a long period of time before symptoms appear and

——————–
This dissertation follows the style of IEEE Transactions on Biomedical
Engineering.
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(a) (b) (c)

Fig. 1. Plaque classified based on morphological description (a) Intimal xantoma is a

pre-atherosclerotic lesion that usually does not develop into progressive lesions.

(b) Pathological intimal thickening is an intermediate type lesion where true

necrosis is not apparent and shows scattered macrophages. (c) Fibrous cap

atheroma. [4]

in 50% of the population it is asymptomatic. Early detection and follow up of such

vulnerable plaques are a major challenge to prevent acute coronary syndromes and

cardiac events. Unfortunately, current diagnostic methods are unable to reliably

predict the high risk plaque associated with a particular lesion. The various stages of

atherosclerosis before plaque rupture are classified as: intimal xantoma, pathological

intimal thickening, and fibrous cap atheroma (Figure 1).

In recent years, cardiovascular research has sought potential clinical strategies to

overcome the limited ability to detect high-risk plaques and eventually guide targeted

therapy [7]. Traditionally, angiography has been used to detect and characterize

atherosclerotic plaque by considering only the plaque size, and the level of occlusion in

artery. It has been reported that plaque composition rather than the degree of stenosis

determines the risk of acute coronary syndrome [8, 9]. In 1998, a research team showed

that about 70% of myocardial infarctions (MIs) involved small non-obstructive lesions,
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Thermographic Methods

Non-Invasive Invasive

Non-Contact Contact

IR-Thermometry

Intravascular MRT

MR Thermometry

 (low resolution)

Catheter technique

 (Multiple sensor)

Fig. 2. Classification of arterial wall thermometry methods available in clinical prac-

tice.

that showed high activity and instability; these lesions are referred as vulnerable

plaque [10]. It has been observed that a coronary atherosclerotic plaque can rupture

and produce a cardiac event long before it produces significant lumen narrowing

[11]. A series of autopsy studies have demonstrated that vulnerable plaques that

undergo rupture and erosion are correlated with the appearance of local inflammation

sites at the arterial wall [12, 13]. In-vivo studies have shown that there is thermal

heterogeneity in human carotid atherosclerotic plaques, and that heat released by

activated inflammatory cells of atherosclerotic plaques may be detected to predict

rupture and thrombosis, both factors leading to acute coronary syndrome (ACS) and

sudden cardiac death [14, 15, 16]. In recent years, cardiovascular research has sought

potential clinical strategies to overcome the limited ability to detect high-risk plaques

and eventually guide targeted therapy [7, 17].

Given the increased interest in plaque activation, metabolism and consequently

temperature [3, 18, 19, 20], clinicians have developed different techniques to mea-

sure the temperature inhomogeneity; these techniques have received the name of



4

Arterial Wall Thermography (AWT) [19], and its classification is shown in Figure 2.

Thermographic methods can be categorized into invasive and non-invasive. Magnetic

resonance thermometry (MRT) is a novel non-invasive method for studying tissue

temperature, but lacks the required resolution when it comes to small regions, such

as blood vessels. The invasive techniques are divided into two main groups: non-

contact and contact techniques. The non-contact techniques are based on detection

of oxygen concentration and tissue metabolic activity using nuclear magnetic reso-

nance, other spectroscopy techniques, or detection of infrared radiation emitted by

the inflamed plaque. Infrared (IR) thermal imaging used in dermatology to study

skin disease and tumors has limitations of accuracy, resolution for scattering of IR

radiation by blood particles as well as limitations related to depth [15]. The contact

or direct measurement techniques are based on the fabrication of special catheters

using thermocouples. As a direct measuring tool, a catheter-based technique is used

to identify plaques that are prone to rupture and thrombosis. Independently of their

invasiveness, the catheter techniques are the most feasible to measure AWT because

thermal mapping of the arterial wall using basket catheters with multiple thermal

sensors provides the best way of analyzing spatial gradients and therefore, localize

the hot spot [13, 15, 18, 19]. Figure 3 shows different thermography catheters utilized

in vivo. Contact thermography using catheter in general provides in vivo temperature

data that is underestimated due to the cooling effect of continuous blood flow [16, 21].

A good thermal contact on the vascular wall is required to satisfy accurate and repro-

ducible temperature measurements because of the possibility of passing close to the

hottest point of the arterial wall [18]. This technique can generally obstruct blood flow

and cause major complications, such as plaque rupture due to tearing the sensitive

and unstable plaque surface. Under these limitations, more effective measurement

strategies are essential to improve outcome to predict which of the atherosclerotic
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(a) (b)

(c) (d)

Fig. 3. Different thermography catheters: (a) thermography basket catheter using

thermocouple at the maximum curve of each nitinol wire [3], (b) four deploy-

able flexible sensor-equipped arms catheter [19], (c) catheter with hydrofoil

designed to use blood stream to drive thermistor against vessel wall [13], and

(d) balloon-thermography catheter with balloon to inflate for the interruption

of the flow during temperature recording [16].
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Fig. 4. Cross-sectional diagram showing the major tissue layers in a normal human

artery.

plaque are prone to rupture and hence distinguish metabolically active or vulnerable

plaques.

B. Vessel Structure

1. Arterial wall

A blood vessel consists of two regions: arterial wall and lumen where blood flows.

Structurally, the walls of arteries and veins are divided into three layers: intima,

media and adventitia as shown in Figure 4. Intima consists of connective tissue,

smooth muscle cells and a few isolated macrophages. It contains the innermost layer

of flattened endothelial cells (endothelium) where acts as a non-thrombogenic physical

barrier between the blood and the rest of the intima. Media is the muscular part of

arterial walls responsible of mechanical strength and of controlling the vascular tone.

Adventitia is the outer and highly microvascular layer, which contains collagen, elastic

fibrils, smooth muscle cells, and lymphatic channels [1]. As soft tissues, arterial walls

have anisotropic and highly nonlinear mechanical properties. In this study, the three
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layers of arterial walls are assumed to have homogeneous and isotropic mechanical

and thermal properties. We are interested in thermal properties, as mathematical

models will be employed to calculate plaque and arterial wall temperature; and elastic

material properties will be introduced in the last part of this study to estimate the

thermal stress produced by the formation of hot spots in the inflamed plaque.

2. Blood and its constituents

Blood is essentially a two-phase fluid consisting of cellular components (red blood

cells, white blood cells, and platelets) and a liquid medium (plasma). The plasma of

the blood occupies about 55% of the blood volume and carries a variety of substances

including plasma proteins, non-protein nitrogen, electrolytes, hormones, enzymes and

blood gases [22]. The cellular components of the blood account for approximately 40%

of the blood by volume. The most numerous cellular component is the red blood cell

(erythrocyte) which is soft and flexible, and can travel through the smallest capillaries.

An important constituent, hemoglobin, in erythrocyte binds and transports oxygen.

Another major type is the white cell (leukocyte) which primarily defends the body

against invasion by infectious agents, repairs damaged tissues, and participates in im-

mune reactions. Monocytes comprise about 3 to 8% of the total leukocyte population

and their surfaces are characterized by thin folds to engulf material by endocytosis

[22, 23]. These cells are suspended in the blood, slide through the endothelium, and

accumulate in regions experiencing inflammation, which play an important role in the

progression of atherosclerotic disease and plaque rupture. In this study, the blood is

assumed to be a homogeneous and Newtonian fluid.
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Fig. 5. (a) Focal narrowing at the outer walls (arrowheads) of carotid bifurcation in

a 75-year-old man who experienced an embolic stroke, and (b) velocity map

and wall shear stress using computational modeling. The regions A and B

with lower velocity and shear stress correspond exactly to the location of the

atherosclerotic lesion shown in the carotid bifurcation of part (a) [25].

C. Process of Plaque Formation

1. Localization of atherosclerotic plaque

Atherosclerosis occurs mainly in larger and medium-size arteries, which involves an

abnormal accumulation of high molecular weight lipoprotein in the arterial wall [24].

In humans, atherosclerotic deposits are most frequently observed in abdominal aorta,

coronary arteries, arteries of legs (femoral, iliac, etc.), arch and descending thoracic

aorta, internal carotids, and Circle of Willis (arteries of the brain). The lesions are

often related with the most susceptible areas where blood flow has flow separation and

circulation, resulting in a weak net hemodynamic shear stress [1]. Thus, the disease

tends to be localized in regions of the outer walls of bifurcations and the inner walls
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Fig. 6. Stages of atherosclerosis. (a) Endothelial dysfunction, (b) fatty streak forma-

tion, (c) formation of an advanced and complicated lesion, and (d) disruption

of endothelium and thrombus formation [27].

of curvatures where fluid shear stress (shear rate) is altered from its normal patterns

[24, 26]. These locations correspond to arterial bends, bifurcations, and in general

sites presenting low wall shear stress [1, 24, 26]. Figure 5 shows that the location

of atherosclerotic plaque corresponds exactly to the regions with lower velocity and

lower shear stress as indicated by computational models [25].

2. Stages of atherosclerosis

Figure 6 presents the histopathological features that precede the formation of an ad-

vanced atherosclerotic lesions [27]. The first stage of atherosclerosis corresponds to

endothelial dysfunction (Figure 6(a)), which is characterized by increased endothelial

permeability to lipoproteins and other plasma constituents. Formation of atheroscle-
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rotic lesions is proceeded by intimal thickness and lipid accumulation [1]. Fatty streak

(Figure 6(b)) is the first macroscopically visible stage of atherosclerosis, which ini-

tially consists of lipid-laden molecules: monocytes, macrophages (foam cells) and

T-lymphocytes [1, 27]. Intermediate and advanced lesions in Figure 6(c) tend to form

a fibrous cap that walls off the lesion from the lumen. Fibrous cap covers a mixture

of leukocytes, lipid and debris, which give rise to a necrotic core. These lesions ex-

pand at their shoulders by means of continued leukocyte adhesion and infiltration.

Disruption of plaque (Figure 6(d)) leads to the formation of an occlusive thrombus,

leading to unstable plaque surface or fibrous cap; this produces clinical complications

like angina, MI, or sudden death [17, 27]. More recent theories indicate that a sig-

nificant contribution to the initiation and progression of atherosclerotic plaque is led

by direct transport through the vasa vasorum or the capillary network feeding the

external surface of the arterial wall [28, 29].

3. Inflammation by macrophages

Inflammatory process develops from the early stages of atherosclerotic disease and

worsen until rupture is observed. High metabolic activation rate of macrophage

leads to increasing heat production in areas of macrophage accumulation and pro-

motes plaque rupture or thrombosis and vasoconstriction in non-ruptured but in-

flamed plaques [3]. The presence of macrophages in inflamed plaques is responsible

for temperature heterogeneity observed around the lesions, and it is considered as

a precursor of the ischemic events discussed before [17]. Macrophages encountered

in the atherosclerotic plaque are derived from circulating monocytes, which adhere

to the injured vessel wall in areas of low wall shear stress [26]. Active macrophages

embedded in the vulnerable plaques secrete inflammatory cytokines; these cytokines,

in turn, stimulate the production of reactive oxygen species and proteolytic enzymes
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which may influence plaque stability and evolution of atherosclerotic plaque [30, 31].

The high glucose uptake and the oxygen consumption of the macrophages cause an

increase in the local temperature [17]. Inflamed plaques showed the hot temperature

regions varied reproducibly by 0.2 − 0.3 oC, and 37% of the plaques had substan-

tially warmer regions (0.4−2.2 oC) [12]. Inflammation at the immediate site of plaque

rupture plays an important role in the destabilization of plaque because macrophages

release enzymes that digest extracellular matrix and weaken the overlying fibrous cap

[16, 30].

4. Constituents of vulnerable plaque

Temperature heterogeneity has important clinical implication as it provides informa-

tion about plaque composition (i.e., macrophage content, level of inflammation and

cell activation) and vulnerability (rate of which fibrous cap is weaken) [30]. Post-

mortem evaluation reports that rupture-prone plaques are characterized by a thin

fibrous cap, a large lipid pool in the core of the plaque, and increased macrophage

activity [9, 14]. Ex-vivo studies showed that temperature positively correlated with

the density of macrophages and inversely with the distance of the cell clusters from

the luminal surface in the plaque (fibrous cap thickness) [12, 17]. As the tempera-

ture increases, the core becomes softer and more likely to rupture [17]. A soft core

may be more vulnerable to rupture because it may not be able to bear the imposed

circumferential stress, which is then redistributed to the fibrous cap [18, 30]. The

fibrous cap is weakened, which displays strongly reduced numbers of smooth muscle

cells and becomes more and more friable [4].

Hence, the vulnerable plaque structure is characterized by the parameters af-

fecting temperature heterogeneity: thickness of plaque, density of macrophage cells,

thickness and length of macrophage layer, and depth of macrophage layer (fibrous
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Fig. 7. Factors affecting evolution of atherosclerosis. Thermal stress due to thermal

inhomogeneity affect endothelium permeability at plaque surface as soft tissues.

cap thickness) embedded in plaque. Concurrently, the factors characterized by the

local temperature heterogeneity can be used to estimate the plaque instability.

5. Thermal stress due to inflammatory process

As we have introduced, the atherosclerotic plaques loaded with inflammatory cells

show local regions with thermal heterogeneity. The hot spots are formed due to the

transport of macromolecules and activation of macrophage or inflammatory cells em-

bedded in plaque [3, 13, 14, 15, 16, 18, 19, 20]. The appearance of local inflammation

sites at the arterial wall are correlated with the likelihood of plaques rupture and

erosion [12, 13].

Over the last two decades, plaque rupture has been believed to be related to a va-

riety of physical factors: mechanical shear stress experienced by the endothelial lining

the blood vessels [32, 33, 34, 35], circumferential stress distribution [6, 36, 37, 38, 39]

and transport and accumulation of macromolecules [40, 41, 42]. Richardson and
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colleagues using 2-D simplified computer modeling identified that the stress concen-

tration regions correlate with the locations of plaque rupture [38]. Other studies also

using 2-D arterial segment suggested that the circumferential stress is more critical

factor to explain a mechanism of overall plaque rupture [36, 37]. All these studies

have used isothermal conditions as they have not considered any local heat production

to estimate the plaque instability.

This study hypothesizes that the temperature changes in the inflammatory pro-

cess might cause thermal stress that contributes to weakening of the sensitive plaque

surface including enzymic degradation of the connective tissue matrix. This might

directly affect endothelium permeability and, consequently cause the evolution of

atherosclerosis and plaque vulnerability in Figure 7. Thus, thermal stress may be

one of the important factors leading to the plaque evolution and affecting the plaque

vulnerability.

D. Motivation and Objectives

In this study, 2-D and 3-D geometrical models of vulnerable plaques are considered,

and used to determine plaque temperature distribution by solving the energy and

Navier-Stokes equations in selected vessel geometries. As shown in Figure 8, this

research intends to quantify the factors that contribute to plaque instability and dis-

ruption with the local thermal heterogeneity observed in atherosclerotic plaques. In

the 2-D model, plaque is defined by variable parameters such as a lipid core, the

thickness of fibrous cap, and the population of macrophages in the lesion. The rela-

tionships between the parameters defined and the plaque temperature distributions

are analyzed using steady and unsteady calculations. In order to investigate the

cooling effect of blood flow, the blood flow occlusion is analyzed assuming that the
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blood flow in lumen is gradually reduced when a catheter is introduced to measure

the plaque surface temperature. A 3-D model of an atherosclerotic artery is created

to study thermal stress based on the temperature changes produced by the inflam-

matory process. This study is important because the temperature changes in the

inflammatory process can cause thermal stress to weaken the sensitive plaque surface

and directly affect endothelium permeability to evolve atherosclerosis. Thermal stress

analysis demonstrates the relations between temperature heterogeneity of plaque and

thermal stress, and between the stress distribution and the inlet pulsatile blood flow,

which can contribute to evaluation of plaque instability. This subject focuses on how

the thermal heterogeneity affects the permeability of endothelium, and consequently

causes the plaque vulnerability and the likelihood of plaque rupture.

The goals of this work are: (1) to create tools based on mathematical models

that will allow cardiologists to better understand the physical characteristics of the

plaque structure and its relationships to AWT, (2) to prove the usefulness in eval-

uating existing or future treatment modalities to predict the vulnerable or instable

atherosclerotic plaque, (3) to reduce the rate of error from AWT and improve the
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ability to identify ’high-risk’ patients, and (4) to provide a simulation tool that will

reduce experimental tests in human or animal models using mathematical simulations.
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CHAPTER II

GEOMETRIC MODELS FOR ARTERIES AND PLAQUES

A. System Description

Geometrical irregularity of vessel influences over local temperature distribution as

well as blood flow characteristics. One of the objectives of this work is to investigate

the effect of arterial geometry on plaque and arterial wall temperature distribution;

this study considers several arterial shapes from straight arterial models to bending

and bifurcation arteries. In addition, composition and geometry of the atherosclerotic

plaque is also varied. The plaque models studied contain a macrophage cell layer that

has parametric dimensions varied systematically.

In this study, numerical calculations of temperature distribution at plaque models

and arterial wall are performed for different geometries of arterial models and plaque

compositions and dimensions. The models and calculations performed will evolve

in complexity; we will study idealized 2-D geometric models, which calculate steady

state temperature distribution and then transient alterations in AWT by introducing

pulsatile blood flow. Finally, simplified and realistic 3-D arterial models will be used

to determine temperature distribution in vessel wall and plaques. In 3-D calculations,

velocity and temperature profiles calculated are applied to solve structural analysis.

1. Vessel geometries of 2-D and 3-D models

In 2-D model, three different blood vessel geometries are considered: a stenotic

straight artery, a bending artery, and an arterial bifurcation with the geometries

and dimensions that correspond to the human abdominal aorta, coronary artery, and

carotid bifurcation, respectively. The essential geometries and dimensions are illus-
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Table I. Geometric parameters of different 2-D vessel types

Vessel Radius length Wall Thickness
Type (Ri) (Lo) (dw)

Straight 3.10 303.8 0.25

Bending 1.765 17.6 0.27

Bifurcation

Common 3.25 13.83 0.49
Internal 2.175 23.86 0.33
External 1.5 19.95 0.23

where Ri is the radius of the inner-side of vessel, and
Lo is the distance along the axis of the vessel which is
always perpendicular to the radius. (unit:µm)

trated in Figure 9 and Table I. A central vessel axis perpendicular to the vessel

cross section is defined (ℓ), and a cartesian coordinate system (r, ℓ) is laid down at

the center of the vessel entrance (r = 0, ℓ = 0). The geometry of straight artery is

axi-symmetric, which has a local stenosis simulating the small but high-risk plaque.

The geometry of the straight artery is obtained from the studies in large arteries

of Rappitsch and Perktold [45], and Stangeby and Ethier [42]. Ld = 279 mm of a

downstream domain is chosen to minimize the influence of the downstream boundary

conditions. The geometry of the bending artery is obtained from an anatomical

realistic arterial model of Wada and Karino’s study [46] based on a photograph of

the human coronary artery used in the flow study of Asakura and Karino [47]. The

diameter at the inlet (di) and the length along the central axis of the vessel (Lo) were

3.53 and 17.6 mm, respectively. The geometry of bifurcation artery is obtained in

the studies of a human carotid artery used by Perktold et al. [48] and Filipovic and

Kojic [49]. The essential geometrical parameters are: common, internal and external

carotid diameters (di = 6.5 mm, dint = 4.35 mm, dex = 3 mm), maximum carotid
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Fig. 9. 2-D vessel geometries considered, and the corresponding geometrical param-

eters used to describe the vessels. The dimension presented are shown in mil-

limeters.
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Fig. 10. 3-D simplified geometry of stenotic straight artery consisting of arterial wall,

lumen and plaque with macrophage layer. The diameter of the vessel is 6 mm.

sinus diameter (dsin = 6.32 mm), common internal carotid angle (aci = 25o) and

common external carotid angle (ace = 25o).

The arterial wall thickness of the bending artery is approximately defined by

the relationship between vessel diameter (di) and wall thickness (dw), the h/d ratio,

which is approximately constant in large arteries [50]. The wall thicknesses (dw) are

4, 7.6, and 7.5% of the diameters (di) of straight, bending, and bifurcation arteries,

respectively; these are relatively small, and thus the arterial wall may be modeled

as one thin-homogeneous layer. The wall is also assumed to be rigid because the

length of the model segment is much smaller than the velocity of the pulse wave

propagation [48, 51, 52, 53]. According to comparisons of rigid model and distensible

model calculations in human carotid artery analyzed by Perktold and Rappitsch [54],

the effect of wall compliance on the flow field and shear stress is about 15% on average.

However, the global structure of the flow and stress patterns remains unchanged, and

the rigid model is acceptable [54].
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Fig. 11. 3-D realistic geometry of stenotic straight artery consisting of arterial wall,

lumen and lipid core. (a) 2-D slice CAD images based on 2-D segmented

images of human coronary plaque in Tang’s study [6]. (b) Reconstructed

3-D straight artery where the diameter of the vessel ranges between 6 and

6.5 mm.
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The second part of this study considers 3-D simplified and realistic arterial ge-

ometries corresponding to an straight artery containing an atherosclerotic plaque.

Before the realistic model, the 3-D simplified geometry is created to compare with

the results of 2-D calculations. The dimensions and geometry of the 3-D arterial

models are similar with these of 2-D straight artery. As shown in Figure 10, the 3-D

simplified geometry of stenotic straight artery consists of arterial wall, lumen and

plaque containing the macrophage layer. The vessel diameter (do) and the length

along the central axis of the vessel (Lo) were set to 6 and 50 mm, respectively. The

wall thickness of the vessel is 0.6 mm, which may be also relatively small enough to

assume as one thin-homogeneous layer.

On the other hand, the 3-D realistic artery geometry was created with 2-D seg-

mented images containing plaque, followed the procedure used in Tang’s study [6].

As depicted in 2-D cross-sectional images in Figure 11a, three main regions were

considered, corresponding to arterial wall, lumen and lipid core. All the segmented

2-D slices were connected to reconstruct 3-D arterial geometry in CAD software,

SolidWorks 2006. For the reconstructed 3-D geometry, all the segmented 2-D slices

were connected with LOFT command to produce the smooth surface of the artery

as shown in Figure 11b. The 3-D geometry saved in IGES format was imported into

COMSOL software to accomplish the mesh generation. The 20 2-D slice set having

1 mm intervals between two slices is 22 mm long in the longitudinal direction. The

diameter of the vessel ranges between 6 and 6.5 mm. The vessel was extended uni-

formly at inlet and outlet by 16 and 30mm so that it became long enough to obtain

a fully developed flow profile at the inlet and outlet of the vessel.
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2. Plaque composition, size, distribution and location

The vulnerable plaque is based on the following experimental observations: (1)

Macrophages or inflammatory cells are responsible for the hot spots and forms a

thin layer embedded in plaque. Hot spots in atherosclerotic plaque are formed as

macrophages in lesions become active. (2) Plaque has thin cap with large lipid core

(regularly, plaques have a cap thickness of < 100 µm and a lipid core that accounts

for > 40% of plaque’s total area (volume)) [55]. (3) Size of active plaque is generally

small, and flow instabilities, such as flow separation and vorticity downstream of the

stenosis, are not easily observed with MRI or other contrast agent methods [18]. (4)

Temperature change in vulnerable plaque is correlated to macrophage density and

the depth from plaque surface at which layer of macrophages are located [4, 56]. (5)

Vulnerable plaque showing thermal inhomogeneities of 0.4 to 2.2 oC has a thickness

of 400 µm and a macrophage rich layer of between 15 and 40 µm thick [14].

Based on the plaque characteristics just described, plaque thickness (dp), macrophage

rich layer thickness (dmp), fibrous cap thickness (lf), plaque extension (lp), macrophage

extension (lmp), wall thickness (dw) are defined in Figure 12, where a longitudinal cut

of an atherosclerotic blood vessel containing a layer of macrophages is shown for 2-D

model.

The plaque is located over the arterial wall, and its thickness (dp) is chosen to be

dp = αdw, where α = 1, 2; these values of α represent the case of plaques that produce

small occlusions occurring no flow instability in flows. dmp is the macrophage rich layer

thickness which is set to 25, 50 and 100 µm. dmp is studied to analyze the relationship

between the thickness macrophage layer and plaque temperature variation. lf is the

distance between the vessel lumen and the macrophage layer and physically represents

the thickness of the fibrous cap; for the calculations, lf is set to 50 and 100 µm, these
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Fig. 12. Plaque geometry and dimensions. dw is the arterial wall thickness, dp the

plaque thickness, dmp the macrophage rich layer thickness, and lf the thickness

of the fibrous cap. lp and lmp represent the extension or length of the plaque

and the macrophage layer in the longitudinal direction, respectively.

values will serve to analyze the effect on the plaque temperature gradient when the

heat source is at different depths. Finally, lp and lmp denote the extension of the

plaque and macrophage layer in the longitudinal direction of the vessel, respectively.

The plaque is located in the regions that correspond to the lowest wall shear stress,

and lp is extended to cover these regions in each one of the vessel types considered.

The dimension lmp is given by lmp = βlp, where β = 0.5 and 0.25; these values of β

were selected from experiments showing high macrophage concentration at the center

of the lesion [57]. The plaque geometries and dimensions applied for the variables in

2-D modeling are presented in Table II.

In the 3-D simplified model shown in Figure 10, the plaque is also located over

the arterial wall with a dome shape, which has the plaque thickness (dp) of 1, 200 µm

and extensions of 2, 000 µm in the cross-sectional plane (x-axis) and 3, 500 µm in

the ℓ-axis, respectively. The macrophage layer with a cone shape is embedded inside
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Table II. 2D Plaque geometry and dimensions

Vessel Plaque Wall Macrophage Plaque Fibrous cap Macrophage
Type length thickness length thickness thickness thickness

(lp) (dw) (lmp) (dp) (lf ) (dmp)

Straight 6,670 250 1,668 250 50 25
3,335 500 100 50

750 100

Bending 3,000 270 1,500 540 50 25
100 50

100

Bifurcation 3,000 335 1,500 670 50 25
100 50
150 100

unit:(µm)

the plaque; as before, the distance between plaque/lumen surface and location of the

macrophage layer is referred as the thickness of the fibrous cap (lf), and is set to

200 µm. The macrophage layer has a layer thickness (dmp) of 100 µm and extends

800 µm in the cross-sectional plane (x-axis) and 1, 700 µm in the ℓ-axis (lmp), re-

spectively. In the 3-D realistic model of Figure 11, the macrophage layer is assumed

to be located inside the lipid core, which is directly embedded in the arterial wall.

It has the maximum plaque extensions (lmp) of 5 mm in the cross-sectional (x-axis)

and 24 mm in the ℓ-axis, respectively.

3. Blood flow and Fluid-Structure Interaction

Blood flow is assumed to be an incompressible, homogeneous and Newtonian flow,

which is acceptable in large arteries where relatively high shear rates occur [48, 51,

58]. It was reported that, although blood exhibits non-Newtonian behavior in small
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branches and capillaries, Newtonian assumption of blood is adequate for blood flow in

vessels with diameter > 100 µm [48, 52, 53, 59], and also accepted that blood behaves

as a Newtonian fluid at shear rates above 100 s−1 [59]. The study of Perktold et al.

[48] showed that an average difference between Newtonian and non-Newtonian wall

shear stress is about 10% in a model carotid artery bifurcation. Blood exhibits non-

Newtonian behavior in small branches and capillaries and, in most arteries, blood

behaves in a Newtonian fashion with a constant viscosity of 4 centipoise [53]. In

our calculations, Fluid-Structure Interaction (FSI) is neglected, based on the studies

[60, 61, 62] where neglecting the elastic nature of the arterial wall incurs an error

of approximately 10% in the velocity profiles. In addition, the presence of a water

transmural flow inside the arterial wall is neglected in the calculations because it is

very small in comparison to the blood flow in the luminal region.

B. Summary of Calculations

1. Solution method

In this study, commercially available multi-physics software package COMSOL Multi-

physics version 3.3 (COMSOL, Inc., SWEDEN) is used for modeling and solving cou-

pled and uncoupled physics problems of the blood flow, heat transfer and structural

fields. The software provides the finite element method to solve partial differential

equations (PDEs) which is especially appropriate for the discretization of irregular

geometries because of its high flexibility.

For functions of the variables, Piecewise Cubic interpolation method was used

using a piecewise cubic Hermite polynomial with continuous first derivatives. When

arguments fall outside the grid, extrapolation method selected evaluates the polyno-

mial from the closest grid point at the actual point where a value is required. As
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the element shape function, Lagrange element of second order called the quadratic

element was used to represent the nature of the solution within each element. Using

the time-dependent solver to find the solution to nonlinear unsteady problems, the

relative and absolute tolerances of 0.01 and 0.001, respectively, were entered to con-

trol the error in each integration step. To control how the solver takes its internal

time steps, the Free option was selected for the solver to its time steps arbitrarily.

The Assembly block size of 5,000 decides the number of mesh elements to process

together during the assembly process. For the solution form, Weak form is used to

convert all the equations and boundary conditions into the solution form with one

large system of PDEs and boundary conditions before solving it. The weak form is

the best to obtain a correct Jacobian Matrix and the assembly in the weak form is

faster than other forms such as general and coefficient forms.

The FEM discretization of the time-dependent PDE problem produces a system

of ordinary differential equations (ODE) or differential algebraic equations (DAE);

COMSOL uses a version of the DAE solver DASPK. To solve the DAE (Differential-

Algebraic Equation) system, COMSOL codes uses variable-order variable-stepsize

backward differentiation formulas (BDF). COMSOL solvers break down each prob-

lems into the solution of several linear systems of equations. Therefore, the solver

considering the solution time and memory requirements should be chosen between

direct and iterative solvers for linear systems. In our study, UMFPACK direct solver

was employed for 2-D calculations, and SPOOLES direct solver was worked for 3-D

calculations for using less memory than UMPACK. These direct solvers solve a linear

system by Gaussian elimination which is stable and reliable process. The solvers also

work on general systems of the form Ax = b using the multifrontal method and direct

LU factorization of the sparse matrix A, where L and U are the lower and upper

triangular matrices, respectively, in A = LU for a linear system of equations.
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2. Mesh generation and grid independence

In the domain, unstructured mesh consisting of triangular and tetrahedral elements

was generated for 2-D and 3-D geometries, respectively. The grid distribution was

non-uniform to allow a finer grid near the regions of thin plaque cap and macrophage

layer with sharp angles to get better resolution and handle the larger velocity and

temperature variations. The average numbers of triangular elements used for 2-D

geometries were 34,000 for straight artery, 28,000 for bending artery, and 25,000 for

bifurcation artery. In 3-D, the numbers of tetrahedral elements were 20,000 and

41,000 for simplified and realistic geometries, respectively.

The number of elements used for the mesh is increased systematically to check for

mesh independence; the mesh refinement is stopped when the maximum relative dif-

ference for the calculated parameter P for the different meshes satisfied the following

condition

Pfine − Pcoarse

Pfine

≤ 0.1%

where the mesh independency was verified under the steady solution of Re = 300.

The finer meshes were 70,000, 50,000 and 50,000 elements for straight, bending and

bifurcation arteries, respectively. Particularly, the maximum difference in the calcu-

lated temperature is 0.035% for the straight artery, 0.003% for the bending artery

and 0.1% for the arterial bifurcation.

3. Convergence verification

In addition to a grid independence analysis, a convergence verification is performed

for the initial condition of the transient calculation; this is needed to verify that

the initial temperature used in the calculations corresponds to a stable temperature

distribution.
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The calculations using the steady state temperature distribution are calculated

using a velocity equal to the time-average velocity during one cardiac cycle. Cal-

culations are extended for several cycles using the waveform functions as the inlet

velocity condition; the number of cycles is selected to ensure that the temperature

at several points along the plaque/lumen interface do not vary considerably between

two consecutive cycles.

For 2-D unsteady blood flow case, 6 cycles acceptable to run for the transient

computations; the difference in the temperature distribution between the fifth and

sixth cycles is 0.87 for the straight artery, 1.08 for the bending artery and 0.96% for

the arterial bifurcation, respectively.

For the case of blood flow reduction, the steady state temperature distribution

was firstly calculated corresponding to the time-average velocity of the normal cardiac

cycles Cycle 1 through 3 in each artery. Once the convergence verification for the

initial condition was performed, calculations were extended for 3 more normal cardiac

cycles using normal values for the inlet waveform (this corresponded to stage 1 of the

calculation); then blood flow was partially reduced to 50% during one cycle (Cycle

4), and finally, during the last stage of the calculation, the blood flow was drastically

reduced to 5% for eight more cycles. It was noted that, after the flow reduction in

stage 3, the temperature distribution arrives to a steady state within less than three

cycles. 6 cycles was found to be sufficient to ensure that the temperature at several

points along the plaque/lumen interface vary less than 1% between two consecutive

cycles.
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CHAPTER III

DETERMINATION OF PLAQUE TEMPERATURE UNDER DIFFERENT

CONDITIONS

Arterial wall temperature (AWT) and thermal stress at plaque/lumen surface are

analyzed in 2-D arterial geometries (straight, bending and arterial bifurcation) and

3-D arterial (straight) model. Table III presents the overall procedures for this study.

In 2-D model, three different blood flow cases are considered: steady-state, tran-

sient state and blood flow reduction. In order to determine plaque locations in each

arterial case, wall shear stress (WSS) is calculated for steady-state blood flow. The

steady calculations serve as the initial conditions for the transient case, where calcu-

lations are performed under the pulsatile inlet blood flows. Temperature distributions

are calculated at plaque/lumen surface of three arterial geometries. To analyze the

convective cooling effect of the blood flow, the case of blood flow reduction during

the introduction of a catheter is simulated by gradual reduction of the inlet pulsatile

flow. In 3-D model, thermal stresses at the plaque surface are investigated using tem-

perature distributions in transient case of a stenotic straight artery as it may become

one of important factors influencing over plaque revolution and rupture.

A. 2-D Steady Blood Flow Calculations

1. Blood flow analysis

In 2-D steady state calculations, the blood flow in the arteries is governed by Navier-

Stokes equations and continuity equation for an incompressible fluid given by

ρ (v · ∇v) = −∇P + µ∇2v, (3.1)
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Table III. Procedures of numerical calculations

Velocity & 

Temperature

Wall shear stress 
          (WSS)

2-D Transient 

- determine AWT at plaque surface
- find the important factors affecting AWT 
- define relation between AWT and the 
factors

2-D Occlusion 

blood flow 

Reduced blood flow 

during cardiac cycles

- investigate cooling effect of blood flow
- observe AWT increase by reducing 
blood flow

3-D transient 
- determine AWT at plaque surface
- calculate thermal stress by temperature 
chage

- find the most rupturable region corre-
sponding to lower WSS region 

- Straight artery, 
- Bending artery 
- Arterial bifurcation

Re = 300 & 500

ObjectivesCalculationsModel type Inlet cond.
Arterial 

geometries

2-D Steady

2-D Steady

Velocity & 

Temperature

- observe AWT during cardiac cycles
- obtain temperature history at represen-
tative points of plaque surface

Velocity & 

Temperature

Velocity, 

Temperature & 

Thermal stress

- Straight artery

Re = 300 & 500

Waveform
function

Waveform
function

- Straight artery, 
- Bending artery 

- Straight artery, 
- Bending artery 
- Arterial bifurcation

- Straight artery, 
- Bending artery 
- Arterial bifurcation

(Simplified & Realistic 
geometries)

∇ · v = 0, (3.2)

where v is the velocity of blood flow, P the blood pressure, ρ the density of blood and

µ the viscosity of blood. The boundary conditions required to solve the governing

equations (3.1) - (3.12) are as follows. In Figure 9, the velocity u at the inlet has a

parabolic profile given by,

u = 2uo

(

1 −
(

r

Ri

)2
)

, v = 0 at ℓ = 0, (3.3)

where r is the radial distance from the center of vessel and Ri is the radius of the inner-

side of the vessel. Reynolds numbers of inlet flow, defined with the mean velocity uo

and the radius of the vessel Ri, are 300 and 500 to present minimum and maximum

values, respectively, of normal pulsatile blood flow, where Re = 2uoRi/µ.

At the outlet, a fully developed flow is assumed on the velocity. No-slip conditions

are imposed at the arterial walls. Especially, an axi-symmetric condition is used at
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the centerline of straight artery.

P = 0 at ℓ = Lo, (3.4)

u = 0, v = 0 at r = Ri. (3.5)

∂u

∂r
= 0, v = 0 at r = 0. (3.6)

where u and v represent the velocity components. r is the radial distance from the

center of the vessel, Ri is the entrance radius of the inner-side of the vessel, ℓ = Lo

denotes the outlet of the vessel, and r = 0 indicates the center of the vessel.

2. Thermal analysis

Given the fact that plaque vulnerability is related to temperature inhomogeneities

within the arterial wall of an atherosclerotic artery, the temperature field in a blood

vessel is calculated by solving the energy equation. To study the thermal effect of

plaque, the artery is modeled as a vessel with variable wall thickness, which contains

a region of macrophage layer producing metabolic heat activation. In this system,

heat convection due to the luminal blood flow and heat conduction through the vessel

walls are considered. The steady state energy equation is

ρiCpi (v · ∇Ti) −∇ · (ki∇Ti) = q̇mi (3.7)

where i refers to blood (i=1), arterial wall (i=2), plaque (i=3) and macrophage

layer (i=4). Ti represents the temperature, v the velocity of blood in the lumen

region, ki the thermal conductivity, ρi the density, and CPi the specific heat. The

thermophysical parameters used in equations 3.1 and 3.7 are taken from the literature
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Table IV. Thermophysical parameters of blood, arterial wall, plaque tissue and

macrophage layer

Blood Arterial Plaque Macrophage
wall layer

ki (W/moC) 0.549 0.476 0.484 0.484
ρi (kg/m3) 1050 1075 920 920
Cpi (J/kgoC) 4390 3490 4080 4080
µi (Pa · s) 0.0033

These parameters where taken from [63, 64, 65].

[63, 64, 65] and are given in Table IV; it is assumed that the different layers in the

vessel wall (intima, media and adventitia) have the same thermal properties and that

the macrophage layer and the plaque have the same values of thermal conductivity

and heat capacity.

The term q̇mi in equation 3.7 represents the metabolic heat produced by the tissue

(i=1, 2 and 3), and is significant for the macrophage layer only (i=4), as it accounts

for the local inflammatory reaction observed in the vulnerable plaque. The metabolic

heat released by the inflamed plaque is a direct function of plaque composition and the

developmental stage of the lesion. Macrophages are involved in all evolutionary stages

of the lesion, but their activation and subsequent metabolic heat production varies

in each stage. For the calculations, the heat generation of the macrophage layer has

three different values corresponding to q̇m = 0.05, 0.1 and 0.2 W/mm3; the different

values of qm account for the heat produced by macrophages at different activation

stages. These values were chosen to reproduce the magnitude of the temperature

gradients reported in vulnerable atherosclerotic plaques (0.4 to 2.2 oC) [12, 14, 15].

The values of q̇m for the tissue containing macrophages are approximated from the

following expression
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q̇m

[

W

mm3

]

=
qcell

Vcell
, (3.8)

where Vcell is a volume of a macrophage cell and qcell is a heat produced by a single

cell. There are no reports of qcell for active macrophages in atherosclerotic plaques.

For the determination of the heat generation q̇m in plaque tissue, qcell, expressed in W ,

is defined as heat generation per macrophage cell. The volume of a macrophage cell

can be approximately obtained by the figure of Ross and Auger’s study [66]. Alveolar

macrophages produce around 20 pW/cell and other cells with high metabolic activity,

such as hepatocytes, produce 300 pW/cell [67]. Assuming that macrophages have a

volume of 30 to 60 µm3 and qcell = 103 pW/cell, the approximated metabolic heat

is between 0.016 and 0.03 W/mm3. It is convenient to note that cell volume and

metabolic activity vary depending on cellular activation.

As shown in Figure 9, at the external vessel wall (r = Ro), the boundary condi-

tions correspond to constant arterial or core body temperature (Ta), which is justified

by the fact that vessel wall is well perfused by the vasa vasorum 1.

T = Ta, at r = Ro, (3.9)

The constant blood and tissue temperature are assumed at the entrance of the vessel

(ℓ = 0).

T = Ta, at ℓ = 0, (3.10)

No blood and tissue temperature gradient is at the vessel outlet (ℓ = Lo) to represent

how blood flow removes heat from the vessel wall by convection.

1Small nutrient blood vessels which supply the walls of large arteries or veins.
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∂T

∂ℓ
= 0, at ℓ = Lo. (3.11)

where Ta is a constant that represents the arterial or core temperature and was

assigned a value of 37.5 oC. Finally, continuity of heat flux and temperature at the

lumen-plaque interface, the plaque-vessel wall interface and the plaque-macrophage

layer interface is assumed.

3. Plaque localization by low wall shear stress

It has been observed that atherosclerotic lesions are localized at the regions of low

and oscillatory wall shear stress [1, 24, 26]. This occurs when the local mass transport

of large sized atherogenic molecules is dominated by blood flow convection. In this

section, wall shear stress (WSS) of stenotic straight artery is calculated to validate

with the results of other studies [26, 45, 68] under steady blood flow condition. After

the validation, the atherosclerotic plaques are set up in the regions showing the lowest

wall shear stress through arterial walls of a bending artery and arterial bifurcation.

a. Validation of plaque location in straight artery

A stenotic straight artery has a local constriction where the plaque is positioned.

The geometric parameters used are matched to a human abdominal aorta. The size

of plaque is small enough to cause less flow momentum, which no flow separation is

occurred at the plaque region. As a result of calculations, Figure 13 illustrates that

WSS is peaked at the local constriction region having the highest velocity of blood

flow. The peak magnitude of WSS are 7.9 and 16.3 Nu/m2 for Reynolds numbers

of 300 and 500, respectively. The lowest values of WSS at the rear region of the

plaque are −0.7 and −1.3 Nu/m2 in Reynolds numbers of 300 and 500, respectively.
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Fig. 13. The comparison of the computed values for (a) Re = 300, (b) Re = 500 and

(c) reference values with a 75% area-reduction plaque at Re = 300 (Ethier [26]

and Rappitsch [45, 68]), which were calculated in a stenotic straight artery.
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Comparing to the studies of Ethier [26] and Rappitsch [45, 68] in Figure 13c, the WSS

is qualitatively similar on the pattern of sudden increasing and decreasing between 0

and 270 dyne/m2 of Re = 300 at the contraction and expansion regions of a plaque.

The quantitative difference of the values is subject to the different geometry of plaque

applied; their stenosis models [26, 45, 68] produced a 75% area-reduction of lumen.

b. Bending and bifurcation arteries

According to direct measurements and other computational models of WSS [25,

32, 69], the most susceptible regions of atherosclerotic plaque are on the order of

±4 Nu/m2. Hence, the plaques in bending and bifurcation arteries could be posi-

tioned at the lower WSS regions, which is under the order of ±4 Nu/m2. Figure 14

shows the characteristics of WSS at Re = 300 and 500 at the lower wall in bending

artery and the outer ECA in arterial bifurcation. In bending artery, the minimum

shear stress is occurred at the region R1 (l/lp = 0.45 to 0.52) and the region R2

(l/lp = 0.82 to 0.95) in Figure 14a. The sharp rise of WSS at the first bend along

lower arterial wall presents the momentum of a blood flow. For bending artery, the

region R1 is selected to locate the plaque. For arterial bifurcation in Figure 14b, the

minimum WSS to locate the plaque is occurred on R1 (l/lp = 0.4 to 0.55). Based on

the computed WSS, the plaques are positioned at the sites of the lowest WSS in each

artery as shown in Figure 15.

4. Results of 2-D steady blood flow

In this section, the temperature distribution along the plaque/lumen interface will be

analyzed to investigate what factors mainly contribute to temperature inhomogene-

ity through varying the following parameters; (1) metabolic heat generation pro-

duced by inflammatory cells in macrophage layer (q̇m), (2) thickness and extension of
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macrophage layer (dmp and lmp), (3) depth at which macrophage layer is embedded

(lf), and (4) size of plaque (dp = αdw). As the results of the parametric study, the

maximum temperature changes ∆Tmax = (Tmax−Ta) at the interface of plaque/lumen

surface are presented in Table V. In addition, the flow instabilities occurred at each

artery will be discussed because the temperature distribution is also affected by the

flow characteristics.

a. Variation of q̇m

As the first variable parameter, the metabolic heat generation q̇m is varied to inves-

tigate the effect of the inflammatory cell density, which takes the values of 0.05, 0.1

and 0.2 W/mm3. Figure 16 indicates how the temperature along the plaque/lumen

interface is varied with the metabolic heat (q̇m) in the macrophage layer. These fig-

ures present the temperature change ∆T = (T − Ta) of straight, bending artery and

bifurcation artery at Re = 300 and 500.

In Figure 16a, ∆Tmax of the straight artery (Re = 300) is registered at 0.26 oC

for q̇m = 0.05 and 1.03 oC for 0.2 W/mm3, respectively. The maximum temperature

∆Tmax occurs at the downstream edge of the plaque because the blood flow forces

temperature distribution to further downstream with convection effect.

For bending artery as shown in Figure 16b, ∆Tmax at Re = 300 are 0.21 and

0.82 oC for q̇m = 0.05 and 0.2 W/mm3, respectively. ∆T has the lower increase

compared to the straight artery because the cooling effect by blood flow momentum

is stronger at the plaque upstream, which contributes to the transport of thermal

energy from the plaque surface to the blood flow. Compared to the temperature

change of straight arterial case, ∆Tmax occurs closer to the center of plaque where the

boundary layer encounters a separation point. The temperature is relatively higher

at the rear of plaque where the convective cooling effect from plaque surface is weaken
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Table V. Maximum temperature changes (∆Tmax) at the plaque surfaces of the differ-

ent vessel types for steady-state calculations

Variation of Straight Bending Bifurcation
Parameters Re300 Re500 Re300 Re500 Re300 Re500

q̇m (W/mm3)
0.05 0.26 0.22 0.21 0.17 0.37 0.40
0.1 0.52 0.45 0.41 0.35 0.75 0.81
0.2 1.03 0.90 0.82 0.69 1.50 1.62

(From Figure 16)

dmp (µm)
25 0.52 0.45 0.41 0.35 0.75 0.81
50 1.00 0.87 0.80 0.67 1.47 1.59
100 1.87 1.62 1.53 1.3 2.84 3.08

(From Figure 17)

lf (µm)
50 0.52 0.45 0.41 0.35 0.75 0.82
100 0.45 0.39 0.37 0.31 0.70 0.76
150 N/A N/A N/A N/A 0.65 0.71

(From Figure 19)

dp (µm)
250 0.52 0.45 N/A N/A N/A N/A
500 0.55 0.47 N/A N/A N/A N/A

(From Figure 21)

lmp (µm)
1,667 0.68 0.58 N/A N/A N/A N/A
3,335 0.88 0.76 N/A N/A N/A N/A

(From Figure 22)

(unit: oC)
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Fig. 16. Temperature change at the plaque/lumen interface produced by variations of

q̇m in (a) straight artery with lmp = 3, 335, dmp = 25, dp = 250, and lf = 50

µm, (b) bending with lmp = 1, 500, dmp = 25, dp = 540, and lf = 50 µm, and

(c) bifurcation with lmp = 1, 500, dmp = 25, dp = 670, and lf = 50 µm. The

black lines correspond to Re = 300 and the gray lines represent Re = 500.

by the flow separation.

In the arterial bifurcation (Figure 16c), ∆Tmax at Re = 300 registers 0.37 and

1.62 oC for q̇m = 0.05 and 0.2 W/mm3, respectively. ∆Tmax occurs relatively closer

to the right edge of the plaque. Comparing ∆T at Re = 300 and 500, the higher veloc-

ity (Re = 500) records higher temperature with the lower cooling effect of blood flow

due to the flow circulation. In arterial bifurcation, flow circulation is observed at the

outer wall of ECA, which affects the temperature distribution. The flow circulation

is determined by velocity of blood flow, which is depicted in Figure 24. The details

about quantifying the effect of flow circulation over the temperature variation will be

discussed in the following subsection of Flow instabilities due to arterial geometries.
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Fig. 17. Temperature change at the plaque/lumen interface produced by variations of

dmp at q̇m = 0.1 W/mm3. The results correspond to (a) straight artery with

lmp = 3, 335, dp = 500, and lf = 50 µm, (b) bending artery with lmp = 1, 500,

dp = 540, and lf = 50 µm, and (c) arteria bifurcation with lmp = 1.500,

dp = 670, and lf = 50 µm. The black lines correspond to Re = 300 and the

gray lines represent Re = 500.

b. Variation of dmp

The macrophage layer thickness dp is varied to investigate the effect of the macrophage

layer size, which were 25, 50 and 100 µm. As shown in Figure 17 and Table V, ∆Tmax

for dmp = 25 and 100 µm at Re = 300 is varied between 0.52 and 1.87 oC in straight

artery, 0.41 and 1.53 oC in bending artery, and 0.75 and 2.84 oC in arterial bifur-

cation, respectively. At Re = 300 and 500, increasing dmp of 100% produces the

increasing ratio of ∆Tmax to 92 and 87% for straight, 95 and 91% for bending, and 96

and 93% for arterial bifurcation, respectively. As the result, ∆Tmax increases propor-

tionally to the macrophage layer thickness dmp with a linear relationship, observed

in the experimental studies [12, 15]. The slopes are presented in Table VI, which

depends on the arterial geometry as well as other plaque parameters.
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Fig. 18. Maximum temperature change ∆Tmax at the plaque/lumen interface pro-

duced by variations in the macrophage layer thickness dmp. The linear re-

lationships are fitted in the line ∆Tmax = b + mdmp, where values for the

constants b and m are given in Table VI for each vessel geometry. These

calculations correspond to q̇m = 0.1 W/mm3, lf = 50, dp = 500 (straight),

540 (bending), and 670 µm (bifurcation) at Re = 300.

Table VI. Values of slope (m) and intercept (b) in Figure 18 where the relations of

∆Tmax = b + mdmp are shown.

Vessel Type m b r

Straight 0.0193 0.0819 0.9992
Bending 0.0148 0.0476 0.9999
Bifurcation 0.0278 0.0641 0.9999

These calculations correspond to the following parameters:
q̇m = 0.1 W/mm3, lf = 50 µm, Re = 300, and dp = 500
(straight), 540 (bending), 670 (bifurcation) µm.
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Table VII. Values of slope (m) and intercept (b) for Figure 20 where the lines

∆Tmax = b + mlf are shown.

Vessel Type m b r

Straight -0.0019 1.1722 0.9999
Bending -0.0008 04495 1.0000
Bifurcation -0.0012 0.7521 0.9999

These calculations correspond to the following parameters:
q̇m = 0.1 W/mm3, dmp = 50 µm, Re = 300 and and dp =
500 (straight), 540 (bending), 670 (bifurcation) µm.

c. Variation of lf

The distance lf between the macrophage layer and the plaque/lumen interface is also

one of the important parameters affecting the plaque temperature distribution. The

effect of variations of lf referred as fibrous cap thickness is shown in Figure 19 for

the cases of the straight, bending and arterial bifurcation. Table V presents that the

maximum ∆Tmax for lf = 50 and 100 µm at Re = 300 is between 0.52 and 0.45 oC

in the straight artery, 0.41 and 0.37 oC for bending artery, and 0.75 and 0.7 oC for

arterial bifurcation, respectively.

It is observed that ∆Tmax is decreased as the magnitude of lf is increased, and

the temperature variations between the cases of lf = 50 and 100 µm are comparably

small. Figure 20 shows how ∆Tmax decreases as the magnitude of lf increases in each

vessel; the inverse relationship between the maximum temperature ∆Tmax and the

fibrous cap thickness lf has been also observed in experimental study [15]. The values

of slope and intercept calculated are presented in Table VII.
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Fig. 19. Temperature change at the plaque/lumen interface produced by variations

of the fibrous cap thickness lf , corresponding to (a) stenotic straight artery

with q̇m = 0.1 W/mm3, lmp = 3, 335, dp = 250, dmp = 25 µm, (b) bending

artery with lmp = 1, 500, dp = 540, dmp = 25 µm, and (c) arterial bifurcation

with lmp = 1, 500, dp = 670, dmp = 25 µm.
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d. Variation of dp

The effect of the plaque size is considered by varying plaque thickness dp, which were

250 and 500 µm. In the straight artery, ∆Tmax at Re = 300 is ranged between 0.52

and 0.55 oC for dp = 250 and 500 µm, respectively (Table V and Figure 21). As

the dp is increased to 100%, the increases of ∆Tmax are only 6 and 4% for Re = 300

and 500, which indicates that the size of the plaque does not considerably affect

the temperature on the plaque/lumen interface. However, the significant increase

of dp implies that the vessel might be occluded to lead to blood flow reduction and

considerably affect temperature variation, which is discussed in the section of 2-D

Plaque Temperature during Blood Flow Reduction. It is also observed that, as dp is

varied to 500 µm, ∆T slightly moves to the downstream of the plaque.
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of the macrophage layer thickness lmp = 1, 667 and 3, 335 µm for a straight

artery. Results shown correspond to q̇m = 0.1 W/mm3, dp = 250, dmp = 50 ,

lf = 100 µm at Re = 300 and 500.

e. Variation of lmp

The effect of the macrophage layer length is analyzed by the variations of lmp in the

straight artery. In Figure 22, ∆Tmax at Re = 300 is between 0.68 and 0.88 oC, for

lmp = 1, 667 and 3, 335 µm, respectively (Table V). As the length of the macrophage

layer is reduced by half, ∆Tmax is reduced from 0.88 to 0.68 oC at Re = 300, and

from 0.76 to 0.58 oC at Re = 500.

f. Flow instabilities due to arterial geometries

Another important factor influencing over the AWT is the effect of flow instabili-

ties because the temperature distribution is characterized by the blood flow pattern

depending on the arterial geometries. Figure 23 describes the streamlines and tem-

perature contours around atherosclerotic plaques at three different arteries. The flow

instabilities presented by the streamlines affect the overall pattern of temperature
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Fig. 23. Streamlines (left) and temperature contours (right) around atherosclerotic

plaques at three different arteries: (a) straight, (b) bending and (c) arterial

bifurcation. Results shown correspond to Re = 500 and q̇m = 0.1 W/mm3.
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distribution at each artery: no flow instability at straight artery, flow separation at

bending artery and flow circulation at arterial bifurcation. As shown in the stream-

lines of straight artery (Figure 23a), the blood smoothly flows from inlet to outlet

without any flow instability. The temperature contours shows the convective cooling

effect of blood flow. Meanwhile, bending artery (Figure 23b) presents the flow insta-

bilities at the rear side of plaque where the boundary layer of blood flow encounters

a separation point. Compared to the temperature change of straight arterial case,

the temperature of bending artery is relatively higher at the rear of plaque where

the convective cooling effect is weaken by the flow separation. In arterial bifurca-

tion (Figure 23c), the streamlines shows two incompressible triangular cavity flows

at the front and rear regions of the plaque, which are defined as flow circulations.

The temperature distribution is directly affected by the presence of flow circulation.

The thermal transport at the plaque surface is varied by the size of flow circulation

resulting from velocity of blood flow. The details about quantifying the effect of flow

circulation over the temperature variation is discussed in following section.

Effect of flow circulations

In the calculations of the arterial bifurcation (Figs. 16c, 17c and 19c), it is ob-

served that the relation between ∆Tmax and Reynolds number (Re = 300 and 500)

is reversed to the cases of straight and bending arteries due to the flow instabilities

around the plaque. Figure 24a illustrates that the streamlines present two flow cir-

culations at the front and rear regions of the plaque. As the flow circulations become

bigger along the increasing Reynolds number, the cooling effect of the blood flow

reduces over plaque/lumen surface. It explains why the larger ∆T of the arterial

bifurcation is occurred in Re = 500 (Figure 16c), which is contrary to the cases of

bending and straight arteries (Figs. 16, 17 and 19).

To quantify the effect of flow circulation over the temperature variation of blood
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Fig. 24. (a) Flow circulation and (b) temperature contours observed around an

inflamed plaque located in an arterial bifurcation. Results shown corre-

spond to two different Reynolds Numbers (Re = 300 and Re = 500) and

q̇m = 0.1 W/mm3, dp = 670, dmp = 25, lf = 100 and lmp = 1500 µm.
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flow surrounding the plaque, the absolute circulation is calculated in the anterior

and posterior regions of the plaque as indicated in Figure 24a. These figures show

the stream lines associated to the blood flow in the arterial lumen. The absolute

circulation is calculated using the relationship based on the study [70],

ΓABS/Atot = (Σ|ξ|∆A)/Atot, (3.12)

where Atot is the total wetted area of the region of interest, ξ is the vorticity cal-

culated by the curl of the velocity field, and ∆A represents the area of each mesh

element inside the interest region. The values of the absolute or modified circulation

(ΓABS/Atot) are calculated for the different Reynolds numbers considered, and are

given in Table VIII. These calculations are presented to quantify the flow structure

near the plaque and relate such flow property to the temperature variation near the

inflamed plaque. Figure 24b shows a series of temperature contours surrounding a

plaque in an arterial bifurcation. As a result, the blood flow cooling effect decreases,

as blood flow has the higher flow rate, because of the increase of flow circulation by

the blood flow. Hence, the higher temperature is detected with higher Re in the

plaque surface of arterial bifurcation.

g. The effect of metabolic heat generation

In a chemical reaction, the temperature (i.e., energy content of the system) is linearly

correlated with the rate of product formation, which is called Q10 law [71]. It states

that for every 10 oC increase in temperature, there are almost two times increase in

the rate of the chemical reaction. According to the Q10 law, the rate of metabolic heat

generation in atherosclerotic plaque can be promoted more quickly as temperature

increases. The Metabolic heat production takes place because molecules such as
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Table VIII. Average absolute circulation (ΓABS/Atot) in the anterior (RA) and poste-

rior (RP ) regions of an atherosclerotic plaque in an arterial bifurcation.

(unit: s−1)

Re. No. RA RP

300 87.1 101.5
400 105.2 120.2
500 122.9 139.5
600 140.0 159.2

The relationship for ΓABS/Atot is obtained from [70], where
ΓABS is the modified or absolute circulation parameter,
and Atot is the total wetted area over which ΓABS is cal-
culated. The velocity profile is calculated considering the
geometry indicated in Figure 15 and following parameters:
q̇m = 0.1 W/mm3, dp = 500, dmp = 50, lf = 50 and
lmp = 1500 µm.

monocyte, macrophages, low-density lipoprotein (LDL) and oxygen (O2) are moving

and collide together to form the chemical bonds to hold them together in the plaque.

The increased temperature due to the metabolic heat production provides the required

energy to increase the moving speed of molecules. It is shown mathematically in

the Arrhenius equation [71]; for a reaction between two substances A and B, the

effect of changing the concentrations of the reactants is shown on the rate equation,

rate = k(A)a(B)b, where superscripts of a and b present the order of reaction with

respect to A and B. The rate constant, k, of Arrhenius equation is defined as

k = Ae−
EA

RT , (3.13)

where A is the frequency factor, taken as constant for a small temperature change of

10 oC, EA denotes the minimum energy needed for the reaction to occur, R presents

the gas constant, 8.32 JK−1mol−1, and T is the temperature in kelvin. If the temper-
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ature in plaque is increased by 4 oC from 37.5 to 41.5 oC, the values of the fraction

with an activation energy of 50 kJmol−1 are varied from 3.84 × 10−9 to 4.91 × 10−9

in Eq. 3.13. We can see that the fraction of the molecules to react increases almost

28% by increasing the temperature by 4 oC. However, in this study, we did not con-

sider Q10 law, the relationship between the temperature and the rate of metabolic

reaction. Thus, the speed of the metabolic reaction is not governed by temperature

increase in the plaque.

5. Conclusions of 2-D steady blood flow

According to the results of the parametric studies, the variation of ∆T was in pro-

portion to metabolic heat generation qm, macrophage layer thickness dmp and plaque

thickness dp, whereas varied inversely with fibrous cap thickness lf .

∆Tmax was located behind the apex of the plaque; the location of ∆Tmax was

governed by arterial geometry, distribution of macrophage layer, and flow instabilities

such as flow separation and flow circulation. In this study, flow separation and circu-

lation were observed in bending artery and arterial bifurcation, respectively. In bend-

ing artery, the thinner boundary layer before separation point enforced the convective

cooling effect of blood flow at the upstream of the plaque. In arterial bifurcation, as

blood velocity increased, the convective cooling effect at plaque/lumen surface was

reduced with increasing the size of flow circulation over the plaque surface.

ten Have et al. have reported that the temperature difference at the lumen

depends on heat source (macrophage layer) size, source geometry and heat source

production, but no arterial geometry effect was mentioned for temperature distribu-

tion because the geometry used for a model was only a straight tube of a coronary

artery [119]. In our study, however, it was also observed that the effect of arterial

geometry was one of the significant factors affecting temperature distribution and
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maximum temperature location because different geometries established the different

blood flow profiles and the occurrence of flow instabilities resulting in the variation

of local heat transfer at the plaque/lumen interface. For example, compared to the

maximum temperature of straight artery case, those of the bending artery and the

arterial bifurcation were approximately 20% lower and 60% higher, which was led by

the effect of flow instabilities in terms of different arterial shape.

As the result, metabolic heat generation qm accounting for macrophage popula-

tion and macrophage layer thickness dmp had more influence over the plaque temper-

ature. Flow separation and circulation caused by arterial geometry also affected the

AWT distribution. Furthermore, arterial wall temperatures were significantly influ-

enced by the blood flow running through the vessel which was referred as the cooling

effect of blood flow [16, 21]. In the presence of blood flow, the best spot to measure

plaque temperature was between the middle and the far edge of the plaque where the

point of maximum temperature could be located. It could be also postulated that

direct measurements should be taken very close to the plaque/lumen surface.

B. 2-D Unsteady Blood Flow Calculations

1. Blood flow analysis

Transient calculations are carried out under the different physiological pulsatile flows

of the arteries considered, as shown in Figure 25. The waveform functions consider

a heart rate of approximately 60 beats per minute. The physiological flow profile

of straight artery was obtained from the abdominal aorta illustrated by McDonald

[72]. The waveform velocity function is characterized by a large forward flow during



56

time(sec)

V
e

lo
ci

ty
 (

m
/s

)

 Straight artery  Bending artery Arterial bifurcation

(a) (b) (c)

0.2

0.4

0.6

0
0 0.2 0.80.60.4 1

0

0.1

0.2

0.3

time(sec)

0 0.2 0.80.60.4 1

time(sec)

0 0.2 0.80.60.4 1

0.1

0.06

0.14

0.18

0.22

Fig. 25. Pulsatile flow waveform used at the inlet of (a) a straight artery [72], (b) a

bending artery [59], and (c) an arterial bifurcation [73, 74].

a systole 2 and a slightly negative flow during a diastole 3. The mean velocity is

0.154 m/s corresponding to the mean Reynolds number of 303, and the maximum

and minimum velocities are 0.57 and −0.05 m/s, respectively. The pulsatile profile

of bending artery was recorded in the right coronary artery of a normal 56-year-old

female [59]. The velocity profile contains some periods of reverse flow as well as

periods of rapid acceleration and deceleration. The waveform function was scaled to

yield a mean inflow velocity of 0.08 m/s corresponding to the mean Reynolds number

of 92, the maximum velocity is 0.21 m/s, and the minimum velocity is −0.021 m/s.

The waveform of bifurcation artery was obtained experimentally by Gijsen et al. [73].

The Reynolds number corresponded by the mean velocity of 0.096 m/s is 92. The

flow velocity shows a rapid acceleration and deceleration of systole (the maximum

velocity is 0.0171 m/s) and then gradually adapt to the slower inlet velocity changes

2The contraction of the heart by which the blood is forced onward and the circu-
lation kept up.

3The heart rests and no blood is ejected.
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during a diastole.

Arterial blood flow is described by the time-dependent Navier-Stokes equations

for incompressible, homogenous and Newtonian fluids:

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇P + µ∇2v, (3.14)

∇ · v = 0, (3.15)

where v is the velocity vector of the blood, t the time, P the pressure of blood, ρ the

density of blood and µ the viscosity of blood. The velocity profile at the inlet (ℓ = 0)

is assumed to be uniform with a pulsatile waveform as a function of time as shown

in Figure 25.

u = u(t), v = 0 at ℓ = 0, (3.16)

where the lengths of inlets are extended to 10D for bending artery and to 5D for

arterial bifurcation because more inlet distances are required for the velocity profile

to become fully developed. The same boundary conditions used in the steady case are

applied (Figure 9): no-slip conditions at the arterial walls, u = 0 and v = 0 at r = Ri,

and a fully developed flow at the outlet, P = 0 at ℓ = Lo. The initial condition of

the unsteady case is obtained from the calculations of 2-D steady blood flow case

where the time-averaged velocities uo are applied with 0.154, 0.08 and 0.096 m/s for

straight, bending and arterial bifurcation, respectively.

2. Thermal analysis

To determine the temperature of arterial wall and the inflamed plaque, time-dependent

energy equation with heat generation term is solved. The transient energy equation
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is

ρiCPi

(

∂Ti

∂t
+ (v · ∇) Ti

)

−∇ · (ki∇Ti) = q̇mi (3.17)

where i refers to blood (i = 1), arterial wall (i = 2), plaque (i = 3) and macrophage

layer (i = 4). Ti represents the temperature, v the velocity of blood in the lumen

region, ki the thermal conductivity, ρi the density, and CPi the specific heat. q̇mi rep-

resents the metabolic heat produced by the macrophage layer (i = 4). The mechanical

properties and applied assumptions for each domain such as blood flow, arterial wall

and plaque structure, are the same as the case of steady blood flow (Table IV). Also,

the boundary conditions considered for the energy equation (3.17) are the same as

the case of 2-D steady flow (Figure 9): fixed temperature at the inlet and external

vessel wall (T = Ta at ℓ = 0 and r = Ro), and no temperature gradient at the vessel

outlet (∂T
∂ℓ

= 0 at ℓ = Lo).

3. Results of 2-D unsteady blood flow

In this section, the temperature variations during cardiac cycles are determined with

varying q̇m, dmp and lf because q̇m and dmp have more influence over the plaque

temperature, and lf has the inverse relation on temperature. Flow instabilities due

to blood flow momentum at different arterial geometries are observed, which present

the effect of inlet pulsatile flow over the arterial wall temperature.

a. Variation of q̇m

During cardiac cycle, temperature distribution at plaque surface varies with three

different heat generations, q̇m = 0.05, 0.1 and 0.2 W/mm3. Figure 26 shows the

snapshots of temperature distribution along the plaque/lumen surface at different
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times through cardiac cycles; the times selected represent when the velocity profile

(Figure 25) presents the maximum, the minimum or other meaningful behavior at

the plaque region. The horizontal axis coincides with the plaque/lumen interface.

For straight artery (Figure 26a), the representative times were selected in terms

of the characteristic of inlet pulsatile flow (Figure 25) as follows: (a) t = 2.0 & 3.0 are

the times for beginning and ending of the cycle, (b) t = 2.2 shows the peak velocity

(c) t = 2.4 presents the beginning and the ending of a reverse flow, (d) t = 2.6 is

the returning to the small forward flow, and (e) t = 2.8 corresponds to the maximum

point of the small forward flow. During a cardiac cycle, the temporal temperature

change is varied between 0.3 and 1.1 oC for q̇m = 0.05 and 0.2 W/mm3, respectively.

The maximum spatial temperature ∆Tmax occurs closer to the downstream edge of

the plaque at l/lp=0.7, which is almost identical to the steady-state solution. There is

no flow instability during the cycle, and the location of maximum spatial temperature

∆Tmax stay at almost constant location. After the maximum blood flow (Re = 1, 125)

occurs at t = 2.2s, the maximum convective effect at the plaque is shown around

t = 2.4s due to the time delay from the inlet flow. After passing a reverse flow,

the temperature variation at t = 2.6s is immediately recovered to the temperature

pattern as the steady-state case.

In bending artery (Figures 26b and 25), the representative times were chosen

as follows: (a) t = 4.0 and 5.0s represents the beginning and the ending of the

cardiac cycle, (b) t = 4.2 is the maximum of a reverse flow, (c) t = 4.4s is the

peak of a small forward flow occurs, (d) t = 4.6 is the deceleration phase, and

(e) t = 4.8s is an approximately halfway through the rapid forward flow. It is

shown that temporal temperature changes are varied between 0.2 and 1.1 oC for

qm = 0.05 and 0.2 W/mm3, respectively. The location of maximum temperature

varies to the characteristics of inlet blood flow, i.e. temporal ∆Tmax is reduced
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Fig. 26. Transient temperature distribution produced by variations of heat generation

q̇m (W/mm3) for (a) straight artery (t = 2.0 to 3.0s), (b) bending artery

(t = 4.0 to 5.0s), and (c) arterial bifurcation (t = 4.0 to 5.0s).
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at 4.4s, and increases after t = 4.6s. Spatial ∆Tmax occurs closer to the center

of the plaque when the blood velocity is reduced at t = 4.4s, and moves to the

downstream edge of the plaque as blood flow increases in the last moment of the

cardiac cycle from t = 4.6s. The variation of spatial maximum temperature ranges

between 0.5 < l/lp < 0.75 during the cardiac cycle; ∆Tmax is located between the

vertical lines drawn in the figures (the solid line represents the location of ∆Tmax at

t = 4.0, 4.6, 4.8 and 5.0s and the dashed line indicates ∆Tmax at t = 4.2 and 4.4s). It

is also observed that the temperature goes higher at the downstream edge of plaque

(between t = 4.8 and 5.0s) because the flow separation caused by a large forward flow

prevent the transport of thermal energy from the plaque surface.

For arterial bifurcation in Figure 26c, the representative times are t = 4.0, 4.2,

4.4, 4.6 and 4.8s. In Figure 25, the velocity waveform for the bifurcation does not

present significant variation except the peak velocity at t = 4.2s. Therefore, the maxi-

mum temperature and temperature distribution do not spatially or temporally change

during the cycle. The locations of the spatial maximum temperature are relatively

constant at the downstream of the plaque between 0.6 < l/lp < 0.7. As the blood

velocity increases between t = 4.2 and 4.4s, the temperature at the plaque/lumen

interface increases with the effect of flow circulation; it was previously discussed in

the steady-state case where the presence of flow circulation reduces the cooling effect

at the anterior and posterior of the plaque. These flow circulations produce incom-

pressible triangular cavities which keep circular flow regions resulting in less transport

thermal energy. Because of the effect of flow circulations, temperature distributions

do not dramatically vary in spite of a significant peak of pulsatile flow at t = 4.2s.
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b. Variation of dmp

In Figure 27, the temperature distribution at different times are also shown with vary-

ing the macrophage layer thickness of dmp = 25, 50 and 100 µm with the metabolic

heat of qm = 0.1 W/mm3.

Figure 27a presents that maximum temporal temperature ∆Tmax is between 0.4

and 2.0 oC for dmp = 25 and 100 µm, respectively, in straight artery. As dmp in-

creases, ∆Tmax proportionally increases, which shows a good agreement with the

steady-state calculations. During a cardiac cycle, the maximum spatial temperature

∆Tmax constantly occurs at l/lp = 0.7 on the right edge of the plaque.

For bending artery in Figure 27b, the maximum temporal temperature ∆Tmax

are ranged from 0.5 oC for dmp = 25 to 2.0 oC for 100 µm. ∆Tmax for dmp = 100 µm

decreases to 1.5 oC at t = 4.4s, and increases to 2.0 oC after t = 4.8s. During the

cardiac cycle, the locations of the maximum spatial temperature ∆Tmax move between

0.5 < l/lp < 0.75; the locations are closer to the center of the plaque under the lower

blood velocity, and move to the downstream edge of the plaque as blood flow increases

during a cycle.

Figure 27c shows that the maximum temperature in the arterial bifurcation are

ranged from 0.5 to 3.0 oC for dmp = 25 and 100 µm. The temperature distributions

do not change a lot during the cycle, and the maximum temperature locations occur

constantly at between 0.6 < l/lp < 0.7, which is associated with the presence of flow

circulation near the plaque.

c. Variation of lf

Figure 28 shows that the temperature variations are reversely related with the fibrous

cap thickness (lf = 25, 50 and 100 µm). For straight artery, Figure 28a presents that
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Fig. 27. Transient temperature distribution produced by variations of macrophage

layer thickness dmp for (a) straight artery (t = 2.0 to 3.0s), (b) bending

artery (t = 4.0 to 5.0s), and (c) arterial bifurcation (t = 4.0 to 5.0s).
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Fig. 28. Transient temperature distribution produced by variations of fibrous cap

thickness lf for (a) straight artery (t = 2.0 to 3.0s), (b) bending artery

(t = 4.0 to 5.0s), and (c) arterial bifurcation (t = 4.0 to 5.0s).
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the maximum temporal temperature ∆Tmax is between 0.8 and 1.2 oC for lf = 25 and

100 µm, respectively. The maximum temperature is decreased as the magnitude of

lf is increased with an inverse relationship, but the temperature variation is relatively

small, comparing to the other cases (qm and dmp). The locations of maximum spatial

temperature ∆Tmax are occurred at l/lp = 0.7 on the right edge of the plaque. Figure

28b for bending artery shows that the maximum temporal temperature for lf =

100 µm decreases to 0.7 oC at t = 4.4s, and increases to 1.0 oC at t = 5.0s. The

maximum spatial temperature ∆Tmax occurs closer to the center of the plaque, and

moves to the downstream edge of the plaque, which is between 0.5 < l/lp < 0.75. For

arterial bifurcation, Figure 28c presents that maximum temporal temperature ∆Tmax

varies with a range between 1.5 and 1.8 oC for lf = 25 and 100 µm, respectively.

During a cardiac cycle, the maximum spatial temperature constantly occurs at the

rear side of the plaque between 0.6 < l/lp < 0.7.

As the fibrous cap thickness lf increases, the maximum temperature ∆Tmax de-

creases. Compared with the variation of q̇m and dmp during a cycle, the temporal

variation of ∆Tmax is considerably small because the metabolic heat from macrophage

cell layer is not transferred well through the fibrous cap having the comparably lower

thermal conductivity. It is observed that spatial and temporal ∆Tmax in the transient

case are affected by the characteristics of the inlet waveform function containing a

forward and a reverse flow as well as the effect of the vessel geometry. As a result,

the variation of temperature distribution is affected by the characteristics of the inlet

blood flow, the flow instabilities due to the arterial geometry effect, and the arterial

wall conductivity.
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Fig. 29. Three thermal regions along the plaque/lumen surface designated by (1) a

front region (P1, P2 and P3) which has no conduction and convection ef-

fect, (2) a middle region (P4 through P7) which has both of conduction and

convection effects, and (3) a rear region (P9, P10 and P11) which has no

conduction, but significant convection effect)

d. Thermal regions at the plaque surface

In order to trace the temperature history over the plaque/lumen interface during

cardiac cycles, eleven representative points are selected in Figure 29. According to

the temperature histories at the representative points, three thermal regions with the

different patterns of temperature variations are observed in each arterial case. The

regions are identified by: (1) a front region where temperature is not varied much

because it is not affected by the presence of the macrophage layer but also by the

pattern of blood flow (no conduction and no convection effect); (2) a middle region

where temperature is directly affected by the macrophage layer dimensions and the

blood flow (conduction and convection effect); and thirdly, (3) a rear region where
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the convective heat transfer is dominant due to the blood flow over the presence of

the macrophage layer (no conduction but convection effect). To study such regional

variations of the plaque temperature in details, four points (A, B , C and D) are

reselected out of the representative points. Point A corresponds to the center of the

plaque (P6), point B presents the end of the mid region (P8), point C is the beginning

of the rear region (P9), and point D is the end of the plaque (P11).

e. Variation of q̇m at representative points

Figure 30 shows the temperature histories at the representative four points (A, B, C

and D) with q̇m = 0.05, 0.1 and 0.2 W/mm3 during three cardiac cycles.

For the straight artery, the temperatures at points A, B and C are changed from

0.15 to 0.27 oC at q̇m = 0.05 W/mm3, 0.3 to 0.53 oC at q̇m = 0.1 W/mm3, and 0.5

to 1.1 oC at q̇m = 0.2 W/mm3 (Figure 30a). It is shown that the temperature varia-

tions are proportionally increased with increasing heat generation q̇m. The maximum

temperature occurs at point C, the beginning of a rear region. The temperature

changes of point B are almost overlapped by those at point C. Meanwhile, at points

A and B on a middle region, the temperature changes follow the similar patterns

corresponding to the waveform of inlet pulsatile flow. The temperature changes at

point D remains relatively constant during the cycles. In the case of straight artery,

∆T at the middle regions (A and B) is varied depending more on the characteristics

of an inlet velocity.

In Figure 30b for bending artery, the temperature changes at points A, B and

C occurs at between 0.2 and 1.1 oC at q̇m = 0.2 W/mm3. The temperature are pro-

portionally increased with increasing heat generation q̇m. The maximum temperature

is occurred at point C. Comparing to the case of straight artery in figure 30a, the

temperature variations at points B and C show the similar pattern with more dras-
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Fig. 30. Temperature history under the variation of heat generation, q̇m = 0.05, 0.1

and 0.2 W/mm3, during 3 cardiac cycles. Temperature is recorded at the

representative four points (A, B, C and D) at plaque surface of (a) straight

artery (dp = 250, dmp = 25, lf = 50 and lmp = 3, 335 µm), (b) bending

artery (dp = 540, dmp = 25, lf = 50 and lmp = 1, 500 µm) and (c) arterial

bifurcation (dp = 670, dmp = 25, lf = 50 and lmp = 1, 500 µm). Temperature

.
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tic changes due to flow separation. The characteristic of inlet blood flow combined

with the geometry effect of bending artery causes the flow separation at particular

seconds during cardiac cycles. At point D, the temperature change remains relatively

constant because the flow separation at the rear region lessen thermal transport from

the surface. Thus, flow momentum and instabilities occurred by inlet pulsatile flow

and geometry effect seem to affect the characteristics of temperature variations.

Figure 30c presents that the temperature changes in arterial bifurcation are be-

tween 0.1 and 1.7 oC at points A, B, C and D with q̇m = 0.05, 0.1 and 0.2 W/mm3.

The temperature variations are proportionally increased with increasing heat gener-

ation q̇m. The maximum temperature is also occurred at points C and B, and the

temperature variations at point A, B and C show the almost same patterns during

cardiac cycles. Point D presents relatively constant but higher temperature value

because of the flow circulation causing the lower convective effect.

f. Variation of dmp at representative points

Transient temperature changes with the variation of macrophage layer thickness,

dmp = 25, 50 and 100 µm at q̇m = 0.1 W/mm3, are calculated at points A through

D during three cardiac cycles.

Figure 31a shows that the temperatures are changed between 0.1 and 2.0 oC at

points A through D with varying dmp. It can be seen that ∆T s are proportionally

increased with increasing dmp and the maximum temperature is occurred at point C

during the cycles. At points A, B and C, the temperature changes follow the similar

patterns as the case of varying q̇m. For the bending artery, the temperature for dmp =

25, 50 and 100 µm changes between 0 and 2.0 oC. The temperature changes at points

B and C follow the similar pattern. Figure 31c for the arterial bifurcation shows that

the temperature varies between 0.2 and 3.2 oC with varying dmp. The temperature
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Fig. 31. Temperature history under the variation of macrophage layer thickness,

dmp = 25, 50 and 100 µm during 3 cardiac cycles. Temperature is recorded

at the representative points (A, B, C and D) at the plaque surface of (a)

straight (dp = 250, lf = 50 and lmp = 3, 335 µm), (b) bending (dp = 540,

lf = 50 and lmp = 1, 500 µm) and (c) arterial bifurcation (dp = 670, lf = 50

and lmp = 1, 500 µm).
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variations of arterial bifurcation shows negligibly small variations compared to other

arterial cases under the effect of flow circulation. The temperature at point D also

remains relatively constant and higher compared to other arterial cases due to the

flow circulation causing the lower convective effect of blood flow.

g. Variation of lf at representative points

This section shows the transient temperature changes at points A through D with

the variation of fibrous cap thickness, lf = 25, 50 and 100 µm at q̇m = 0.1 W/mm3.

For the straight artery in Figure 32a, the temperature is changed between 0.2

and 1.3 oC at four points with varying lf . The temperature is decreased with an

inverse relationship as the magnitude of lf is increased leading to the conductive

effect. However, the temperature variation is insignificant compared with the cases of

qm and dmp. The maximum temperature is occurred at point C and the temperature

changes at point D remains relatively constant during cardiac cycles. Figure 28b

for bending artery shows that the temperature is changed between 0 and 1.1 oC at

four points with varying lf . Point C has the maximum temperature, and points B

and C show the most drastic temperature variations due to blood flow momentum,

and the point D remains relatively constant temperature. In arterial bifurcation in

Figure 28c, the maximum temperature is between 0.4 and 1.7 oC for lf = 25 and

100 µm, respectively. The temperatures at all selected points (A through D) show

little variations during the cycles compared to those of other arteries.

As a result, as the fibrous cap thickness lf is increased, the temperature is de-

creased. However, compared with the variations of q̇m and dmp, the temperature

variation is considerably small.
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Fig. 32. Temperature history under the variation of fibrous cap thickness, lf = 25,

50 and 100 µm during 3 cardiac cycles. Temperature is recorded at the rep-

resentative four points (A, B, C and D) on the surface of plaque for (a)

straight artery (dp = 250 µm, dmp = 25 and lmp = 3, 335), (b) bending

artery (dp = 540, dmp = 25 and lmp = 1, 500) and (c) arterial bifurcation

(dp = 670, dmp = 25 and lmp = 1, 500).
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Fig. 33. Streamlines (left) and temperature contours (right) around an inflamed

plaque in straight artery. Times (a) t = 2.3, and (b) 2.8s are selected during

the cardiac cycle (Figure 25a). The dimensions of plaque are lmp = 3, 335,

dmp = 100, dp = 250, and lf = 50 µm, and the metabolic heat production is

q̇m = 0.1 W/mm3.



74

h. Flow instabilities due to inlet pulsatile flow

According to the results of steady flow calculation, the temperature distribution is

strongly characterized by the flow instabilities depending on the arterial geometries.

In the case of unsteady flow calculation, the different pulsatile functions are applied for

the inlet flow at each artery (Figure 25). During cardiac cycles, the flow instabilities

are repeatedly appeared and disappeared by the characteristics of inlet pulsatile flow

as well as arterial geometries. In this section, two different times during one cycle are

selected to compare the variations of temperature and streamlines.

For the straight artery, the snapshots of streamlines and temperature contours

at different times are depicted in Figure 33. In order to present the effect of inlet

pulsatile flow, t = 2.3 and 2.8s are selected during the cardiac cycle (Figure 25);

t = 2.3s is the time for the stronger forward flow during the cycle and t = 2.8s is

selected for the backward flow after small forward flow. During the entire cardiac

cycle, the blood smoothly flows without flow instabilities and the convective cooling

effect of the blood flow steadily affect the temperature distribution at plaque surface.

The temporal temperature change at plaque surface is observed by the characteristics

of the inlet pulsatile flow. Despite of the stronger forward flow at t = 2.3s, the plaque

size is so small that the flow instabilities are not occurred. Therefore, the spatial

temperature change is not presented at the plaque surface.

Figure 34 shows the temperature contours surrounding the atherosclerotic plaque

in the bending artery at two different times (t = 4.4 and 4.8s). According to the inlet

velocity profile of Figure 25, t = 4.4s is the time to begin the backward flow after

small forward flow of pulsatile waveform. At t = 4.4s, the streamlines present that the

blood flow is not temporarily moved at the plaque. At the same time, the convective

cooling effect of blood flow is disappeared and the temperature distribution is almost
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Fig. 34. Streamlines (left) and temperature contours (right) around an inflamed

plaque in bending artery. Times (a) t = 4.4, and (b) 4.8s are selected during

the cardiac cycle (Figure 25b). The dimensions of plaque are lmp = 1, 500,

dmp = 100, dp = 540, and lf = 50 µm, and the metabolic heat production is

q̇m = 0.1 W/mm3.
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symmetric. Meanwhile, the streamlines at t = 4.8s show the flow separation at the

rear side of plaque and it makes a significant variation of temperature contours. At the

plaque surface, the temporal and spatial temperature changes are observed, which are

correlated with the occurrence of flow separation due to the characteristics of inlet

pulsatile flow and arterial geometries. At t = 4.4s, the temperature of the blood

surrounding the plaque only changes 0.1 oC in a small region that does not extend

beyond the macrophage layer length and separates up to 0.16 mm from the plaque

surface. Meanwhile, the temperature contour at t = 4.6s show significant difference

in the regions where the blood temperature surrounding the plaque is affected; such

changes are correlated with the occurrence of flow separation. For t = 4.6s, the

temperature contours for for T = 37.6 oC separates from the plaque surface 0.12 mm

at the plaque center, and the blood temperature variations are observed 4.5 mm from

the plaque center and until about 1 mm away from the plaque/lumen surface. The

calculations are performed with the following dimensions of plaque; lmp = 1, 500,

dmp = 100, dp = 540, and lf = 50 µm, and a metabolic heat production of q̇m =

0.1 W/mm3.

According to Figures 26 - 28, constant temperature region is observed between

l/lp = 0.6 and 0.7 during a cardiac cycle, where there is the effect of flow instabilities

such as flow separation, transition (decreased flow separation) and no flow separa-

tion. At the presence of flow separation (at t=4.0, 4.6, 4.8 and 5.0s), the constant

temperature region is located between separation point (l/lp = 0.61 to 0.67) and the

maximum temperature difference (l/lp = 0.74). At the transition at t = 4.2s, the

maximum temperature difference is moved between l/lp = 0.6 and 0.7, where the

temperature is decreased to keep the constant temperature. At that time, the flow

separation is decreased for the separation point to be occurred at the very far edge

of the plaque (l/lp = 0.83). At t = 4.4s, the flow separation is disappeared, and the
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of bending artery during a cardiac cycle. The dimensions of plaque are

lmp = 1, 500, dmp = 25, dp = 540, and lf = 50 µm, and the metabolic

heat production is q̇m = 0.1 W/mm3.
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constant temperature region is observed right after the maximum temperature region

(l/lp = 0.5). Thus, it is observed that the constant temperature is occurred at the

region between l/lp = 0.6 and 0.7, regardless of the presence of flow separation.

Figure 35 shows the movement of maximum temperature points at the plaque

surface and the interior of bending artery during a cardiac cycle. The maximum

temperature difference in the plaque interior shows the characteristics of inlet pulsatile

flow, as the temperature at the plaque surface is varied by the inlet pulsatile flow

(Figures 26 - 28). The maximum temperature at the plaque surface are observed

between l/lp = 0.56 and 0.78. In the interior, the maximum temperature points

are occurred inside the macrophage layer between l/lp = 0.52 and 0.67. During a

cardiac cycle, the maximum temperature points at the plaque surface are observed

approximately l/lp = 0.1 away from the points in plaque interior due to the effect

of blood flow. Meanwhile, at t = 4.4s, the maximum temperature points at the

plaque surface and interior are most closely located around the center of plaque (at

l/lp = 0.56 and 0.52) after disappearing of blood flow effect.

In Figure 36, the arterial bifurcation shows the streamlines and temperature

contours at two different times during the cardiac cycle (t = 4.4 and 4.8s). t = 4.4s

is selected to present the effect of the strongest forward flow during the cycle (Figure

25). In Figure 36a, the flow circulation at the anterior region of plaque is observed in

the streamlines at t = 4.4s. The boundary layer of blood flow is slightly passed over

the middle region of plaque and the convective cooling effect of blood flow influences

over the region. Whereas, the front and rear regions of plaque are not affected by the

convective blood flow, but by flow circulation due to the effect of arterial geometry.

Regardless the change of inlet pulsatile flow, at t = 4.8s, the effect of flow circulation

is remained at the front and rear regions of plaque. Also, the cooling effect of blood

flow also affect the heat transfer at the middle region of plaque. It is observed that,
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Fig. 36. Streamlines (left) and temperature contours (right) around an inflamed

plaque in arterial bifurcation. Times (a) t = 4.4, and (b) 4.8s are se-

lected during the cardiac cycle (Figure 25c). The dimensions of plaque are

lmp = 1, 500, dmp = 25, dp = 670, and lf = 50 µm, and the metabolic heat

production is q̇m = 0.1 W/mm3.
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during the cardiac cycles, AWT of arterial bifurcation is not affected by the inlet

pulsatile flow but by the arterial geometry.

4. Conclusions of 2-D unsteady blood flow

In 2-D unsteady calculations, AWT distribution was determined during a cardiac

cycle, and the results of steady and transient temperature calculations were compared.

It was observed that (1) the parameters more influencing over the plaque temper-

ature were the macrophage layer thickness dmp and the metabolic heat qm, and (2) the

macrophage layer thickness dmp and the maximum plaque temperature ∆Tmax were

linearly related, had already observed in the steady case as well as in the experimental

studies.

The unsteady calculations also showed that the locations of the hot spot resulting

from inflammation are dependent on the inlet pulsatile flow pattern, and ∆Tmax were

generally located behind the apex of the plaque. The exact locations and temperature

magnitude depended on arterial geometry, flow velocity, presence of flow separation

and recirculation, and the extension of the macrophage layer. The particular locations

presenting larger temporal temperature variations were different from each artery

because the particular conditions of arterial geometries and inlet blood flow contribute

to the blood flow characteristics during the cycles.

From the results, the best location to measure plaque temperature in the presence

of blood flow might be recommended between the middle and the far edge of the

plaque with the reasons: (1) the maximum temperature would occur in that region

and (2) the temperature at the plaque lumen interface would vary significantly less

in such region. Based on this observation, the sampling rate and measuring distance

of AWT measurements around the plaque region might be determined as follows:

(1) temperature measurements performed to determine plaque temperature should
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be performed in at least 2 locations including mid and rear regions during a couple

of cardiac cycles, (2) direct measurements of AWT should be taken very close to the

plaque/lumen surface, as blood temperature fell to normal body temperature within

100 µm away from the plaque surface.

As the result, it was said that transient temperature variation at the plaque/lumen

interface was different depending on the arterial geometry and the velocity waveform,

and that to have representative local temperature measurements, the temperature

should be recorded in the same location over at least one cardiac cycle.

C. 2-D Plaque Temperature during Blood Flow Reduction

The transient temperature variation during blood flow reduction and blood flow in-

terruption is studied to look at the thermal effect of a catheter introduction. These

measurements using catheters are subjected to large errors due to the cooling effect of

blood flow and imperfect contact between sensor and plaque surface. It was observed

that the variations of temperature detected in vivo were less than in ex vivo studies

[12, 13, 75], or the temperature in significant lesions was not detected or recorded

with trivial changes [13].

Currently, the clinical research groups studying AWT [20, 21] have divergent

opinions about the factors that affect the temperature measurement and other pa-

rameters that affect the temperature measurement. Stefanadis et al [21] showed that

arterial wall temperature seems to vary linearly with blood flow velocity; particularly,

in the range of 6 to 15 cm/s the temperature is inversely proportional to the aver-

age peak velocity (p = 0.05 and R = 0.46). On the other hand, Diamantopoulos et

al [20] reported that flow velocity and arterial wall temperature show a logarithmic

relationship where the maximum plaque temperature becomes independent of blood
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velocity above 5 cm/s. Numerical study of the effect of flow reduction while measur-

ing arterial wall temperature can help to clarify divergent opinions from experimental

studies on the relationship between blood velocity and plaque temperature.

Previous sections of steady and unsteady blood flow calculations have indicated

the relationship between arterial wall temperature and flow characteristics as well as

plaque and arterial geometries. Numerical results showed that plaque temperature

increase correlates positively to macrophage cell density and layer thickness, whereas

plaque temperature varies inversely with the depth of macrophage cell layer as seen

experimentally. In our studies published [76, 77, 78], it was observed that temperature

measurement should be performed in the downstream edge of the plaque, and that

the presence of recirculation near the plaque is followed by an increase in surface

temperature. The models provide a way of estimating the location of maximum

temperature, its displacement during the cardiac cycle and the local temperature

variation.

The calculations presented in this section aim to provide information of alter-

ations in the arterial wall temperature during different levels of vascular occlusion

or blood flow reduction in the arteries under consideration. This study analyzes the

transient temperature variation in the plaque surface when blood flow is reduced. The

reduction in arterial blood flow is assumed to be the result of catheter introduction,

as observed by the clinical research groups [16, 20, 21] using a balloon-thermography

catheter to measure arterial wall temperature.

The present work extends previous sections by looking at the effect of transient

blood flow reduction in addition to arterial geometry and plaque composition. These

new calculations are important to the field of arterial wall thermography as they serve

to understand the relationship between arterial wall temperature and flow reduction

due to catheters used to measure local temperature.
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1. Blood flow and thermal analysis

In this study, the reduction model of inlet blood flow is proposed; the blood flow is

gradually reduced as a result of the introduction of catheter in the blood vessel, which

was observed by the clinical research groups [16, 20, 21] using a balloon-thermography

catheter to measure arterial wall temperature. The calculations serve to clarify obser-

vation and interpretation of temperature profiles during blood flow reduction. Two

arteries, a straight stenotic and a bending artery, in Figure 9, are analyzed using

the Navier-Stokes equations and the energy equation (3.7) with the same boundary

conditions except the different inlet blood flows considering vascular occlusion. The

same material parameters are applied from I.

At the vessel inlet (ℓ = 0) as shown in Figure 9, a uniform velocity profile with

a pulsatile waveform as a function of time (Figure 37) is used

u = u(t) at ℓ = 0. (3.18)

where the waveform function u(t) shows the normal and reduction of the cardiac

cycles for both arteries during cycle 1 through 6. Figure 37 indicates the gradual

reduction of blood flow, and shows three different flow stages during the period the

calculations were performed. The stages correspond to: (1) a normal pulsatile blood

flow using the waveforms described previously, (2) a rapid and moderate reduction

of inlet velocity to 50%, and (3) a significant occlusion of blood flow up to 5%.

Cycle 1 through 3 present stage 1, Cycle 4 shows the rapid reduction in blood flow

during stage 2, and during Cycles 5 and 6, the blood flow is occluded to 10 and 5%,

respectively. Using such temporal reductions in blood flow, the plaque temperature

is calculated to study the cooling effect of blood flow.

For the thermal model, q̇m = 0.1 W/mm3; the value selected for q̇m is able to
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Fig. 37. Pulsatile flow waveform with vascular occlusion after Cycle 3. The normal

cardiac cycles of (a) a straight stenotic artery [72] and (b) a bending artery

[59] are modified for the occlusion of blood flow.
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reproduce thermal inhomogeneities of 0.4 to 2.2 oC reported by direct measurement

[12, 14, 15]. The details on the factors affecting q̇m, as well as the values observed in

different active cells were discussed in the previous section of 2-D steady blood flow.

The boundary conditions and material properties applied for energy equation (3.17)

are the same as those of the unsteady blood flow case.

2. Results of blood flow reduction

As blood flow is reduced, the variations of temperature distributions are presented

at the lumen surface. The cooling effect of blood flow is determined by calculating

Nusselt number, and the temperature histories are presented at representative points

A through H in Figure 38.
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a. Effect of flow characteristics

This section introduces the change of flow characteristics and temperature distribution

before and after the blood reduction. In order to compare the changes of flow and

temperature, two representative times during the normal cycles (Figure 39a) and two

times during the occlusion cycles (Figure 39b) are selected, respectively.

For the straight artery in Figure 39, t = 2.3, 2.8s and t = 5.3, 5.8s are selected for

the normal and occlusion cardiac cycles, respectively, which are able to most distinctly

present the characteristics of the inlet pulsatile flow. Compared between Figure 39a

and Figure 39b, the streamlines show no difference of flow characteristics before (at

t = 2.3 and 2.8s) and after (at t = 5.3 and 5.8s) the occlusion of blood flow. Before

the blood occlusion, the temporal temperature changes during the normal cycles are

occurred by the characteristics of inlet pulsatile flow. The temperature contours at

t = 2.3s shows more convective cooling effect led by the stronger blood flow. After

the occlusion, the characteristics of inlet pulsatile flow is suddenly reduced and the

temporal temperature change is disappeared at t = 5.3 and 5.8s.

In bending artery (Figure 40), t = 2.4 and 2.8s for the normal cycle and t = 5.4

and 5.8s for the occlusion cycle are selected to present the characteristics of the inlet

pulsatile flows. As shown in Figure 40a, at t = 2.4s, blood flow does not show

the presence of a recirculation region in the downstream part of the plaque, which

produced symmetric temperature contours near the plaque region. At t = 2.8s,

on the other hand, one sees the appearance of recirculation due to the temporal

increase of the inlet flow or the stronger forward blood flow. Appearance of the flow

separation in the rear region of plaque increases the residence time of the blood in that

region, reducing the cooling effect of blood, and producing asymmetric temperature

contours. From the observation of Figure 40, it is concluded that during the normal
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Fig. 39. Streamlines (left) and temperature contours (right) around a plaque in

straight artery. The lines correspond to (a) t = 2.3 and 2.8s for normal

cycles, and (b) t = 5.3 and 5.8s after blood reduction to 5% of normal cycles.
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Fig. 40. Streamlines (left) and temperature contours (right) around a plaque in bend-

ing artery. The lines correspond to (a) t = 2.4 and 2.8s for normal cycles,

and (b) t = 5.4, 5.8s after blood reduction to 5% of normal cycles.
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cycles (i.e. when normal inlet velocity is considered), the temperature distribution

strongly depends on the characteristics of the flow, and the rate of cooling by the

blood flow is directly related to the characteristics of the inlet pulsatile flow. After

the blood flow is substantially reduced (Figure 40b), the flow patterns at t = 5.4

and 5.8s do not change significantly. Due to the small volume of blood flow in the

system, the recirculation observed is decreased compared to that observed during the

normal cycle (at t = 2.8s in Figure 40a). Because of the small volume of flow, the

temperature contours show the same asymmetric pattern at both times t = 5.4 and

5.8s. Compared with the temperature contours during normal cycles shown in Figure

40, temperature increases at the end of the plaque. The reduced blood flow during

the occlusion cycles decreases the convective cooling effect from the surface to the

luminal blood flow.

b. Temperature along the plaque surface

As observed previously, during normal pulsatile flow the magnitude and location of the

hot spot indicated by ∆Tmax = T (r, t)max−Ta is directly affected by the characteristics

of inlet flow as well as the vessel geometry. Looking at the temperature distribution at

the plaque surface or plaque/lumen interface, it is seen that in the presence of pulsatile

blood flow, three main thermal regions are observed: a front region, a middle region

and a rear region. These regions are indicated by points A through H shown in

Figure 38. Points A through C delimit the front region of the plaque, and point

C corresponds to the center of the plaque, point E presents the ending point of the

middle region, point F is the beginning point of the rear region, and point H is the

ending point of the plaque.

Figure 41 indicate the snapshots of temperature change ∆T along the plaque/lumen

interface for both arteries at different times (t = 0.1, 0.4, 0.6 and 0.8s) into each cycle
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(Cycle 3 through Cycle 6). The vertical lines indicate the locations of the observa-

tion points A through H, as described in Figure 38. In these plots, the horizontal

axis coincides with the base of the plaque, and the temperature at the plaque/lumen

interface is plotted with respect to the horizontal location of the observation points.

In order to compare the temperature distribution at the plaque/lumen interface of

the two arteries, the horizontal position is divided by the plaque length (lp).

For the stenotic straight case (Figure 41a), during normal blood flow (Cycle 3)

the maximum temperature occurs at point E (near the rear region of the plaque);

as the blood flow is reduced during Cycle 4 through Cycle 6, the temperature at the

plaque/lumen interface raises at every point, and point E still corresponds to the

point showing the maximum temperature increase. During blood flow reduction from

Cycle 3 to 6, the plaque region where the maximum temporal temperature variation is

recorded during blood flow reduction is the front region of the plaque between points

A and E. After reducing the blood flow, the temperature rise produces a symmetric

temperature distribution with respect to the macrophage layer location compared to

the distribution observed during normal blood flow (Cycle 3). Figure 41b shows the

plaque/lumen temperature increases at the far edge (point E to H) of the plaque,

but decreases at the middle edge between points A and C as blood flow is reduced,

which is distinctly shown at t = 0.4. After blood flow reduction, the temperature at

the plaque/lumen surface develops a maximum at the end of the macrophage layer

and the temperature distributions keep the constant shape regardless of any second

of cycle. It is observed that flow instabilities such as flow separation are removed at

the rear region as the blood flow decreases.

To analyze the convective heat transfer at the plaque surface, the local Nusselt

number Nux is calculated along the plaque/lumen interface and is shown in Figs. 42

for the straight and bending artery, respectively. The Nusselt number is calculated



91

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

∆
T

=
(T

−
T

a
)(

°C
)

A C E G

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

 Cycle 3

Cycle 4 

Cycle 5 

Cycle 6 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

l/l
p

∆
T
=
(T
−
T
a
)(

°C
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

l/l
p

(a)

 

 

 

 

0.1 (sec/cyc)

0.8 (sec/cyc)0.6 (sec/cyc)

0.4 (sec/cyc)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

∆
T

=
(T

−
T

a
)(

°C
)

GECA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Cycle 3 

Cycle 4 

Cycle 5 

Cycle 6 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

l/lp

∆
T
=
(T
−
T
a
)(

°C
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

l/lp

(b)
 

 

 

 

0.1 (sec/cyc)

0.8 (sec/cyc)0.6 (sec/cyc)

0.4 (sec/cyc)

Fig. 41. Transient temperature distribution at the plaque/lumen interface for (a)

straight artery and (b) bending artery at different cycles. The temperature

variation is produced by reduction in blood flow velocity as indicated in Figure

37. The times are 0.1 to 0.8s offset into each cycle, which correspond to

t = C.1, C.4, C.6 and C.8s, where C is the cardiac cycles (C =3, 4, 5 and 6).
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for different times (t = 0.4 and 0.8s in each cycle) during Cycle 3 through Cycle 6.

During normal blood flow, the Nusselt number presents significant variation along

the plaque surface. In both vessels, the Nusselt number is reduced in magnitude after

blood flow reduction as expected.

In the straight artery (Figure 42a), Nux is maximum at the front edge of the

plaque, which explains the lower temperature observed at that region due to the

stronger cooling effect. For the bending artery (Figure 42b), Nux presents drastic

variations during Cycle 3 and Cycle 4 because the behavior of the inlet flow charac-

teristics forms the flow instabilities such as flow separation combined with geometry

effect. The instabilities lead to a strongly disturbed flow which contributes to the

local convective heat transfer in the plaque region. After blood flow reduction (Cycle

5 and Cycle 6), the local Nusselt number gradually increases at the regions between

l/lp = 0 and 0.5 producing the temperature drop registered at the front region.

The stationary Nux values obtained after Cycle 4 present two peaks (at l/lp =

0.25 and 0.75) that correlate with the boundaries of the macrophage layer; a maximum

is observed at the front edge (point A), and a minimum occurs at the rear edge (point

F).

c. Temperature history at representative points

Figure 43 shows the temperature history of points A through H indicated in Figure 38;

these figures indicate how the temperature at the representative points of the plaque

surface changes after blood flow is reduced (Cycle 4). The plaque surface temperature

of each point becomes stable after 3 cardiac cycles. The temporal temperature changes

registered during the cardiac cycle are between 0.1 and 0.2 oC for the straight artery

and between 0.1 and 0.6 oC for the bending artery, as seen during Cycle 2 and Cycle

3. It is observed that blood flow reduction has different effects on the front, middle



93

0 0.2 0.4 0.6 0.8 1
0

100

200

300

l/l
p

N
u

x
 

0.4 (sec/cyc)

  Cycle 3 

 Cycle
 5 & 6

 
Cycle 4 

 

0 0.2 0.4 0.6 0.8 1
0

100

200

300

l/l
p

0.8 (sec/cyc)

A DCB

0 0.2 0.4 0.6 0.8 1
0

50

100

150

N
u

x

l/l
p

0.4 (sec/cyc)

 Cycle 3 

 Cycle 4 Cycle 6

Cycle 5 

0 0.2 0.4 0.6 0.8 1
0

50

100

150

l/l
p

0.8 (sec/cyc)

A GEC

(a)

(b)

 

 

 

 

 

 

Fig. 42. Nusselt number variation along the plaque/lumen interface for (a) a stenotic

straight artery and (b) a bending artery calculated during Cycle 3 through

6.
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and rear regions of the plaque; those effects are combined with the arterial geometry.

d. Comparison of temperature calculations and AWT measurements

The calculations presented here were designed to verify if the relationship between

maximum temperature and blood velocity followed a logarithmic trend as observed

by Diamantopoulos et al [20], or a linear trend as reported by Stefanadis et al [21].

Figure 44 shows the relationship between the average peak velocity and the maxi-

mum temperature difference experienced at the plaque/lumen interface of the straight

artery and bending artery during gradual flow reduction. The calculations were per-

formed at steady blood flow in each artery. The dimensions of plaque are lmp = 3, 335,

dmp = 50, dp = 500 and lf = 25 µm for a straight artery, and lmp = 1, 500, dmp = 50,

dp = 540 and lf = 50 µm for a bending artery, respectively. For the straight artery

in Figure 44a, the blood flow was reduced from 15 to 0.001 cm/s by the variation

of inlet flow. The maximum temperature difference was steadily increased to 2.1 oC

as blood flow was reduced to 2 cm/s. The temperature was rapidly increased to

4.8 oC until the inlet velocity reached for 0.01 cm/s after 2 cm/s, where the cooling

effect of blood flow seemed to be disappeared. In the bending artery (Figure 44b),

the maximum temperature increases with the same pattern as the case of a straight

artery. The velocity of an inlet blood flow was decreased from 10 to 0.001 cm/s. As

blood flow was reduced to 2 cm/s, the maximum temperature difference was steadily

increased to 1.23 oC. After that, the temperature was rapidly increased to 3.2 oC at

0.01 cm/s.

A regression analysis shows that the relationship between maximum temperature

change and average blood velocity satisfies closely a logarithmic trend of the form

∆Tmax = A ln(V ) + B. Using the calculated ∆Tmax for a range of velocities, the
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Fig. 43. Time variation of temperature calculated at different points along the

plaque/lumen interface for (a) a stenotic straight artery and (b) bending

artery. The inlet velocity profiles are given in Figure 37, and the points where

the temperature is recorded correspond to points A through H indicated in

Figure 38.
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fit generates the following values of the coefficients: A = −0.5022, B = 0.1774

and R2
ln(V ) = 0.999 for the straight artery, and A = −0.2889, B = 0.2498 and

R2
ln(V ) = 0.9496 for the bending artery, respectively. According to [20], the maximum

plaque temperature is not affected when V is larger than 5 cm/s, and our calculations

reproduce that trend.

The mathematical model is able to predict qualitatively the temperature response

and its relationships with velocity as indicated by experimental studies. A complete

validation cannot be performed because, the experimental arterial wall temperature

studies [20, 21] do not provide details about plaque and vessels size or the locations

where temperature sensors were placed; quantities that are proven to affect the plaque

temperature value significantly [77, 78].

3. Conclusions of 2-D blood flow reduction

The calculations presented herein aimed to provide information of alterations in the

arterial wall temperature during different levels of vascular occlusion or blood flow

reduction in the arteries under consideration. Using the numerical model, this section

presented plaque temperature calculations to determine the cooling effect of blood

flow during arterial blood flow reduction.

During normal pulsatile flow, the characteristics of the inlet flow dominated the

convective cooling effect on the plaque/lumen surface and caused considerable varia-

tion of temperature along the plaque surface in space and time. The strong forward

flow motion of each artery was able to increase the rate of heat transfer between the

plaque/lumen surface and the blood flow. In particular, for bending artery, the mo-

mentum effect of blood flow was combined with the geometry effect of bending artery

as well as the inlet flow waveform function, which caused the flow instability such

as recirculation and flow separation. The calculations presented here indicated that
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at the plaque/lumen interface in (a) the straight artery and (b) the bending

artery. The dimensions of plaque used are lmp = 3, 335, dmp = 50, dp = 500

and lf = 25 µm for a straight artery, and lmp = 1, 500, dmp = 50, dp = 540

and lf = 50 µm for a bending artery, respectively. For the metabolic heat

generation, q̇m of 0.1 W/mm3 is applied in steady flow. The solid line corre-

sponds to filled curve using linear least squares procedure.
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blood flow effectively transported thermal energy by virtue of its unstable nature.

The convective heat transfer by the cooling effect of blood flow was more actively

registered at the rear region of plaque.

As the blood flow was reduced, the convective cooling effect decreased on the

plaque/lumen surface and the plaque temperature increased. The temperature dis-

tribution became dependent of arterial geometry only. It should be considered that

blood flow reduction provided different effects on the front, middle and rear regions of

the plaque; those effects varied with the arterial geometry. The reduction in Nusselt

number indicated that the cooling effect of blood flow was decreased and the variation

of non-uniform temperature increase, which ranged from 0.1 to 0.25 oC for the ge-

ometries considered. Consequently, blood flow reduction contributed to the increase

of plaque surface temperature and the minimum required reduction time needed to

observe local temperature increase in the presence of an active plaque was at least 6

seconds.

The present section extended the previous sections by looking at the effect of

transient blood flow reduction in addition to arterial geometry and plaque composi-

tion. These new calculations were important to the field of arterial wall thermography

as they served to understand the relationship between arterial wall temperature and

flow reduction due to catheters used to measure local temperature.

D. Analysis of Thermal Stress in 3-D Unsteady Model

This study intends to analyze thermal stress based on the local temperature increase

produced by the inflammatory process in atherosclerotic plaques, which contributes

to identification of plaque instability and disruption. For the study, 3-D geometrical

models of a human artery are used. The arterial geometries present multi-component
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plaque structure consisting of lumen, arterial wall and plaque composed of lipid core.

The modeling in finite element analysis is performed under non-isothermal conditions

considering thermal heterogeneity.

Thermal stress is calculated at the plaque and arterial wall by using structural

analysis and incorporating the spatial temperature change as thermal load. Thermal

analysis investigates the relations between temperature heterogeneity and thermal

stress of plaque, and between the stress distribution and the inlet pulsatile blood

flow. This is done to investigate and quantify plaque vulnerability and how plaque

temperature contributes to plaque stability. The goal of this section is twofold: (1) to

demonstrate the investigation of thermal stress in 3-D realistic model of atheroscle-

rotic plaque and (2) to improve accuracy of complex plaque vulnerability assessment.

In this section, we calculate thermal stress distributions produced by AWT het-

erogeneity observed at the plaque/lumen interface when atherosclerotic plaques ex-

perience an inflammatory cascade. Thermal stress is calculated performing fluid

analysis, heat transfer analysis and structural analysis assuming linear elastic mate-

rial properties. The procedure consists of two basic steps: (1) calculation of velocity

profiles and temperature distribution at the domains by solving the Navier-Stokes

and energy equations using initial conditions produced by steady calculations and

approximated inlet velocity profiles; and (2) determination of thermal stress and dis-

placement using the calculated temperature distribution as input thermal loads in

structural analysis.

1. Blood flow and thermal analysis

For the blood flow analysis, the incompressible Navier-Stokes equations are used as the

governing equations. No slip conditions and natural traction equilibrium conditions

are assumed at all interfaces. The velocity profile at the inlet (ℓ = 0) is assumed
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Fig. 45. Simplified pulsatile flow waveform used at the inlet of 3-D realistic model.

to be uniform, u = u(t), with a pulsatile waveform as a function of time. For the

simplified model in Figure 10, the inlet pulsatile function used in 2-D straight artery

is applied as shown in Figure 25a [72]. Meanwhile, the realistic model (Figure 11)

uses the simplified inlet waveform function to perform the efficient calculations in

restricted memory, as shown in Figure 45. The velocity profile also contains the

periods of rapid acceleration and deceleration to present reverse flow. The waveform

function was scaled to yield the mean velocity of 0.15 m/s, the maximum velocity of

0.24 m/s, and the minimum velocity of 0.04 m/s.

For the thermal model, the Energy equation with heat generation term (q̇m) is

solved applying the same boundary conditions of 2-D calculations: constant tem-

perature (T = To) at the external vessel wall (r = Ro) due to perfusion at the

vasavasorum, a fixed blood and tissue temperature (T = To) at the vessel inlet
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(ℓ = 0), and no temperature gradient (∂T
∂n

= 0) at the vessel outlet (ℓ = L). In the

simplified model, the heat generations (q̇m) of 0.1 and 0.05 W/mm3 are applied to

find out the appropriate values to reproduce the temperature variation calculated in

2-D cases. In the realistic model, 0.005 W/mm3 is selected for the heat generation

(q̇m) with the following reasons: (a) the size of lipid core is much larger compared to

those of 2-D and 3-D simplified models; the length (24 mm)in longitudinal direction

is fifteen times longer than 1.6 mm in 3-D simplified model, and (b) as the popu-

lation of macrophage cells increases in such large lipid core, the ability of metabolic

activation decreases due to the high competition between the macrophage cells for

restricted amount of sources such as oxygen, lipoprotein and debris.

2. Structural analysis

a. Elastic material properties

Arterial wall is structurally divided into three layers: intima, media and adventitia

surrounded by the different connective tissues and smooth muscles [79]. This morpho-

logical feature of the arterial wall suggests locally anisotropy [1, 79]. On the micro-

scopic level, the arterial wall is heterogeneous because it is comprised of cells, elastin,

and collagen, and the distribution of these elements varies from the inner to the outer

wall. [79, 91, 92]. However, according to several research groups [80, 81, 82, 83, 84],

arterial wall might be considered to be isotropic within the physiological range of

deformation. Commonly in the engineering and biomechanics literatures, however, it

has been assumed that the global response is orthotropic in the radial, circumferential

and axial directions [85, 86, 87, 88], where Young’s modulus values are cylindrically

different. In this study, arterial wall is assumed to exhibit the cylindrical orthotropic

material properties in the directions. We also assumed that the arterial wall is a
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linearly elastic homogeneous material (i.e. one Young’s modulus) [36, 37, 83, 89, 90].

Atherosclerotic plaques are characterized by the subintimal accumulations of

extracellular lipids, fibrous tissue, smooth muscle cells, and calcium [83]; several re-

searches have assumed these layers to be homogeneous at each accumulation [36, 37,

83, 89, 93, 94]. In this study, the plaque is assumed to contain only lipid core, which

may have a homogeneous property with one Young’s modulus. Plaques also present

highly variable process with lesion composition and distribution varying in the dif-

ferent locations [83]. In order to describe such plaque deformation, many research

groups have used that plaque constituents are assumed to exhibit linear elasticity

[36, 37, 82, 93, 95, 96] and isotropy [36, 82, 89, 95, 96, 97]. In addition, some studies

[5, 81, 98] propose that vulnerable plaques may be considered incompressible in the

range 0.45 - 0.499 99 of Poisson’s ratio variations, which means nearly incompressible.

Hence, in this study, the plaque containing only lipid core is also assumed to be linear

elastic, (nearly) incompressible, isotropic and homogeneous material.

As shown in Table IX [36, 37, 99, 100], the mechanical properties are described

by Er, Eθ and Eℓ (Young’s modulus in the r, θ and ℓ directions, respectively), νrθ,

νrℓ and νθℓ (Poisson’s ratios in the rθ, rℓ and θℓ planes, respectively), and Grθ, Grℓ

and Gθℓ (shear modulus in the rθ, rℓ and θℓ planes, respectively). We assumed that

the general structure of arterial wall has identical mechanical properties in the radial

(r) and circumferential (θ) directions. The values of Er (= Eθ) and Eℓ for plaque

and artery were taken from previous study of Cheng et al. [36, 37]. The poisson’s

ratios for plaque and artery, νθℓ = νrℓ = 0.45 and 0.27, were based on the previous

studies [36, 37, 98]. νrθ was calculated to satisfy the requirements for a positive-

definite stiffness matrix [101]. The shear moduli for arterial wall were taken from

the previous studies [36, 37, 98], and the values for lipid core in plaque domain were

calculated with G = E/2(1 + ν) for isotropic material [101, 102].
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Table IX. Elastic material parameters of arterial wall and lipid core

Mechanical Arterial Lipid
Properties wall core

Young’s modulus Er 10 1,000
(kPa) Eθ 10 1,000

Eℓ 100 1,000

Poisson’s ratio νrθ 0.01 0.45
νθℓ 0.27 0.45
νrℓ 0.27 0.45

Shear modulus Grθ 10 344.8
(kPa) Grℓ 50 344.8

Gθℓ 50 344.8

Thermal expansion
coefficient βi 7.4695 30

(×105oC−1)

These parameters where taken from [36,
37, 98, 99, 100, 103, 104].

If a body having a temperature change ∆T is allowed to expand freely, a line

element of length ds in the body is elongated to a length (1+β∆T )ds, where β is de-

fined as the coefficient of thermal expansion. The coefficient β in the bodies of arterial

wall and plaque may be a constant because (1) the temperature heterogeneity in hot

spot of plaques occur within around 2 oC, and (2) the coefficient β for a number of

structural materials remains fairly constant for a wide range of temperature [102]. In

this study, the temperature dependent arterial thermal expansion coefficient is used

for that of arterial wall at 37.5 oC [100], and the soft tissue thermal expansion coeffi-

cient is applied for that of lipid core [104]. As presented in Table IX, the arterial wall

and lipid core were assumed to be thermally isotropic bodies, where β is independent

of the direction of ds [100].
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b. Thermal stress analysis

Thermal stress is generally caused by thermal expansion or contraction of the ma-

terial when the thermal deformation is constrained. Temperature changes in plaque

containing inflammatory cells can cause thermal stress effects. The thermal stress

acting over endothelial cells can affect endothelium permeability to macromolecules

and consequently speed up plaque growth or rupture process as indicated in Figure 7.

In this section, the governing equations to estimate the thermal stress distributions

observed under pulsatile flow condition are presented. The temperature changes are

directly input as loads in a structural analysis to determine the thermal stress and

displacement caused by the temperature loads.

The governing equations expressed in terms of equilibrium equation (3.19), con-

stitutive equation (3.20), and compatibility condition (3.21) for linear functions are

given by

∇ · σ = −F, (3.19)

σ = D(ǫσ + ǫth), (3.20)

ǫ =
1

2
(∇U + (∇Ut)), (3.21)

where σ represents the stress tensor, and ǫ is the total strain expressed as the sum

of mechanical ǫσ and thermal ǫth strain: ǫσ denotes the strain components due to the

forces exerted by the blood flow, ǫth is the thermal strain due to the temperature

change, and it is presented in terms of U the displacement component in the elastic

body. In equation 3.20, D is the 6 × 6 elasticity matrix, which is defined differently
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for isotropic (plaque) and orthotropic (arterial wall) materials [105]. For this study,

the arterial wall follows the behavior of orthotropic material and the elasticity matrix

D looks like

D =









































1−νθℓνℓθ

EθEℓ∆
νθr+νℓrνθℓ

EθEℓ∆
νℓr+νθrνℓθ

EθEℓ∆
0 0 0

νrθ+νrℓνℓθ

EℓEr∆
1−νℓrνrℓ

EℓEr∆
νℓθ+νℓrνrθ

EℓEr∆
0 0 0

νrℓ+νrθνθℓ

ErEθ∆
νθℓ+νrℓνθr

ErEθ∆
1−νrθνθr

ErEθ∆
0 0 0

0 0 0 2Gθℓ 0 0

0 0 0 0 2Gℓr 0

0 0 0 0 0 2Grθ









































where ∆ = 1−νrθνθr−νθℓνℓθ−νℓrνrℓ−2νrθνθℓνℓr

ErEθEℓ

. Ei is the Y oung′s modulus in i direction.

νij is the Poisson′s ratios in the i − j plane. Gij is the values of shear modulus in

the i − j plane, which is the ratio of shear stress divided by the corresponding shear

strain in a linear elastic material. The material properties for the structural analysis

are presented in the Table IX.

The lipid core of plaque domain is defined as an isotropic material, which is the

following definition of elasticity matrix D:
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E

(1 + ν)(1 − 2ν)









































1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2









































In this study, additional structural loads such as flow pressures and body force

were neglected in the equations; this way is that the effect of temperature over the

stability of the plaque will be estimated. Fluid-Structure interaction will be consid-
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ered in future work. For the displacement boundary conditions, the constraints are

specified by fully fixing at the inlet, outlet and outer wall surfaces of the arterial wall,

which are defined as u = 0 at ℓ = 0, ℓ = L and r = R.

3. Calculation of temperature maps and thermal stress in 3-D arterial models

This section presents calculations of arterial wall temperature for the 3-D arterial

models described previously in Chapter II and section 1, that correspond to a sim-

plified straight artery and a realistic artery. The calculations for 3-D geometries are

compared to those of the idealized 2-D arterial geometries presented previously (Fig-

ure 9). Finally, the temperature profiles calculated in 3-D realistic vessel anatomy

(Figure 11) are used to determine thermal stress distributions.

a. Streamlines and temperature contours in 3-D simplified geometry

Figure 46 shows the streamlines along the longitudinal-direction in a plane crossing

at the center of the vessel (x = 0 mm). Two different times (t = 5.3 and 5.6s) are

selected to present the effect of inlet pulsatile flow during a cardiac cycle; t = 5.3s is

the time for the stronger forward flow, and t = 5.6s is selected to present the backward

flow during the cycle (Figure 25a). As observed in the calculations for 2-D straight

artery, during the cycle, the blood flows smoothly from inlet to outlet without flow

instabilities such as flow separation. However, due to the differences in the sizes of

plaques used in 2-D and 3-D models, the characteristics of the flow vary, as well as its

cooling effect, which will be discussed latter in this section. Particularly, the plaque

of 3-D simplified geometry has thicker and shorter dimensions (Figure 10) than those

of the 2-D geometry (Figure 12). In Figure 46, the variation of the streamlines at two

different times during the cardiac cycle is observed only at the rear region of plaque.

The streamlines follow closely the surface when the velocity is minimal (t = 5.6s),
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(a) t=5.3s (b) t=5.6s

Fig. 46. Streamlines along the axial directional slice at the center of x-axis in 3-D

simplified straight artery. The times (a) t = 5.3 and (b) 5.6s are selected to

present the maximum and minimum velocity during the cardiac cycle (Figure

25a).

and they are not deflected at time t = 5.3s, when the velocity is maximal.

Figure 47 shows the temperature contours at longitudinal slices (axial-direction)

at t = 5.3s during a cardiac cycle for q̇m = 0.1 and 0.05 W/mm3. The cuts are

taken at the center of the vessel (x = 0 mm) and the right side (x = 0.75 mm)

as indicated in Figure 47a. At the center (x = 0 mm), temperature is increased to

53.5 oC, and temperature contours are clearly extended to downstream of the plaque

due to the blood flow, and explains that the blood flow close to the plaque surface

is heated as it moves downstream. On the other hand, the contours at the right

side (x = 0.75 mm) show the lower temperature variation. It is observed that the

temperature variations between the center (x = 0 mm) and right side (x = 0.75 mm)

shows a significant difference. This is due to the distribution of macrophage layer,

where low conductivity of arterial wall prevents the conductive heat transfer from

the macrophage layer. This observation suggests that a thermal detector, such as

thermocouples or thermistors, should be used to measure several points along the

longitudinal-direction to obtain the maximum temperature increase. At the center

plane (x = 0 mm), the temperature variations range between 37.5 and 53.5 oC,



108

and between 37.5 and 45.4 oC for q̇m = 0.1 and 0.05 W/mm3, respectively. In 2-D

calculations (Figure 33), the temperature variation for straight artery is between 37.5

and 40.1 oC for q̇m = 0.1 W/mm3, which is less than the values of 3-D calculations.

Figure 48 shows snapshots for temperature distribution along the plaque surface

in the longitudinal direction at different times through a cardiac cycle. The repre-

sentative times, t = 5.0, 5.3, 5.6, 5.8 and 6.0s, are selected in terms of characteristics

of inlet velocity profile. During a cycle, the maximum temperature location changes

spatially between ℓ/ℓp = 0.5 and 0.7; in comparison, the results of 2-D straight case

show that the maximum temperature is constantly located at the downstream edge

of the plaque (ℓ/ℓp = 0.7) as shown in Figure 26. The temperature distribution varies

to the characteristics of inlet blood flow, which is referred as the convective cooling

effect of blood flow. For q̇m = 0.1 W/mm3, the temperature change ∆T at t = 5.3s is

reduced to 1.2 oC, and the temperature change ∆T immediately increases to 2.7 oC

at t = 5.6. During the cycle, the least temperature variation occurs at ℓ/ℓp = 0.75,

where may be a good place to measure the relatively constant temperature in the

presence of pulsatile blood flow. During a cardiac cycle, the maximum temperature

changes ∆Tmax are to 2.7 and 1.5 oC for q̇m = 0.1 and 0.05 W/mm3, respectively.

Figure 49 shows the temperature contours surrounding the atherosclerotic plaque

at cross-sectional slices for q̇m = 0.1 and 0.05 W/mm3 at t = 5.3s during a cardiac

cycle. As shown in Figure 49a, the slices are separated by 1 mm, and located at

the center of the plaque (ℓ = 25 mm) and 1 mm before and after the plaque center

(ℓ = 24 and 26 mm), respectively. These points correspond to the front, middle and

rear region of plaque as used in 2-D models (Figure 29). Regardless of the values

of metabolic heat generation, the higher temperatures are contoured at the middle

region (ℓ = 25 mm) due to plaque symmetry. Compared with the lower temperature

increase at the front region (ℓ = 24 mm), the rear region (ℓ = 26 mm) has the
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Fig. 47. Temperature contours at two axial-directional slices. (a) Longitudinal

slices in the direction of blood vessel (center (x = 0 mm) and right side

(x = 0.75 mm)). Two heat generation of (b) 0.1 and (c) 0.05 W/mm3

are considered to reproduce the thermal heterogeneity observed in 2-D cases.

Times t = 5.3s is selected during the cardiac cycle (Figure 25a).
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Fig. 48. Transient temperature distribution along the centerline of plaque surface at

the axial-direction in 3-D simplified straight artery. For local heat generation,

q̇m of (a) 0.1 and (b) 0.05 W/mm3 are applied during cardiac cycles (Figure

25a).

higher temperature due to the fact that blood has higher temperature at the region,

as observed in Figure 48.

b. Temperature history at points in 3-D simplified geometry

This section shows how plaque surface temperature responds to blood flow and its

transient alterations. Five representative points at the plaque/lumen interface are

selected to investigate the local temperature variations during cardiac cycles. The

points are distributed over the plaque surface, as indicated in Figure 50. Particulary,

three points are located in the longitudinal direction and two points are located in

the cross-sectional direction.

According to 2-D unsteady calculations, the temperature variations have different

patterns in three thermal regions: front, middle and rear region, which is observed in
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Fig. 49. Temperature contours at three cross-sectional slices. (a) Cross-sectional slices

are at 24, 25 and 26 mm of axial-axis (ℓ), which correspond to the front,

middle and rear region of plaque. Two different metabolic heat productions

are considered: (b) q̇m = 0.1 and (c) 0.05 W/mm3. The times t = 5.3 is

selected during the cardiac cycle (Figure 25a).
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Figures 29 to 32. In 3-D simplified model, temperature history is traced at five points

over the plaque/lumen interface during the cardiac cycle; three representative points,

A, B and C, correspond to the front region, the center of the middle region, and the

end of the rear plaque. Two representative points, D and E, present the right and

left side of the middle region in cross-sectional direction.

Figure 50 shows the temperature history at five representative points (A, B,

C, D, and E) for q̇m = 0.1 and 0.05 W/mm3. In this figure, the calculations are

extended for five cardiac cycles. For the case of q̇m = 0.1 W/mm3, the temperatures

at the representative points changed approximately between 0 and 2.7 oC. During

the cycle, the maximum temperature occurs at point B; the temperature variation

observed at this point directly corresponds to the characteristics of inlet pulsatile

flow. Meanwhile, the temperature changes at point A remains relatively constant

and equal to body temperature (37.5 oC). The temperature at point C is around 0.5

degree higher than that of point A due to the cooling effect of blood flow. In the cross-

sectional points, the temperature changes at points D and E are little affected by both

the concentration of inflammatory cells as well as blood flow pattern; these points

almost overlaps due to the symmetry of the plaque geometry. For q̇m = 0.05 W/mm3,

the temperature at the representative points are varied between 0 and 1.4 oC, which

show the similar characteristics with the case of q̇m = 0.1 W/mm3.

c. Streamlines and temperature contours in 3-D realistic geometry

In 3-D realistic model, 0.005 W/mm3 is used for q̇m to reproduce the temperature

variations observed in 2-D calculations because the lipid core as a macrophage layer

in the 3-D realistic model has the larger volume than those of 2-D and 3-D simplified

models. The representative times of t = 5.3 and 5.6s are chosen to consider the

maximum and minimum velocity from the idealized inlet pulsatile flow (Figure 45).
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Fig. 50. Temperature history at the representative five points (A, B, C, D, and E)

at plaque surface. Temperature under the heat generation of (a) q̇m = 0.1

and (b) 0.05 W/mm3 is recorded during five cardiac cycles (Figure 25a).
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Figure 51 shows the streamlines along the longitudinal-direction in a plane cross-

ing at the center (x = 0) of the vessel. As observed in 3-D simplified model, the blood

flows smoothly from inlet to outlet without flow instabilities during the cycle. Ap-

proximately 45% stenosis is considered in this model; such constriction corresponds

to a threefold increase (Vmax = 0.46 m/s) in velocity at the peak region of plaque,

which leads to the different characteristics of blood flow between at t = 5.3 and 5.6s.

The streamlines at t = 5.3s pass the plaque directly without turning the direction

around the rear region, but those at t = 5.6s surround the rear region of plaque,

which is observed in the simplified model.

In Figure 52, temperature contours are described at the longitudinal slices at

t = 5.3s during a cycle. Two slices are chosen at the center (x = 0 mm) and right side

(x = 1.3 mm) of the vessel. At the center (x = 0 mm), temperature varies between

37.5 and 42.7 oC, and temperature contours are comparably extended longer toward

the outlet of the vessel. At the side (x = 1.3 mm), maximum temperature recorded

at the plaque decreases to 41 oC in comparison to 42.7 oC in the center (x = 0 mm)

because of the variation of macrophage layer distribution and the lower conductivity

of arterial wall. Such difference of temperature variations at two locations (x = 0

and 1.3 mm) suggests multiple measuring points within short distance as 1 or 2 mm,

because a significant difference in temperature is observed along the axis.

Figure 53 presents the temperature contours at three cross-sectional slices at

t = 5.3s. The slices are separated by 9 and 8 mm, and are located at the center of

the plaque (ℓ = 25 mm) and 9 before and 8 mm after the plaque center (ℓ = 20 and

37 mm), respectively. These points also present the front, middle and rear region

of plaque as used in 2-D model (Figure 29). The maximum temperature increase

recorded is 42.5 oC, and occurs at the middle of the lipid core. The temperature

contours surrounding plaque at the front (ℓ = 20 mm) are described in a smaller
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Fig. 51. Streamlines along the axial-directional slice at the center (x = 0 mm) of

x-axis in 3-D realistic straight artery. The times t = 5.3 and 5.6s are selected

during the cardiac cycle (Figure 45).

region than those at the rear (ℓ = 37 mm) because the convective effect of blood flow

drags the thermal energy from the front to the rear region, which was also observed

by 2-D temperature contours in Figure 23.

d. Temperature history at points in 3-D realistic geometry

Figure 54 shows the temperature history at the representative points during three

cardiac cycles. The representative points (A through G) are located along the cen-

terline in the longitudinal-direction at the plaque/lumen interface as indicated in

Figure 54. Through the cycles, the calculated temperatures changes (∆T ) varied

from 0.08 to 0.7 oC. The temperature at point A is almost constant and close to

body temperature (inlet blood temperature). The maximum temperature occurs at

point E, located at the downstream of the middle region. The temperature variations

at points B through E follow almost the same pattern, which strongly depends on the

characteristics of inlet pulsatile flow (Figure 45). The fluctuation of temperature dur-
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Fig. 52. Temperature contours at axial-directional slices at t = 5.3s. (a) Two lon-

gitudinal slices are considered (b) at the center (x = 0 mm) and (c) side

(x = 1.3 mm) along x-axis. The heat generation of q̇m = 0.005 W/mm3 is

considered to reproduce the thermal heterogeneity observed in 2-D cases.
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Fig. 53. Temperature contours at (a) three cross-sectional slices located at ℓ = 20, 29

and 37 mm of axial-axis, which represent the front, middle and rear region

of plaque. q̇m = 0.005 W/mm3 is considered for metabolic heat generation.

The times t = 5.3s is selected during the cardiac cycle (Figure 45).
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Fig. 54. Temperature history at the representative seven points (A through G) at

axial direction of plaque/lumen interface. Temperature under the heat gen-

eration of q̇m = 0.005 W/mm3 is recorded during three cardiac cycles.

ing the cardiac cycles seems to disappear at point F, where the temperature change

remains at 0.5 oC. In 2-D unsteady calculations, such a constant temperature region

was observed between l/lp = 0.6 and 0.7 during a cardiac cycle. The temperature

change at point G varies following a different pattern from that of points B through

E, where varied between 0.15 and 0.27 oC. Considering the 2-D calculations as shown

in Figure 30, temperature at the end point (G) shows usually constant value, which

do not reflect the characteristics of inlet pulsatile flow. However, in the 3-D realis-

tic geometry used, point G seems to show temperature change that follows an inlet

pulsatile flow pattern. This might be the result of the complicated geometry.
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e. Thermal stress analysis in 3-D realistic geometry

In this section, thermal stress calculations at inflammatory process are conducted

to determine how the arterial wall and plaque surface are influenced by thermal

stress. Thermal stress distribution in arterial wall containing vulnerable plaque is

characterized, and highly thermal stressed regions are investigated during cardiac

cycles. In this calculations, shear stress of blood flow at arterial wall is ignored to

consider purely thermal stress impact.

Figure 55 shows thermal stress fields produced by the temperature maps de-

scribed in Figure 52; Figure 55 shows thermal stress at t = 5.3s during a cycle. Two

longitudinal slices are chosen at the center (x = 0 mm) and right side (x = 1.3 mm)

of the vessel as shown in Figure 52a. At the center (x = 0 mm) plane, the most highly

stressed region is the plaque/lumen interface above the lipid core, where von Mises

stress of 1.45 Pa is obtained by temperature variation between 37.5 and 42.7 oC. At

the side (x = 1.3 mm) plane, the maximum stress is occurred at the edges of lipid

core. The von Mises stress obtained by the temperature variation between 37.5 and

41 oC are varied between 0.02 and 1.15 Pa. The maximum thermal stress regions

almost coincide with the regions of stress-concentration already observed in autopsy

specimens [6, 36, 37, 38] that correspond to the plaque cap over the the lipid pool or

the luminal wall near the thinnest plaque section.

Figure 56 presents the stress contours at three cross-sectional slices at t = 5.3s.

The slices are also located at the center of the plaque (ℓ = 29 mm) and 9 mm before

and 8 mm after the plaque center (ℓ = 20 and 37 mm), respectively, as shown in

Figure 53a. The maximum thermal stress of 1.45 Pa is obtained at the center (ℓ =

29 mm) of the plaque, where the most highly stressed regions lie at the plaque/lumen

interface over the lipid core and both edges of lipid core. At the front (ℓ = 20 mm)
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Fig. 55. Distribution of Von Mises stress at axial-directional slices of at t = 5.3s. (a)

Two longitudinal slices considered (b) at the center (x = 0 mm) and (c)

right side (x = 1.3 mm) along x-axis. q̇m = 0.005 W/mm3 is considered for

metabolic heat generation.
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Fig. 56. Temperature contours at (a) three cross-sectional slices located at ℓ = 20, 29

and 37 mm of axial-axis, which represent the front, middle and rear region

of plaque. q̇m = 0.005 W/mm3 is considered for metabolic heat generation.

The times t = 5.3s is selected during the cardiac cycle (Figure 45).

and rear (ℓ = 37 mm) regions, the maximum thermal stresses are 0.85 and 1.1 Pa,

respectively, and the highly stressed region in each plane also appears at the corners of

lipid core; these edge areas of lipid core are tightly connected with arterial wall having

different tissue material properties. It is observed that plaque structural feature such

as fibrous cap thickness and the lipid core size (or macrophage layer size) may be

critical in determining thermal stress and consequentially evaluating overall plaque

stability. In addition, the thermal stresses at the rear are higher than those at the

front because higher temperature due to the reduced convective effect of blood flow

is observed at the downstream region of plaque, as explained in Figures 52 and 53.
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f. Stress history at points in 3-D realistic geometry

In Figure 57, thermal stress history is shown at the representative points (A through

G) during three cardiac cycles. The representative points are located along the cen-

terline in the longitudinal-direction as indicated in Figure 54. Through the cycles,

thermal stresses calculated seems to be constant without any variation at every point

(Figure 57a). However, thermal stress obtained by temperature rise should vary cor-

responding to the flow pattern as temperature variation follows the characteristics

of inlet pulsatile flow in Figure 54. In order to show the variation of thermal stress

during cardiac cycles, the history of thermal stress at point C is presented with the

magnified scale in Figure 57b, where von Mises stress are varied between 0.8756 and

0.8759 Pa.

As shown in Figure 57a, thermal stresses at point A through G are distributed

between 0.6 to 1.0 Pa; the values are increased at from point A to D. After the peak

thermal stress at point D, the values are gradually decreased from E to the most end

point G. Such pattern of thermal stress is dominated by the temperature distribution

in Figure 54. It is observed that increasing temperature due to inflammatory process

increases thermal stress influencing over plaque stability. Thermal stress calculated

in our study are relatively lower than shear stress produced by blood flow in the

study of Tang et al., where it has been reported that the maximal shear stress at

plaque cap thickness of 0.4 mm is varied to 40 KPa [6]. Although the effect of ther-

mal stress may be too small to directly weakening of the plaque structure, thermal

stress can be more important because it steadily affects the endothelial permeability

of plaque surface to promote molecule transport such as macrophage infiltration and

may cause fatigue of the plaque surface during repetitive cardiac cycles. The quan-

titative difference between our calculations and Tang’s study [6] can be caused by
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Fig. 57. Stress history at the representative seven points (A through G) at axial direc-

tion of plaque/lumen interface. q̇m = 0.005 W/mm3 is applied for metabolic

heat generation during three cardiac cycles (Figure 45).

somewhat different conditions such as different length of outer boundary constrained

and material properties used in structural analysis.

4. Conclusions of thermal stress in 3-D model

In 3-D model, the temperature distributions changed with an inlet pulsatile flow

were determined to observe the convective cooling effect over AWT. Thermal stresses

produced by temperature heterogeneity were calculated to understand the relation

between the thermal stress and inlet pulsatile flow characteristics, and to reveal the

contribution of thermal stress to plaque evolution and rupture.

In simplified model, the maximum temperature point was spatially varied down-

stream of the plaque; In contrast, the maximum point calculated for 2-D straight

artery was occurred at almost constant location. This was explained by the differ-
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ent geometry (thicker in height and shorter in length) from 2-D plaque, which might

cause the stronger momentum of blood flow at the rear region of the plaque. It

was observed that the temperature was spatially varied in a sensitive way to arterial

geometry. It was also observed that a constant temperature region is occurred at

ℓ = 0.7 during a cardiac cycle, where could be a good spot to obtain the relatively

constant temperature during cardiac cycles.

It was observed that the temperature variations between the center and the side

of plaque were significantly different even if two points were not far from each other.

In realistic model, the temperature variation at the side region 1.3 mm away from the

centerline of lipid core was between 37.5 and 41 oC, which was significantly lower than

the temperature variation (37.5 to 42.7 oC) at the center in spite of the short distance

between two points. This might have occurred by the variation of macrophage layer

distribution and the low conductivity of arterial wall, which prevented the conductive

heat transfer from the lipid core. Therefore, the multiple measuring points must be

considered to decrease the potential error in temperature measurement even within

1 or 2 mm at centerline region of plaque measured.

The realistic model also showed the cooling effect over temperature distribution

surrounding plaque. The specific point remaining the relatively constant tempera-

ture was observed at the downstream of the plaque, which could be the best spot

to measure AWT. Meanwhile, at the most end point of the plaque, the significant

temperature variation was unexpectedly observed depending on an inlet flow pattern

although temperature at the most end point in 2-D straight model showed usually

constant value without any inlet blood flow effect. Therefore, to remove the potential

error of measurement, the denser measuring points were recommended even at the

rear region of the plaque.

In realistic model, thermal stress calculations were conducted to determine how
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atherosclerotic arterial wall and plaque surface were affected by thermal stress. As

temperature increase of 42.7 oC was taken as the maximum temperature, thermal

stress could be increased to 1.45 Pa without considering shear stress related to blood

flow. During cardiac cycles, thermal stress variation did not differ significantly due

to the thermal expansion behaviors of the arterial wall and lipid core. However, the

most highly thermal stressed region in each plane appeared at the corners of lipid

core, and another high stressed region was the plaque/lumen interface above the lipid

core; these regions similarly corresponded to the high stress-concentration regions

observed in other studies [6, 36, 37, 38]. This calculations of thermal stress, which

has never considered in other studies, would produce more realistic observations in

stress analysis and enhanced the reliability of predicting potential failure locations in

plaque/lumen surface.
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CHAPTER IV

CONCLUSIONS

This study presented a mathematical model that can be used as a tool to improve

treatment modalities involving direct arterial wall temperature measurements, and

detection of vulnerable plaque. In this study, thermal inhomogeneity of an atheroscle-

rotic plaque was characterized by the structure of the vulnerable plaque, such as the

size of lipid core, thickness of fibrous cap, and population of macrophages in the

fibrous cap.

In 2-D steady and unsteady calculations, parametric studies were performed

to analyze the contribution of plaque geometry over the arterial wall temperature.

The geometric parameters studied to characterize plaque were plaque thickness (dp),

macrophage rich layer thickness (dmp), fibrous cap thickness (lf ), plaque extension

(lp), macrophage extension (lmp), wall thickness (dw). In 2-D unsteady calculations,

the gradual reduction of inlet blood flow is proposed to look at the cooling effect

of blood flow as a result of the introduction of a catheter in the blood vessel. This

study was performed to better understand contradictory experimental results. In 3-D

arterial model, arterial wall temperature variation and thermal stress was investigated

with the objective to evaluate how thermal inhomogeneity affects plaque stability.

This mathematical study would contribute to elucidate the relationship between

inflammation and plaque rupture/evolution using temperature as the monitoring vari-

able parameter, and also suggested a better way to understand the arterial wall tem-

perature measurements obtained with novel catheters
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A. 2-D Steady Blood Flow Calculations

Arterial wall temperature variation was in proportion to metabolic heat generation qm,

macrophage layer thickness dmp and plaque thickness dp, whereas varies inversely with

fibrous cap thickness lf . Especially, metabolic heat generation qm and macrophage

layer thickness dmp had more influence over the plaque temperature. Temperature

distribution along plaque/lumen surface was significantly influenced by the blood

flow running through the vessel which is referred as the cooling effect of blood flow

[16, 21]. Temperature distributions at bending and bifurcation artery were affected

by flow separation and circulation caused by arterial geometry effect. In the presence

of blood flow, maximum temperature change was located behind the apex of the

plaque, which was governed by arterial geometry, distribution of macrophage layer,

and flow instabilities such as flow separation and flow circulation. Hence, the best

spot to measure plaque temperature was between the middle and the far edge of the

plaque where the point of maximum temperature can be located. It could be also

postulated that direct measurements should be taken very close to the plaque/lumen

surface.

B. 2-D Unsteady Blood Flow Calculations

It was observed that the locations of the hot spot were strongly dependent on the

inlet pulsatile flow pattern, and maximum temperature changes were generally located

behind the apex of the plaque. During cardiac cycles, transient temperature variations

were different from each artery because the effect of different arterial geometries

and inlet pulsatile flow patterns contributed to the characteristics of blood flow at

plaque/lumen surface.

It was recommended that the best location to measure plaque temperature in the
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presence of blood flow might be between the middle and the far edge of the plaque

because the maximum temperature occurred in that region and the temperature at the

plaque/lumen interface would vary significantly less in such region. For sampling rate

and measuring distance of plaque temperature, temperature measurements should be

performed in at least 2 locations including mid and rear regions during a couple of

cardiac cycles. In addition, direct measurements of plaque temperature should be

taken very close to the plaque/lumen surface within 100 µm away from the plaque

surface.

C. Plaque Temperature during Blood Flow Reduction

The calculations aimed to understand the relationship between arterial wall temper-

ature and flow reduction due to catheters used to measure local temperature. During

normal pulsatile flow, the characteristics of the inlet flow dominated the convective

cooling effect on the plaque/lumen surface and caused considerable variation of tem-

perature along the plaque surface in space and time. As blood flow was reduced,

the convective cooling effect decreased on the plaque/lumen surface and the plaque

temperature increased. The blood flow reduction provided different effects on the

front, middle and rear regions of the plaque, which were different from each arterial

geometry. Consequently, blood flow reduction contributed to the increase of plaque

surface temperature and the minimum required reduction time needed to observe

local temperature increase in the presence of an active plaque was at least 6 seconds.

D. Thermal Stress in 3-D Model

The temperature variations between at the center and at the side of plaque in cross-

sectional direction had a significant difference in spite of the short distance between
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two measuring points. This might be occurred by the variation of macrophage layer

distribution and the low conductivity of arterial wall. Therefore, the multiple mea-

suring points must be considered to decrease the potential error in temperature mea-

surement even within 1 or 2 mm at centerline region of plaque measured.

In thermal stress calculations, during cardiac cycles, the most highly thermal

stressed regions were observed at the corners of lipid core and the plaque/lumen

interface above the lipid core. In the calculations, thermal stress variation did not

differ significantly due to the thermal expansion behaviors of the arterial wall and lipid

core. However, thermal stress steadily affected the endothelial permeability of plaque

surface to promote molecule transport such as macrophage infiltration and caused

fatigue of the plaque surface during repetitive cardiac cycles. Thus, it was expected

that the distribution of thermal stress might contribute to reliability of determining

overall plaque stability.
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CHAPTER V

FUTURE WORK - PLAQUE EVOLUTION

A. Background

A variety of physical factors have been proposed to determine overall plaque sta-

bility; these include mechanical shear stress in blood vessels [32, 33, 34, 35], cir-

cumferential stress distribution [6, 36, 37, 38, 39], and transport and accumulation

of macromolecules [40, 42]. These studies have been performed in isothermal con-

ditions without considering any thermal stress introduced by plaque inflammation.

Recently, atherosclerosis has been recognized as an inflammatory disease, as there is

significant correlation observed between plaque temperature and rupture likelihood

[3, 13, 14, 15, 16, 18, 19, 20]. Activated inflammatory cells embedded in plaques

release heat; it is a hypothesis that such residual heat affects transport of macro-

molecules and plaque growth. We want to use our thermal analysis of the plaque to

estimate how the temperature heterogeneity of plaque contribute to thermal stress

that may further weaken the sensitive plaque surface and directly affect endothelium

permeability. This dissertation has shown the factors controlling the thermal inho-

mogeneity of the plaque and the thermal stress produced in the hot spot; however

the effect of temperature on plaque growth and evolution needs to be studies for the

further understanding of vulnerable plaque. This chapter represent a simplified model

that is proposed to study the plaque evolution.

In order to explain the growth of atherosclerotic plaque and how it is affected

by temperature or inflammatory response, previous work on stress-modulated growth

and remodeling of soft tissues will be employed with some modifications [106, 107,

108, 109]. Skalak has found that a cell in tissue grows independently of its neighbors
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that is not compatible and residual stress resulting from locally incompatible growth

deforms soft tissues [106, 107, 108]. Rodrigez et al. have proposed that the shape

change of an unloaded tissue during growth is described by a mapping analogous

to deformation gradient tensor [109]. To address the concept of volumetric growth,

Rodrigez et al. introduced the multiplicative decomposition of the total deformation

gradient into its elastic and growth parts [109, 110]. In this work, such theory will

be used for modeling the evolution of atherosclerotic plaques under non-isothermal

process; it consider thermal stress.

In this study, the growing plaque through mass transport will be explained with

the basic assumptions: (1) material properties of plaque are changed under thermal

effect (i.e. thermal stress) and (2) the plaque with the material properties is lin-

early growing under non-isothermal process. Under these assumptions, constitutive

relations are necessary to describe the material’s deformation related to the plaque

growth [79, 111]. To formulate of constitutive relations, the governing equations such

as the balances of mass, momentum, energy and entropy are derived; the equations are

based on the general continuum formulation for finite volumetric growth in soft elastic

tissues [109, 110]. The constitutive equations restricted by the Clausius-Duhem (CD)

inequality [79, 112] are developed for the volumetric growth of plaque under non-

isothermal process. Helmholtz free energy function for elastic materials is suggested

for thermal process of atherosclerotic plaque assumed [113]. Finally, the growth and

remodeling of the atherosclerotic plaque is simply described with the concept of the

multiplicative decomposition of the deformation gradient into its elastic and growth

parts [106, 107, 108, 109, 110].
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B. Material Characteristics of Plaque

As the first step, the general characteristics of the material should be classified with

its composition and behavior to formulate a constitutive relation. Atherosclerotic

plaque is highly progressive and materially heterogeneous due to the accumulation

of the lipids, cells, connective tissue and calcium in intima of arterial wall. The

composition of plaque is primarily defined by dense and cellular fibrous tissue as

collagen fibers, and the small percentage of plaque is occupied by pultaceous debris,

foam cells and calcific deposits [79, 91]. Although the composition of plaque suggests

that atherosclerotic plaque exhibits the general behavior of soft tissue, we must more

briefly determine the material characteristics of plaque used herein.

In this growth model, the plaque has been assumed to have a linear relation

regardless of the highly nonlinear relation for the stress-strain of soft tissues. Also,

our model is assumed to follow hyperelastic 1 behavior although hydrated and per-

fused tissues are usually modeled as viscoelastic 2. The plaque remains incompressible

during the mass growth (ρ (locally) = ρo (globally)) as most tissues consist largely

of water. Although arteries exhibit cylindrical orthotropy 3 and plaque consists of

different structural constituents with material heterogeneity, the material of plaque

in the model exhibits materially homogeneous 4 and isotropic 5 behavior for simplic-

ity. More importantly, the plaque has thermal heterogeneity due to metabolic heat

generation of inflammatory cells, and the plaque grows under non-isothermal process.

1The elastic behavior is quantified in terms of a strain energy function W , that is,
the recoverable energy stored in the material as it deforms.

2which accounts for a combined viscous (fluid like) and elastic (solid like) behavior
3The responses in radial, circumferential, and axial directions are distinct.
4The response to applied loads is independent of position within the body.
5The responses of the material to an applied load is independent of the direction

of loading.
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As a result, the plaque material will be considered to follow elastic, incompressible

and isotropic behaviors, and it will be assumed to be materially homogeneous, and

thermally heterogeneous (non-isothermal). Such definitions of material behaviors

allow plaque model to be simpler structure over finite strains than those of soft tissues

generally defined [79, 109].

C. Kinematics of Motion

The governing equations are developed for an elastic material undergoing a continu-

ous growth process. This section is concerned with the kinematics to describe growth

of incompressible elastic materials. After the introduction of the concepts of defor-

mation gradient, the transformation of volume elements induced by a deformation is

discussed.

In a simplification, the plaque growth is described by the volumetric production

due to mass transfer in incompressible behavior through plaque domain. A growing

material body, B , occupies a reference configuration βo(B) at time t = 0 and a

configuration βt(B) at time t (Figure 58). A material particle of plaque body B

occupies position Xo and X in these two configuration, respectively. The motion

measured from a reference configuration βo is given as

X = χ (Xo, t) ,

with deformation gradient

F =
∂X

∂Xo
=

∂χ (Xo, t)

∂Xo

where F is a second order tensor of deformation gradient. It is also invertible as
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Fig. 58. Schematic of a material body in two configurations: (1) an initial reference

configuration at time t=0 (βo), and (2) a current configuration at time t=t

(βt). The position of a material body is given by Xo and X in each configu-

ration, respectively.

F−1 =
∂Xo

∂χ (Xo, t)

Position vector dX can be mapped from dXo via a rigid body motion and de-

formation. If dV o is a material element of volume at Xo and dV denotes its image

under the mapping X = χ (Xo, t), we have

dV = dX · (dX× dX)

= F · dXo · (F · dXo × F · dXo)

= (detF) dXo · (dXo × dXo)

= (detF) dV o,
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where detF maps original differential volumes into current ones and is denoted by

J ; J = detF. If the volume remains preserved throughout the deformation and

growth (dV = dV o), it is isochoric and densification (J = 1). In this study, as

the deformation is assumed to have a volumetric growth in incompressible behavior

(ρ = ρo), the volume is increased (J > 1).

Next, a differential area dSo in a reference configuration βo is mapped to area dS

in current configuration βt. Using the deformation gradient F, the volume element

dV is expressed by two ways as

dV = dX · (nds) = dXo · FT · (ndS) , (5.1)

dV = JdV o = J (dXo · (NdSo)) . (5.2)

Comparing Eq. 5.1 and Eq. 5.2, we find the following relation known as Nanson’s

relations.

NdSo =
1

J
ndS · F, (5.3)

where N and n are outward unit normal vector in area dSo and dS. Nanson’s relation

is used to define stress acting over oriented areas. We define Cauchy stress σ 6 as

presented by Truesdell and Noll [114].

T = σn, Ti = σijnj , (5.4)

where σ is the stress tensor and T is the traction vector 7 that acts on that area. In

6Cauchy stress σ transforms the orientation n of area da of deformed solid (βt)
into the traction vector

7Traction vector T at the point P on the plane surface S is defined as T =
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the reference configuration βo, the first Piola-Kirchhoff stress tensor P is defined by

a new traction vector 8 To as

To = PN, (5.5)

where N is the unit normal vector in the reference configuration. Using Nanson’s

relation (Eq. 5.3) and the definitions of stress in Eqs. 5.4 and 5.5, we find that

Cauchy stress is related to the first Piola-Kirchhoff stress P, deformation gradient F

and its determinant J as

ndS · σ = ndS ·
1

J
F · P → σ =

1

J
F ·P. (5.6)

Next, the velocity vector v and the velocity gradient tensor L are defined, re-

spectively, as

v =
∂X

∂t
=

∂χ (Xo, t)

∂t
and L =

∂v

∂X

where L is rewritten by stretching tensor D, symmetric part, and rotation tensor W,

antisymmetric part, as L = D + W. If it is assumed that the plaque growth shows

only stretching deformation as L = D, the material time derivative of F is expressed

by

dF

dt
=

∂v

∂X
·

∂X

∂Xo
= ∇v · F = (D + W) · F = D · F. (5.7)

where the stretching tensor is defined as D = dF
dt

· F−1. The time rate of J (=detF)

is evaluated with Eq. 5.7 (see [79], p. 78), which will be used in the fundamental

lim∆S→0
∆F

∆S
where ∆F is the resultant force on a small area ∆s on the surface s.

8New traction vector To in the reference configuration is defined by the actual
force df and the reference area dSo as To = df

dSo .
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balance equations (e.g., mass, momentum, and energy),

dJ

dt
=

d(detF)

dt
=

∂(detF)

∂F
:
dF

dt
= (detFF−T ): (D · F). (5.8)

where the double dot (scalar) products between two second-order tensor are defined

as T:S = TijSij. In this study, the alternate representation with different notations

(see [79], p. 50) is used as T:S = tr(T · ST ) = tr(TT · S). Thus, Eq. 5.8 becomes

dJ

dt
= (detF)tr(F−T · FT · DT ) = JtrD. (5.9)

D. Mechanics of Solid with Growing Mass

This section introduces the fundamental relations of the balance of mass, momen-

tum, and energy. The entropy inequality is presented, and it is utilized to derive

the thermodynamic restrictions for the constitutive relations concerning the growth

of atherosclerotic plaque due to mass transfer. These fundamental relations under

isothermal processes obtained by many authors [79, 110, 115] are modified to de-

scribe the plaque growth under non-isothermal process. We mainly follow the forms

proposed by Lubarda and Hoger [110], which uses the simpler formulations for tis-

sue growth. The relations derived use the reference description 9 and the spatial

description 10. Energy equation is expressed in referential form.

9When a continuum is in motion, the change of specific particles (temperature
θ, velocity v, etc.) with time is described as functions of the particles (identified
by the reference coordinates Xo

1 , X
o
2 , X

o
3) and time t. It is also known as material

description and Lagrangian description.
10When a continuum is in motion, the change of specific particles (temperature

θ, velocity v, etc.) with time is described as functions of fixed position (identified
by the spatial coordinates X1, X2, X3) and time t. It is also known as Eulerian
description.
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1. Balance of mass

The balance of mass for the continuum with a growing mass considers the mass

transport across the boundary and the mass creation by the internal sources in a

fixed control volume. In the plaque domain, atherosclerotic plaque grows by the

transfer of molecules through the boundary of plaque domain. The procedure to

derive the mass balance follows Lubarda and Hoger’s study [110]. A time rate of the

mass growth per unit current volume rg is defined in

d (dm)

dt
= rgdV. (5.10)

where the subscript s presents the mass growth of plaque. The mass growth occurs

when rg > 0, and the mass is resorbed when rg < 0. Plugging the mass density

ρ = dm/dV into Eq. 5.10, we obtain

dρ

dt
dV + ρ

d (dV )

dt
= rgdV. (5.11)

where the volume rate is the proportional to the divergence of velocity field as d(dV )
dt

=

(∇ · v) dV . Therefore, the balance of mass for the continuum with a growing mass is

following

dρ

dt
+ ρ∇ · v = rg. (5.12)

Without the growing mass rg, the standard balance of mass is derived. In this study,

the plaque growth has a volumetric growth with incompressible materials as

dρ

dt
= 0, ∇ · v =

1

ρ
rg. (5.13)

where the mass density ρ remains the initial density ρo as an atherosclerotic plaque
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is growing.

a. Material form of growing mass

Determinant of deformation gradient J = detF was defined by dimensionless specific

volume J = dV
dV o where dV is the initial volume element. The time rate of mass supply

in Eq. 5.10 is expressed in referential form as

d (dm)

dt
=

d (ρdV )

dt
=

d (ρJdV o)

dt
= rgJdV o, (5.14)

where the rate of mass growth per unit initial ro
g is related with that of unit current

volume rg by the determinant of deformation gradient ro
g = rgJ . Eq. 5.14 is rewritten

in

d (ρJ)

dt
= ro

g. (5.15)

Integrating on the time gives

ρJ = ρoJo +
∫ t

0
ro
gdτ = ρo + α, (5.16)

where α denotes
∫ t
0 ro

gdτ and Jo is omitted because Jo = 1. If the volume is preserved

during the mass growth (dV = dV o), J = dV
dV o = 1. The densification is defined as

ρ = ρo + α. (5.17)

For simplicity, this study assumes that atherosclerotic plaque has a volumetric

growth with incompressible behavior as ρ = ρo. The determinant of deformation

gradient J for an incompressible material gives
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J = 1 +
α

ρo
, (5.18)

2. Balance of momentum

The balance of momentum with a growing mass states that the rate of linear momen-

tum of the material part is equal to the total force (surface and body forces) acting on

the body plus the momentum rate associated with a growing mass. The first Euler’s

law of motion for the continuum with a growing mass is expressed in spatial form as

[110]

d

dt

∫

V
ρvdV =

∫

S
TdS +

∫

V
ρbdV +

∫

V
rgvgdV, (5.19)

where v is velocity vector of plaque body, T stress vector of surface force, b body

force acting on the body in the current configuration (βt), and vg the velocity of

molecules occurring the plaque growth. According to Reynolds transport theorem 11

for continuum with a growing mass (see [110]), the left-hand side in Eq. 5.19 is given

in

d

dt

∫

V
ρvdV =

∫

V

(

ρ
dv

dt
+ rgv

)

dV. (5.20)

Using the definition of Cauchy stress (Eq. 5.4) and the divergence theorem 12, the

11Reynolds transport theorem states that the rate of change of any extensive prop-
erty N of a system occupying a control volume C.V. at time t is equal to the sum
of the rate of change of N within C.V. and the net flux of N through the control
surface C.S. that surrounds the C.V.. The formula of Reynolds transport theorem for

continuum with a growing mass in C.V. is d
dt

∫

V ρAdV =
∫

V

(

ρdA
dt

+ rgA
)

dV yielded

in Lubarda and Hoger’s study [110]
12The divergence theorem states that the flux of a vector field on a surface is equal

to the triple integral of the triple integral of the divergence on the region inside the
surface. The theorem is defined in

∫

S v · ndS =
∫

R divvdV
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first term on the right-hand side in Eq. 5.19 is rewritten as a volume integral [116]

by

∫

S
TdS =

∫

S
σndS =

∫

V
(divσ) dV =

∫

V
(∇ · σ) dV. (5.21)

Substitution of Eqs. 5.20 and 5.21 into Eq. 5.19 yields the balance of momentum for

the growing mass as

∇ · σ + ρ

(

b −
dv

dt

)

= rg (v − vg) , (5.22)

where vg is the velocity of molecules in plaque domain, and v present the body velocity

of plaque. If the molecules are moved with the velocity of plaque body (v = vg), the

familiar form of the linear momentum is obtained by

∇ · σ + ρb = ρ
dv

dt
. (5.23)

3. Balance of energy

Classically, the balance of energy (or the first law of thermodynamics) states that the

time rate of the total energy (kinetic (1
2
v · v) plus internal energy (u)) of a body is

equal to the rate at which work is done on the body and the rate at which heat is

added to the body. This study invokes other terms related to the plaque growth and

the metabolic heat generation in plaque; and it is given by [110]

d

dt

∫

V
ρ
(

1

2
v · v + u

)

dV = W +H+
∫

V
rg
(

1

2
vg · vg + ug

)

dV +
∫

V
ρRgrgdV, (5.24)

where the subscript g is the mass growth of plaque. The terms of 1
2
vg · vg and ug

present the kinetic and the internal energy of mass growth in plaque, respectively.
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Rgrg means the rate of chemical energy per unit current mass by plaque growth.

Applying the Reynolds transport theorem to the term in left-hand side in Eq. 5.24

yields

d

dt

∫

V
ρ
(

1

2
v · v + u

)

dV =
∫

V
ρ

d

dt

(

1

2
v · v + u

)

dV +
∫

V
rg
(

1

2
v · v + u

)

dV. (5.25)

The first term of right-hand side in Eq. 5.24 is the rate of work (force times velocity)

done on the surface and body force on the current mass [111], and it is defined as

W =
∫

S
T · vdS +

∫

V
ρb · vdV, (5.26)

where the rate of work done on the surface is transformed in terms of transpose of a

tensor, σn · v = n · σTv (see [116], p. 433), into

∫

S
T · vdS =

∫

S
σn · vdS =

∫

S
n ·

(

σTv
)

dS. (5.27)

Using the divergence theorem in Eq. 5.27, the rate of work done on the surface is

∫

S
n ·

(

σTv
)

dS =
∫

V
∇ ·

(

σTv
)

dV =
∫

V

[

(∇ · σ) · v + tr
(

σT∇v
)]

dV, (5.28)

where the velocity gradient ∇v is substituted with L defined in the section of Kinetics.

Using Eqs. 5.27 - 5.28, Eq. 5.26 becomes

W =
∫

V

[

(∇ · σ + ρb) · v + tr
(

σTL
)]

dV, (5.29)

which, applying the linear momentum equation (Eq. 5.23), can be rewritten as

W =
∫

V

[

ρ
d

dt

(

1

2
v · v

)

+ tr
(

σTL
)

]

dV. (5.30)
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Here, the velocity gradient L is substituted with the stretching tensor D because

the plaque is assumed to be growing without the rotational deformation W, that is

tr
(

σTL
)

= tr
(

σTD
)

. The trace operation of second order tensors are expressed by

the scalar product (or double dot) between two second-order tensors as tr
(

σTD
)

=

σT :D. The symmetry of the Cauchy stress tensor, σ = σT, is valid if the plaque is

assumed as an isotropic material as body moments per unit volume is ignored. Thus,

Eq. 5.30 is rewritten by

W =
∫

V

[

ρ
d

dt

(

1

2
v · v

)

+ σT :D

]

dV. (5.31)

In Eq. 5.24, the rate of total heat input shows the heat input values of metabolic

heat generation, which represent the inflammatory response taking place in the plaque.

Using the divergence theorem, the rate of heat for a growing body is given by

H = −
∫

S
q · ndS +

∫

V
ρwdV =

∫

V
(−∇ · q + ρw) dV, (5.32)

where q is the rate of heat flow by conduction across the surface element ndS of plaque

domain, and w is the rate of heat input per unit current mass due to macrophage cell

layer as an internal heat source.

The energy equation in the spatial form is yielded by plugging Eqs. 5.25, 5.31

and 5.32 into Eq. 5.24.

ρ
du

dt
= σT :D−∇ · q + ρw + ρRgrg + rg

[(

1

2
vg · vg + ug

)

−
(

1

2
v · v + u

)]

, (5.33)

where ρw presents the rate of heat input per unit current mass produced by macrophage

cell layer and ρRgrg is the rate of chemical energy by mass growth. The last term of

right-hand side vanishes with the assumptions: (1) the molecules transferred through
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plaque surface causing plaque growth are deposited with the same velocity as that of

the formation of plaque, (i.e. v = vg) and (2) the internal energy ug from molecules

of the growing mass is the same as the internal energy u existing in the plaque, or

their difference is negligible. Thus, the energy equation in spatial form is reduced to

ρ
du

dt
= σT :D −∇ · q + ρw + ρRgrg. (5.34)

To apply the entropy inequality in a more convenient way, the energy equation

is changed into the referential form. The first term of the right-hand side of Eq.

5.34 is rewritten using the facts that (1) Cauchy stress σ is directly related to the

first Piola-Kirchhoff stress P through deformation gradient F and its determinant J

(Eq. 5.6), and (2) the relation between deformation gradient F and kinematics of

deformation D is introduced (Eq. 5.7), and repeated below:

σT :D =
1

J
F · PT :

dF

dt
· F−1 =

1

J
PT :

dF

dt
(5.35)

Plugging Eq. 5.35 into Eq. 5.33, the referential form of energy equation is

ρo
du

dt
=

1

J
PT :

dF

dt
−∇o · qo + ρow + ρoR

grg. (5.36)

where ∇o the referential dell operator and qo the referential heat flux vector which

arise from metabolic heat generation of inflammatory response.

4. Entropy inequality

The entropy inequality known as the second law of thermodynamics is essential for

developing a constitutive relation. This study introduces the second law in the ref-

erential form modified with the Clausius-Duhem equation proposed by Bowen [112].

That is
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−ρo
du

dt
+

1

J
PT :

dF

dt
−

1

T
qo · ∇oT + ρow + ρoR

grg ≥ 0 (5.37)

where the internal energy u is related to the Helmholtz potential Ψ and entropy η as

u = Ψ + ηT . The entropy inequality is rewritten by

−ρo

(

dΨ

dt
+ η

dT

dt

)

+
1

J
PT:

dF

dt
−

1

T
qo · ∇oT + ρow + ρoR

grg ≥ 0 (5.38)

For the case of isothermal process (i .e., T constant and qo = 0), the entropy

inequality in Eq. 5.38 reduces as

−ρo
dΨ

dt
+

1

J
PT:

dF

dt
≥ 0.

However, to consider thermal heterogeneity resulting from metabolic heat gen-

eration in atherosclerotic plaque, this study requires the use of the equation of non-

isothermal process (Eq. 5.38).

E. Constitutive Equations

Constitutive relations describe a material’s behavior under specific conditions of in-

terest [79]. The constitutive law for stress-modulated growth of tissue is required

to analyze the finite growth kinematics in an elastic tissue because the constitutive

law determines the residual stress satisfying the equilibrium and boundary condi-

tion. Although the constitutive equations under isothermal process have been sug-

gested during the past several decades [79, 117], those are inappropriate for the

atherosclerotic plaque having thermal heterogeneity due to metabolic heat generation

[3, 13, 14, 15, 16, 18, 19, 20]. Therefore, a new constitutive law under non-isothermal

process is necessary to describe the growth of atherosclerotic plaque with metabolic
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heat generation. The second law of thermodynamics in Eq. 5.38 suggests that three

constitutive functions for a general thermoelastic process are in forms for Helmholtz

potential Ψ, entropy η, and stress P.

In this model, the atherosclerotic plaque exhibits incompressible volumetric growth

(ρ = ρo) and the local volume change is measured by detF (= J). As shown in Eq.

5.18, the restrictions are imposed by the kinematic constraint13 detF = 1 + α
ρo for all

F. As the case of isothermal derived by Humphrey [79, 117], a Lagrange multiplier

p is introduced to impose the constraint of the incompressible volumetric growth to

the entropy inequality in Eq. 5.38.

Ψ̃ = Ψ (F) − p

(

detF − 1 −
α

ρo

)

(5.39)

where α is
∫ t
0 ro

gdτ . Helmholtz potential Ψ is the function of position (by deformation

gradient) and temperature as Ψ = Ψ (F, T ), and the Lagrange multiplier p depends

on position and time t. Therefore,

dΨ̃

dt
=

∂Ψ

∂F
:
dF

dt
+

∂Ψ

∂T

dT

dt
−

dp

dt

(

J − 1 −
α

ρo

)

− p
d

dt
(J) . (5.40)

where the derivative of Ψ is taken by assuming each of the components of F to be

independent (their dependence being accounted for via p). Plugging Eq. 5.40 and

J = detF into Eq. 5.38, the inequality introduces

−ρo

(

∂Ψ

∂F
:
dF

dt
+

∂Ψ

∂T

dT

dt
−

dp

dt

(

J − 1 −
α

ρo

)

− p
dJ

dt
+ η

dT

dt

)

+
1

J
PT :

dF

dt
−

1

T
qo · ∇oT + ρow + ρg

oR
grg ≥ 0,

13Kinematic constraints refer to internal mechanisms, operative under specific con-
ditions, that are largely independent of the applied loads



147

which, using Eq. 5.9 to evaluate dJ/dt and trD = F−T : dF
dt

, becomes

−ρo

(

∂Ψ

∂F
:
dF

dt
+

∂Ψ

∂T

dT

dt
−

dp

dt

(

J − 1 −
α

ρo

)

− pJF−T:
dF

dt
+ η

dT

dt

)

+
1

J
PT :

dF

dt
−

1

T
qo · ∇oT + ρow + ρg

oR
grg ≥ 0,

and rearrange it to make scalar product for arbitrary F, T and p

(

−ρo
∂Ψ

∂F
+ ρopJF−T +

1

J
PT

)

:
dF

dt
+ ρo

(

J − 1 −
α

ρo

)

dp

dt
− ρo

(

∂Ψ

∂T
+ η

)

dT

dt

−
1

T
qo · ∇oT + ρow + ρg

oR
grg ≥ 0. (5.41)

where the values of dF
dt

, dT
dt

and dp
dt

could be separately positive, negative, or zero.

Therefore, if the last three terms in right-hand side are positive in formal sign con-

vention, three terms within parenthesis must vanish for the sufficient condition of Eq.

5.41 for any F, T and p. The last three terms in right-hand side are evaluated to have

positive sign with the followings: (1) when dT
dx

is a negative sign due to metabolic heat

generation in plaque, − 1
T
qo ·∇oT has a positive sign. (2) The rate of heat input w per

unit current mass produced by macrophage cell layer would be positive as ρow ≥ 0

(3) The rate of chemical energy by mass growth is also positive as ρg
oR

grg ≥ 0. As a

result, three constitutive relations from Eq. 5.41 are yielded by

P = ρoJ

(

∂Ψ

∂FT
− pJF−1

)

, (5.42)

J = 1 +
α

ρo
where α =

∫ t

0
ro
gdτ, (5.43)
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η = −
∂Ψ

∂T
. (5.44)

where the Lagrange multiplier p enforcing the incompressible volumetric growth (Eq.

5.43) introduces a reaction stress in Eq. 5.42. Three constitutive functions are neces-

sary to describe the non-isothermal hyperelastic behavior of an atherosclerotic plaque.

In Eq. 5.42, the first Piola-Kirchhoff stress tensor P is derivable from the

Helmholtz potential Ψ and the Lagrange multiplier p, which reveals that the Helmholtz

potential and the stress are not independent on constitutive functions. Recalling the

interrelations between the various forms of stress in Eq. 5.6, the Cauchy stress for a

behavior of incompressible volumetric growth is

σ =
(

α

1 − J

)

(

pJI − F ·
∂Ψ

∂FT

)

. (5.45)

where the term containing the Lagrange multiplier p is called the reaction term and

the other term is called the extra stress. The second condition (Eq. 5.43) shows

an incompressible behavior (ρ = ρo) during the mass growth of the atherosclerotic

plaque. The third condition (Eq. 5.44) expresses that the entropy η and Helmholtz

potential Ψ are related in a non-isothermal processes. In isothermal processes, the

Helmholtz potential Ψ and the strain-energy W are simply related, (i.e. ρoΨ (F) =

W (F)), and stress is determined directly from a strain-energy function W (F). Many

empirical functional forms of strain-energy functions W (F) has been achieved by

evaluating the Helmholtz free energy at the fixed temperature at which deformation

takes place. Meanwhile, there has been little evaluation of strain-energy function

W (F, T ) or Helmholtz free energy function Ψ (F, T ) under non-isothermal process;

Chadwick’s study introduced the Helmholtz free energy function Ψ (F, T ) to be valid

for all elastic materials [118]. The entropy η (Eq. 5.44) is substituted for the equation
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of the internal energy, u = Ψ+ηT , defined by the Helmholtz potential Ψ and entropy

η. Therefore,

u = Ψ − T
∂Ψ

∂T
,

and the specific heat at constant deformation c is defined by

c =
∂u

∂T
= −T

∂2Ψ

∂T 2
,

Integrating the specific heat c twice between reference temperature To and T (see

[118], p. 32-41), the helmholtz free energy Ψ (F, T ) is expressed by

Ψ (F, T ) = Ψ (F, To)
T

To
− u (F, To)

(

T

To
− 1

)

−
∫ T

To

(

T

T ′
− 1

)

c (F, T ′) dT ′,

where the first term in the right-hand side, Ψ (F, To), presents the strain energy func-

tion per unit mass for isothermal deformation at the reference temperature To. For

example, in his study [113], the form of the Helmholtz free energy function Ψ (F, T )

for the behavior of rubberlike material in temperature range was discussed in detail.

F. Multiplicative Decomposition of Plaque Growth

Atherosclerotic plaque is grown with a volumetric growth through the mass transport

of cellular species which depends on characteristics of blood flow and arterial geome-

tries. During the growth, atherosclerotic plaque experiences temperature heterogene-

ity due to metabolic activation of inflammatory cells, which causes the deformation of

plaque structure for thermal stress. As the soft-tissue growth showing large deforma-

tion is accompanied by residual stresses due to incompatible strains [106], the large

deformation for the volumetric growth of plaque structure must consider the residual
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stresses containing the thermal stress due to metabolic activations. According to the

theory of plasticity, the stress modulated growth in arbitrarily large deformation can

be appropriately explained by elastic-plastic decomposition of the deformation gradi-

ent [117]; the multiplicative decomposition of deformation gradient F is decomposed

into its elastic Fe and growth Fg parts, that is F = Fe ·Fg [106, 107, 108, 109]. Like-

wise, the plaque body can undergo the growth without discontinuities through two

processes: (1) the growth deformation Fg of material added and changed to the local

stress-free state and (2) elastic deformation Fe to make the total growth deformation

compatible [109, 110].

1. Plaque growth through mass transport

Atherosclerotic plaque is growing with mass transport of chemical and cellular species

such as LDL, oxLDL, chemoattractant, immune cells (monocytes), inflammatory cells

(macrophages), smooth muscle cells (MSC) and cellular debris that constitute necrotic

core. The transient mass transport and accumulation of chemical species and cellular

components are described by the convection-diffusion equations [44] as follows:

∂Ci

∂t
− DCi

∇2Ci − RCi
= 0 for i = 1, 2, 3, (5.46)

∂ni

∂t
−Dni

∇2ni − Sni
= 0 for i = 1, 2, 3, (5.47)

where Ci represents the solute concentration of chemical species such as LDL (i = 1),

oxLDL (i = 2), and chemoattractant (i = 3). ni denotes the cell number of cellular

components such as monocytes (i = 1), smooth muscle cells (i = 2), macrophages

(i = 3) and dead cells or debris cells (i = 4). For the simplicity in this study, all

components related with the plaque formation have the same material properties.
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Fig. 59. Three states for the overall growth deformation in finite growth. (a) the

initial zero-stress reference state βo(B) at the reference temperature To and

time t = 0, (b) the grown zero-stress state βt(B) at the reference temperature

To and time t = t, and (c) the grown unloaded state β ′

t(B) at the current

temperature Tt and time t = t where the residual stress σ′ including the

thermal stress caused by the temperature change from To to Tt. The growth

deformation gradient Fg maps βo into βt, but may not be compatible the

finite growth. The elastic deformation gradient Fe maps βt into β ′

t so that the

overall growth deformation may be compatible.
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2. Kinematics of plaque growth

As aforementioned, the overall growth deformation is decomposed into two parts: a

transformation of growth Fg in zero-stress reference state, and an elastic deformation

Fe with residual stress containing thermal stress to ensure the compatibility of the

total growth deformation. For the growth deformation gradient Fg in Figure 59, the

growth from the original zero-stress reference state βo(B) to a new locally stress-free

state βt(B) is defined at reference temperature To as

Fg = D + W at To (5.48)

where D is the growth stretch tensor and W is the rotation tensor of the growth

deformation. Because this study assumes that the growth law is formulated by the

growth stretch D, the growth deformation gradient is presented by Fg = D. Next,

to ensure the continuity of the growing tissue, an elastic deformation Fe is applied to

map βt(B) at reference temperature To to the state β ′

t(B) at current temperature Tt,

which consider the residual stress σ′ with thermal stress. So that the overall growth

deformation is compatible, the elastic deformation Fe gives rise to the residual stress

σ′.

Feg = Fe · Fg at Tt (5.49)

Here, the total deformation of atherosclerotic plaque Feg experience temperature

change from βo(B) at reference temperature To to β ′

t(B) at current temperature Tt.

3. Modeling of atherosclerotic plaque

A plaque model with macrophage cell layer shows how an atherosclerotic plaque

gives a volumetric growth with the growth and elastic deformations. For the two-
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dimensional plaque model, it is assumed that the plaque consists of fibrous cap (fc)

and macrophage layer (mp) and has incompressible non-isothermal elastic behavior.

The fibrous cap and macrophage layer are assumed to grow under two different linear

functions. The macrophage layer along a longitudinal axis of vessel produces heat

generation causing thermal stress that would affect additional deformation leading to

plaque rupture.

Figure 60 describes the overall growth deformation Feg of atherosclerotic plaque

decomposed into two parts: (1) the growth deformation Fg and (2) elastic deforma-

tion Fe. To describe the growth deformation Fg, the fibrous cap and macrophage

layer establishes two different growth deformations with different linear functions. If

a point p in the original stress-free configuration βo(B) at reference temperature To

has the coordinates (R, Θ), the growth deformation Fg maps the original state βo(B)

into the new locally stress-free state βt(B), in which p has coordinates (ρ, ϕ) at refer-

ence temperature To. It is prescribed by the growth displacements in Eqs. 5.50 and

5.51.

ρfc = Pfc (R) R, ϕfc = Kfc (R) Θ, (5.50)

ρmp = Pmp (R) R, ϕmp = Kmp (R) Θ. (5.51)

where the subscripts of fc and mp present the fibrous cap and the macrophage layer,

respectively. The term P (R) is a radial growth stretch ratio and K (R) is a cir-

cumferential growth stretch ratio that depends on the radius. As P (R) > 1.0 and

K (R) > 1.0, the growth deformation Fg is occurred as shown in Figure 60, meanwhile

when P (R) < 1.0 and K (R) < 1.0, the deformation is resorbed. At locally stress-free

state βt(B), the plaque and macrophage layer have a superposition or discontinuity
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Locally stress-free state

before growth

at

 

 

Locally stress-free state

after growth at

Grown unloaded state

with residual stress including 

thermal stress at 

 

Fg Fe

Feg

T=To and σ=0

T=To and σ=0

T=T
t

and σ= σ’

Fig. 60. The growth model of atherosclerotic plaque. The original zero-stress is a

smaller plaque before growing at time t = 0 and temperature To. After

growing process Fg, the grown state βt in stress-free has deformation but

shows discontinuity between macrophage layer and fibrous part. To achieve

a complete plaque shape, an elastic deformation Fe takes two different-grown

parts βt at To into compatible grown state β ′

t at current temperature Tt. This

elastic deformation Fe will give rise to residual stress σ′ which include the

thermal stress due to the temperature change from To to Tt.
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of material at the interface region of two materials.

For compatibility of the overall growth deformation in finite elasticity, an elastic

growth deformation β ′

t(B) experiences the residual stress considering thermal stress

due to the temperature change from the reference temperature To to the current

temperature Tt. The state βt(B) at To is mapped to the final state of β ′

t(B) at

Tt where p has coordinates (r, θ). The elastic displacements for fibrous cap and

macrophage layer are prescribed as;

rfc = hfc (ρ) ρ, θ = gfc (ρ) ϕ, (5.52)

rmp = hmp (ρ) ρ, θ = gmp (ρ) ϕ. (5.53)

where h (ρ) is a radial elastic ratio and g (ρ) is a circumferential elastic ratio, which

are chosen to allow the overall growth deformation Fe · Fg to be compatible at the

interface between the fibrous cap (fc) and the macrophage layer (mp). For example,

if Pfc and Kfc are constant, simply the functions are hfc = 1/Pfc and gfc = 1/Kfc to

be compatible by restoring continuity of displacements at the interface. The elastic

deformation will be considered by the constitutive equation which determines the

residual stress of the plaque material that must satisfy equilibrium and the zero trac-

tion boundary condition. The constitutive equations under non-isothermal process

was already introduced in the previous chapter.

G. Conclusions of Plaque Evolution

This chapter presented a constitutive relation of thermal-stress modulated growth of

atherosclerotic plaque with large deformation of two components, such as fibrous cap

(fc) and macrophage layer (mp). The governing equations of the solid mechanics with
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a volumetric growth were formulated with the balance of mass, momentum, energy

and entropy under non-isothermal process, which was given in the framework of finite

deformations. The constitutive relations (Equations 5.42 - 5.44) of the non-isothermal

process were developed by extending the classical Clausius-Duhem (CD) inequality.

Subsequently, the atherosclerotic plaque model in terms of the thermal-stress mod-

ulated growth was described by the constitutive relations of non-isothermal process.

The model of plaque growth adopted the theory of the multiplicative decomposition

of the deformation gradient into its elastic and growth parts. The deformation of

plaque components, fibrous cap (fc) and macrophage layer (mp), had a volumet-

ric and linear growth with an isotropic behavior. In the model, the non-isothermal

process due to thermal heterogeneity was required with the hypothesis; temperature

increase by inflammatory process in macrophage layer might cause thermal stress

that contributes to weakening of the sensitive plaque surface including enzymatic

degradation of the connective tissue matrix. This might directly affect endothelium

permeability to increase the transport of macromolecules and, consequently cause the

evolution of atherosclerosis and plaque growth.

There are still many improvements necessary. The 2-D simplified model that

expresses the growth of atherosclerotic plaque should be modified for the realistic

model in accordance with the experimental observations for the plaque structure and

components properties, which is the essential part of further research. Nevertheless,

this basic model of a plaque growth may become the first discussion in regard to

non-isothermal process due to thermal stress. The governing equations derived and

theoretical concepts developed herein can provide the comprehensive information to

more realistic numerical model to analyze the growth of an atherosclerotic plaque.

This description might be a useful to understand how temperature increase by in-

flammatory process could affect the growth of atherosclerotic plaque.



157

REFERENCES

[1] X.M. Yuan, U.T. Brunk, and L. Hazell, “The morphology and natural history of

atherosclerosis,” in Atherosclerosis, Gene Expression, Cell Interactions and Oxi-

dation. Roger T. Dean and David T. Kell, 1st Ed., New York, Oxford University

Press, 2000, chap.12, pp. 490–522.

[2] American Heart Association, 2006 Heart Disease and Stroke Statistics - 2006

Update, Dallas, TX: American Heart Association, 2006.

[3] M. Naghavi, M. Madjid, K. Gul, M.S. Siadaty, S. Litovsky, J.T. Willerson, and S.

W. Casscells, “Thermography basket catheter: In vivo measurement of the tem-

perature of atherosclerotic plaques for detection of vulnerable plaques,” Catheter-

ization and Cardiovascular Interventions, vol. 59, pp. 52–59, 2003.

[4] R. Virmani, F.D. Kolodgie, A.P. Burke, A. Farb, S. M. Schwartz, “Lessons from

sudden coronary death: a comprehensive morphological classification scheme for

atherosclerotic lesions,” Arterioscler Thromb. Vasc. Biol., vol. 20, pp. 1262–1275,

2000.

[5] R.A. Baldewsing, J.A. Schaar, F. Mastik, C.W.J. Oomens, and A.F.W. van der

Steen, “Assessment of vulnerable plaque composition by matching the defor-

mation of a parametric plaque model to measured plaque deformation,” IEEE

Transaction on Medical Imaging, vol. 24, pp. 514–528, 2005.

[6] D. Tang, C. Yang, J. Zheng, P.K. Woodard, J.E. Saffitz, G.A. Sicard, T.K.

Pilgram, and C. Yuan, “Quantifying effects of plaque structure and material

properties oon stress distributions in human atherosclerotic plaques using 3D



158

FSI models,” Journal of Biomechanical Engineering, vol. 127, pp. 1185–1194,

2005.

[7] B.D. MacNeill, H.C. Lowe, M. Takano, V. Fuster, and I. Jang, “Introvascu-

lar modalities for detection of vulnerable plaque; current status,” Arterioscler

Thromb Vasc Biol, vol. 23, pp. 1333–1342, 2003.

[8] E. Falk, “Morphologic features of unstable atherothrombotic plaques underlying

acture coronary syndromes,” Am. J. Cardiol, vol. 63, pp. 114E–120E, 1989.

[9] E.Falk, P.K. Shah, and V. Fuster, “Coronary plaque disruption,” Circulation,

vol. 92, pp. 657–671, 1995.

[10] W.C. Little, M. Constantinescu, R.J. Applegate, M.A. Kutcher, M.T. Burrows

et al., “Can coronary angiography predict the site of a subsequent myocardial

infarction in patients with mild-to-moderate coronary artery disease?,” Circula-

tion, vol. 78, pp. 1157–1166, 1988.

[11] A. Farb, A.L. Tang, and A.P. Burke, “Sudden coronary death. Frequency of

active coronary lesions, inactive coronary lesions, and myocardial infarction,”

Circulation, vol. 92, pp. 1701–1709, 1995.

[12] W. Casscells, B. Hathorn, M. David, T. Krabach, W.K. Vaughn, H.A. McAllister,

and G. Bearman, “Thermal detection of cellular infiltrates in living atheroscle-

rotic plaques: possible implications for plaque rupture and thrombosis,” The

LANCET, vol. 347, pp. 1447–1449, 1996.

[13] C. Stefanadis, L. Diamantopoulos, C. Vlachopoulos, E. Tsiamis, J. Dernellis,

K. Toutouzas, E. Stefanadi, and P. Toutouzas, “Thermal heterogeneity within



159

human atherosclerotic coronary arteries detected in vivo; A new method of de-

tection by application of a special thermography catheter,” Circulation, vol. 99,

pp. 1965–1971, 1999.

[14] S. Verheye, G.R.Y. De Meyer, G. Van Lanenhove, M.W.M. Knaapen, and M.M.

Kockx, “In vivo temperature heterogeneity of atherosclerotic plaquesis deter-

mined by plaque composition,” Circulation, vol. 105, pp. 1596–1601, 2002.

[15] M. Madjid, M. Naghavi, B.A. Malik, S. Litovsky, J.T. Wilerson, and W. Cass-

cells, “Thermal detection of vulnerable plaque,” American Journal of Cardiology,

vol. 90, pp. 36L–39L, 2002.

[16] C. Stefanadis, K. Toutouzas, M. Vavuranakis, E. Tsiamis, S. Vaina, and P.

Toutouzas, “New balloon-thermography catheter for in vivo temperature mea-

surements in human coronary atherosclerotic plaques: A novel approach for ther-

mography?,” Catheterization and Cardiovascular Interventions, vol. 58, pp. 344–

350, 2003.

[17] D. Nemirovsky, “Imaging of high-risk plaque,” Cardiology, vol. 100, pp. 160–175,

2003.

[18] V. Bhatia, R. Bhatia, S. Dhindsa, and M. Dhindsa, “Imaging of the vulnerable

plaque: New modalities,” Southern Medical Journal, vol. 96(11), pp. 1142–1147,

2003.

[19] L. Diamantopoulos, “Arterial wall thermography,” Journal of Interventional Car-

diology, vol. 16(3), pp. 261–266, 2003.

[20] L. Diamantopoulos, X. Liu, I.D. Scheerder, R. Krams, S. Li, J.V. Cleemput, W.

Desmet, and P.W. Serruys,“The effect of reduced blood-flow on the coronary wall



160

temperature: Are significant lesions suitable for intravascular thermography?,”

European Heart Journal, vol. 24, pp. 1788–1795, 2003.

[21] C. Stefanadis, K. Toutouzas, E. Tsiamis, I. Mitropoulos, C. Tsioufis, I.

Kallikazaros, C. Pitsavos, P. Toutouzas, “Thermal heterogeneity in stable hu-

man coronary atherosclerotic plaques is underestimated in vivo: the ‘cooling

effect’ of blood flow,” Journal of the American College of Cardioloy, vol. 41,

pp. 403–408, 2003.

[22] J.F. Green, Fundamental Cardiovascular and Pulmonary Physiology, An Inte-

grated Approach for Medicine, Philadelphia: LEA and FEBIGER, 1982.

[23] J.J. Smith and J.P. Kampine, Circulatory Physiology, Baltimore, MD: Williams

and Wilkins, 1980.

[24] J.M. Tarbell and Y.Qiu, “Arterial wall mass transport: The possible role of

blood phase resistance in the localization of arterial disease,” in The Biomedical

Engineering Handbook . J.D. Bronzino, 2nd Ed., Boca Raton, FL: CLC Press

LLC, 2000, chap. 100.

[25] A.M. Malek, S.L. Alper, and S. Izumo, “Hemodynamic shear stress and its role

in atherosclerosis,” JAMA, vol. 282, pp. 2035–2042, 1999.

[26] C.R. Ethier, “Computational modeling of mass transfer and links to atheroscle-

rosis,” Annals of Biomedical Engineering, vol. 30, pp. 461–471, 2002.

[27] R. Ross, “Atherosclerosis - an inflammatory disease,” Mechanism of Disease,

vol. 340(2), pp. 115–126, 1999.

[28] A.C. Langheinrich, A. Michniewicz, D.G. Sedding, G. Walker, P.E. Beighley,

W.S. Rau, R.M. Bohle, and E.L. Ritman, “Correlation of vasa vasorum neo-



161

vascularization and plaque progression in aortas of apolipoprotein E−/− / low-

density lipoprotein−/− double knockout mice,” Arterioscler Thromb Vasc Biol,

vol. February, pp. 347–352, 2006.

[29] M. Gossl, D. Versari, D. Mannheim, E.L. Ritman, L.O. Lerman and A. Ler-

man, “Increased spatial vasa vasorum density in the proximal LAD in hypersc-

holesterolemia - Implications for vulnerable plaque-development,” Atherosclero-

sis, vol. 192, pp. 246–252, 2007.

[30] D.E. Gutstein and V. Fuster, “Pathophyiology and clinical significance of

atherosclerotic plaque rupture,” Cardiovascular Research, vol. 41, pp. 323–333,

1999.

[31] W. Jessup, A. Baoutina, and L. Kritharides, “Macrophages in cardiovascular

disease,” in The Macrophage. B. Burke and C.E. Lewis, 2nd Ed., New York:

Oxford University Press, 2002, chap.1, pp. 1–23.

[32] C.K. Zarins, D.P. Giddens, B.K. Bharadvaj, V.S. Sottiurai, R.F. Mabon and S.

Glagov, “Carotid bifurcation atherosclerosis: Quantitative correlation of plaque

localization with flow velocity profiles and wall shear stress,” Circulation Re-

search, vol. 53, pp. 502–514, 1983.

[33] S.D. Gertz and W.C. Roberts, “Hemodynamic shear force in rupture of coronary

arterial atherosclertic plaques,” Am. J. Cardiol., vol. 66, pp. 1368–1372, 1990.

[34] B.K. Bharadvaj, R.F. Maron, and D.P. Giddens, “Steady flow in a model of

the human carotid bifurcation, I: flow visualization,” Journal of Biomechanics,

vol. 28, pp. 1515–1528, 1995.

[35] A. Gnasso, C. Irace, C. Carallo, M.S. De Franceschi, C. Motti, P.L. Mattioli



162

and A. Pujia, “In vivo association between low wall shear stress and plaque in

subjects with asymmetrical carotid atherosclerosis,” Stroke, vol. 28, pp. 993–998,

1997.

[36] G.C. Cheng, H.M. Loree, R.D. Kamm, M.C. Fishbein and R.T. Lee, “Distri-

bution of circumferential stress in ruptured and stable atherosclerotic lesions,”

Circulation, vol. 87(4), pp. 1179–1187, 1993.

[37] H.M. Loree, R.D. Kamm, R.G. Stringfellow and R.T. Lee, “Effects of fibrous

cap thickness on peak circumferential stress in model atherosclerotic vessels,”

Circulation Research, vol. 71, pp. 850–858, 1992.

[38] P.D. Richardson, M.J. Davies and G.V.R. Born, “Influence of plaque configu-

ration and stress distribution on fissuring of coronary atherosclerotic plaques,”

LANCET, vol. 334, pp. 941–944, 1989.

[39] R.A. Baldewsing, F. Mastik, J.A. Schaar, P.W. Serruys, P W and A.F. van

der Steen, “Young’s modulus reconstruction of vulnerable atherosclerotic plaque

components using deformable curves,” Ultrasound in Medicine & Biology, vol. 32,

pp. 201–210, 2006.

[40] H. Guretzki, K. Gerbitz, B. Olgemoller, and E. Schleicher, “Atherogenic levels of

low density lipoprotein alter the permeability and composition of the endothelial

barrier,” Atherosclerosis, vol. 107, pp. 15–24, 1994.

[41] D.K. Stangeby and C.R. Ethier, “Computational analysis of coupled blood-wall

arterial LDL transport,” Journal of Biomechanical Engineering, vol. 124, pp. 1–8,

2002.

[42] D.K. Stangeby and C.R. Ethier, “Coupled computational analysis of arterial



163

LDL transport. Effects of hypertension,” Computer Methods in Biomechanics

and Biomedical Engineering, vol. 5, pp. 223–241, 2002.

[43] P. Libby, “Pathophysiology of the atheroma and mechanisms of plaque rupture,”

The 64th Annual Scientific Meeting of the Japanese Circulation Society, Osaka,

Japan, 1–3 April, 2000.

[44] A.I. Ibragimov, C.J. McNeal, L.R. Ritter, and J.R. Walton, “A mathematical

model of atherogenesis as an inflammatory response,” Mathematical Medicine

and Biology, vol. 22, pp. 305–333, 2005.

[45] G. Rappitsch and K. Perktold, “Pulsatile albumin transport in large arteries:

A numerical simulation study,” Journal of Biomechanical Engineering, vol. 118,

pp. 511–519, 1996.

[46] S. Wada and T. Karino, “Theoretical prediction of low-density lipoproteins con-

centration at the luminal surface of an artery with a multiple bend,” Annals of

Biomedical Engineering, vol. 30, pp. 778–791, 2002.

[47] T. Asakura and T. Karino, “Flow patterns and spatial distribution of atheroscle-

rotic lesions in human coronary arteries,” Circ. Res., vol. 66, pp. 1045–1066, 1990.

[48] K. Perktold, M. Resch, and R. O. Peter, “Three-dimensional numerical analysis

of pulsatile flow and wall shear stress in the carotid artery bifurcation,” Journal

of Biomechanics, vol. 24, pp. 409–420, 1991.

[49] N. Filipovic, and M. Kojic, “Computer Simulations of blood flow with mass

transport through the carotid artery bifurcation,” Theoret.Appl. Mech., vol. 31,

pp. 1–33, 2004.



164

[50] C.G. Caro, T.J. Pedley, R.C. Schroter, and W.A. Seed, The Mechanics of the

Circulation, New York: Oxford University Press, 1978.

[51] K. Perktold, M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, M. H. Friedman,

“Validated computation of physiologic flow in a realistic coronary artery branch,”

Journal of Biomechanics, vol. 31, pp. 217–228, 1998.

[52] G. Pontrelli, “Pulsatile blood flow in a pipe,” Computers and Fluids, vol. 27,

pp. 367–380, 1998.

[53] D.N. Ku, “Blood flow in arteries,” Annu. Rev. Fluid Mech., vol. 29, pp. 399–434,

1997.

[54] K. Perktold and G. Rappitsch, “Computer simulation of local blood flow and

vessel mechanics in a complaint carotid artery bifurcation model,” Journal of

Biomechanics, vol. 28, pp. 845–856, 1995.

[55] A.J. Carter and W. Wei, “Emerging animal models of the vulnerable plaque,”

in Handbook of the Vulnerable Plaque. R. Waksman and P. W. Srruys, 1st Ed.,

London, United Kingdom: Taylor and Francis, 2004, chap.8, pp. 153–171.

[56] R. Virmani, A. Burke, A. Farb, F. D. Kolodgie, A. V. Finn, and H. Gold, “Pathol-

ogy of the vulnerable plaque,” in Handbook of the Vulnerable Plaque. R. Waks-

man and P. W. Srruys, 1st Ed., London, United Kingdom: Taylor and Francis,

2004, chap.3, pp. 33–48.

[57] F. Colbourne, and D. Corbett, “Lessons from sudden coronary death: A com-

prehensive morphological classification scheme for atherosclerotic lesions,” Arte-

rioscler Thromb Vasc Biol, vol. 20, pp. 1262–1265, 2000.



165

[58] F. Mallinger and D. Drikakis, “Instability in three-dimensional, unsteady,

stenotic flows,” International Journal of Heat and Fluid Flow, vol. 23, pp. 657–

663, 2002.

[59] B.M. Johnston, P.R. Johnston, S. Corney, D. Kilpatrick, “Non-Newtonian blood

flow in human right coronary arteries: Transient simulations,” Journal of Biome-

chanics, vol. 39, pp. 1116–1128, 2006.

[60] D. Zeng, Z. Ding, M.H. Friedman, and C.R. Ethier, ”Effects of cardiac motion on

right coronary artery hemodynamics,” Annals of Biomedical Engineering, vol. 31,

pp. 420–429, 2003.

[61] Y. Liu, Y. Lai, A. Nagaraj, B. Kane, A. Hamilton, R. Greene, D.D. McPherson

and K.B. Chandran, “Pulsatile flow simulation in arterial vascular segments

with intravascular ultrasound images,” Medical Engineering and Physics, vol. 23,

pp. 583–595, 2001.

[62] M. Zamir, The Physics of Pulsatile Flow, New York: AIP Press, 2000.

[63] F.A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book,

vol. 1, San Diego, CA: Academic Press, 1990.

[64] A. J. Welch and M.J.C. Van Gemert, Optical Thermal Response of Laser-

Irradated Tissue, vol. 1, New York: Plenum, 1995.

[65] J.W. Valvano and B. Chitsabesan, “Thermal conductivity and diffusivity of arte-

rial wall and atherosclerotic plaque,” Lasers in the Life Sciences, vol. 1, pp. 219–

229, 1987.

[66] J. Ross and M. Auger, “The biology of the macrophage,” in The Macrophage.

B. Burke and C.E. Lewis, 2nd Ed., New York: Oxford University Press, 2002,



166

chap.1, pp. 1–23.

[67] S.A. Thoren, M. Monti, and B. Holma, “Heat conduction microcalorimetry of

overall metabolism in rabbit alveolar macrophages in monolayers and in suspen-

sions,” Biochimica et Biophysica Acta, vol. 1033, pp. 305–310, 1990.

[68] G. Rappitsch and K. Perktold, “Computer simulation of convective diffusion

processes in large arteries,” Journal of Biomechanics, vol. 29, pp. 207–215, 1996.

[69] L.D. Jou, R. van Tyen, S.A. Berger, and D. Saloner, “Calculation of the mag-

netization distribution for fluid flow in curved vessels,” Magnetic Resonance in

Medicine, vol. 35, pp. 577–584, 1996.

[70] D.W. Crowder and P.Diplas, “Vorticity and circulation: spatial metrics for eval-

uating flow complexity in stream habitats,” Can. J. Fish Aquat. Sci., vol. 59,

pp. 633–645, 2002.

[71] J.B. Umland and J.M. Bellama, General Chemistry, Pacific Grove, CA: Brooks

and Cole Publishing Company, 2nd Ed., 2000.

[72] D.A. McDonald, Blood Flow in Arteries, London: Edward Arnold, 2nd Ed.,

1974.

[73] F.J.H. Gijsen, E. Allanic, F. N. Vosse, J. D. Janssen, “The influence of the non-

Newtonian properites of blood on the flow in large arteries: unsteady flow in a

90o curved tube,” Journal of Biomechanics, vol. 32, pp. 705–713, 1999.

[74] J. Chen and X.Y. Lu, “Numerical investigation of the non-Newtonian pulsatile

blood flow in a bifurcation model with a non-planar branch,” Journal of Biome-

chanics, vol. 39, pp. 818–832, 2005.



167

[75] C. Stefanadis, K. Toutouzas, E. Tsiamis, M. Vavuranakis, I. Kallikazaros, P.

Toutouzas, “Thermography of human arterial system by means of new ther-

mography catheter,” Catheterization and Cardiovascular Interventions, vol. 54,

pp. 51–58, 2001

[76] O. Ley and T. Kim, “Numerical prediction of atherosclerotic plaque temper-

ature as function of plaque size and composition,” 2005 ASME International

Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, 5–11

November, 2005.

[77] O. Ley and T. Kim, “Calculation of arterial wall temperature in atheroscle-

rotic arteries: Effect of pulsatile flow, arterial geometry, and plaque structure,”

Biomedical Engineering Online, 2006.

[78] O. Ley and T. Kim, “Determination of atherosclerotic plaque temperature in

large arteries,” International Journal of Thermal Sciences, In press (THESCI-D-

06-00348), 2007.

[79] J.D. Humphrey, Cardiovascular Solid Mechanics; Cells, Tissues, and Organs,

New York: Springer, 2002.

[80] H.W. Weizsacker and J.G. Pinto, “Isotropy and anisotropy of the arterial wall,”

Journal of Biomechanics, vol. 21, pp. 477–487, 1988.

[81] R.A. Baldewsing, C.L. de Korte, J.A. Schaar, F. Mastik and A.F.W. van der

Steen, “Finite element modeling and intravascular ultrasound elastography of

vulnerable plaques: Parameter variation,” Ultrasonics, vol. 42, pp. 723–729,

2004.

[82] H. Kanai, H. Hasegawa, M. Ichiki, F. Tezuka, and Y. Koiwa, “Elasticity imaging



168

of atheroma with transcutaneous ultrasound: Preliminary study,” Circulation,

vol. 107, pp. 3018–3021, 2003.

[83] K.B. Chandran, J.H. Mun, K.K. Choi, J.S. Chen, A. Hamilton, A. Nagaraj,

and D.D. McPherson, “A method for in-vivo analysis for regional arterial wall

material peroperty alterations with atherosclerosis: Preliminary results,” Med.

Eng. Phys., vol. 25, pp. 289–298, 2003.

[84] M. Wan, Y. Li, J. Li, Y. Cui and X. Zhou, “Strain imaging and elasticity re-

construction of arteries based on intravascular ultrasound video images,” IEEE

Trans. Biomed. Eng., vol. 48(1), pp. 116–120, 2001.

[85] D.J. Patel, J.S. Janicki and T.E. Carew, “Static anisotropic elastic properties of

the aorta in living dogs,” Circ Res, vol. 25, pp. 765–779, 1969.

[86] W.W. von Maltzahn, R.G. Warriyar, and W.F. Keitzer, “Experimental measure-

ments of elasticd properties of media and adventitia of bovine carotid arteries,”

Journal of Biomechanics, vol. 17, pp. 839–847, 1984.

[87] C.J. Chuong, and Y.C. Fung, “On residual stress in arteris,” ASME J. Biomech.

Eng., vol. 108, pp. 189–192, 1986.

[88] K. Takamizawa, and K. Hayashi, “Strain energy density function and uniform

strain hypothesis for arterial mechanics,” Journal of Biomechanics, vol. 20, pp. 7–

17, 1987.

[89] K. Hayashi and Y. Imai, “Tensile property of atheromatous plaque and an anal-

ysis of stress in atherosclerotic wall,” Journal of Biomechanics, vol. 30, pp. 573–

579, 1997.



169

[90] R.T. Lee, H.M. Loree, G.C. Cheng, E.H. Lieberman, N. Jaramillo and F.J.

Schoen, “Computational structural analysis based on intravascular ultrasound

imaging before in vitro angioplasty: Prediction of plaque fracture locations,” J.

Am. Coll. Cardiol., vol. 21, pp. 777–782, 1993.

[91] S.L. Mautner, F. Lin and W.C. Roberts, “Composition of atherosclerotic plaques

in the epicardial coronary arteries in juvenile (type I) diabetes mellitus,” Am. J.

Cardiol., vol. 70, pp. 1164–1168, 1992.

[92] R.P. Vito and S.A. Dixon, “Blood vessel constitutive models - 1995-2002,” Annu.

Rev. Biomed. Eng., vol. 5, pp. 413–439, 2003.

[93] G. Finet, J. Ohayon and G. Rioufol, “Biomechanical interaction between cap

thickness, lipid core composition and blood pressure in vulnerable coronary

plaque: Impact on stability or instability,” Coronary Artery Disease, vol. 15,

pp. 13–20, 2004.

[94] H. Huang, R. Virmani, H. Younis, A.P. Burke, R.D. Kamm and R.T. Lee, “The

impact of calcification on the biomechanical stability of atherosclerotic plaques,”

Circulation, vol. 103, pp. 1051–1056, 2001.

[95] H.M. Loree, B.J. Tobias, L.J. Gibson, R.D. Kamm, D.M. Small and R.T. Lee,

“Mechanical properties of model atherosclerotic lesion lipid pools,” Arterioscler.

Thromb., vol. 14, pp. 230–234, 1994.

[96] R.T. Lee, H.M. Loree and M.C. Fishbein, “High stress regions in saphenous vein

bypass graft atherosclerotic lesions,” J. Am. Coll. Cardiol., vol. 24, pp. 1639–

1644, 1994.

[97] D. Beattie, C. Xu, R. Vito, S. Glagov and M.C. Whang, “Mechanical analysis



170

of heterogeneous, atherosclerotic human aorta,” Journal of Biomechanical Engi-

neering, vol. 120, pp. 602–607, 1998.

[98] S.D. Williamson, Y. Lam, H.F. Younis, H. Huang, S. Patel, M.R. Kaazempur-

Mofrad and R.D. Kamm, “On the sensitivity of wall stresses in diseased arteries

to variable material properties,” Journal of Biomechanical Engineering, vol. 125,

pp. 147–155, 2003.

[99] P.B. Dobrin and J.M. Doyle, “Vascular smooth muscle and the anisotropy of dog

carotid artery,” Circulation Research, vol. XXVII, pp. 105–119, 1970.

[100] P.S. Steif, M.C. Palastro and Y. Rabin, “Analysis of the effect of partial vitrifica-

tion on stress development in cryopreserved blood vessels,” Medical Engineering

& Physics, vol. 29, pp. 661–670, 2007.

[101] R.M. Jones, “Macromechanical behavior of a lamina,” in Mechanics of Com-

posite Materials, New York: McGraw-Hill Book, pp. 31–57, 2nd Ed., 1975.

[102] A.P. Boresi and K.P. Chong, Elasticity in Engineering Mechanics, New York:

Wiley-Interscience Publication, pp. 261–271, 2nd Ed., 2000.

[103] D.J. Patel and J.S. Janicki, “Static elastic properties of the left coronary cir-

cumflex artery and the common carotid artery in dogs,” Circ. Res., vol. 27,

pp. 149–158, 1970.

[104] M.L. Palmeri, and K.R. Nightingale, “On the themal effects associated with

radiation force imaging of soft tissue,” IEEE Transaction on Ultrasonics, Ferro-

electrics, and Frequency Controls, vol. 51, no. 5, pp. 551–565, May 2004.

[105] Y.W. Kwon and H. Bang, The Finite Element Method, Boca Raton, FL: CRC

Press, 2nd Ed., 2000.



171

[106] R. Skalak, “Growth as a finite displacement field,” In Proc. IUTAM Symp. on

Finite Elasticity. D.E. Carlson and R.T. Shield, The Hague: Martinus Nijhoff,

1981, pp. 348–355.

[107] R. Skalak, G. Dasgupta, M. Moss, E. Otten, P. Dullemeijer and H. Vilmann,

“Analytical description of growth,” J. Theor. Biol., vol. 94, pp. 555–577, 1982.

[108] R. Skalak, S. Zargaryan, R.K. Jain, P.A. Netti and A. Hoger, “Compatibility

and the genesis of residual stress by volumetric growth,” J. Math. Biol., vol. 34,

pp. 889–914, 1996.

[109] E.K. Rodriguez, A. Hoger and A.D. McCulloch, “Stress-dependent finite growth

in soft elastic tissues,” J. Biomechanics., vol. 27, pp. 455–467, 1994.

[110] V.A. Lubarda and A. Hoger, “On the mechanics of solids with a growing mass,”

International Journal of Solids and Structure, vol. 39, pp. 4627–4664, 2002.

[111] L.E. Malvern, Introduction to the Mechanics of a Continuous Medium, Engle-

wood Cliffs, NJ: Prentice-Hall, 1969.

[112] R.M. Bowen, Introduction to Continuum Mechanics for Engineers, New York:

Plenum Press, 1989.

[113] P. Chadwick, “Thermo-mechanics of rubberlike materials,” Philosophical Trans-

actions of the Royal Society of London. Series A, Mathematical and Physical

Sciences, vol. 276, pp. 371–401, 1973.

[114] C. Truesdell and W. Noll, The Non-linear Field Theories of Mechanics, Berlin,

Germany: Springer-Verlag, 1965.



172

[115] Benjamin Loret and F.M.F. Simoes, “A framework for deformation, general-

ized diffusion, mass transfer and growth in multi-species multi-phase biological

tissues,” European Journal of Mechanics A/Solids, vol. 24, pp. 757–781, 2005.

[116] W.M. Lai, D. Rubin and E. Krempl, Introduction to Continuum Mechanics,

Oxford, Pergamon Press, 1978.

[117] J. Lubliner, Plasticity Theory, New York: Macmillan Publishing Company,

1990.

[118] P. Chadwick and L.T.C. Seet, Trends in Elasticity and Thermoelasticity,

Groningen, The Netherlands: Wolters-Noordhoff, 1971.

[119] A.G. ten Have, F.J.H. Gijsen, J.J. Wentzel, C.J. Slager, and A.F.W. van der

Steen, “Temperature distribution in atherosclerotic coronary arteries: influence

of plaque geometry and flow (a numerical study),” Physics in Medicine and

Biology, vol. 49, pp. 4447–4462, 2004.



173

VITA

Taehong Kim received his Bachelor of Science degree in mechanical engineering

from Ajou University in Korea in 1999. He entered the Mechanical Engineering

program at Texas A&M University in September 2000 and received his Master of

Science degreee in May 2003. His research interests include bio-heat transfer and

fluid mechanics.

Mr. Kim may be reached at 10806 Kingslake Dr. Apt.#D, Cincinnati, OH

45242. His email is mechlist@hotmail.com

The typist for this dissertation was Taehong Kim


