

Optimización topológica aplicada a problemas de elasticidad bidimensional usando elementos finitos

Ricardo León Parra Arango

Universidad Nacional de Colombia Facultad de Ingeniería Departamento de Ingeniería Civil y Agrícola Bogotá, Colombia 2013

Optimización topológica aplicada a problemas de elasticidad bidimensional usando elementos finitos

Ricardo León Parra Arango

Tesis presentada como requisito parcial para optar al título de: Magister en Ingeniería - Estructuras

> Director: Ph.D. Dorian Luis Linero Segrera

Línea de Investigación: Técnicas de optimización de estructuras Grupo de Investigación GIES

Universidad Nacional de Colombia Facultad de Ingeniería Departamento de Ingeniería Civil y Agrícola Bogotá, Colombia 2013

Abstract

Topology optimization is a relatively new discipline. In a general way topology optimization can be defined as "a mathematical procedure to achieve an objective, whereby the location and removal of the unessential material within a structure without harmed its security is given".

This investigation is concerned with mechanical structural problems, which are restricted to the bi-dimensional elasticity theory. The aim of this work is to investigate, to provide a theoretical frame, to implement and validate an algorithm for topology optimization.

The topology optimization algorithm is implemented over the PEFICA-program at the "Universidad Nacional de Colombia". It is validated by classical applications from theory of elasticity and some practical structural cases. The obtained results from these tests make the process of topology optimization an engineering tool by design. For example, this tool could be help on the reinforcement distribution by applying the "Strut and Tie Model".

Key words: Topology optimization, theory of elasticity, finite element method, Lagrange function, optimality conditions.

Resumen

Optimización topológica es una disciplina relativamente nueva. En forma general, la optimización topológica puede definirse como "el procedimiento matemático para alcanzar un objetivo mediante el cual se localiza y retira el material innecesario en una estructura, sin comprometer su seguridad."

Esta investigación trata sobre problemas de la mecánica estructural en al campo de la elasticidad bidimensional. El objetivo de este trabajo es investigar, documentar, implementar y validar un algoritmo de optimización topológica.

El algoritmo de optimización topológica fue implementado sobre el programa de elementos finitos PEFICA de la Universidad Nacional de Colombia. El algoritmo fue validado mediante las aplicaciones clásicas de la teoría de la elasticidad y algunos casos de aplicación práctica. A partir de los resultados de estos casos, se puede decir que el proceso de optimización topológica se convierte en una herramienta para los diseñadores. Por ejemplo, esta herramienta puede ayudar en la distribución del refuerzo al utilizar el metodo de la "dovela y el tirante".

Palabras clave: Optimización topológica, teoría de la elasticida, método de los elementos finitos, función de Lagrange, condiciones de optimalidad.

Índice general

Ín	dice	de figu	Iras	IV
Ín	dice	de algo	oritmos	x
1.	Intr 1.1. 1.2. 1.3. 1.4. 1.5. 1.6.	oducci Natura Optim Optim Objeti Metod Estruc	ónaleza, topología y optimizaciónización topológica, reseña históricaización en la ingenieria estructuralvo generalologíatura del trabajo	1 1 2 10 11 11 11
2.	Teo	ría de	la elasticidad y el método de los elementos finitos en	
	prol	olemas	bidimensionales	13
	2.1.	Conce	ptos básicos sobre la elasticidad bidimensional	13
		2.1.1.	Desplazamientos	13
		2.1.2.	Deformación infinitesimal	14
		2.1.3.	Esfuerzos	16
		2.1.4.	Ecuaciones de gobierno del problema mecánico	17
		2.1.5.	Energía interna de deformación	18
		2.1.6.	Principio del trabajo virtual	18
	2.2.	Funda	mento del Método del Elemento Finito	19
		2.2.1.	Discretización del contínuo	19
		2.2.2.	Aproximación de la función	20
		2.2.3.	Matrices de rigidez	20
		2.2.4.	Conformación del sistema general	21
	2.3.	Matric	es de rigidez para elementos finitos bidimensionales	21
		2.3.1.	Matriz de rigidez de un elemento finito bidimensional rectan-	
			gular bilineal	21
		2.3.2.	Matríz de ridigez de un elemento finito bidimensional trian-	
			gular lineal	26
	2.4.	Solució	ón del sistema	30
	2.5.	Energí	a interna de deformación	31

3.	Fun	damer	nto matemático de la optimización	33
	3.1.	Objeti	vo de la optimización	33
	3.2.	Clasifi	cación de las técnicas de optimización	33
		3.2.1.	Según el número de variables	34
		3.2.2.	Según el tipo de las restricciones	34
		3.2.3.	Según él tipo de la función objetivo	35
		3.2.4.	Según el tipo de las variables de diseño	36
		3.2.5.	Según la metodología de solución	36
	3.3.	Especi	alización de la optimización en la ingeniería estructural	37
		3.3.1.	Optimización de tamaño	37
		3.3.2.	Optimización de forma	37
		3.3.3.	Optimización topológica	38
		3.3.4.	Optimización topográfica	39
	3.4.	Formu	llación de un problema de optimización	40
	3.5.	Eleme	ntos matemáticos de la optimización	44
		3.5.1.	Vector Gradiente	45
		3.5.2.	Funciones implícitas y paramétricas	46
		3.5.3.	Matriz Jacobiana	46
		3.5.4.	Matriz Hessiana	47
		3.5.5.	Mínimo o Máximo Local	48
		3.5.6.	Mínimo o Máximo Global	49
		3.5.7.	Función Convexa	50
		3.5.8.	Función Cóncava	51
	3.6.	Condi	$ciones de optimalidad \dots $	52
		3.6.1.	Condición necesaria de primer orden	52
		3.6.2.	Condición necesaria de segundo orden	53
		3.6.3.	Condición suficiente	53
	3.7.	Multi	plicadores de Lagrange	54
	3.8.	Criter	ios de optimalidad	57
		3.8.1.	Criterio de optimalidad para el diseño de elementos estructu-	
			rales completamente esforzados	57
		3.8.2.	Criterio de optimalidad según las condiciones de Karush -	
			Kuhn - Tucker	58
		3.8.3.	Criterio de optimalidad a partir de los multiplicadores de La-	
			grange	59
	3.9.	Anális	is de la sensibilidad	60
		3.9.1.	Objetivo del análisis de sensibilidad	60
		3.9.2.	Deducción de la Matriz de Sensibilidad	60
		3.9.3.	Métodos para el análisis de sensibilidad	61
4.	Opt	imizac	ción topológica	65
	4.1.	Objeti	ivo de la optimización topológica	65
	4.2.	Métod	lologías para resolver problemas de optimización topológica.	66
		4.2.1.	Optimización topológica empírica	66

		4.2.2. Optimización topológica matemática	66
		4.2.3. Optimización topológica basada en principios de crecimiento	
		biológico	67
		4.2.4. Optimización topológica basada en principios evolutivos $\ . \ .$	68
		4.2.5. Optimización topológica basada en la homogenización del ma- terial	69
		4.2.6. Optimización topológica basada en el concepto de microcelda	
		sólida isótropa con penalización SIMP	72
	4.3.	Métodos para la solución de problemas de optimización topológica	74
5.	For	mulación del modelo de optimización topológica	75
	5.1.	Identificación y esquema del problema	75
		5.1.1. Fracción de volumen requerida	76
	5.2.	Variables de diseño	76
	5.3.	Función objetivo	77
	5.4.	Restricciones	79
		5.4.1. Restricciones de igualdad	79
		5.4.2. Restricciones de desigualdad	80
	5.5.	Análsis de la sensibilidad	80
	5.6.	Criterio de optimalidad	81
	5.7.	Solución de la Ecuación de la condición estacionaria	84
6.	Imp	olementación	87
6.	Imp 6.1.	blementación Criterios para la selección de una aplicación de elementos finitos	87 87
6.	Imp 6.1. 6.2.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos	87 87 88
6.	Imp 6.1. 6.2. 6.3.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos	87 87 88 89
6.	Imp 6.1. 6.2. 6.3. 6.4.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos	87 87 88 89 90
6.	Imp 6.1. 6.2. 6.3. 6.4. 6.5.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización	87 87 88 89 90 92
6.	Imp 6.1. 6.2. 6.3. 6.4. 6.5. 6.6.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización Citerio de optimilidad y movimiento de límites	87 87 88 89 90 92 93
6 . 7 .	Imp 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Vali	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización Citerio de optimalidad y movimiento de límites Gidación y ejercicios de aplicación	 87 87 88 89 90 92 93 95
 6. 7. 	Imp 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Vali 7.1.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización Citerio de optimalidad y movimiento de límites idación y ejercicios de aplicación Verificación y validación	 87 87 88 89 90 92 93 95 96
 6. 7. 	Imp 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Val i 7.1.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización Citerio de optimalidad y movimiento de límites idación y ejercicios de aplicación Verificación y validación 7.1.1. Cercha de mínimo peso de Michell	 87 87 88 89 90 92 93 95 96 97
 6. 7. 	Imp 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Vali 7.1.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización Citerio de optimalidad y movimiento de límites idación y ejercicios de aplicación Verificación y validación 7.1.1. Cercha de mínimo peso de Michell 7.1.2. Viga aperaltada en voladizo	87 87 88 90 92 93 95 96 97
 6. 7. 	Imp 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Vali 7.1.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización Citerio de optimalidad y movimiento de límites Criterios de aplicación Verificación y validación 7.1.1. Cercha de mínimo peso de Michell 7.1.2. Viga aperaltada en voladizo 7.1.3. Vigas de gran peralte	87 87 88 90 92 93 95 96 97 100
6.	Imp 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Vali 7.1.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización Citerio de optimialidad y movimiento de límites Grificación y ejercicios de aplicación Verificación y validación 7.1.1. Cercha de mínimo peso de Michell 7.1.2. Viga aperaltada en voladizo 7.1.4. Vigas de gran peralte	 87 87 88 89 90 92 93 95 96 97 100 108 116
 6. 7. 	Imp 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Vali 7.1.	Dlementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización Citerio de optimalidad y movimiento de límites Citerio de optimalidad y movimiento de límites idación y ejercicios de aplicación Verificación y validación 7.1.1. Cercha de mínimo peso de Michell 7.1.2. Viga aperaltada en voladizo 7.1.4. Vigas de gran peralte 7.1.4. Vigas de peralte moderado	 87 87 88 89 90 92 93 95 96 97 100 108 116 121
6.	Imp 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Val 7.1.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización Citerio de optimalidad y movimiento de límites idación y ejercicios de aplicación Verificación y validación 7.1.1. Cercha de mínimo peso de Michell 7.1.2. Viga aperaltada en voladizo 7.1.4. Vigas de gran peralte 7.1.4. Viga aperaltada con carga distribuida	 87 87 88 89 90 92 93 95 96 97 100 108 116 121 121
6.	Imp 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Vali 7.1.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización Citerio de optimalidad y movimiento de límites idación y ejercicios de aplicación Verificación y validación 7.1.1. Cercha de mínimo peso de Michell 7.1.2. Viga aperaltada en voladizo 7.1.4. Vigas de gran peralte 7.2.1. Viga aperaltada con carga distribuida 7.2.2. Ménsula de sección constante	 87 87 88 89 90 92 93 95 96 97 100 108 116 121 121 127
6.	Imp 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Vali 7.1.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización Citerio de optimalidad y movimiento de límites Citerio de optimalidad y movimiento de límites idación y ejercicios de aplicación Verificación y validación 7.1.1. Cercha de mínimo peso de Michell 7.1.2. Viga aperaltada en voladizo 7.1.3. Vigas de gran peralte 7.1.4. Vigas de peralte moderado 7.2.1. Viga aperaltada con carga distribuida 7.2.2. Ménsula de sección constante 7.2.3. Muro de carga con abertura	 87 87 88 89 90 92 93 95 96 97 100 108 116 121 127 135
6.	Imp 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Vali 7.1. 7.2.	Dementación Criterios para la selección de una aplicación de elementos finitos Criterios para el diseño de los algorítmos Esquema general de una aplicación de optimización topológica. Método de los elementos finitos Procedimiento de optimización Citerio de optimalidad y movimiento de límites idación y ejercicios de aplicación Verificación y validación 7.1.1. Cercha de mínimo peso de Michell 7.1.2. Viga aperaltada en voladizo 7.1.3. Vigas de gran peralte 7.1.4. Viga aperaltada con carga distribuida 7.2.1. Viga aperaltada con carga distribuida 7.2.3. Muro de carga con abertura 7.2.3. Muro de carga con abertura	87 87 88 90 92 93 95 96 97 100 108 116 121 121 127 135 142

8.	Conclusiones	147
	8.1. Observaciones generales	. 147
	8.2. Conclusiones generales	. 147
9.	Futura línea de investigación	151
Bi	bliografía	157

Índice de figuras

1.1.	Optimización natural de la estructura de un árbol, como resultado	
	de la evolución. Concepción estructural de elementos de apoyo, de	
	minimo peso, inspirada en la optimización de la naturaleza. Nuevo	1
1.0	aeropuerto Stuttgart. [Fotos R. Parra]	1
1.2.	Version original y optimizada del voladizo estudiado por Galileo 1638.	0
1.0	Adaptado de la referencia [20]	3
1.3.	Diferentes formas de las armaduras de minimo peso presentadas por	
	Michell en 1904. Elementos en linea delgada indican solicitaciones a	
	compresion, en linea gruesa solicitaciones a tension. Tomado de la	4
1 4	referencia $[40]$	4
1.4.	Ejemplos de estructuras espaciales de mimimo peso. Hiperboloide de	
	350 metros de altura, conceptido como antena de transmisión para	
	la radio rusa, diseñado por V. Snuknov en 1919. Domo geodesico de	
	internacional de Montreal en 1067. Tomado de las referencias [22] y	
	[36]	5
15	Optimización topológica intuitiva de elementos contínuos en concreto	0
1.0.	Vigas curvas de sección variable para el Palacio de los deportes en	
	Florencia Apovos en forma de "V" para el Estadio de Roma Obras	
	concepidas y construidas baio la dirección de Pier Luigi Nervi en la	
	década de 1940 a 1950. Tomado de la referencia [43]	6
1.6.	Punto de partida y resultado de una optimización topológica obtenida	Ŭ
1.0.	a partir del método "Ground Structure". Tomado de la referencia [29]	7
1.7.	Estados en la optimización topológica de una viga simplemente apo-	•
	vada con cargas puntuales aplicadas en los extremos y el centro de la	
	viga. Adaptado de la referencia [10]	8
1.8.	a.) Líneas de esfuerzos obtenidas a partir del método de las dovelas	
	compresión, — tensión. b.) Líneas de esfuerzos obtenidas a partir	
	de una optimización topológica. Adaptado de las referencias [14] y [50]	9
1.9.	Gancho para grua. a.) Forma convencional obtenida a partir del con-	
	cepto de concentración de esfuerzos. b.) Forma mejorada luego de una	
	optimización topológica. Adaptado de la referencia $[15]$	9
9 1	Cambio de posición o decolazomiento de una portícula D de una	
2.1.	Cambio de posición o despiazamiento de una particula Γ_o de una estructura bidimensional	14
		T T

2.2.	Posibles desplazamientos que experimenta un elemento diferencial en un estado plano de esfuerzos. a.) Elongación en la dirección x, b.)	
	Elongación en la dirección y c.) Distorsión en el plano $x - y$	15
2.3.	Representación gráfica del vector de esfuerzos sobre un elemento in-	
	finitesimal en el plano $x - y$	16
2.4.	Discretización del dominion de una viga de peralte alto mediante	
	elementos finitos o subdominios.	20
2.5.	Elemento finito de forma rectangular de dimensiones $2a \ge 2b$ con ocho	
	grados de libertad, referido al sistema $x - y$	22
2.6.	Elemento finito de forma triangular con seis grados de libertad, refe-	
	rido al sistema $x - y$	26
3.1.	Optimización de Tamaño	38
3.2.	Optimización de Forma	38
3.3.	Optimización Topológica	39
3.4.	Optimización Topográfica	40
3.5.	Definción del dominio admisible a partir de las limitaciones que im-	
	ponen las funciones de restricción tanto de igualdad $h_1(x)$ como de	
	desigualdad $g_1(x), g_2(x) \ge g_3(x)$.	44
3.6.	Representación gráfica del vector gradiente en un espacio de tres di-	
	mensiones.	45
3.7.	Representación gráfica de la matriz Hessiana en un espacio de tres	
	dimensiones.	48
3.8.	Representación gráfica de los máximos y mínimos relativos o locales	
	de una función.	49
3.9.	Representación gráfica del máximo y mínimo absoluto o global de una	
	función	50
3.10.	Dominio de una función convexa	51
3 11	Dominio de una función cóncava	51
0.11.		01
4.1.	Ejemplo de una microcelda en 2D con orificio rectangular rotado con	
	respecto al eje verical ϕ	69
4.2.	Comportamiento periódico de una variable de propiedades físicas del	
	material $F(x)$ y su comportamiento homegeneizado $F^{H}(x)$	70
4.3.	Influencia del exponente de penalización <i>p</i> sobre la relación de mate-	
	rial a asignar. $E/E_o = \rho^{(e)p}$	73
5.1.	Comportamiento de la Ecuación de condición estacionaria C vs. la	
	variable de diseño ρ , para los dos casos posibles $C < 1$ o $C > 1$	85
P 1		
7.1.	Representación gráfica del valor de la densidad en los elementos fini-	
	tos, resultado de la optimización topológica. Tono blanco equivale a	
	la "ausencia de material" o densiada minima y el tono negro equivale	0.0
	a un elemento "completamente solido" o de densidad máxima	96

7.2.	Modelo para simular una estructura de mínimo peso según Michell. a.) Esquema del modelo. b.) Discretización mediante una malla de	
	1600 elementos.	. 97
7.3.	Convergencia del proceso de optimización. Relación de energías de	0.0
	deformación $\mathbb{U}_i/\mathbb{U}_o$ vs. iteración	. 98
7.4.	Estructura de mínimo peso de Michell, obtenida a partir de la opti- mización topológica de una viga de gran peralte, solicitada por carga	
	puntual en el centro de la viga y apoyada a la altura media de los dos	
	lados. Malla 40x40, $\rho = 7 \%$.	. 99
7.5.	Esquema del modelo para una viga aperaltada en voladizo solicitada	
	por una carga puntual: a.) en la fibra superior, b.) en la fibra media	
	y c.) en la fibra inferior del costado lateral derecho.	. 100
7.6.	Optimización topológica de una viga aperaltada en voladizo, solici-	
	tada por una carga puntual en la fibra superior del costado lateral	
	derecho. Malla 20x20. $\rho = 50\%$. 102
7.7.	Optimización topológica de una viga aperaltada en voladizo, solicita-	
	da por una carga puntual en la fibra media del costado lateral derecho.	
	Malla 20x20. $\rho = 50\%$. 103
7.8.	Optimización topológica de una viga aperaltada en voladizo, solici-	
	tada por una carga puntual en la fibra inferior del costado lateral	104
7.0	derecho. Malla 20x20. $\rho = 50\%$. 104
7.9.	Optimización topológica de una viga aperaltada en voladizo, solici-	
	tada por una carga puntual en la nora superior del costado lateral devecho. Mello $20x^{20}$ $\sim 20^{10}$	105
710	Optimización topológica do una viga aporaltada on voladizo, solicita	. 105
1.10.	da por una carga puntual en la fibra media del costado lateral derecho	
	Malla $20x20$ $\rho = 30\%$	106
7.11.	Optimización topológica de una viga aperaltada en voladizo, solici-	. 100
	tada por una carga puntual en la fibra inferior del costado lateral	
	derecho. Malla 20x20. $\rho = 30\%$. 107
7.12.	Vigas aperaltadas simplemente apoyadas y solicitadas por una carga	
	puntual en el centro de la luz: a.) fibra superior, b.) fibra media y c.)	
	fibra inferior.	. 108
7.13.	Discretización del modelo de viga aperaltada simplemente apoyada:	
	a.) Malla de 30 x 10 elementos y b.) Malla de 60 x 20 elementos. $\ . \ .$. 108
7.14.	Optimización topológica de una viga aperaltada simplemente apoyada	
	y cargada en el centro de la luz de la fibra superior. Malla 30 x 10.	
	$\varrho = 50\%$. 110
7.15.	Optimización topológica de una viga aperaltada simplemente apoya-	
	da, cargada en el centro de la luz de la fibra media. Malla 30 x 10.	، در س
H 10	$\varrho = 50\%$. 111
7.16.	Optimización topológica de una viga aperaltada simplemente apoya-	
	da, cargada en el centro de la luz de la fibra inferior. Malla $30 \ge 10$.	110
	$\varrho = 00 \%$. 112

7.17. Optimización topológica de una viga aperaltada simplemente apoya- da, cargada en el centro de la luz de la fibra superior. Malla 60 x 20. $\rho = 50 \%$. 113
7.18. Optimización topológica de una viga aperaltada simplemente apoya- da, cargada en el centro de la luz de la fibra media. Malla 60 x 20.	
 \$\overline{\varphi}=50\%\$ 7.19. Optimización topológica de una viga aperaltada simplemente apoyada, cargada en el centro de la luz de la fibra inferior. Malla 60 x 20. 	. 114
 \$\overline{\varphi}\$ = 50 \verline{\varphi}\$. 7.20. Esquema del modelo para una viga de peralte moderado solicitada por una carga puntual en centro de la fibra superior con la siguiente condici\u00e7n de anoune a) simplemente anounda h) deblemente anoune 	. 115
da y c.) empotrada en sus dos extremos.	. 116
7.21. Discretización del modelo para una viga de peralte moderado solici- tada por una carga puntual en centro de la fibra superior	. 117
7.22. Optimización topológica de una viga de peralte moderado simplemen- te apoyada, cargada en el centro de la luz de la fibra superior. Malla	
 60 x 10. <i>ρ</i>= 50 %	. 118
 x 10. <i>ρ</i>= 50 % 7.24. Optimización topológica de una viga de peralte moderado empotrada en sus dos extremos, cargada en el centro de la luz de la fibra superior. 	. 119
 Malla 60 x 10. <i>ρ</i>= 50 %. 7.25. Esquema de modelos para vigas aperaltadas solicitadas por cargas uniformemente distribuida: a.) Apoyo continuo y carga distribuida sobre la fibra superior, b.) Apoyo continuo y carga distribuida a la altura media y c. Apoyos dobles en los extremos de la base y restricción lateral a la altura media solicitada por carga distribuida a la altura media. 	. 120
7.26. Discretización del modelo para vigas altas solicitadas por carga unifor- memente distribuida, y bajo diferentes condiciones de apoyo mediante una malla de 60 x 20 elementos	. 122
7.27. Optimización topológica de una viga aperaltada sobre un apoyo con- tinuo solicitada por una carga uniformemente distribuida en la fibra superior Malla 60 x 20 $\rho = 50 \%$	124
7.28. Optimización topológica de una viga aperaltada sobre un apoyo con- tinuo y restricción lateral a la altura media de los dos costados soli- citada por una carga distribuida en la fibra media. Malla 60 x 20. ρ =	105
7.29. Optimización topológica de una viga aperaltada doblemente apoyada con restricción lateral a la altura media de los dos costados solicitada por una carga distribuida en la fibra media. Malla 60 x 20. $\rho = 50$ %.	. 125 . 126

7.30. Esquemas del modelo de una ménsula de sección constante. a) Modelo
original, b.) Modelo considerando infinitamente rígida la columna y
c.) Modelo reemplazando el efecto de la carga y su excentricidad por
fuerzas equivalentes
7.31. Discretización de los modelos para la mensula de sección rectangu-
lar. a.) Malla de 708 elementos rectangulares y b.) Malla de 2832
elementos rectangulares
7.32. Solulción conceptual a partir del método de las dovelas o "Strut-Tie-
<i>Model</i> "
7.33. Optimización topológica de una mensula de sección constante. Malla
de 708 elementos. $\rho = 98\%$
7.34. Optimización topológica del voladizo de una mensula de sección cons-
tante, considerando la columna infinitamente rígida. Malla de 708
elementos. $\rho = 98\%$
7.35. Optimización topológica de la columna de una mensula de sección
constante, reemplazando el efecto de la carga por las fuerzas equi-
valentes sobre la cara de la columna. Malla de 708 elementos. ρ =
98%
7.36. Optimización topológica de una mensula de sección constante. Malla
de 2.832 elementos. $\rho = 50\%$
7.37. Equema de los modelos para un muro de carga simplemente apoyado,
solicitado por carga puntual en la fibra superior a.) Forma rectangular
o inicial, b.) forma irregular y c.) forma irregualr con abertura interior 135
7.38. Discretización para el modelo del muro de forma irregular con abertu-
ra interior a.) Forma rectangular 1200 elementos, b.) forma irregular
984 elementos y c.) forma irregualr con abertura interior 856 elementos 136
7.39. Posibles modelos para identificar el flujo de esfuerzos, en un muro
irregular con abertura interior. Tomado de la referencia [50] 137
7.40. Optimización topológica de un muro de carga de forma rectangular
simplemente apoyado y solicitado por una carga puntual en la fibra
superior. Malla de 1200 elementos. $\rho = 30\%$
7.41. Optimización topológica de un muro de carga de forma irregular sim-
plemente apoyado y solicitado por una carga puntual en la fibra su-
perior. Malla de 984 elementos. $\rho = 30\%$
7.42. Optimización topológica de un muro de carga de forma irregular y
abertura interior simplemente apoyado y solicitado por una carga
puntual en la fibra superior. Malla de 856 elementos. $\varrho = 30\%$ 141
7.43. Esquema para el modelo de voladizo, a.) carga en la fibra superior,
b.) carga en la fibra media y c. carga en la fibra inferior del costado
derecho. d.) Discretización del modelo mediante una malla triangular
estructurada de 400 elementos
7.44. Optimización topológica de una viga aperaltada en voladizo, solici-
tada por una carga puntual en la fibra superior del costado lateral
derecho. Malla triangular estructurada 20 x 20. $\rho = 30\%$

IX

Índice de algoritmos

6.1.	Esquema general del proceso de optimización topológica	89
6.2.	Método de los elementos finitos	90
6.3.	Procedimiento de optimización	92
6.4.	Criterio de optimalidad: Método de la bisección	93