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ABSTRACT 
 

Micro-Chamber Filling Experiments for Validation of Macro Models with Applications 

in Capillary Driven Microfluidics. (December 2007) 

Stephen Byron Gauntt, B.S., Worcester Polytechnic Institute 

Chair of Advisory Committee: Dr. Debjyoti Banerjee 

 

Prediction of bubble formation during filling of microchambers is often critical 

for determining the efficacy of microfluidic devices in various applications. In this study 

experimental validation is performed to verify the predictions from a previously 

developed numerical model using lumped analyses for simulating bubble formation 

during the filling of microchambers. The lumped model is used to predict bubble 

formation in a micro-chamber as a function of the chamber geometry, fluid properties 

(i.e. viscosity and surface tension), surface condition (contact angle, surface roughness) 

and operational parameters (e.g., flow rate) as user defined inputs.  Several 

microchambers with different geometries and surface properties were microfabricated. 

Experiments were performed to fill the microchambers with different liquids (e.g., water 

and alcohol) at various flow rates to study the conditions for bubble formation inside the 

microchambers.  The experimental data are compared with numerical predictions to 

identify the limitations of the numerical model. Also, the comparison of the 

experimental data with the numerical results provides additional insight into the physics 

of the micro/nano-scale flow phenomena.  The results indicate that contact angle plays a 



 iv

significant role on properties of fluids confined within small geometries, such as in 

microfluidic devices.  
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NOMENCLATURE 
 

HF Hydrofluoric Acid 

BOE Buffered Oxide Etch 

DI Demineralized Water 

ID Inner Diameter 

OD Outer Diameter 

OTS Octadecyltrichlorosilane 

u    velocity 

μ    viscosity 

ρ    density 

σ   surface tension coefficient 

θ1   contact angle with top wall 

θ2   contact angle with bottom wall 

θ3   contact angle with side walls 

L1   length of micro-chamber 

L2   width of micro-chamber 

Le1   Scan Length at Top of Microchamber 

Le2   Scan Length at Bottom of Microchamber 

ls1   Meniscus Position along L1 Direction 

ls2   Meniscus Position along L2 Direction 

lm   Position along central portion of the meniscus 
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Δls1   Measurement Error of ls1 

Δls2   Measurement Error of ls2 

Δlm   Measurement Error of lm 

h   depth of micro-chamber 

Q   volumetric flow rate 

t   time 

w   region of wall influence 
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1. INTRODUCTION 
 
 

Miniaturization of fluid handling technologies is known as “Microfluidics”. 

Microfluidics deals with the study of flow behavior, precise control and manipulation of 

small (e.g., microliter, nanoliter and picoliter) volumes of fluids. It is a multidisciplinary 

field intersecting engineering, physics, chemistry, micro/nano-fabrication and 

biotechnology. Explosive growth of microfluidics applications emerged in the 1990s 

with the development of lab-on-chip devices such as bio-chips (gene chips and protein 

chips for nucleic acid detection, i.e., DNA, RNA and proteins/ peptides as well as 

biochemical synthesis), micro-propulsion, micro-thermal technologies (Tsai et al. 2006; 

Wang 2004; Estes 2005, Orieux et al. 2002, Lewis et al. 2000).  Behavior of fluids at the 

microscale can differ from 'macrofluidic' behavior due to predominance of surface 

effects (over volumetric forces) such as surface tension, energy dissipation, surface 

roughness and fluidic resistance. The field of microfluidics is aimed at studying how 

these behaviors change, and how they can be optimized or exploited for novel 

applications. Microfluidics technology enabled the “Human Genome” project to be 

completed ahead of schedule (Human Genome Project Information, 2007). 1 

Microfluidic technologies confer several advantages – lower materials usage, 

faster operation (lower reaction times for chemical reactions), higher sensitivity as well 

precision for detection applications, less propensity for formation of impurities during 

                                                 
This thesis follows the style of Microfluid Nanofluid. 
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biochemical synthesis, development of portable (and hand-held) platforms and novel 

applications such as bio-chips (Tsai et al. 2006; Estes 2005). 

Microfluidics devices are obtained by a combination of micro-chambers (or 

reservoirs), microchannels (or conduits for flow), and flow actuation devices (e.g., 

micro-pumps). Formation of bubbles during filling of micro-chambers and micro-

channels is often considered to be a catastrophic failure of such devices. For example, 

micro-chambers are used as DNA hybridization chambers [Nanogen, Inc.]. DNA 

hybridization is prevented in the region occupied by a bubble and bubble formation is 

therefore undesirable. 

Bubble formation can be predicted by various numerical models, e.g., Volume of 

Fluids (VOF) method (Menard, et al. 2007; Morel 2007; Banerjee et al. 2005), Level Set 

Method (Abe et al. 2007; Grob et al. 2006; Carrica et al. 2007), Front Tracking Method 

(Liu et al. 2007; Xu et al. 2007; Witteveen et al. 2007), etc. These models rely on 

discretization of the governing equations and boundary conditions (e.g., finite difference 

or finite volume) and require substantial computing resources (memory, computational 

steps, problem definition). As a consequence, a single computational run can require 

several days to a few weeks for completion even for simulating flow in simple 

geometries. Application of these techniques to microfluidics applications is also very 

challenging since microfluidics devices consist of high aspect ratio fluidic structures 

(e.g., micro-channels). Also, these numerical techniques (e.g., VOF) are very sensitive to 

the grid generation schemes (e.g., grid aspect ratio) as well as simulation parameters 

(e.g., numerical convergence and acceleration schemes) and are often susceptible to 
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computational errors during execution – sometimes generating non-physical results if the 

problem definition is not properly implemented. Hence, these numerical techniques are 

not user-friendly, cumbersome, complicated to implement and often require substantial 

effort for development. 

 Lumped models (also known as “reduced-order-models”, “macro models”, 

“system models”, “compact models”, “Spice® models”, etc.) are behavioral models 

which can be very useful in the simulation of complex systems requiring minimal 

computational effort.  Macromodels provide faster simulation schemes where the time 

required for a typical simulation can be reduced by a factor of 10-100 compared to the 

simulation times required by physical models that are based on discretization techniques.  

In such models, the system is described by behavioral (fitted) parameters.  For example, 

the flow in a pipe can be described by the equivalent resistance-potential model. This 

enables a simplified implementation of the models, reduced model development effort, 

makes the tools user friendly, and is less susceptible to computational errors. 

Macromodels are ideally suited for simulating fluid behavior in microfluidic devices, 

especially for those with high aspect ratio fluidic structures. Macromodels have been 

used for simulating various microfluidics devices and systems.  The development of 

such tools vastly simplifies the design procedure and also helps to minimize the 

necessity of CFD (Computational Fluid Dynamics) tools for parametric investigations. 

Hence, the macromodels reduce the time and effort required for parametric investigation 

as well as rapid exploration of the design space for design optimization. This makes 

macromodels ideally suited for the commercial environment.  Such models can be 
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developed using a wide range of programming languages including C++, Microsoft ® 

Visual Basic, Java, or even utilizing spreadsheet applications such as Microsoft ® Excel.  

Such programmed models are also ideally suited due to their low reliance on large 

amounts of computational resources, making them suitable for deployment on traditional 

desktop personal computers   Such a model, previously developed (Banerjee 2005) for 

simulating bubble formation during microchamber filling, will be validated 

experimentally and calibrated in this proposed study.  
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2. LITERATURE REVIEW 

Simulation of microchamber filling has often focused on laborious CFD analysis.  

Such an analysis has been carried out extensively by Jensen (2002) who simulated 

bubble formation in both 2-D and 3-D channels.  His findings, however, were not 

validated experimentally and focused on the utilization of various CFD packages and not 

the development of a quick and useful design tool.  Additional CFD work has been 

conducted by Weber and Shandas (2007) who studied microbubble formation in 

microfluidic flow-focusing devices.   

Some early work in the development of macromodels was conducted by 

Bourouina (1996), who presents such a model for rapid simulation of micropumps.  This 

model is used to predict the flow-rates and pressure inside the pump chamber, 

comparing admirably to experimental results.  Qiao, et al. (2002) presents a compact 

model to predict the flow rate, pressure distribution and other basic characteristics in 

microfluidic channels when the driving force is either an electric field or a combined 

electric field and pressure gradient, while also considering the effects of varying zeta 

potential.  Their model was shown to give good results when compared to detailed 

numerical simulation, with errors around 8% for both flow types.  Chatterjee, et al. 

(2005) further elaborated on the model to account for this error and significantly 

increased the models ability to capture the physics of the fluidic transport in much 

greater detail. 

Macromodels can be used to model a variety of flow behaviors.   Morris, et al. 

(2004) compared lumped-parameter expressions for the impedance of an incompressible 
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viscous fluid subjected to harmonic oscillations in a channel with exact expressions 

based on the Navier-Stokes equations.  He found, however, that these lumped-parameter 

expressions led to large errors, as high as 400% in some cases, and recommended that 

the exact solutions should be used.  It is not uncommon for macromodels to lead to large 

errors such as these, which introduces the necessity of calibrating the expressions with 

experimental results.  Magargle et al. (2004) and Mikulchenko et al. (2000) have used 

neural-network models for electrokinetic injection and a microflow sensor, respectively, 

which are parameterized by the device geometry and operational parameters (e.g., 

electric field and flow velocity).   Jousse, et al. (2005) present another model used to 

describe the laminar flow of viscous multiphase fluids in microchannel networks, in 

which they use a “‘incomplete Wheatstone bridge’’ network to show how fluid 

repartition depends on the input parameters.  Wang et al. (2004a, 2004b) have presented 

analytical models to study dispersion effects in electrokinetic flow induced by both turn 

geometry and Joule heating using a “method-of-moments” approach. These models 

effectively capture the effect of chip topology, separation element size, material 

properties, and electric field on the separation performance.  

Turowski, et al. (2001) has suggested a design methodology for the generation of 

compact models of microfluidic elements which can be used with various system-level 

simulators such as SPICE (Simulation Program with Integrated Circuit Emphasis) and 

Saber, two circuit simulator programs.  The specific example of a “Tesla Valve” was 

used to validate the procedure and comparisons were made with high-fidelity 3D 

simulations along with experimental results of the microfluidic device.  The discrepancy 
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between the generated compact models and 3D simulation results was shown to be less 

than 2% in the entire range for this particular example.  Though these macromodels may 

not capture all the details elucidated by grid-based 3D modeling techniques, they are 

adequate enough to quickly and accurately capture the basic physical behavior of the 

system which can be used in the design of microfluidic systems. 

Some work has also been done in revealing the behavior of fluids in micro and 

nano devices.  Meinhart, et al. (2001) studied the validity of the common no-slip 

boundary condition for viscous flow at solid walls on the micro and nano scale.  It was 

found that for hydrophilic surfaces this condition remained a reasonable assumption for 

micro and nano scale flows.  However, for extremely hydrophobic surfaces, such as 

those treated with Octadecyltrichlorosilane, this assumption was no longer valid and it 

was found the velocity of the fluid at the wall is roughly 10% of the free-stream velocity.  

Hess et al. (1989) suggested that if the strain rate at the wall exceeds twice the molecular 

frequency scale, the no-slip boundary condition at the wall leads to incorrect modeling 

behavior.  This assumption of slippage at the walls could be a possible explanation for a 

change in the region of wall influence for the macromodel used in this present study, 

which will be described in a later section. 

Churaev et al (1971) found that the viscosity of water in glass capillaries of 80 

nm diameter is approximately 40% elevated, and that this elevation decreases rapidly 

with increasing channel size.  This was explained by a possible increased ordering of the 

polar water molecules near the channel walls, while Tas et al. (2004) attributes the 

change to electro-viscous effects.  Quere (2001) studied the velocity of falling slugs in 
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vertically mounted capillary tubing under both pre-wetting and dry conditions.  The 

authors mentioned that the results can be explained by an apparent viscosity change due 

to a change in the falling slug’s velocity. 
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3. DESCRIPTION OF THE MACROMODEL 
 

Banerjee (2005), described the development of a macromodel for predicting the 

filling of microchambers in capillary driven flows. The macromodel input parameters 

include geometric parameters (size of the chamber) and fluid properties (viscosity, 

contact angle, surface tension) as customizable inputs.  Different geometries of liquid 

flow pathways may result in different capillary filling behavior such as filling time, and 

the possibility of bubble entrapment. Knowledge of the filling process can guide 

designers in arranging internal structures of the chip to avoid potential filling problems 

and achieve higher filling speeds.  A brief explanation of the formulation and 

implementation of this numerical model will now be discussed. 

Borrowing concepts from electrical engineering, fluid flow can often be modeled 

with the use of an equivalent electrical network.  In the study conducted by Banerjee 

(2005), a Volume of Fluids (VOF) simulation was conducted to obtain a basic 

understanding of the fluid flow within a microchamber.  The results show that near the 

wall – the wall effects cause a 3-D flow. This region where 3-D effects dominate is 

denoted by a region of width w, which is referred to as the “region of wall influence”, as 

illustrated in Figure 1. 
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Figure 1: Schematic of the Macromodel for Microchamber Filling. 
 

Away from the wall (outside w, or outside the region of wall influence) the 

velocity vectors demonstrate the characteristics similar to flow between infinite flat 

plates.  Thus the majority of the flow may be modeled as flow between infinite flat 

plates.  The variables Rs1, Rs2, and Rm denote the flow resistances along the walls (within 

the region of wall influence) and at the middle portion of the meniscus, respectively.  

The shape and position of the meniscus is specified by ls1, ls2, and lm which denote the 

position along the walls and middle portion of the meniscus respectively.  Figure 2 

illustrates the equivalent electrical network used in defining the three different flow 

regimes. 
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Rs1

Rm

Rs2

us1

um

us2

ΔPs1

ΔPm

ΔPs2

Qo  

Figure 2: Schematic of the Resistance Network 
 

The flow velocities of the meniscus (based on meniscus location) at the side 

walls and middle of the microchamber, are denoted by us1, us2, and um, respectively.  Qo 

represents the flow source and ΔPs1, ΔPs2, and ΔPm denote the capillary pressure drops 

which are given in Eq.1 and Eq. 2. 

 
( ) hPm /coscos 21 θθσ +=Δ        (1) 

 
( )hwwPP ss /cos/cos/cos 32121 θθθσ ++=Δ=Δ     (2) 

 

Kirchoff’s law can be used to obtain the flow equations in the different legs of 

the fluidic circuit show in Figure 2.  This will yield a system of 3 equations and 3 

unknowns, as shown in Eq. 3 – 6. This system of equations can be used to obtain the 

unknown flow velocities at a particular instant of time. 
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mmmsss PuRPuR Δ+=Δ+ 111       (3) 
 

222111 ssssss PuRPuR Δ+=Δ+        (4) 
 

ossmmss QuAuAuA =++ 2211        (5) 
 
where As1, As2, and Am are the flow areas in each flow region.  The location of the three 

points located on the meniscus can then be obtained from the points on the previous time 

step by adding the product of the velocity and the chosen time differential (Δt).  This 

algorithm has been incorporated into a Microsoft ® Excel ® spreadsheet for ease of 

development, implementation, distribution and use.  Figure 3 shows a screenshot of the 

realized macromodel.  In essence, this model describes the balance between surface 

forces (capillary forces, contact angle), viscous resistance and inertial forces (flow rate). 

 

 

Figure 3: Screenshot of the Macromodel in Microsoft ® Excel ® 
 

 
It is an open question whether fluid contact angle in small confined geometries (e.g., 

microfluidic devices) can affect fluid viscosity in the near wall region (e.g., the region of 

wall influence used in the macro-model).  In such situations the surface forces are 

dominant and have the potential to alter flow behavior at the micro/nano-scale. This 
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work will explore the effect of contact angle on viscosity. The effect of viscosity change 

can be discernible by the change in region of wall influence (w).  Hence by studying the 

effect of the contact angle on the variation of the region of wall influence it can be 

conluded whether surface effects affect viscosity close to the wall. The variation of w 

will be obtained from the macromodel after calibration of the model with the 

experimental data.  It is therefore hypothesized that a change in the size of this region 

(w), while leaving all other geometric and flow properties the same, can only happen if 

the viscosity of the fluid changes.  The experimental validation of the numerical model 

will enable the verification of this hypothesis. 
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4. FABRICATION OF MICROCHAMBERS 
 

Several microchambers of various geometric dimensions were microfabricated 

by etching glass substrates with depths between 20 and 50μm.  The general layout of 

these chambers is shown in Figure 4. 

 

 

Figure 4: Typical Microchamber Setup 
 
 

In Figure 4, L1 and L2 denote the lengths of the sides of the microchamber while 

h denotes the depth.  Fabrication of microfluidic devices constructed from glass is 

typically done via Hydrofluoric Acid (HF) etching.  With etching, a masking material is 

applied to the glass substrate which protects it from HF attack.  This mask is typically 

either a photoresist which can defend against the acid or an inert metal such as gold.  

When the masked surface is brought into contact with a pool of liquid HF, only the 

exposed regions of glass are attacked (or etched) and, upon removal of the mask, the 
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desired features are embossed.  The following sections will outline the processing steps 

required for micro-chamber fabrication via this wet etching technique.  Plain glass slides 

(manufactured by Fisher Scientific, catalog number 12-550A), were used for the 

microchamber assemblies.  

4.1 Application of Masking Material 
 
Masking layers help to resist unwanted attack of a substrate when brought into 

contact with an attacking liquid. The process of applying a photoresist masking layer via 

photolithography is simply illustrated in Figure 5.  While this example is specifically for 

that of glass, the basic principle is applicable to a wide variety of substrate materials. 

 

 

Figure 5: Overview of the Photolithography Process 
 
 
Application of the masking layer begins by cleaning a standard 0.15 mm thick glass 

cover slide in acetone, followed by rinsing in methanol and de-ionized water.  The cover 

slide is then dehydrated at 200 oC for at least 5 min on a hotplate. Photo-curable epoxy, 

such as SU-8 2015 photoresist, is dispensed onto the cover slide and spun at 2000 rpm 
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for 30 s, resulting in an SU-8 layer thickness of 15–20 μm. The coated cover slide is then 

soft-baked for 1 min at 65 oC, and then further soft-baked for 3 min at 95 oC. Next, the 

coated cover slide is exposed to UV through a photo-mask containing the micro-

chamber pattern. After exposure, a hard-bake at 95 oC for 1 min is performed to cross-

link the exposed SU-8 regions. The masking layer is complete after soaking in SU-8 

developer for 3 min. 

4.2 Hydrofluoric Acid Etching 
 

Hydrofluoric Acid (HF) is the typical chemical etchant used in the fabrication of 

microfluidic devices constructed from glass.  It is important to note that HF is an 

extremely hazardous chemical in almost any concentration, and should only be used if 

no other viable options are available.  Special protective garments are required and 

should never be used by the operator in solitude, due to safety considerations. 

The etchant used for the fabrication of microchambers was a Buffered Oxide 

Etch (BOE) in a 20:1 concentration, with surfactant, provided by J.T. Baker Company 

product number JT5568-3.  Figure 6 illustrates the setup used for the actual etching 

process.   In this setup, a small circular PVC stand with an ID of 7.62 cm and OD of 8.89 

cm was used to support the glass cover slide while being etched.  This was done to keep 

both sides clean and free of a rough etch since optical access were needed from the 

opposite sides in later experiments.  Placed inside this stand was a magnetic stirring rod 

used to re-circulate the etchant and allow fresh BOE to come in contact with the glass 

surface.  The support stand, stirrer, and glass slide were then placed into a standard 

plastic beaker and submerged in BOE etchant, as illustrated in the following figure. 
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Figure 6: Schematic of Etching Setup 

 
The apparatus was then placed onto a stirring plate used to circulate the stirring 

rod and set at a rate of around 60rpm.  The etching rate of this solution has been found to 

be around 10μm/hour.  Since a limited number of microchambers would need to be 

fabricated, etching speed was not of utmost importance.  When the desired amount of 

time has elapsed, the glass slide is carefully removed and submerged in a beaker of DI 

water and subsequently rinsed again in water.  The left over etchant solution is properly 

dispensed into a waste container labeled “HF Waste: Extremely Hazardous” and the 

PVC stand, beaker, and stirrer are then washed carefully with DI water.  The photoresist 

mask is then removed by placing the glass slide in a beaker and submerging it in a small 

amount of PG remover.  The beaker is then suspended in an ultrasonic cleaner for 20 

minutes.  Etching of the glass slide is then complete after removing the slide, disposing 

of the PG remover, and thoroughly cleaning all used materials.  The result is a feature of 



 18

roughly the same dimensions as the masking slide etched into the glass substrate with a 

depth defined by the etching time.  The depth of each chamber was measured using a 

Veeco DekTak 3 Surface Profilometer for which the average depth was taken after 

exporting the data to a spreadsheet.  The Dektak 3 Surface Profilometer is an instrument 

to measure the vertical profile of samples, thin film thickness, and other topographical 

features, such as film roughness or wafer bowing.  Each chamber was scanned in six 

unique locations, at minimum, to ensure the etching depth was uniform.  Example 

profiles of the resulting etches are shown in Figure 7 through Figure 9. 

 

Profile for 33.5 μm Deep Microchamber 
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Figure 7: Example Profile for a 33.5μm Etch Depth 
 

 



 19

Profile for 42 μm Deep Microchamber
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Figure 8: Example Profile for a 42μm Etch Depth 
 

 
 

Profile for 49 μm Deep Microchamber 
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Figure 9: Example Profile for a 49μm Etch Depth 
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It can be seen from the preceding figures that etches appear smooth, with 

minimal undercutting occurring at the walls.  In Figure 9, Le1 and Le2 represent the width 

of the microchamber at the top and bottom of the channel.  These values will be slightly 

different due to undercutting, resulting in walls which are not perfectly vertical.  This 

introduces an error into the measurement points for ls1 and ls2 which will be discussed 

in future sections.  This error will be discussed in the section entitled “Comparison with 

Macromodel”.  

4.3 Drilling Flow Ports 
 

The top of the microchamber, hereby referred to as the glass cap, was constructed 

by drilling two, approximately 1mm diameter holes into a glass slide.  This was done by 

utilizing a diamond plated solid thin drill bit provided by UKAM Industrial Superhard 

Tools, product number 4ED10.  The drill bit was mounted on a Sears Craftsman 8” drill 

press set at a speed of 3100rpm.  The locations of the holes were marked on the glass cap 

with a fine tipped marker.  To reduce vibrations, a small piece of balsa wood was used as 

a cushion for the glass cap, both of which were placed in a shallow beaker to serve as a 

catch.  While drilling, the bit was fed very slowly through the slide, occasionally 

withdrawing and dispensing water onto the bit and glass cap for cooling and flushing of 

the drilling area.  Drilling is complete when the bit has fed through the entire thickness 

of the glass cap. 
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4.4 Chamber Assembly 
 
 The glass cap and slide containing the microchamber features were bonded using 

the method outlined by Fang (et al., 2004).  The etched substrates and glass cap were 

washed sequentially with acetone, household dishwashing detergent, tap water at high 

flow rate (10-20 m/s), and ethanol to remove solid particles and organic contaminants 

from the glass surface.  The cleaned slides were then further prepared by bathing in a 

Piranha solution (3:1 Sulfuric Acid to Hydrogen Peroxide) for a minimum of 40 

minutes.  Both slides were then dried before being soaked in concentrated sulfuric acid 

for 12 hours.  Subsequently, the glass slides were aligned vertically and held with a 

space of 1-2 mm between the surfaces and washed again under a high flow of tap water 

for 5 min.  The aligned slides were brought into close contact under a continuous stream 

of DI water flowing between them. The combined plates were then allowed to stand at 

room temperature for more than 3 hours to dry.  This method of bonding proved superior 

to all other methods that were explored in this study which included various heat 

treatment schemes for bonding the glass substrates by melting. The selected bonding 

method also protected against leaking of the working fluid from the sides of the 

microchamber. 

4.5 Final Assembly 
 
 Assembly of a microchamber is completed by installing a funnel which served as 

a connector for both supply side and exit side tubing. The tubing connections were 

required for pumping the working fluid into the microchamber, as shown in Figure 10. 
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Figure 10: Final Microchamber Assembly 
 

These connector funnels were made from pipette tips (supplied by VWR 

International, product number 53509-140).  These pipette tips were cut with a razor 

blade to a length which allowed them to fit snugly in the holes of the glass cap.  Teflon 

tubing of 0.0305 μm ID and 400 μm OD (provided by Upchurch Scientific, product 

number PM-1073), was fitted into the resulting funnel.  This provided a good seal and 

minimized leaking of the working fluid at the entrance and exit of the microchamber.  

Figure 11 shows an  image observed under a microscope as a representative sample of a 

completed chamber  obtained using this process. 
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Figure 11: Magnified Image of a Representative Sample of an Assembled 
Microchamber 

 
 

Microchambers were also fabricated utilizing SU-8 as an epoxy.  In this method 

the photolithographic procedure was performed to imprint the desired pattern into SU-8 

spun onto a glass substrate.  The glass cap was then spin coated with a thin layer of SU-8 

2002.  The two pieces were then pressed together, with photoresist sides touching, and 

heated to 100oC for at least 30 minutes.  It was hoped that the resulting microchamber 

would provide hydrophobic side walls while leaving the top and bottom hydrophilic in 

contact with DI-H2O.  However, the bond proved to be rather weak and did not 

adequately protect against leaking.  It’s possible this method still warrants investigation 

since the spin coater used may not have evenly dispersed the photoresist and the 

resulting roughness could have impeded the bonding qualities sought after.  To 

overcome the limitations of using SU-8 photoresist, fabrication of microchambers using 

double sided tape was also employed.  In this method the double sided tape was applied 

to the surface of one cleaned class slide and a square of appropriate dimensions was cut 

into the tape and removed.  Another glass slide containing the inlet and exit ports was 

aligned to this square and applied onto the exposed side of the double sided tape 
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resulting in a sealed microchamber.  The following sections will outline the experimental 

setup used with these microchambers and how it will be used to obtain the high speed 

images needed for comparison with the macromodel. 
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5. MEASUREMENT OF FLUID PROPERTIES AND SURFACE 

TREATMENT PROCEDURE 

 
The two working fluids primarily used in this study are Isopropyl Alcohol and 

DI-H2O, the relevant properties for which are shown in Table 1.  In testing the 

macromodel, it was desired to prepare the glass cap and feature etched slides in such a 

way that the surface would be rendered either hydrophilic or hydrophobic with DI water.  

To do this an Octadecyltrichlorosilane (OTS) treatment was used.  The following 

sections will discuss the hydrophilic and hydrophobic nature of glass slides before and 

after OTS treatment.  Physical Properties for Isopropyl Alcohol were obtained from 

Shell Chemicals (Shell Chemicals, 2007). For DI-H2O the surface tension was found 

using a Sessile Drop device as discussed in the following sections, while viscosity data 

was obtained from the online encyclopedia Wikipedia (Wikipedia, 2007). 

 

Table 1: Fluid Properties Used with the Macromodel, taken at 20oC 
Fluid Property Value Units 
DI-H2O Viscosity 1 × 10-3 Pa.s 
 Surface Tension 7 × 10-2 N.m-1 
Isopropyl Alcohol Viscosity 2.43 × 10-3 Pa.s 
 Surface Tension 2 × 10-2 N.m-1 



 26

5.1 No Treatment 
 

The working fluids used in this experiment were analyzed for contact angle and 

surface tension prior to performing the experiments.  The contact angle of DI water on 

plain untreated glass is shown in Figure 12. 

 

 

Figure 12: Contact Angle of DI Water 
on Plain Glass Slide Measured to Be 

13.36o 

 

Figure 13: Surface Tension of DI Water 
Measured to Be 0.07191 N/m 

 
 

With a contact angle less than 90o, this provided the hydrophilic surface needed 

for testing.  The surface tension of DI water was also measured to be roughly 0.07191 

N/m using a pendant drop method (Figure 13). 

 

5.2 OTS Treatment 

To obtain a hydrophobic glass surface, the slides were coated with 

Octadecyltrichlorosilane (OTS).  In this procedure OTS, Toulene, and Acetone (for 

washing) are used.  First, the glass slides are thoroughly cleaned with a Piranha solution 



 27

(3:1 Sulfuric Acid to Hydrogen Peroxide solution) for 40 minutes and allowed to dry 

overnight by placing them in a dissicator to minimize surface adsorbed moisture on the 

substrate.  Since OTS hydrolyses in moist environment, this is a necessary and important 

step.  The cleaned glass slides are then immersed in Toulene using a Coplin Staining Jar 

and two drops of OTS are added.  The jar containing the slides is then covered and 

placed inside a dissicator where it is allowed to sit undisturbed for six hours.  

Afterwards, the slides are immersed in a fresh pool of Toulene, sonicated for one minute, 

removed and immersed in Acetone, again sonicated for two minutes, removed and 

immersed in methanol, sonicated for two minutes, and finally removed and immersed in 

DI water where they are stored until they are to be used.  The result of this treated 

surface and its effect on DI water contact angle is shown in Figure 14. 

 

 

Figure 14: Water Droplet on OTS Treated Glass Surface 
 

The trichlorosilane polar headgroups hydrolyze and convert the Si-Cl bonds to 

Si-OH (silanol) groups.  The silanol groups, which are strongly attached to the oxidized 
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hydrophilic surface, condense with the OH- (hydroxyl) groups on the surface to form Si-

O-Si (siloxane) links.  The result is a monolayer in which the molecules are connected to 

each other on the surface by strong chemical bonds.  This leaves a hydrophobic glass 

surface with water while also maintaining the same desired optical qualities of the 

original glass.  Slides for which this surface treatment was applied show a measured 

contact angle of 105o with DI water.  Coating with OTS provides the hydrophobic 

condition needed for the contact angle parameters of θ1, θ2, and θ3 as described by the 

macromodel.  Chambers treated with OTS are here-to-forth referred to as OTS 

microchambers. 
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6. EXPERIMENTAL SETUP/PROCEDURE 
 
 The experimental setup was designed to provide optical access to the filling 

liquid and tracking of meniscus location. High speed digital image recording of the 

microchamber filling was obtained using this apparatus.  An illustration of the basic 

equipment used in the experiments is shown in Figure 15.  A 3D SolidWorks ® 

representation of the experimental setup is shown in Figure 16.  Actual pictures of the 

experimental setup is shown in Figure 17 and a close up of a microchamber during 

testing is shown in Figure 18.  Table 2 itemizes the various instruments used in the 

experiments. 

 

 

Figure 15: Experimental Setup 
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Figure 16: 3D Solidworks ®  Model of Experimental Setup (Courtesy of Rodolfo 
DeLeon, Undergraduate Student in Mechanical Engineering, Texas A&M 

University) 



 31

\  

Figure 17: Actual Experimental Setup 
 
 

 

Figure 18: Close up of Microchamber during Experiments under the Microscope 
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Table 2: List of Equipment 
Equipment Manufacturer Model Quantity 
Microscope Navitar 1-6010 1 
High Speed Camera Fastec Imaging TSHRMS 1 
Syringe Pump Harvard Apparatus PicoPlus 1 
Teflon Tubing Upchurch Scientific PM-1073 2 
Fiber Optic Illuminator Mille Luce M1000 1 
Adapter Upchurch Scientific P-659 1 
10ml Syringe Hamilton Company 1010TTL 1 
Funnel VWR International 53509-140 2 

 

As part of the setup, a PicoPlus syringe pump (Harvard Aparatus) was used to 

provide a constant flow rate into the microchamber.  With this pump, a 1010TTL 10ml 

luer tipped Hamilton Company Syringe was loaded and primed with the working fluid.  

Attached to the luer is an adapter provided by Upchurch Scientific which allowed Teflon 

tubing to be attached to the syringe.  The other end of the tubing was connected to the 

funnels as explained earlier.  To monitor the filling experiments, a Navitar microscope 

with a 12× magnification lens was used. A Fastec Imaging high speed camera was 

attached to the microscope for high speed digital image acquisition.  Illumination of the 

microchamber during filling was achieved using a fiber optic illuminator.  The Teflon 

tubing was flushed with the working fluid before starting an experiment to ensure that 

trapped air bubbles were eliminated from the supply line.  In the case of DI-H2O, the 

liquid was degassed by boiling for 20 minutes and sonicating for an additional 20 

minutes.  This setup allowed for high speed time lapsed digital images of the 

microchamber to be obtained during filling using the high speed camera.  These images 

could then be analyzed and compared against values predicted by the macromodel, as 

will be outlined in the following sections. 
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7. COMPARISON WITH MACROMODEL 
 

Several tests were performed using microchambers of various depths by pumping 

DI Water and Isopropyl Alcohol.  Isopropyl Alcohol proved to be the most convenient 

working fluid of choice for performing the experiments due to its low value of surface 

tension compared to that of water.  Customized software was written in Microsoft Visual 

Basic ® .NET 2005 to assist in the measurement of the meniscus points ls1, ls2, and lm as 

described in the model.  The software program uses a calibration procedure to select the 

number of pixels for a user specified distance.  The code determines the conversion 

constant necessary to translate a specified pixel location with respect to the calibrated 

distance.  Using this software, each filling video was discretized into individual 

component frames for analysis. The time step between images is dependent on the frame 

rate of capture set on the camera, typically 30 or 60 fps (frames per second).  For each 

microchamber and flow rate to be analyzed, the frame images were loaded into the 

measurement program and the location of the three meniscus points were determined.   

7.1 Error Analyses 
 

As mentioned before, there will be an error associated with both etch 

undercutting arising from the variability in the microfabrication processes used and from 

the measurement program used to determine the meniscus points.  This error is defined 

to be 
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where Δls1 and Δls2 are the measurement errors in the L1 and L2 direction respectively 

while Δlm is the measurement error for the central portion of the meniscus.  In Equation 

8, ml  is an average of three measured points along the central part of the meniscus and 

σlm is the standard deviation among those points.  Again, Le1 and Le2 are the lengths 

associated with undercutting as discussed in previous sections.  Here, the variable p 

represents the calibration constant for image analyses arising from the number of pixels 

from the image required to fill the distance (Le1 – Le2) in the ls1 and ls2 directions, as 

denoted by the subscript.  All points were then exported to a Microsoft Excel ® 

spreadsheet and plotted with respect to time while the same was done for the predicted 

points from the macromodel.  Values for the region of wall influence, w, were varied 

iteratively until the error between the experimental and macromodel data was 

minimized.  The following sections outline the results of this data analysis. 

7.2 Isopropyl Alcohol Filling Experiments 
 

As previously stated, the low value of surface tension of Isopropyl Alcohol 

enabled a more convenient experimental procedure and resulted in less complications 

during the experiments.  Initially three square shaped microchambers with 1 cm sides 

and with depths of 33.5 μm, 41 μm, and 49 μm were used for the filling experiments. 



 35

Results obtained by using flow rates of 100, 200, and 300 μl/min  are reported here.  In 

each of the following graphs, the solid lines represent the predicted meniscus locations 

obtained from simulations performed using the macromodel, while the plotted points 

represent the measured distances from the filling experiments.  For compactness, graphs 

for a microchamber with dimensions L1 ≈ 1 cm, L2 ≈ 1 cm, and h ≈ 33.5 μm are shown 

here.  The remainder graphs are shown in Appendix A, B and C. 

 

Isopropyl Alcohol
h=33.5 μm

θ1 = θ2 = θ3 = 10o

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time [s]

l s1
 P

os
iti

on
 [c

m
]

100 μl/min - Macromodel
200 μl/min - Macromodel
300 μl/min - Macromodel
100 μl/min - Experimental
200 μl/min - Experimental
300 μl/min - Experimental

w ≈ 5x10-5 

w ≈ 5x10-5 m
w ≈ 4x10-5 m

 

Figure 19: ls1 Meniscus Positions for Isopropyl Alcohol Filling Experiment with 
h=33.5 μm  
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Figure 20: ls2 Meniscus Positions for Isopropyl Alcohol Filling Experiment with 
h=33.5 μm 
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Figure 21: lm Meniscus Positions for Isopropyl Alcohol Filling Experiment with 
h=33.5 μm 

 
 

As shown in Figure 19 through Figure 21, the macromodel predictions are in 

very good agreement with experimental data and are within the bounds of the 

experimental uncertainties.  Overlapping of data on the graphs is due to the uncertainty 

in locating the initial position of ls1, ls2, and lm. The source of the uncertainties could vary 

depending on the experimental uncertainties and non-symmetric placement of the inlet 

flow port.  Figure 22 shows calibrated values for the region of wall influence for several 

different microchambers of varying depths and fluid flow rates for isopropyl alcohol.  

For each of the microchambers represented in the graph, dimensions are L1 ≈ 1 cm, and 

L2 ≈ 1 cm. 
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Figure 22: Dependence of w with h for Isopropyl Alcohol 
 

As can be seen, the value of w is weakly sensitive to the flow rate (does not vary 

widely with flow rate for each microchamber) and is a strong function of chamber depth, 

h.  The following sections will discuss how the size of this region responds to changes in 

fluid contact angle. 

7.3 Effect of Contact Angle on Region of Wall Influence 
 

To study the effect of fluid contact angle on the region of wall influence, a filling 

test was conducted using DI-H2O as the working fluid on a microchamber with 

dimensions L1 ≈ 1 cm, L2 ≈ 1 cm, and h ≈ 31 μm.  After testing, the microchamber was 

disassembled; the OTS treatment was applied and then reassembled.  Figure 23 shows 
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the comparison between predictions from the macromodel and experimental results for 

the meniscus positions ls1, ls2, and lm before the OTS treatment was applied. 

 

 

Figure 23: Meniscus Positions for DI-H2O Filling Experiment before OTS 
Treatment 

 

For this case, the region of wall influence was found to be around 40 μm.  As can 

be seen from Figure 23, the macromodel still provides good correlation to experimental 

results, although not quite as accurate as the Isopropyl Alcohol cases.  This could be due 

to the fact that DI-H2O has a much higher value of surface tension than that of Isopropyl 

Alcohol, making its effect on filling much more susceptible to possible unevenness in 

microchamber depth due to irregular etching.  Figure 24 shows the results from filling 

experiments after surface treatment using OTS. 
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Figure 24: Meniscus Positions for DI-H2O Filling Experiment after OTS Treatment 
 

For this case, the region of wall influence was found to be around 2 μm, a 

dramatic decrease from the hydrophilic case.  The figure shows that at this flow rate the 

capillary component is lesser than the inertial/viscous component for the pressure drop.  

Consequently, the bulk of the flow is along the center of the chamber than the walls.  It 

is suggested that the observed change in the region of wall influence could only happen 

if the viscosity of the working fluid changes near the wall in response to a change in 

contact angle. 

7.4 Meniscus Shapes and Bubble Formation 
 

As previously mentioned, another important feature of the macromodel is 

whether it accurately predicts the formation of bubbles in the opposite corners from the 

flow inlet region of the microchamber.  To do this, the calibrated regions of wall 

influence from the previous section will be used in the macromodel and the plotted 
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meniscus shapes will be compared with those from experiments.  Figure 25 shows the 

predicted shapes from the macromodel.  Time difference images were extracted from the 

high speed camera footage and enhanced using Paint.NET ® which was also used to 

superimpose each image to produce Figure 26.  Black spots observed on the images are 

due to dust on the microscope or camera lens and do not represent actual contaminates 

within the microchamber itself. 

 

 

Figure 25: Meniscus Shapes Predicted 
by the Macromodel for h=33.5 μm and 
Q=200 μl/min Using Isopropyl Alcohol 

 

Figure 26: Meniscus Shapes from 
Experiments for h=33.5 μm and 
Q=200 μl/min Using Isopropyl 

Alcohol 
 

The figures show that the predicted meniscus shapes are qualitatively in good 

agreement with meniscus shapes observed in the experiments.  The macromodel also 

does not predict the formation of a bubble in the upper left or lower right corner of the 

microchamber, as was observed with the experiment.  Similarly, the Macromodels 

ability to predict bubble formation in a hydrophobic microchamber, with DI-H2O as the 
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working fluid, was compared against experiments.  In Figure 27 and Figure 28, DI-H2O 

is pumped through a microchamber before undergoing the OTS treatment.   

 

 

Figure 27: Meniscus Shapes Predicted 
by the Macromodel for a Hydrophilic 
Microchamber Using DI-H2O, h=31 

μm, and Q=400 μl/min 

 

 

Figure 28: Meniscus Shapes from 
Experiments for a Hydrophobic 
Microchamber Using DI-H2O , 

h=31 μm, and Q=400 μl/min 
 

Comparison of the macromodel and experimental results for this case show a 

very good agreement for the meniscus shapes.  At this flow rate the capillary component 

is greater than the inertial/viscous component for the pressure drop. As a result no 

bubble is trapped along the corners of the microchamber, which is in agreement with the 

predictions from the macromodel.  This same microchamber was then subjected to 

surface treatment using OTS, rendering the bottom, top, and side walls hydrophobic with 

DI-H2O having contact angles of θ1 = θ2 = θ3 = 105o.  Figure 29 and Figure 30 again 

illustrate a comparison between the macromodel and experimental results, respectively, 

for the hydrophobic case.  The void area in the image is due to reflected light from the 

glass substrate. 
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Figure 29: Meniscus Shapes Predicted 
by the Macromodel for a Hydrophobic 

Microchamber Using DI-H2O, h=31 
μm, and Q=300 μl/min  

 

 

Figure 30: Meniscus Shapes from 
Experiments for a Hydrophobic 
Microchamber Using DI-H2O , 
h=33.5 μm, and Q=300 μl/min 

 

As explained earlier, these figures show that at this flow rate the capillary 

component is lesser than the inertial/viscous component for the pressure drop.  

Consequently, the bulk of the flow is along the center of the chamber than the walls. As 

a result bubbles are trapped along the corners of the microchamber.  The presence of 

bubbles is highlighted by the red circles in each of the images and is confined to the 

opposite corners of the inlet flow port.  Any spottiness in the experimental images is due 

to image processing done to help illuminate the meniscus positions. Again, the 

macromodel affords good accuracy in predicting meniscus shapes for the hydrophobic 

case, while also accurately predicting the formation of bubble entrapment.  As an 

attempt to observe the effects of hydrophobic side walls (θ3 > 90o) while leaving the top 

and bottom of the chamber hydrophilic (θ1 = θ2 < 90o), microchambers were constructed 
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from double sided tape, as previous mentioned.  Figure 31 shows a typical contact angle 

measurement using DI-H2O on the non-adhesive sides of the double sided tape. 

 

 

Figure 31: Contact Angle of DI-H2O on the Non-Adhesive Side of Double Sided 
Tape 

 

As a result of cutting the tape, the edges of the microchamber end up jagged, 

making measurements of the meniscus points difficult and prone to errors for 

comparison to the macromodel.  For this reason, only the meniscus shapes are compared 

in Figure 32 and Figure 33. 
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Figure 32: Meniscus Shapes Predicted 
by the Macromodel for Hydrophobic 
Sidewalls Using DI-H2O, h=50 μm, 

and Q=400 μl/min  

 

 

Figure 33: Meniscus Shapes from 
Experiments for Hydrophobic 

Sidewalls Using DI-H2O , h=50 μm, 
and Q=400 μl/min 

 

Since the meniscus points could not be easily measured for this case, the region 

of wall influence was taken to be equal to the chamber depth of 50μm.   It can be seen 

from the comparison of meniscus shapes that the macromodel still affords reasonable 

accuracy in predicting bubble formation within a microchamber of this configuration. 

7.5 Limitations of the Macromodel 
 

Microchambers rectangular in shape, where L1 < L2, were also tested against the 

macromodel.  However, these did not perform as well as those of equal distances of L1 

and L2.  Figure 34 shows the experimental meniscus shapes for a rectangular 

microchamber with dimensions L1 ≈ 0.5 cm, L2 ≈ 1 cm, and h ≈ 52 μm filling with 

Isopropyl Alcohol at 200 μl/min.  Again, time difference images were extracted from the 

high speed camera footage and edited using Paint.NET ® to combine each image into 

one, as seen in Figure 34. 
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Figure 34: Experimental Meniscus Shapes for Rectangular Microchambers with 
Δt=0.017s, h=52μm, and Q=200μl/min 

 

Inputting the geometric and flow property data for this microchamber into the 

macromodel yields mixed results.  Figure 35 shows predicted meniscus shapes from the 

macromodel for the flow conditions of the microchamber in Figure 34.  It can be seen 

that the macromodel shows very good agreement with the experimental data. 

 

Figure 35: Predicted Meniscus Shapes for a Rectangular Microchamber with 
Δt=0.017s, h=52μm, and Q=200μl/min 
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Figure 36, Figure 37 and Figure 38 show a comparison between the macromodel 

and experimental filling data for the chamber again depicted in Figure 34. 

 

 
 

Figure 36: ls1 vs. Time Comparison of Macromodel and Experimental Points for a 
Rectangular Microchamber 

 
 

 
 

Figure 37: ls2 vs. Time Comparison of Macromodel and Experimental Points for a 
Rectangular Microchamber, h=52μm 
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Figure 38: lm vs. Time Comparison of Macromodel and Experimental Points for a 
Rectangular Microchamber, h=52μm 

 
 

The macromodel does not accurately predict the filling behavior once the flow 

reaches the opposite corners from the flow inlet port, however still affords reasonable 

accuracy up to that point.  Based on these results, the macromodel could afford from 

further development in predicting the effects on the fluid flow when the meniscus has 

reached the opposite corners from the inlet flow port, however still reliably fulfills one 

of its primary functions; the prediction of bubble entrapment during filling. 
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8. CONCLUSION AND FUTURE DIRECTION 

It has been shown that the macromodel proposed by Banerjee (2005) accurately 

predicts capillary driven flow behavior inside microchambers while bypassing otherwise 

computationally intensive methods to model such flow behavior.  It has been shown that 

the region of wall influence increases with microchamber depth, while remaining 

relatively insensitive to fluid flow rate.  This region also becomes a function of fluid 

contact angle, and decreases in length with hydrophobic surfaces.  This implies that the 

viscosity of the working fluid changes in response to this change in contact angle. Hence 

variation of fluid geometries in small confined spaces can be different compared to the 

macroscopic situations and becomes a significant factor in capillary filling behavior, 

while often neglected in macroscale applications.  The macromodel predictions for 

resulting meniscus shapes as well as bubble entrapment are found to be in good 

agreement with experimental.  Limitations of the macromodel were observed for 

predicting meniscus shapes and locations when the meniscus reaches the opposite 

corners of the microchamber from the inlet flow port. 

This study has demonstrated that further calibration and development of the 

macromodel is required.  Precision of the experiments could be enhanced by obtaining a 

more uniform etch when using Hydroflouric Acid with glass.  Microchambers could be 

constructed of alternate materials or utilize other manufacturing techniques which may 

yield better controlled tolerances of chamber depth.  Further investigation into 

constructing microchambers utilizing SU-8 photoresist as an epoxy to essentially “glue” 

two glass substrates together might also be warranted.  This would have the advantage of 
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hydrophobic side walls while leaving the top and bottom of the microchamber 

hydrophilic.  It may prove beneficial to also pump the working fluids at even higher flow 

rates to explore if this parameter might influence bubble formation. 
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APPENDIX A 

PLOTS OF ls1 FOR MICROCHAMBERS OF VARIOUS DEPTHS 

AND FLOW CONDITIONS 
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Meniscus Position, ls1, vs. Time for Different Flow Rates
Isopropyl Alcohol

h=33.5 μm, θ1 = θ2 = θ3 = 10o
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Figure 39: ls1 vs. Time for Isopropyl Alcohol Filling Experiments at Various Flow Rates with Chamber Dimensions 
L1≈1cm, L2≈1cm, and h≈33.5μm 
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Meniscus Position, ls1, vs. Time for Different Flow Rates
Isopropyl Alcohol

h=41 μm, θ1 = θ2 = θ3 = 10o
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Figure 40: ls1 vs. Time for Isopropyl Alcohol Filling Experiments at Various Flow Rates with Chamber Dimensions 
L1≈1cm, L2≈1cm, and h≈41μm 
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Meniscus Position, ls1, vs. Time for Different Flow Rates
Isopropyl Alcohol

h=49 μm, θ1 = θ2 = θ3 = 10o
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Figure 41: ls1 vs. Time for Isopropyl Alcohol Filling Experiments at Various Flow Rates with Chamber Dimensions 
L1≈1cm, L2≈1cm, and h≈49μm
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APPENDIX B 

PLOTS OF ls2 FOR MICROCHAMBERS OF VARIOUS DEPTHS 

AND FLOW CONDITIONS 
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Meniscus Position, ls2, vs. Time for Different Flow Rates
Isopropyl Alcohol

h=33.5 μm, θ1 = θ2 = θ3 = 10o
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Figure 42: ls2 vs. Time for Isopropyl Alcohol Filling Experiments at Various Flow Rates with Chamber Dimensions 
L1≈1cm, L2≈1cm, and h≈33.5μm 
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Meniscus Position, ls2, vs. Time for Different Flow Rates
Isopropyl Alcohol

h=41 μm, θ1 = θ2 = θ3 = 10o
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Figure 43: ls2 vs. Time for Isopropyl Alcohol Filling Experiments at Various Flow Rates with Chamber Dimensions 
L1≈1cm, L2≈1cm, and h≈41μm 
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Meniscus Position, ls2, vs. Time for Different Flow Rates
Isopropyl Alcohol

h=49 μm, θ1 = θ2 = θ3 = 10o
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Figure 44: ls2 vs. Time for Isopropyl Alcohol Filling Experiments at Various Flow Rates with Chamber Dimensions 
L1≈1cm, L2≈1cm, and h≈49μm
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APPENDIX C 

PLOTS OF lm FOR MICROCHAMBERS OF VARIOUS DEPTHS 

AND FLOW CONDITIONS 
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Meniscus Position, lm, vs. Time for Different Flow Rates
Isopropyl Alcohol

h=33.5 μm, θ1 = θ2 = θ3 = 10o
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Figure 45: lm vs. Time for Isopropyl Alcohol Filling Experiments at Various Flow Rates with Chamber Dimensions 
L1≈1cm, L2≈1cm, and h≈33.5μm 
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Meniscus Position, lm, vs. Time for Different Flow Rates
Isopropyl Alcohol

h=41 μm, θ1 = θ2 = θ3 = 10o
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Figure 46: lm vs. Time for Isopropyl Alcohol Filling Experiments at Various Flow Rates with Chamber Dimensions 
L1≈1cm, L2≈1cm, and h≈41μm 
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Meniscus Position, lm, vs. Time for Different Flow Rates
Isopropyl Alcohol

h=49 μm, θ1 = θ2 = θ3 = 10o
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Figure 47: lm vs. Time for Isopropyl Alcohol Filling Experiments at Various Flow Rates with Chamber Dimensions 
L1≈1cm, L2≈1cm, and h≈49μm 
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APPENDIX D 

VISUAL BASIC .NET CODE FOR MENISCUS MEASUREMENTS 
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