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fenómeno de la superconductividad y por su dedicación a contribuir a mi formación doc-

toral.
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Preface

The overarching theme of the thesis are the emergent novel phenomena in two-component

superconductors. My advisor in Colombia, Prof. Barba Ortega, has directed my research

on two-component superconductors made of one same material, with properties spatially

changed by either localized heating or nanostructuring. My advisor in Belgium, Prof. Milo-

sevic, directed my research on samples made of two distinct superconducting materials, re-

lated to very recent experiments, with accompanying development of the theoretical model

and the numerical implementation suited for high-performance computing.

The principal objective of this thesis is to investigate the behavior of vortex matter under the

effect of several configurations of pinning landscape with the inclusion of the enhanced sur-

face, in several cases in this research, by using De Gennes’ boundary condition phenomeno-

logical parameter. Its effect is studied upon the vorticity, magnetic induction, Cooper pair

density, magnetization and phase of the order parameter as functions of the external applied

magnetic field.

A particular case of spatial manipulation of the landscape of the superconducting condensate

in thin films via local changes of the thermal properties is considered, but also, including

the variations of anisotropy through a variations of critical temperature Tc and the spatially

localized heating of the superconductor T . This simple approach provides the perfect al-

ternative for modulation of vortex collective, emerging in the type-II superconductors as a

natural response to the applied magnetic field, which was, up to now, controlled purely via

nanofabricated static pinning centers, whose intensity and distribution cannot be changed

once the landscape is defined.

Also it is considered in this research the modulation of the superconducting condensate at

nanoscale via control of the thickness over the surface, yields an landscape for magnetic flux

quanta due to the selected symmetry that allow to impose creation of vortex configurations,

but also tune the critical parameters of the superconductor that can be effectively controlled.

Our result suggests the possibility of modifying superconductivity of a thin film by exploiting

well-controlled and thickness-dependent quantum size effects. Two manuscripts published in

the Journal of low temperature physcis included in this chapter, in colaboration wit Professor

Edson Sardella (Universidade Estadual Paulista) and Professor José Barba, were referenced

later in the review Physical Review B by Baek, et al. [REF. [1]]

Finally, a study of two-component superconductivity is presented, where the sample is a

combination of different superconductors in a hybrid heterostructure. We cover a multitude

of possible two-component superconducting hybrids, realized either by combining two differ-

ent materials, or using one same material with different levels of disorder and/or different
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thickness in two regions, where we hope that our findings will improve understanding of the

involved processes and offer new pathways to superconducting quantum devices.
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Prefacio

El tema general de la tesis son los nuevos fenómenos emergentes en superconductores de dos

componentes. Mi asesor en Colombia, el Prof. Barba Ortega, ha dirigido mi investigación

sobre superconductores de dos componentes hechos de un mismo material, con propiedades

modificadas espacialmente por calentamiento localizado o nanoestructuración. Mi asesor en

Bélgica, el Prof. Milošević, dirigió mi investigación sobre muestras hechas de dos materiales

superconductores distintos, relacionados con experimentos muy recientes, junto con el de-

sarrollo del modelo teórico y la implementación numérica adecuada para la computación de

alto rendimiento.

El objetivo principal de esta tesis es investigar el comportamiento de los vórtices bajo el

efecto de varias configuraciones de puntos de anclaje con la inclusión de una superficie mejo-

rada, considerada en varios casos en esta investigación, usando la condición de frontera de

De Gennes, parámetro fenomenológico b < 0 . Se estudia su efecto sobre la vorticidad, la in-

ducción magnética, la densidad de pares de Cooper, la magnetización y la fase del parámetro

de orden como funciones del campo magnético externo aplicado.

Se considera un caso particular de manipulación espacial de la distribución del condensado

superconductor en peĺıculas delgadas mediante cambios locales de las propiedades térmicas,

pero también, incluyendo las variaciones de anisotroṕıa a través de variaciones de Tc y el

calentamiento localizado del superconductor T . Este enfoque simple proporciona la alterna-

tiva perfecta para la modulaciń del colectivo de vórtices, emergiendo en los superconductores

tipo II como una respuesta natural al campo magnético aplicado, que hasta ahora estaba

controlada puramente a través de centros de anclaje estáticos nanofabricados, cuya la inten-

sidad y distribución no se pueden cambiar una vez que se define su distribución.

También se considera en esta investigación la modulación del condensado superconductor a

nanoescala a través del control del espesor sobre la superficie, el cual produce una distribución

del quantum de flujo magnético debido a la simetŕıa seleccionada que permite imponer la

creación de configuraciones de vórtice, pero también ajustar los parámetros cŕıticos del su-

perconductor que puede ser controlado. Nuestro resultado sugiere la posibilidad de modificar

la superconductividad de una peĺıcula delgada explotando efectos de tamaño cuántico de-

pendientes del grosor. Dos manuscritos publicados en la Journal of low temperature physcis

incluidos en este caṕıtulo, en colaboración con el Profesor Edson Sardella (Universidade Es-

tadual Paulista) y el Profesor José Barba, fueron citados más adelante en la revista Physical

Review B por Baek, et al. [REF. [1]].

Finalmente, se presenta un estudio de la superconductividad de dos componentes, donde la
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muestra es una combinación de diferentes superconductores en una heteroestructura h́ıbrida.

Cubrimos una multitud de posibles h́ıbridos superconductores de dos componentes, ya sea

combinando dos materiales diferentes, o usando un mismo material con diferentes niveles

de desorden y/o grosor diferente en dos regiones, donde esperamos que nuestros hallazgos

mejoren la comprensión del procesos involucrados y ofrecer nuevas opciones para dispositivos

cuánticos superconductores.
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1 Introduction

I first reviewed historic events related to superconductivity. Further, different theoretical

frameworks are presented, starting from phenomenological models of London brothers and

Ginzburg and Landau, up to more sophisticated microscopic approaches, namely Bardeen-

Cooper-Schrieffer model. In addition, The intrinsic properties of the superconductors and

response to the applied magnetic field, as well as the behavior of the vortices are included in

this thesis.

1.1 Introduction to superconductivity

The history about superconductivity began when some scientists predicted a steady decrease

in resistance with falling temperature until reaching a minimum value at 0 K and the current

could flow with little or no resistance depending on purity. At that time, people had known

that the resistance of metals decreased with falling temperature but people did not know

what would happen at temperature approaching absolute zero (0 K). A lot of metals show

zero electrical resistance to direct current (DC) when they are cooled below a characteristic

critical temperature, Tc. This phenomenon was discovered in 1911 at Leiden University

when Dutch physicist Heike Kamerlingh Onnes observed the disappearance of the electrical

resistance in mercury [2]. Onnes was the first to liquefy helium by cooling it to 4,2 K in

1908 and study the electrical properties of metals at extremely low temperatures. Then,

he studied mercury since very pure samples could be easily prepared by distillation. The

experimental results for mercury is shown in Fig. 1-1. The resistance of the mercury sample

suddenly disappeared at 4,2 K. Due to its extraordinary electrical properties, Onnes believed

that mercury had passed into a new state. He called it superconductivity and the phase

transition temperature is the Tc. Other materials were found to exhibit superconductivity

such as lead and tin. Due to his research, Onnes was awarded the Nobel Prize in Physics

in 1913. All attempts to find at least to traces of resistance in bulk superconductor were no

avail. On the basis of the sensitivity of modern equipment, we can argue that the resistivity

of superconductors is zero, at least at level of 10−29Ω.m. For comparison, we note that the

resistivity of high-purity copper at 4.2K is 10−12Ω.m [3].

In addition to the perfect conductivity, the material in the superconducting state display

another important characteristic which is the perfect diamagnetism, where sample expels

from within the magnetic field that is less intense a certain value known as critical field

Hc and when cooled below Tc [4] Fig. 1-2. It is also called Meissner effect since it was
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Figure 1-2: Illustration of the Meissner effect of a superconducting sphere, subject to a uni-

form magnetic field. (a) The magnetic field penetrates completely the material

in the normal state, i.e., when T > Tc. (b) Keeping on the field, the material

is cooled to reach the superconducting state (T < Tc) where the magnetic flux

is expelled from inside the material.

Figure 1-3: (a) A plot of H-T phase diagram for a type-I superconductor and (b) for a

type-II superconductor.
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Figure 1-5: The chronology of discoveries of superconductors, and their critical tempera-

tures. Credit: Wikipedia.

local density of superconducting electrons, ns(r). This theory correctly features both char-

acteristic lengths for the superconductor, i.e. the magnetic penetration depth λ and the

coherence length ξ as shown in Fig. 1-4. This theory is also able to describe the destruction

of superconductivity by temperature, magnetic field and current. Finally, the surface energy

between the normal and superconducting phases depends on the dimensionless material con-

stant κ = λ/ξ, which is also called the GL parameter. When κ < 1/
√
2 (κ > 1/

√
2), the

surface energy is positive (negative) leading to type-I (type-II) superconductors.

This theory was initially given limited attention in the western literature because of its

phenomenological foundation until: 1) in 1957 Abrikosov predicted the vortex states in

type-II superconductors by solving the GL equations [6] and 2) in 1959 Gor’kov showed

that the GL theory was, in fact, derivable as a rigorous limiting case of the microscopic

theory [7], suitably reformulated in terms of Green functions to allow specially treating

inhomogeneous regime. The conditions for validity of the GL theory were shown to be a

restriction to temperatures sufficiently near Tc and to spatial variations of Ψ and A which

were not too rapid. Nowadays, the GL theory is widely used for studying e.g. vortices in

superconductors. Due to the pioneering contributions to the theory of superconductors and

super fluids, Ginzburg and Abrikosov shared the Nobel Prize in Physics in 2003.

In 1957, the physical mechanism of superconductivity became clear only 46 years after

the phenomenon had been discovered, when Bardeen, Cooper and Shrieffer published their

theory (the BCS theory) [8]. The decisive step in understanding the microscopic mechanism

of superconductivity is due to L. Cooper (1956). The fundamental element in this theory

is the pairing of electrons close to the Fermi level into Cooper pairs through an attractive

interaction mediated by phonons. The pairs do not break, unless a certain minimum energy

is provided. This energy provides the band gap. At low temperature, the pairs condensate

into a boson-like state so that they move collectively and unperturbed through the crystal
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lattice since they cannot absorb energies smaller than the Cooper-pair binding energy. For

this contribution, the authors were awarded the Nobel Prize in Physics in 1972.

In 1987 Johannes Georg Bednorz and Karl Alexander Müller discovered the first high-Tc
superconductor, the layered copper oxide BaLaCuO with a Tc of about 40 K [9] (the highest

known critical temperature at the time for Nb3Ge, 23K). They were awarded the Nobel

Prize in Physics “for their important breakthrough in the discovery of superconductivity in

ceramic materials”. Subsequently, shortly after it was found that replacing lanthanum with

yttrium, i.e. making YBCO, raised the critical temperature to 92 K, which was important

because of liquid nitrogen could then be used as a refrigerant. By 1993, cuprate with a Tc
of 133 K at atmospheric pressure was found (HgBa2Ca2Cu3O8) [10] and BSCCO with Tc
equal to 105 K [11]. After this discovery further efforts to find cuprates with higher Tc failed

until 2000, when a slight increase in the transition temperature was detected for fluorinated

Ha-1223 samples (Tc =138 K) [12], but until now, the higher values of Tc are reached under

high pressure such as Hg-1223 (at 164 K) [13] and HgBaCaCuO cuprates under 30 GPa

pressure. High-Tc superconductors are type-II superconductors. However, they can not be

accounted for the conventional BCS theory. The mechanism that causes superconductivity in

high-Tc superconductors is one of the major unsolved problems of the theoretical condensed

matter physics. In 1994, Sr2RuO4 was found to display superconductivity with Tc ≈ 1 K

[14]. It has received considerable attentions because it is an unconventional p-wave spin-

triplet superconductor [15], due to the superconductors until this time were spin-singlet

paired including conventional or unconventional superconductors. The electronic structures

of Sr2RuO4 are consistent with the quasi-two-dimensional Fermi liquid at low temperatures

(T < 40K). The theoretical study of this material can be done by using the BCS theory and

GL theory.

Superconductivity in magnesium diboride (MgB2) was discovered as late as 2001 [16], with

Tc at 39 K, a record by far in ordinary metallic compounds and it is considered another

important event in the history of superconductivity. The remarkable properties of MgB2

open a new window in superconductivity for fundamental as well as applied research. The

main disadvantage of early MgB2 samples is their low critical magnetic field Hc2 . But Hc2

can be increased up to more than 40T in bulk and up to near 60T in oriented thin films

by Carbon doping. MgB2 was found to be a two-band BCS superconductor with a much

higher critical temperature and a significantly smaller isotope effect [17]. The critical tem-

perature of MgB2 of 39 K enables the realization of electronic circuits based on this material

which gives a significant advantage for this material as compared to the low-temperature

superconductors. Compared to the High-Tc superconductors, MgB2 is simpler, cheaper, and

more stable over time. This material is expected to be very promising for applications. In

addition, in Tokyo Institute of Technology, Japan [18], was discovered a new superconductor

based in iron (LaFeOP). However, the critical temperature was to stay at 4-6 K irrespective

of hole/electron-doping. A large increase in the Tc to 26K was then found in LaFe[O1−xFx]As

[19], but under pressure this material can reach Tc =43K. The chronology of dicoveries of



8 1 Introduction

Figure 1-6: Evolution of the thickness of 2D superconductors. (figure taken from Ref. [218])

superconductors and their critical temperature can be followed in Fig. 1-5.

In the past century, most 2D superconductors were fabricated by deposition of metallic thin

films (see Fig. 1-6), which led to strongly disordered, amorphous or granular samples (grey)

[20, 21, 22, 23]. More recently, atomic layers grown by molecular beam epitaxy (MBE;

orange) [16, 24, 25, 26, 70], interfacial superconductors (green) [28, 29, 30], exfoliated atomic

layers (purple) [31, 32, 33, 34] and electric double-layer transistors (EDLT; blue) [35, 36] have

been fabricated. These systems are highly crystalline, in marked contrast with older samples.

The deposited films are of three kinds: InOx, MoGe and Ta are sputtered thin films; Sn,

Ga, Al, In, Pb and Bi are MBE-grown thin films; and YBa2Cu3Oy (YBCO) was deposited

by reactive evaporation. Bi2212, Bi2Sr2CaCu2O8+x; LAO, LaAlO3; LCO, La2CuO4; LSCO,

La2−xSrxCuO4; STO, SrTiO3.

1.2 Theories of superconductivity

1.2.1 London approach

In order to understand the behavior of a superconductor in an external magnetic field this

theory contains several assumptions. First the two-fluid model, where the all the free elec-

trons of the superconductor are divided into two groups: superconducting electrons of density

ns and normal electrons of density nn. Second, a homogeneous distribution of superconduct-

ing electrons is assumed, i.e. ns is taken identical everywhere. Finally, assume that both

the electric and magnetic fields are so weak that they do not have any apreciable influence

on the superconducting electron density. London equations were deduced to describe the

relation between the current, electric field and magnetic field [37]. The first London equation

describes the connection between supercurrent density and applied electric field, thus the

equation of motion for superconducting electrons in an electric field is
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nsm
dvs

dt
= nseE (1-1)

Where m is the electron mass, e is the electron charge, vs is the super fluid velocity, and ns

is the number density of super fluid. Taking into account that the supercurrent density is

js = nsevs, we have

E =
d

dt
(Λjs) (1-2)

where

Λ = m/nse
2

simply follows Newton’s second law for the superconducting electrons.

The second London equation describes how the applied magnetic field penetrates into the

superconductor, and gives the relation between the supercurrent and the magnetic field.

H+ λ2∇×∇×H = 0 (1-3)

When the London gauge is implemented for the vector potential as

∇ ·A = 0 (1-4)

with Maxwell equation ∇×H = 4π/cjs, ∇×E+ 1/c(∂H/∂t) and H = ∇×A, one obtains

js = − c

4πλ2
A (1-5)

Let us consider a semi-infinite superconductor for x > 0, where the surface coincides with

x = 0 plane, under applied magnetic field H0. We solve the second London equation (1-3)

with boundary conditions H(0) = H0, H(∞) = 0. The solution is

H = H0e
−x/λ (1-6)

which means that the magnetic field decreases by increasing the distance from the surface

of the superconductor. The characteristic length of decay is λ, called the London magnetic

field penetration length:

λ =

(

mc2

4πnse2

)1/2

(1-7)

It indicates that the screening (Meissner) supercurrent at the surface decreases over the

same length. Following the two fluid model, λ is also temperature dependent, as possible to

control the energy gaps, critical temperature and critical magnetic field in selected region as

a result of

λ(T ) =
λ(0)

[1− (T/Tc)4]
1/2

(1-8)
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1.2.2 BCS theory

The phenomenological theory had surprising success in explaining many of the principal

properties of superconductors but it does not explain the microscopic origins of supercon-

ductivity. In 1957 Bardeen, Cooper and Schrieffer proposed microscopic theory which is

more complicated than the GL theory that predicts quantitatively many of the properties

of elemental superconductors [8]. The vortex structure and the critical parameters can be

precisely calculated by using the GL theory and the microscopic level is not necessary for

the purpose of this thesis. Therefore, the discussion of the BCS theory will be limited to the

basics.

One year before the publication of the BCS theory, Cooper demonstrated that the normal

ground state of an electron gas is unstable with respect to the formation of ”bound” electron

pairs. The quotation marks is used due to these pair electron are not bounded in the

ordinary sense, and the presence of the filled Fermi sea is essential for this state to exist.

Therefore this is properly a many-electron state. In consequence, BCS theory starts from

the assumption that there is an attraction between electrons, which overcome the Coulomb

repulsion, and pairs of electrons, called Cooper-pairs [38], are formed. The electrons interact

attractively indirectly in the following way: one electron slightly disturbs the lattice in its

neighborhood. The resulting phonon interacts quickly with another electron, which takes

advantage of the deformation and lowers its energy. The second electron emits a phonon

by itself which interacts with the first electron and so on. It is that passing back and forth

of phonons which couples the two electrons together and brings them into a lower energy

state. Electrons in such a Cooper-pair are situated on the Fermi surface and have opposite

momentum and opposite spin. These electrons form a cloud of Cooper-pairs which drift

cooperatively through the crystal. In order to destroy one Cooper-pair, it is necessary to

destroy all Cooper-pairs in a macroscopic region of the superconductor. It requires much

energy and, consequently, the probability of the process is very small.

Since the electrons of a Cooper-pair have a lower energy than two unpaired electrons, the

Fermi energy of the superconducting state may be considered to be lower than that for the

non-superconducting state. The lower state is separated from the normal state by an energy

gap Eg. The energy gap stabilizes the Cooper-pairs and prevents them from breaking apart.

In 1959 Gor’kov showed that the Ginzburg-Landau theory follows form of the BCS theory,

valid near Tc and suitable to deal with spatially varying situations [7]. He showed that the

order parameter Ψ can be seen as the wave-function of the center-of-mass motion of the

Cooper-pairs. This work provided a solid theoretical foundation for the GL theory.

1.2.3 Ginzburg-Landau (GL) theory

The London theory did not consider quantum effects, contrary to the Ginzburg-Landau the-

ory [5]. This theory is based on the theory of second-order phase transitions developed by

Landau [39], in which a phase transition of second order occurs when the state of a body
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change gradually while its symmetry change discontinuously at the transition temperature.

Furthermore, the low-temperature phase is the one of reduced symmetry, i.e., it is more

ordered. This theory introduced a complex-order parameter ψ(r) as a pseudowavefunction

of the superconducting electrons, where |ψ(r)|2 is to represent the local density of super-

conducting electrons, ns(r). The free energy is expanded in powers of the order parameter,

which is small near the transition temperature and it is valid to temperature region close to

the critical temperature, Tc − T ≪ Tc. The variational method is applied to this assumed

expansion of the free-energy density in powers of |ψ(r)|2 and |∇ψ(r)|2 , bringing about two

coupled GL equations, for ψ(r) and for the vector potential A(r) respectively, capable of

dealing with an inhomogeneous distribution of ψ(r) and a nonlinear response to fields. In

the following sections, the main principles of GL theory will be covered.

1.2.3.1 Free energy density

The wave function of superconducting electrons Ψ (r) is the order parameter and its normal-

ization such that |Ψ (r)|2 gives the density of Cooper pairs:

|Ψ (r)|2 = ns (1-9)

The simplest case to be considered with GL theory is a homogeneous superconductor without

external magnetic field. In this case Ψ (r) does not depend on r and the expansion of free

energy in power of |Ψ |2 near Tc becomes

G0s = Gn + α|Ψ |2 + β

2
|Ψ |4 (1-10)

Gn is the free energy density of the normal state, α and β are phenomenological expansion

coefficients depending on the superconducting material. The temperature dependence of α

is α ∝ (T − Tc) Fig. 1-7. While β is positive and temperature independent. Minimization

of the free energy with respect to |Ψ |2, leads to |Ψ0|2 = −α/β.
Now, the general case of a inhomogeneous superconductor in a uniform external magnetic

field near Tc the Gibbs free energy can be expanded in powers of Ψ as

GsH = Gn + α|Ψ |2 + β

2
|Ψ |4 + 1

2m∗

∣

∣

∣

∣

(

−i~∇− e∗

c
A

)

Ψ

∣

∣

∣

∣

2

− (H−H0)
2

8π
(1-11)

where H0 is the external magnetic field and H is the exact microscopic field at a given point

of the superconductor. Thus the last term describes the magnetic energy of the magnetic

field generated by the supercurrents. The term before is the kinetic energy density of the

superconducting electrons.

The total energy of the superconducting system can be obtained from the volume integration

of Eq. 1-11, and the equilibrium state is reached when the variations of this total energy

with respect to Ψ ∗ and A become zero.
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Finally, the Eq.1-15 and Eq.1-16 are the first Ginzburg-Landau equation and the boundary

condition, respectively, with Π = (−i~∇− e∗

c
A).

The variation of Eq. 1-11 with respect to the vector potential A is
∫
{(

−i~∇− e∗

c
A

)

Ψ
−e∗
c
δAΨ ∗ +

−e∗
c
δAΨ

(

i~∇− e∗

c
A

)

Ψ ∗

}

dV (1-17)

+
1

4π

∫

(∇×A−H) · ∇ × δAdV = 0

The first integral can be written as

∫
[

i~e

m∗c
(Ψ ∗∇Ψ − Ψ∇Ψ ∗) +

4e2

m∗c2
|Ψ |2A

]

· δAdV = 0 (1-18)

Using the identity

a · (∇× b) = b · (∇× a)−∇ · [a× b] (1-19)

we can carry out the integration in the last term of (1-17):

1

4π

∫

{δA · ∇ × ∇×A+∇ · [δA× (∇×A−H0)]} dV = 0 (1-20)

By using Gauss’s theorem to convert the volume integral into a surface integral:

∫

∇ · [δA× (∇×A−H0)]dV =

∮

s

dS[δA× (∇×A−H0)], (1-21)

The surface integral is zero because the magnetic field at the surface of the superconductor

is fixed; hence δA|S = 0.

Finally, after some elementary modifications Eq. 1-17 takes the form

∫
[

i~e

m∗c
(Ψ ∗∇Ψ − Ψ∇Ψ ∗) +

4e2

m∗c2
|Ψ |2A+

1

4π
∇×∇×A

]

· δAdV = 0 (1-22)

For arbitrary δA, the integral 1-22 can be zero only if the expression in square braquets is

zero. This condition determines the second equation of GL theory, for the vector potential

A:

js = −i~e
m∗

(Ψ ∗∇Ψ − Ψ∇Ψ ∗)− 4e2

m∗c
|Ψ |2A (1-23)

where, by Maxwell’s equation, the current density js in the superconductor is

js =
c

4π
∇×∇×A, H = ∇×A. (1-24)

To summarize, the two coupled non-linear GL equations are:



14 1 Introduction

Figure 1-8: Schematic representation of the spatial dependence of the order with the ex-

trapolation length of De Gennes b at the interface between (a) superconductor

and normal metal, and (b) superconductor of Tc = T1, and a superconductor

at Tc = T2, with T1 < T2

αΨ + β|Ψ |2Ψ +
1

2m∗

(

−i~∇− e∗

c

)2

Ψ = 0 (1-25)

js = −i~e
m∗

(Ψ ∗∇Ψ − Ψ∇Ψ ∗)− 4e2

m∗c
|Ψ |2A (1-26)

The first equation is similar to the usual quantum-mechanical Schrödinger’s equation for

a particle of mass 2m, charge 2e, energy −α and wave function Ψ (r) in a potential β|Ψ |2.
These Ginzburg-Landau equations allow us to determine the spatial variation of the order

parameter and the current distributions. In the limiting case of |Ψ |=const. from the GL

equations, the London approach appears as a result of a rigid Ψ .

1.2.4 Boundary conditions

When applying the GL equations to a finite sample it is necessary to introduce some con-

ditions. The boundary condition for the potential vector A is that at which the magnetic

field at the surface of the superconductor must be equal to the applied external magnetic

field H0:

(∇×A)× n̂|s = H0 × n̂ (1-27)

where n̂ denotes the normal component to the surface of the superconductor.

If the superconductor has an interface with vacuum or an insulator, the condition will be
(

−i~∇− e∗

c
A

)

Ψ

∣

∣

∣

∣

n

= 0 (1-28)
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It is easy with the help of (1-26) to verify that (1-23) satisfies a very natural physical

requirement, as it is to assure that no supercurrent passes through the superconductor-

dielectric interface.

However, De Gennes, using the BCS microscopic theory , generalized this condition to

superconducting/metal or superconducting/superconducting interfaces to higher Tc [40] (see

Fig.1-8) introducing a more general condition:

(

−i~∇− e∗

c
A

)

Ψ

∣

∣

∣

∣

n

=
i~

b
Ψ (1-29)

where b is the extrapolation length which is an arbitrary real number.

The value of extrapolation length is determined by the medium adjacent to the supercon-

ductor:

1. for vacuum or an insulator: b → ∞,

2. for normal metals: b > 0, and for ferromagnets: b→ 0,

3. for superconducting layer with a higher Tc: b < 0.

The latter case is of theoretical interest because the order parameter near the surface will

increase, which will lead to higher critical fields and critical temperatures.

1.2.5 Characteristic length scales

The GL theory introduces two important characteristic length scales: the coherence length

ξ and the penetration depth λ. A simplified case in which no fields are applied is considered.

Then A = 0, and Ψ is real since the differential equation (1-25) has only real coefficients.

− ~
2

2m∗
∇2Ψ + αΨ + βΨ |Ψ |2 = 0 , (1-30)

If a normalized wavefunction f = Ψ/Ψ∞, where Ψ 2
∞ = −α/β > 0, the equation becomes

− ~
2

2m∗|α|∇
2f − f + f |f |2 = 0 , (1-31)

The constant ξ2(T ) = ~
2

2m∗|α(T )|
has dimension of length square; ξ(T ) is known as the co-

herence length and corresponds to the distance over which the order parameter varies. The

temperature dependence of the coherence length is given by

ξ(T ) = ξ0(1− T/Tc0)
1/2 (1-32)

where the length ξ0 is ~/(2m∗α0)
2.

The typical length scale λ over which the magnetic field can vary is the penetration depth

and can be obtained from the second GL equation. Neglecting the gradient of Ψ , Eq. (1-26)

can be written in the following form

∇× j = − 4e2

m∗c
|Ψ |2∇×A. (1-33)
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in the superconductor. In practice, and especially if the Gibbs free energy is expanded to

higher order terms of t = 1− T/Tc [42], the validity of GL formalism can be reached further

below Tc. Early work shows that the GL model was valid for any temperature bellow Tc
in strong magnetic fields [40]. In the studies of mesoscopic superconductors the GL theory

has been successfully used deep into the superconducting phase [43, 44, 45]. In the case

of a clean superconductor (lel ≫ ξ0), the GL theory is valid if ξ(T ), λ(T ) ≫ ξ0. Since

ξ(T ) ∼ ξ(0)(1− T/Tc)
−1/2, the temperature must be close to Tc, the critical temperature at

zero field and the first condition of validity is satisfied automatically. The second condition,

λ(T ) ≫ ξ0, represents the requirement that local electrodynamics is applicable, or, in other

words, that the superconductor is of the London type. Since λ(T ) ∼ λ(0)(1−T/Tc)
−1/2 and

κ ∼ λ(0)/ξ(0), the condition λ(T ) ≫ ξ0 expresses again that temperature must be close to

Tc.

1.2.6 Ginzburg-Landau parameter κ

The Ginzburg-Landau parameter κ is defined in terms of the two important characteristic

length scales, the magnetic field penetration depth and the Ginzburg-Landau coherence

length

κ =
λ

ξ
(1-40)

where both lengths show the same temperature dependence within the GL theory, κ is

typically considered a material constant with negligible temperature dependence. In the

following section, it is possible to confirm that a superconductor in the applied magnetic

field depends on whether the value of κ is less or larger than 1/
√
2.

1.3 Properties of superconductors

1.3.1 The lower critical field Hc1

The formation of vortices in type-II superconductor becomes thermodynamically favorable

at the lower critical fiel Hc1. In the case of a typical London superconductor the variation

of Ψ is neglected. The London expression for the free energy can be written as

ǫ =
1

8π

∫

[H2 + λ2(∇×H)2]dV (1-41)

where this equation is simply the sum of the magnetic and kinetic energies of the supercon-

ducting electrons contained in the vortex. By using the formula

(∇×H)2 = H · ∇ ×∇ ×H−∇ · [(∇×H)×H], (1-42)
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and
∫

∇ · [(∇×H)×H]dV =

∮

[(∇×H)×H] · dS (1-43)

we obtain

ǫ =
1

8π

∫

H · (H+ λ2∇×∇×H)dV (1-44)

Since we have the relation of Eq.(1-3), the equation above can be written as

ǫ =
Φ0

8π
H(0) =

(

Φ0

4πλ

)2

lnκ. (1-45)

We already know that, for a superconductor in an external magnetic field, the energy that

is a minimum at equilibrium is the Gibbs free energy G. Per unit length of the vortex, this

energy is

G = ǫ−
∫

B ·H0

4π
dV (1-46)

Thus in the case of a vortex which carries one magnetic flux quantum Φ0, we have

G = ǫ− Φ0H0

4π
(1-47)

G < 0 determines the field where the formation of vortex starts to be favored, i.e.,

Hc1 =
4πǫ

Φ0
=

Φ0

4πλ2
lnκ (1-48)

1.3.2 The upper critical field Hc2

The type-II superconductor is characterized by a regular vortex lattice, in which period

decreases and it becomes of the order of the coherence length ξ as the magnetic field is

increased. Then a second-order phase transition occurs from the mixed to the normal state.

This happens when the external field reaches the value of the upper critical field. Thus,

when the magnetic field has reduced Ψ to a value much smaller than Ψ∞ a linearized GL

theory will be appropriate. Then, using the Eq. (1-25) and the definition for ξ the coherence

length, the corresponding equation is
(∇
i
− 2πA

Φ0

)2

Ψ = −2m∗α

~2
Ψ ≡ Ψ

ξ(T )2
(1-49)

The convenient gauge choice to solve the problem of the nucleation of superconductivity

in a bulk sample is Ay = Hx considering the presence of a field H along the z axis. By

expanding left member of the equation above, we have
[

−∇2 +
4πi

Φ0

Hx
∂

∂y
+

(

2πH

Φ

)2

x2

]

Ψ =
1

ξ2
Ψ (1-50)
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Now, it is possible to choose a solution of the form Ψ = eikyyeikzzf(x). Then, by working on

Eq.1-50, we obtain

−f ′′(x) +

(

2πH

Φ0

)2

(x− x0)
2f =

(

1

ξ2
− k2z

)

f (1-51)

with x0 = kyΦ0/2πH . Multiplying Eq. 1-51 by ~/2m∗, we obtain the Schrödinger equation

of a harmonic oscillator and the problem becomes as that of finding the quantized states of

a normal charged particle in a magnetic field (Landau levels). The equation of eigenvalues

are

ǫn =

(

n+
1

2

)

~ωc =

(

n+
1

2

)

~

(

2eH

m∗c

)

(1-52)

finally, considering the lowest value of kz = 0 and n0. The corresponding value for upper

critical field is

Hc2 =
Φ0

2πξ2(T )
(1-53)

1.3.3 Surface superconductivity and the third critical field Hc3

The state of a type-II superconductor immersed in an external magnetic field H0 slightly

lower than Hc2 (the upper critical field) shows a tightly packed vortex lattice forms, in which

the order parameter at this field is small, Ψ → 0. The finite size of superconducting samples

can influence on the nucleation of superconductivity as it was demonstrated by Saint-James

and de Gennes [47]. For a metal-insulator interface the parallel field Hc3 is larger than Hc2

by a factor of 1.695. At Hc3 the superconducting sheath of thickness ∼ ξ(T ) is formed at

the surface called surface superconductivity.

A good approximation was suggested by C. Kittel by using a variational method. By working

with the GL theory to explain the surface superconductivity, the trial function was taken to

be

Ψ = f(x)eikyy = e−αx2

eikyy (1-54)

with x measured from the sample surface. This choice automatically satisfies the boundary

condition

∂Ψ

∂x

∣

∣

∣

∣

surface

= 0 (1-55)

The gauge choice ofA is along ey. The parameters a and ky are then determined variationally.

In the linearized approximation, the Gibbs free energy per unit surface area can be written

as

G−Gn =
~
2

2m∗

∫ ∞

0

[

− 1

ξ2
|Ψ |2 +

∣

∣

∣

∣

(∇
i
− 2π

Φ0

A

)

Ψ

∣

∣

∣

∣

2
]

dx (1-56)
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The linearized theory is valid only at the transition, where G = Gn. The final result is

Hc3 ≈
(

π

π − 2

)1/2
Φ0

2πξ2
= 1.66Hc2 (1-57)

Therefore, in a magnetic field parallel to the surface, superconductivity nucleates in a sur-

face layer of thickness ∼ ξ at a field almost 70 percent higher than the nucleation field of

superconductivity in the bulk of the material.

1.3.4 Magnetization of type-II superconductor

Let us consider a cylinder of type-II superconductor in a longitudinal magnetic field H0, with

coherence length ξ which depends only on x coordinate and increases monotonically with x,

but the penetration depth λ is independent of x. The current exerts a Lorentz force on each

vortex fL:

fL =
1

c
jΦ0 = Φ0

dM

dx
(1-58)

considering B = H0+4πM and j = c[dM/dx]. Since the system of vortices is in equilibrium,

the other force can be obtained by differentiating 1-45 which depends on ξ. Now, comparing

with (1-58), the condition for equilibrium can be written as:

Φ0
dM

dx
=

(

Φ0

4πλ

)2
1

ξ

dξ

dx
(1-59)

where

M =
Φ0

16π2λ2
ln
ξ

l
(1-60)

where l corresponds to the integration constant and has dimensions of length. We can use

the relation for upper critical field Φ0 = 2πξ2Hc2 and apply it to a particular point x0. We

have Φ0 = 2πl2H0, therefore

ξ

l
=

(

H0

Hc2

)1/2

(1-61)

Finally, substituting Eq.(1-61) in Eq.(1-60), we obtain

M = − Φ0

32π2λ2
ln
Hc2

H0

(1-62)

By considering a dependence M(H0) at fields H0 close to Hc2 and after some calculations,

we have

−4πM =
Hc2 −H0

4κ2
(1-63)
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Figure 1-10: The phase plot for the single-vortex (a), a giant vortex with vorticity L = 2

(b) and the L = 4 − 1 vortex-antivortex structure with total vorticity L = 3

(c).

This equation is correct to logarithmic accuracy, provided that κ≫ 1. We can see that |M |
decreases linearly as H0 → Hc2.

In mesoscopic samples, whose size is comparable to the coherence length ξ and penetration

depth λ, the properties of a superconductor are considerable influenced by the confinement

effects. Therefore, vortex states in mesoscopic superconductors depends strongly on the

boundary conditions imposed by the sample shape, i.e., on the topology of the system,

which makes the behavior of mesoscopic samples significantly different from the bulk ones.

The distinction between type-I and type-II superconductors is determined not only by κ and

thickness of the sample d, but also by the lateral dimensions of the sample (see e.g. Ref.

[46]). Consequently, the vortex state is very different from the Abrikosov triangular lattice in

bulk, where only the vortex-vortex interaction plays a role, whereas, in mesoscopic system the

sample boundary tries to impose its geometry on the vortex distribution [46, 47]. During the

last two decades, numerous works have shown this behavior. It was shown that [48] vortices

form shell structures in superconducting disks and for large radius of the disks the influence

of the boundary diminishes and the triangular lattice may reappear [49]. Moreover, Some

peculiar vortices such as the giant vortex and the anti-vortex states were unveiled. The total

number of vortices in the sample in which the configuration vortex consisting of vortices,

giant vortex and antivortices can be determined by going around a closed path in the plane

around a given point anticlockwise, the phase of the order parameter will change L times 2π.

L is related with the vorticity. The anticlockwise direction is just to make sure that L for a

vortex is always positive. The vortex at the center of the sample shows a vorticity L = 1.

It is due to the phase of the order parameter which changes by 2π (See Fig. 1-10(a)). The

Fig.1-10(b) shows the phase around the vortex center changing twice by 2π indicating that

this giant vortex has vorticity L = 2. Fig. 1-10(c) shows the vortex-antivortex structure.

The antivortex is at the center and the four vortices surround it. This antivortex has vorticity

L = −1 so that the total vorticity of this sample is L = 4− 1 = 3.
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1.3.5 Types of superconductors

A classification of superconductors depends on their behavior in in the presence of an external

applied magnetic field. This division is based on the fact that the surface energy αns, of an

interface between a normal and a superconducting region has a different sign, which is

proportional to the difference between the two characteristics length of a superconductor

(ξ − λ). Therefore, the Ginzburg-Landau parameter κ = λ/ξ reach a relevant importance.

If κ < 1/
√
2 the superconductor is classified as type-I and its surface energy is positive.

On the other hand, the condition κ > 1/
√
2 (type-II superconductors) implies in a negative

surface energy, favoring the formation of superconducting-normal boundaries and the flux

penetrates in small tubes (vortices), each one carrying a quantized amount of flux. However,

types I and II conventional single-band superconductors interchange at the Ginzburg-Landau

parameter κ = 1/
√
2 close of the critical temperature. At lower temperatures an intertype

(transitional) domain in the (κ,T) plane can be found in a finite intervals of κ by using

the extended Ginzburg-Landau formalism, but also two standard types with the transitional

domain in between applies also to multiband superconductors, such as recently discovered

borides and iron-based materials, can belong to the intertype regime [50].

1.3.5.1 Type-I superconductors

Type-I superconductors include all superconducting elements except niobium. Niobium,

superconducting alloys and chemical compounds make up the second group, type-II. The

Meissner effect is of more remarkable phenomenon of Type-I superconductors, in which not

only a magnetic field is excluded from entering a superconductor, but also that a field in a

originally normal state is expelled as it is cooled bellow Tc. The existence of such a reversible

Meissner effect implies that superconductivity will be destroied by a critical magnetic field

Hc, which is related thermodynamically to the free-energy difference between the normal and

superconducting state in zero field. Hc can be determined by equating the energy H2/8π

per unit volume, associated with holding the field out against the magnetic pressure with

the condensate energy. That is

H2
c (T )

8π
= fn(T )− fs(T ) (1-64)

where fn(T ) and fs(T ) are the Helmholtz free energy densities in the normal and supercon-

ducting state respectively. It can be shown that the normal phase and the superconducting

phase have equal thermodynamic potential G (and therefore can coexist) only at applied

field H0 = Hc . This is true for the samples with zero demagnetizing factors, i.e., for long,

thin cylinder or sheet parallel to the applied magnetic field.

In Fig. 1-9 are sketched the one-dimensional variations of Ψ and H(x) in the domain wall,

contrasting the cases with κ ≪ 1 and κ ≫ 1. For κ ≪ 1 it is possible to notice that

the surface energy is positive since there is a region of thickness ∼ (ξ − λ) from which the
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magnetic field is held out. The argument is reversed for κ≫ 1, leading to a negative surface

energy. This argument can be justified by using the GL theory.

The solutions of the GL differential equations are subject to the boundary conditions for the

order parameter and magnetic field H, when x → −∞ then Ψ = 0 and H = H0, while if

x → +∞ then Ψ = Ψ∞ and H = 0. The appropriate quantity to calculate is the Gibbs free

energy, since H = Hc, while B depends on the locations of the domain wall. We calculated

the SN interface energy γ as:

γ =

∫ ∞

−∞

(gsHa
− fs0)dx =

∫ ∞

−∞

(

fsHa
− HHc

4π
− fs0

)

dx (1-65)

=

∫ ∞

−∞

[

α|Ψ |2 + β

2
|Ψ |4 + 1

2m∗

∣

∣

∣

∣

(

−i~∇− e∗

c
A

)

Ψ

∣

∣

∣

∣

2

+
(H −Hc)

2

4π

]

dx (1-66)

where we used Eq. 1-64. This can be simplified if the first GL equation is multiply by Ψ ∗

and integrate over x by parts. Then the following identity is obtained

0 =

∫ ∞

−∞

[

α|Ψ |2 + β

2
|Ψ |4 + 1

2m∗

∣

∣

∣

∣

(

−i~∇− e∗

c
A

)

Ψ

∣

∣

∣

∣

2
]

dx (1-67)

As a consequence, our expression for the surface energy simplifies to

γ =

∫ ∞

−∞

[

−β
2
|Ψ |4 + (H −Hc)

2

4π

]

dx (1-68)

This equation shows that the surface energy is the balance of the negative condensation

energy (first term) and the positive energy cost of screening the magnetic field (second term).

In general γ is approximately proportional to ξ − λ. Therefore, for type-I superconductors

where λ < ξ the surface energy is positive, while in the opposite case the surface energy is

negative.

1.3.5.2 Type-II superconductors

The energy of an interface between a normal and a superconducting region is αns < 0 for

type-II superconductors. Under some circumstances, it is energetically favorable for these

materials, immersed in a magnetic field, to become subdivided into alternating normal and

superconducting domains. As long as the applied magnetic field is H0 < Hc1 a type-II

superconductor exhibit Meissner effect, the average field in the interior of the specimen is

B = 0. However, at Hc1 < H0 < Hc2 the magnetic field penetrates into this materials as

quantized vortex filaments with normal core, axis parallel to H0 and order parameter equal

to zero. Finally, at certain field H0 = Hc2, the average field in the interior, B, becomes

equal to H0 and the bulk superconductivity disappears. Once inside the superconductor,
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By using Stokes’theorem and the definition of vector potential A,
∮

A ·dl =
∫

(∇×A) ·dS =
∫

h · dS = Φleads to

mc

4e2|Ψ |2
∮

j · dl+ 2e

c
Φ =

∮

~∇φ · dl. (1-72)

Since the complex superconducting order parameter phase φ is single-valued, this requires

that the phase must change by integral multiples of 2π in a closed circuit:

mc

4e2|Ψ |2
∮

j · dl+ Φ = n
hc

2e
= nΦ0. (1-73)

with Φ0 = 2.07 · 10−15Tm2 the so called superconducting quantum flux. This equation

expresses the condition where the sum of the enclosed flux Φ and the line integral involving

the current density j is quantized.

1.4.2 Isolated vortex line

An isolated vortex in an infinite superconductor comprises a normal core of radius ∼ ξ and

currents circulating within an area ∼ πλ2. It is possible to assume that GL parameter is

κ ≫ 1. Then λ ≫ ξ at distance r ≫ ξ (i.e.|Ψ |2 = 1). From the second GL equation

(Eq.(1-26)), where we took curl of both sides, we obtain

H+ λ2∇×∇H =
Φ0

2π
∇×∇θ. (1-74)

Which is valid every where. We have ∇×∇θ = 0, since ∇×∇ϕ = 0, where ϕ is an arbitrary

function. But at center of the vortex |∇θ| → ∞ which represents a singularity. The integral

over the surface of a small circle centered on the center of the vortex:
∫

∇×∇θ · dS =

∮

∇θ · dl = 2π (1-75)

Where the phase changes by 2π. Thus ∇× ∇θ is zero everywhere except for the center of

the vortex. This corresponds to the behavior of the δ-function

∇×∇θ = 2πδ(r)ev (1-76)

where ev is the unit vector along the vortex. As a result, Eq. 1-74 can be replaced by

H+ λ2∇×∇×H = Φ0δ(r)ev (1-77)

subject to the boundary condition H(∞) = 0. The solution of Eq. (1-77) is

H =
Φ0

2πλ2
K0(r/λ), (1-78)
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where K0 is the Bessel function with imaginary argument. By setting a cut-off at r = ξ ≪ λ,

one obtains an approximate field in the center of a vortex as

H(0) ≈ Φ0

2πλ2
lnκ, (1-79)

More accurate value of H(0) can be obtained by considering the variation of Ψ (r) inside the

vortex core and carrying out numerical integration of the GL equations [6] as:

H(0) =
Φ0

2πλ2
(lnκ− 0.18), (1-80)

The above correction is not essential since all the calculations are effectuated on the assump-

tion that κ≫ 1.

1.4.3 Interaction between vortex lines

Consider two vortices positioned at r1 and r2. The energy without vortices is

F =
1

8π

∫

[H2 + λ2(∇×H)2] (1-81)

The total magnetic field generated by the two vortices must satisfy an equation constructed

by analogy with Eq.(1-77)

H+ λ2∇×∇×H = Φ0[δ(r− r1) + δ(r− r2)]ev (1-82)

After a series of transformation, it is possible to obtain from Eq.(1-81) and Eq.(1-82)

F =
Φ0

8π
[H(r1) +H(r2)] (1-83)

Here H(r1) and H(r2) are the field of vortex 1 and vortex 2, respectively. The field H12(x)

due to vortex 2 separated from vortex 1 by the distance x = |r1 − r2|. Then from equation

above

F = 2ǫ+
Φ0

8π
2H12(x) (1-84)

The first term is the energy of two single vortices and the second term is the energy of their

interaction. Force per unit length acting on the vortex is

f = −dU
dx

= −Φ0

4π

dH12

dx
(1-85)

According to Maxwell’s equations for two parallel vortices

|f | = 1

c
j12(x)Φ0 (1-86)

where j12 is the current density induced by vortex 1 at the core of vortex 2 (or vice versa).

Putting this in vector form, we obtain

f = j× Φ0

c
ev (1-87)
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1.4.4 Interaction of a vortex with the surface of a superconductor

The entry of vortices into superconductors suggests more detailed analysis by considering

that penetrations of vortices into a type-II superconductors are energetically favorable only at

Hc1, vortices must first overcome an energy barrier surface. To explain interaction of vortices

with the surface, we can consider a smooth surface of a superconductor and an isolated vortex

in the interior. An external field H0 applied parallel to the surface will induce a Meissner

current circulating near the surface which will take the vortex away from the barrier. This can

be described by assuming an antivortex is present outside the superconductor at the image

position with respect to the vortex. The vortex and such an imaged antivortex attract each

other while the mirror surface currents arises from the applied field repealing the vortex.

This is the so-called Bean-Livingston barrier [51]. The Gibbs free energy of an isolated

vortex can be found as a function of the distance from the surface for different values of

H0. We assume that the vortex center is at x0. The force exerted on the vortex towards the

surface is due to the interaction with vortex image. Using Eq. (1-87) we have

fimage =
1

c

c

4π

dHv

dx
Φ0, (1-88)

Where Hv is the field generated by the image vortex. The interaction force between the

vortex and Meissner current is

fM =
1

c

c

4π

Hv

λ
e−x/λΦ0, (1-89)

The Gibbs free energy can be obtained effectuating the integration of the total force f =

fM + fimage exerted on vortex we find:

G =
Φ0

4π

[

H0e
−x/λ −Hv(2x0) +Hc1 −H0

]

(1-90)

We can see that (1-90) gives different curves of G(x0) for a superconductor under several

values of applied magnetic field H0 which is shown in Fig. 1-13. It is possible to see that the

field H0 = Hc1 is the lowest field at which the vortex entry is thermodynamically favorable.

However, the vortex penetration is prevented by the Bean-Livingston barrier. As we continue

to increasing the field H0 , the barrier shrinks but does not disappear and the vortex is still

unable to penetrate the superconductor. In other words the superconductor remains in the

Meissner state which is now metastable. The barrier finally vanishes at field H0 = Hp, which

is often referred to as the super heating field for the Meissner state, or the flux penetration

field. The Bean-Livingston barrier causes a small hysteresis in the magnetization curve of a

homogeneous type-II superconductor near Hc1 , for magnetic field (or energy) swept up and

down [52]. It is present even if the sample is made ideally homogeneous.

1.4.5 Interaction of a vortex with defects in a superconductor

We assume that the dimension of the cylindrical defect is d > ξ(T ). The interaction energy

of an isolated vortex (of diameter ∼ 2ξ) can be determined. The normal core of vortex store







2 Theoretical models and numerical

approach

The Ginzburg-Landau equations are a set of nonlinear partial differential equations that need

to be solved self-consistently. In the presence of the applied magnetic field, the order pa-

rameter is obtained through the first equation (1-25). The variation of vector potential δA

induced by the current is calculated using Fourier transformation, and the new vector po-

tential is brought in turn into the first equation (1-25) to solve the new order parameter.

The whole process as described above runs iteratively until the system reaches the equilibrium

state. Hereby, we introduce the numerical processes used to solve both GL equations.

2.1 Solving the first GL equation

We use the finite-difference representation of the GL equations, i.e., we solve them on a reg-

ular two-dimensional Cartesian space grid (x, y). This is sufficient because all the problems

which we solved numerically in this thesis are effectively two-dimensional.

We solve the first equation iteratively for a given applied magnetic field. This is done by

first approximating (initializing) both ψ and A. For the exact solution of this quantities,

Eq. (1-25) will be exactly zero, for non exacts solutions it gives a finite value. Therefore, we

can use it to guide the iterative process in this way:

η(Ψ−Ψ0) = −[(−i∇−A)2Ψ0 − (1− T )Ψ0 + |Ψ0|2Ψ0] (2-1)

where Ψ0 is the currently found best approximation to the solution of the GL equations, and

we are looking for the improved estimate Ψ in the next iteration. It should be noted that

the form of Eq. (2-1) mimics the one of the time-dependent single-gap GL theory.

η is a finite real coefficient used to improve the numerical stability of the iterative procedure

having the sense of inverse time-step and it is real in our case. For the time-dependent GL

it it would be given by microscopic parameters. (Eq. 2-1) can alternatively be written in

the form of the time-dependent single gap Ginzburg-Landau theory [56].

All the terms on the right hand side should in principle be evaluated with the current approx-

imation to the solution Ψ0, save for the cubic term which requires appropriate linearization,

as will be explained below.
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The complex link variables are introduced by using the vector potential A as a link between

two computational lattice points r1 and r2

Ur1,r2
µ = exp

(

−i
∫

r2

r1

Aµ(r)dµ

)

(2-2)

where, µ = x, y. These link variable are used to discretized the first term in Eq. (2-1) (index

j denotes the lattice point of interest).

We divide our simulation region of size Lx × Ly into a discrete lattice with spacings ax ≡
Lx/M and ay ≡ Ly/M , where M(N) are the number of points in the x(y) direction.

We can then write (for example for µ = x)

( −i∇x −Ax)
2Ψ(x0, y0) = − 1

Ux
∇(∇x(UxΨ))

= − 1

Ux

∇x

[

Ux0+1,y0
x Ψ(x0 + 1, y0)− Ux0,y0

x Ψ(x0, y0)

ax

]

= − 1

Uxa2x

[

Ux0+1,y0
x Ψ(x0 + 1, y0)− 2Ux0,y0

x Ψ(x0, y0) + Ux0−1,y0
x Ψ(x0 − 1, y0)

]

= − 1

a2x

[

UEjΨE − 2Ψ + UWjΨW

]

. (2-3)

This is written for the lattice point j = (x0, y0) and the neighboring lattice points are

referred to by the corresponding cardinal direction denoted by its initial: (N)orth, (E)ast,

(S)outh, (W)est. We also introduced UEj ≡ Ux0+1,y0
x /Ux0,y0

x = exp(−i
∫ x0+1,y0
x0,y0

Ax(r)dx) ≈
exp(−iAxax) and analogous expressions for UWj , UNj , USj in other directions.

With this discretization the first GL equation becomes:

η(Ψj −Ψj0) =

[

UEjΨE

a2x
+
UWjΨW

a2x
+
UNjΨN

a2y
+
USjΨS

a2y
− 2Ψj

a2x
− 2Ψj

a2y

+(1− T )Ψj − |Ψ|2Ψj

]

(2-4)

The key numerical trick is to choose terms to associate with the new solution for Ψ and

ones to evaluate based on Ψ0. Moreover, the nonlinear term can be linearized as follows, to

facilitate the convergence:

|Ψ|2Ψ = Ψ2Ψ∗ = [Ψ0 + (Ψ−Ψ0)]
2[Ψ∗

0 + (Ψ∗ −Ψ∗
0)] (2-5)

≈ |Ψ0|2Ψ0 + 2|Ψ0|2(Ψ−Ψ0) + Ψ2
0(Ψ

∗ −Ψ∗
0)

= 2|Ψ0|2Ψ− 2|Ψ0|2Ψ0 +Ψ2
0Ψ

∗

With our assignment of different terms to Ψ or Ψ0 and the above expansion of the cubic

term, Eq. 2-4 can be rewritten as:

η(Ψ−Ψ0) = ŨΨ0 −
4

a2
Ψ+ (1− T )Ψ− 2|Ψ0|2Ψ0 −Ψ2

0Ψ
∗ (2-6)
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where ŨΨ0 is a shorthand notation for the first four terms on the right side of Eq. 2-4, and

ax = ay = a as taken for simplicity. This choice of terms containing Ψ0. terms containing Ψ

is not unique, but the shown one has demonstrated stability in a vast number of simulations.

We rearrange the first GL equation by conveniently grouping the terms multiplying the Ψ,

Ψ0 and constant terms, as:

[η − (1− T ) + 4/a2 + 2|Ψ0|2]Ψ = ŨΨ0 + ηΨ0 + 2Ψ0|Ψ0|2 −Ψ2
0Ψ

∗ (2-7)

Equation 2-7 is of the form

cΨ− a+ eΨ∗ = 0, (2-8)

with

c =η − (1− T ) + 4/a2 + 2|Ψ0|2

e =Ψ2
0

a =ŨΨ0 + ηΨ0 + 2Ψ0|Ψ0|2
(2-9)

and solution

Ψ =
a∗e− ac∗

|e|2 − |c|2 , (2-10)

where right side depends only on Ψ0. After going through several hundred iterations of the

first GL equation in the above form, we use its (approximate) solution Ψ to compute the

supercurrent given by

jx =
1

2

[

Ψ∗

(

1

i

∂

∂x
−Ax

)

Ψ+Ψ

(

1

i

∂

∂x
− Ax

)∗

Ψ∗

]

, (2-11)

with the same expression for y component with x replaced by y. These expressions are again

easy to express using the link variables:

(

1

i

∂

∂x
−Ax

)

Ψj = −iU
Ej
x ΨE −Ψj

ax
, (2-12)

and

(

1

i

∂

∂y
− Ay

)

Ψj = −i
UNj
y ΨN −Ψj

ay
, (2-13)

Subsequently one uses the Maxwell equation to calculate the new value of the vector potential

as explained in the next section and the process is iteratively repeated until convergence is

reached.
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2.2 Solving the second GL equation

The second GL equation j = −κ2∇2A will be solved to find the new value for the vector

potential in every iteration. A Fourier transformation is used to solve this partial differential

equation. The problem considered is two dimensional, since the sample is infinitely thick in

the z-direction. Spatial variation of the current in the z-direction will be neglected. Due

to this fact, a discrete Fourier transformation will be used for the x- and y-direction and

a continuous one for the z-direction. An exponential Fourier series is chosen because this

guarantees to satisfy the periodic boundary conditions A(x + Lx, y, z) = A(x, y + Ly, z) =

A(x, y, z), where A is the magnetic field induced by the superconductor, not the applied

magnetic field. When A(nax, may, z) = Anm(z) with ax ≡ Lx/N and ay ≡ Ly/M , this leads

to an expression

Anm(z) =
1

NM

∫ ∞

−∞

N−1
∑

α=0

M−1
∑

β=0

Ãαβ(k)exp(−2πizk)exp
(

−2πi
nα

N

)

exp

(

−2πi
mβ

M

)

dk (2-14)

The inverse Fourier transformation is:

Ãαβ(k) =

∫ ∞

−∞

N−1
∑

n=0

M−1
∑

m=0

Amn(z)exp(−2πizk)exp
(

−2πi
nα

N

)

exp

(

−2πi
mβ

M

)

dz (2-15)

The Laplacian of the vector potential is then calculated according to ∇2A ≡ ∂2A
∂x2 +

∂2A
∂y2

+ ∂2A
∂z2

,

hereby taking into account the nα
N

= naxα
axN

= xα
Lx
, and analogous for y:

∇2Anm(z) =
1

NM

∫ ∞

−∞

N−1
∑

α=0

M−1
∑

β=0

[

−(2πik)2 −
(

2πi
α

Lx

)2

−
(

2πi
β

Ly

)2
]

×Ãαβ(k)exp(−2πizk)exp
(

−2πi
nα

N

)

exp

(

−2πi
mβ

M

)

dk (2-16)

The current density will also be expressed as a Fourier series:

jnm(z) =
1

NM

∫ ∞

−∞

N−1
∑

α=0

M−1
∑

β=0

j̃αβ(k)exp(−2πizk)exp
(

−2πi
nα

N

)

exp

(

−2πi
mβ

M

)

dk (2-17)

with coefficients

j̃αβ(k) =

∫ ∞

−∞

N−1
∑

α=0

M−1
∑

β=0

jnm(z)exp(2πizk)exp
(

2πi
nα

N

)

exp

(

2πi
mβ

M

)

dz (2-18)
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To take the integral over the entire z domain, a mathematical transformation will be used to

simplify the calculation. Since the current density is uniform a long the z-direction, we use

jnm(z) = jnm
∏

(z,−d/2, d/2) in which
∏

is a step-like function that is 1 inside the interval

[−d/2, d/2] and 0 outside, with d the thickness of the material. Later, the limit d → ∞
will be taken to correctly consider the bulk behavior along the z-direction. The Fourier

transform of this step-function is:

∫ ∞

−∞

∏

(z,−d/2, d/2)exp(2πizk)dz =
∫ d/2

−d/2

exp(2πizk)dz =
sin(πkd)

πk
, (2-19)

which leads to the simplification of Eq. 2-18 as

j̃αβ(k) = j̃αβ
sin(πkd)

πk
(2-20)

Next, Eq.2-16 and Eq. 2-17 are substituted into the equation j = −κ2∇2A, to obtain

Ãαβ(k) =
1

κ2
j̃αβ(k)

(2πiκ)2 + q2αβ
, (2-21)

with q2αβ =
(

2π α
Lx

)2

+
(

2π β
Ly

)2

. Eq. 2-21 gives the vector potential in reciprocal space.

Substitution into Eq. 2-14 brings it back to real space:

Anm(z) =
1

NM

∫ ∞

−∞

N−1
∑

α=0

M−1
∑

β=0

1

κ2
j̃αβ(k)

(2πiκ)2 + q2αβ

sin(πkd)

πk

×exp(−2πizk)exp
(

−2πi
nα

N

)

exp

(

−2πi
mβ

M

)

dk (2-22)

The integral over k:

I =

∫ ∞

−∞

1

(2πik)2 + q2αβ

sin(πkd)

πk
dk, (2-23)

can be done analytically with the result:

I =

{

[1− cosh(qαβz)exp(−dqαβ/2)]/q2αβ, z < d/2

sinh(dq2αβ)exp(−qαβ/2)/q2αβ, z > d/2
(2-24)

We are interested in the field behavior in the plane z = 0. where I = [1−exp(−dqαβ/2)]/q2αβ.
For considering bulk behavior along the z-direction, the limit d→ ∞ should be taken.
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This reduces the integral further to I = 1/q2αβ, and finally gives

Anm(0) =
1

NM

∫ ∞

−∞

N−1
∑

α=0

M−1
∑

β=0

1

κ2
j̃αβ
q2αβ

exp
(

−2πi
nα

N

)

exp

(

−2πi
mβ

M

)

dk (2-25)

The vector potential is thus obtained by Fourier transformation of the current density in the

xy-plane to obtain their coefficients j̃αβ . These coefficients are then substituted into Eq. to

obtain the value for the vector potential.

Now, In order to calculate the Gibbs free energy of the system, we start from the expression

(1-11), which can be written in dimensionless form as follows:

F =
Gs − Gn

H2
cV/8π

=

∫

[−2|Ψ|2 + |Ψ|4 + 2|(−i∇−A)Ψ|2 + 2κ2(H−H0)]dV (2-26)

where the integration is carried out over the entire space. Using mathematical transforma-

tions and the Gauss theorem
∫

∇ ·AdV =
∮

n ·AdS, the third term of the integrand in Eq.

2-26 can be written as

∫

|(−i∇−A)Ψ|2dV =

∮

n · [Ψ∗(−i∇−A)Ψ]dS +

∫

Ψ∗(−i∇−A)2ΨdV. (2-27)

The first term on the right side equals to zero due to the boundary conditions of (Eq. 1-28).

The second term is rewritten with the help of the first GL equation and finally we have

∫

|(−i∇−A)Ψ|2dV =

∫

(|Ψ|2 − |Ψ|4)dV. (2-28)

Therefore,

F =

∫

[(H−H0)
2κ2 − 1/2|Ψ|4)dV ] (2-29)

where H = ∇×A. Using the vector relations ∇ · (a × b) = b · (∇× a) − a · (∇× b) and

a× (∇× a) = 0, and the London gauge ∇ ·A = 0, the free energy becomes

F = V −1

∫

[2(A−A0) · j− |Ψ|4)]dr, (2-30)

where A0 denotes the vector potential of the applied magnetic field H0 the supercurrent is

given by Eq. (1-26).
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2.3 Numerical algorithm

2.3.1 Cartesian coordinates

In this thesis, we investigate the dynamics of vortices in a thin square mesoscopic supercon-

ductor. we show how the vortices are nucleated into the sample to form a multivortex, single

vortex, and giant vortex states. We also calculate the magnetization and the free energy as

functions of the applied magnetic field. Thus, we are allowed to take the order parameter

and the local magnetic field invariant along the z direction. The vortex configurations at

the equilibrium can be obtained from generalized the GL equations which account for the

time evolution of the vortices until the most stable configuration is accomplished [57]. The

time evolution was incorporated to the GL equations in such a manner that their gauge

invariance is preserved. The Time Dependent Ginzburg-Landau (TDGL) equations for the

complex order parameter Ψ the vector potential A, and the scalar electrical potential Φ are

given by

ℏ
2

4mD

(

∂

∂t
+
ie

ℏ
Φ

)

Ψ = − 1

4m

(

−iℏ∇− 2e

c
A

)2

Ψ + αΨ − β|Ψ |2Ψ

σ

(

1

c

∂A

∂t
+∇Φ

)

= Js −
c

4π
∇×A (2-31)

where the supercurrent density is

Js =
e

m
R

[

Ψ̄

(

−iℏ∇− 2e

c
A

)

Ψ

]

, (2-32)

where R indicates the real part and the overbar the complex conjugation. Also in Eq. 2-32D

is the diffusion coefficient, σ is the electrical conductivity, and α are the two phenomenological

constants. The temperature dependence of α can be expressed as α(T ) = α0(Tc −T ), for all

temperatures T 6 Tc, where Tc is the critical temperature. We consider the zero-electrical

potential gauge at all times Φ = 0, whereas, |Ψ |2 represents the local density of Cooper pairs

and the local magnetic field is given by h = ∇×A. The boundary conditions to solve the

TDGL normal to the sample surfaces is (−i~∇ − 2e
c
A) · n̂ = 0 and hz = H parallel to the

sample surfaces, where H is the external field uniformly applied along the z direction.

The TDGL equations can be written in dimensionless units as:

∂Ψ

∂t
= −(−i∇−A)2Ψ + (1− T )Ψ (1− |Ψ |2),

β
∂A

∂t
= Js − κ2∇×A,

Js = (1− T )R[Ψ̄

(

−iℏ∇− 2e

c
A

)

Ψ ] (2-33)

where κ = λ(T )/ξ(T ) = λ(0)/ξ(0) is the GL parameter, τ = ξ2(0)/D is the characteristic

time, magnetic field Hc2(0) = Φ0/2πξ
2(0) and β = 4πσD/c2ξ2.
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xi = (i− 1)ax, i = 1, 2, 3, ..., Nx + 1,

yj = (j − 1)ay, j = 1, 2, 3, ..., Ny + 1,

Ψn
i,j = Ψ (xi, yj, tn),

Un
x,i,j = Ux(xi+1, yj, tn)Ūx(xi, yj, tn) = exp

(

−i
∫ xi+1

xi

Ax(s, y, t)ds

)

,

Un
y,i,j = Uy(xi, yi+1, tn)Ūy(xi, yj, tn) = exp

(

−i
∫ yi+1

yi

Ay(x, s, t)ds

)

,

hnz,i,j = hz

(

xi +
ax
2
, yj +

ay
2
, tn

)

. (2-36)

According to these definitions, it can be easily seen that Ψ is a vertex variable, hz is a cell

variable, and U is a link variable.
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Where

Ln
i,j = Un

x,i,jŪ
n
x,i,j+1U

n
y,i+1,jŪ

n
y,i,j = exp(−iaxayhnz,i,j) (2-38)
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The discretized boundary conditions are

Ψn
1,j = Un

x,1,jΨ
n
2,j, Ψ

n
Nx+1,j = Ūn

x,Nx,jΨ
n
Nx,j,

Ψn
i,1 = Un

y,i,1Ψ
n
i,2, Ψ

n
i,Ny+1 = Ūn

y,i,Ny
Ψn
i,Ny

, (2-39)

The link variables U and L are updated at any (i, j) surface cell point by using the boundary

condition Ln
i,j = exp(−iaxayH), whatever the instant n.

Starting from some initial conditions for and the link variable U , and upon using the TDGL

Eqs. 2-37 and the boundary conditions (2-39), the new order parameter and the local

magnetic field are determined. This process is repeated until a stationary state is achieved.

The applied magnetic field H is ramped up in small intervals of ∆H . The stationary state

found for a fixed value of H is then used as the initial condition for H + ∆H . For the

first value of H , the system is initialized at the Meissner state where Ψ 0
i,j = 1, U0

x,i,j = 1,

U0
y,i,j = 1. At each fixed applied field we follow the time evolution of the local magnetic field

and the superconducting order parameter until we obtain a steady state solution. Then,

this stationary solution is used as the initial condition for the next applied field. Thus, as

the applied magnetic field increases and the time changes, we preserve the magnetic history

of the system. That is, we study the time evolution of the system at each fixed applied

magnetic field by assuming that there is already some penetrated magnetic flux inside the

sample.

The TDGL equations describe the gradient flow for the Gibbs free energy. Thus, in principle,

the output of the TDGL should correspond to the global minimum of the energy of the

system. The energy, in units of G0 = a20T
2
c /b, is given by

G =
1
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∫
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(

1

2
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]

dV (2-40)

This equation can be discretized as follow
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(2-41)
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The magnetization 4πM = B−H , where B is the induction (the spatial average of the local

magnetic field), is

−4πMn =
1

NxNy

Nx
∑

i=1

Ny
∑

j=1

hnz,i,j −H (2-42)

The stationary state is accepted when the absolute value of the order parameter does not

change within a certain precision, the difference ||Ψn+1
i,j | − |Ψn

i,j||. The effective manner of

of counting the number of vortices can be found by integrating Eq. 2-33 along a rectangle

containing the superconducting square. This leads us to

∮

1

|Ψ |2R[Ψ̄ (−i∇−A)Ψ ] · dr = (2πN − Φ), (2-43)

where N is the number of vortices vorticity and Φ is the total penetrated flux. The discrete

counterpart of this equation is
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(2-44)

where, for instance,

|Ψn
i,1|2 =

1

2
(|Ψn

Nx+1,1|2 + |Ψn
i+1,1|2) (2-45)

2.3.2 Polar coordinates

The algorithm to solve the time dependent Ginzburg-Landau equations for superconductor

samples with circular geometries,by using the link variables technique in polar coordinates.

Here, we will reproduce some steps of the algorithm developed in this reference at a minimum

level and introduce what is new with respect to the boundary conditions. This procedure

will help us to present the results in a more comprehensible manner. At this point, it is

convenient to introduce the auxiliary vector field U = (Uρ, Uθ) in polar coordinates, which

is defined by

Uρ(ρ, θ) = exp

(

−i
∫ ρ

ρ0

Aρ(θ, ξ)dξ

)

,

Uθ(ρ, θ) = exp

(

−i
∫ y

θ0

Aθ(ξ, θ)dξ

)

. (2-46)
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Figure 2-2: The computational mesh in polar coordinates used for evaluation of Ψi,j (•,
vertex point); hz,i,j and Li,j(©, cell point); Aρ,i,j and Uρ,i,j (�, link point);

Aθ,i,j and Uθ,i,j(�, link point). The superconducting domain is delimited by

the dashed line, and superconducting layer is surrounded by the solid line.

where (ρ0, θ0) is an arbitrary reference point. Thus, the TDGL equations can be rewritten

as
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∂t
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[

ŪθΨ̄

ρ

∂(UθΨ )

∂θ

]

− κ2
∂hz
∂ρ

, (2-47)

The grid used for the discretization of the TDGL equations of 2-47 on a circular sector is

illustrated in Fig. 2-2.

The mesh consists of Nρ×Nθ cells with size (aρ, aθ) in polar coordinates. The circular sector

has internal radius r and external R; Θ is its angular width. Let (ρi, θj) be a vertex point

in the mesh, where ρi+1 = ρi + aρ, θj+1 = θj + aθ, for all 1 6 i 6 Nρ, 1 6 j 6 Nθ; ρ1 = r

and θ1 = 0 this particular choice for the initial value of the angle does not imply a loss of

generality since the system is invariant under any rotation.
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The discrete variables for the vertex points can be written as:

ρi = r + (i− 1)aρ, 1 6 i 6 Nρ + 1 θj = (j − 1)aθ, 1 6 j 6 Nθ + 1

whereas the cell points (ρi+1/2 = ρi + aρ/2, θj+1/2 = θi + aθ/2) and the link points in the

radial and transversal directions can be defined by (ρi+1/2, θj) and (ρi, θj+1/2).

For the discretized vector potential, link variables and the local magnetic field, we obtain

Aρ,i,j = Aρ(ρi+1/2, θj), Aθ,i,j = Aθ(ρi, θj+/1/2) (2-48)

Uρ,i,j = Ūρ(ρi, θj)Uρ(ρi+1, θj) = exp(−iaρAρ,i,j),

Uθ,i,j = Ūθ(ρi, θj)Uθ(ρi, θj+1) = exp(−iρaθAθ,i,j), (2-49)

hz,i,j = hz(ρi+1/2, θj+1/2), (2-50)

respectively.

The discrete variable L will be define as follow:

Li,j = exp

(

−i
∮

∂D

A · dr
)

= exp

(

−i
∫

D

hzρdρdθ

)

= exp(−iaρρi+1/2aθhz,i,j) (2-51)

where D is the domain of a unit cell limited by a closed path ∂D, therefore

Li,j = Uρ,i,jUθ,i+1,jŪρ,i,j+1Ūθ,i,j. (2-52)

We find the following recurrence relations for the order parameter and the link variables by

using the one-step forward-difference Euler scheme with time step ∆t:

Ψi,j(t+∆t) = Ψi,j(t) + FΨi,j
(t)∆t, Uα,i,j(t+∆t) = Uα,i,j(t)exp

(
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)
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(2-54)

FUθ,i,j
= I
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, (2-55)
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The discretized boundary conditions are

Ψ1,j = Uρ,1,jΨ2,j, ΨNρ+1,j = Ūρ,Nρ,jΨNρ, j,

Ψn
i,1 = Un

y,i,1Ψ
n
i,2, Ψi,Nθ+1 = Ūθ,i,Nθ

Ψi,Nθ
, (2-56)

The magnetization is 4πM = B −H , where B is the magnetic induction which is given by

the spatial average of the local magnetic field. We have

4πM =
1

A

Nρ
∑

i=1

Nθ
∑

j=1

hz,i,jAρ,i −H (2-57)

Where A is total area of circular sector and Aρ,i = aρρi+1/2aθ which is the area of a unit cell.

The vorticity can be determined by integrating the phase ϕ in each unit cell of the mesh.

We have

Ni,j =
1

2π

∮

Ci,j

∇ϕ · dr, N =

Nρ
∑

i=1

Nθ
∑

j=1

Ni,j (2-58)

where Ci,j is a closed path with the lower left and upper right corner at (i, j) and (i+1, j+1)

respectively. We calculated N in order to make sure that the number of vortices agrees with

the map of the order parameter.



3 Vortex matter in an inhomogeneous

superconducting condensate

One of the important aspects of the properties of type-II superconductors is their magnetic

behavior, i.e. the way of penetration of the magnetic field into the material. In a broad

interval of applied magnetic fields between the lower critical field, Hc1, and the upper critical

field, Hc2. In this chapter, I will exemplify some experimental results of the studied vortex

matter with direct vortex imaging techniques. Such as experiments sensitive directly to the

vortex magnetic field and with sufficient spatial resolution to resolve individual vortices.

In addition, different experimental setups used to manipulate the vortex behavior through

external means are presented, where particular attention is given to design of a pinning

landscape and individual vortex manipulation by a nearby magnetic or tunneling tip, or a

laser beam.

3.1 Direct vortex imaging techniques

3.1.1 Bitter decoration

The experiments performed, by using the Bitter decoration technique provides means of di-

rect observation of static vortex structures at the surface of the superconductor with spatial

resolution of about 80 nm, and rather poor sensitivity. The sample must be cleaned before

repeating the experiment. Various aspects of vortex behavior that can be studied in dec-

oration experiments are considered, in particular vortex lattice ordering and the effects of

pinning and anisotropy on the equilibrium vortex arrangement. It is used in small applied

fields H < 10 mT. The pinning forces increase on cooling, therefore vortices get stuck at their

positions at some temperature T ∗ in between Tc and the chamber base temperature. T ∗ may

be as high as 0.8 - 0.9 Tc [59]. Therefore the imaged vortex positions may not correspond to

the ground state at the base temperature, which is a known caveat of the Bitter decoration

technique.

Some mesoscopic samples can be made from a Nb film deposited on a Si substrate by using

magnetron sputtering where the Bitter decoration technique based on in situ evaporation of

Fe particles that are attracted to regions of magnetic field created by individual vortices and

thus allow their visualization which is described in detail in Ref. [60].

Figure 3-1 (a) shows a typical vortex structure in the macroscopic film. The disordered
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Figure 3-1: Scanning electronic microscope (SEM) images of vortex patterns obtained after

field cooling (a) macroscopic film (b) part of an array containing dots, (c) vortex

configurations in disks obtained in the same experiment Scale bars in all images

correspond to 5µm.

vortex arrangement is a signature of the presence of pinning (see, e.g., [61]), typical for

sputtered Nb films. Using e-beam lithography and dry etching, the film can be made into

large arrays of mesoscopic “dots” disks, triangles, and squares. This technique allow to

obtain snapshots of about a hundred vortex configurations in nominally identical samples

under identical conditions (field H , temperature T , etc.).

3.1.2 Magneto-optical imaging

This is another experimental tool for the direct observation of magnetic vortices in type-II

superconductors. To be able to see magnetism directly with our eyes has been a very old

dream, in a way by using magneto-optical imaging is possible the realization of this dream.

This technique has been improved to enable single vortex observation at low flux densities.

The main advantage of the new method is its high temporal resolution combined with the

applicability to any superconducting sample with a flat surface. Magneto-Optical Imaging

has developed rapidly over the last decade to emerge as a leading technique to directly visu-

alise the static and dynamic magnetic behaviour of materials, capable of following magnetic

processes on the scale of centimeters to sub-microns and at time scales from hours to nanosec-

onds. The images are direct, real-time, and give space-resolved information, such as ultrafast

magnetic processes and revealing the motion of individual vortices in superconductors. The

conventional magneto-optical imaging employ a plane polarized light and the Faraday effect

in a ferrite garnet film (FGF) to visualize the local magnetic field over the superconductor

surface (see Fig. 3-2). For individual vortex observation it is necesary to to resolve the
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Figure 3-2: Principle of MO imaging. The maxima of the magnetic field from vortices in

a superconducting sample (SC) gives maxima in the Faraday rotation θF of

incoming plane polarized light in a ferrite garnet layer (FGF) near the sam-

ple. Vortices appear as bright spots when imaged using a crossed polarizer

(P)/analyser (A) setting (from Ref. [62]).

Figure 3-3: (Left) Vortex dynamics during flux penetration (from Ref. [62]). (right) MO

image showing flux distribution in MgB2 strip-shaped samples at 4 K and 15

mT applied field. The image brightness represents the local flux density. Both

the number and size of the dendrites are larger for the wider samples.(from Ref.

[63])
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magnetic field modulation decaying rapidly with distance from the sample surface and to

minimize depolarization effects in the optical system leading to loss of polarization contrast.

Therefore, cryostat/MO system is combined as modular open microscope featuring a 100 W

Hg lamp, an Olympus LMPlan 50 X objective mounted inside a modified Hi-Res (Oxford

Instruments) He flow cryostat, a Glan-Taylor polarizer/analyser pair, a Smith beam splitter

and a cooled CCD camera [62].

In Fig. 3-3 (left) we can observe the image with the change in flux distribution over a 1 s time

interval after a small increase in the applied field by using MO. The dark and bright spots

represent initial and final vortex positions, respectively. Medium brightness corresponds to

an unchanged flux distribution, indicating stationary vortices. The insert shows a close-up

of four vortex jumps. The arrows indicate the direction of vortex motion. In Fig 3-3 (rigth)

also superconducting samples dominated by abrupt dendritic avalanches can be observed

[63].

3.1.3 Scanning Hall probe microscopy

This technique typically uses Hall probe made of the semiconductor heterostructure

GaAs/Al0.3Ga0.7As, which is a transducer that varies its output voltage in response to a

magnetic field. Scanning Hall probe microscopy (SHPM) is a superior magnetic imaging

technique due to many reasons. The Hall probe exerts negligible force on the underlying

magnetic structure and is noninvasive. Unlike the magnetic decoration technique, the same

area can be scanned over and over again. The magnetic field caused by hall probe is so

minimal it has a negligible effect on, the sample it is measuring. The sample does not need

to be an electrical conductor, unless using STM for height control. The measurement can be

performed from 5-500 K in ultra high vacuum (UHV) and is nondestructive to the crystal

lattice or structure. Tests requires no special surface preparation or coating. The detectable

magnetic field sensitivity is approximately 100nT· Hz−1/2. SHPM can be combined with

other scanning methods such as scanning tunneling microscope (STM).

There are some shortcomings or difficulties when working with an SHPM. High resolution

scans become difficult due to the thermal noise of extremely small hall probes. There is

a minimum scanning height distance due to the construction of the hall probe. (This is

especially significant with 2DEG semi-conductor probes due to their multi-layer design). The

scanning (lift) height affects obtained image. Scanning large areas takes a significant amount

of time. There is a relatively short practical scanning range (order of 1000’s micrometer)

along any direction. The housing is important to shield electromagnetic noise (Faraday cage),

acoustic noise (anti-vibrating tables), air flow (air isolation cupboard), and static charge on

the sample (ionizing units).

Very interesting images of trapping of single-quantum vortices by demagnetized disks were

obtained by Kramer et al. [64], see Fig. 3-4 (a)-(d). The white dashed lines connect nearest-

neighbor magnetic disks. (a) Individual vortices. (b) Coexistence of individual vortices and
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Figure 3-4: (Left) Schematic representation of the sample layout. A type-II superconduct-

ing Pb film 50 nm thick covers the whole substrate including the magnetic

disks. (Right) Scanning Hall microscopy image at the border of the patterned

area. (from Ref. [64])

vortex dimers. (c) Coexistence of vortex dimers and trimers. (d) Different vortex trimers at

coexisting with interstitial vortices.

3.1.4 Transmission electron microscopy (TEM)

This technique requires very thin sample most often an ultrathin section less than 100 nm

thick, sections for enabling the electrons to cross the sample. An image is formed from

the interaction of the electrons with the sample as the beam is transmitted through the

specimen. The image is then magnified and focused onto an imaging device, such as a

fluorescent screen, a layer of photographic film, or a sensor such as a charge-coupled device.

For superconductors [cryo-Lorentz transmission electron microscopy (cryo-LTEM)] it started

to gain importance only recently as it has been implemented in Cambridge [65] and Lausanne

[66] and used to image vortices in MgB2.

3.2 Flux quanta manipulation

3.2.1 Scanning SQUID microscope

Direct observation of vortices by the scanning superconducting quantum interference device

microscopy (SQUID) is an alternative and complement method to visualize vortices in the

superconducting dots Fig.3-5 (left). By scanning a small pick-up loop over the dots, one

can magnetically image the vortices without damaging the samples. This allows us to study

systematically how the vortex configuration evolves with magnetic field in a specific sample.

In particular, scanning SQUID microscope can be used in the field of superconductivity for

both imaging of the magnetic landscapes of the vortex matter and the mechanical control of

individual flux quanta. Since SQUIDs are by far the most sensitive detectors of magnetic flux

and thus provide the best product of spatial resolution and field sensitivity, they are a natural

choice as a sensor for a magnetic microscope. In the latter case, by applying local vertical
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Figure 3-5: (Left) Scanning SQUID microscope images of vortices in an amorphous MoGe

disk, color bars indicate the magnitude of the magnetic flux detected in the

pick-up loop, (from Ref. [67]). (Right) Experimental configuration. Stress is

applied with the tip of the SQUID chip by pushing the cantilever (inset) into

the sample. Vortex configuration in an NbN thin film imaged at 4.2 K with no

contact area. Inset depicting vortices arranged into capital letter B, (from Ref.

[68]).

stress with the tip of the sensor, vortices can be attached to the contact point, relocated, and

stabilized at new position, Fig.3-5 (right). In this way, mechanical manipulation of vortices

provides a local view of the interaction between strain and nanomagnetic objects as well as

controllable, effective, and reproducible manipulation technique.

3.2.2 Scanning tunneling microscopy

A scanning tunneling microscope (STM) is an instrument for imaging surfaces at the atomic

level Fig. 3-6 (a). In 1981 at IBM Zurich, Gerd Binnig and Heinrich Rohrer earned the

Nobel Prize in Physics in 1986 for STM good resolution, it is considered to be 0.1 nm lateral

resolution and 0.01 nm (10 pm) depth resolution [69], which makes scanning tunneling mi-

croscope an excellent tool for visualizing surfaces at the atomic level, where also individual

atoms at the surface of the material can be manipulated. The STM can be used not only in

ultra-high vacuum but also in air, water, and various other liquid or gas ambients, and at

temperatures ranging from near zero Kelvin to over 1000◦C. STM is based on the concept

of quantum tunneling. When the sharp conducting tip, whose apex can be a single atom,

mounted on a piezoelectric tube is brought very near to the surface to be examined, a bias

(voltage difference) applied between the two can allow electrons to tunnel through the vac-

uum between them. The resulting tunneling current is a function of tip position, applied

voltage, and the local density of states (LDOS) of the sample. In superconductivity, STM

can provide high-resolution imaging of vortex matter, where the output signal displays the

contrast between normal electrons and Cooper pairs, as is shown in Fig. 3-6(b). Addition-

ally, STM is sensitive to local density of states and through it to local gap function |∆(r)|,
rather than B(r). For each of the techniques there is a trade-off between field sensitivity (or
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Figure 3-6: Scanning tunneling microscope (STM). (a) Schematic description of the STM.

A tip with an apex of a single atom width is mounted on a piezoelectric stylus

which scans the sample. Tunneling current is controlled with external voltage,

and the output signal is shown on the display (credit: Wikipedia). (b) Image

of the vortices in a superconducting film obtained by STM (figure taken from

Ref. [70]).

more generally signal-to-noise ratio) and spatial resolution. The STM can be used to change

the temperature locally, generation of quantized vortices and also creating superconducting

islands how it is describe as follow:

3.2.2.1 The local pinning in a superconductor through the heating effect

Several phenomena related to vortex states have been revealed by the STM, such as the

anisotropy of the Fermi surface distribution of the superconducting gap [71] , the vortex

lattice melting process [72] , order-disorder transition [73].



52 3 Vortex matter in an inhomogeneous superconducting condensate

Figure 3-7: (a) Schematic view of the scanning Hall probe microscopy (SHPM), (b) An op-

tical image of the Hall sensor, (c) Schematic representation of the local heating

effect by using the STM tip. (d) SHPM image of a vortex lattice observed after

field cooling and (e) SHPM image after 5 s of tunnelling at bias voltage of 0.5

V and tunnelling current of 0.5 nA. A vortex cluster forms at the tip position

due to the local quench of the hot spot (figure taken from Ref. [74]).

However, despite the precise manipulation of vortices with the STM is still a open topic. Re-

cently, a novel method to use STM controlling quenching of a hot spot in a superconducting

film by using the local heating effect of the tunnelling junction on vortex states was reported,

which is especially interesting at the nanoscale Fig. 3-7. Tuning the bias voltage the heating

effect of the tunneling junction can be well controlled to manipulate single-quantum vortices.

3.2.2.2 Controlled Generation of Quantized Vortex

Normally, the vortex enter in the superconducting sample in a presence of a high magnetic

field in the form of quantized Abrikosov vortices with each of them carrying one flux quantum

Φ0 = h/2e (h, the Plank constant and e, the electron charge). Quantized vortices, as

topological defects, play an important role in both physics and technological applications of

superconductors. When a tunneling junction is established between the STM tip and the

superconductor, a hot spot, playing the role of a pinning center, is created. The supercurrent,

flowing in the vicinity of the hot spot, will be reoriented at the position of the hot spot thus

creating a magnetic (vortex) dipole (see 3-8). For a fixed average supercurrent density, the

intensity of dipoles mainly depends on the size of the pinning center.
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Figure 3-8: (a) Schematic view of sample geometry and the experimental setup, not drawn

to scale, (b) Scanning Hall probe microscopy image of the vortex pattern ob-

served after field cooling, (c) After applying a pulse tunneling current to the

vortex pattern in panel b, adjacent vortices around the tip are attracted to

the hot spot at the STM tip position. (d) Schematic image demonstrating the

generation mechanism of vortex-antivortex pairs. The dashed lines indicate the

supercurrent flowing direction. The solid arrows indicate the moving direction

of vortices and antivortices under the Lorentz force. (figure taken from Ref.

[75]).

3.2.2.3 Creating islands by local current annealing

The nanostructured superconductors were made from single YPtBi crystals by local current

annealing structurally amorphous YPtBi in an STM tunnel junction (see Fig. 3-9). Strong

confinement effects with unique vortex structures has been observed and also several prop-

erties of these nanostructures were obtained from tunneling spectroscopy measurements as

a function of spatial position, temperature, and magnetic field.
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Figure 3-9: (a) C1 b crystal structure of YPtBi: Y (purple), Pt (gray), Bi (green) (b) Illus-

tration of the process of creating superconducting islands by passing a current

pulse with the STM probe tip held fixed within ≈1 nm of an amorphous YPtBi

layer. (c) Three-dimensional rendered STM topographic image (200 nm x 200

nm). (d) SEM image showing seven different superconducting nanostructures

created by local current annealing with the STM probe tip. (e) TEM cross

section of the superconducting island in the bottom center of (d) highlighted

by the orange line. The cross-sectional image shows ≈50-nm-thick amorphous

layer covering the entire surface of the YPtBi crystal. (f) High-resolution TEM

image of the boundary region separating the underlying YPtBi crystal and the

region of the created nanostructure. (figure taken from Ref. [1]).

Different energy gaps, critical temperature, and critical magnetic fields were found in the

center region versus the perimeter region of the nanostructure. Sequential addition of single

vortices into the nanostructured island is observed at magnetic fields between the lower

critical field Hc1, and the upper critical field Hc2. To observe the vortex formation within

the superconducting island, The experiment carried out a spatial mapping of the differential

conductance and extracted maps at zero bias as a function of magnetic field, as shown in Fig.

3-10. Red represents the superconducting region with low conductance in the gap and blue

corresponds to the normal state. With increasing magnetic field, the conductance maps show

a single vortex sequentially added to the superconducting island. Finally, superconductivity

in the center region is gradually suppressed without any vortex structure appearing. Looking

toward the future, we anticipate that having the ability to induce a local structural transition

to a superconducting phase with local probes will be a useful quantum nanotechnology

workbench to design superconducting nanostructures for investigating both fundamental

superconducting properties and practical applications of quantum electronics.
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Figure 3-10: Sequential addition of vortices in a nanostructured superconducting island.

(a) STM topographic image of the superconducting island. (b)-(p) Corre-

sponding Fermi-level maps showing superconducting (red) and normal (blue)

regions of the island as vortices (small blue disks) sequentially populate the

nanostructure as the magnetic field is increased. The vortices are seen to dis-

tribute along the perimeter of the island and avoid the center. (figure taken

from Ref. [1]).

3.2.3 Low-temperature scanning laser microscopy

The average properties of the vortex matter can be tuned with temperature, magnetic fields

or electric currents. Yet, handling of individual vortices has been performed only with mag-

netic force, superconducting quantum interference device or strain-induced scanning local

probe microscopies. Since these techniques are slow and heavy to implement in cryogenic

environments, new approaches to provide a large-scale and versatile basis for sculpting the

magnetic flux profile in superconductor devices are required. The most recent technique

to manipulate individual vortices is the far-field optical method based on local heating of

the superconductor with a focused laser beam to realize a fast and precise manipulation

of individual Abrikosov vortices. Since a single vortex can induce a Josephson phase shift

10,11 , our method paves the way to fast optical drive of Josephson junctions, notably in

superconducting elementary circuits with potential large parallelization of operations.
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Figure 3-11: Single vortex manipulation with a focused laser beam. Sequential addition

of vortices in a nanostructured superconducting island. (a) The concept of

vortex attraction in a thermal gradient induced by a laser spot is illustrated.

Magneto-optical imaging of individual vortices is based on the Faraday ro-

tation of light polarization. PBS, polarizing beam-splitter. CCD, charge-

coupled device. Local heating of the niobium film is performed with a tightly

focused continuous wave laser (wavelength 561 nm) from which 40% of the op-

tical power is absorbed. Vortex manipulation is performed by moving the laser

beam with galvanometric mirrors (GMs) placed in a telecentric system (TS).

(b) Magneto-optical image of a field-cooled vortex structure in the niobium

film (c) Artificial vortex pattern engineered by single vortex repositioning from

the initial vortex distribution displayed in b. The repositioning procedure is

fully automatized. The laser is focused on the SC with a full-width at half-

maximum diameter of 1.1 µm. The absorbed power is set to 17 µW. (figure

taken from Ref. [76]).

The laser beam tightly focused induce a thermal gradient to manipulate single flux quanta.The

laser locally heats the superconductor and creates a micron-sized hotspot with a temperature

rise in the Kelvin range, while keeping the temperature below Tc. This thermal gradient can

easily be tuned with lases power, so that the generated thermal force overcomes the pin-

ning potential and induces a vortex motion towards the laser focus. Thus, the laser beam

acts as optical tweezers that move single flux quanta to any new desired positions in the

superconductor.



4 Influence of enhanced surface

superconductivity in a mesoscopic

sample

The possibility of surface enhancement of superconductivity represent a superconductor with

a surface enhanced order parameter or negative surface extrapolation length, whose magnitud

can be controlled. De Gennes’ boundary condition phenomenological parameter b is used to

study its effect upon the vorticity, magnetic induction, Cooper pair density, magnetization

and phase of the order parameter as functions of the external applied magnetic field, including

the analyses of the limit between 2D and 3D behavior of a superconducting sample by selecting

certain value of b.

4.1 Introduction

The boundary condition of the superconducting order parameter at the surface of a specimen

modifies the Gibbs free energy density near the surface on the scale of the coherence length.

In superconducting samples with mesoscopic dimensions, the total free energy can be affected

significantly via the boundary condition. The Ginzburg-Landau (GL) equations [5] are

arguably the most convenient and frequently employed tool in studying the vortex matter and

thermodynamic properties of superconducting materials with general boundary conditions.

The surface contact energy term is added to the GL free energy in the form
∫

s
(|Ψ|2)ds,

where Ψ is the modulus of the order parameter [77]. The size of the sample contributes

significantly to the total free energy. It is usually considered to be large enough such that

the influence of finite dimensions on their properties are negligible along the external applied

magnetic field which usually is taken as z direction. Therefore, demagnetizing effects are

not assumed. However, this is not the case in many situations of interest. Examples range

from quantum size effects in metallic nanoparticles [78, 79] and microfluidics [80] to cluster

size effects [81]. Hallmark physical ingredients in these systems are large surface-to-volume

ratio and one or more dimensions of the sample approaching a relevant fundamental scale.

Technological advances have been possible to enhance critical fields, critical temperature

and have a better vortex control in micro, nano and mesoscopic superconducting samples.

Superconductors in a mesoscopic scale with different geometry revealed a diversity of new

phenomena that are not present in other scales. Also, these systems are affected by the
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medium where the sample is embedded. The possibility to control the dynamics and vortex

density has made them one of the favorite experimental and theoretical system for studies of

the physics of solid state [82, 83, 84, 85, 86, 87]. Furthermore, it was observed that structural

defects influence strongly the vortex configuration, critical temperature, fields and currents

in the sample [88, 89, 90, 91, 92, 93]. P. N. Lisboa-Filho et al. tested the smallest square

cross section for the occurrence of vortices in a mesoscopic superconductor. They found that

the limit of vortex penetration is for the square sample of size 3ξ× 3ξ in which only a single

vortex are allowed in the sample [94], where ξ is the coherence length. Barba-Ortega et al.

tested the limit values of the deGennes parameter b for the occurrence of a single vortex in

a mesoscopic square of area L2. They found that the sample remain always in the single

vortex state for L ∝ ln b [95, 96]. B. J. Baelus et al. studied the effect of the enhancement

of surface superconductivity and Ginzburg-Landau (GL) parameter on the critical field and

critical temperature for superconducting mesoscopics cylinders. They found that increasing

the confinement effects (|b| → 0) the critical temperature increases and is independent of GL

Parameter, the vorticity and third critical fields increase and the multi-vortex state move to

the center creating a giant vortex state [96].

This chapter is organized as follows. Sec.4.1. Introduction. Addendum to the theoretical

formalism is presented Sec.4.1.1. In Sec. 4.2. The the Ginzburg Landau equations are

solved for a small mesoscopic superconducting square of area S = 9ξ2 in the the presence of

an external applied magnetic field applied perpendicular to its surface. We consider a su-

perconducting/superconducting interface at higher critical temperature boundary condition

(b < 0). We find that a multi-vortex state in the square is induced due to the presence of an-

other superconductor in opposite to what occurs for the 1/b = 0 case where only one vortex

is possible [94]. We have gone further by doing some true 3D simulations in a parallelepiped

of volume V = Sd by using several values of d. We have determined a value of d for which

there is no difference between 2D and 3D calculations.

4.1.1 Addendum to the theoretical formalism

A small superconducting square surrounded by a medium which enhances superconductivity

at the edge of the sample is considered. To deal with this problem we use the GL theory

and solve numerically and self-consistently the system of two GL equations (2-33). The free

energy of the superconducting state can be written as a sum of two contributions, Gb and

Gs . The former is the bulk energy of the sample and the latter is the surface energy. These

contributions are given by:

Gb =

∫
[

−|Ψ|2 + 1

2
|Ψ|4 + |(−i∇−A)Ψ|2 + κ2H2 − 2κ2H ·H0)

2

]

dV, (4-1)

Gs =
1

b

∫

|Ψ|2dS (4-2)
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The integration in Eqs. (4-1) and (4-2) is performed over the sample bulk and surface,

respectively. We can notice that by minimization of the free energy functional G = Gb +Gs

with respect to the order parameter Ψ and the vector potential A, the general boundary

condition for the order parameter can be obtained phenomenologically as follows:

n · (−i∇−A)Ψ =
i

b
Ψ (4-3)

where n is the unit vector normal to the sample surface, b is the de Gennes “extrapolation

length”, A is the vector potential, and Ψ is the order parameter.

4.2 Multi-vortex state in a mesoscopic square with

enhanced superconductivity at the boundary

We studied a mesoscopic superconducting square (see Fig.4-1) of size 3ξ × 3ξ with a super-

conductor/superconducting at higher critical temperature external interface simulated by

b/ξ = −2.5,−12.5,−1.7,−1.25, with κ = 5.0. The GL equations were solved by using the

link variable method [58] with a mesh size ∆x = ∆y = 0.1ξ. We also considered a supercon-

ducting/vacuum interface b → ∞ for comparison purposes with the b finite results. For the

finite case, we solve the true 3D Ginzburg-Landau equations [58, 97], the size of the simula-

tion box is taken sufficiently large to ensure that the local magnetic field equals the applied

field far from the sample boundaries. The simulation box has dimensions 19ξ × 19ξ × 11ξ

and the superconductor inside has the size 3ξ × 3ξ × d, where d varied from 1ξ until 8ξ; the

resolution of the mesh-grid was taken as ∆x = ∆y = ∆z = 0.1ξ.

In Fig. 4-2 we illustrate the magnetization curves as functions of the external applied mag-

netic field. They present a typical profile of a magnetization curve of a mesoscopic super-

conductor. It exhibits a series of discontinuities, in which each jump signals the entrance

of one or more vortices into the sample. Notice that the number of jumps and the upper

thermodynamic field Hc3(0) vary significantly with b. We can also observe that as the pa-

rameter b decreases towards negative values, Hc3(0) decreases. In addition, Fig. 4-2 shows

that it is possible to obtain novel curves of magnetization and the number of vortex in the

sample only by modifying the deGennes parameter, while the dimensions are remained con-

stant. Thus, we estimated the limit value of the b parameter for which the vorticity N is a

maximum. The vorticity grows from N = 1, 2, 3, 5, 6, selecting limit values of deGennes pa-

rameter as b/ξ = ∞,−12.5,−2.5,−1.7,−1.25 respectively for a square sample with constant

area S = 9ξ2. In reference [94] only the N = 1 state (for b/ξ = ∞) was found.

In Fig. 4-3 (left panel) we present the magnetization as a function of the external magnetic

field He for different sizes of the mesoscopic superconducting square sample and fixed value

of b. Notice that the first transition fields Hc1 and the number of discontinuities vary signifi-

cantly with the size of the sample. In this way, the vortex configuration that we can obtain is

different for each size of the square. It is seen that the upper critical field Hc3(0) is increased



60 4 Influence of enhanced surface superconductivity in a mesoscopic sample

Figure 4-1: Layout of the studied sample: (Left) sample with length d = ∞, whereas a

sample which length d = 8ξ is considered (right).

Figure 4-2: Magnetization as a function of the external applied magnetic field He for dif-

ferent negatives values of the deGennes parameter.
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Figure 4-3: (left panel) Plot of the magnetization as a function of the external applied

magnetic field for the square with different values of area for b = −2.5ξ. (right

panel) Vorticity as a function of external magnetic field and phase of the order

parameter.

when the area of the sample is reduced. In the right panel of this figure we illustrate the

vorticity N as a function of of the magnetic field He. The magnetic fields for all N to N +1

transitions are He/Hc2(0) = 2.608, 3.618, 4.478, 5.219, 6.027 by using b = −1.7ξ. The phase

of the order parameter allows to determine the number of vortices in a given region. If the

vorticity in this region is N , then the phase changes by 2πN .

Fig. 4-4 (left panel), shows theH3(0)−b curve for a sample with b/ξ = ∞,−12.5,−2.5,−1.7,−1.25

and the corresponding cases H3(0)/Hc2(0) = 2.32, 2.59, 4.43, 6.02, 7.33, respectively. As we

can see, H3(0) grows quickly when |b| decreases. The curve at the inset shows the linear fit-

ting H3(0) ≈ 51.74γ−49.58 (γ = 1−∆x/b). From the experimental point of view, this is an

important result, since the higher critical field, the higher critical current density can be ob-

tained. The same behavior is observed in the right panel of this figure showing the maximum

of the magnetization MMax as a function of b, for which the curve at the inset has the linear

fitting M ≈ 0.003He−0.0009. Therefore, from both figures we can conclude that the system

becomes much more diamagnetic when He and b are increased. Thus, if we are interested

in shielding the third penetration of magnetic field (surface flux and vortex penetration), a

superconductor surrounded by another superconductor at a higher critical temperature is

useful. In Fig. 4-5 (a)-(e) We show the snapshot of the order parameter |Ψ|2 (upper row),

the vorticity N (middle row) and the local magnetic field h = ∇ ×A for several values of

b. Following the panels from the left to the right, in this order, it shown that is possible to

obtain a giant vortex configuration for low vorticity such as N = 2, 3. This is novel since

previous configurations have been found in larger systems, bu not in such confined systems.

Then, our results indicate that superconducting/superconducting interface at higher critical

temperature could be a way of inducing the nucleation of giant vortex state. For N = 4, 5
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Figure 4-4: (left panel) The upper critical field Hc3(0) field as a function of b and γ =

1− ax/b parameter (inset). (right panel) Maximum of the magnetization curve

MMax as a function of b and He (inset). Theoretical results (red line) and linear

fit (blue line) in inset.

we observe a multivortex state. The multi vortex state is indistinguishable in the density

plot of the magnitude of the order parameter neither in the magnetic field induction, since

they are so packed in a small region. However, the core center are not coincident. This kind

of vortex configurations can be achieved only if the deGennes parameter values and applied

magnetic field harmonize for every multi-vortex state in this confinement system.

Until now our analyses is based in the 2D TDGL equations, that is, we have assumed

invariance of the system along the z direction. With the purpose of making sure that our

results are nor most influenced by demagnetizing effects, so that it could be applied to a film,

rather than only to a cylinder, we have done some numerical simulations for a parallelepiped

of volume V = Sd, for s = 9ξ2 and several values of d. In Fig. 4-6 we show the magnetization

as a function of the external applied magnetic field He. As we can see through panel (a),

the d = 8ξ case present no significant difference to the d = ∞ situation. For the other

values of d we can observe some difference in the magnetization, but only in the Meissner

state. In the other hand, in the mixed state all curves are very close together. Then, we can

assure that our discussion can be extended to superconducting films. The details of the 3D

simulations can be found in [97]. Here we present a brief description of how we proceeded

in order to carry out these calculations. First of all, we define a simulation box designed as

a parallelepiped, which we call a domain Ω. Inside this box we consider a smaller domain

Ωsc ⊂ Ω filled by the superconducting material. Both domains are concentric. In Ωsc we

solve numerically the full TDGL equations. At the superconductor-vacuum interface ∂Ωsc

we apply the boundary condition of vanishing superconducting current density for which

(−i∇−A) ·n = i
b
ψ, where n is a normal unit vector pointing outward the surface. Outside

the superconductor, we solve only second TDGL equation by neglecting the current density
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Figure 4-5: (upper row) Snapshots of the order parameter |Ψ|2, the vorticity N (middle

row), and the local magnetic field h = ∇×A (lower row)for (a) b = ∞, N = 1,

(b-c) b = −1.7ξ, N = 2, 3, (d) b = −1.8ξ, N = 4 and (e) b = −1.7ξ, N = 5.

Figure 4-6: Magnetization as a function of the external applied magnetic field He for (a)

d = ∞, 8ξ, κ = 5.0, (b) d = 8ξ, 6ξ, 4ξ, 1ξ.
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Figure 4-7: The local magnetic field at the z = 0 plane for d = 1ξ (left column) and d = 8ξ

(right column) for two distinct values of the applies field.

term. At the vacuum-vacuum interface ∂Ω we suppose that the local magnetic field h equals

the applied field H. The surfaces ∂Ωsc and ∂Ω are taken sufficiently distant from one each

other until the results are unchanged by increasing the simulation box. In Fig. 4-7 we

present two scenarios for the intensity of the local magnetic field at the middle plane of the

superconductor (z = 0 plane): one is the Meissner state (upper row) and the other one is

the mixed state (lower row) for two different values of d. As we can see, the demagnetization

effects are more significant in the Meissner state.

4.3 Conclusion

We studied the effect of different negative values of the deGennes parameter in the thermo-

dynamics properties for a small superconducting square of size 3ξ× 3ξ in the presence of an

applied external magnetic field by solving the coupled nonlinear Ginzburg-Landau equations.

We considered the lateral surface of the sample in contact with a thin superconducting layer

at higher critical temperature. Our results show that a giant vortex state and multi-vortex

state appear in the sample choosing a convenient value of b < 0 parameter, even for such

small system. The vorticity, the local magnetic filed, cooper pair density, magnetization and

the phase of order parameter depend strongly of the chosen boundary condition. Also, the

upper magnetic field Hc3 grows when the values of the deGennes parameter decreases toward

negative values. We present new results in this paper such as the analytical dependence be-
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tween the third critical field, maximum of the magnetization and b-parameter and a weak

dependence of the first critical field as a function of the b-parameter.

Publications.

The results presented in this chapter were published as:
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5 Complex vortex configuration in the

presence of defects with different

thermal properties

We propose a way to manipulate the landscape of the superconducting condensate in thin

films via local changes of the thermal properties, including in the variations of anisotropy

through a variations of Tc and the spatially localized heating of the superconductor T . This

simple approach provides the perfect alternative for modulation of vortex collective, emerging

in the type-II superconductors as a natural response to the applied magnetic field and the

transport current, which was, up to now, controlled purely via nanofabricated static pinning

centers, whose intensity and distribution cannot be changed once the landscape is defined.

5.1 Introduction

The vortices (tubes of quantized magnetic flux) allows the superconducting state to sur-

vive at high applied magnetic field in type-II superconductor, making them technologically

relevant. The vortices have a non-superconducting core with a radius on the scale of the

coherence length ξ and a circulating super-current that generates one quantum of magnetic

flux, Φ0 = h/2e, over the scale of the London penetration depth. Although the paired elec-

trons in a superconductor carry charge without resistance, a current will exert a Magnus

force on all magnetic flux, which results in dissipation, if any of them move. The vortex

pinning is an opportunity to understand and reduce uncontrolled vortex motion. A vortex

may be pinned by collocating its energetically costly non-superconducting core with a defect

that locally suppresses superconductivity [98, 99, 100, 101, 102]. Continued reduction in

uncontrolled vortex motion will open up applications both for quiet circuits in sensing and

communication and for large currents in high-field magnets and power distribution. Collec-

tively controlled vortex motion can serve as a rectifier [103], a vortex ratchet mechanism can

perform clocked logic [104], and vortices can control spins in an adjacent diluted magnetic

semiconductor [105], while vortices adjacent to an electron gas in a quantum-Hall state may

allow the creation of exotic quantum states [106]. A proposed test of the long-standing idea

that vortices may entangle like polymers requires controlled local manipulation of single

vortices [107]. Vortices are of theoretical interest for their own sake [108, 109], as clues to

the underlying superconductivity [110, 111], as analogues for interacting bosons [112], and
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as model systems for soft condensed matter [108]. In mesoscopic samples there is a compe-

tition between the Abrikosov lattice, being the lowest-energy configuration in bulk material

and films, and the boundary, which tries to impose its geometry on the vortex lattice. Ex-

perimentally, the magnetization of superconducting disks and rings has been measured as a

function of the externally applied magnetic field [113, 114, 115]. In small systems vortices

may overlap so strongly that it is more favorable to form one giant vortex. Experimental

reports show that when the order parameter is enhanced, as a consequence, the surface con-

tact energy has an enhancing effect upon the transition temperature Tc [116]. This could

be accomplished, for example, via deposition of a superconductor with a higher intrinsic Tc
or surface cold working [117, 118], or, perhaps, via disordering a thin surface film [119],

or depositing a thin film of a normal metal [120, 121]. The possibility of reversible surface

enhancement of superconductivity has been examined experimentally [118]. It is shown

that single crystal tin samples with cold-worked surfaces represent a superconductor with a

surface-enhanced order parameter or negative surface extrapolation length, whose magnitude

can be controlled. Other experimental results discuss the enhancement of order parameter

in two principally different ways: either as an effect of stresses induced by surface treatment

[117] or as the effect of stress-free defects [122]. On the other hand, Kozhevnikov and co-

workers found that a surface modification provided an enhancement of the order parameter

controllable [118]. Associated with this is the prediction that surface enhancement can yield

a significant increase of the critical temperature for samples. In consequence the practical

applications are expanded.

The structure of the superconducting sample strongly influences its effects on the behavior

of the vortices in a type-II superconductor, in which the external magnetic field can pen-

etrate and as a consequence the superconductivity is locally depreciated [123]. Although

the structure can be specifically designed with the inclusion of artificial pinning induced

by magnetic dots, submicron holes, chemically grown defects, irradiation with heavy ions,

permanent nanomagnets, or nanostructured perforations, the geometry of these defects is

important, not only for determining equilibrium flux structures, but also for determining the

critical parameters of the mesoscopic superconductor [124, 125, 126, 127, 64]. Considering

the essence of a defect, the main idea has always been to create a spatial inhomogeneity

in the superconducting condensate, i.e. locally suppress or enhance superconductivity on

a scale comparable to the size of the vortex core. Therefore, if a surface arrangement of

the geometrical defects is made, the superconductor can sustain several values of the up-

per critical magnetic field, where ideally the homogeneous lattice of vortices is interlocked

with the increase in the anisotropy [128, 129, 130]. In complex oxides, strongly-correlated

electron systems can be found in which slight variations of the charge carrier density lead

to dramatic changes in their physical properties [131] and increase the potential for novel

technological applications, opening up the possibility of electrostatic tuning of the carrier

concentration [132], like in classical field-effect transistors [133, 134] or superconductivity

[135, 136, 137, 138, 139, 140]. Oxide superconductors are an example of those in which the



68
5 Complex vortex configuration in the presence of defects with different thermal

properties

critical temperature Tc can be modified via the application of an electric field [139, 140] or

by using ferroelectric field effects [139], and those processes allow one to change the Tc in a

reversible way.

In this thesis, the consequences of a weak-superconducting regions due to the incidence of

a continuous wave laser was investigated, since it provide a locally variation of the tem-

perature and adopt almost any kind of shape and size. We are motivated by the response

of a superconductor interacting with laser light of a continuous wave laser (CWL). Due to

that it offers a great opportunity to modify a will the number of defects and location in

the superconducting sample, which allows to obtain new configurations of vortex and ther-

modynamic properties. In order to investigate the response of the system to magnetic field

in which defects are created for a CWL, we apply the time-dependent Ginzburg-Landau

(TDGL) theory where the change of the temperature is locally modified. The TDGL model

provide excellent description for the study of this system due to working temperature of the

superconducting sample as well as the local temperature imposed by CWL can be found as

a coefficient on TDGL equations to be changed in the systems to be study.

This chapter is organized as follows. Sec.5.1. Introduction. Addendum to the theoreti-

cal formalism is presented Sec.5.1.1. In Sec. 5.2. We study the influence of a pentago-

nal/hexagonal defect at higher/lower critical temperature in a thin superconducting disk on

the critical fields and vortex configuration is investigated numerically. The coupled nonlinear

Ginzburg-Landau equations are solved self-consistently to calculate and compare quantities

such as the magnetization, super-current, Gibbs free energy, Cooper pair density, magnetic

induction, and phase of order parameter. For certain magnetic field ranges, we found a co-

existence of a giant vortex state, placed in the center of the disk and a complex multi-vortex

state, toward the corners of the defect. In Sec. 5.3, we study the static and dynamic prop-

erties of a superconducting condensate in a thin disk, consisting of overlapped geometrical

defects. As a consequence of the selected system for numerical simulation, the parameter

order in the regions is position-dependent and is decreased when a magnetic field is present.

Thus the vortex structure and its mutual interactions, as well as interactions with different

kinds of defects and interfaces, become very complex. In order to investigate the response of

the system to a magnetic field, we applied TDGL theory, where the anisotropy is included

through a spatially dependent critical temperature Tc, which is included in the functional

through the coefficient α due to its intrinsic dependence on the critical temperature of su-

perconducting materials. In Sec. 5.4. Static and dynamic properties of vortices are studied

in a superconducting array of weakly-superconducting (or normal regions) created in the

sample increasing the temperature T locally and by using a continuous wave laser (CWL)

that emits a beam with a controlled heat output, beam duration and intensity. The time-

dependent Ginzburg-Landau theory is used to describe the interaction of the light with the

superconductor, where the defects are include through the spatially-dependent temperature

T . Vortices penetrating into the weak-superconducting regions which are generated con-

sidering that T > Tc where the CWL is pointing. Qualitative changes are observed in the
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dynamics of the superconducting condensate in the presence of pinning with different shapes

and sizes which are possible to be modified in the same superconducting sample without any

structural changes. Our results are summarized in each Section.

5.1.1 Addendum to the theoretical formalism

As model system we consider a defect in a thin superconducting disk including a pinning

which is introduced as a pentagonal and hexagonal shapes of another superconducting ma-

terial with smaller (larger) critical temperature Tc1 < Tc (Tc1 > Tc) [141, 142] (see Fig. 5-1).

The sample is immersed in an insulating medium in the presence of an uniform magnetic

field H0. To solve this problem we use the thin film limit, d ≪ ξ, λ, (d is the thickness

of the disk and Re its radius). For this system we solved numerically the following TDGL

equations:

∂ψ

∂t
= (i∇−A)2 ψ + ψ

(

f(r)− |ψ|2
)

(5-1)

∂A

∂t
= Re

[

ψ̄ (−i∇−A)ψ
]

− κ2∇×∇×A (5-2)

where the parameter f(r) is related with the Tc-nonhomogeneity in the system: for f(r) < 1

superconductivity can be suppressed inside the pinning center, consequently it attracts the

flux domains, whereas in the case of f(r) > 1 the defect interacts with the flux repulsively.

The equation 5-1 with the inhomogeneity coefficient f(r) which is valid at T = 0. In Eqs.

(5-1) and (5-2) dimensionless units were introduced as follows: |ψ| is the order parameter in

units of ψ∞(0) =
√

α(0)/β, where α(0) and β are two phenomenological constants; lengths

in units of the coherence length ξ; time in units of t0 = π~/8KBTc ≈ 10−12s ; A in units of

Hc2(0)ξ, where Hc2(0) is the second thermodynamic critical field, the temperature in units of

the critical temperature Tc, supercurrent J = Re[ψ̄(−i∇−A)ψ] in units of J0 = ~c2/8πeξ,

λ(0) is the penetration depth.

5.2 Complex vortex configuration in a disk with a

higher/lower critical temperature superconducting

geometrical central defect

We choose d = ξ and Re = 13ξ. Largest unit cells lengths were ar = Re/Nr and aθ = 2π/Nθ,

taking Nr = Nθ = 64 as the number of cells in the r and θ directions respectively. In

a microscopic analysis is possible to establish a link between the microscopic theory of

deGennes and the Ginzburg-Landau theory but this is not a objective of this work. Let

us now turn to the presentation of the results that arise from the numerical solution of
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TDGL equations. Here, we are interested only in the vortex configurations and the choice

of geometrical defects is adequate for this purpose. The disk and defects areas are ADisk =

132ξ2π ≃ 531ξ2, APentagon ≃ 116ξ2 and AHexagon ≃ 127ξ2 respectively. We consider f(r, θ) =

1 everywhere, except at defects position in the disk which are simulated by using f(r, θ) = 0.8

for the superconductor at lower critical temperature and f(r, θ) = 1.2 for the superconductor

at higher critical temperature, see Fig. 5-1.

Figure 5-1: Layout of the studied sample: Superconducting disk with a central supercon-

ductor defect at higher critical temperature (green) or at lower critical temper-

ature (blue), for pentagonal (left) or hexagonal (right) case.

5.2.1 Magnetization and vorticity

In the first step, we will compare the magnetization in Fig. 5-2 (up) and vorticity Fig. 5-2

(down) as a function of the applied magnetic field for the two geometries considered. The disk

with hexagonal defect formed by a superconductor at higher critical temperature (Sup > Tc)

is analyzed by using the green curves in both magnetization and vorticity, and the blue one

for pentagonal defect formed by a superconductor at lower critical temperature (Sup < Tc).

It is clear to see in the Fig. 5-2 (up) that the superconducting state is not always the

Meissner state, further, for the chosen boundary condition superconductor/vacuum b → ∞,

the first transition field H1/Hc2 = 1.0556 is independent of the defect geometry and the

kind of the superconductor used. For 1.0556 < H0 < 1.3975 (in the mixed state), we

observe significant differences in the magnetization in the samples with a Sup < Tc and

a Sup > Tc. While for 1.3975 < H0 < 1.38, the magnetization curves behave similarly,

increasing the magnetic field, the superconductivity is destroyed at H0/Hc2 = 1.8. Finally, in

the downward branch of the magnetic field, at H0 = 0, we find that the magnetization is zero
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for the hexagon case, while for pentagon defect, the magnetization is −4πM = −0.2501/Hc2,

with obvious paramagnetism in the sample. This behavior is clearly reflected in the vorticity

Fig. 5-2 (down), which confirms that the value H0 for the first entry of vortices occurs in

H0/Hc2 = 1.0556 for each defect, and additionally that the vortices are pinned in the case

of a pentagon defect at H0 = 0. Now, in the interval 1.0556 > H0/Hc2 > 0.9542, we can

ensure that the number of vortices is similar (pentagon and hexagon cases, both in the down

branch of the magnetic field) and from H0/Hc2 = 0.9542 H0 = 0, the vorticity are different,

as we can see in Fig. 5-2 (down), where the vorticity for the hexagon case is N = 1, while

for the pentagon case N = 22 at H0 = 0.

5.2.2 Cooper pair density and magnetic field distribution

Figure 5-2 is in a good agreement with Figs. 5-3, 5-4, 5-5 and 5-6. It is easier to

find the corresponding values in which the different transitions occurs. Additionally, it is

possible to count the number of vortices in those figures, and compare it with the Fig.

2 (down). In this subsection, we analyses the vortex configuration, by using the results

obtained from the numerical calculations for the Cooper pair density and the magnetic

field distribution as a function of the applied magnetic field (increasing ↑ H0 to H2 and

then decreasing ↓ H0 to zero, Fig. 5-3 and 5-4). In the two superior panels of the Fig.

5-3, we can appreciate a multi-vortex state with N = 24 and Nd = 4 (N implies the

number of vortex into the superconductor area, whereas Nd inside the defect) for H0/Hc2 =

1.0619, 1.0623 respectively. High (low) Cooper-pair density is given by red (blue) regions.

Following the panels corresponding from the left to the right, the vortices adopt the form

of a hexagon, remaining outside of the defect, but increasing H0 the vortices can go into

it. It can be explained due to the enhancement of the order parameter at the interface

by choice the suitable superconductor with higher critical temperature to form the defect.

Nd take values of 8, 10, 14 for H0/Hc2 = 1.1074, 1.1265, 1.2771 respectively; is precisely in

this last one, where we can observe a normal region outside of the defect, and when the

force of vortex-vortex interaction overcomes the repulsive force exerted by the defect, the

vortices can penetrate into the defect. Is interesting to analyze the behavior of the vortices

when the magnetic field is decreasing, the vortices start to exit, as we can see in the second

panel in Fig. 5-3, from H0/Hc2 = 0.6111 to H0/Hc2 = 0.0349. The Fig. 5-3 indicates

that the superconductor/defect interface can be easily tunneled, due to the order parameter

suppression, from the defect to outside of it. The two panels in the bottom on Fig. 5-3 shows

the plot of the magnetic field distribution in the sample, high (low) magnetic field is given

by red (blue) regions. The red spots in the sample represent the nucleus of the vortices and

the red regions at the surface of the sample, represent the compression of the magnetic field.

Also is possible to find that the magnetic field distribution shown a correspondence with the

cooper pair density in the same values of applied magnetic field H0. In fact, even when only

a few quanta of magnetic flux are nucleated into a mesoscopic sample, the vortex interactions
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Figure 5-3: (Color online) Square modulus of the order parameter |ψ|2 at the indicated

applied magnetic field for a thin disk with an hexagonal defect at higher critical

temperature (two superiors lines). Oblique view magnetic induction ~h (two

inferior lines). (↑ H0 (↓ H0) the applied magnetic field is increasing (decreasing)
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Figure 5-4: (Color on line) Square modulus of the order parameter |ψ|2 at H0 for a thin

disk with a pentagonal defect at lower critical temperature (two superiors lines).

Oblique view of the magnetic induction ~h (two inferior lines).

with other vortices and with the screening currents circulating around the boundary give rise

to a variety of configurations such as multi-vortex states. These configurations are strongly

influenced by both the geometry and size of the sample and defect. In the Fig. 5-4, following

the superior panel from left to right, at H0/Hc2 = 1.0617 the vortices ”feel” the boundary of

the pentagonal defect (at lower critical temperature), then the vortices go inside the defect

at lower values of H0, since that the order parameter in the defect frontier is suppressed, if

the Figs. 5-3 and 5-4 are compared, as a consequence this region reach first the normal

state than the rest of the disk (contrary than we note in Fig. 5-3. So, the pinning effect

in the down branch of the magnetic field is enhanced, see the second panel Fig. 5-4. At

H0/Hc2 = 0.1419 is possible to see the vortices caged in the defect despite the H0 = 0, it

can be noted also in the Fig. 5-2 (blue curve, for pentagonal defect at lower Tc) where at

H0 = 0 remain a negative value of the magnetization (Fig. 5-2 up) as well as a positive value

of vorticity (Fig. 5-2 down). Notice that in the magnetic field distribution (two inferior

panels Fig. 5-4) the vortices move towards the center when the magnetic field is increasing.

At higher magnetic field, individual vortices are no longer visible in the contour plots of the

magnetic field distribution at H0/Hc2 = 1.5777. Also, at H0/Hc2 = 1.5777, the vortices are

too close to each other and the spots corresponding are overlapping in the picture. How do

the geometry of the defect influence in the vortex states? Fig. 5-3 and Fig. 5-6 shows,
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Figure 5-5: (Color online) Square modulus of the order parameter |ψ|2 at H0 for a thin disk

with an hexagonal defect at lower critical temperature (two superiors lines).

Phase of the order parameter (two inferior lines).

in both cases pentagonal and hexagonal defects are formed with a superconductor at higher

critical temperature than the rest of the disk. We found that the number of vortices on the

defect depends on its geometry. In the Fig. 5-3 (hexagonal defect) at H0 = 1.1256 we see

Nd = 8, and in the Fig. 5-6 (pentagonal defect) at H0 = 1.1577, Nd = 1, just one vortex

can penetrate the defect and this vortex remains from H0 = 1.1000 to H0 = 1.1577, which

shown the influence of the geometric in the anti-pinning effect. The opposite situation occurs

in the Figs. 5-4 and Fig. 5-5 for a defect at lower critical temperature respect of the rest of

the disk, if we compared the panels at H0 = 1.0626 and H0 = 1.0642 the vortices entrance

occurs first in the pentagonal case than the hexagonal case. It shown that the geometry of

the defect has a clear effect over the force pinning in our system.

5.2.3 Phase of order parameter

In the Fig. 5-5, we can appreciate that the vortices are caged in hexagonal disposition at

H0 = 1.0606 and the superficial superconductivity is reached at H0 = 1.3710. Now, if we

compare snapshots of two superiors panels of the Figs. 5-5 and Fig. 5-6, for hexagonal and

pentagonal case, respectively, a multi-vortex configuration can be maintained in the defect

with f(r, θ) = 1.2, regarding the defect where f(r, θ) = 0.8, because the vortices entrance
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Figure 5-6: (Color online) Square modulus of the order parameter |ψ|2 at H0 for a thin disk

with a pentagonal at higher critical temperature (two superiors lines). Phase

of the order parameter (two inferior lines).

is more gradual in the up branch of the magnetic field, in the second case (Fig. 5-6) that

the first one (Fig. 5-5). Is possible to note, comparing the snapshots at H0/Hc2 = 1.3710

in Fig. 5-5 that the normal state is reached in the center of the disk, whereas in Fig. 5-6

at H0/Hc2 = 1.6078 remain a multi-vortex state. This behavior can be confirmed watching

the lower panels in Fig. 5-5 and Fig. 5-6, due to that the phase of order parameter

allows to determine the number of vortices in a given region and the fact that the phase

of ψ varies by 2π in making a complete circuit, corresponding to the existence of a single

flux quantum associated with the vortex. If the vorticity in this region is N , then the phase

changes ∆φ/2π. The color code for values of the phase close to one are given by red regions

and close to 2π by red regions. The discrete configuration of the vortices into the defect are

found in pentagonal case (Fig.5-6) at higher values of H0 than the hexagonal case (Fig.5-5)

before the defect to reach the normal state.

5.2.4 Superconducting current density

When a superconducting sample is placed in an external magnetic field, the magnetic field is

expelled from the superconductor due to screening currents near the sample boundary. The
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Figure 5-7: (Panel up) Square modulus of the order parameter |ψ|2 at H0 for a thin disk

with and hexagonal defect at higher critical temperature with the corresponding

simulation of the behavior of the super-current. (Panel down) Similar simula-

tion using a pentagonal defect formed by a superconductor of lower critical

temperature.
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superconducting system, which represents the diamagnetic variation in the sample. It is seen

from Fig. 5-8 for green line that the critical fields H1/Hc2 = 1.0104 (a), H2/Hc2 = 1.8000

(b) and decreasing to H0 = 0 (c) at the time t1/t0 ≈ 815, t2/t0 ≈ 1436 and t3/t0 ≈ 32544

respectively, whereas for red line we obtain H1/Hc2 = 1.0709 (d), H2/Hc2 = 1.8000 (e)

and H0 = 0 (f) at the time t1/t0 ≈ 907, t2/t0 = 15564 and t3/t0 ≈ 43776 respectively.

Additionally, the points (b) and (e) marks the peaks of the curves in which the free Gibbs

energy is zero, this helps us to find the time used for the system to reach the normal state.

Conclusions

We investigated theoretically the influences of the centered geometrical defects formed by

higher/lower critical temperature superconducting sample on the vortex configuration in a

thin superconducting disk. We calculated the magnetization, Cooper pair density, magnetic

field, super-current density and free energy as a function of time for hexagonal and pentagonal

defects. The vortex lattice was different in the two geometries used due to the fact that it

tries to adapt to the geometry of the sample. This influences considerably the stability range

of the different vortex states. We also want to emphasize that the surface barrier generated

by given f(r, θ) values, plays a crucial role for the pinning/anti-pinning effect, which not

only accelerates the vortices to rush into the central area but also decelerates or even stops

the vortex to escape from the defects due to the surface barrier.

5.3 Induced anisotropy by the inclusion of defects of

variable Tc in a superconducting disk

5.3.1 Addendum to the theoretical formalism

We considered a mesoscopic superconducting disk with overlapped geometric defects in the

presence of an applied magnetic field H (see Fig. 5-9). The local critical temperature of

the sample is changed spatially by inserting another kind of superconductor. This structure

can be modeled by using a theoretical approach based on anisotropic GL formalism in the

absence of external currents and the anisotropy is included in the functional through the

parameter α, as α = 1
γ(r,θ)

α0, where this anisotrpy on α is effectively equivalent to Tc-

anysotropy in the system. For 0 < 1/γ(r, θ) < 1 the superconductivity is strongly suppressed

inside the defect and it attracts the flux domains, the function γ(r, θ) > 1 in this case

would correspond to (1 − T/Tc)/(1 − T/Tcw) with the lower critical temperature Tcw <

Tc (Tcw weaker critical temperature). Whereas in the case of 1/γ(r, θ) > 1 the defects

interacts with the flux repulsively, the function γ(r, θ) < 1 in this case would correspond to

(1− T/Tc)/(1− T/Tcs) with the stronger critical temperature Tcs > Tc (Tcs stronger critical

temperature). The TDGL for the superconducting order parameter and vector potential is
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written in the following form for a superconducting film:

∂ψ

∂t
= − (i∇+A)2 ψ + ψ

(

1

γ(r, θ)
− |ψ|2

)

(5-3)

The Gibbs free energy and the magnetization are very sensitive to changes in the vortex

configurations. Therefore, any important physical phenomenon must be manifested into this

quantities. The TDGL equations describe the gradient flow for the Gibbs free energy. The

energy, is given by:

G =
1

V

∫
[

|(−i∇− ~A)ψ|2 + |ψ|2
( |ψ|2

2
− 1

γ

)

+ κ2((∇× ~A)z −H)2
]

dV (5-4)

where the first term is the kinetic energy, the second term is the condensation energy, the

third term is the field energy, and the parameter γ is the anisotropy, which only appears in

the condensation term. We simulated a mesoscopic superconducting disk with two defects,

one with area A1 and another with area A2. The pinning/anti-pinning is introduced as we

illustrated in Fig. 5-9 (schematic view of the studied samples). We will assume a supercon-

ducting/vacuum external interface, and the configurations of this system are organized by

cases and summarized in Table 1.

Figure 5-9: Layout of the studied sample: Type-II superconducting disk consisting of over-

lapped circular and triangular defects. The following lengths must be consid-

ered in order to establish the dimension of the disk and the defects: Re (radius

of the thin disk), Rt (length from the center of the disk to the vertex of the

triangle), and Ri (radius of the circle inscribed on the triangle).

5.3.2 Magnetization, free energy and superconducting current density

In this section, we are interested in the behavior of the magnetization of the entire sam-

ple when the case of a circular defect overlapped onto a triangular defect with a different

anisotropy is considered. This configuration creates a complex spatial disposition of the local
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Tabla 5-1: Lengths and degree of anisotropy in the superconducting thin disk: Radius of

disk Re/ξ, length from the center of the disk to the vertex of the triangle Rt/ξ,

radius of the circle inscribed on the triangle Ri/ξ(0), and anisotropy in the

triangle γT , in the inscribed circle γC , and outside of the triangle γExt. In Case

4, two different anisotropies were selected: 1/γ = 0.8 (left) and 1/γ = 1.2 (right).

Re Rt Ri 1/γT 1/γC 1/γExt

Caso 1 25.25 20.20 08.41 1.20 1.00 1.00

Caso 2 25.25 20.20 12.62 0.80 1.00 1.00

Caso 3 08.25 06.60 02.75 0.80 1.00 1.00

Caso 4 08.25 06.60 02.75 0.80-1.20 1.00 1.00

Caso 5 25.25 20.20 08.41 0.80 1.00 1.00

Caso 6 08.25 06.60 04.12 0.80 1.20 1.20

critical temperature Tc and opens up great possibilities for the control of the pinning/anti-

pinning centers in order to enhance the possibilities of technological applications of this kind

of superconducting sample for the design of useful devices. As is well known, the magneti-

zation of the sample increases linearly with the applied magnetic field until H ≈ 0.90Hc2(0),

(Fig. 5-10). It can be seen that the first entrance of the vortex occurs for different values

of the magnetization. For 1/γExt = 1.0 (cases 1-5), this value is influenced by variations

in the anisotropy inside the sample, as well as by its geometry [See Fig.5-9(B),(C) and

(D)]. Furthermore, in case 6 (1/γExt = 1.2), the magnetization appreciably shows the influ-

ence of the anisotropy of the sample (upper left). In Fig. 5-10, the magnetization curve

(blue line) shows the entrance of the vortices at H ≈ 0.925Hc2(0), H ≈ 1.045Hc2(0), and

H ≈ 1.013Hc2(0), which correspond to the vortex entrance to the superconducting sam-

ple, the triangle defect with anisotropy 1/γT = 1.2, and the circle defect with γC = 1.0,

respectively, a profile which is not typical. When the vortices enter the sample, the mag-

netization decreases, showing jumps, as expected in samples with anisotropy 1/γ = 1.0 in

the whole sample, but the result obtained with the inclusion of two defects with different

critical temperature is reflected in the curves for every single case selected in this paper.

Fig. 5-10 (rigth up) depicts the results of free energy as a function of the applied external

field. This curve exhibited a series of discontinuities; each discontinuity signaled a vortex

entrance and abrupt reductions in energy. Therefore, the number of vortices is related to

the magnetization and free energy in which the system had the longest mixed state phase at

zero temperature. Following this relation (M = ∂G
∂H

), the jumps of the magnetization curve

show that the vortices are preferably situated inside the disk at 1/γ = 1.0, as can be seen

in the behavior of the blue line, until the saturation number of vortices is reached, and so

the increased vortex-vortex interaction expels some of them into the defects with different

values of γ. This is reflected in the curves [Fig. 5-10(right up)] with larger jumps among

smaller ones. [Fig. 5-10(down)] depicts the values of the current density j normalized to
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Figure 5-10: (Color online) (left up) Magnetization, (right up) free-energy and (down) su-

percurrent density, increasing the magnetic field for A1 ≈ 214ξ2 cases 3,4 and

6 and for A2 ≈ 638ξ2 cases 1, 2 and 5, (cases 1 - 6 in the Table 1).

its maximum value j0, obtained by calculating for H = 0.0. We can infer that the negative

values of j are due to screening currents that flow clockwise around the sample and that

the variations in the curves under the same applied magnetic field show the existence of the

inhomogeneity of the superconductor. Therefore, it is possible that the current density is

larger in some regions where 1/γ > 1 and the superconductivity is enhanced, but also it

is possible to find local suppressed superconductivity for 0 < 1/γ < 1, which changes the

movement of every vortex and the pinning/anti-pinning center in the sample. The current

density distribution directly affects the number of vortices that first enter into the sample

as well as into the overlapped triangle and circle defects included in the superconducting

sample. In Fig. 5-11, it is easier to find the corresponding values of the applied magnetic

field in which the different transitions occur, but also it is possible to count the number of

vortices in those figures and compare them. Nevertheless, it is easier to do in cases 3, 4, and

6 [Fig. 5-11(right)] than in cases 1, 2, and 5 [Fig. 5-11(left)], due to the fact that the area

is larger in these last cases.

5.3.3 Cooper pair density

Figs. 5-10 and 5-11 are in a good agreement with Figs. 5-12-5-17. In this subsection, we

analyze the vortex configuration using the results obtained from the numerical calculations

for the Cooper pair density for the cases 1-6. Following the panels for each case (see Figs.
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Figure 5-11: (Color online) Vorticity N as a function of the applied magnetic field H , for

(left) Re = 25.25ξ (cases 1,2,5),and (right) Re = 8.25ξ (cases 3,4,6).

5-12 - 5-17), at the first snapshot with H = 0.0, N = 0, we can see the variation of the

anisotropy selected for every case, because in the simulations high Cooper pair density is

depicted by red regions and low density by blue regions. Therefore, this can explain the

enhancement/decrease of the order parameter spatially by choosing the suitable supercon-

ducting area with higher/lower critical temperature to form the defect using the desired

entropy. In most studies of superconducting mesoscopic samples, the metastability of dif-

ferent vortex states results from competition between the vortex interaction with Meissner

currents, which in most of the investigations represents the effect of the sample boundaries

and the vortex-vortex interaction. However, when anisotropy is present in the sample, an

additional, competing effect needs to be included in our analysis, taking into account the

enhanced or reduced superconductivity in parts of the sample, where vortices are expelled or

favorably reside, respectively. To begin with, we first consider a sample as in Fig. 5-12, but

now with Re = 25.25ξ, Rt = 0.8Re, Ri = Re/3, 1/γT = 1.2, 1/γC = 1.0 and 1/γExt = 1.0.

The results are summarized in the panels in Fig. 5-12. As can be seen in these figures, the

anisotropy in the circle inside the triangle is the same as outside of it. Despite the fact that

the vortices penetrate the points of the boundary near the vertices of the triangular defect

[according to panels (a) - (i)] until they saturate the disc outside the triangular defect, they

do not penetrate the defect at the vertices, as commonly occurs in triangular superconduct-

ing samples [see panel (j)], but they do not remain inside it. There are enough vortices to

expel some of them into the circle defect, owing to the lower-energy barrier for vortex entry

there, considering that 1/γT > 1/γC. Therefore, they feel that it is favorable to reside there

in order to minimize energy [see panels (k)-(m)]. Regions with 1/γ = 1 reach the normal

state sooner for lower values of the applied magnetic field than when 1/γ = 1.2 is used. In

the discussion of Fig. 5-13, we show that new vortex configurations can be obtained with

suitable changes in the anisotropy and the size of the defect. Here, only the anisotropy in

the triangular defect changes from a value of 1/γT = 1.2, where the superconductivity is

enhanced (values of 1/γ > 1) to a value of 1/γT = 0.8, in which area the superconductivity

is reduced. In addition, the vertices of the largest defect on the sample are in contact with
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Figure 5-12: (Color online) Square modulus of the order parameter |ψ|2 for a thin disk

with Re = 25.25ξ, Rt = 0.8Re, Ri = Re/3, 1/γT = 1.2, 1/γC = 1.0 and

1/γExt = 1.0. The shown vortex states are obtained by sweeping the magnetic

field up in the considered field-range.

Figure 5-13: (Color online) Contour plots of the Cooper-pair density for Re = 25.25ξ,

Rt = Re, Ri = Re/2, 1/γT = 0.8, 1/γC = 1.0 and 1/γExt = 1.0.
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Figure 5-14: (Color online) Contour plots of the Cooper-pair density for Re = 8.25ξ, Rt =

0.8Re, Ri = Re/3, 1/γT = 0.8, 1/γC = 1.0 and 1/γExt = 1.0.

its boundary, which did not happen in the previous analysis. In this case 2, the vortex entry

into the defect is not through the triangle defect side, as takes place in case 1, because the

vertices with anisotropy 1/γT = 0.8 with weak superconductivity allow better conditions for

vortex penetration into the disk, but also into the defect [see panel (b)]. This opens a new

vortex configuration and pinning center. We can see in the snapshot of the order parameter

[see panels (c)-(i)] that the vortices saturate the area of the defect first, before the rest of the

disk, as we expect, due to the selected condition, but this also allows some regions to remain

without flux entry for a higher applied magnetic field. Subsequently, increasing the magnetic

field compresses vortices more toward the central defect, owing to the increasing Meissner

currents at the sample boundaries, and finally the vortices penetrate into the region with

anisotropy 1/γT = 1.0 at H = 0.958Hc2 [see panel (j)]. In contrast to the previous case 1, the

triangle defect reaches the normal state before the disk and the circular defect at the center

of the superconducting sample [see panel (k)-(o)]. In Fig. 5-14, we consider a reduction of

the area of the entire sample, selecting a radius Re = 8.25ξ with conditions of the spatial

distribution of the anisotropy similar to the previous case 2, but the vertices of the triangular

defect are separated from the boundary of the superconducting disk. In summary, special

vortex features are shown in Figs. 5-14 and Fig 5-15, in which we considered a reduction

of the area of the entire sample by selecting a radius Re = 8.25ξ, with conditions similar to

the spatial distribution of the anisotropy of the previous case 2, except that the vertices at

the triangular defect are separated from the boundary of the superconducting disk. Addi-

tionally, in Fig 5-15 the triangular defect combines two halves with anisotropies 1/γT = 0.8

(left half) and 1/γT = 1.2 (right half). We can see in case 3 that the vortices penetrate

through the points in the boundary near the vertices of the triangular defect, in which the

superconductivity is reduced, similar to case 2 [see Fig. 5-14 panel (a)-(c)]. However, in

this case the following vortices do not penetrate through the vertices; they do it through
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the disk boundary in the direction of the sides of the triangular defect, due to the repulsion

exerted by the vortices already located in the vertices of the defect [see panel (D)]. These

three vortices finally enter and establish a minimal energy system configuration [see panel

(e)], created by the repulsion of the vortices initially in the defect and the shielding cur-

rents, which have a greater effect on the displacement and the final location of the vortices,

due to the reduction of the sample size, which is typical in mesoscopic samples, as we can

observe if we compare cases 2 and 3. We can also see in panel (f) that the increase of the

applied magnetic field moves the vortices towards the center until they adopt the triangular

form of the defect without penetrating the central defect and in this way give rise to the

entrance of three more vortices in the direction of the sides of the triangle formed by the six

previous vortices, due to the lower energy cost for entering in this direction rather than in

the direction of the vortices located in the vicinity of the disk boundary [panels (g) - (h)].

Finally, the screening currents force the vortices to adopt the shape of the triangular defects

at a higher applied magnetic field [panel (k)]. In Fig. 5-15, we corroborate our analysis

by considering a superconducting sample with two anisotropies, γT = 0.8 and γT = 1.2 [see

panel (a)]. The first vortex penetrates the sample on the side of the disk with a reduction in

the superconductivity, and it has a greater area (bottom of the triangular defect) [see panel

(b)]. The next vortex avoids entering in the direction of the vortex previously anchored,

but also prefers access to the zone where the superconductivity is reduced. For this reason,

it makes its entry in the upper part of the triangular defect with γT = 0.8 [see panel (c)].

However, it is interesting to see that the next state does not show the input of the vortex in

the direction of the vertices of the defect area with anisotropy γT = 1.2, where the shield-

ing current is higher because there is a greater area with enhanced superconductivity, and

also as far as possible from the two previous vortices in the sample [see panel (e)]. As we

consequently expected, the defect with anisotropy γT = 0.8 reaches the normal state before

the region with anisotropy γT = 1.2. In Fig.5-16, we compare case 2 with case 5, changing

the area of both overlapped defects by considering a reduction of the radii from Ri = Re/2

to Ri = Re/3 and from Rt = Re to Ri = 0.8Re, respectively. But the parameters related to

the anisotropy and the size of the sample is maintained. If we increase the applied magnetic

field under this configuration, the behavior is the same in which the vortex entrance occurs

through the vertices in the triangular defect and finally penetrates the central defect until

it reaches the normal state. Our results (shown in Fig.5-16) clearly demonstrated that the

change of the size of the defects does not appreciably disturb the behavior of the vortices and

their configurations in the different states. Nevertheless, we have to mention that there are

differences between the respective curves of magnetization, in which the jumps for the vortex

entrance occur at different magnitudes of the applied magnetic field, and at values similar

to the magnetization (cases 2 and 5). The free energy and supercurrent density also exhibit

a similar behavior, which shows the influence of the anisotropy selected for each mesoscopic

superconductor system selected for study (see Fig.5-10). Finally, in Fig. 5-17, we compare

case 3 with case 6, changing the area of the circular defect by considering an increase in the
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Figure 5-15: (Color online) Contour plots of the Cooper-pair density for Re = 8.25ξ(0),

Rt = 0.8Re, Ri = Re/3, 1/γT = 0.8 (left half of triangle), 1/γT = 1.2 (right

half of triangle), 1/γC = 1.0 and 1/γExt = 1.0.

Figure 5-16: (Color online) Contour plots of the Cooper-pair density for selected vortex

states for Re = 25.25ξ(0), Rt = 0.8Re, Ri = Re/3, 1/γT = 0.8, 1/γC = 1.0

and 1/γExt = 1.0.
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Figure 5-17: (Color online) Contour plots of the Cooper-pair density for selected vortex

states for Re = 8.25ξ(0), Rt = 0.8Re, Ri = Re/2, 1/γT = 0.8, 1/γC = 1.0 and

1/γExt = 1.2.

radius from Ri = Re/3 to Ri = Re/2, as well as the anisotropy in the disk from 1/γExt = 1.0

to γExt = 1.2 [panel (a)]. The increase of the anisotropy 1/γExt = 1.2 allowed two other

vortices to penetrate through the vertices towards the area on the triangular defect after the

first entry of vortices through the vertices [panel (b)], by completing two vortices at each

corner of the triangle with anisotropy [panel (c)]. This did not occur in case 3, in which

only one vortex penetrated through the vertices, while the rest did so in the direction of

the sides of the triangular defect. Subsequently, the increase in the applied magnetic field

separates the vortices by the repulsion generated by the imminent entrance of the vortices

through each vertex, a behavior that shows a high-energy barrier that can confine the vor-

tices to be situated on the defect, due to the influence of the anisotropy [panels (d),(e)].

Finally, we can see that the vortices continue entering through the points on the boundary

disk in the direction of the vertices of the triangular defect until reaching the normal state

[panels (f)-(k)]. All these complications of the defect geometry are interesting, because due

to recent achievements in optics, it has become possible to exploit the interaction of light

with superconductivity and create spatially periodic imprints on superconducting samples.

Therefore, these findings open up avenues for future exploration of spatially engineered su-

perconducting samples that allow achieving advanced functionalities. Also, it is possible to

experimentally control the defect geometry and measurable properties of the vortex states.

Conclusions

We studied the properties of a mesoscopic superconducting thin disk with an array of over-

lapped triangular and circular defects with changes in Tc across the sample, which includes

a spatially distributed anisotropy coefficient γ. Our first finding was that we showed the
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great influence of the magnetization, free energy, and supercurrent density as a function

of the anisotropy level and spatial distribution on the formation of geometrical defects, as

well as on the changes in the size of the sample and on the triangular and circular defects.

We found that the transitions to different vortex states can be suitably modified in order

to obtain the desired states. Furthermore, we investigated the vortex configurations in the

sample with two geometrical defects in order to establish a complex configuration of the

spatial variation of the critical temperature Tc. We found that the energy barrier can be

modified spatially in the sample by considering regions with lower/higher superconductivity

and choosing anisotropy (1/γ) greater than or less than 1, which can favor the entrance of

the vortices into the defect or produce their repulsion. Therefore, this determines the compe-

tition, which results in the final vortex configuration, but with the help of the vortex-vortex

interaction and the boundary of the sample.

5.4 Nanoscale superconducting condensate manipulation

using a continuous wave laser

5.4.1 Addendum to the theoretical formalism

The superconducting structure exposed to a perpendicular magnetic field ~H that include

regions of depleted superconductivity which is created by local heating, due to the system

is affected by a continuous wave laser, it can be modeled by using a theoretical approach

with the generalized time-dependent Ginzburg-Landau (TDGL) equation (Eq. 5-1)which is

used to simulate the behavior of the superconducting condensate inside of pinning center

(weak-superconducting regions) as well as in the rest of the sample. Where, the function

f(~r) provides the regions where Ψ is depleted, which create the weak-superconducting for

pinning center (or defect) with normal state (f = 0) immersed in a superconducting state

(f = 1) at the rest of the sample, where its relation with the temperature is given through

f(~r) = (1−TL/Tc)
(1−Ts/Tc)

, considering Tc as the critical temperature, TL the temperature generated

by CWL whereas Ts is the superconductor working temperature outside of the defect.

5.4.2 Cooper pair density

We studied the vortex structure of a superconducting film introducing artificial pinning

centers changing locally the temperature of the sample, forming circular regions where an

artificial defects is well established as we can see in Fig. 5-18, as a strategy to trap quan-

tum vortices and increase the value of applied magnetic that can be used until reach the

normal state in the entire sample. It is well known that the regular triangular vortex lat-

tice has the lowest energy in defect free superconductors, but the inclusion of defects where

the superconductivity is diminished, the vortex-vortex repulsion starts to dominate in the

sample. These competing interactions can be tuned controlling the number, size and shape
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Figure 5-18: (Up) Suggested experimental setup to modify spatially the superconducting

condensed, by using a 1. continuous wave laser (CWL) passing through a

2. mask to create the weakly-superconducting regions in the 3. sample with

different sizes and shapes. (Down) Cases studied in this work: Case 1 (1D

one defect), Case 2 (2DPar two defects parallel), Case 3 (2DPer two defects

perpendiculars) Case 4 (3D three defects), Case 5 (4D four defects) and Case

6 (4D four defects larger)

of the defects which is possible to accomplish by using a CWL, as we showed in Fig. 5-19,

where the vortex configuration for selected values of applied magnetic field H0 is showed,

increasing the number and position of the defects for the experimental simulations. Fol-

lowing the panels for each case at the first snapshot with H = 0.0, we can see the normal

regions generated locally by the CWL depicted by blue regions where the order parameter is

|Ψ|2 ≈ 0 whereas the yellow one represents a value of Copper-pair density |Ψ|2 = 1. Fig.5-19

shows that the position of the defect encourages the entrance of the quantized flux in the

vicinity of its location and subsequent entry of the vortices to the defect (see Case 1) until

reaching its normal state at H0 ≈ 1.380Hc2. This effect can also be evidenced by including

an additional defect opposite to the center of the disk but as we expected the entry of the

vortices is modified and also the vortex configurations obtained for each case. When we

compare the obtained vortex configuration in each panel (Cases 1, 2, 3 and 4) at magnetic
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Figure 5-19: (Color online) Vortex configurations corresponding to selected states for fol-

lowing cases: Case 1 (1D one defect), Case 2 (2DPar two defects parallel),

Case 3 (2DPer two defects perpendiculars) Case 4 (3D three defects).For each

state, panels shows the Cooper-pair density of the vortices trapped in the

weak-superconducting region formed where the CWL is pointing.

field H0 = 1.124Hc2, we can see that the inclusion of a new defect increases the number of

vortices from NCase1 = 70 to NCase2 = 78 (see Case 1 and Case 2), but for Cases 2 and 3

it is possible to see that at same value H0 the position of the defects changes the number

of vortices inside the sample NCase2 = 78 and NCase3 = 72. It is due to defects distribution

that encourage the vortex penetration in two points at the boundary of the sample (up and

bottom) [See Fig. 5-19, Case 2 snapshot (d)], whereas the proximity between the defects

could encourage the penetration only through one point [See Fig. 5-19, Case 3 snapshot

(d)]. Now, Fig. 5-19, Case 4 snapshot (g) in which the inclusion of additional defect show

a greater number of vortices inside the sample that almost a normal state is reached at the

same value of applied magnetic field H0 = 1.124Hc2 considered in the previous Cases. Next,

we introduce a lattice of pinning centers which are formed by four defects and study their

effect on the vortex configuration and critical parameters of the sample. The dimensions of

the sample are the same as in Fig.5-20, but the radius of the defect in the Case 5 is R = 4ξ

whereas in Case 6 is changed to R = 8ξ. Knowing that the density of the superconducting

Cooper-pair drops to zero inside the defects this favorate the vortex entry and with the

increase of the size defects,the mutual repulsion of vortices is minimized into the sample and

it encourage the vortex entry in the pinning centers, due to the strong screening (Meissner)

currents running along the perimeter.
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Figure 5-20: (Color online) Vortex configurations corresponding to increase the size of the

defects. For each state, left/right panel shows the Cooper-pair density of the

vortices trapped in the weak-superconducting region formed where the CWL

is pointing for the considered cases: Case 5 (4D four defects) and Case 6 (4D

four defects larger).

5.4.3 Magnetization and vorticity

The magnetization curves show corresponding discontinuities, as expected by using the theo-

retical approach the previous section we consider small superconducting disk with a circular

defects distributed around the center with different sizes in several positions, generated by

continuous wave laser. Therefore, in the process of sweeping up the applied magnetic field

H0, novel reactions of the material were found reflected in the differences where the jumps

of the magnetization curves occurs comparing the Cases proposed in this study for greater

values of the magnetic field, nevertheless, the behavoir of Meissner state that show the curves

is the same until the first vortex entry (See Fig. 5-21 (a) and (b)) at H0 ≈ 0, 925 where

the sizes of the defects remains but the number of them as well as the positions change,

which is reflected on the states at H0 ≈ 0, 972 in Fig. 5-19 and snapshot (c) for every Case

shows approximately the first vortex entry at same value of applied magnetic field, despite of

the number of vortices entrance that change with the defects variations. The dimensionless

magnetization, which is a direct measure of the expelled magnetic field from the sample, is

defined as M = (h−H0)/4π, where H0 is the applied magnetic field and h is the magnetic

field averaged over the sample and h = ∇×A, this expulsion depends on how much region
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Figure 5-21: (Color online) Plot of the Magnetization as a function of the magnetic field

for the cases compared on each of figures. (a) with Case 1 (1D one defect),

Case 2 (2DPar two defects parallel) and Case 4 (3D three defects), (b) Case 2

(2DPar two defects parallel), Case 3 (2DPer two defects perpendiculars) and

(c) Case 5 (4D four defects) and Case 6 (4D four defects larger).

of the sample is in the superconducting state, we see that for the case with major defects,

the jumps are greater because this expulsion is smaller allowing a greater number of vortices

to penetrate the sample [See red curve Fig. 5-21]. On the other hand, we see that the

smaller size of the defects causes a greater expulsion of the magnetic field causing a reduc-

tion in the number of vortices that the sample penetrates, resulting in smaller variations

of the magnetization [See black curve Fig.5-21]. One of the most important contributions

of this work focuses on the possibility of modifying the shape and size of the defect in the

same superconducting sample without the need for a structural change due to the inclusion

of metals, heavy ions, orifices, etc. In Fig. 5-22 we studied the magnetization in a super-

conducting sample with the inclusion of square defects [Fig. 5-22 (left)] and triangular [Fig.

5-22 (right)], in which the modification in the expulsion of the magnetic field can also be

evidenced by including these changes. Fig. 5-22 shows that in both cases the transition

from the Meissner state to the mixed state is achieved at approximately the same value of

the applied magnetic field H0 = 1.03Hc2 at point (b) of both curves, but the jump in the

magnetization has a difference of 40%. Situation that is reflected also in the number of

vortices that enter the sample as mentioned in the previous paragraph, but in this case is
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Figure 5-22: (Color online) Plot of the Magnetization and vorticity as a function of the

magnetic field for two differents shapes of the defects. (Left) four square and

(right) four triangular.

caused by the form of the defect, as we can see in the vorticity curves inset for each case [see

Fig. 5-22 (left)], the number of vortices for the sample with square defects reaches almost

N = 40 vortices, while in the case of triangular defects the value of the vorticity is N = 19

for the same H0 = 1.03Hc2 at point (b).

Conclusions

In summary, we have studied the superconducting array pinning of magnetic flux quanta

by using a continuous wave laser (CWL) to obtain a nanoscale modulation of local tem-

perature T . This creates an energy landscape for flux quanta, where the size and shape

of weak-superconducting zones can be tuned over the same sample without any structural

change even at any value of the applied magnetic field H0. In addition to its fundamental

interest, the possibility to manipulate flux quanta by designing the structure of supercon-

ducting condensate along the entire superconductor is relevant in view of applications. These

include fluxtronic devices based on the controlled motion of flux quanta, for which the weak-

superconducting zones is created also might be used for the fabrication of reconfigurable

nanodevices based on versatility that offer the system proposed in this experimental simu-

lation.
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6 Vortex matter in mesoscopic

superconductor with nanoengineered

thickness profile

We demonstrate the modulation of the superconducting condensate at nanoscale via control

of the thickness over the surface. It yields a landscape for magnetic flux quanta due to the

selected symmetry that allow, us to impose creation of vortex configurations, but also tune the

critical parameters of the superconductor that can be effectively controlled. Our result suggests

the possibility of modifying superconductivity of a thin film by exploiting well-controlled and

thickness-dependent quantum size effects.

6.1 Introduction

Superconducting systems with artificial pinning centers have received much attention over

the past decade. Due to the advances in lithographic techniques based on modern electron-

beam and etching procedures one can design superconducting disks with different shapes and

sizes of defects. These systems enable one not only to study possible vortex configurations,

but also to get enough statistics to identify stable and metastable configurations of interact-

ing vortices and consider the effect of the sample geometry on the final vortex state [61, 143].

These advances allow to propose almost any mesoscopic system for theoretical study and

obtain their critical parameters, which determine the properties of the superconductor and

its applications. This is of interest for fundamental physics, also for potential device appli-

cations in nanoelectronics [144, 145, 146, 147, 148]. The possibility to control the vortex

density has made them one of the favorite experimental and theoretical systems for studies

of the physics of solid state [149, 150, 92, 93, 82, 83, 84, 85, 151]. The configuration on

the vortices in an external magnetic field is strongly influenced by the boundary conditions,

we expect that different geometries of the central defects on the disk will generate different

arrangements of vortices, allowing for the realization of exotic vortex configurations more

stable than the conventional ones. In the case of a larger disk, the vortices are locate on a

ring near the boundary, due to the confinement and Abrikosov-like lattice also may appear,

but this configuration, is owing to the influence of sample geometry and it is diminished at

a distance from the boundary [49].
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The superconducting properties of the vortex state of samples with engineered manufactured

defects as trench/holes or barrier/pillars have attracted a great deal of attention [152, 153].

The possibility to control the vortex density has made them one of the favorite experimental

and theoretical systems for studies of the physics of solid state [82, 83]. It was observed

that defects can strongly facilitate the control of vortices over the surface barrier and reduce

the field penetration [88, 91]. Usually, pinning/anti-pinning centers and the Bean-Livingston

surface barrier are considered to be competing effects that alternatively control the magnetic

response in the vortex state. In previous works we studied the effect of weak circular, square

and triangular trench on the vortex configurations in a circular geometry. We found that

the lower and upper critical fields are independent of the geometry of the weak defect, due

to weak pinning force. Also, we found that the vortex configurations are strongly influenced

by the geometry of the defects on the sample [154, 155].

In this kind of heterostructures it is possible to demonstrate that the critical parameters of

a superconductor can be manipulated and fine-tuned through nanostructuring [156]. Ghi-

nobker et.al predicts spontaneous generation of the magnetic flux inside the superconducting

ring. Josephson weak links in the ring increase the magnitude of the spontaneously generated

magnetic flux [157]. In the regime for conventional low temperature Type II superconduc-

tors, κ > 1/
√
2 samples with different geometries with/without structural/superficial defects

surrounded by different materials have been studied theoretically [158]. The authors report

a high dependence of the boundary conditions and the structural defects on the thermo-

dynamics fields and superconducting electron density of the sample. Complicated pinning

topologies of arrays of defects in superconducting micro-structures have been experimentally

and theoretically studied. Several authors have shown that the critical magnetic fields, crit-

ical current and vortex configurations are dependent of the geometry/pinning force of the

defects [159, 160, 161]. Kosterlitz and Thouless [162] have predicted that in two dimensional

neutral superfluids a thermodynamic instability should occurs in which vortex-anti-vortex

pairs spontaneously dissociate into free vortices, experiments on superfluid helium films ap-

parently confirming this prediction [163]. V. R. Misko et.al [160] found a thermodynamically

stable vortex-antivortex pattern in mesoscopic type I superconducting triangles due to the

change of the sign in the vortex-vortex and vortex-anti-vortex interaction forces when pass-

ing through the Bogomolny point (κ = 1/
√
2), combined with the condensate confinement

by the boundary of the mesoscopic triangle.

The Bogomolny point κc = 1/
√
2 was introduced originally in string theories, where at

critical temperature it marks the border between ideally diamagnetic bulk type-I supercon-

ductors and type-II ones that can host vortices. At this point the superconductivity exhibits

properties different from the usual superconductors [164]. The possibility of modifying the

properties of superconducting samples inserting structural defects in the superconductor

or/and controlling the sample boundary conditions has made from nano and mesoscopics

systems one of the more popular experimental and theoretical system for studies of the

physics of solid state. Berdiyorov et. al investigated the phase boundaries for square sam-
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ples containing several anti-dots in the presence of a uniform perpendicular magnetic field,

they found that the phase of these structures reveals an oscillatory behavior caused by

the formation of vortex configurations in these pinning anti-dots. In previous works, we

show that under an appropriate construction of the superconducting boundary, a type-II

superconducting disc may behave like a type-I and that the thermodynamic critical fields,

magnetization, free energy and vorticity, depend on the chosen boundary condition. The

effect of the geometry of a square and triangular trench on the thermodynamical properties

of a superconducting disk with a central hole was studied. Our results have shown that the

vortex state depend strongly of the geometry of the trench at low magnetic fields. Finally,

the superconducting state in a small Type II superconducting square with a central square

pillar of different area was analyzed in a recent work. A novel vortex configurations as a

function of magnetic field was found.

The study of superconducting properties in this kind of heterostrustures takes a particular

importance for potential applications, such as the fabrication and development of microwave

circuits, and SQUIDs [165, 166, 167]. In 2007, Brandt and Mikitik [168] studied what is

known as the shaking effect, considering an inclined DC magnetic field and a small AC

field applied parallel to the plane of a superconducting thin film. Thus, they obtained an

anisotropic relaxation of the internal field and sheet currents over the sample. Several authors

described the distribution of the internal field and the sheet currents in films shaped in the

so-called SQUID geometry, employing some variations for the cross section of the sample

[169, 170, 97]. The confinement on the superconducting condensate inside the samples

can be controlled using the deGennes extrapolation length b in the boundary conditions

described by Ginzburg-Landau theory (GL) [92, 93]. The GL theory has been proven to

give a good account of the superconducting properties in samples of varies geometries, e.g,

disks with finite height and spheres [171, 172], shells [173] on cone [174]. Experimentally

was demonstrated that active and passive superconducting thin-film devices can be used

as very sensitive tools for detecting motion and penetration of vortices in superconducting

material and that the analysis of the local distribution of vortices in the devices can be used

for optimization of device properties [175, 176, 177].

This chapter is organized as follows. Sec.6.1. Introduction. Addendum to the theoretical

formalism is presented Sec.6.1.1. In Sec. 6.2. We solved the time dependent Ginzburg

Landau (TDGL) equations for a large disk with radius Re = 26ξ in presence of a magnetic

field and central defects are considered. The magnetization, magnetic induction, vorticity

and Cooper pair density are calculated. We found an interplay between surface and strong

pinning/anti-pinning centers and the vortices are arranged by the defect geometry, which

vortex configuration more energetically stable and the sequential transition of different vortex

states occurs with increasing magnetic field. In Sec. 6.3. We consider an interplay between

surface and strong pinning/anti-pinning centers. We calculate the magnetization, free energy,

vorticity and Cooper pair density for a thin disk with a central hole containing one pentagonal

or hexagonal trench (or barrier). Also we consider the deGennes parameter b→ ∞ and b = 0.
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In Sec. 6.4. We study the superconducting state for a mesoscopic sample with a central anti

pinning center (dot) in presence of a magnetic field applied perpendicular at this surface.

The goal of our work is found an interesting spontaneous anti-vortex states generation with

a posterior vortex-anti-vortex annihilation at determined magnetic field. In Sec. 6.5. We

study the vortex matter profile, Gibbs free energy and magnetization for a circle with a hole

at the center connected to the outside vacuum through a very thin slit with angular width.

We have also studied the influence of a metallic or superconducting material in contact

with the sample on the first vortex entry field of the superconducting sample. According to

angular width of the slit and the boundary conditions we show that the diamagnetic nature

of the sample can be considerably enhanced. Our results are summarized in each Section.

6.1.1 Addendum to the theoretical formalism

We consider a superconducting film (of thickness d ≪ λ, ξ) with several geometrical shapes

in the presence of a perpendicular uniform magnetic field For the given system we solved

the nonlinear GL equation averaged over the sample thickness, which can be written in

dimensionless units in the following form [178, 179, 180, 181, 182, 147]:

∂ψ

∂t
+

1

g
(i∇+A0) · g (i∇+A0)ψ − ψ + ψ3 = 0. (6-1)

where g(r, θ) is just a function which describes the thickness of the sample. In this case,

the magnetic field can be taken nearly uniform inside the superconductor H0 = ∇ × A0,

so that second GL equation does not need to be solved. In Eq. (6-1) dimensionless units

were introduced as follows: |ψ| is the order parameter in units of ψ∞(T ) =
√

−α(T )/β,
where α(T ) and β are two phenomenological constants; lengths in units of the coherence

length ξ(T ); time in units of t0 = π~/8KBTc; A in units of Hc2(T )ξ(T ), where Hc2(T ) is

the second critical field, temperature in units of the critical temperature Tc, supercurrent

density J = Re
[

ψ̄(−i∇−A)ψ
]

in units of J0 = ~c2/8πeξ; Gibbs free energy G in units of

G0 = H2
c2V/8π, λ(T ) is the penetration depth.

6.2 Influence of 3D artificial defects on vortex lattice in a

large mesoscopic superconductor

Let a thin superconducting disk of thickness d and radius Re = 26ξ ≈ 1µm, with |z| <
dg(r, θ), for all (r, θ); g(r, θ) is a function which describes the thickness of the sample. How-

ever, in the former case, κ is replaced in the by the Ginzburg-Landau parameter κeff = κ2ξ/d.

Largest unit cells lengths were ar = Re/Nr and aθ = 2π/Nθ, taking Nr = Nθ = 128 as

the number of cells in the r and θ directions respectively (polar coordinates). We take

κeff = 0.8854, which is a value for a thin disk of Nb with thickness d ≈ 45 nm, where ξ = 38

nm, Tc = 9.2K, κ = 1.02, η = 1 and T = 0. Numerical limitations arise in the choice of
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Figure 6-1: Layout of the studied sample: Superconducting disk with a central defect, hole

(right) or barrier (left), for circular (up) or triangular (down) case. With a

superconductor/vacuum interface.

the time step due to the forward-Euler treatment of the Ginzburg Landau equations. A

practical rule for time step selection is:

△t ≤
[

(araθ)
2η

2(a2r + a2θ)
,

araθ)
2

2(a2r + a2θ)κ
2

]

(6-2)

Then, we choose to increase the value of the applied magnetic field each △t = 0.01.

Let us now turn to the presentation of the results that arise from the numerical solution of GL

equation. We are interested only in the vortex configurations and the choice of geometrical

defects is adequate for this purpose. The disk and circular defect areas are AD = 262ξ2π =

2124ξ2, and AC = 72ξ2π = 154ξ2 respectively; while the bisector of triangular defect is 6ξ

with a area AT = 49ξ2. We consider g(r, θ) = 1 everywhere, except at defects position in

the disk which are simulated by using g = 0.8 for the hole and g = 1.2 for the barrier, see

Fig. 6-1. The issue here is to determine which geometric defect is the suitable to find the

pinning or anti-pinning effect and its interplay with the applied magnetic field. It should be

detectable through all the order parameter, the magnetic induction, and the magnetization.

Initially, we analysis the magnetization versus the external applied magnetic field, the curves

shown in Fig.6-2 (up) for large disk with circular defects (barrier and hole) and thin disk,

while triangular case is shown in Fig. 6-3(up). Both samples exhibit the first clear jump at

the field H0 = 1.0350Hc2(0) and H0 = 1.0309Hc2(0), respectively, corresponding to the first

entrance of vortices into the sample. We can see that the value of the field for the first vortices

entrance is approximately the same, while for the second vortex entry, we found differences in

the location of peaks (see inset) in Fig. 6-2(up) and Fig. 6-3(up). Additionally, we can see

despite the first vortex entry the field H1 is almost the same value. The Fig. 6-2 (down) and

Fig. 6-3 (down) shows differences in the number of vortices entering at H0 ≈ 1.0329Hc2(0),

snapshot (Insets) shows the values of vorticity for circular defects as follow N = 135, 121, 116

corresponding to the hole, thin disk and barrier defects, respectively. While for triangular

defects, the snapshot show N = 131 and N = 119 for hole and barrier. It is possible to
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Figure 6-4: (Color online) The vortex structure in the indicated magnetic field for a thin

disk with a central perforation with radius r0 = 0.31ξ(0). I. Square modulus of

the order parameter |ψ|2, II. Oblique view of |ψ|2, III. Magnetic induction ~h.

.
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observe the correlation between the vorticity N and the defects used for this simulation, in

which the value of N decrease, because the barrier defect generate greater opposition to the

vortices entrance, while the opposite occur with the thin disk and hole defect. It is well

known that vortices nucleate at the boundary of the sample, additionally, the interaction

among vortices, which are just nucleating at the surfaces form somewhat deformed lattice

structures and Abrikosov lattice for some values of H0, Fig. 6-4 column I line d). The first

and second columns in Figures 6-5− 6-8 represent the cooper-pair density and the columns

III are contour plots of the magnetic induction. Blue and/or red regions indicate high and/or

low Copper pair density/induction, i.e. in Fig. 6-5 column II line c) in which the red color

in the center of the barrier is degraded until blue on the bottom, as well the Copper pair

density decrease similar to the magnetic induction in the column III line c). Fig. 6-5 and

6-6 shows the vortex configuration increasing the applied magnetic field and the differences

when is barrier or hole circular the defect used in the numerical simulation. We find relevant

differences in both cases, at H0 = 1.1187Hc2, shown in line a) the vortices are extended at

larger area of the disk, including into the hole, comparing with the barrier case in which there

is not vortices, thus, the pinning state is obtained first using a hole defect as we expected

and, furthermore, in line b), Nd = 10 in the hole whereas none vortex has entered into the

barrier, but the force of vortex-vortex interaction overcomes the repulsive force exerted by

the barrier and the vorticity obtained is N = 7 (see Fig. 5 line c) with H0 = 1.3233Hc2),

while in hole defect case N = 15 (see Fig. 6 line b) with H0 = 1.1615Hc2). The snapshot

of the magnetic induction in both figures in line a) show that the blue color is centered on

the disk and this confirm the Meissner effect on the circular defects, so its behavior is like

type I superconductor. However, when the field reaches great values the vortices penetrate

the defects and the peaks of magnetic induction can even be counted, so the defects reached

its state as type II superconductor. For H0 = 1.3605Hc2 the line e) show a new vortex

configuration into the barrier with Nd = 14, the vortices are positioned separately as much

as possible and this is being located between the vortices, this due to the geometry of the

circle and the lowest possible energy state that must be achieved by the system. On the other

hand, in line e) (Fig. 6-6) the hole defect is found in normal state, and the magnetic field

has penetrated completely as we can see in the magnetic induction, in addition, Abrikosov

lattice is found in this case at H0 = 1.3047Hc2. Notice the same behavior for barrier case in

line b) at H0 = 1.2547Hc2. Finally, in line f) at H0 = 1.4163Hc2 the disk is completely in

normal state (Fig. 6-6), while a little central region remain in superconductor state (Fig. 6-

5) at H0 = 1.3977Hc2. In the following, we analyzed a superconducting disk with triangular

defects and consider their area smaller than the circular defects discussed above. However,

the pinning effect produce a different behavior in this case. Fig. 6-7 and 6-8 exhibit the

vortex structure for barrier and hole in large disk, as shown in line a) at H0 = 1.0350Hc2,

but we can see that in the defect barrier at H0 = 1.1187Hc2 there is no penetration of

vortices while for the case hole at H0 = 1.0536Hc2 the vortices remain in the defect, spite of

difference of values of magnetic field applied. Throughout the whole simulation, the pinning
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Figure 6-5: (Color online) The vortex structure in the indicated magnetic field for a disk

with a circular barrier centered. I. Square modulus of the order parameter |ψ|2,
II. Oblique view of |ψ|2, III. Magnetic induction ~h.
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Figure 6-6: (Color online) The vortex structure in the indicated magnetic field for a disk

with a circular hole centered. I. Square modulus of the order parameter |ψ|2,
II. Oblique view of |ψ|2, III. Magnetic induction ~h.
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Figure 6-7: (Color online) The vortex structure in the indicated magnetic field for a disk

with a triangular barrier centered. I. Square modulus of the order parameter

|ψ|2, II. Oblique view of |ψ|2, III. Magnetic induction ~h.
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Figure 6-8: (Color online) The vortex structure in the indicated magnetic field for a disk

with a triangular hole centered. I. Square modulus of the order parameter |ψ|2,
II. Oblique view of |ψ|2, III. Magnetic induction ~h.
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force is weaker than the pinning force of the barrier (See Fig. 6-7). Finally, from b) until

f), the vortices do not penetrate the barrier as seen in the instantaneous density of Cooper

pairs and magnetization. In these lines is possible to see the entrance of the magnetic field

applied homogeneously from the edges of the barrier towards the center of the disk, without

quantized field entry is found. For triangular hole defect the vortices become pinned into

the defect due to “caging” effect, thus vortices are “caged” at the into the defect and form

a slightly distorted triangular structure due to the repulsive vortex-vortex interaction. By

increasing the applied magnetic field the number of vortices increase in the triangular defect

and it become to normal state with the rest of the disk.

Conclusions

We studied vortex configurations in a superconducting flat disk with topological defects in

the framework of the time dependent Ginzburg Landau theory. Our calculations shows that

numerous kinds of vortex lattice structures can be obtained, some of which have different

symmetries depending which defect were used. For circular barrier or hole defects, the

vortex lattice still exists with increasing the magnetic field, it gradually transforms into a

circular vortex configuration and larger density of vortices, clusters of vortices are particularly

favorable around the defects. To illustrate the transition between these vortex states we

present figures that shown the values of the applied magnetic field in which the vortices

entrance take place, as well as the number of vortices. Due to the influence of the shell

vortices and the boundaries conditions in the disk, a transition from Abrikosov-like vortex

lattice was obtained.

6.3 The case of poligonal trench/barrier

In this case, the magnetic field can be taken nearly uniform inside the superconductor H0 =

∇ × A0, so that second GL equation does not need to be solved. We consider g(r, θ) =

1 everywhere, except at pentagonal and hexagonal defects position in the disk which are

simulated by using g = 0.5 for the trench and g = 1.5 for the barrier. We simulate a

mesoscopic superconducting disk of radius R = 10ξ(T ) with a little central hole of radius

ri = 0.5ξ(T ) (see Fig. 6-9). We will assume either a superconductor/vacuum external

interface (b→ ∞) or the surface of the sample in a complete normal state (b = 0). Fig. 6-

10 shows the (a) supercurrent density J (b) Magnetization −4πM , (c) Gibbs free energy G

and (d) vorticity N , calculated as a function of the applied magnetic field by taking b = 0.

The insects represent in (a) the supercurrent density, (b) the local field and (d) the phase of

order parameter (the phase allows to determine the number of vortices in a given region, by

counting the phase variation ∆ϕ in a closed path around this region. If the vorticity in this

region is N , then the phase changes by 2πN , all of them at H0 = 0). We simulated this disk
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Figure 6-9: Layout of the studied sample: superconducting disk with a central hole and

a pentagonal (left) or hexagonal (right) trench (up) or barrier (down). With

a superconductor/vacuum interface (b → ∞) (down) and the surface of the

sample in a complete normal state (b = 0) (up).

Figure 6-10: (Color online) a) Supercurrent J b) Magnetization −4πM , c) Gibbs free en-

ergy G and d) Vorticity N , as a function of the magnetic field for the disk

with a pentagonal and hexagonal trench and barrier for b = 0.
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with one internal pentagonal and hexagonal trench (g = 0.5) and barrier (g = 1.5) for b = 0.

It is seen from these figures that the upper critical field Hc3 is independent of the geometry

and height of the defects in the disk. Moreover, the first vortex penetration field depends on

the pinning or anti-pinning force of the defects, Hc1 = 0.802 for trench and Hc1 = 0.835 for

barrier for both geometries. This means that the barrier repeals the first penetration than

the trench, which was expected, but surprisingly, it does not depend on the the geometry

used. The decrease in the Gibbs free energy for the disk with a barrier in the downward

branch of the magnetic field is related to the fact that this barrier allows less vortices inside

the sample. For both pentagonal and hexagonal cases the upper thermodynamical critical

field Hc3 occurs at the same value Hc3 = 1.03 but in part of the downward branch of the

magnetic field the vortex expulsion fields are different. Two vortices remain into the sample

at zero magnetic field. In the inset of Fig. 6-10 (d) we have ∆ϕ = 4π due to the presence

of the defect, but the final vortex transitions occur at different values of H0 following a

distinct dynamics for each case: N = 4 → 2 occurs at H0 = 0.48 for the pentagonal barrier,

at H0 = 0.51 for the hexagonal barrier, at H0 = 0.801 in N = 8 → 2 transition for the

pentagonal trench and H0 = 0.85 for the hexagonal trench in a N = 7 → 2 vortex transition.

With the barrier and trench we can control the number of vortices at zero magnetic field.

In the insects of Figs. 6-10 (a,b) we can observe that the current streamlines and the local

field at H0 = 0 are independent of the type of defect and are symmetric with respect to the

center of the disk. The jump in the critical current in the Fig. 6-10(a) could be correlated

to a ”structural transition” in the system where the distribution of vortices is altered, This

structural transition is accompanied by a local re-distribution of the flux inside the disk, or

by the appearance of flux jump instabilities. As H0 increases from zero (Fig. 6-10 (c)), the

free energy of the screening currents increases with H0 as expected until the first critical

field Hc1 is reached when two vortices penetrates the disk at the center. As H0 is further

increased, more vortices nucleate on the disk forming N → N + 1 vortex transitions, is

energetically more favorable for the next vortex to nucleate at the center of the disk than to

form a hexagon or pentagon of six or five off-center vortices with a vortex at each vertex.

This result agrees with those of other studies on the nucleation of vortices which showed

that a central vortex would appear in the system. The entry of each vortex at successive

critical fields is accompanied by a jump in the free energy. In previous works a similar

study was performed using a disk with a circular, square and triangular ring-like trench of

punctual defects. In Fig. 6-11 we depict the Magnetization and the contour plot of the order

parameter (insects) as a function of the magnetic field for the disk with a pentagonal and

hexagonal trench and barrier for b = 0 and b→ ∞. It can be clearly noticed that these curves

have a series of discontinuities signaling that one or more vortices have entered or exited the

sample. We can see from these figures that both, the first vortex penetration field and upper

critical fields dependent on the boundary condition and on the height of the defects. We

have Hc1 = 1.12 and Hc3 = 1.8 when we use b→ ∞ for all cases, whereas if we use b = 0, we

have Hc1 = 0.802 for trench, Hc1 = 0.835 for barrier and Hc3 = 1.03 for both geometries. In
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Figure 6-11: Plot of the Magnetization as a function of the magnetic field for the disk with

a pentagonal and hexagonal trench and barrier for b = 0 and b→ ∞.

the insects of Fig. 6-11 we show the contour plot of the order parameter for several vorticity

for b = 0 (left) and pentagonal defect: (a) at H0 = 0, when the magnetic field is decreasing,

the superconducting order parameter vanishes at the surface, which is a direct consequence

of b = 0; (b) at H0 = 0.83 for g = 1.5 we plot a non-stable state with N = 3 vortices, and we

can appreciate that the shielding currents are nucleated at a distance of ∼ 15% of the radius

of the disk; (c) at H0 = 1.00, closer to Hc3, the superconducting region obey a geometry of

the defect. For the case b → ∞ (right) and both pentagonal and hexagonal defects and by

taking g = 0.5 we plot the order parameter: (a) at H0 = 0.23 for a pentagonal case, when

the magnetic field is decreasing, and we can see that the superconducting order parameter

do not vanish at the surface, which is a direct consequence of b→ ∞; in this non-stable state

we have N = 3 vortices and the surface barrier is larger than that that for the b = 0 case;

(b) at H0 = Hc1 we plot a non-stationary state with N = 2 vortices; and finally (c) at higher

fields Hc3, when more vortices come in, the geometry of the sample will prevail, so that all

vortices collapse at the center forming a giant vortex. An additional vortex only increases

the vorticity of the giant vortex. The panels of Fig. 6-12 show several spatial pattern of the

order parameter for a disk with a pentagonal barrier (up) and hexagonal trench (down) by

using b→ ∞. Following the panels from the left to the right and from the top to the bottom,

in this order, from (a,e) we can see that initially we have a Meissner state at H0 = 0. Then,

by increasing the magnetic field, in panels (b,f) five and eight (seven in the superconducting

region and one in the center of the disk) vortices nucleate in the sample at H0 = 5.09 and

H0 = 1.14 respectively. In (c) we have a giant vortex with N = 32 for the pentagonal

barrier at Hc3 = 1.8. Now, when the magnetic field is decreasing, at H0 = 1.09 a pentagonal

structure with N = 5 vortices (more two central vortices) is forming (panel g). Finally, for

H0 = 0.0, there are a giant central vortex with vorticity N = 2 for both pentagonal and

hexagonal trenches (panels d,h).
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Figure 6-12: Spatial pattern of the order parameter for a disk with a pentagonal barrier

(up) and hexagonal trench (down) by using b→ ∞.

Conclusions

We studied the effect of the geometry of a pentagonal and hexagonal trench and barrier

on the thermodynamical properties of a mesoscopic superconducting disk with a central

hole solving the time dependent Ginzburg-Landau equations. We take two values for the

deGennes parameter b = 0, simulating a sample with its lateral surface in complete normal

state and b → ∞, simulating a usual superconducting/vacuum interface. Our results have

shown that the lower thermodynamics field Hc1 depend strongly of the chosen boundary

condition and the nature of the defects and is independent of the geometry of the defects,

whereas the upper magnetic field Hc3 depend just on the boundary condition, that is, due to

the force of the pinning (trench) and the anti-pinning centers (barrier) are high. We believe

that these findings are relevant not only for groups working on or exploring the vortex state

and manipulation of nanoengineered superconductors, but also for those studying confined

systems where similar competing interactions take place.

6.4 Magnetic response of a structured mesoscopic

superconductor

We consider g(x, y) = 1 everywhere, except at the tower position in the sample, where g(x, y)

is slightly larger than one. The passage from Eq. (6-1) requires an average of the original

equations along the z direction by considering a film of thickness a ≪ ξ. We simulate a

superconducting sample of area L2 = 462ξ2 with a central tower of area d2 = 122ξ2. The

height of the pillar and square are a = 0.5ξ. In Fig. 6-13 we illustrate the schematic view
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of a large square superconductor with a tower on the top of it for (a) Dirichlet boundary

condition and (b) Neumann boundary condition.

Figure 6-13: (Color online) Illustration of a large square superconductor with a tower on the

top for two cases (a) Dirichlet boundary condition and (b) Neumann boundary

condition.

Figure 6-14: (Color online) Cooper pairs density atHe = 0.0 (left) and Magnetization 4πM

(right) for κ1 and κc, b = 0 and b→ ∞.

Fig. 6-14 shows the density of Cooper pairs atHe = 0.0 (left) and magnetization 4πM (right)

for κc and κ1, b = 0 and b → ∞. In the Fig. 6-14 (left), the density of superconducting

electrons at zero field in a downward branch of the magnetic field is plotted. There are
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Figure 6-15: Cooper pair density |ψ|2 for the indicated values of κ in the upward branch

(arrow up) and the downward branch (arrow down) for the indicate magnetic

field He.

N = 33 vortices into the sample for K1, which N = 1 sit in the tower and N = 32 outside.

For Kc, there are N = 53 vortices, which N = 1 sit in the tower and N = 52 outside. As

we can see in the Fig. 6-14(right) the lower and upper critical fields H1 and H2 are slightly

dependent of the Ginzburg Landau parameter κ and strongly depends on the boundary

condition. We have H2 = 1.657 and H1 = 0.870 for κc, H2 = 1.581 and H1 = 0.576

for κ1, taking b → ∞ (Neumann boundary condition); H2 = 1.119 and H1 = 0.672 for

κc, H2 = 1.000 and H1 = 0.466 for κ1, taking the Dirichlet boundary condition. The

field barrier for the first penetration field alter significantly with variation of the κ and b

parameters. A interesting characteristic in the downward branch of the magnetic field, is that

the sample remains always in paramagnetic state for a superconductor/vacuum interface.

Our simulations did not show any results physically possible decreasing the magnetic field in

b = 0 case, it is an open problem that will be analyzed in a next paper. In Fig. 6-15 we plot

the Cooper pairs density |ψ|2 for He = 0.600 and He = 0.900 in the increasing and decreasing

branches of the magnetic field for κ1, κc and b→ ∞ in the upper panel of the figure, and for

b = 0 just increasing branch of the applied filed in the lower panel. In the deceasing branch

of the applied field, in Fig. 6-15 (middle panel) we can see that for κ1, b→ ∞ and He = 0.60
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Figure 6-16: Illustration of the vorticity N in the upward branch of the magnetic field.

(Insets) Snapshot of the Magnetic induction h for the indicate magnetic field

He

we have a N = 208 state, N = 12 of them sit in the tower. The vortices inside the pillar

set along lateral side of the inner square and not set along the diagonal, this is surprisingly,

since vortex-vortex interaction is repulsive and the cross section of the pillar is large. In

interesting to note that a vortex Abrikosov lattice is formed in several configurations. Now,

in the increasing branch of the applied field, for He = 0.90, κ1, b → ∞ we have a N = 212

state, N = 4 of them sit in the tower, the vortex configuration is totally rearranged in square

symmetry, still considering the decreasing branch of He, for the same case. In the decreasing

branch of the applied field, for He = 0.90, κc, b → ∞, the vortices are undistinguished and

the sample is practically in normal state, but still a small region around the tower remain

in superconducting state. In Fig. 6-16 we can see the number of vortices and the magnetic

induction in these configurations at the indicate magnetic field.
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Conclusions

We studied the effect of a square tower on the vortex configuration and magnetization of

a large superconducting square sample solving the time dependent Ginzburg-Landau equa-

tions. We take two values for the Ginzburg Landau parameter κ1 = 1.0, κc ≃ 1/
√
2 and two

different boundary conditions b = 0 and b → ∞. Our results have shown that the critical

fields H1 and H2 depend of κ and b.

6.5 Superconducting state in a circular SQUID shaped

mesoscopic film

The z-dependence of the order parameter is ignored if the system is a very thin film o f

thickness w << ξ. In that case, κ is replaced by a Ginzburg-Landau parameter κ2eff =

κ2/(w/ξ. The parameters used in our numerical simulations were: κeff = 2.56, which is a

value for a film thickness w ≈ 6 nm, assuming ξ = 38 nm and κ = 1.02). Largest unit cells

lengths were dr = 0.2 and dθ = 2π/Nθ, taking Nr = 32 and Nθ = 128 as the number of cells

in the r and θ directions respectively (polar coordinates). The studied sample is circle of

external radius Re = 12ξ with a central hole of radius Ri = 6ξ connected to the outer rim

through a very thin slit with angular width d = 1θ, 2θ, 4θ, 6θ, 8θ, (θ = dθ) (see Fig. 6-17

(a)). In the boundary conditions (i∇ +Aψ · n = iψ/b) we considered b → ∞, b = −2.45ξ

and b = 2.45ξ, simulating superconducting/dielectric, superconducting/superconducting at

higher critical temperature, and superconducting/metal interfaces respectively. Fig. 6-

17(b) shows the vorticity N as a function of magnetic field. Figs. 6-17 (c-d) show the

magnetization as a function of the external applied magnetic field He, for (c) dθ = 2,

b→ ∞, b = 2.45ξ, b = −2.45ξ and (d) d/θ = 1, 2, 4, b→ ∞. We see that the magnetization

curves present differences in the Meissner and multi-vortex states when the angular width

of the slit varied, however at low magnetic fields all curves are very close each other. The

sample becomes more diamagnetic with increasing θ and less diamagnetic when the sample

is in contact with a metallic material (b = 2.45ξ). We observe that first vortex penetration

field is H1 = 0.366, with N = 5 and independent of θ. Between 0.579 ≤ He ≤ 0.848

we have a regular vortex entrance for 11 ≤ N ≤ 23 and N → N + 2 vortex transitions,

independently of θ. For higher magnetic fields He ≥ 0.879 the vortex transitions are irregular

and dependent of θ. In Fig. 6-18 (left) we show the Gibbs free energy for three different

boundary conditions b → ∞, b = 2.45ξ, and b = −2.45ξ. In the inset of the figure we

present clearly the first vortex penetration field H1. Notice that H1 varies slowly with b

parameter, the value of the energy at H1 = 0.440, 0.424, 0.412 is G = −0.251,−0.269,−0.276

for b = 2.45ξ,∞,−2.45ξ respectively, the vortex entry is energetically more favorable for a

system in contact with a superconductor with higher critical temperature. We see that the

second vortex penetration field H2 = 0.484 is independent of the boundary condition with
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Figure 6-17: (a) 3D view of the studied sample. (b) Vorticity N(He) as a function of

the external applied magnetic field He, (c-d) Magnetization −4πM(He), for

b→ ∞, b = ±2.45ξ and d/θ = 1, 2, 4.

an energy equal to G = −0.149. In Fig. 6-18 (right) we found a linear behavior of the

maximum of the magnetization −4πMMax as a function of d. The analytical fitted curve

corresponds to −4πMMax ≃ 0.00126d + 0.0196. The linear growth with d suggest that the

smaller angular width of the slit makes the material less diamagnetic. The Fig. 6-19 we

show the Cooper pair density at indicated magnetic field for d/θ = 1, 2, 4 and b = ∞. A

first multi vortex state N = 5 at He = 0.379 for all the samples and is independent of θ and

b values. Note that, for the equilibrium configuration, the vortices obey the geometry of the

sample. In Figs. 6-20 we the Cooper pair density in the absence of the magnetic field at

He = 0 (upper panel), as well as He = 0.452 (lower panel) for d = 2θ and (left) b = 2.45ξ

(middle) b → ∞ and (right) b = −2.45ξ. Note that, the superconductivity is enhanced

(suppressed) in the boundary at He = 0 when a superconducting (metallic) material is

in contact with the sample. An interesting result is that for our system Nb>0 < Nb<0 at

He = 0.452, while we expect that a superconducting/superconducting interface decrease the

vorticity in the sample due to proximity effects of the Coopers pairs of the superconductor

at higher critical temperature. There are two ingredients influencing on the formation of the

lattice: the vortex-vortex interaction, which is repulsive and the vortex-surface interaction;

this last one is related to the Lorentz force which pushes the vortex to the interior of the

sample, once it has been nucleated. From this balance it will result the vortex state.
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Figure 6-18: (left) Gibbs free energy G(He) and (right) Maximum of the diamagnetic re-

sponse −4πMMax(d), as a function of the applied magnetic field.

Figure 6-19: (Color online) Cooper pair density contour plots (|ψ|2) at indicated magnetic

field He and vorticity N for d/θ = 1, 2, 4, b = ∞. Blue and red regions

represent values of the modulus of the order parameter from 0 (normal state)

to 1 (superconducting state).



120 6 Vortex matter in mesoscopic superconductor with nanoengineered thickness profile

Figure 6-20: (Color online) The Cooper pair density (|ψ|2) at indicated magnetic field and

vorticity N for d = 2θ and (left) b = 2.45ξ (middle) b → ∞ and (right)

b = −2.45ξ. Color map represents the modulus of the order parameter (|ψ|2).

6.6 Conclusions

We demonstrated that the extrapolation deGennes parameter b for tunneling of Cooper pairs

at the sample boundary and angular width θ of the slit in the Squid sample geometry play

an important role in the magnetization and vorticity of the sample. The results presented in

this paper included the linear behavior of the maximum of the magnetization as a function of

the angular width of the slits corresponds to −4πMMax ≃ 0.00126d+ 0.0196. Another very

interesting result is that for our system the first vortex penetration field and vorticity strongly

depend on the boundary condition, e.g. H1(b < 0) < H1(b > 0), and N(b > 0) < N(b < 0)

at He = 0.452, when is well know that a superconducting/dielectric interface should decrease

the first vortex penetration field and vice-versa for the proximity to a superconductor. These

results will be further analyzed in the next work.
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7 Lateral heterostructure of two

superconductors

Two-component superconductivity is not limited to multiband/gap materials, but can also

be realized by combining different superconductors in a hybrid heterostructure. We cover a

multitude of possible two-component superconducting hybrids, realized either by combining

two different materials, or using the same material with different levels of disorder and/or

different thickness in two regions, where we hope that our findings will improve understanding

of the involved processes and offer new pathways to superconducting quantum devices.

7.1 Introduction

The study of the superconducting mesoscopic samples received recently a lot of attention

due to results obtained in the analysis of the properties of the superconductors and therefore

their applications, which are determined by critical parameters, i.e. the critical fields (Hc,

Hc1, Hc2, Hc3), the critical current jc and the critical temperature Tc, those can be basically

tuned by their intrinsics characteristic length scales: the coherence length (ξ), the length

scale of the Cooper-paired electrons, and the London penetration length (λ), the length scale

of magnetic field penetration into the superconductor. For application purposes is necessary

to control these parameters.

Previous works focused on the effect of superconducting condensate strongly confined in

small elements as a procedure to improve the critical properties. Researchers has found

novels effects on confinement in mesoscopics disks [114, 46, 61, 47], and the contribution of

symmetry [183] in comparing disks, squares [184], and triangles [145]. The individual vortices

pierce the sample in direction of applied magnetic field forming vortex clusters in those

mesoscopic systems, both theoretical and experimental, revealed multivortex Abrikosov-

like states that tending to mimic the symmetry of the sample due to the repulsion with

the surrounding screening (Meissner) currents, as well as depending on the details of the

condensate confinement because edge currents may even compress the vortex lines in to a

single bundle, often called giant vortex [185, 186, 187, 188, 189, 190, 191].

Recently, there has been growing interest in investigating nanostructured superconductiv-

ity that include topological superconductors which are analogs of the topological insulators.

In these systems, the main proposals are focused on combining in proximity with a con-

ventional superconductor [192] to use the transport properties, observed experimentally, in
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transport measurements [161, 193] and scanning tunneling spectroscopy [194, 195]. This

systems has been studied by using half-Heusler materials to offer multifuntional topological

devices [196], due to its superconducting properties with low carrier concentration in elec-

tron transport measurements [197]. These measurements demonstrate that is possible to

control the energy gaps, critical temperature and critical magnetic field in selected region

as a result of creating of tailored nanostructured superconductors with complex supercon-

ductor materials quantum technology applications. This developments has reached new

advances including the superconducting proximity effect in epitaxial graphene induced by a

graphene-superconductor interface [1, 198]. From the point of view of numerical calculations

have shown a lot of effects usually observed in nanostructured superconductors, resulting in

complex vortex patterns when barrier or defects are included [199, 92, 200, 182, 180].

Similar behavior has also been simulated including anisotropy in the superconducting sample,

through variation of Tc in different layer of the sample that leads to distinct vortex states and

their free energy [201, 202, 203]. Another possibility for the non-conventional vortex structure

can be obtained from multi-band superconductivity, since high temperature superconductor

MgB2 was observed in the experiments [204, 205, 16]. These multi-band systems are provided

with two o more electronic condensates from Cooper paring in different bands of the material,

and exhibit a variety of new and interesting phenomena with no counterpart in conventional

single-component superconductors [206, 207, 208, 209]. One of most intriguing of these

phenomena are related to the exotic vortex structures that can emerge in a two-component

superconductor, because of the different length scales ξi at which the Cooper-pair density

varies in each component [210, 211].

The study of mesoscopics superconductor has been widely studied because of the confine-

ment present in the sample, therefore novel characteristics take place useful for advances to

develop new technologies. For that reason, the 2D superconductivity has been investigated

to find an insight into a variety of quantum phenomena, where the thermal evaporation and

sputtering of metallic films allow to study most of the basic properties of 2D superconduc-

tors [212, 213]. Nevertheless, the methods for fabrication such as quantum phase transitions

new discussions and studies in thin-film superconductors with thickness from 0.3nm to 10nm

[214, 215, 216, 217, 22, 23]. In those days, new fabrications techniques, such as molecular

beam epitaxy accompanied by surface or interface reconstruction processes, methods for the

production of field-effect devices and mechanical exfoliation, were introduced into the field

of 2D superconductors [26, 70, 29, 32, 218, 33, 34, 219, 220] and as a result, the crystallinity

improved greatly, even in atomically thick samples. Therefore, the emerging 2D supercon-

ductors are increasingly as a platform for studying new physics. Furthermore, Based on

the possibility of change the mean free path (l) using impurity-doping of superconductors

techniques, represent a groundbreaking prospects in the, study of the effects of l that might

exploit unique superconducting properties [221]. The modulation of superconductivity,can

be obtained not only for choosing smaller superconducting lengths comparing with bulk su-

perconducting length or considering several geometric shapes, but also whether strong local
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doping effect can be produced over the superficial area of the superconductor.

The different phenomena associated with the hybrid combination with other superconduc-

tors show relevant effect such as the magnetic field-driven quantum phase transition take

place electrostatically in superconducting interfaces among other effects [222, 223], but also

a combination with low dimensional semiconductors offers a versatile ground for novel de-

vice concepts, such as supercurrent transistors, sources of spin-entangled electrons or nano-

SQUIDS [224]. From a more basic point of view, these hybrid systems are interesting melting

pots where various fundamental effects in condensed matter physics coexist. When super-

conductor is coupled to another superconductor to a very interesting phenomena take place,

both condensates at the interface interact each other and the supercurrent can be modulated

in this region. In this context, the modulated domain-wall superconductivity offers the pos-

sibility to control the strength of superconductivity at will. The underlying physics behind

such hybrid device ultimately relies on which superconductors are selected to be coupled.

In the present contribution, we study the fundamentals properties and vortex matter of

two-component superconductor, in which the quantity of each component is well know,

choosing the parameter of the components desired as well as the geometry, amount, kind and

distribution of each superconductor. In recent literature can be encountered that developing

of theory for two-component superconductors is similar than two-band superconductors in

which both can be described by following Ginzburg Landau (GL) energy density [206, 207,

208, 225, 226]. Nevertheless, by using the theory of two-band superconductor, it is not

possible to determine the quantity of each superconducting condensate in the sample. In

our work, we used the G-L formalism to study the hybrid superconducting samples, where the

interaction between the two density of Cooper-pair occurs in the interface in soft manner

and the wall domain in the interface is modulated through the fundamental parameters

of each superconductor. This kind of superconducting sample has not been study up to

now. Additionally, we used the G-L formalism in the dirty limit to simulate ultra thin

superconducting samples, but also for selecting the local distribution of the mean free path

on the superconductor.

In Sec. II, we show the derived G-L equations with the ratio of intrinsic parameters of

superconductivity and procedure we used in the calculations. In Secs. III and IV, we

analyze the results obtained for samples with two-component samples divided in two halves

considering type II/type II and type I/type II. Further we discuss the issues concerning the

distribution and configuration of vortices in the sample, but also the phase of the order

parameter, density of supercurrent and magnetization. Our results are finally summarized

in Sec. V.

This chapter is organized as follows. Sec.7.1. Introduction. Addendum to the theoretical

formalism is presented Sec. 7.1.1. that include separately Sec. 7.1.1.1 Two-component super-

conductor: Hybrid superconductor and Sec. 7.1.1.2 Two-compnent superconductor: Ultra

thin superconductor and electron mean free path variation. In Sec. 7.1.2 The mesoscopic

superconductor comprising two different materials, laterally coupled, is simulated using time-
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dependent GinzburgLandau theory, with included anisotropy of all parameters relevant for

the behavior of the carriers involved in the formation of the superconducting condensate

(such as critical temperature, penetration depth, coherence length, and Cooper-pair mass of

each component. Sec. 7.1.3 and Sec. 7.1.4 In dirty limit, the anisotropy is also simulated

via the variation of the electron mean free path in the corresponding part of the sample.

We fully characterize the behavior of such samples in applied magnetic field, reflected in

novel vortex matter and hybrid magnetic response uncharacteristic of any single-component

system to date.

7.1.1 Addendum to the theoretical formalism

7.1.1.1 Two-component superconductor: Hybrid superconductor

We consider a two-component superconducting sample of thickness d more smaller than the

two characteristic of lengths for a superconductor system, in such a way that the system is

effectively two-dimensional. In this paper we will denote the two superconductors inside of

the sample as S1 and S2, the quantities are scaled to the units that depend on the parameters

of S1. We implement the G-L theory by solving the equations obtained by minimizing the

following energy functional:

F =
∑

i=1,2

∫

dV [αi(0)

(

1− T

Tci

)

|Ψ|2 + βi
2
|Ψ|4 +

1

2m∗
i

×
∣

∣

∣

∣

(

−i∇− 2e

c
A

)

Ψ

∣

∣

∣

∣

2

+
(H−Ha)

2

8π
] (7-1)

where Ha denotes the applied magnetic field, and H is the total local magnetic field, in-

cluding the response of the superconductor, and where the index i represents either S1 or

S2 depending on the location inside the volume V . We include the additional component

scaling the functional to the parameters of S1, with variables α1, β1 and m
∗
1. We minimizing

the Eq.(1), we obtain for the order parameter and vector potential,

−(1− cT t)
1

cξ
ψ +

cλc
2
m

cξ
|ψ|2ψ + (−i∇−A)2ψ = 0 (7-2)

js = κ21(∇×∇× (A−A0)) = cmℜ(ψ∗(−i∇−A)ψ) (7-3)

with boundary condition:

n. (−i∇−A)ψ|Ss
= 0 (7-4)

where parameters are defined as cT = Tc,1/Tc,2, cξ = ξ22(0)/ξ
2
1(0), cλ = λ22(0)/λ

2
1(0), cm =

m∗
1/m

∗
2 and t = T/Tc,1, where cm, cλ, cξ and cT are equal 1 inside the S1 material. The

above equations are given in dimensionless form and distances are measured in units of
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ξ1(0) =
√

−~2/2mα1(0), the temperature in units of the critical temperature of S1 (Tc,1),

the order parameter Ψ in units of Ψ∞,1 =
√

−α1(0)/β1, the vector potential in units of A0,1 =

c~/2eξ21(0), the magnetic field in units of the upper critical field of S1, Hc2,1 = c~/2eξ21(0) and

in the free energy in units of F0 = α2
1(0)/β1. The region in the sample where the additional

superconductor is included to obtain a two-component superconducting thin film, can be

directly modeled by changing the parameters cT , cξ, cλ and cm, in other words, many types

of two-component superconducting system can be studied tunning the parameter with the

precision desired. We solve the coupled GL equations self-consistently using the link variable

approach for a finite-difference representation of the order parameter and the vector on a

uniform two-dimensional Cartesian space grid (x, y). Using the first GL equation, the order

parameter will be calculated. The second GL equation will then in turn be used to find

the supercurrent, and by Fourier transform of the supercurrent, the vector potential will be

calculated to again be used as input into the first GL equation until a convergent solution

for both ψ and A is found.

Physical parameters in two-component superconductors

In the analysis of the superconducting state of two-component superconductors, we have

to consider the relation between the parameters in each materials, in order to describe

correctly important physical quantities used to describe the vortex state such as the Gibbs

free energy, magnetization, density of order parameter, superconducting current density and

phase of order parameter. In what follows we will derive an expression for each kind of

parameter used in superconductivity.

(A.1) The coherence lenght.

In S1, ξ
2
1(0) = −~

2/m∗
1|α1(0)| whereas S2, ξ

2
2(0) = −~

2/m∗
2|α2(0)|

ξ22(0)
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=
m∗

1|α1(0)|
m∗

2|α2(0)|
(7-5)

(A.2) The penetration lenght.
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2
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2
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Taking into account Eq.(5) we can obtain additional relation between coherence length and

penetration length

λ22(0)

λ21(0)
=

(

m∗
2
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)2(
β2
β1

)(

ξ22(0)
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)

(7-7)
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(A.3) Order parameter.

Using the Eq. 6 and the definition of the order parameter, we obtain:

ψ2
∞,2

ψ2
∞,1

=
m∗

2

m∗
1

λ21(0)

λ22(0)
(7-8)

Additional relation for the order parameter is found in terms of cλ, cξ and cm, as well as the

Ginzburg-Landau parameters β and α

ψ2
∞,2
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(7-9)
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7.1.1.2 Two-component superconductor: Ultra thin superconductor and electron

mean free path variation

In order to simulate two-component superconductor in which the thickness change spatially,

but also the mean free path Fig. 7-1. The framework for our theoretical studies is the

phenomenological Ginzburg-Landau (GL) theory. We used the expressions for GL coefficients

α and β in the dirty limit, to include the variation le the electron mean free path in the

sample, i.e.

α(T ) = −1.36
~

2m∗ξ0lξ

(

1− T

Tc

)

(7-12)

β =
0.2

N(0)

(

~
2

2m∗ξ0lekBTc

)2

=
β0
l2ξ

(7-13)

Where lξ = le
ξ
is the ratio of the electron mean free path and BCS coherence length. The

dimensionless form of the GL equations can be written as follow:

(−i∇−A)Ψ =

(

1.367

lξ
− 1

l2ξ
|Ψ|2

)

Ψ (7-14)

λ0
ξ0
∇×∇×A = − 1

2i
(Ψ∗∇Ψ−Ψ∇Ψ∗) + |Ψ|2A (7-15)

Where the all lengths are scaled to ξ0, penetration depth λ0 is defined as λ20 = mc2β0/16π|a0|e2,
the vector potential A is expressed in φ0/2πξ0, and the order parameter is in units of

Ψ0 =
√

−α/β. We consider a two-component superconducting sample of thickness d more

smaller than the two characteristic of lengths for a superconductor system, in such a way

that the system is sufficiently two-dimensional to assume the constant order parameter in
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The magnetization curves show a more pronounced or step-like jumps at the lower values of

the applied magnetic field.This behavior of the transitions can be explained using the Eq. 7-9

in which the ratio of Cooper-pair density between S2 and S1, that depend of the parameters

used in each component. Therefore, the transitions with large variations in the magnetization

curve are produced in S1, whereas the small variations to S2. One consequence of simulating

a superconducting sample with two components is that we obtain two upper critical magnetic

fields. Thus S1 reach its normal state at a value of the applied field less than S2, therefore

S1 takes properties as a metal and establish a Dirichlet boundary condition on this side of

the sample meanwhile the others sides remain with Newman boundary conditions. This is

reflected in the behavior of the magnetization curve [Fig.7-2 (a)] which normally drop with

approximately same slop but in some point it change and drop in a higher value of H2. In

this point the superconductor sample reach a rectangular shape due to only in one have

remain in superconducting state. In Fig. 7-2 (a) shown the influence of the electron mean

free path l on the magnetic behavior of the sample. The level of magnetization is strongly

influenced by the variations of the l, which turns out smaller with the reduction of l. This

follows from the fact that, the magnetization drop with l, and the condensate on each half

of the sample change providing poor and better screening of the magnetic field depending of

the selected conditions in the superconductors (S1 and S2), and when one of the condensates

ceases, the first condensate experiences a large difference in the felt magnetic field, which

in turn allows for a larger flux penetration and thus a lower diamagnetic response of the

sample. However, the free energy is lower influenced by changes in the electron mean free

path [See Fig. 7-2 (b)] Figs. 7-2 (c-d) show the Cooper-pair density and the magnetic field

distribution, as a function of the position for different values of electron mean free path l at

H0 ≈ 0 value of the applied magnetic field. It is possible to observe that exist a position near

to the interface in the sample at which the variation of the l does not affect the value of the

condensates neither on the Nb nor on the Pb [see curves at Fig. 7-2 (c)], that implies new

characteristics that can be found in this kind of samples taking into account that l modified

always the diffusion on every materials. The magnetic field distribution show peaks at the

edge as it is expected for a square superconducting sample but inside additional peaks field

the interface at L ≈ 62ξ1(0) decrease selecting lower values of l [see Fig. 7-2 (d)], i.e. Inset

of the same figure is possible to see the difference between the field distribution in both

components (S1 and S2).

In Fig. 7-3 shows obtained vortex configuration for several values of l at the same value of

H0 = 0.0817Hc2, in which is observed a huge differences between the condensates on each

half. As we know, the coherence length is the characteristic length scale over which the

order parameter changes and it is therefore related with the size of vortex core. Therefore,

it is intuitive that size of vortices will change when it penetrate from one superconductor to

another, but additionally, the mean free path make a contribution in this sense due to it is

related with the characteristics length of a superconductor. In consequence, we can see that

the reduction of l can preserve the condensate for higher values of applied magnetic field
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Correlation length ξ and penetration depth λ in a magnetic field which depends on l0.5 and

l−0.5 respectively. Therefore, the magnetic field in a superconductor is affected due to the

increment of λ with the increases of concentration of impurities, but also a strong variation

of the number of superconducting electrons, i.e. electrons linked in Cooper pairs with the

decrease of ξ. This behavior is shown in Fig. 7-8 where two different kind of condensate are

reached considering a spatial change of the electron mean free path. Therefore, the order

parameter is modified through the sample as we can see in Fig. 7-7(d), that show a reduction

of value of |Ψ0|2 with the reduction of l, as we expected, according to the proportionality

between the order parameter and penetration depth which is |Ψ0|2 ∼ 1/λ.

Fig. 7-7(b) show the free energy as a function of H0 for a sample with thickness variation

which is included considering d = 5.5nm in h1 and d = 3.0nm in h2, whereas the mean free

path takes several values l/nm = 8.0, 6.0, 4.0, 2.0 over the entire superconducting sample.

Additional case is studied including d = 5.5nm with fixed l = 11nm on h1 while l takes

several values only in h2 with d = 3nm [see Fig 7-7 (c)]. In Figs. 7-7(b) and (c) the values

of mean free path used are the same that considered in case of Fig. 7-7 (a), but due to

the contribution of thickness a increment of energies can be notice in the huge separation

among the curves in Fig. 7-7 (b), but also in Fig. 7-7 (c) despite of in this case the curves

are closer. This behavior is a consequence of the dependence of λ and ξ on the thickness

of Pb ultra thin sample. Using the equation for those lengths that include the mean free

path, λeff = 0.65λ0
√

ξ0
l(1− T

Tc
)
and ξeff = 0.85

√

lξ0
(1− T

Tc
)
in which the thickness is included for

a dirty superconductor d << ξ0 considering l = l0/ξ0 and l ≈ 2d with ξ0/l ≈ 1/d therefore

λeff ≈ λ0(ξ/d)
1/2 and ξeff ≈ (ξ0d)

1/2, it would occur if l were limited by surface scattering.

The inclusion of thickness variation with mean free path clearly open two possibilities that

are reflected in the curves of energy obtained in Figs. 7-7 (b) and (c), due to it can increase

or decrease modifying d and l carefully, to have a interface which can be energetically dis-

advantageous, making length ξ greater than depth λ with the magnetic field already forced

out, superconducting electron are reduced, and there is not sufficient energy gain obtained

yet. In the case in which λ is larger than ξ, the magnetic field decreases smoothly and is

forced out less faster than the electron forming pairs and the energy gain is obtained which

is energetically advantageous.

In Fig. 7-8 the panels shows the obtained vortex configuration considering different values

of applied magnetic field (H0) where the vortices move, between h1 in the upper half of

the sample shown in every snapshot in Fig. 7-8 whereas h2 cover the down part, over

several conditions that include changes on thickness (d) and electron mean free path (l).

In the figure 7-8 black panel, in which there is a superconductor with no change in the

thickness d, while in h1 it takes the value of l = 11nm and in h2 the mean free path varies

l/nm = 8.0, 6.0, 4.0, 3.0. At low field H0 = 42Hc2 we observe the first vortex enter only in h1
where lower values of l has been considered than in h2, indicative of the changes caused on

the condensed of Cooper-pairs through the variations of l [See snapshots in the first column],

but we can notice in Fig. 7-8 (g) that no vortex enters into the sample due to a large increase





7.2 Conclusions 137

The Fig. 7-8 red panel shown the Cooper pair density for a superconducting sample con-

sidering the following conditions of thickness and mean free path: d = 3.0nm and l = 11nm

on h2, while d = 5.5nm and l/nm = 8.0, 6.0, 4.0.2.0 on h1. In the first column in this figure,

we can conclude that the effect of the l is greater than d, due to vortices enter through

thicker half despite of the in the previous results shown on blue panel the vortices enter into

the sample by the thinner side. This behavior can be also illustrated by the curves of the

free energy on Figs. 7-5 and 7-7 in which the contributions of thickness to the changes to

the energy are smaller than the mean free path. In the second column show the addiotonal

contribution of l to the displacement of the vortices to the center of the sample, as it is

possible to see in Fig. 7-8 panel (h) where large number of vortices are on the interface

opposite to cases (b,d,f).

7.2 Conclusions

In the framework of the models discussed in this work, we study of the superconducting state

of two-component mesoscopic square sample, where novel and rich magnetization curves,

free energy and vortex configurations are obtained simulating two kind of ultra thin samples

using niobium (Nb) and led (Pb). There has been much interest in such superconducting

systems in which the number of degrees of freedom of the wave-function allows for emergent

quantum effect that is otherwise unattainable in single-component superconductor. In this

work, the two superconductors are simulated including anisotropies into the ultra thin sample

which modifies the behavior of the carriers involved in the formation of the superconducting

condensate which can be changed locally. The anisotropy in our first kind of two component

superconducting samples studied in this paper, is considered including two superconductors

on each half of the sample, a hybrid superconductor, which depends on the ratio of the

sample parameters such as critical temperature cT , penetration depth cλ, coherence length

cξ, electron mass cm and the order parameters in each component which is tunable by

ratio of this parameters that interact only in the interface between superconductors, and

no the special boundary conditions is needed. In our work, the anisotropy is also modified

including the variation of the electron mean free path in each half of the sample by using

the expressions for GL coefficients α and β in the dirty limit whereas to simulate a sample

in which the thickness does not uniformly vary, a additional term is included in the first

GL equation to explore the recent development in the field of ultra thin superconductors

and highlight the unprecedented physical properties of this systems in which we created a

step-edge on each halve and a disrupt superconductivity is observed and also act as a barrier

to improve the understanding of the processes in the interface superconductivity. This paper

open the different possibilities for adapting the magnetic field penetration, coherent length,

thickness and electron mean free path for a certain application taking into account that those

components (Nb,Pb) are used commonly in the technological devices.
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Publications.

The results presented in this chapter will be submitted:

• J. D. González, J. Barba-Ortega and M. V. Milošević, Vortex matter in a two-component

mesoscopic superconductor, Phys. Rev. B (2018).



8 Summary

Due to quantum confinement, nanoscale superconductivity exhibits richer phenomena than

bulk superconductivity. This will allow us to artificially design the electronic properties by

changing the size and geometry of the superconductor, leading to the desired control and en-

hancement of superconductivity. Looking toward the future, we have shown theoretical and

numerically is possible that having the ability to induce changes in the local structure and

properties at the mesoscopic superconductor sample offers a useful quantum nanotechnology

workbench to design superconducting nanostructures for investigating both fundamental in-

terest and practical applications of quantum electronics.

In the present thesis, we theoretically investigated several aspects of nanoscale superconduc-

tivity of novel two-component superconductors by using the self-consistently the Ginzburg-

Landau equations generalized that includes the GL coefficients α and β in the dirty limit

whereas to simulate a sample in which the thickness does not uniformly vary, an additional

term is included in the first GL equation to explore the recent development in the field of

ultra thin superconductors and highlight the unprecedented physical properties of this sys-

tems in which we created a step-edge. It provides us with a great potential for applications

in ultra-fast, power-saving electronic devices such as superconducting transistors and single-

photon detectors.

In the introductory chapters of this thesis, I first reviewed historic events related to supercon-

ductivity. Further, different theoretical frameworks are presented, starting from phenomeno-

logical models of brothers London and Ginzburg and Landau, up to more sophisticated mi-

croscopic approaches, namely Bardeen-Cooper-Schrieffer model. In addition, In addition,

The intrinsic properties of the superconductors and response to the applied magnetic field,

as well as the behavior of the vortices is included in Chapter 1. In Chapter 2 I described

the basic numerical approaches that I have used to solve the Ginzburg-Landau equations.

The central equations for order parameter and supercurrent are derived, where characteristic

quantities, such as coherence length, penetration depth are explained. In Chapter 3, I ex-

emplified some experimental results of the studied vortex matter with direct vortex imaging

techniques. Experiments sensitive directly to the vortex magnetic field and with sufficient

spatial resolution to resolve individual vortices. In addition, different experimental setups

used to manipulate the vortex behavior through external means are presented, where partic-

ular attention is given to design of a pinning landscape and individual vortex manipulation
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by a nearby magnetic or tunneling tip, or a laser beam.

In Chapter 4, We studied the effect of different negative values of the deGennes

parameter in the thermodynamics properties for a small superconducting square of size

3ξ(0) × 3ξ(0) in the presence of an applied external magnetic field by solving the coupled

nonlinear Ginzburg-Landau equations. We considered the lateral surface of the sample in

contact with a thin superconducting layer at higher critical temperature. Our results shows

that a giant vortex state and multi-vortex state appear in the sample choosing a convenient

value of b < 0 parameter, even for such small system. The vorticity, the local magnetic filed,

Cooper pair density, magnetization and the phase of order parameter depend strongly of the

chosen boundary condition. Also, the upper magnetic field Hc3 grows when the values of

the deGennes parameter decreases toward negative values. We present new results in this

work such as the analytical dependence between the third critical field, maximum of the

magnetization and b-parameter and a weak dependence of the first critical field as a function

of the b-parameter.

In Chapter 5, We investigated theoretically the influences of the centered geometrical

defects formed by higher/lower critical temperature superconducting sample on the vortex

configuration in a thin superconducting disk. We calculated the magnetization, Cooper pair

density, magnetic field, super-current density and free energy as a function of time for hexag-

onal and pentagonal defects. The vortex lattice was different in the two geometries used due

to the fact that it tries to be adapt to the geometry of the sample. This influences consid-

erably the stability range of the different vortex states. We also want to emphasize that the

surface barrier generated by given f(r, θ) values, plays a crucial role for the pinning/anti-

pinning effect, which not only accelerates the vortices to rush into the central area but also

decelerates or even stops the vortex to escape from the defects due to the surface barrier.

Additionally, We studied the properties of a mesoscopic superconducting thin disk with an

array of overlapped triangular and circular defects with changes in Tc across the sample,

which includes a spatially distributed anisotropy coefficient γ. Our first finding was that we

showed the great influence of the magnetization, free energy, and supercurrent density as

a function of the anisotropy level and spatial distribution on the formation of geometrical

defects, as well as on the changes in the size of the sample and on the triangular and circular

defects. We found that the transitions to different vortex states can be suitably modified in

order to obtain the desired states. Furthermore, we investigated the vortex configurations

in the sample with two geometrical defects in order to establish a complex configuration of

the spatial variation of the critical temperature Tc. We found that the energy barrier can be

modified spatially in the sample by considering regions with lower/higher superconductivity

and choosing anisotropy (1/γ) greater than or less than 1, which can favor the entrance of

the vortices into the defect or produce their repulsion. Therefore, this determines the compe-

tition, which results in the final vortex configuration, but with the help of the vortex-vortex

interaction and the boundary of the sample. Additionally, we have studied the supercon-
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ducting array pinning of magnetic flux quanta by using a continuous wave laser (CWL) to

obtain a nanoscale modulation of local temperature T . This creates an energy landscape

for flux quanta, where the size and shape of weak-superconducting zones can be tuned over

the same sample without any structural change even at any value of the applied magnetic

field H0. In addition to its fundamental interest, the possibility to manipulate flux quanta

by designing the structure of superconducting condensate along the entire superconductor

is relevant in view of applications. These include fluxtronic devices based on the controlled

motion of flux quanta, for which the weak-superconducting zones is created also might be

used for the fabrication of reconfigurable nanodevices based on versatility that offer the sys-

tem proposed in this experimental simulation.

In Chapter 6, We studied vortex configurations in a superconducting flat disk with

topological defects in the framework of the time dependent Ginzburg Landau theory. Our

calculations shows that numerous kinds of vortex lattice structures can be obtained, some

of which have different symmetries depending which defect were used. For circular barrier

or hole defects, the vortex lattice still exists with increasing the magnetic field, it gradually

transforms into a circular vortex configuration and larger density of vortices, clusters of vor-

tices are particularly favorable around the defects. To illustrate the transition between these

vortex states we present figures that shows the values of the applied magnetic field in which

the vortices entrance take place, as well as the number of vortices. Due to the influence of

the shell vortices and the boundaries conditions in the disk, a transition from Abrikosov-like

vortex lattice was obtained. Moreover, structural defects that included geometrical shapes

such as pentagonal and hexagonal trench and barrier on the thermodynamical properties of a

mesoscopic superconducting disk with a central hole solving the time dependent Ginzburg-

Landau equations. We take two values for the deGennes parameter b = 0, simulating a

sample with its lateral surface in complete normal state and b → ∞, simulating a usual

superconducting/vacuum interface. Our results have shown that the lower thermodynamics

field Hc1 depends strongly on the chosen boundary condition and the nature of the defects

and is independent of the geometry of the defects, whereas the upper magnetic field Hc3

depends just on the boundary condition, that is, due to the force of the pinning (trench) and

the anti-pinning centers (barrier) are high. We believe that these findings are relevant not

only for groups working on or exploring the vortex state and manipulation of nanoengineered

superconductors, but also for those studying confined systems where similar competing in-

teractions take place. Using the bi-dimensional Ginzburg-Landau approach we have studied

the vortex matter and local field distribution in a microscopic structure consisting of a square

prism with a central square dot. We found that this system projects an interesting decrease

in the vorticity even when the external applied magnetic field is increasing. This thermo-

dynamically stable vortex-anti-vortex pattern could be due to the condensate confinement

by the boundary of the mesoscopic microstructure. Also in this structure two values for the

Ginzburg Landau parameter κ1 = 1.0, κc ≃ 1/
√
2 and two different boundary conditions
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b = 0 and b → ∞ was considered. Our results have shown that the critical fields H1 and

H2 depend of κ and b. We demonstrated that the extrapolation deGennes parameter b for

tunneling of Cooper pairs at the sample boundary and angular width θ of the slit in the

Squid sample geometry plays an important role in the magnetization and vorticity of the

sample. The results includes the linear behavior of the maximum of the magnetization as

a function of the angular width of the slits corresponds to −4πMMax ≃ 0.00126d+ 0.0196.

Other very interesting result is that for our system the first vortex penetration field and

vorticity strongly depends on the boundary condition, e.g. H1(b < 0) < H1(b > 0), and

N(b > 0) < N(b < 0) at He = 0.452, when is well known that a superconducting/dielectric

interface should decrease the first vortex penetration field and vice-versa for the proximity

to a superconductor.

In Chapter 7, In the framework of the models discussed in this work, we studied

the superconducting state of two-component mesoscopic square sample, where novel and

rich magnetization curves, free energy and vortex configurations are obtained simulating

two kind of ultra thin samples using niobium (Nb) and led (Pb). There has been much

interest in such superconducting systems in which the number of degrees of freedom of the

wave-function allows for emergent quantum effects that is otherwise unattainable in single-

component superconductor. In this work, the two superconductors are simulated including

anisotropies into the ultra thin sample which modifies the behavior of the carriers involved

in the formation of the superconducting condensate which can be changed locally. The

anisotropy in our first kind of two component superconducting samples studied in this work,

is considered including two superconductors on each half of the sample, a hybrid supercon-

ductor, which depends on the ratio of the sample parameters such as critical temperature

cT , penetration depth cλ, coherence length cξ, electron mass cm and the order parameters

in each component which is tunable by ratio of this parameters that interact only in the

interface between superconductors, and special boundary conditions is not needed. In our

work, the anisotropy is also modified including the variation of the electron mean free path

in each half of the sample by using the expressions for GL coefficients α and β in the dirty

limit whereas to simulate a sample in which the thickness does not uniformly vary, a ad-

ditional term is included in the first GL equation to explore the recent development in the

field of ultra thin superconductors and highlight the unprecedented physical properties of

this systems in which we created a step-edge on each halve and a disrupt superconductivity

is observed and also act as a barrier to improve the understanding of the processes in the

interface superconductivity. This work open the different possibilities for adapting the mag-

netic field penetration, coherent length, thickness and electron mean free path for a certain

application taking into account that those components (Nb,Pb) are used commonly in the

technological devices.
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[123] M. V. Milošević, A. Kanda, S. Hatsumi, F. M. Peeters, and Y. Ootuka. Local current

injection into mesoscopic superconductors for the manipulation of quantum states.

Phys. Rev. Lett., 103:217003, 2009.

[124] B. Maiorov, S. A. Baily, H. Zhou, O. Ugurlu, J. A. Kennison, P. C. Dowden, T. G.

Holesinger, S. R. Foltyn, and L. Civale. Synergetic combination of different types of

defect to optimize pinning landscape using BaZrO3-doped Y Ba2Cu3O7. Nat. Mater.,

8:398, 2009.

[125] J. L. MacManus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale,

B. Maiorov, M. E. Hawley, M. P. Maley, and D. E. Peterson. Strongly enhanced

current densities in superconducting coated conductors of Y Ba2Cu3O7−x+BaZrO3.

Nat. Mater., 3:439, 2004.

[126] C. Carballeira, V. V. Moshchalkov, L. F. Chibotaru, and A. Ceulemans. Multi-

quanta vortex entry and vortex-antivortex pattern expansion in a superconducting

microsquare with a magnetic dot. Phys. Rev. Lett., 95:237003, 2005.

[127] J. S. Neal, M. V. Milošević, S. J. Bending, A. Potenza, L. San Emeterio, and C. H. Mar-

rows. Competing symmetries and broken bonds in superconducting vortex-antivortex

molecular crystals. Phys. Rev. Lett., 99:127001, 2007.

[128] B. Rosenstein, I. Shapiro, and B. Y. Shapiro. Maximal persistent current in a type-ii

superconductor with an artificial pinning array at the matching magnetic field. Phys.

Rev. B, 81:064507, 2010.



Bibliography 153

[129] B. Rosenstein, I. Shapiro, and B. Y. Shapiro. Transport current carrying supercon-

ducting film with periodic pinning array under strong magnetic fields. Phys. Rev. B,

83:064512, 2011.

[130] C. Y. Liu, G. R. Berdiyorov, and M. V. Milošević. Vortex states in layered mesoscopic
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González and M. R. Joya Modern Physics Letters B 28, 1450150 (2014). ISSN:

0217-9849.

• Superconducting state in a circular SQUID shaped mesoscopic film, J. Barba-Ortega, J.
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Aguilar and J. Barba-Ortega. 574, 012159 (2015). ISSN: 1742-6596.

• Ferromagnetic/superconducting interface in a hybrid nanoscopic disc, J. D. González, J.
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