1	SYNTHESIS OF NEW N-PHENYL-N-(1-PHENYLHEX-5-EN-1-YL)ACETAMIDES
2	AND THEIR ¹ H-NMR CONFORMATIONAL STUDY
3	
4	SÍNTESE DE NOVAS N-FENIL-N-(1-FENILHEX-5-EN-1-IL)ACETAMIDAS E O
5	SEU ESTUDO CONFORMACIONAL POR ¹ H-RMN
6	
7 8	Mauricio Acelas ¹ , Elizabeth Gil ² , Markus Doerr ³ , Martha C. Daza ³ , Juan-Manuel Urbina ¹
9	¹ Laboratorio de Química Orgánica y Biomolecular - LQOBio, Universidad Industrial de
10	Santander, Ciudad Universitaria, AA 678, Bucaramanga, Colombia.jurbina@uis.edu.co
11	(057)(7)(6349069)
12	² Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 Nº 43-82, Bogotá DC.
13	³ Grupo de Bioquímica Teórica-GBQT, Universidad Industrial de Santander, Ciudad
14	Universitaria, AA 678, Bucaramanga, Colombia.
15	
16	Abstract
17	The synthesis and characterization of different N-phenyl-N-(1-phenylhex-5-en-1-
18	yl)acetamides is presented. Two conformational isomers were observed for one of the
19	compounds in their ¹ H/ ¹³ C-NMR spectra. Computational calculations and dihedral angle
20	comparison using the allylic system coupling constants (J) were carried out to determine
21	the isomeric structures responsible for signals duplicity and chemical shifting.
22	
23	Key words: acetamides, conformational isomers, computational calculation, NMR,
24	Garbisch equation.

25	Resumo
26	A síntese e caracterização de diferentes N-fenil-N-(1-fenilhex-5-en-1-il) acetamidas é
27	presentada. Dois isómeros comformacionaisforam observados para um dos compostos no
28	seu espectro de ¹ H/ ¹³ C-RMN. Cálculos computacionais e comparação de ángulos diedros
29	usando as constandes de acoplamento (J) para o sistema alílicoforam realizadas para
30	determinar as estructuras isoméricasresponsáveis pela duplicidade de sinais e o
31	deslocamento químico.
32	
33	Palavras-chave: acetamidas, isómeros conformacionais, cálculo computacional, RMN,
34	equação de Garbisch.
35	
36	
37	Introduction
38	
39	Target oriented synthesis (TOS) is one of the most important methodologies in organic
40	chemistryto access biologically active compounds (1). Molecules including quinoline and
41	tetrahidroquinoline derivatives are widely known for their biological and pharmacological
42	activity as well as for their uses in organic electronics (2). Previous reports from our
43	research group have shown both antifungal and antiparasitic activities of N-phenyl- α -2-
44	propen-1-yl benzenpropanamines 1a-e (3-4). The use of 1a as synthon for different N -

heterocycles containing the tetrahydrolepidine and quinolinemoiety is well known. These

Galipeaofficinalis, which have been studied and used against fever, dysentery, malaria and

compounds

from

isolated

similar

leishmaniasis treatment, among others (5-12).

to

are

45

46

47

48

substances

and

Galipealongiflora

49	Literature reports have shown that acetylation of N-(prop)butenylamines turns these
50	compounds into biologically active N -(prop)butenylacetamides (3,13-14). Thus, new N -
51	phenyl-N-(1-phenylhex-5-en-1-yl)acetamides2a-f were prepared by N-acetylation of
52	compounds 1a-f . Their synthesis and ${}^{1}H/{}^{13}C$ -NMR data is discussed and presented.
53	Biological activity of compounds 2a-f is currently under study.
54	
55	
56	Experimental section (Materials and methods)
57	
58	IR spectra were obtained on a FT-IR Bruker Tensor 27, using KBr windows. IR main
59	signals are condensed in Table 1. GC/MS data were acquired on a HP5890A Series II gas
60	chromatography equipped with a HP-5MS column (5% methyl phenyl siloxane, 30m x
61	0.25mm x 0.25µm) and a selective mass detector HP5972 (EI, 70 eV). NMR spectra were
62	recorded on aBruker Avance-400. Coupling constants J are reported in Hertz. See Scheme
63	1 for ¹ H, ¹³ C assignment.
64	c O'
65	General procedure for the synthesis of N-phenyl-N-(1-phenylhex-5-en-1yl) acetamides2a-f
66	
67	A round bottom flask with a reflux condenser, a thermometer and a magnetic stirrer was
68	filled with 0.35 g (1.24 mmol) of <i>N</i> -phenyl- α -2-propen-1-ylbenzenpropanamine (previously
69	prepared) (3) and 3.80 g (37.02 mmol) of acetic anhydride. The reaction mixture was
70	refluxed for 4-6 h and neutralized using NaHCO3. NaOH 0.1 M was used to adjust the
71	mixture to pH 12. Ethyl acetate was used for extraction (20 mL x 3). The organic layer was
72	dried over Na ₂ SO ₄ , the solvent removed and the crude product purified by column

73	chromatography on SiO ₂ using <i>n</i> -heptane and ethyl acetate gradient mixtures. Compounds
74	characterization was carried out using IR, ¹ H, ¹³ C NMR and GC-MS.
75	
76	
77	N-phenyl-N-(1-phenylhex-5-en-1-yl)acetamide2a
78	
79	From N-phenyl- α -2-propen-1-ylbenzen propanamine 1a (0.33 g, 1.31 mmol) and acetic
80	anhydride (4.32 g, 42.30 mmol). Pure compound 2a was obtained after column
81	chromatography as a brownish oil. $R_f = 0.50$ (<i>n</i> -heptane:AcOEt, 5:2). MS [EI, 70 eV] (<i>m</i> / <i>z</i> ,
82	%): 293 (M ^{+,} ,2), 252 (38), 210 (100), 117 (13), 91 (47). δ _H ppm (CDCl ₃ , 400 MHz): 1.62
83	(td, ${}^{3}J=8.0, 7.3, 2H_{5}$), 1.72 (s, $3H_{4c}$), 2.03-2.19 (m, $\underline{2H_{3}}$), 2.63 (ddd, ${}^{2}J=14.4$; ${}^{3}J=8.3, 7.6$,
84	1H ₆), 2.71 (ddd, ² J =14.4; ³ J = 8.3, 7.6, 1H ₆), 4.90-5.05 (m, 3H _{1,4}), 5.76 (dddd, ³ J = 17.7, 9.5,
85	6.8, 6.4, 1H ₂), 6.94-7.39 (m, 10H _{Arom}). δ_C ppm (CDCl ₃ , 100 MHz): 23.63 _(4c) , 33.13 ₍₆₎ ,
86	$34.57_{(5)}$, $37.75_{(3)}$, $54.07_{(4)}$, $117.11_{(1)}$, $125.86_{(p)}$, $128.25_{(2xm)}$, $128.36_{(2xo)}$, $128.74_{(p')}$,
87	$129.36_{(2xm')}$, $129.86_{(2xo')}$, $135.66_{(2)}$, $139.37_{(i')}$, $141.81_{(i)}$, $171.03_{(4b)}$.
88	c O
89	
90	<i>N</i> -Phenyl- <i>N</i> -(4-methylphenylhex-5-en-1-yl)acetamide 2b
91	
92	From of <i>N</i> -(4-methylphenyl)- α -2-propen-1-ylbenzenpropanamine 1b (1.07 g, 4.03 mmol)
93	and acetic anhydride (10.79 g, 105.75 mmol). Pure compound was obtained after
94	chromatography column as a brownish oil. R_f = 0.50 (<i>n</i> -heptane:AcOEt, 5:2). MS [EI, 70
95	eV] (<i>m/z</i> , %): 307 (M^{+} ,2), 266 (37), 224 (100), 150 (11), 91 (40). δ_{H} ppm (CDCl ₃ , 400

96 MHz): 1.68 (td, ${}^{3}J=$ 8.1, 7.3, 2H₅), 1.79 (s, 3H_{4c}), 2.08-2.29 (m, <u>2H₃</u>), 2.39 (s, 3H_{4d}), 2.70

97	$(ddd, {}^{2}J= 14.5; {}^{3}J= 8.1, 7.5, 1H_{6}), 2.77 (ddd, {}^{2}J= 14.5; {}^{3}J= 8.1, 7.5, 1H_{6}), 4.93-5.18 (m, 10.16)$
98	$3H_{1,4}$), 5.83 (dddd, ${}^{3}J=$ 17.5, 9.3, 6.9, 6.5, $1H_{2}$), 7.06 (d, ${}^{3}J=$ 8.2, $2H_{0'}$), 7.14-7.33 (m,
99	7H _{Arom}). δ _C ppm (CDCl ₃ , 100 MHz): 20.98 _(4d) , 23.47 _(4c) , 33.04 ₍₆₎ , 34.46 ₍₅₎ , 37.69 ₍₃₎ , 53.80 ₍₄₎ ,
100	116.95 ₍₁₎ , 125.75 _(p) , 128.17 _(2xm) , 128.27 _(2xo) , 129.51 _(2xo') , 129.90 _(2xm') , 135.64 ₍₂₎ , 136.49 _(p') ,
101	$138.18_{(i')}, 141.79_{(i)}, 171.16_{(4b)}.$
102	
103	
104	N-Phenyl-N-(4-methoxyphenylhex-5-en-1-yl)acetamide2c

From N-(4-methoxyphenyl)- α -2-propen-1-ylbenzenpropanamine **1c** (0.35 g, 1.24 mmol) 106 and acetic anhydride (3.67 g, 35.96 mmol). Pure product was obtained after 107 chromatography column as a brownish oil. R_f= 0.40 (*n*-heptane:AcOEt, 5:2). MS [EI, 70 108 eV] (m/z, %): 323 $(M^{+}, 2)$, 282 (28), 240 (100), 91 (51). $\delta_{\rm H}$ ppm (CDCl₃, 400 MHz): 1.67 109 (td, ${}^{3}J=8.1, 7.3, 2H_{5}$), 1.80 (s, $3H_{4c}$), 2.06-2.30 (m, $2H_{3}$), 2.70 (ddd, ${}^{2}J=14.4$; ${}^{3}J=8.3, 7.6$, 110 1H₆), 2.77 (ddd, ${}^{2}J=14.4$; ${}^{3}J=8.3$, 7.6, 1H₆), 3.83 (s, 3H_{4d}), 4.98-5.14 (m, 3H_{1.4}), 5.83 111 $(dddd, {}^{3}J=17.6, 9.5, 6.8, 6.5, 1H_{2}), 6.92 (d, {}^{3}J=9.2, 2H_{o'}), 7.04-7.35 (m, 7H_{Arom}). \delta_{C} ppm$ 112 (CDCl₃, 100 MHz): 23.55_(4c), 33.12₍₆₎, 34.54₍₅₎, 37.72₍₃₎, 53.78₍₄₎, 55.43_(4d), 114.43_(2xm²), 113 117.06₍₁₎, 125.87_(p), 128.27_(2xm), 128.39_(2xo), 130.87_(2xo'), 131.75_(i'), 135.76₍₂₎, 141.88_(i), 114 115 159.20_(p'), 171.57_(4b). 116

- 117
- 118 *N*-Phenyl-*N*-(4-bromophenylhex-5-en-1-yl) acetamide2d
- 119

120 From N-(4-bromophenyl)- α -2-propen-1-ylbenzenpropanamine **1d** (0.68 g, 2.06 mmol) and 121 acetic anhydride (7.34 g, 71.91 mmol). Pure product was obtained after column 122 chromatography as a brownish oil. $R_f = 0.47$ (*n*-heptane:AcOEt, 5:2). MS [EI, 70 eV] (*m/z*, 123 %): 373 (M⁺,2), 330 (33), 290 (95), 288 (100), 91 (82). δ_H ppm (CDCl₃, 400 MHz): 1.61-1.73 (m, 2H₅), 1.79 (s, 3H_{4c}), 2.17 (ta, ${}^{3}J=$ 7.0, 2H₃), 2.65-2.79 (m, 2H₆), 4.94-5.13 (m, 124 $3H_{4,1}$), 5.81 (dddd, ${}^{3}J=17.2$, 10.1, 6.6, 6.3, 1H₂), 7.06 (d, ${}^{3}J=8.8$, 2H₂), 7.14-7.31 (m, 125 5H_{Arom}), 7.55 (d, ${}^{3}J=$ 8.8, 2H_m). δ_{C} ppm (CDCl₃, 100 MHz): 23.63_(4c), 33.07₍₆₎, 34.59₍₅₎, 126 37.55₍₃₎, 54.07₍₄₎, 117.31₍₁₎, 122.39_(p'), 125.95_(p), 128.21_(2xm), 128.41_(2xo), 131.55_(2xo'), 127 128 132.62_(2xm²), 135.44₍₂₎, 138.42_(i²), 141.53_(i), 170.67_(4b). 129 130

131 *N*-Phenyl-*N*-(4-fluorophenylhex-5-en-1-yl)acetamide2e

132

From N-(4-fluorophenyl)- α -2-propen-1-ylbenzenpropanamine **1e** (0.63 g, 2.34 mmol) and 133 acetic anhydride (6.80 g, 66.62 mmol). Pure product was obtained after column 134 135 chromatography as a brownish oil. $R_f = 0.43$ (*n*-heptane:AcOEt, 5:2). MS [EI, 70 eV] (m/z, %): 311 (M⁺,2), 270 (36), 228 (100), 117 (15), 91 (51). δ_H ppm (CDCl₃, 400 MHz): 1.71-136 1.82 (m, 2H₅), 1.87 (s, 3H_{4c}), 2.22-2.28 (m, 2H₃), 2.79 (ddd, ${}^{2}J=$ 13.8; ${}^{3}J=$ 9.6, 6.9, 1H₆), 137 2.84 (ddd, ${}^{2}J=13.8$; ${}^{3}J=9.6$, 6.9, 1H₆), 5.06-5.22 (m, 3H_{1.4}), 5.91 (dddd, ${}^{3}J=17.0$, 10.6, 6.6, 138 6.3, 1H₂), 7.16-7.40 (m, 9H_{Arom}). δ_C ppm (CDCl₃, 100 MHz): 23.55_(4c), 33.03₍₆₎, 34.53₍₅₎, 139 $37.52_{(3)}$, $53.89_{(4)}$, $116.28_{(2xm')}$ (d, $^{2}J=22.5$), $117.21_{(1)}$, $125.91_{(p)}$, $128.18_{(2xm)}$, $128.38_{(2xo)}$, 140 $131.55_{(2xo')}$, $135.19_{(i')}$ (d, ${}^{4}J=3.4$), $135.49_{(2)}$, $141.57_{(i)}$ $162.07_{(p')}$ (d, ${}^{1}J=249.1$), $171.02_{(4b)}$. 141 142

146 From N-(2-methylphenyl)- α -2-propen-1-vlbenzen propanamine**1f** (0.67 g, 2.52 mmol) and 147 acetic anhydride (7.23 g, 70.81 mmol). Pure product was obtained after column 148 chromatography as a brownish oil. $R_f = 0.53$ (*n*-heptane:AcOEt, 5:2). GC showed a single 149 signal. MS [EI, 70 eV] (*m*/*z*, %): 307 (M⁺⁺, 2), 266 (39), 224 (100), 118 (13), 91 (51). NMR 150 data for *α* conformer: δ_H ppm (CDCl₃, 400 MHz): 1.73 (s, 3H_{4c}), 1.74-1.82 (m, 2H₅), 2.26 (s, 3H_{4d}), 2.45-2.51; 2.52-2.59 (m, 2H₃), 2.59-2.67 (m, 2H₆), 4.75-4.86 (m, 1H₄), 5.08-5.20 151 (m, 2H₁), 5.89 (dddd, ${}^{3}J$ = 17.3, 9.9, 6.7, 6.5, 1H₂), 7.07-7.34 (m, 9H_{Arom}). δ_{C} ppm (CDCl₃, 152 100 MHz): 18.44_(4d), 23.15_(4c), 33.45₍₆₎, 33.57₍₅₎, 38.23₍₃₎, 55.87₍₄₎, 117.08₍₁₎, 125.81_(p), 153 154 $126.87_{(m')}$, $128.21_{(p')}$, $128.25_{(2x0)}$, $128.32_{(2xm)}$, $129.64_{(o')}$, $131.54_{(m'')}$, $135.93_{(2)}$, $136.87_{(i')}$, 139.35_(0^{''}), 141.67_(i), 171.06_(4b). NMR data for **β conformer**: δ_H ppm (CDCl₃, 400 MHz): 155 1.49-1.61 (m, 2H₅), 1.77 (s, 3H_{4c}), 1.86-2.07; 2.36-2.48 (m, 2H₃), 2.27 (s, 3H_{4d}), 2.77 (ta, 156 ${}^{3}J=8.4, 2H_{6}, 4.75-4.86 \text{ (m, 1H4)}, 4.95-5.01 \text{ (m, 2H1)}, 5.69 \text{ (dddd, } {}^{3}J=16.6, 10.8, 7.9, 6.0, 10.8, 7.9, 6.0, 10.8, 7.9, 6.0, 10.8, 7.9, 6.0, 10.8, 7.9, 6.0, 10.8, 7.9, 6.0, 10.8, 7.9, 6.0, 10.8, 7.9, 6.0, 10.8, 7.9, 6.0, 10.8, 7.9, 6.0, 10.8, 10$ 157 1H₂), 7.07-7.34 (m, 9H_{Aron}). δ_C ppm (CDCl₃, 100 MHz): 18.49_(4d), 23.06_(4c), 33.14₍₆₎, 158 159 $33.31_{(5)}, 36.61_{(3)}, 55.83_{(4)}, 117.18_{(1)}, 125.81_{(p)}, 126.95_{(m')}, 128.17_{(p')}, 128.24_{(2x0)}, 128.34_{(2xm)},$ $129.32_{(o')}, 131.60_{(m'')}, 135.42_{(2)}, 137.02_{(i')}, 139.22_{(o'')}, 141.97_{(i)}, 171.04_{(4b)}.$ 160

- 161
- 162
- 163 Conformational analysis
- 164

165 Ten chemically reasonable structures for compound 2f were used as the starting point for
166 energy minimization using the Parameterized Model 3 (PM3) semiempirical method (15).
167 Geometry optimization and vibrational frequency calculations (for verifying that the Page 7 of 22

168	structures correspond to minima on the potential energy surface) were then carried out
169	using the B3LYP functional with the 6-31+G(2d,p) basis set as implemented in Gaussian
170	09 (16-24). Seven different possible conformer structures $2f_1-2f_7$ were found. Energy
171	differences [kcal/mol] for all minima were calculated with and without vibrational zero
172	point energies (VZPE).
173	
174	
175	Results and discussion
176	
177	Scheme1 shows the synthesis of new 1-phenylhex-5-en-1-ylacetamides 2a-f from N-
178	butenylamines 1a-f using acetic anhydride as both reagent and solvent, under reflux (140
179	°C). Acetamides2a-f were easily obtained with yields between 66-92%. Optimal reaction
180	time was established by both TLC and GC in about 4-6 h. Main IR vibration bands of allyl
181	C=C-H and acetamide C=O are listed in Table 1. IR N-H tension and flexion bands in
182	compounds 1a-f clearly disappeared after acetyl protection.
183	aero
184	
185	Scheme 1. Synthesis of acetamides2a-f (see labels for ¹ H and ¹³ C-NMR assignments in
186	experimental section).
187	
188	

	v(C=O)	v(C=CH)	v(=C-H) Aromatic <i>p</i> -disubstituted	v(=C-H) Aromatic monosubstituted
2a	1655	915		745-701
2b	1655	915	824	749-700
2c	1653	916	837	750-700
2d	1658	917	833	749-700
2e	1658	917	844	750-700
2f	1658	917	763*	749-700
* 0-	disubstitu	ed		

Table 1. IR $[v, cm^{-1}]$ main signals for compounds **2a-f**.

190

192 GC-MS (EI, 70eV) data are condensed in **Table 2**. Molecular ions corresponding to 193 molecular mass of **2a-f** appeared in all cases with low intensity; base peak Φ_2 results after 194 consecutive allyl [Φ_1] and acetyl [(Φ_1 -C₂H₃O]⁺ fragmentation. Benzyl fragment Φ_3 (*m/z* 91) 195 is characteristic in all compounds.

196

Table 2. MS (EI, 70eV) [m/z (int. %)] main fragments for compounds **2a-f**.

		$\mathbf{M}^{\cdot +}$	Φ_1 , $[M-C_3H_5]^+$	$\Phi_2, \left[\Phi_1 \text{-} C_2 \text{H}_3 \text{O}\right]^+$	$\Phi_3, [C_7H_7]^+$
	2a	293 (2)	252 (38)	210 (100)	91 (47)
	2b	307 (2)	266 (37)	224 (100)	91 (40)
	2c	323 (2)	282 (28)	240 (100)	91 (51)
4	2d	373 (2)	330 (33)	288(100)	91 (82)
	2e	311 (2)	270 (33)	228 (100)	91 (51)
	2f	307 (2)	266 (39)	224 (100)	91 (51)

¹H, ¹³C and 2D NMR experiments confirmed the structures of compounds **2a-f**. Due to a short relaxation time in ¹³C- APT NMR spectra for *Co*', a broad signal appeared; thus, in **2e**

201 it was not possible to assign the correct C o' - F coupling constant. Diastereotopic protons H_{3a} and H_{3b} appeared in ¹H-NMR as a multiplet from 1.86 ppm to 2.59 ppm in all cases. 202 203 Correct assignment of allyl- H_2 coupling constants and multiplicity for compounds **2a-f** was 204 completed by comparative simulation considering a first order spectra ($\Delta v/J > 8$) of an 205 AA'MXX' spin system (25); spin simulation was carried out using Mestrenova v7.1.1 (test 206 version) (26). Determined experimental values of chemical shifts and coupling constants range for the allyl system were used to simulate the H₂ signal until an identical 207 multipletwas obtained by direct comparison, as shown in Figure 1. 208

20100

Figure 1. Obtained (black) and simulated (red) spectra for allyl- H_2 proton considering an AA'MXX' spin system.

H₂ proton chemical shifts and coupling constants for **2a-f** allyl system are shown in **Table 3.** Compound **2f** showed a single GC signal but a double group of signals in ¹H and ¹³C-NMR; characteristic coupling constants for the allyl H₂ proton were observed due to the existence of two different conformational isomers (α/β).

Compound	δ [ppm]	$^{3}J(\mathrm{H}_{trans})$	$^{3}J(\mathrm{H}_{cis})$	$^{3}J(\mathrm{H}_{3a})$	$^{3}J(\mathrm{H}_{3b})$
2a	5.765	17.90	9.50	6.80	6.40
2b	5.834	17.50	9.30	6.90	6.50
2c	5.834	17.60	9.50	6.80	6.50
2d	5.811	17.25	10.10	6.60	6.35
2e	5.907	17.00	10.61	6.60	6.35
2fa	5.898	17.30	9.95	6.75	6.50
2fβ	5.696	16.60	10.85	7.90	6.00

Table 3. ¹H-NMR chemical shifts [ppm] and coupling constants ³*J* [Hz] for the allyl H₂nuclei of **2a-f**.

221

¹H-NMR integral relation of conformers $2f_{\alpha}$ and $2f_{\beta}$ was 1:1.15 (Figure 2). ¹H-NMR experiments showed that α and β conformational isomers ratio does not change in time at room temperature. Conformers $2f_{\alpha}$ and $2f_{\beta}$ also showed diastereotopic protons H_{3a} and H_{3b} as separated multiplets.

226

Figure 2.¹H-NMR (CDCl₃, 400MHz) spectra of **2f**; the two different allyl- H_2 signals (in expansion) determine the α/β conformers.

After conformational analysis of 2f, despite of including both, the electronic energy and the VZPE differences, the optimized structures $2f_1-2f_7$ showed similar ΔE values, avoiding a direct assignment to explain the duplicity of the signals in ¹H-NMR. Molden was used for displaying the molecular structures (27). These structures are qualitatively similar, differing mainly on the allyl group dihedral angles and slightly on rotation of other sigma bonds

Figure 3. Calculated structures for conformers **2f**₁₋₇

Page 13 of 22

Table 4 shows the energies and the allyl group dihedral angles for each 2f conformer after optimization, taking $2f_2$ [lowest electronic energy at the B3LYP(6-31+G(2d,p)) level of theory] as reference for energetic differences.

244

Table 4. Calculated energy values and allyl group dihedral angles (degrees) for seven

246 different conformers of 2f.

	ΔE [Kcal/mol] (electronic energy)	Total ΔE [Kcal/mol] (including	Dihedra [degro	l angles ees °]
		VZPE)	Φ_1	Φ_2
$2f_1$	0.47	0.46	63	179
$2\mathbf{f}_2$	0	0	170	286
2f ₃	1.79	2.02	64	179
$2f_4$	2.05	2.16	66	181
2f ₅	1.08	1.11	173	295
$2f_6$	5.08	5.25	66	182
$2f_7$	4.85	5.46	62	178

247

To correlate the H₂ allyl¹H-NMR signals to a particular conformer, the proposed equation by Garbisch for allyl compounds [**Eq. 1**] was used (28). Garbisch equation is a modified Karplus equation involving also σ and π bonds contributions. Some authors suggest that some modifications can be done to make this equation more precise (29-31). With the Garbish equation a relation between observed coupling constants (*J*) and the dihedral angle (Φ) for the allylic proton H_2 and H_3 for each conformer was determined, as shown in **Tables 5** and **6**.

2a 6.4 6.8 12.9 133 2b 6.5 6.9 9.1 134 2c 6.5 6.8 9.1 133 2d 6.3 6.6 0.4 130 2e 6.3 6.6 0.4 130	Compound	${}^{3}J_{\mathrm{H3a}}$	${}^{3}J_{\mathrm{H3b}}$	Φ_1 [±15°]	$\Phi_{2}[\pm 15^{\circ}]$
2b 6.5 6.9 9.1 134 2c 6.5 6.8 9.1 133 2d 6.3 6.6 0.4 130 2e 6.3 6.6 0.4 130	2a	6.4	6.8	12.9	133
2c 6.5 6.8 9.1 133 2d 6.3 6.6 0.4 130 2e 6.3 6.6 0.4 130	2b	6.5	6.9	9.1	134
2d 6.3 6.6 0.4 130 2e 6.3 6.6 0.4 130	2c	6.5	6.8	9.1	133
2e 6.3 6.6 0.4 130	2d	6.3	6.6	0.4	130
	2e	6.3	6.6	0.4	130

Table 5.Coupling constants ${}^{3}J$ [Hz] and their corresponding dihedral angles (Φ_{1} and Φ_{2}) from Garbisch equation for allyl protons H₂ and H_{3a}/H_{3b} in compounds **2a-e**.

259 Dihedral angles for conformers $2f_{1-7}$ found in our calculations and conformers $2f_{\alpha}$ and $2f_{\beta}$ 260 obtained from Garbisch equation are not equivalent, but approximated (**Table 6**) 261 considering $\pm 15^{\circ}$ of uncertainty (27).

262

Table 6. Dihedral angles (Φ_1 y Φ_2) for allyl protons H_2 and H_{3a}/H_{3b} in seven different conformers for **2f**; calculated using the B3LYP(6-31+G(2d,p)) level of theory (left) and from the Garbisch equation (right).

${}^{3}J \cong \begin{cases} 6.6\cos^{2}\Phi + 2.6\sin^{2}\Phi(0^{\circ} \le \Phi \le 90^{\circ}) \\ 11.6\cos^{2}\Phi + 2.6\sin^{2}\Phi(180^{\circ} \ge \Phi \ge 90^{\circ}) \end{cases} [Eq. 1] \end{cases}$										
			Ca	lculat	ed res	ults			Garbisch	's results
\sim	75	2f ₁	2 f ₃	2f ₄	2f ₆	2f ₇	2 f ₂	2 f ₅	α	β
	Φ ₁	63	64	66	66	62	170	173	9.1	140
	Φ2	179	179	181	182	178	286	295	133	232

A comparison for both models (**Figure 4**) shows high similarity when a Newman representation of the allyl H_2 and vicinal methylenic protons H_{3a} and H_{3b} are depicted. Considering this fact, it was possible to associate these two different positions for H_{3a} and

- 270 H_{3b} protons to conformers α and β according to the observed ¹H and ¹³C-NMR spectra,
- 271 concluding that bulky groups (R and C=C) are located in a pseudo bisecting conformation
- in Newman's projections (Figure 4).

Figure 4. Newman projections for allyl group conformers $2f_{\alpha}$ and $2f_{\beta}$: left, calculated structures (B3LYP/6-31+G(2d,p); right, according to [Eq. 1].

276

273

277 Thus, possible structures of α/β conformers were established according to their calculated

- energy, in each case. Allyl group disposition according to Garbisch equation was within the
- approximation limits with calculated conformers $2f_1$ and $2f_2$ (Figure 5).
- 280

281	Conformer $2f_{\alpha}$ (2f ₁)	Conformer $2f_{\beta}(2f_2)$	20
282	Figure 5. Calculated structures (B3LYP/6-31+G(20	l,p) for conformers α and	dβ of 2f .
283		Nº	0
284	Analogous calculated structures for 2f differ basica	lly on the spatial distribution	ution of the allyl
285	group and its dihedral angle; a 2.72 Å dipolar inter	raction between the ally	l proton and the
286	acetyl oxygen atom was observed in conformer 2	f_{β} (Figure 6), explaining	ng the chemical
287	shifting to high fields in the ¹ H-NMR spectrum d	ue to C=O anisotropic	protection. Each
288	conformer of 2f (α and β) was totally elucidated	l using 2D-NMR exper	riments (COSY,
289	HSOC and HMBC).		

Figure 6. Left: Allyl- H_2 proton interaction at 2.72 Å distance with the carbonyl oxygen in conformer $2f_{\beta}$. Right: the diamagnetic protection zone of double bond C=O.

293

Conclusions

296

297 An easy methodology to access new N-phenyl-N-(1-phenylhex-5-en-1-yl) acetamides2a-f 298 using acetic anhydride as reagent and solvent, including green chemistry principles was 299 used. Using quantum chemical calculations and Garbisch's approximation it was possible to determine that compounds **2a-e** prefer a single conformation similar to conformer $2f_{g}$. 300 301 Existence of conformers $2f_{\alpha}$ and $2f_{\beta}$ explain the double signals observed in both ¹H and ¹³C-302 NMR spectra for compound **2f**. Coupling constants and chemical shifts values for H_2 allyl 303 proton signals of compounds **2a-f** were described for each conformer and can be used as a comparative base in ¹H-NMR allyl- H_2 signal coupling constants assignation. 304 305 306 Acknowledgments 307 308 309 Authors express their acknowledgment to Universidad Industrial de Santander-UIS DIEF 310 (internal project 5171) for financial support. 311 312 313 References 314 315 1. Schreiber, S. L. Target-Oriented and Diversity-Oriented Organic Synthesis in Drug 316 Discovery. Science. 2000. 287: 1964-1969.

317	2.	Goel, A.; Kumar, V.; Singh, S. P.; Sharma, A.; Prakash, S.; Singh, C.; Anand, R. S.
318		Non-aggregating Solvatochromic Bipolar Benzo[f]quinolines and Benzo[a]acridines
319		for Organic Electronics. J. Mater. Chem. 2012. 22: 14880-14888.
320	3.	Vargas, L. Y.; Castelli, M. V.; Kouznetsov, V. V.; Urbina, J. M.; López, S.N.; Sortino,
321		M.; Enriz, R. D.; Ribas, J. C.; Zacchino, S. In vitro Antifungal Activity of New Series
322		of Homoallylamines and Related Compounds with Inhibitory Properties of the
323		Synthesis of Fungal Cell Wall Polymers. Bioorg. Med. Chem. 2003. 11: 1531-1550.
324	4.	Gómez-Barrio, A.; Montero-Pereira, D.; Nogal-Ruiz, J. J.; Escario, J. A.; Muelas-
325		Serrano, S.; Kouznetsov, V. V.; Vargas-Méndez, L.; Urbina-Gonzáles, J. M.; Ochoa, C.
326		AntiparasiticProperties of Homoallylamines and RelatedCompounds. Acta Parasitol.
327		2006. 51 : 73-78.

- Jacquemond-Collet, I.; Hannedouche, S.; Fabre, N.; Fourasté, I.; Moulis, C. Two
 Tetrahydroquinoline Alkaloids from *Galipeaofficinalis*. *Phytochemistry*. 1999. 51:
 1167-1169.
- 331 6. Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Advances in the Chemistry of
 332 Tetrahydroquinolines. *Chem. Rev.* 2011. 111: 7157-7259.
- 7. Zanatta, F.; Gandolfi, R. B.; Lemos, M.; Ticona, J. C.; Gimenez, A.; Clasen, B. K.;
 Filho, V. C.; de Andrade, S. F. Gastroprotective Activity of Alkaloid Extract and 2phenylquinoline Obtained from the Bark of GalipealongifloraKrause (Rutaceae). *Chem.-Biol. Interact.* 2009. 180: 312-317.
- 337 8. Fournet, A.; Barrios, A. A.; Muñoz. V.; Hocquemiller, R.; Roblot, F.; Cavé, A.; 338 Richomme, P.; Bruneton, J. Antiprotozoal Activity of Quinoline Alkaloids Isolated 339 Treatment from Galipealongiflora, Bolivian Plant Used for а as а 340 CutaneusLeishmaniasis. Phytother. Res. 1994. 8: 174-178.

- 341 9. Fakhfakh, M. A.; Fournet, A.; Prina, E.; Mouscadet, J. F.; Franck, F.; Hocquemiller,
- 342 R.; Figadère, B. Synthesis and Biological Evaluation of Substituted Quinolines:
- 343 Potential Treatment of Protozoal and Retroviral Co-infections. *Bioorg. Med. Chem.*

344 2003. **11**: 5013-5023.

- 345 10. Kishore, N.; Mishra, B. B.; Tripathi, V.; Tiwari, V. K. Alkaloids as Potential anti346 tubercular Agents. *Fitoterapia*. 2009. 80: 149-163.
- 347 11. Ghassamipour, S.; Sardarian, A. R. Friedländer Synthesis of Poly-substituted
- 348 Quinolines in the Presence of Dodecylphosphonic Acid (DPA) as a Highly Efficient,
- 349 Recyclable and Novel Catalyst in Aqueous Media and Solvent-free Conditions.
- **350** *Tetrahedron Lett.* 2009. **50**: 514-519.
- 351 12. Jacquemond-Collet, I.; Benoit-Vical, F.; Valentin, M. A.; Stanislas, E.; Mallié, M.;
- Fourasté, I. Antiplasmodial and Cytotoxic Activity of Galipinine and other
 Tetrahydroquinolines from *Galipeaofficinalis*. *Planta Med.* 2002. 68: 68-69.
- 354 13. Crane, D.; Holmes, R. S.; Masters, C. J. On the Relative Rates of Synthesis and
 355 Degradation of Catalase in Vertebrate Tissues. *Int. J. Biochem.* 1978. 9: 589.
- 356 14. Incefy, G. S.; Kappas, A. Inhibitory Effect of α-amanitin on the Induction of δ357 aminolevulinateSynthetase in Chick Embryo Liver. *FEBS Lett.* 1971. 15: 153.
- 358 15. Stewart, J. J. P. Optimization of Parameters for Semiempirical Methods. I. Method. J.
 359 *Comp. Chem.*, 1989. 10: 221-264.
- 360 16. Frisch, M. J., et al. Gaussian 09, Revision A.1., Gaussian Inc., Wallingford CT, 2009.
- 361 17. Becke, A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J.
- **362** *Chem. Phys.* 1993. **98**: 5648-5652.
- 363 18. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy
- **364** Formula into a Functional of the Electron Density. *Phys. Rev.B.* 1988. **37**: 785-789.

- 365 19. Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-dependent Electron Liquid
- 366 Correlation Energies for Local Spin Density Calculations: A Critical Analysis. *Can. J.*

367 *Phys.* 1980. **58**: 1200-1211.

- 368 20. Stephens, P. J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M. J. Ab initio Calculation of
- 369 Vibrational Absorption and Circular Dichroism Spectra Using Density Functional
- **370** Force Fields. J. Phys. Chem. 1994. **98**:11623-11627.
- 371 21. Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-consistent Molecular Orbital Methods. 9.
- 372 Extended gaussian-type Basis for Molecular-Orbital Studies of Organic Molecules. J.
- **373** *Chem. Phys.* 1971. **54**: 724-729.
- 22. Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-consistent Molecular Orbital Methods.
- 375 12. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular-Orbital
 376 Studies of Organic-Molecules. *J. Chem. Phys.* 1972. 56: 2257-2262.
- 377 23. Hariharan, P. C.; Pople, J. A. Influence of Polarization Functions on Molecular-Orbital

378 Hydrogenation Energies. *Theor. Chem. Acc.* 1973. 28: 213-222.

- 379 24. Petersson, G. A.; Al-laham, M. A. A Complete Basis Set Model Chemistry. II. Open-
- 380 Shell Systems and the Total Energies of the First-Row Atoms. J. Chem. Phys. 1991.
 381 94: 6081-6090.
- 382 25. Hoye, T. R.; Hanson, P. R.; Vyvyan, J. R. A Practical Guide to First-Order Multiplet
 383 Analysis in ¹H-NMR Spectroscopy. *J. Org. Chem.* 1994. **59**: 4096-4103.
- 384 26. Mestrenova, versión 7.1.1; MestreLabresearch S.L.: Santiago de Compostela, España,
- 385 2011. http://www.mestrelab.com [Access March-2012].
- 386 27. Schaftenaar, G.; Noordik, J.H. Molden: A Pre- and Post-processing Program for
- 387 Molecular and Electronic Structures. J. Comput.-Aided Mol. Des. 2000. 14: 123-134.

- 388 28. Garbisch, E. W. Conformations VI. Vinyl-Allylic Proton Spin Couplings. *J. Am. Chem.*389 *Soc.* 1964. 86: 5561-5564.
- 390 29. Karplus, M. Vicinal Proton coupling in Nuclear Magnetic Resonance. J. Am. Chem.
 391 Soc. 1963. 85: 2870-2871.
- 392 30. Bally, T.; Rablen, P. R. Quantum-Chemical Simulation of ¹H-NMR Spectra. 2.
- 393 Comparison of DFT-Based Procedures for Computing Proton-Proton Coupling
- Constants in Organic Molecules. J. Org. Chem. 2011.76: 4818-4830.
- 395 31. Vyas, D. M.; Hay, G. W. Studies on the Synthesis of Novel Carbohydrates with
- 396 Sulphur in the Ring. Part II. Analogues of Derivatives of Unsaturated Deoxy-ulo-
- 397 pyranosidonic Acids *via* Diels-Alder Reactions with Methyl Cyanodithioformate. J.
- **398** *Chem. Soc. Perkin Trans. I.* 1975. **2**: 180-186.