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ABSTRACT

Densities in Graphs and Matroids. (December 2007)

Lavanya Kannan, B.Sc., Madras University, India;

M.Sc., Indian Institute of Technology, Madras, India

Chair of Advisory Committee: Dr. Arthur M. Hobbs

Certain graphs can be described by the distribution of the edges in its subgraphs.

For example, a cycle C is a graph that satisfies |E(H)|
|V (H)|

< |E(C)|
|V (C)|

= 1 for all non-trivial

subgraphs of C. Similarly, a tree T is a graph that satisfies |E(H)|
|V (H)|−1

≤ |E(T )|
|V (T )|−1

= 1

for all non-trivial subgraphs of T . In general, a balanced graph G is a graph such

that |E(H)|
|V (H)|

≤ |E(G)|
|V (G)|

and a 1-balanced graph is a graph such that |E(H)|
|V (H)|−1

≤ |E(G)|
|V (G)|−1

for all non-trivial subgraphs of G. Apart from these, for integers k and l, graphs G

that satisfy the property |E(H)| ≤ k|V (H)| − l for all non-trivial subgraphs H of G

play important roles in defining rigid structures.

This dissertation is a formal study of a class of density functions that extends the

above mentioned ideas. For a rational number r ≤ 1, a graph G is said to be r-balanced

if and only if for each non-trivial subgraph H of G, we have |E(H)|
|V (H)|−r

≤ |E(G)|
|V (G)|−r

. For

r > 1, similar definitions are given. Weaker forms of r-balanced graphs are defined

and the existence of these graphs is discussed. We also define a class of vulnerability

measures on graphs similar to the edge-connectivity of graphs and show how it is

related to r-balanced graphs. All these definitions are matroidal and the definitions

of r-balanced matroids naturally extend the definitions of r-balanced graphs.

The vulnerability measures in graphs that we define are ranked and are lesser

than the edge-connectivity. Due to the relationship of the r-balanced graphs with

the vulnerability measures defined in the dissertation, identifying r-balanced graphs

and calculating the vulnerability measures in graphs prove to be useful in the area
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of network survivability. Relationships between the various classes of r-balanced

matroids and their weak forms are discussed. For r ∈ {0, 1}, we give a method to

construct big r-balanced graphs from small r-balanced graphs. This construction is a

generalization of the construction of Cartesian product of two graphs. We present an

algorithmic solution of the problem of transforming any given graph into a 1-balanced

graph on the same number of vertices and edges as the given graph. This result is

extended to a density function defined on the power set of any set E via a pair of

matroid rank functions defined on the power set of E. Many interesting results may

be derived in the future by choosing suitable pairs of matroid rank functions and

applying the above result.
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�ñ �a�`
- Anonymous

Knowledge cannot be erased by floods, cannot be burnt in fire, cannot be stolen.

It can only increase with sharing. Guarding and nurturing it is so easy, for it is within

you. Why search for any other wealth than knowledge?
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CHAPTER I

INTRODUCTION

In this dissertation, we study a class of measures of edge distributions in graphs which

includes several different density functions. The density functions are defined in terms

of forests in graphs, with natural generalizations to matroids. We also present some

variations of edge-connectivity of graphs and their extensions to matroids. These

density functions have proved to be useful in many problems, some of which are

discussed here.

In the next section, we give a brief introduction to matroids. For all graph

theoretical definitions, we refer the readers to Diestel’s book [17].

1.1. Terminology and challenges

1.1.1. A brief introduction to matroid theory

Here we briefly recall the portion of matroid theory used in this dissertation. For a

detailed and more thorough introduction, we refer the readers to Oxley’s book [64],

whose development we follow.

Matroid theory, an abstraction of the theory of graphs, is one of the most beauti-

ful and deepest branches of combinatorics. Whitney (1935) introduced matroids “as

a common generalization of graphs and matrices” [89].

A matroid is an ordered pair (E, I) consisting of a finite set E and a collectionI of subsets of E satisfying the following three conditions:

(I1) φ ∈ I.

The journal model is Discrete Applied Mathematics.
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(I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.

(I3) If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1 such

that I1 ∪ {e} ∈ I.

The elements of I are called the independent sets of M and M is said to be a

matroid on the set E. The matroid M can also be equivalently described by other

means, namely

(i) the set of bases of M , which is the collection of all the maximal independent

sets of M ,

(ii) the rank function ρ defined for each F ⊆ E as the size of a maximal independent

set present in F , and

(iii) the closure function defined for each F ⊆ E as the maximal set containing F

with the same rank as that of F .

Each of these concepts has its own list of axioms that describe a matroid completely.

We recall the axioms of the closure function since they are used extensively in the

last chapter. Let Cl be the function from 2E into 2E defined for all X ⊆ E by

Cl(X) = {x ∈ E : ρ(X ∪ {x}) = ρ(X)}.

Cl is called the closure operator of M , and satisfies the following properties:

(CL1) If X ⊆ E, then X ⊆ Cl(X).

(CL2) If X ⊆ Y ⊆ E, then Cl(X) ⊆ Cl(Y ).

(CL3) If X ⊆ E, then Cl(Cl(X)) = Cl(X).

(CL4) If X ⊆ E, x ∈ E, and y ∈ Cl(X ∪ {x}) − Cl(X), then x ∈ Cl(X ∪ {y}).
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A set X ⊆ E such that Cl(X) = X is called a flat of M .

Cycle matroid of a graph: The most well-known example of a matroid is the

one that is defined on the edge set of a graph. Let G be a graph and let E be the

edge set of G. Let I be the collection of edge sets of all the forests in G. Then I
forms the collection of all independent sets of a matroid, called the cycle matroid of

G. The set of all flats of the cycle matroid of G is the set of all edge sets of subgraphs

of G whose components are induced.

Operations in matroids: The concepts of planar duals, deletion of edges and

contraction of edges in a graph have natural extensions in matroid theory, the defin-

itions of which are listed below. Let M be a matroid on a set E.

(i) A matroid M∗ on E whose bases are the set of all complements of the bases of

M is called the dual of M . The concept of the dual of a matroid generalizes the

notion of orthogonality in vector spaces and the concept of a planar dual of a

plane graph.

(ii) If X ⊆ E, the set of independent sets of M that are contained in E − X form

the collection of independent sets of a matroid on E − X called the deletion of

X from M . This matroid is denoted as M − X in the dissertation. If X is a

singleton set, {e}, we simply denote M − X as M − e.

(iii) If T ⊆ E, then the contraction of T from M is given by M/T = (M∗ − T )∗.

1.1.2. Survivable networks

In real-world, a network may denote any communication network, a road network

etc. Graphs represent these networks in a natural way. In practice, these networks

are vulnerable to failures, accidents and attacks. The survivability of a network is its
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capability to fulfill its mission in a timely manner, in the presence of attacks, failures,

or accidents.

Density functions involving the number of edges and number of vertices can be

used to study the edge distribution in graphs. For example, subgraphs H of a graph

G with high values of |E(H)|
|V (H)|

may denote highly active areas in the graph due to the

presence of a large number of edges for the given sizes of the vertex sets. Identifying

these active areas and safeguarding them against attacks and failures has been a

recurrent challenge due to increase in the size of the networks and the continuous

threat against them.

Another well-studied ratio is |E(H)|
|V (H)|−1

. This quantity is related to the minimum

number of edge-disjoint forests in a graph; later in this chapter, we state a result by

Nash-Williams [61] which establishes the relation. The ratio |E(H)|
|V (H)|−1

has proved to be

very useful in network survivability. We refer the reader [37] for a detailed discussion.

An important concept that is relevant to the topic of survivable networks is the

notion of edge-connectivity in graphs since it tells us how vulnerable a graph is under

deletion of edges. Gusfield [29] and Cunningham [15] introduced a measure that is

related to the edge-connectivity of a graph. This measure (which will be discussed

later in the dissertation) is related to the density function |E(H)|
|V (H)|−1

(See [37]). We

discuss these relations in a more generalized setting in the dissertation.

1.1.3. Electrical networks

An electrical network is an interconnection of electrical network elements called de-

vices such as resistances, capacitances, inductances, and voltage and current sources.

Each device dj is represented by an edge j and is associated with a voltage v(j) and

a current i(j). Since current has a direction, an electrical network is considered as a

directed graph.
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The relations between v(j) and i(j) of each device dj is called the device charac-

teristic. The device characteristic tells us how a device functions. Apart from this, an

electrical network has some topological constraints that are governed by Kirchoff’s

laws, which are linear constraints in terms of v(.) alone or i(.) alone. The problem

of network analysis is to solve the network, i.e., to find the set of all ordered pairs

(v(.), i(.)) which satisfy the above mentioned device characteristics and topological

constraints.

The equations which arise from the Kirchoff’s laws are algebraic in nature, and

they depend only on the way the devices are interconnected and not on the device

characteristics. Device characteristics are used to calculate v(j) if i(j) is known, or

vice versa.

Let G be the underlying undirected graph of an electrical network. Notice that

G is connected. The number of variables in the system of equations can be reduced

by considering the linear dependence of v(.) and i(.). Suppose T is a spanning tree

of G. Then for each j, using the Kirchoff’s law of voltages, the voltage v(j) can

be expressed as a linear combination of the voltage associated with the edges of T .

Similarly, the current i(j) can be expressed as a linear combination of the currents

associated with the edges not in T .

Let us partition the elements of G into two sets E1 and E2. Let G1 be the graph

obtained from G by removing E2 from G and let G2 be the graph obtained from G

by contracting all the elements of E1. If T1 is a spanning forest of G1 with maximum

number of edges possible and T2 is a spanning tree of G2, then T1 ∪ T2 is a spanning

tree of G. Then the system of voltage linear equations of G1 can be represented in

terms of variables corresponding to the edges of T1 and the system of current linear

equations of G2 can be represented in terms of edges of G2 − T2 called the nullity of

G2. Thus arises the problem of finding the best possible partition (E1, E2) of E(G)
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that minimizes the number of variables in the system of equations required to solve

the network.

Kishi and Kajitani [48] and Ohtsuki, Ishizaki and Watanabe [63] solved this

problem by considering the density function |E(H)|
|V (H)|−1

for each subgraph H of a graph

G. They showed that there exists an unique edge-set E1 of G such that G[E1] is

the unique maximal graph with density greater than 2 and the pair (E1, E − E1) is

the required partition of the system that minimizes the number of variables needed

to solve the network. We refer the readers to [79], [58] and [71] for more thorough

discussions of the above topic.

1.1.4. Biological and social systems

Graphs are used in many areas of biology. They are used to represent a metabolic

network which is the complete set of metabolic and physical processes that determine

the physiological and biochemical properties of a cell. Graphs are also used to model

proteins in the study of protein folding. Social networks are networks that repre-

sent social systems where the vertices are individuals or organizations and the edges

between them represent different types of relations between them.

A common feature of many biological and social networks is called the “commu-

nity structure”, the fact that the vertices divide into groups, with dense connections

within groups and only sparser connections between groups. Communities are of in-

terest because they correspond to functional units, including pathways and cycles in

metabolic networks and collections of pages that are related to topics in the web. In

recent years, many mathematical tools and computer algorithms have been developed

to detect and quantify the community structure in networks. We refer the readers to

[62] for a survey of some of these methods.

One method to model communities in a network is by defining a density function
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on the network, for example the ratio between the number of edges and the number

of vertices, and using it to identify communities. Subgraphs with high values of the

ratio correspond to communities. Depending on the problem at hand, other density

functions can be used.

1.1.5. Rigid systems

Engineering problems such as designing of a bridge, a cell phone tower, etc., involve

studying the properties of various materials and designing a rigid backbone for these

structures. One such backbone is a structure called a framework that consists rods and

joints such that each end of each rod is attached to a joint. The rods are assumed to

be strong and rigid and the joints are allowed to be arbitrarily rotatable. A framework

can be represented by a graph whose edges are rods and whose vertices are joints.

When dealing with frameworks, one must specify the dimension of the space in

which the joints are embedded and the rods are allowed to move. For example, a

framework in a two dimensional setting is one whose joints are embedded on a plane

and whose rods are allowed to move only on the plane. The joints of a framework in

dimensions m are said to be in generic positions if no two joints coincide, no three

joints lie on a straight line, no four joints lie on a plane, . . . , and no m joints lie on

a (m − 2)-dimensional subspace.

If an external force acts on a framework, a deformation might arise. The de-

formation could perhaps be prevented if a large enough number of rods are placed

appropriately between the joints. A framework is said to be rigid if it admits no

deformations, that is, if all its motions are rigid motions. A graph G is said to be

rigid in dimension m if and only if there is a rigid framework with the underlying

graph G such that the joints have a generic embedding in a space of dimension m.

There are combinatorial characterizations of rigid graphs in dimensions 1 and 2.



8

In the case of one dimension, the underlying graph of a rigid framework is not neces-

sarily a path and, overlaps of edges are permitted. A framework in a one dimensional

space is rigid if and only if its underlying graph is connected. In two dimensions,

the underlying graph of a rigid framework need not be planar and, crossing edges are

allowed. We use the following notation and state a theorem due to Laman [52], which

is the first combinatorial characterization of rigid graphs on a plane.

Notation: For a graph G with vertex set V and for U ⊆ V , E(U) denotes the

set of all edges in G both of whose end-vertices belong to U .

Theorem I.1 (Laman [52]). A graph is rigid in dimension 2 if and only if it has a

spanning subgraph G that satisfies the following: |E(U)| ≤ 2|U | − 3 for all U ⊆ V (G)

with |U | ≥ 2, and |E(G)| = 2|V (G)| − 3.

In the case of dimensions greater than two, characterizing a rigid graph via some

combinatorial properties has been a long-standing problem. However, the following

has been shown:

Theorem I.2 (G. Laman [52]). A graph that is rigid in dimension m has a spanning

subgraph G that satisfies the following: |E(U)| ≤ m|U | −
(

m+1
2

)
for all U ⊆ V (G)

with |U | ≥ m, and |E(G)| = m|V (G)| −
(

m+1
2

)
.

A simple connected graph that satisfies the conditions of the above theorem is

called a Laman graph of dimension m. For m ≥ 3, not all Laman graphs of dimension

m are rigid. Figure 1 shows a famous example of a graph, referred as “the double

banana”, which is a Laman graph of dimension 3 that is not rigid in dimension 3.

We refer the readers to the study of rigidity theory given in [27] and [28].
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Fig. 1. Double banana

1.1.6. Random graphs

A random graph is obtained by starting with a set of n vertices and adding edges be-

tween them at random. Different random graph models produce different probability

distributions on graphs. The most commonly studied model is called G(n, p), which

forms a graph by including each edge independently with probability p. The theory

studies typical properties of random graphs. For example, one might ask, for given

values of n and p, what is the probability that G(n, p) is connected? In studying such

questions, one often concentrates on the limit behavior of the probabilities as n grows

very large.

A graph G is said to be balanced if |E(H)|
|V (H)|

≤ |E(G)|
|V (G)|

for all subgraphs of H of G.

Let b(G) = |E(G)|
|V (G)|

and m(G) = maxH⊆G b(H). The relevance of density functions in

the study of random graphs was first identified by Erdős and Rényi [21], where they

calculated the probability that a random graph G(n, p) contains a given balanced

graph G.
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Theorem I.3 (Erdős and Rényi [21]). If G is a balanced graph, then

lim
n→∞

Prob(G ⊂ G(n, p)) =






0 if p(n)n1/b(G) → 0 as n → ∞,

1 if p(n)n1/b(G) → ∞ as n → ∞.

Later Bollobás [3] extended this result to any graph.

Theorem I.4 (Bollobás [3]). If G is a graph, then

lim
n→∞

Prob(G ⊂ G(n, p)) =






0 if p(n)n1/m(G) → 0 as n → ∞,

1 if p(n)n1/m(G) → ∞ as n → ∞.

Since then, the notion of density appeared in many places in the literature of

random graphs in several different contexts. We cite [44], [75] and [54] as examples.

1.2. Some key graph metrics

In this section, we present the two main graph theoretical concepts. This dissertation

presents some variations of these concepts and their extensions to matroids.

1.2.1. Average degree

If G is a graph, then the average degree of G is defined as the sum of the degrees

of the vertices divided by the total number of vertices in G. Since the sum of the

degrees of the vertices in G is equal to 2|E(G)|, the average degree of G is defined as

a(G) =
2|E(G)|

|V (G)|
;

in this dissertation we use

b(G) =
1

2
a(G)

for simplicity.

By calculating b(H) for each subgraph H of G, one can get an idea of which
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subgraphs of G are densely packed with edges. Thus b(G) is considered as a density

measurement in graphs. The collection of values of b(H) of subgraphs H measures

how well the edges are distributed inside a graph.

1.2.2. Edge-connectivity

Let k be an integer. A graph G is said to have edge-connectivity k if there is a subset

F of E(G) of size k such that G − F is disconnected and there is no edge set of size

less than k having this property. In other words, G has edge-connectivity k if and

only if given any partition P of V (G) of size two, G has at least k cross-edges, defined

as edges between the partition cells. Edge-connectivity of a graph G is denoted as

λ(G).

Edge-connectivity is a good measure of vulnerability of a graph since it gives the

minimum number of edges to be removed in order to disconnect a graph.

1.3. Balance using graph metrics

In this section, we bring together the measures on graphs that have turned out to be

useful in solving the challenges discussed in Section 1.1.

1.3.1. Density functions

An interesting variation of the function |E(G)|
|V (G)|

of a graph is the function |E(G)|
|V (G)|−1

. Since

the number |V (G)|−1 is the size of a spanning tree in G, the ratio |E(G)|
|V (G)|−1

is a bound

on the number of edge-disjoint spanning trees in G. This function is well-studied in

the literature and has a natural extension to matroids.

A similar function that has a direct connection to the rigidity of bar and joint

framework in two dimensions is the function |E(G)|
2|V (G)|−3

. From Laman’s theorem (The-

orem I.1), we see that a graph G is rigid in two dimensions if and only if |E(H)|
2|V (H)|−3

≤ 1
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for any non-trivial subgraph H of G and |E(G)|
2|V (G)|−3

= 1.

Similarly, the function |E(G)|
3|V (G)|−6

is related to planar graphs. A simple planar graph

G on 3 or more vertices satisfies the property that |E(H)|
3|V (H)|−6

≤ 1 for any subgraph H

of G of order at least 3.

From the above examples we see that some special graphs can be described by

ratios involving the number of edges and a linear function on the number of vertices.

1.3.2. An extension of edge-connectivity

The following theorem by Menger is a basic result about edge-connectivity of a graph.

Theorem I.5 (Menger [56]). For a positive integer k, the edge-connectivity of a graph

G is k if and only if every pair of vertices in G is joined by k or more edge-disjoint

paths and some pair is joined by exactly k edge-disjoint paths.

The following theorem extends the idea of edge-connectivity to a characterization

of graphs that have k edge-disjoint spanning trees.

Theorem I.6 (Tutte [83], Nash-Williams [60]). For a positive integer k, a connected

graph G = (V, E) contains k edge-disjoint spanning trees if and only if for every

partition P of V , the graph G has at least k(|P | − 1) cross-edges.

1.3.3. (k, l)-sparse graphs

We continue the theme of graph properties that are characterized by bounding func-

tions on the number of edges in each of their subgraphs. For instance, a graph G

is a Hamiltonian cycle if and only if |E(G)|
|V (G)|

= 1 and for each non-trivial subgraph H

of G, we have |E(H)|
|V (H)|

< 1. A non-trivial tree T is characterized by |E(T )|
|V (T )|−1

= 1 and

each induced subgraph F of T with at least two vertices satisfies |E(F )|
|V (F )|−1

≤ 1. More

generally, we have
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Theorem I.7 (Nash-Williams [61]). For a positive integer k, a graph G = (V, E) can

be partitioned into k forests if and only if |E(U)|
|U |−1

≤ k for every non-empty set U ⊆ V .

Theorem I.7 places a restriction on the number of edges that can be induced by a

vertex set of any given size. Note the connection between Theorem I.6 and Theorem

I.7: Theorem I.6 requires an lower bound on the number of edges in G, while Theorem

I.7 requires a upper bound on the number of edges in G. These theorems are shown

by Catlin et al. [10] to be related to the density function |E(G)|
|V (G)|−1

.

To generalize the bound of Theorem I.7, Whiteley in [87] and [88] introduced the

following definition: Let k and l be integers. For l < k, a graph G which is allowed to

have loops is said to be (k, l)-sparse if and only if for every non-empty subset U ⊆ V ,

|E(U)|
k|U |−l

≤ 1. For k ≤ l < 2k, a loopless graph G is said to be (k, l)-sparse if and only

if for every subset U ⊆ V with |U | ≥ 2, we have |E(U)|
k|U |−l

≤ 1 (or, |E(U)|

|U |− l
k

≤ k). We call

G a tight (k, l)-sparse graph if G is (k, l)-sparse and |E(G)|
k|V (G)|−l

= 1 (or, |E(U)|

|U |− l
k

= k).

Note that if k is an integer, a connected tight (k, k)-sparse graph satisfies the

sufficiency conditions of both Theorem I.6 and Theorem I.7. Thus a graph is a tight

(k, k)-sparse graph if and only if it is a union of k edge-disjoint spanning trees.

The total number of edges in each subgraph of a tight (k, l)-sparse graph G is

bounded while the number of edges in G is maximized. This property is seen in some

types of graphs. By the definition of (2, 3)-sparse graphs, note that a Laman graph

of dimension 2 is a tight (2, 3)-sparse graph.

Another place where the above-mentioned property is seen is in the case of planar

triangulations. Planar graphs are a class of simple graphs that satisfy |E(H)|
3|V (H)|−6

≤ 1

(or, |E(H)|
|V (H)|−2

≤ 3) for all subgraphs H of order at least three. A plane triangulation

is a plane graph that additionally satisfies |E(G)|
3|V (G)|−6

= 1 (or, |E(G)|
|V (G)|−2

= 3). Note that

the condition |E(H)|
|V (H)|−2

≤ 3 can be checked only for subgraphs H with at least three
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vertices.

1.4. More definitions

Deciding if the edges of a graph are distributed evenly inside the graph may be done

by two methods. The first is by defining a density measure applicable to all subgraphs

of a graph and checking if the density of each subgraph is not more than that of the

whole graph. Given a function f from the subgraphs H of G to the real numbers, we

say G is balanced with respect to f if and only if f(H) ≤ f(G) for all subgraphs H of

G. In this section, we define a class of functions f which are related to the average

degree of graphs.

The second method is by checking if the graph has certain high edge-connectivity

so that the graph does not have unacceptable weakness. We discuss some variations

of edge-connectivity.

1.4.1. r-balanced graphs and matroids

Owing to the many kinds of problems that could demand different kinds of density

functions, we formally define a broad class of density functions. The reasons for the

definition of these density functions are two-fold:

1. Like the study of (k, l)-sparse graphs, we are interested in studying the distri-

bution of edges of a graph in relation to a linear function on the number of vertices in

the graph. There is an obvious limitation in the study of (k, l)-sparse graphs. Since

an edge with its two end vertices forms a subgraph, any (k, l)-sparse graph satisfies

1 ≤ 2k− l or l < 2k. Thus, there are no (k, l)-sparse graphs for l ≥ 2k and so there is

a need for an extension of the concept of (k, l)-sparse graph for l ≥ 2k. One way to

address this situation is to avoid the bounding condition for subgraphs of small sizes,

as in the case of the bounding condition in simple planar graphs.
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2. As we saw in some applications, there are many problems which are expressed

in terms of both graphs and matroids. Hence we extend the study of density to

matroids. Matroids are an abstraction of graphs that do not have the notion of

vertices. However, matroids may be thought of as made up of edges. To address the

concept of vertices in matroids, we depend on the rank function of a matroid.

Motivated by the concept of density in graphs and some of their extensions to

matroids, we provide a class of density functions in matroids and graphs which include

the various classes of (k, l)-sparse graphs.

Let ω(G) be the number of components of graph G. A maximal forest in G is

a forest with the maximum number of edges possible. The number |V (G)| − ω(G)

is called the rank ρ(G) of G and it is the size of any maximal forest in G. The

rank function in matroids is a natural generalization of the rank function in graphs.

Suppose a graph G has two components G1 and G2. Let G′ be a graph obtained by

identifying a vertex from G1 and a vertex from G2. Thus G′ is a connected graph.

Also, the number of vertices of G′ is one less than that of G and the number of

components of G′ is one less than that of G. Thus the ranks of G and G′ are the

same. In fact, the cycle matroids of G and G′ are the same. In general, the cycle

matroid of any graph G is a cycle matroid of a connected graph formed by identifying

one vertex from each component of G as a single vertex. Thus the rank of any graph

is the same as the rank of the cycle matroid of the connected graph described above.

For a connected graph G, the rank of the cycle matroid on G is |V (G)|−1. Thus

a linear relation in terms of the rank of a matroid may be considered as an extension

to matroids of a linear relation in terms of the number of vertices in a graph. Thus,

by the definition of the rank of a connected graph, we consider ρ(M) to be equivalent

to |V (G)| − 1.

Let M be a matroid on a set E with rank function ρ. For a rational number r,
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we define

dr(F ) =
|F |

ρ(F ) − (r − 1)

for all subsets F of E such that ρ(F ) > r − 1. We denote dr(E) as dr(M). The

matroid M is said to be r-balanced if ρ(M) > r− 1 and dr(F ) ≤ dr(E) for all subsets

F of E such that ρ(F ) > r − 1. A graph G is called r-balanced if the cycle matroid

of G is r-balanced. For the graph G, we denote dr(E(G)) as dr(G). Note that for a

connected graph G, we have dr(G) = |E(G)|
|V (G)|−r

.

1.4.2. (r, s)-balanced matroids

For some values of r, there may not exist an r-balanced graph, especially with small

values of dr(G). For example, there is no 1.75-balanced graph G with d1.75(G) <

4. (Suppose G is a graph with d1.75(G) < 4. Then for any e ∈ E(G), we have

d1.75(G[e]) = 1
2−1.75

= 1
0.25

= 4 > d1.75(G). Thus G is not 1.75-balanced.) Therefore

in the notion of r-balanced matroids, we introduce a parameter s and waive the

condition dr(F ) ≤ dr(E) for subsets F of rank less than s.

For an integer s such that s > r − 1, M is said to be (r, s)-balanced if ρ(M) ≥ s

and dr(F ) ≤ dr(E) for all subsets F of E such that ρ(F ) ≥ s. A graph G is called

(r, s)-balanced if the cycle matroid of G is (r, s)-balanced. Note that in the above

definition, we use the letters “r” and “s” partly to avoid confusing (r, s)-balanced

graphs with (k, l)-sparse graphs and partly because r is a rational number and is not

necessarily an integer.
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1.4.3. Functions extending the idea of edge-connectivity

Here we extend the concept of edge-connectivity. We define the following for a graph

G: For each integer s ≥ 0, let

µs(G) := min
X⊆E(G)

{
|X|

ω(G − X) − ω(G)

∣∣∣∣ω(G − X) > ω(G), |V (G)| − ω(G − X) ≥ s

}
.

For a connected graph G, if s = |V (G)|−2 then µs(G) becomes the edge-connectivity

of G. The case when s = 0, is shown in [10] to be related to Theorem I.6 and d1(G).

For a matroid M on a non-empty set E, let

µs(M) := min

{
|F |

ρ(M) − ρ(M − F )

∣∣∣∣F ⊂ E, s ≤ ρ(M − F ) < ρ(M)

}
.

Suppose M is a cycle matroid of a graph G. Then ρ(G) = |V (G)| − ω(G) and,

for X ⊆ E(G), ρ(G − X) = |V (G)| − ω(G − X). In the latter formula, we count all

the isolated vertices of G that are created by the removal of X from G. Thus µs(M)

coincides with the definition of µs(G).

Note that if F = E, we have |F |
ρ(E)−ρ(E−F )

= |E|
ρ(E)

= d1(M). In Chapter V, we

show the connection between µs(M) and dr(M) for suitable values of r and s.

1.5. Historical background

In 1960, Erdős and Rényi [21] introduced the concept of balanced graphs. In 1961,

Tutte [83] and Nash-Williams [60] independently published Theorem I.6. This was

followed by Nash-Williams [61](1964) presenting Theorem I.7. Gusfield [29](1983) ob-

served that Theorem I.6 implies that each 2k-edge-connected graph has k edge-disjoint

spanning trees. Theorems I.6 and I.7 are matroidal and their matroidal versions are

due to Edmonds [19] and [18](1965). Easier proofs of the above results on matroids

were later given by Harary and Welsh [33](1969). This led to the introduction of the
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quantity d1(M) for matroids by Kelly and Oxley [46](1982).

The density function d1(M) was studied in a different setting by a generalized

concept called the “principal partitions of a set”. Principal partitions of a set are

partitions on a set with respect to two submodular functions. The study was initiated

by Kishi and Kajitani [48] in 1968, while they were studying the topological degrees

of freedom of electrical networks. We give more details in Chapter VI.

In 1970, Laman [52] noticed the first combinatorial characterization of 2-dimensional

rigid graphs, given by Theorem I.1.

The number µ1(G) is called the strength of a matroid and was first introduced

by Gusfield [29] in 1983 in reciprocal form. The quantity was generalized to matroids

by Cunnigham [15] in 1985 and by Catlin, Grossman, Hobbs and Lai [10] in 1992.

It is shown in [10] that the term µ1(M) related to d1(M) as follows: A matroid is

1-balanced if and only if µ1(M) = d1(M).

Whiteley in [87](1988) and [88](1996) defined (k, l)-sparse graphs and showed

their relevance in rigidity theory. He also showed that, for each 0 ≤ l < 2k, the col-

lection of all (k, l)-sparse subgraphs of a graph G forms the collection of independent

sets of a matroid on E(G).

There has been recent activity on (k, l)-sparse graphs. In 1996, Albertson and

Haas [1] showed the existence of (k, l)-sparse graphs for various values of k and l. A

method named the “pebble game algorithm” was introduced in [43](1997) to identify

(2, 3)-sparse graphs. This algorithm was simplified in [2](2003). In [53](2005), a

family of pebble game algorithms that identify the (k, l)-sparse graphs for 0 ≤ l < 2k

was given. An application of sparse graphs to protein folding appeared in [16](2001).

A constructive characterization of a graph property is a building procedure con-

sisting of simple operations such that the graphs obtained from some specified initial

graph or graphs by these operations are precisely those having the property. This
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kind of characterization is common in graph theory. For example, a graph is con-

nected if and only if it can be obtained from a vertex by zero or more applications of

the operation: add a new edge connecting an existing vertex with either an existing

vertex or a new one. Results on ear-decomposition of 2-edge connected graphs [86]

and Tutte’s characterization of 3-connected graphs [84](1961) are also examples of

constructive characterizations.

Several constructive characterizations of (k, l)-sparse graphs have appeared in

the literature and constructions are found in the literature. For some examples, we

cite the papers by Henneberg [35](1911), Laman [52](1970), Tay [81](1991), Haas

[32](2002), Frank and Szegő [23](2003), Szegő [80](2006) and Fekete, Zsolt and Szegő

[22](2007).

1.6. Overview

In the next two chapters, we recall some density functions that are already defined

in the literature. These functions are the special cases of r-balanced graphs for the

values 0 and 1. We provide a generalized Cartesian product of graphs which generates

large balanced graphs and 1-balanced graphs from smaller ones.

In Chapter IV, we provide a method of transforming a graph into a 1-balanced

graph. This is of high practical importance. This result raises the question of whether

the same result is true for other values of r.

In Chapter V, we revisit (r, s)-balanced graphs and address the following types of

questions: For what values of r and s do there exist (r, s)-balanced graphs? How are

the (r, s)-balanced graphs related to (k, l)-sparse graphs? What are the relationships

between the various classes of (r, s)-balanced graphs? Apart from these, we also

give some constructions and applications of (r, s)-balanced graphs. The connection

between (k, l)-sparse graphs and (r, s)-balanced graph is explored in Chapter V.
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In Chapter VI, our result in Chapter IV is extended to principal partitions of a

set.

1.7. Preliminaries

Here we provide some basic lemmas which will be used in the rest of the dissertation.

Lemma I.8 (Hardy, Littlewood, Polya [34]). Let p1/q1, p2/q2, . . . , pk/qk be fractions

in which pi is a real number and qi is a positive real number for each i ∈ {1, 2, . . . , k}.

Then

min
1≤i≤k

pi

qi

≤
p1 + p2 + · · · + pk

q1 + q2 + · · · + qk

≤ max
1≤i≤k

pi

qi

with equality on both sides if and only if the fractions pi/qi; i ∈ {1, 2, . . . , k} are all

the same.

The following are some elementary results involving real numbers.

Lemma I.9. If a and b are two rational numbers such that a < b, then any rational

number r ∈ [a, b] can be expressed as r = k−l
k

a + l
k
b where l and k are non-negative

integers with l ≤ k.

Lemma I.10. If a, b and x are positive real numbers such that a−x
b−1

≤ a
b
, then x ≥ a

b
.

We introduce the following notation for convenience.

Notation: If G is a graph and s a positive integer, Gs denotes the graph obtained

from G by replacing each edge by s parallel edges.
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CHAPTER II

BALANCED GRAPHS

The average degree of the vertices of a graph is perhaps a first natural quantity of

measurement to decide if the edges of the graph are distributed nicely in the graph. In

this chapter, we discuss a density function that is directly related to average degree.

2.1. Definition and examples

Let G be a graph. The number 1
|V (G)|

∑
v∈V (G) d(v) = 2 |E(G)|

|V (G)|
is the average degree of

G. The average degree is a global quantity measured locally by the vertex degrees.

Let

b(H) =
|E(H)|

|V (H)|

for any non-empty subgraph H of graph G. Thus 2b(G) is the average degree of G.

G is said to be balanced if b(H) ≤ b(G) for all non-empty subgraphs H and strictly

balanced if b(H) < b(G) for all non-empty proper subgraphs H . The definition of

balanced graphs differs from the definition of 0-balanced graphs, as will be shown in

the next section.

Cycles, trees and complete k-partite graphs for any positive integer k are strictly

balanced. Regular connected graphs are balanced. Figure 2 shows a graph that is

balanced, but not strictly balanced.

Fig. 2. A balanced graph that is not strictly balanced
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2.1.1. Balanced graphs and 0-balanced graphs

Recall that a graph G is said to be 0-balanced if |E(H)|
ρ(H)+1

≤ |E(G)|
ρ(G)+1

for all subgraphs

H of G. Also, d0(G) = |E(G)|
ρ(G)+1

for any graph G. For a connected graph G, we have

ρ(G) + 1 = |V (G)| and for any subgraph H of G, we have ρ(H) + 1 ≤ |V (H)|. We

have the following result:

Theorem II.1. If a connected graph G is 0-balanced, then G is balanced.

Proof. Since G is connected, we have ρ(G) + 1 = |V (G)|. Thus d0(G) = |E(G)|
|V (G)|

. Let

H be a subgraph of G. Since G is 0-balanced,

d0(H) =
|E(H)|

ρ(H) + 1
≤ d0(G).

But ρ(H) + 1 ≤ |V (H)|. Thus,

|E(H)|

|V (H)|
≤

|E(H)|

ρ(H) + 1
= d0(H) ≤ d0(G) =

|E(G)|

|V (G)|
.

Therefore, G is balanced.

However, not all balanced graphs are 0-balanced as Figure 3 shows.

Fig. 3. Example of a balanced graph that is not 0-balanced

2.1.2. (k, l)-sparse graphs and balanced graphs

For integers k and l, recall from Section 1.3.3 that a graph G is (k, l) sparse if and

only if every subgraph H of G satisfies |E(H)|

|V (H)|− l
k

≤ k. A (k, l)-sparse graph is tight if
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|E(G)|

|V (G)|− l
k

= k. Thus a tight (k, 0)-sparse graph satisfies |E(H)|
|V (H)|

≤ k = |E(G)|
|V (G)|

. Therefore,

a tight (k, 0)-sparse graph is balanced.

Suppose G is (k, 0)-sparse for some integer k. If l is an integer such that l ≤ 0,

then |E(H)| ≤ k|V (H)| ≤ k|V (H)| − l and hence G is (k, l)-sparse. But the converse

is not true. Figure 4 shows an example of a graph that is (1,−1)-sparse but not

(1, 0)-sparse.

Fig. 4. Example of a (1,−1)-sparse graph that is not (1, 0)-sparse

2.1.3. Relationships between various notions of balanced graphs

We have the following containment relationship for connected graphs as shown in

Figure 5.

Balanced graphs

0-balanced graphs

Strictly balanced

1

2 3

4

Fig. 5. Relationships between various notions of balanced graphs

The graphs in Figures 3, 6, 7 and 8 are examples of graphs that show that the

containment of sets shown in Figure 5 are strict. Table I summarizes the list of

examples.
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Fig. 6. Example of a strictly balanced graph that is also 0-balanced

Fig. 7. Example of a 0-balanced graph that is not strictly balanced

2.2. Earlier results

Erdős and Rényi [21] introduced balanced graphs in their work on random graphs.

Since then, balanced graphs and strictly balanced graphs have been widely studied

in the context of random graphs; for example, see [44], [75], [4], [72], [73], [78], [74],

[54], [55] and [3]. Győri, Rothchild and Runciński [31] proved that every graph G is

contained in a balanced graph G′ such that b(G′) = max{b(H) : H ⊆ G}. They also

showed that if m and n are positive integers, then there exists a balanced graph on

n vertices and m edges. Veerapandiyan and Arumugam [85] proved that for l ≥ 0,

Table I. Summary of examples of different types of balanced graphs

Set in Figure 5 Example

1 Figure 3

2 Figure 6

3 Figure 7

4 Figure 8
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Fig. 8. Example of a balanced graph that is neither 0-balanced nor strictly balanced

every tight (k, l)-sparse graph is balanced1. They also showed that all maximal planar

graphs and all maximal outer-planar graphs are balanced.

An algorithm using network flows to check if a graph is balanced or not was given

by Picard and Queyranne [70]. This was later analyzed and simplified by Penrice [69].

The definition of balanced graphs was generalized by Zhang, Sun and Li [90] to graphs

whose edges and vertices have weights. They also extended the algorithm by Penrice

to this generalized definition.

A similar density function is related to the edge coloring in graphs. See [77], [25]

and [26] for a discussion of the relation between χ′(G) and the quantity

max
H⊆G

⌈
|E(H)|

⌊|V (H)|/2⌋

⌉

of a graph G.

2.3. Some preliminary results on balanced graphs

The following lemma is useful.

Lemma II.2. Let G be a non-trivial graph. Then G has a connected induced

subgraph H such that b(H) is the maximum for b over all subgraphs of G.

Proof. Suppose a subgraph H achieves the maximum value for b over all subgraphs

of G. Clearly we may suppose that H is induced and has no isolated vertices. If H is

1Their paper claims that the result is true for all values of l, but the result is not
true for l < 0, as Figure 4 shows.
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not connected, let it have components C1, . . . , Ck with component Ci having ai edges

and bi ≥ 2 vertices for i = 1, 2, . . . , k. Then b(H) =
P

aiP
bi
≤ max ai

bi
by Lemma I.8, so

there is a connected induced subgraph of G which achieves the maximum value for

b.

2.4. A characterization of balanced graphs

In this section, we see a new characterization of balanced graphs which is used in the

next section to construct big balanced graphs. The characterization is also used to

show that the Cartesian product of balanced graphs is balanced.

The next theorem is our new characterization of balanced graphs. The character-

ization involves arbitrary non-negative vertex weights2. The result is used in Chapter

III.

Theorem II.3 (Kannan in [38]). Let L be a graph on m vertices V = {v1, · · · , vm}.

Let α be any non-negative integer valued function on the vertex set V . Let

Nα :=
∑

vivj∈E(L)

[
min(α(vi), α(vj)) −

1

m

m∑

r=1

α(vr)
]
.

Then L is balanced if and only if Nα ≤ 0 for all α, and L is strictly balanced if and

only if Nα < 0 for all non-constant α.

Proof. (Sufficiency of L balanced) For a contradiction, suppose L is balanced while

there is a non-negative, integer-valued function α on V (L) with Nα > 0. Choose α0

such that Nα0 > 0 and s = max1≤i≤m α0(vi) is as small as possible. If α0 were

constant on {v1, . . . , vm}, then Nα0 = 0. Hence, there is a j ∈ {1, 2, . . . , m} such that

α0(vj) < s. Then s ≥ 1 since α0(vj) ≥ 0.

2The origin of Nα and the relation of L. Kannan to this origin is described in
Chapter III.
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Let S := {vi : α0(vi) = s}. By the definition of s and j, S 6∈ {∅, V }. Consider

the function α′
0 defined by α′

0(vi) = α0(vi) if vi /∈ S and α0(vi) − 1 if vi ∈ S. Thus

max1≤i≤m α0(vi) < s.

We claim that Nα′

0
≥ Nα0 .

Let L′ := L[S], and denote m′ := |V (L′)| = |S| and ℓ′ := |E(L′)|. Then

1

m

m∑

r=1

α′
0(vr) =

1

m

[ ∑

r:vr /∈S

α0(vr) +
∑

r:vr∈S

(α0(vr) − 1)

]

=
1

m

[ ∑

r:vr /∈S

α0(vr) +
∑

r:vr∈S

α0(vr) − m′

]

=
1

m

m∑

r=1

α0(vr) −
m′

m
.

Suppose vivj ∈ E(L′). Then min(α′
0(vi), α

′
0(vj)) = min(α0(vi), α0(vj))−1. There-

fore, in this case we have

min(α′
0(vi), α

′
0(vj)) −

1

m

m∑

r=1

α′
0(vr) = min(α0(vi), α0(vj)) − 1 −

1

m

m∑

r=1

α0(vr) +
m′

m
.

If vivj /∈ E(L′), then min(α′
0(vi), α

′
0(vj)) = min(α0(vi), α0(vj)). This is true even if,

for example, vi ∈ S and vj 6∈ S, for then α′
0(vi) = s − 1 and α′

0(vj) = α0(vj) ≤ s − 1,

and so min(α′
0(vi), α

′
0(vj)) = min(s − 1, α0(vj)) = α0(vj) = min(α0(vi), α0(vj)). Thus

we have

min(α′
0(vi), α

′
0(vj)) −

1

m

m∑

r=1

α′
0(vr) = min(α0(vi), α0(vj)) −

1

m

m∑

r=1

α0(vr) +
m′

m
.

Therefore,

Nα′

0
− Nα0 = ℓ′(−1 +

m′

m
) + (ℓ − ℓ′)

m′

m
= −ℓ′ +

ℓm′

m
= m′(−

ℓ′

m′
+

ℓ

m
) ≥ 0

since ℓ′

m′
= d(L′) ≤ d(L) = ℓ

m
either because L is balanced or because ℓ′ = 0. Hence

the claim.
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But Nα′

0
≥ Nα0 > 0 is a contradiction to the minimality of s by the definition of

Nα′

0
. The contradiction proves sufficiency.

(Necessity of L balanced) Suppose Nα ≤ 0 for all labellings α. Let L′ be

any non-trivial vertex-induced subgraph of L, and suppose L′ has m′ vertices and ℓ′

edges. Define α on V (L) by letting α(v) = 1 if v ∈ V (L′) and 0 if v /∈ V (L′). Then

1

m

m∑

r=1

α(vr)) =
m′

m
,

and

0 ≥ Nα

=
∑

vivj∈E(L′)

(1 −
m′

m
) +

∑

vivj /∈E(L′)

(−
m′

m
)

= ℓ′ −
m′ℓ′

m
−

m′ℓ

m
+

m′ℓ′

m

= ℓ′ −
m′ℓ

m

= m′(
ℓ′

m′
−

ℓ

m
).

Hence we have ℓ′

m′
≤ ℓ

m
(i.e., d(L′) ≤ d(L)), so L is balanced.

(Sufficiency of L strictly balanced) We note that Nα = 0 for all constant

labellings α. For a contradiction, suppose L is strictly balanced while there is a

non-constant, non-negative, integer-valued function α on V (L) with Nα ≥ 0. Choose

non-constant α0 such that Nα0 ≥ 0 and s = max1≤i≤m α0(vi) is as small as possible.

Since α0 is not constant, there is a j ∈ {1, 2, . . . , m} such that α0(vj) < s. Then the

integer s ≥ 1 since α0(vj) ≥ 0.

Let S := {vi : α0(vi) = s}; by definition of s and j, S 6∈ {∅, V }. Consider the

function α′
0 defined by α′

0(vi) = α0(vi) if vi /∈ S and α0(vi) − 1 if vi ∈ S. Thus
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max1≤i≤m α0(vi) < s.

We claim that Nα′

0
> Nα0 , and thus α′

0 is non-constant.

Let L′ := L[S], and denote m′ := |V (L′)| = |S| and ℓ′ := |E(L′)|. Exactly as in

the case of non-strictly balanced,

Nα′

0
− Nα0 = m′(−

ℓ′

m′
+

ℓ

m
).

But this is greater than zero either because L is strictly balanced and so ℓ′

m′
= d(L′) <

d(L) = ℓ
m

or because ℓ′ = 0.

Thus Nα′

0
> Nα0 ≥ 0, so α′

0 is not constant. This is a contradiction to the choice

of α0 and the minimality of s. The contradiction proves sufficiency.

(Necessity of L strictly balanced) Suppose Nα < 0 for all non-constant

labellings α. Let L′ be any non-trivial vertex-induced subgraph of L, L′ 6= L, and

suppose L′ has m′ vertices and ℓ′ edges. Define α on V (L) by letting α(v) = 1 if

v ∈ V (L′) and 0 if v /∈ V (L′). Then α is not constant, so

1

m

m∑

r=1

α(vr)) =
m′

m
,

and

0 > Nα

=
∑

vivj∈E(L′)

(1 −
m′

m
) +

∑

vivj /∈E(L′)

(−
m′

m
)

= ℓ′ −
m′ℓ′

m
−

m′ℓ

m
+

m′ℓ′

m

= ℓ′ −
m′ℓ

m

= m′(
ℓ′

m′
−

ℓ

m
).
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Since m′ > 0, we have ℓ′

m′
< ℓ

m
(i.e., d(L′) < d(L)), so L is strictly balanced.

2.5. Generalized Cartesian products

In this section, we prove that Cartesian products of balanced graphs are balanced.

In fact, we will prove an extension of the result. We present a construction of big

balanced graphs from small ones by joining some additional edges. The construction

resembles that of internet graphs and hence the construction would prove to be useful

in practice.

The following definition is given in [38]. Throughout this section, let L be a con-

nected graph with ℓ edges and m vertices, and let the vertices be labeled v1, v2, . . . , vm.

Label the edges of L as e1, e2, . . . , eℓ. Let G1, G2, . . . , Gm be vertex-disjoint con-

nected graphs, each having n vertices and e edges. Let k be a positive integer.

Let B1, B2, . . . , Bℓ be k-regular bipartite graphs such that, if edge ei of L joins ver-

tices vr and vs, then the two sides of Bi are the vertex sets of Gr and Gs. Let

Ak = Ak(G1, . . . , Gm; L) =

( ⋃m
i=1 Gi

)
∪

( ⋃ℓ
i=1 Bi

)
. When the value of k is already

known, we may use A = A(G1, . . . , Gm; L) (omitting the subscript). Then A is called

a generalized Cartesian product. Note that the definition of A is ambiguous, since

there are many possible k-regular bipartite graphs Bi. We allow this ambiguity be-

cause the choices of the Bi make no difference to our results. Also note that if G and

L are graphs, then the Cartesian product G × L is a generalized Cartesian product

with Gi = G for i = 1, 2, . . . , m and k = 1. Figure 9 shows graphs L and G1, G2, G3

and a generalized Cartesian product A2(G1, G2, G3; L).

Let H be a subgraph of A, and suppose H includes one or more vertices of

Gi1 , . . . , Giℓ′
and no others of the Gi. Let L′ be the subgraph of L generated by the

vertices vi1 , . . . , viℓ′
. Then we say that L′ is induced by H .

The following theorem shows how one may construct big balanced graphs from
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L GGG1 3
G

2

12 2 3
, ,A (G  G  G  ;L)

Fig. 9. Example of a generalized Cartesian product

small ones.

Theorem II.4. Let L be a graph on m vertices. Let k be any positive integer and let

G1, . . . , Gm be balanced graphs. Then A = Ak(G1, . . . , Gm; L) is balanced if and only

if L is balanced.

Proof.

b(A) =
nkl + me

mn
=

kl

m
+

e

n
. (2.1)

Note that for i = 1, · · · , m,

b(Gi) < b(A). (2.2)
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(Necessity) Suppose A is balanced. Let V (L) = {v1, v2, · · · , vm}. Let L′ be

any subgraph of L, and suppose L′ has ℓ′ edges and m′ vertices. Form A′ on L′ as A

is formed on L. Then,

b(A′) =
nkℓ′ + m′e

m′n
=

kl′

m′
+

e

n
. (2.3)

Since A is balanced, we have b(A′) ≤ b(A), and by (2.1) and (2.3), we have

kℓ′

m′
≤

kℓ

m
. (2.4)

Thus

ℓ′

m′
≤

ℓ

m
. (2.5)

Therefore L is balanced.

(Sufficiency) Suppose L is balanced. Let H be a subgraph of A. If H is a

subgraph of Gj for some j = 1, · · · , m, then since Gj is balanced, we have b(H) ≤

b(Gj) and by (2.2), we have b(Gj) < b(L); thus b(H) < b(L). Otherwise, let Hi =

H∩Gi and ni = |V (Hi)| for i = 1, · · · , m. Without loss of generality, we may suppose

that there is an integer m′ > 0 such that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nm′ and ni = 0 for

i > m′. Let L′ be the subgraph of L induced by H , and note that L′ = L is possible.

For each i ∈ {1, 2, . . . , m′}, let ei = |E(Hi)|, and e′ = |E(H) ∩ E(
⋃ℓ

i=1 Bi)|. Notice

that

e′ ≤ k
∑

vivj∈E(L′)

min(ni, nj). (2.6)

By Theorem II.3, since L is balanced, we have

∑

vivj∈E(L′)

min(ni, nj) ≤
l

m

m∑

i=1

ni =
l

m

m′∑

i=1

ni. (2.7)

By (2.6) and (2.7), we get

e′ ≤
kl

m

m′∑

i=1

ni. (2.8)
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Thus,

b(H) =
e′ +

∑m′

i=1 ei∑m′

i=1 ni

(2.9)

≤
kl
m

∑m′

i=1 ni +
∑m′

i=1 ei∑m′

i=1 ni

(2.10)

=
kl

m
+

∑m′

i=1 ei∑m′

i=1 ni

. (2.11)

By Lemma I.8, we have
Pm′

i=1 eiPm′

i=1 ni
≤ max1≤i≤m′

ei

ni
≤ e

n
since Gi is balanced. Therefore,

b(H) ≤ kl
m

+ e
n

= g(A) and thus A is balanced.

The Cartesian product H1×H2 of two graphs H1 and H2 is the graph on V (H1)×

V (H2), each vertex labeled as (v1, v2) where vi ∈ Hi; vertices (u1, u2) and (v1, v2) are

adjacent in H1 ×H2 if and only if either u1 = v1 and u2v2 is an edge in H2 or u2 = v2

and u1v1 is an edge in H1.

Corollary II.5. The Cartesian product of balanced graphs is balanced.

Proof. Let G and L be two balanced graphs. Then G × L = A1(G, G, · · · , G; L)

with suitable choices of the bipartite graphs Bij . By the above theorem, G × L is

balanced.
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CHAPTER III

1-BALANCED MATROIDS AND 1-BALANCED GRAPHS

A natural extension of balanced graphs is by defining the following density function

on a graph with |V (G)| > 1, namely |E(G)|
|V (G)|−1

. If G is connected then the rank of G is

|V (G)| − 1. Thus the ratio |E(G)|
|V (G)|−1

is extendable to matroids. Recall from Chapter I

that for a matroid M on a set E with rank function ρ, we have

d1(F ) =
|F |

ρ(F )

for all subsets F of E such that ρ(F ) > 0. The matroid M is said to be 1-balanced

if and only if d1(E) is the maximum value among d1(F ) where F ⊆ E.

1-balanced graphs and matroids are well-known in the literature. In the next

section, we survey some earlier results on 1-balanced matroids and graphs. Section

3.1.2 has the lemmas that are used in this chapter and the next. In Section 3.2, we

show which regular graphs are 1-balanced. In Section 3.3, we show that with the

value of k within two limits, any generalized Cartesian product that is formed by

using 1-balanced graphs is 1-balanced.

This chapter originated from an unpublished manuscript by Hobbs, Lai, Lai and

Weng [40] in which a version of Theorem III.13 was stated with a faulty proof. The

corrected version, including Kannan’s proof of Theorem II.3 will appear in [39].

3.1. Earlier results

3.1.1. 1-balanced matroids

As an extension of the concept of balanced graphs, Kelly and Oxley [46] introduced

the concept of 1-balanced matroids and called them “balanced matroids”. 1-balanced
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matroids are also referred as “uniformly dense matroids” in [10] and “molecular ma-

troids” in [59], while 1-balanced graphs are referred as “strongly balanced graphs”

in [76]. Corp and McNulty [13] used the terminology of “balanced matroids”. We

introduce the terminology of “1-balanced matroids” for the following reasons: Firstly,

in order to reconcile the existing terminology in the literature and secondly, to extend

the notions of density functions to what we refer as “r-balanced matroids”. By doing

so, we are also not mixing the concepts of balanced graphs and 1-balanced graphs.

Another measure related to γ1(M) through the matroid dual is the strength of a

matroid, defined by Cunningham [15] as

η1(M) = min

{
|E| − |F |

ρ(M) − ρ(F )
: F ⊂ E such that ρ(F ) < ρ(M)

}
.

For a graph G, the quantity η1(G) was introduced earlier by Gusfield [29] in the

reciprocal form.

Suppose that X ⊆ E(G) has the minimum number of edges that disconnect a

connected graph G, i.e., |X| = λ(G), the edge-connectivity of G. Then, ω(G−X) = 2.

Therefore, |X|
ω(G−X)−ω(G)

= |X|
2−1

= |X|. By the definition of η1(G), we have η1(G) ≤

|X| = λ(G). If U ⊆ V (G), then the set of all edges with exactly one end-vertex in

U is denoted as [U, U ]. Since |[U, U ]| ≥ λ(G), we have |[U, U ]| ≥ η1(G). This fact is

used later in this chapter.

In papers [45], [46] and [47], Kelly and Oxley extended the investigation of ran-

dom graphs to that of random matroids. The theory of random matroids was also

studied by many others, including for example, Kordecki and  Luczac [49].

The following relation is immediate:

η1(M) ≤ d1(M) ≤ γ1(M). (3.1)

Theorem III.1 (Catlin, Grossman, Hobbs, Lai [10]). For a matroid M on a set E,
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the following are equivalent

1. γ1(M)ρ(M) = |E| i.e., M is 1-balanced;

2. η1(M)ρ(M) = |E|;

3. η1(M) = γ1(M).

Lai et al. [51] proved that every matroid M is contained in a 1-balanced matroid

M ′ such that d1(M
′) = max{d1(N) : N ⊆ M}. Earlier, this result was proved for

graphs by Payan [65].

3.1.2. 1-balanced graphs

There are many graphs that are 1-balanced, including trees, cycles, and complete

graphs. Ruciński and Vince [76] proved that any 1-balanced graph is balanced and

that the converse is not true. In Chapter V, among many other results, we show that

any 1-balanced graph is 0-balanced. Figure 10 contains some examples of graphs that

are balanced but not 1-balanced. In fact, the first example in Figure 10 is 0-balanced.

Fig. 10. Examples of balanced graphs that are not 1-balanced

The following lemma is immediate for 1-balanced graphs.

Lemma III.2. A graph G is 1-balanced if and only if for all non-trivial connected

subgraphs H of G, we have d1(H) ≤ d1(G).

Proof. The necessity is clear. For sufficiency, suppose for all non-trivial, induced,

connected subgraphs H of G, d1(H) ≤ d1(G). Let H be a disconnected subgraph



37

of G. Let Hi, 1 ≤ i ≤ ω(H) be the components of G. Clearly, we may assume

that Hi for 1 ≤ i ≤ ω(H) are non-trivial. By hypothesis, d1(Hi) ≤ d1(G), so

|E(Hi)| ≤ d1(G)(|V (Hi)| − 1) for 1 ≤ i ≤ ω(H). Hence

|E(H)| =

ω(H)∑

i=1

|E(Hi)| ≤ d1(G)

ω(H)∑

i=1

(|V (Hi)| − 1) = d1(G)(|V (H)| − ω(H)),

and so d1(H) ≤ d1(G).

Thus, for a connected graph G, the concept of 1-balanced graphs may also be

realized using the fraction |E(H)|
|V (H)|−1

instead of d1(H). For a positive integer k, any non-

trivial subgraph H of a (k, k)-sparse graph G satisfies the condition |E(H)|
|V (H)|−1

≤ k. If

G is a tight (k, k)-sparse graph, then |E(G)|
|V (G)|−1

= k. Therefore, |E(H)|
|V (H)|−1

≤ k = |E(G)|
|V (G)|−1

and so G is 1-balanced.

The following useful result was proved for matroids by Catlin, Grossman, Hobbs

and Lai [10]:

Lemma III.3 (Catlin, Grossman, Hobbs and Lai [10]). Let G be a graph. Suppose

d1(H1) = d1(H2) = γ1(G) for subgraphs H1, H2 of G. Then d1(H1 ∪ H2) = γ1(G).

Furthermore, if H1 ∩ H2 has an edge, then d1(H1 ∩ H2) = γ(G).

As an important consequence of Lemma III.3, we note that G has a unique

maximal γ-achieving subgraph without isolated vertices and that each component of

this subgraph is a maximal, connected γ-achieving subgraph and is vertex induced.

This fact is used frequently in this dissertation.

A 1-balanced graph is regarded as describing a minimally vulnerable network

since a knowledgeable enemy (ignoring edge-connectivity) would find no edge set

attractive to attack; see Cunningham [15] and Hobbs [37]. In fact, they are addressed

as bland graphs in [37]. Hence constructing and identifying 1-balanced graphs would

prove to be useful in many real-world situations.
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Ruciński and Vince [76] (and later Catlin et al. [9] independently) proved that

for any given positive integers m, n with n − 1 ≤ m ≤ n(n − 1)/2, there is a simple,

connected, 1-balanced graph on n vertices and m edges. By gluing two graphs of

suitable uniform densities at a vertex, Catlin et al. [8] observed that for any rational

numbers x and y with 1 ≤ x ≤ y, there is a graph G with η1(G) = x and γ1(G) = y.

Hence there is a large collection of graphs that are not 1-balanced, and the quantity

γ(G) − η(G) can be arbitrarily large. In view of Theorem III.1, γ1(G) − η1(G) > 0 if

and only if γ1(G) − d1(G) > 0.

In the literature, there are algorithms to check if a given graph G is 1-balanced

or not, see for example, Picard and Queyrenne [70], Cunnigham [15], Hobbs [36],

Gusfield [30] and Cheng and Cunnigham [11]. Let |V (G)| = n and |E(G)| = m. The

algorithm of Hobbs [36] finds both γ(G) and η(G) in O(m3n4) computations. In the

next chapter, we use the algorithm in [36] to find the maximal γ-achieving subgraph

of G.

The following useful result appeared in [10] generalized to matroids:

Theorem III.4 (Catlin, Grossman, Hobbs, Lai [10]). For any connected graph G

and any natural numbers s and t,

1. η1(G) ≥ s
t

if and only if there is a family T of s spanning trees in G such that

each edge of G lies in at most t trees of T .

2. γ1(G) ≤ s
t

if and only if there is a family T of s spanning trees in G such that

each edge of G lies in at least t trees of T .

3. η1(G) = s
t

= γ1(G) if and only if there is a family T of s spanning trees in G

such that each edge of G lies in exactly t trees of T .

Peng et al. [66], [67] and [68], calculated the strength of several graphs. In [68],
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it is proved that for any graph G with edge-connectivity λ(G), the following holds:

d1(G) = |V (G)|λ(G)
2(|V (G)|−1)

≤ η1(G) ≤ λ(G).

The edge arboricity a(G) of a graph G is the minimum number of acyclic sub-

graphs of G whose union covers the edges of G. Recall that a random graph G(n, p)

on n vertices is formed by choosing an edge between any two pairs of vertices with

probability p. Catlin and Chen [6] determined that a(G) =
⌈

|E(G)|
|V (G)|−1

⌉
for almost all

random graphs G(n, p). In the case when p is a function of n, Catlin, Chen and

Palmer [7] proved the same result when p3 = c log n for a constant c ≥ 28 and con-

jectured that their result holds for much lower edge probabilities. Clark [12] verified

this conjecture for 432 log n
n1/2 < p = p(n) < 1/2.

The weighted versions of the theories of 1-balanced graphs and matroids are due

to Cheng and Cunningham [11] and Hobbs and Petingi [41] respectively.

We now present some preliminary results which are used later in this chapter.

Lemma III.5. If a graph G is an edge-disjoint union of connected, spanning 1-

balanced subgraphs G1 and G2, then G is 1-balanced.

Proof. Since G1 and G2 are connected 1-balanced graphs on the same number of

vertices, for s1 = |E(G1)|, s2 = |E(G2)| and t = |V (G)| − 1, d1(G1) = s1

t
and

d1(G2) = s2

t
. Thus d1(G) = s1+s2

t
. For i = 1, 2, since Gi is 1-balanced, Gi has si

spanning trees such that each edge in Gi is in exactly t of them. Thus G has s1 + s2

spanning trees such that each edge in G is in exactly t of them. G is 1-balanced by

part (iii) of Theorem III.4.

The following is an easy consequence of Lemma III.5.

Corollary III.6. If a graph G is an edge-disjoint union of connected, spanning 1-

balanced subgraphs G1, G2, · · · , Gp for some integer p ≥ 1, then G is 1-balanced.
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Lemma III.7. Let a be a positive integer. A graph G is 1-balanced if and only if Ga

is 1-balanced.

Proof. (Necessity) If G is 1-balanced, then Ga is 1-balanced by Corollary III.6 (by

taking p = a and Gi = G for i = 1, . . . , p).

(Sufficiency) Let H be a induced connected subgraph of G. Since Ga is 1-

balanced, d1(G
a[V (H)]) ≤ d1(G

a). But d1(G
a[V (H)]) = ad1(H) and d1(G

a) = d1(G).

Thus, ad1(H) ≤ ad1(G). Since a is positive, we have d1(H) ≤ d1(G). By Lemma

III.2, G is 1-balanced.

3.2. Regular 1-balanced graphs

In the previous chapter, we saw that all regular graphs are balanced. But, not all

regular graphs are 1-balanced. The graph G in Figure 11 is an example of a 4-regular

graph that is not 1-balanced, because d1(G) = 20
9

and d1(K5 − e) = 9
4

> d1(G).

Fig. 11. Example of a regular graph that is not 1-balanced

Next we answer the natural question, “which connected regular graphs are 1-

balanced?” For a graph G, the answer for the above question depends on edge-

connectivity of G denoted as λ(G).

Theorem III.8. Let G be a connected p-regular graph for an integer p ≥ 2. G is

1-balanced if and only if λ(G) ≥ d1(G).
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Proof. (Necessity) Since G is p-regular, we have

|E(G)| =
p|V (G)|

2
,

and so

d1(G) =
|E(G)|

|V (G)| − 1
=

p|V (G)|

2(|V (G)| − 1)
.

If G is 1-balanced, then

λ(G) ≥ η1(G) =
p|V (G)|

2(|V (G)| − 1)
.

(Sufficiency) Suppose λ(G) ≥ d1(G) = p|V (G)|
2(|V (G)|−1)

and let U be any proper

sub-set of V such that H = G[U ] is connected. Then

|[U, U ]| ≥ λ(G) ≥
p|V (G)|

2(|V (G)| − 1)
.

The number of edges in H is the number of edges with at least one end-vertex in U

minus |[U, U ]|. Thus,

|E(H)| ≤
p|U |

2
−

p|V (G)|

2(|V (G)| − 1)
.

Therefore, we have

d1(H) ≤

p|U |
2

− p|V (G)|
2(|V (G)|−1)

|U | − 1

=
p

2

(
|U |

|U | − 1
−

|V (G)|

(|V (G)| − 1)(|U | − 1)

)

=
p

2

(
|U ||V (G)| − |U | − |V (G)|

(|U | − 1)(|V (G)| − 1)

)

≤
p

2

(
|V (G)|(|U | − 1)

(|U | − 1)(|V (G)| − 1)

)

=
p

2

(
|V (G)|

|V (G)| − 1

)

= d1(G)
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Thus the theorem follows by Lemma III.2.

3.3. 1-balanced generalized Cartesian products

The method of generalized Cartesian products defined in Section 2.5 can be used

to construct big 1-balanced graphs from small ones. In this section, we prove that

1-balanced generalized Cartesian products can be formed from 1-balanced graphs.

3.3.1. Preliminaries and examples

We first recall the definition of generalized Cartesian products. Let L be a connected

graph with ℓ edges and m vertices, and let the vertices be labeled v1, v2, . . . , vm.

Label the edges of L as e1, e2, . . . , eℓ. Let G1, G2, . . . , Gm be vertex-disjoint con-

nected graphs, each having n vertices and e edges. Let k be a positive integer.

Let B1, B2, . . . , Bℓ be k-regular bipartite graphs such that, if edge ei of L joins ver-

tices vr and vs, then the two sides of Bi are the vertex sets of Gr and Gs. Then,

Ak = Ak(G1, . . . , Gm; L) =

( ⋃m
i=1 Gi

)
∪

( ⋃ℓ
i=1 Bi

)
is called a generalized Cartesian

product. When the value of k is already known, we may use A = A(G1, . . . , Gm; L)

(omitting the subscript). Let t = d1(Gi) = e
n−1

for all i ∈ {1, 2, . . . , m}.

Unlike balanced generalized Cartesian products, the value of k in a 1-balanced

generalized Cartesian product has a lower bound as the following Lemma shows.

Lemma III.9. If A is 1-balanced, then

k ≥
m − 1

ℓ

(
t

n

)
=

d1(Gi)

d1(L)n
.

Proof. For each i, we have |E(Bi)| = 2nk/2 = nk. Since each Gi is connected and L

is connected, A is connected. Hence

d1(A) =
nkℓ + me

mn − 1
.
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Since A is 1-balanced and Gi is a subgraph of A for each i, we have

d1(A) =
nkℓ + me

mn − 1
≥

e

n − 1
= d1(Gi).

Solving for k, we get

k ≥
m − 1

ℓ

(
t

n

)
.

In this section we prove that A is 1-balanced if G1, . . . , Gm and L are 1-balanced

and k is a fixed integer such that

m − 1

ℓ

(
t

n

)
≤ k ≤

m − 1

ℓ
(mt) . (3.2)

The above lower bound for k is in view of Lemma III.9. Also, there are exam-

ples of Cartesian products A that are not 1-balanced when k > m−1
ℓ

(mt), even if

G1, . . . , Gm and L are 1-balanced. Figure 12 shows one. The graph in the figure is

A = A3(K2, K2; K2). Here, L = K2, t = 1 and m = 2. We have m−1
ℓ

(mt) = 2 < 3.

If H denotes the subgraph on 2 vertices and 3 parallel edges, then d1(H) = 3. But,

d1(A) = 2(3+1)
3

= 8
3

< 3 = d1(H). Therefore A is not 1-balanced.

Fig. 12. A3(K2, K2; K2): Example of a generalized Cartesian product that is not

1-balanced

If a generalized Cartesian product A = Ak(G1, . . . , Gm; L) is 1-balanced, it does

not imply that any of G1, . . . , Gm or L is 1-balanced. The graph in the Figure 13 is

an example of a generalized Cartesian product Ak(G, H ; K2) that is 1-balanced, but
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neither G nor H is 1-balanced.

G = H A(G,H;K)

Fig. 13. A1(G, H ; K2): Example of a generalized Cartesian product that is 1-balanced,

but neither G nor H is 1-balanced

It is easy to see that A1(G, H ; K2) is the union of 2 edge-disjoint spanning trees.

Thus A is 1-balanced, by Theorem III.4(iii). But it is easy to see that η1(G) = 1

and γ1(G) = 2, so G and H are not 1-balanced, by Theorem III.4(iii). Also, note

that γ1(G) = 2 while η1(G) = 1. Thus, G is not 1-balanced. Similarly, H is not

1-balanced.

However, we have this result:

Theorem III.10. If A is 1-balanced, then L is strictly balanced.

Proof. Let V (L) = {v1, v2, · · · , vm}. Let L′ be any proper connected subgraph of L,

and suppose L′ has ℓ′ edges and m′ vertices. Form A′ on L′ as A is formed on L.

Then d1(A
′) = nkℓ′+m′e

m′n−1
. Since A is 1-balanced, we have

nkℓ′ + m′e

m′n − 1
= d1(A

′) ≤ d1(A) =
nkℓ + me

mn − 1
.
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Cross-multiplying and simplifying,

mn2kℓ′ + mm′ne − nkℓ′ − m′e ≤ m′n2kℓ + mm′ne − nkℓ − me,

or

mn2kℓ′ − nkℓ′ − m′e ≤ m′n2kℓ − nkℓ − me

< m′n2kℓ − nkℓ′ − m′e

since ℓ > ℓ′ and m > m′. Hence,

mn2kℓ′ − nkℓ′ − m′e < m′n2kℓ − nkℓ′ − m′e,

which simplifies to mℓ′ < m′ℓ since n2k > 0. Thus we have ℓ′

m′
< ℓ

m
as required.

The converse of this theorem is false. Every strictly balanced graph which is

not 1-balanced serves as a counter-example, since we can let Gi = K1 for every i in

constructing A. The graph in Figure 3 is an example of a strictly balanced graph

that is not 1-balanced.

3.3.2. Main results

From now on, we assume that G1, . . . , Gm are connected 1-balanced graphs. We first

show that A is 1-balanced if k is as specified in (3.2) and L is a tree. Our plan of proof

is to choose a γ-achieving connected subgraph H of A. We move to the subtree L′ of L

induced by H and prove d1(H) ≤ d1(A
′) in that case. (It is here that we use the new

characterization of balanced graphs, namely Theorem II.3.) Using d1(A
′) ≤ d1(A),

as shown in the next lemma, we conclude that d1(H) ≤ d1(A). Thus d1(A) = γ(A)

and A is 1-balanced.

We start with some lemmas. Let L be any 1-balanced graph, and let L′ be a con-
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nected induced subgraph of L. Letting A′ be constructed from L′ as A is constructed

from L, we first look at the relationship between d1(A) and d1(A
′) (Lemma III.11)

and between d1(A) and d1(Gi) (Lemma III.12).

Lemma III.11. Let k ≥ t
d1(L)n

, and let L′ be a connected induced subgraph of L.

Form A′ from L′ in the same way A is formed from L. If L is 1-balanced, then

d1(A
′) ≤ d1(A).

Proof.

d1(A) − d1(A′) =
nkℓ + me

mn − 1
−

nkℓ′ + m′e

m′n − 1

=
nkℓ(m′n − 1) + mm′ne − me − nkℓ′(mn − 1) − mm′ne + m′e

(mn − 1)(m′n − 1)

=
nkℓ(m′n − 1) − me − nkℓ′(mn − 1) + m′e

(mn − 1)(m′n − 1)
.

Since ℓ = d1(L)(m − 1) and ℓ′ ≤ d1(L)(m′ − 1), we have

d1(A) − d1(A
′) ≥

d1(L)nk(m − 1)(m′n − 1) − me − d1(L)nk(m′ − 1)(mn − 1) + m′e

(mn − 1)(m′n − 1)

=
d1(L)nk[mm′n − m′n − m + 1 − mm′n + mn + m′ − 1] − (m − m′)e

(mn − 1)(m′n − 1)

=
d1(L)nk[−m′n − m + mn + m′] − (m − m′)e

(mn − 1)(m′n − 1)

=
d1(L)nk[(m − m′)(n − 1)] − (m − m′)e

(mn − 1)(m′n − 1)

= (m − m′)
d1(L)nk(n − 1) − e

(mn − 1)(m′n − 1)

= (m − m′)(n − 1)
d1(L)nk − d1(Gi)

(mn − 1)(m′n − 1)

≥ 0

since k ≥ d1(Gi)
d1(L)n

.
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Lemma III.12. With k ≥ m−1
ℓ

(
t
n

)
, we have d1(Gi) ≤ d1(A).

Proof. This was noted at the end of the proof of Lemma III.9.

From now on, we assume that k satisfies (3.2).

Theorem III.13. Let L be a tree. Then A is 1-balanced.

Proof. If n = 1, A = L and since L is 1-balanced, A is 1-balanced. We may assume

that n > 1.

Suppose, for a contradiction, that A is not 1-balanced. Then by Lemma III.2,

there is an induced connected subgraph H of A such that d1(H) = γ(A) > d1(A).

Let Hi = H ∩Gi and ni = |V (Hi)|. Without loss of generality, we may suppose there

is an integer m′ > 0 such that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nm′ and ni = 0 for i > m′. Let

L′ be the subgraph of L induced by H , and note that L′ = L is possible. L′ is the

same subgraph of L which is induced by {v1, . . . , vm′}. For each i ∈ {1, 2, . . . , m′},

let ei = |E(Hi)|, ωi = ω(Hi), and e′ = |E(H) ∩ E(
⋃ℓ

i=1 Bi)|. Notice that

e′ ≤ k
∑

vivj∈E(L′)

min(ni, nj). (3.3)

Since L is a tree and H is connected, L′ is a tree. d1(L) = 1. So,

t

n
≤ k ≤ mt. (3.4)

Recall that d1(A′) ≤ d1(A) by Lemma III.11. Thus

d1(H) > d1(A) ≥ d1(A
′), (3.5)

so A′ is also not 1-balanced.

We consider two cases:

Case 1 : t
n
≤ k ≤ m′t.
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First we show

nkℓ′ − (m′ − 1)t

m′n − 1
<

e′ − (m′ − 1)t
∑m′

i=1 ni − 1
. (3.6)

Since k ≥ t
n
, d1(A) ≥ d1(Gi) for each i by Lemma III.12, H 6⊆ Gi for any i, so

m′ > 1.

Recalling that t = d1(Gi) = e
n−1

,

d1(A
′) =

nkℓ′ + m′e

m′n − 1

=
nkℓ′ + m′ e

n−1
(n − 1)

m′n − 1

=
tm′(n − 1) + nkℓ′

m′n − 1

=
m′nt − t + t − m′t + nkℓ′

m′n − 1

= t +
nkℓ′ − (m′ − 1)t

m′n − 1
.






(3.7)

Also,

d1(H) =

∑m′

i=1 ei + e′
∑m′

i=1 ni − 1
.

But, with i ≤ m′, ni ≥ 1. Thus, if ei 6= 0, then

ei =
ei

ni − ωi
(ni − ωi) ≤ d1(Gi)(ni − ωi) ≤ t(ni − 1).

On the other hand, if ei = 0, then

ei = 0 ≤ t(ni − 1).

Thus, from the definitions of the symbols,
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d1(H) =

∑m′

i=1 ei + e′
∑m′

i=1 ni − 1

≤
t
∑m′

i=1(ni − 1) + e′
∑m′

i=1 ni − 1

=
t
(∑m′

i=1 ni − 1
)

+ t + e′ −
∑m′

i=1 t
∑m′

i=1 ni − 1

= t +
e′ − (m′ − 1)t
∑m′

i=1 ni − 1
.






(3.8)

Since d1(A
′) < d1(H), (3.6) follows from (3.7) and (3.8).

Next we show that

∑

vivj∈E(L′)

[
min(ni, nj) −

1

m′

m′∑

r=1

nr

]
> 0 (3.9)

follows from (3.6), thus leading to a contradiction. But

nkℓ′ − (m′ − 1)t

m′n − 1
=

kℓ′

m′
− (m′ − 1)t

m′n − 1
+

kℓ′

m′
.

Replacing the left-hand side of (3.6) with this, moving kℓ′

m′
to the other side, and using

(3.3),

kℓ′

m′
− (m′ − 1)t

m′n − 1

<
−kℓ′

m′

∑m′

i=1 ni + kℓ′

m′
+ k

∑
vivj∈E(L′) min(ni, nj) − (m′ − 1)t

∑m′

i=1 ni − 1

=

kℓ′

m′
+ k

(∑
vivj∈E(L′)

[
min(ni, nj) −

1
m′

∑m′

i=1 ni

])
− (m′ − 1)t

∑m′

i=1 ni − 1
.
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Multiplying through by the denominators and canceling like terms, we get

kℓ′

m′

m′∑

i=1

ni − (m′ − 1)t

m′∑

i=1

ni

<
kℓ′

m′
(m′n) + k(m′n − 1)

( ∑

vivj∈E(L′)

[
min(ni, nj) −

1

m′

m′∑

i=1

ni

])
− m′n(m′ − 1)t.

Thus

kℓ′

m′

m′∑

i=1

ni −
kℓ′

m′
(m′n) + m′n(m′ − 1)t − (m′ − 1)t

m′∑

i=1

ni

< k(m′n − 1)

( ∑

vivj∈E(L′)

[
min(ni, nj) −

1

m′

m′∑

i=1

ni

])
.

Gathering together the two terms containing (m′ − 1)t and then the first two

terms of the previous inequality, we get

(m′ − 1)t
m′∑

i=1

(n − ni) −
kℓ′

m′

(
m′n −

m′∑

i=1

ni

)

< k(m′n − 1)

( ∑

vivj∈E(L′)

[
min(ni, nj) −

1

m′

m′∑

i=1

ni

])
.

Combining the terms on the left hand side gives us

(
(m′−1)t−

kℓ′

m′

) m′∑

i=1

(n−ni) < k(m′n−1)

( ∑

vivj∈E(L′)

[
min(ni, nj)−

1

m′

m′∑

i=1

ni

])
. (3.10)

But
∑m′

i=1(n− ni) ≥ 0 since ni ≤ n for all i. Moreover, since ℓ′ = m′ − 1, m′ ≥ 2

and k ≤ m′t,

(m′ − 1)t −
kℓ′

m′
= (m′ − 1)[t −

k

m′
] ≥ 0
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Thus the left hand side of (3.10) is non-negative. Since k(m′n − 1) is positive,

the rest of the right hand side must be positive. Hence the inequality (3.9). But L′

is a tree, and so it is 1-balanced and thus balanced. By Theorem II.3, the inequality

we have just reached is impossible. Thus A′ is 1-balanced, so the proposed subgraph

H cannot exist.

Case 2 : m′t ≤ k ≤ mt.

For this case, we show that d1(A) < d1(H) and k ≥ m′t together imply that

k > mt which is a contradiction.

Using the similar computations we used in (3.7), we obtain

d1(A) =
nkℓ + m′e

mn − 1

=
nkℓ + m e

n−1
(n − 1)

mn − 1

=
tm(n − 1) + nkℓ

mn − 1

=
mnt − t + t − mt + nkℓ

mn − 1

= t +
nkℓ − (m − 1)t

mn − 1
.






(3.11)

From (3.5), we have d1(A) < d1(H). Thus by (3.8) and (3.11),

nkℓ − (m − 1)t

mn − 1
<

e′ − (m′ − 1)t
∑m′

i=1 ni − 1
. (3.12)

Now, we will get a bound for e′. By (3.3), we have

e′ ≤ k
∑

vivj∈E(L′)

min(ni, nj).
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By Theorem II.3, since L′ is a balanced graph,

∑

vivj∈E(L′)

min(ni, nj) ≤
ℓ′

m′

m′∑

i=1

ni.

Since ℓ′ = m′ − 1,

e′ ≤ k

( m′∑

i=1

ni −
1

m′

m′∑

i=1

ni

)
.

Substituting this in (3.12) and adding and subtracting k in the numerator of the

left hand side, we have

nkℓ − (m − 1)t

mn − 1
<

k

( ∑m′

i=1 ni − 1

)
− k

(
1

m′

∑m′

i=1 ni − 1

)
− (m′ − 1)t

∑m′

i=1 ni − 1
.

Using the fact that k ≥ m′t and simplifying, we have

nkℓ − (m − 1)t

mn − 1
<

k

( ∑m′

i=1 ni − 1

)
− m′t

(
1

m′

∑m′

i=1 ni − 1

)
− (m′ − 1)t

∑m′

i=1 ni − 1

=

k

( ∑m′

i=1 ni − 1

)
− t

( ∑m′

i=1 ni − m′

)
− (m′ − 1)t

∑m′

i=1 ni − 1

=

k

( ∑m′

i=1 ni − 1

)
− t

( ∑m′

i=1 ni − 1

)

∑m′

i=1 ni − 1

= k − t.

Substituting ℓ = m − 1 and cross-multiplying, we have

(m − 1)(nk − t) < (mn − 1)(k − t),

which simplifies to

−nk − mt < −k − mnt.
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Thus, (n− 1)(mt) < (n− 1)k. Since n > 1, we have k > mt which is a contradiction.

Hence A is 1-balanced.

Now, we are ready to show that if L is 1-balanced, then A is 1-balanced.

Theorem III.14. If L is 1-balanced, then A is 1-balanced.

Proof. Let d1(L) = r
s
. Since

t

d1(L)n
≤ k ≤

mt

d1(L)
,

substituting d1(L) = r
s
, we have

st

rn
≤ k ≤

mst

r
, or

st

n
≤ kr ≤ mst. (3.13)

We first prove that Ars is 1-balanced. By Lemma III.7, if Ars is 1-balanced, then

A is 1-balanced. To prove Ars is 1-balanced, we will prove that Ars is an edge-disjoint

union of r spanning 1-balanced connected subgraphs.

Since L is 1-balanced of density r
s
, by part (iii) of Theorem III.4, there are r

spanning trees T1, T2, · · · , Tr in L such that each edge of L appears in exactly s of the

trees. Let us denote by Be the k-regular bipartite graph that replaces the edge e ∈ L

in A. For 1 ≤ j ≤ r, let Aj be the generalized Cartesian product Akr(G
s
1, · · · , Gs

m; Tj)

using the kr-regular graphs Br
e for each edge e in the tree Tj. Notice that Gs

i is

1-balanced by Lemma III.7 and d1(Gs
i ) = st for i = 1, · · · , m. By (3.13), we have

d1(G
s
i )

n
≤ kr ≤ md1(G

s
i ).

By Theorem III.13, Aj is 1-balanced for j = 1, 2, · · · , r.

Claim: Ars = ∪r
j=1Aj.

Proof of claim: Each Aj , 1 ≤ j ≤ r has a copy of Gs
i for each i ∈ {1, 2, . . . , m}.

Hence the edges of Gi appear rs times in ∪r
j=1Aj.
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Now, let e = (u, v) be an edge in L. In Ars, we have Brs
e between Gu and Gv. On

the other hand, Br
e appears in exactly s of A1, A2, · · · , Ar since e appears in exactly

s of T1, T2, · · · , Tr. Thus we can find Brs
e in ∪r

j=1Aj. Hence the claim.

Since Ars is an edge-disjoint union of the connected, spanning, 1-balanced sub-

graphs Aj ; j = 1, 2, · · · , r, by corollary III.6, Ars is 1-balanced.

Corollary III.15. If connected graphs G1 and G2 are both 1-balanced, then the Carte-

sian product G1 × G2 is 1-balanced.

Proof. There are two ways to view G1 × G2 as a generalized Cartesian product.

G1 × G2 = A1(G1, G1, · · · , G1; G2) with suitable choices of the bipartite graphs Bij .

Similarly, G1 × G2 = G2 × G1 = A1(G2, G2, · · · , G2; G1) with suitable choices of the

bipartite graphs Bij .

We first prove that either

d1(G1)

|V (G1)|d1(G2)
≤ 1, (3.14)

or

d1(G2)

|V (G2)|d1(G1)
≤ 1 (3.15)

holds. Suppose both (3.14) and (3.15) do not hold. Then we have

d1(G1) > |V (G1)|d1(G2) > |V (G1)||V (G2)|d1(G1),

a contradiction since |V (G1)||V (G2)| ≥ 1.

Now, if (3.14) holds, then by Theorem III.14, A1(G1, G1, · · · , G1; G2) = G1×G2 is

1-balanced. Similarly, if (3.15) holds, then by Theorem III.14, A1(G2, G2, · · · , G2; G1) =

G1 × G2 is 1-balanced.
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CHAPTER IV

TRANSFORMING AN ARBITRARY GRAPH INTO A 1-BALANCED GRAPH

In this chapter, we see how we may transform a non 1-balanced graph into a 1-

balanced graph.

4.1. Motivation

As we saw in the last chapter, 1-balanced graphs are of practical importance. Hence,

constructing and identifying 1-balanced graphs are of interest. For integers n and e

with n − 1 ≤ e ≤
(

n
2

)
, there is at least one connected 1-balanced graph on n vertices

and e edges. See [76] and [9].

Typically in real-world situations, networks are already in existence and the net-

work owners do not want to dismantle the existing network completely and construct

a new network that is 1-balanced. Rather, they are willing to budget modest amounts

each year to gradually transform the network into one that is closer in some sense to

being 1-balanced. In this chapter, we find a first solution for this problem.

In social networks, it has been shown that the vertices’ positions within the

communities can affect the role or function they assume. For example, it has long

been accepted that individuals who lie on the boundaries of communities, bridging

gaps between otherwise unconnected people, enjoy an unusual level of influence as the

gatekeepers of information flow between groups. One may notice that increasing the

number of gatekeepers would ultimately make the graph more uniformly distributed.

We use this intuition to gradually alter the edges of an arbitrary graph and obtain a

1-balanced graph3.

3Earlier, Hong-Jian Lai and Hongyuan Lai [50], in an unpublished manuscript,
proved that any graph can be transformed to a graph G with γ1(G) − η1(G) < 1.
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We measure closeness of a graph G to a 1-balanced graph by the difference

γ1(G)−d1(G) and reduce this difference to 0. The algorithm is carried on by a “think

globally, act locally” approach. The main part of the algorithm is in Section 4.4, where

we show that if a graph G is not 1-balanced then we can construct a new graph G′

by re-defining the adjacency of an edge from G such that either γ1(G
′) < γ1(G) or

γ1(G
′) = γ1(G) and the maximal γ1-achieving subgraph of G′ is properly contained in

the maximal γ1-achieving subgraph of G. Replacing G by G′, we repeat the process at

most O(|E(G)||V (G)|3) times until a 1-balanced graph is obtained. In Section 4.3, we

show how the algorithm by Hobbs [36] can be used to find the maximal γ1-achieving

subgraph of a graph.

In Section 4.5, we provide a conjecture whose truth would decrease the number

of steps required to transform a graph into a 1-balanced graph. We also present two

theorems in support of our conjecture.

4.2. Preliminaries

Lemma IV.1. If the graph G is not 1-balanced, then the rank of the maximal γ1-

achieving subgraph cannot be more than |V (G)| − 2.

Proof. If the rank of the maximal γ1-achieving subgraph H is |V (G)| − 1, then H

is spanning and induced. This implies H = G, or in other words, G is 1-balanced,

which is a contradiction.

If G is a graph and H is a non-trivial subgraph of G, let G/H be the graph

obtained by contracting the edges of H . If the graph H is induced, G/H does not

have loops. Moreover, F ⊂ E(G) such that F ∩ E(H) = ∅ corresponds in a natural

way to an edge set in G/H . For convenience, we denote the corresponding edge sets

of G − E(H) and G/H as the same, although, if needed in the context, we specify
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the graph in which the edge set belongs.

The following lemma is proved in [10] in the case that H is a maximal γ1-achieving

subgraph of G. Here, we add the condition “connected” to H .

Lemma IV.2. Let G be a graph that is not 1-balanced and let H be a maximal con-

nected γ1-achieving subgraph of G. Let v be the vertex in G/H obtained by contracting

the edges of H. If Ĥ is a connected subgraph of G/H containing the vertex v, then

d1(Ĥ) < γ1(G).

Proof. Since H is a maximal connected γ1-achieving subgraph of G and the graph

G[E(H) ∪ E(Ĥ)] is a connected subgraph of G strictly containing H , we have

d1(G[E(H) ∪ E(Ĥ)]) < γ1(G). (4.1)

On the other hand,

|E(H) ∪ E(Ĥ)| = |E(H)| + |E(Ĥ)|

and

|V (G[E(H) ∪ E(Ĥ)])| = |V (H)| + |V (Ĥ)| − 1.

Thus

d1(G[E(H) ∪ E(Ĥ)]) =
|E(H)| + |E(Ĥ)|

|V (H)| + |V (Ĥ)| − 2

≥ min

{
|E(H)|

|V (H)| − 1
,

|E(Ĥ)|

|V (Ĥ)| − 1

}

by Lemma I.8.

But

|E(H)|

|V (H)| − 1
= d1(H) = γ1(G)

and

|E(Ĥ)|

|V (Ĥ)| − 1
= d1(Ĥ).
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Hence

d1(G[E(H) ∪ E(Ĥ)]) ≥ min{γ1(G), d1(Ĥ)}. (4.2)

If d1(Ĥ) ≥ γ1(G), then by (6.6) we have d1(G[E(H)∪E(Ĥ)]) ≥ γ1(G), a contradiction

to (6.5). Hence d1(Ĥ) < γ1(G).

4.3. Finding the maximal γ1-achieving subgraph of a graph

At the end of this section, we show a method to find the maximal γ1-achieving

subgraph of a connected graph G. Suppose s, t are integers such that γ1(G) = s
t
,

then in view of part (ii) of Theorem III.4 there is a family F of s forests in G such

that each edge of G lies in exactly t forests of F. If H is a subgraph of G, letFH := {F ∩ H : F ∈ F}. A forest F in a graph G is maximal if and only if

|V (F )| − ω(F ) = |V (G)| − ω(G).

Theorem IV.3. Let G be a graph with γ1(G) = s
t
, where s and t are positive integers.

Let F be a family of s forests such that each edge of G appears in exactly t forests ofF. Let H be the maximal γ1-achieving subgraph of G. Then FH is a collection of s

maximal forests in H. Moreover, H is the maximal subgraph without isolated vertices

satisfying this property.

Proof. Let F = {F1, . . . , Fs} and let F ′
i := Fi ∩ H for i = 1, . . . , s. Since d1(H) =

γ1(G), we have

d1(H) =
s

t
. (4.3)

For i = 1, . . . , s, we have |V (F ′
i )| − ω(F ′

i ) ≤ |V (H)| − ω(H) since F ′
i is a forest in H .

Suppose |V (F ′
j)| − ω(F ′

j) < |V (H)| − ω(H) for some j ∈ {1, . . . , s}, then we have

t|E(H)| ≤
s∑

i=1

(|V (H)| − ω(F ′
i )) < s(|V (H)| − ω(H)).
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Therefore,

d1(H) =
|E(H)|

|V (H)| − ω(H)
<

s

t
,

a contradiction to (4.3). Thus, |V (F ′
i )| −ω(F ′

i ) = |V (H)| −ω(H) for i = 1, . . . , s and

so, F ′
1, . . . , F

′
s are maximal forests in H .

Let H ′ be a maximal subgraph of G without isolated vertices such that FH′ is

a collection of s maximal forests in H ′. Then H ⊆ H ′ since FH is a collection of

maximal forests in H , so

t|E(H ′)| = s(|V (H ′)| − ω(H ′)),

implying d1(H
′) = |E(H′)|

|V (H′)|−ω(H′)
= s

t
= γ1(G). Thus H ′ ⊆ H since H is the maximal

γ1-achieving subgraph. Therefore, H = H ′.

Hobbs’ algorithm in [36] finds a family F = {F1, . . . , Fs} as specified in Theorem

IV.3. Using this family, the maximal γ1-achieving subgraph can be found as follows:

By Theorem IV.3, the maximal γ1-achieving subgraph of G is the union of all the

non-trivial subgraphs of G that are induced by the vertex sets of the form ∩s
i=1Ui,

where Ui is the vertex set of a component of Fi, for i = 1, . . . , s.

4.4. Transforming a graph into a 1-balanced graph

Theorem IV.4. If G is a connected graph that is not 1-balanced, then there exists a

connected graph G′ with the vertex set V (G) such that

1. G−e = G′−e′ for some e ∈ E(G), e′ ∈ E(G′) such that e and e′ have a common

end-vertex; and

2. γ1(G
′) ≤ γ1(G), and if γ1(G

′) = γ1(G), then all the γ1-achieving subgraphs

of G′ are γ1-achieving subgraphs of G. Furthermore, the size of the maximal

γ1-achieving subgraph of G′ is smaller than that of G.
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Proof. Let H be a maximal connected γ1-achieving subgraph of G. Then, H 6= G

since G is not 1-balanced. Let f = uv be an edge in G with u ∈ V (H) and v 6∈ V (H).

There is such an edge since H 6= G and G is connected. Let e = uw be an edge in

H incident to u. Form a new graph G′ from G by removing the edge e and adding a

new edge e′ = vw. Clearly, V (G) = V (G′) and (1) is satisfied.

To check (2), in view of Lemma III.3, we show that if H ′ is a non-trivial, induced,

connected subgraph of G′, then

d1(H ′) ≤ γ1(G) if e′ 6∈ E(H ′) and (4.4)

d1(H
′) < γ1(G) if e′ ∈ E(H ′). (4.5)

Before proving (4.4) and (4.5), we show that if (4.4) and (4.5) are true, then

(2) holds: By (4.4), (4.5) and the definition of γ1, we conclude that γ1(G
′) ≤ γ1(G).

Further, if γ1(G
′) = γ1(G), by (4.5), any connected subgraph of G containing e′

cannot be a γ1-achieving subgraph of G′. Hence, any γ1-achieving subgraph H ′ of

G′ does not contain e′ and, being a subgraph of G, H ′ is a γ1-achieving subgraph

of G. On the other hand, H is a γ1-achieving subgraph of G; hence the maximal

γ1-achieving subgraph of G contains e. Therefore all γ1-achieving subgraphs of G′

are γ1-achieving subgraphs in G and thus they do not contain e and e′. We conclude

that the maximal γ1-achieving subgraph of G′ is properly contained in the maximal

γ1-achieving subgraph of G.

Proof of (4.4) and (4.5): Let H ′ be an induced, connected subgraph of G′. If

H ′ does not contain e′, then H ′ is a subgraph of G. Thus d1(H
′) ≤ γ1(G) and (4.4)

is verified.

Let us now suppose that H ′ contains the edge e′. Then v, w ∈ V (H ′).

Case (i): u ∈ V (H ′). In this case, H ′′ := G[V (H ′)] is connected since any path
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P ′ in H ′ containing the edge e′ = vw can be modified to obtain a walk P ′′ in H ′′ by

replacing the edge vw by the edges vu, uw in that order. Also, H ′′ contains the edge

e but not e′. Hence, H ′ and H ′′ are both connected and have the same number of

edges on the same number of vertices, so

d1(H ′) = d1(H ′′). (4.6)

But H ′′ 6= H since H ′′ contains the edge f = uv. H is a maximal connected γ1-

achieving subgraph and H ′′ is a connected subgraph of G whose vertex set intersects

with V (H) and with V (G − H). By Lemma III.3, we have

d1(H
′′) < γ1(G).

Therefore by (4.6),

d1(H
′) < γ1(G).

Case (ii): u 6∈ V (H ′). Then f = uv 6∈ E(H ′). Let E1 = E(H ′) ∩ E(H) and

E2 = E(H ′) − E1. Thus e′ ∈ E2. Note that f 6∈ E2. Let H1 = G[E1].

Let Ĝ = G/H and Ĝ′ = G′/(H − e). Let H2 = Ĝ′[E2]. Then H2 is connected

and isomorphic to Ĥ := Ĝ[E2 − e′ + f ]. Thus

d1(H2) = d1(Ĥ) =
|E2|

ρG′
(E2)

. (4.7)

By Lemma IV.2, d1(Ĥ) < γ1(G). Thus

d1(H2) < γ1(G). (4.8)

If H1 is a graph with no edges, then

d1(H
′) =

|E2|

ρG′(E2)
. (4.9)
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But ρG′(E2) ≥ ρG′
(E2). Hence we have

d1(H
′) ≤

|E2|

ρG′
(E2)

= d1(H2) < γ1(G) (4.10)

by (4.7) and (4.8). Thus (4.5) holds. Therefore, we assume that E1 6= ∅. We have

d1(H1) ≤ γ1(G) (4.11)

since H1 is a subgraph of G.

Note that |V (H ′)| = |V (H1)| + |V (H2)| − 1. By Lemma I.8 we have

d1(H
′) =

|E1| + |E2|

|V (H1)| + |V (H2)| − 2
≤ max

i=1,2

|Ei|

|V (Hi)| − 1
, (4.12)

with equality if and only if |E1|
|V (H1)|−1

= |E2|
|V (H2)|−1

.

But,

|E1|

|V (H1)| − 1
≤

|E1|

|V (H1)| − ω(H1)
= d1(H1) (4.13)

and

|E2|

|V (H2)| − 1
= d1(H2) (4.14)

since H2 is connected.

Thus by (5.21), (5.22) and (4.14),

d1(H ′) ≤ max
i=1,2

{d1(H1), d1(H2)}, (4.15)

with equality if and only if d1(H1) = d1(H2) and d1(H1) = |E1|
|V (H1)|−1

. But d1(H2) <

γ1(G) by (4.8) and d1(H1) ≤ γ1(G) by (4.11). Thus d1(H
′) < γ1(G) by (4.15), and

(4.5) holds.

Now, we describe an algorithm to modify a given graph G that is not uniformly

dense into a graph that is uniformly dense. Since G is not uniformly dense, we have

|V (G)| > 2, for all graphs on 2 vertices are uniformly dense. Let i = 1 initially and
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G1 = G. The algorithm proceeds as follows: Pick a maximal connected γ1-achieving

subgraph Hi of Gi. Let ei = uiwi ∈ E(Hi) such that ui is adjacent to a vertex

vi ∈ V (Gi) − V (Hi). Let Gi+1 = Gi − ei + viwi. If Gi+1 is uniformly dense, we are

done. Otherwise, replace i with i + 1 and repeat the procedure.

The algorithm terminates when a uniformly dense graph is obtained. By Theo-

rem IV.4, for i ≥ 1, we have

(i) γ1(Gi+1) ≤ γ1(Gi) and

(ii) if γ1(Gi+1) = γ1(Gi) then the size of the maximal γ1-achieving subgraph of Gi+1

is less than that of Gi.

Thus, we have an integer k and integers 0 = i0 < i1 < . . . < ik such that

• γ1(Gij+1) = . . . = γ1(Gi(j+1)
) for j = 0, . . . , k − 1,

• γ1(Gij) > γ1(Gij+1) for j = 1, . . . , k and

• γ1(Gik+1) = d1(G), and the algorithm terminates.

We now calculate the number of iterations. We find the following numbers:

(1) l := max{i(j+1)−ij : j = 0, . . . , k−1} = maximum possible number of consecutive

steps i with the same value of γ1(Gi+1).

(2) k.

The total number of iterations is bounded by (l+1)k since after the last iteration,

the value of γ1 decreases.

(1) For each j ∈ {0, . . . , k − 1}, the maximal γ1-achieving subgraph of Gi(j+1)
is

contained in the maximal γ1-achieving subgraph of Gij+1. Thus i(j+1)− ij is less than

the rank of Gij+1. By Lemma IV.2, the rank of the maximal γ1-achieving subgraph of
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Gij+1 is less than |V (G)|−2. Therefore, i(j+1)− ij ≤ |V (G)|−2 and by the definition

of l, we have l ≤ |V (G)| − 2.

(2) Suppose γ1(Gi+1) < γ1(Gi) for some i ≥ 1. Then

γ1(Gi) − γ1(Gi+1) =
|E(Hi)|

|V (Hi)| − 1
−

|E(Hi+1)|

|V (Hi+1)| − 1

=
|E(Hi)|(|V (Hi+1)| − 1) − |E(Hi+1)|(|V (Hi)| − 1)

(|V (Hi)| − 1)(|V (Hi+1)| − 1)

≥
1

(|V (G)| − 1)(|V (G)| − 2)
(4.16)

since the numerator is greater than 1 and in the denominator, |V (Hi)| < |V (G)| and

|V (Hi+1)| ≤ |V (G)|. By (4.16) we need at most (γ1(G)−d1(G))(|V (G)|−1)(|V (G)|−

2) such iterations.

If H is a γ1-achieving subgraph of G, then

γ1(G) − d1(G) =
|E(H)|

|V (H)| − 1
− d1(G) < |E(G)|. (4.17)

Thus

k ≤ |E(G)|(|V (G)| − 1)(|V (G)| − 2).

Therefore,

(l + 1)k ≤ |E(G)|(|V (G)| − 1)2(|V (G)| − 2) = O(|E(G)||V (G)|3).

The value of γ1 and the maximal γ1-achieving subgraphs of the graph obtained after

each step is calculated in O(|E(G)|3|V (G)|4) time complexity using the algorithm in

[36] in view of Section 4.3.

The following corollary proves the existence of 1-balanced graphs on n vertices

and m edges for all m ≥ n − 1. This result was obtained by Ruciński and Vince [76]

for n − 1 ≤ m ≤ n(n−1)
2

.

Corollary IV.5. For integers m, n such that m ≥ n− 1, there is a 1-balanced graph
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on n vertices and m edges.

Proof. Taking any connected graph on n vertices and m edges and applying IV.4

repetitively, we obtain a 1-balanced graph on n vertices and m vertices.

4.5. Minimizing the number of steps

In Section 4.3, we saw how one can find the maximal γ1-achieving subgraph of a

graph. A polynomial time algorithm to find all the γ1-achieving subgraphs of a graph

can be found in a more general setting is provided by [58, Pages 412–421]. In this

section, we point out how knowing all the γ1-achieving subgraphs of a graph helps in

reducing the number of iterations in achieving a 1-balanced graph.

In the previous section, we showed that at most |E(G)||V (G)|3 iterations are

needed to achieve a 1-balanced graph. For most graphs, the number of iterations

could be very much less. The estimate is the best we could obtain that could be

expressed in terms of known parameters of the graph. The reason for this is that

there is no good estimate for k in the discussion. However, in the next paragraph, we

discuss how to minimize the number of consecutive iterations with the same γ1 value.

This is of interest for practical purposes.

Suppose a graph G is not 1-balanced and there are two γ1-achieving subgraphs

H1, H2 having at least one common edge. Changing one end vertex of an edge from

H1 ∩H2 to a vertex outside H1 ∪H2 not only decreases the densities of both H1 and

H2 at the same time, but also decreases the densities of H1 ∩H2 and H1 ∪H2, which

are also γ1-achieving. This idea is captured by addressing the case in which there

is a nested sequence of γ1-achieving subgraphs. At any point of the algorithm, the

collection of all minimal γ1-achieving subgraphs is a collection C of pairwise edge-

disjoint γ1-achieving subgraphs. Since each of these subgraphs has to be reduced by
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an edge move, there have to be at least |C| iterations before the γ1 value decreases.

Conjecture IV.6. Exactly |C| iterations are enough to decrease the value of γ1.

As a consequence of the following theorem, we show that at most 2|C| iterations

are enough.

Theorem IV.7. Let G be a connected non-1-balanced graph and let H1 ⊆ H2 ⊆

· · · ⊆ Hk be a sequence of connected γ1-achieving subgraphs of G such that Hk is a

maximal connected γ1-achieving subgraph of G. Then after two steps, each consisting

of changing one end vertex of one edge, a new graph G′ can be obtained with γ1(G
′) ≤

γ1(G), and if γ1(G′) = γ1(G), then all γ1-achieving subgraphs of G′ are γ1-achieving

subgraphs in G, and for i = 1, . . . , k, the subgraph G′[V (Hi)] is not γ1-achieving in

G′.

Proof. Since G is connected, there exists an edge e with end-points u ∈ Hk and

v 6∈ Hk. If u ∈ H1, the theorem holds by Theorem IV.4. The number of steps is only

one. If u 6∈ H1, let u be a vertex in H1. Let G := G − e + uv. Let e be the new edge

uv.

Claim: γ1(G) = γ1(G) and both G and G have the same γ1-achieving subgraphs.

Proof of claim: Note that Hi with 1 ≤ i ≤ k are subgraphs of G. Since

d1(Hi) = γ1(G) for 1 ≤ i ≤ k, we have

γ1(G) ≥ γ1(G). (4.18)

Let H be a connected γ1-achieving subgraph of G. We show that H is a subgraph of

G. This proves the claim.

For a contradiction, suppose H 6⊆ G. Then e ∈ E(H). Let E1 = E(Hk) ∩ E(H)
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and E2 = E(H) − E1. Then

|E(H)| = |E1| + |E2|

and

|V (H)| = |V (E1)| + |V (H/E1)| − ω(G[E1]).

Therefore we have

d1(H) =
|E(H)|

|V (H)| − 1
=

|E1| + |E2|

|V (E1)| + |V (H/E1)| − ω(G[E1]) − 1

≤ max

{
|E1|

|V (E1)| − ω(G[E1])
,

|E2|

|V (H/E1)| − 1

}
, (4.19)

with equality if and only if |E1|

|V (E1)|−ω(G[E1])
= |E2|

|V (H/E1)|−1
by Lemma I.8. But ω(G[E1]) =

ω(G[E1]), so

|E1|

|V (E1)| − ω(G[E1])
=

|E1|

|V (E1)| − ω(G[E1])
= d1(G[E1]). (4.20)

But G[E1] is a subgraph of G, so

d1(G[E1]) ≤ γ1(G). (4.21)

By (4.20) and (4.21), we have

|E1|

|V (E1)| − ω(G[E1])
≤ γ1(G). (4.22)

Since V ((H ∪ Hk)/Hk) ⊆ V (H/E1) and E((H ∪ Hk)/Hk) = E2, we have

|E2|

|V (H/E1)| − 1
≤

|E2|

|V ((H ∪ Hk)/Hk)| − 1
= d1((H ∪ Hk)/Hk). (4.23)

The graph (H ∪ Hk)/Hk is isomorphic to G([V (H ∪ Hk)])/Hk which is a connected
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subgraph of G/Hk containing the vertex obtained from the contracted edges. Thus,

d1((H ∪ Hk)/Hk) < γ1(G) (4.24)

by Lemma IV.2. By (4.23) and (4.24), we have

|E2|

|V (H/E1)| − 1
< γ1(G). (4.25)

By (4.19), (4.22) and (4.25), γ1(G) = d1(H) < γ1(G), a contradiction to (4.18). Thus,

H ′ is a subgraph of G. Thus the claim.

In G, let w be a vertex adjacent to u. By Theorem IV.4, G′ = G− uw + wv is a

graph with the vertex set V (G) such that γ1(G
′) ≤ γ1(G), and if γ1(G

′) = γ1(G), then

all γ1-achieving subgraphs of G′ are γ1-achieving subgraphs in G, and for i = 1, . . . , k,

the subgraph G′[V (Hi)] is not γ1-achieving in G′.

Let G be a connected non-1-balanced graph and let H1 ⊆ H2 ⊆ . . . ⊆ Hk be

a sequence of connected γ1-achieving subgraphs of G such that Hk is a maximal

connected γ1-achieving subgraph of G. Since G is connected, there exist vertices

w ∈ V (H1) and v 6∈ V (Hk) with a wv path P in G satisfying the following properties:

1. There exists a vertex u ∈ V (H1) that is adjacent to w in P , and

2. Vertex v is the only vertex of P outside Hk.

For 1 ≤ i ≤ k − 1, let ni := |V (Hi+1) − V (Hi)|. The following theorem supports

Conjecture IV.6.

Theorem IV.8. Let G be a connected non-1-balanced graph and let H1 ⊆ H2 ⊆

· · · ⊆ Hk be a sequence of connected γ1-achieving subgraphs of G such that Hk is a

maximal connected γ1-achieving subgraph of G. Let P be a path as described above.
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Also, assume that ni ≤ 1 for 1 ≤ i ≤ k − 1. Then there exists a connected graph G′

with the vertex set V (G) such that

1. G − e = G′ − e′ for some e ∈ E(H1), e
′ ∈ E(G′) such that e and e′ have a

common end-vertex; and

2. γ1(G
′) ≤ γ1(G) and if γ1(G

′) = γ1(G), then all γ1-achieving subgraphs of G′ are

γ1-achieving in G and for 1 ≤ i ≤ k, the subgraph G′[V (Hi)] is not γ1-achieving

in G′.

Proof. We use induction on k. Theorem IV.4 proves the case when k = 1. Note that

the above conditions for P are satisfied in Theorem IV.4 for the proof of the case

k = 1.

Suppose the theorem is true for all k ∈ {1, 2, . . . , l − 1} for some integer l ≥ 2.

Let k = l.

If ni = 0 for some 1 ≤ i ≤ l − 1, then the collection

H = {Hi}i∈{1,2,··· ,l}−{j:nj=0}

forms a smaller nested sequence of γ1-achieving subgraphs with Hl ∈ H. Thus, the

theorem is true by the induction hypothesis. Hence we may assume that ni = 1 for

all 1 ≤ i ≤ l − 1.

Let the vertices of the path be P = w, u, u2, · · · , ul, v. Let the edges in P

be labeled as e, e1, · · · el. Using the induction hypothesis with k = 1, we see that

G := G − el−1 + ul−1v is a graph with

3. γ1(G) = γ1(G) and

4. all γ1-achieving subgraphs of G are γ1-achieving subgraphs of G. Moreover,

G[V (Hl)] is not γ1-achieving in G.



70

For 1 ≤ i ≤ l − 1, Hi is a γ1-achieving subgraph of G. Let Hl−1 be the maximal

connected γ1-achieving subgraph in G that contains Hl−1. Then Hl−1 does not contain

the vertex v, for if v ∈ V (Hl−1), then by Lemma III.3, we see that G[V (Hl)∪{v}] is a

connected γ1-achieving subgraph in G, a contradiction to the fact that Hl is a maximal

connected γ1-achieving subgraph. Thus H1 ⊆ H2 ⊆ · · · ⊆ Hl−2 ⊆ Hl−1 is a sequence

of connected γ1-achieving subgraphs of G such that Hl−1 is a maximal connected

γ1-achieving subgraph of G. The path P = wPul−1ev is a wv path satisfying the

conditions of the theorem. By the induction hypothesis, Ĝ := G−e+wv is such that

6. γ1(Ĝ) ≤ γ1(G) = γ1(G). If γ1(Ĝ) = γ1(G), then all γ1-achieving subgraphs of

Ĝ are γ1-achieving subgraphs of G, and for 1 ≤ i ≤ l, the subgraph Ĝ[V (Hi)]

is not γ1-achieving in Ĝ.

For notational simplicity, let e′ be the newly added edge wv in Ĝ and let e be

the newly added edge ul−1v in G. We recall that G = G−el−1 +e and Ĝ = G−e+e′.

Claim: The graph G′ := Ĝ − e + el−1 = G − e + e′ is the required graph.

Proof of claim:

Clearly, G − e = G′ − e′.

Let H ′ be a connected subgraph of G′ such that d1(H
′) = γ1(G

′). If el−1 6∈ E(H ′),

then H ′ is a subgraph of Ĝ and hence we have γ1(G
′) ≤ γ1(Ĝ). Thus, by (6),

γ1(G
′) ≤ γ1(G), with equality only if H ′ is a γ1-achieving subgraph of G.

Let us now suppose that el−1 ∈ E(H ′).

Case 1: v 6∈ V (H ′). In this case, H ′ is a subgraph of G. Hence γ1(G
′) ≤ γ1(G)

with equality only if H ′ is a γ1-achieving subgraph of G.

Case 2: v ∈ V (H ′). Consider the subgraph Ĥ = Ĝ[V (H ′)] = H ′−el−1 +e. Then,

Ĥ is connected and |E(Ĥ)| = |E(H ′)|. We have

d1(Ĥ) = d1(H ′). (4.26)
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If γ1(Ĝ) < γ1(G), then d1(Ĥ) < γ1(G). Suppose γ1(Ĝ) = γ1(G). Thus Ĥ is a

connected subgraph of Ĝ containing the edge el−1 and the vertex v. But all γ1-

achieving subgraphs of Ĝ are γ1-achieving in G by (4) and (6); and the vertex v is not

contained in any connected γ1-achieving subgraph of G that contains el−1. Therefore,

Ĥ is not γ1-achieving in Ĝ and so d1(Ĥ) < γ1(G). By (4.26), d1(H
′) < γ1(G).

Therefore γ1(G
′) < γ1(G).

Thus, we have γ1(G
′) ≤ γ1(G). For 1 ≤ i ≤ l, G′[V (Hi)] is a proper subgraph of

Hi since e 6∈ E(G′). Thus d1(G
′[V (Hi)]) < γ1(G). Thus if γ1(G

′) = γ1(G), then for

i = 1, . . . , l, the subgraph G′[V (Hi)] is not γ1-achieving in G′.
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CHAPTER V

DENSITIES IN GRAPHS AND MATROIDS

In this chapter, we present our study of (r, s)-balanced matroids for any rational

number r and any non-negative integer s > r − 1. We provide some examples of

(r, s)-balanced graphs. We also give several results concerning (r, s)-balanced graphs

and matroids.

5.1. Definition

Throughout this chapter we assume that M is a matroid on a non-empty set E and

with rank function ρ. For a rational number r, recall that

dr(F ) =
|F |

ρ(F ) − (r − 1)

for all subsets F of E such that ρ(F ) > r − 1. We use the notation ρ(M) in place of

ρ(E) and dr(M) in place of dr(E). For an integer s such that s > r − 1, the matroid

M is said to be (r, s)-balanced if ρ(M) ≥ s and dr(F ) ≤ dr(M) for all subsets F of E

such that ρ(F ) ≥ s. If dr(F ) ≤ dr(M) for all subsets F of E such that ρ(F ) > r − 1,

we simply call M as a r-balanced matroid. Note that the definition of the r-balanced

matroids is the same as that of the (r, s)-balanced matroids if r − 1 < s ≤ r + 1 or if

s = 0.

Recall that the rank of a graph G, denoted as ρ(G) is the size of the maximal

forest present in G and is equal to |V (G)| − ω(G). The quantity ρ(G) is the rank of

the cycle matroid of G. A graph G is (r, s)-balanced if and only if its cycle matroid

is (r, s)-balanced. A graph is r-balanced if its cycle matroid is r-balanced. For a

subgraph H of a graph G, we denote dr(E(H)) simply as dr(H).

Note that a connected graph G on ⌈r +1⌉ vertices has rank ⌈r⌉ and all its proper
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induced subgraphs are of rank less than r and the condition dr(H) ≤ dr(G) is satisfied

for all subgraphs of rank at least r and therefore G is r-balanced. Also, a graph G

with rank greater than r − 1 is (r, s)-balanced where s is the rank of G.

5.2. (r,s)-balanced matroids

In this section, we examine some relations between the various classes of (r, s)-

balanced matroids.

Let r1 and r2 be two rational numbers such that r1 < r2 and let M be a matroid

with ρ(M) ≥ r2 − 1. We have

ρ(M) − (r1 − 1) > ρ(M) − (r2 − 1).

Thus,

dr1(M) < dr2(M). (5.1)

Let s be a non-negative integer such that s > r − 1. We define

γs
r(M) := max{dr(F )|F ⊂ E, ρ(F ) ≥ s}. (5.2)

By the definition of (r, s)-balanced matroids, a matroid M is (r, s)-balanced if and

only if γs
r(M) = dr(M). Also, let

µs(M) := min

{
|E| − |F |

ρ(M) − ρ(F )

∣∣∣∣F ⊂ E, s ≤ ρ(F ) < ρ(M)

}
. (5.3)

Note that from the definition of η1(M) in Chapter III, we have

µ0(M) = η1(M). (5.4)

We define

ηs
r(M) := min(µs(M), dr(M)). (5.5)
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Note that η1
1(M) = η1(M). In general, if r− 1 < s ≤ r + 1 or if s = 0, we just denote

γs
r(M) as γr(M) and ηs

r(M) as ηr(M).

Note that, from (5.2) and (5.5),

ηs
r(M) ≤ dr(M) ≤ γs

r(M). (5.6)

The following result is a generalization of Theorem III.1 which proves the case r =

s = 1.

Theorem V.1. Let r be a rational number and s be a non-negative integer such that

s > r − 1. If ρ(M) ≥ s, the following are equivalent:

(i) γs
r(M) = dr(M) (i.e., M is (r, s)-balanced),

(ii) ηs
r(M) = dr(M),

(iii) γs
r(M) = ηs

r(M).

Proof. By the relation (5.6), (iii) implies (i) and (ii).

Let F ⊂ E such that ρ(F ) < ρ(M) and ρ(F ) ≥ s. Then,

dr(M) =
|E|

ρ(M) − (r − 1)
≤

|E| − |F |

ρ(M) − ρ(F )

if and only if

|E|
(
ρ(M) − ρ(F )

)
≤ |E|

(
ρ(M) − (r − 1)

)
− |F |

(
ρ(M) − (r − 1)

)
.

Simplifying the above inequality, we get

|F |
(
ρ(M) − (r − 1)

)
≤ |E|

(
ρ(F ) − (r − 1)

)
,

which is equivalent to dr(F ) ≤ dr(M).

Hence (i) and (ii) are equivalent and together they imply (iii).
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The following is a easy consequence of the above theorem.

Corollary V.2. Let r be a rational number and s be a non-negative integer such that

s > r − 1. A matroid M is (r, s)-balanced if and only if dr(M) ≤ µs(M).

Proof. By Theorem V.1, the matroid M is (r, s)-balanced if and only if dr(M) =

ηs
r(M). By the definition of ηs

r(M), we have dr(M) = ηs
r(M) if and only if dr(M) ≤

µs(M).

Lemma V.3. Let r1 and r2 be two rational numbers such that r1 < r2. Let s be

a non-negative integer such that s > r2 − 1. If M is (r2, s)-balanced, then M is

(r1, s)-balanced.

Proof. By (5.1), we have dr1(M) ≤ dr2(M). Suppose M is (r2, s)-balanced, then

by Corollary V.2, we have dr2(M) ≤ µs(M). Thus dr1(M) ≤ dr2(M) ≤ µs(M).

Therefore, M is (r1, s)-balanced.

Lemma V.4. Let r be a rational number and let s1, s2 be two integers such that

r − 1 ≤ s1 < s2. If M is (r, s1)-balanced, then M is (r, s2)-balanced.

Proof. Since M is (r, s1)-balanced, we have dr(F ) ≤ dr(M) for all F ⊆ E such that

ρ(F ) ≥ s1. In particular, since s2 > s1, we have dr(F ) ≤ dr(M) for all F ⊆ E such

that ρ(F ) ≥ s2. Therefore, M is (r, s2)-balanced.

Corollary V.5. A loopless 1-balanced matroid is r-balanced for any rational number

r < 1.

Proof. Let M be a 1-balanced matroid, i.e., M is (1, 1)-balanced. By Lemma V.3,

M is (r, 1)-balanced for any rational number r < 1. Hence it is enough to show

dr(F ) ≤ dr(M) for F ⊆ E such that ρ(F ) = 0. Since M is loopless, ρ(F ) = 0 if and

only if F = φ. Therefore, dr(F ) = 0 if ρ(F ) = 0. Thus, dr(F ) ≤ dr(M) for F ⊆ E

such that ρ(F ) = 0.
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Table II. Relationship between the various (r, s)-balanced matroids

−1
2
-balanced ⇒ (−1

2
, 1)-balanced ⇒ (−1

2
, 2)-balanced

⇑ ⇑ ⇑

0-balanced ⇒ (0, 1)-balanced ⇒ (0, 2)-balanced

⇑ ⇑ ⇑

1
2
-balanced ⇒ (1

2
, 1)-balanced ⇒ (1

2
, 2)-balanced

∗

~www ⇑ ⇑

1-balanced ⇒ (1, 2)-balanced

⇑ ⇑

3
2
-balanced ⇒ (3

2
, 2)-balanced

⇑

2-balanced

* if the matroid is loopless

Table II shows the various implications that are proved in Lemma V.3 and Lemma

V.4. The number −1
2

can be replaced by any number between −1 and 0, the number

1
2

can be replaced by any number between 0 and 1 and the number 3
2

can be replaced

by any number between 1 and 2.

5.3. Existence of (r,s)-balanced graphs

In this section, we show the existence of (r, s)-balanced graphs for some values of

r and s. For this, we prove some key lemmas which are later used to show that

(k, l)-sparse graphs and Laman graphs are examples of (r, s)-balanced graphs. The

readers will notice that Laman graphs form the basic example of (r, s)-graphs in

this dissertation. Apart from the existence proofs, we give some preliminary results
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concerning (r, s)-balanced graphs.

5.3.1. (k,l)-sparse graphs and (r,s)-balanced graphs

Recall from Section 1.3.3 that for k ≤ l ≤ 2k, a loopless graph G is said to be (k, l)-

sparse if and only if for every subset U ⊆ V with |U | ≥ 2, we have |E(U)|

|U |− l
k

≤ k. We

call G a tight (k, l)-sparse graph if G is (k, l)-sparse and |E(G)|

|V (G)|− l
k

= k. In this section,

we show that a tight (k, l)-sparse graph is l
k
-balanced.

We first present the following generalization of Lemma III.2.

Lemma V.6. For 1 ≤ r < 2, a multi-graph G is r-balanced if and only if for all

non-trivial connected subgraphs H of G with |V (H)| > r, we have dr(H) ≤ dr(G).

Proof. The necessity is trivial.

(Sufficiency) Assume that for all non-trivial connected subgraphs H of G with

|V (H)| > r, we have dr(H) ≤ dr(G). Let H ′ be a non-trivial subgraph of G with

ρ(H ′) > r − 1. Thus, H ′ has at least one edge. We also assume that H ′ has no

trivial components. Let H1, . . . , Ht be the components of H ′ with t ≥ 1. Then

|V (Hi)| ≥ 2 > r. Thus, |E(H)| =
∑t

i=1 |E(Hi)| and ρ(H) =
∑t

i=1 |V (Hi)| − t.

For i = 2, . . . , t, by the assumption of the theorem, we have

dr(Hi) =
|E(Hi)|

|V (Hi)| − 1 − (r − 1)
≤ dr(G).

Thus,

|E(Hi)| ≤ dr(G)
(
|V (Hi)| − 1 − (r − 1)

)
.
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Therefore, we have

dr(H) =
|E(H)|

ρ(H) − (r − 1)

=

∑t
i=1 |E(Hi)|∑t

i=1 |V (Hi)| − t − (r − 1)

≤
dr(G)

∑t
i=1

(
|V (Hi)| − 1 − (r − 1)

)
∑t

i=1 |V (Hi)| − t − (r − 1)

=
dr(G)

(∑t
i=1 |V (Hi)| − t − t(r − 1)

)
∑t

i=1 |V (Hi)| − t − (r − 1)

≤
dr(G)

(∑t
i=1 |V (Hi)| − t − (r − 1)

)
∑t

i=1 |V (Hi)| − t − (r − 1)
= dr(G)

The last inequality holds since t ≥ 1 and r − 1 ≥ 0.

Corollary V.7. For positive integers k and l such that k ≤ l ≤ 2k, a tight, connected

(k, l)-sparse graph is a l
k
-balanced graph.

Proof. If G is a tight, connected (k, l)-sparse graph, then |E(G)| = k|V (G)|− l. Thus

d l
k
(G) =

|E(G)|

|V (G)| − l
k

=
k(|V (G)| − l

k
)

|V (G)| − l
k

= k.

If H is a connected subgraph of G, then by the definition of (k, l)-sparse graphs, we

have |E(H)| ≤ k|V (H)| − l. Therefore,

d l
k
(H) =

|E(H)|

|V (H)| − l
k

≤
k(|V (H)| − l

k
)

|V (H)| − l
k

= k = d l
k
(G).

By Lemma V.6, G is l
k
-balanced.

5.3.2. Laman graphs and (r,s)-balanced graphs

Recall from Section 1.1.5 that a Laman graph of dimension m is a simple graph that

satisfies the following: |E(U)| ≤ m|U | −
(

m+1
2

)
for all U ⊆ V (G) with |U | ≥ m, and

|E(G)| = m|V (G)| −
(

m+1
2

)
. In this section, we prove that for any positive integer
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m, any Laman graph of dimension m is (m+1
2

, m − 1)-balanced. We first need the

following generalization of Lemma V.6.

Lemma V.8. Let r be a rational number and t be a positive integer. Let G be a graph

with ρ(G) ≥ r − 1 and let H be a disconnected subgraph of G with ρ(H) > r − 1. Let

H1, . . . , Ht be non-trivial components. If for each i = 1, . . . , t, there exists a rational

number ri such that

(a) ρ(Hi) ≥ ri − 1,

(b)
∑t

i=1(ri − 1) = r − 1 and

(c) dri
(Hi) ≤ dr(G),

then dr(H) ≤ dr(G).

Proof. Suppose there exist rational numbers ri for i = 1, . . . , t such that
∑t

i=1(ri −

1) = r − 1, then since ρ(H) =
∑t

i=1 ρ(Hi), we have

ρ(H) − (r − 1) =
t∑

i=1

(
ρ(Hi) − (ri − 1)

)
.

Thus

dr(H) =
|E(H)|

ρ(H) − (r − 1)

=

∑t
i=1 |E(Hi)|∑t

i=1

(
ρ(Hi) − (ri − 1)

)

≤ max
1≤i≤t

|E(Hi)|

ρ(Hi) − (ri − 1)
(5.7)

by Lemma I.8. But for i = 1, . . . , t, we have

|E(Hi)|

ρ(Hi) − (ri − 1)
= dri

(Hi) ≤ dr(G)

by the hypothesis (c) of the theorem. Therefore, dr(H) ≤ dr(G) by (5.7).
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As a corollary to Lemma V.8, we have

Theorem V.9. A Laman graph of dimension m is an (m+1
2

, m − 1)-balanced graph

with density m.

Proof. Let G be a Laman graph of dimension m. We show that G satisfies the

hypothesis of Lemma V.8 with r = m+1
2

and s = m − 1. Since |E(G)| = m|V (G)| −
(

m+1
2

)
and G is connected, we have

dm+1
2

(G) =
m

(
|V (G)| − m+1

2

)

|V (G)| − m+1
2

= m. (5.8)

Let H be a subgraph of G with ρ(H) ≥ m − 1 and with no isolated vertices. If H is

connected, then since |V (H)| ≥ m, we have |E(H)| ≤ m
(
|V (H)|−

(
m+1

2

))
. Therefore,

dm+1
2

(H) =
|E(H)|

|V (H)| − m+1
2

≤ m = dm+1
2

(G),

the result we seek.

Now, we assume that H is disconnected. Let H1, . . . , Ht be the components of

H with t > 1. Let us denote ρ(Hi) by ρi for simplicity. Then
∑t

i=1 ρi = ρ(H).

Therefore, we have

dm+1
2

(H) =
|E(H)|

ρ(H) − (m+1
2

− 1)
=

∑t
i=1 |E(Hi)|∑t

i=1 ρi − (m+1
2

− 1)
. (5.9)

Suppose ρi ≥ m − 1, for some i ∈ {1, . . . , m}, by the definition of Laman graphs, we

have

dm+1
2

(Hi) ≤ m = dm+1
2

(G). (5.10)

Suppose ρi < m− 1 for some i ∈ {1, . . . , m}, then since G is a simple graph, we have

|E(Hi)| ≤
ρi(ρi+1)

2
. Thus,

d1(Hi) =
|E(Hi)|

ρi

≤
ρi(ρi + 1)

2ρi

=
ρi + 1

2
≤

m

2
< m = dm+1

2
(G) (5.11)
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by (5.8). Also, if ρi < m − 1, then

d ρi
2

+1(Hi) =
|E(Hi)|

ρi −
ρi

2

≤
ρi(ρi + 1)

2
(
ρi −

ρi

2

) =
ρi(ρi + 1)

ρi
= ρi + 1 < m = dm+1

2
(G) (5.12)

by (5.8). We have two cases to consider.

Case 1: Suppose there exists an integer j0 ∈ {1, . . . , m} such that ρ(Hj0) ≥

m− 1. We let rj0 = m+1
2

and ri = 1 for i 6= j0. Clearly, for each i = 1, . . . , t, we have

ρi ≥ ri − 1 and
∑t

i=1(ri − 1) = m+1
2

− 1. Moreover, by (5.10), we have

drj0
(Hj0) ≤ dm+1

2
(G)

and by (5.11), we have

dri
(Hi) = d1(Hi) ≤ dm+1

2
(G)

for i 6= j0. Thus by Lemma V.8, we get dm+1
2

(H) ≤ dm+1
2

(G).

Case 2: Suppose ρ(Hi) < m− 1 for all i ∈ {1, . . . , m}. We let si = ρi

2
+ 1. Then

by (5.12), we have

dsi
(Hi) ≤ dm+1

2
(G). (5.13)

Also, ρi ≥ si − 1 and

t∑

i=1

(si − 1) =
t∑

i=1

ρi

2
=

∑t
i=1 ρi

2
=

ρ(H)

2
≥

m − 1

2
=

m + 1

2
− 1.

Therefore, for each i = 1, . . . , t, we can choose ri ≤ si such that
∑t

i=1(ri−1) = m+1
2

−1.

Since ri ≤ si, we have ρi ≥ ri − 1. Also, by (5.1), we have dri
(Hi) ≤ dsi

(Hi). Thus

by (5.13), we have dri
(Hi) ≤ dsi

(Hi) ≤ dm+1
2

(G). By Lemma V.8, we get

dm−1
2

(H) ≤ dm+1
2

(G).

Thus the theorem follows.
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5.3.3. A degree condition in a (r,s)-balanced graph

The following lemma is useful to check if a graph is (r, s)-balanced. The lemma is

used later.

Lemma V.10. For a rational number r and an integer s with s > r − 1, let G

be a simple connected (r, s)-balanced graph with ρ(G) ≥ s + 1. If v ∈ V (G) with

ρ(G − v) = ρ(G) − 1, then degG(v) ≥ dr(G).

Proof. Since ρ(G − v) = ρ(G) − 1 and ρ(G) ≥ s + 1, we have ρ(G − v) ≥ s. Since G

is (r, s)-balanced, we have dr(G − v) ≤ dr(G). Thus

|E(G)| − degG(v)

ρ(G − v) − (r − 1)
≤

|E(G)|

ρ(G) − (r − 1)

|E(G)| − degG(v)

ρ(G) − 1 − (r − 1)
≤

|E(G)|

ρ(G) − (r − 1)

By Lemma I.10, we have degG(v) ≥ |E(G)|
ρ(G)−(r−1)

= dr(G).

5.3.4. Edge-disjoint unions of (r,s)-balanced graphs

In this section, we show that any edge-disjoint union of connected (r, s)-balanced

graphs on the same vertex set is also an (r, s)-balanced graph. This is an extension

of the Corollary III.6 which proves the below result for r = 1 and s = 1.

Lemma V.11. Let r be a rational number and s > r − 1 be a non-negative integer.

If a connected graph G is an edge-disjoint union of spanning (r, s)-balanced subgraphs

Gi, i = 1, . . . , t, then G is (r, s)-balanced.

Proof. Let xi = dr(Gi). Since G is an edge-disjoint union of spanning (r, s)-balanced
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subgraphs Gi for i = 1, . . . , t, we have

dr(G) =
|E(G)|

|V (G)| − r
=

∑t
i=1 |E(Gi)|

|V (G)| − r
=

t∑

i=1

xi. (5.14)

Let H be a subgraph of G with ρ(H) ≥ s. For i = 1, . . . , t, let Hi = H ∩Gi. Let

H ′
i be a subgraph in Gi with ρ(H ′

i) = ρ(H) such that Hi ⊆ H ′
i. Such graphs H ′

i exist

since ρ(G) ≥ s, some edges can be added to Hi to obtain H ′
i.

For each i = 1, . . . , t, since ρ(Hi) ≥ s and Gi is (r, s)-balanced, we have

dr(H
′
i) =

|E(H ′
i)|

ρ(H ′
i) − (r − 1)

=
|E(H ′

i)|

ρ(H) − (r − 1)
≤ dr(Gi) = xi. (5.15)

Thus,

dr(H) =
|E(H)|

ρ(H) − (r − 1)

=

t∑

i=1

|E(Hi)|

ρ(H) − (r − 1)

≤
t∑

i=1

|E(H ′
i)|

ρ(H ′
i) − (r − 1)

≤
t∑

i=1

xi = dr(G)

by (5.15) and (5.14). Hence the lemma follows.

5.3.5. Existence of Laman graphs with a given degree on a vertex

We saw that Laman graphs of dimension m are (m+1
2

, m − 1)-balanced graphs with

density m. Thus Laman graphs are examples of (r, s)-balanced graphs for various

values of r and s. In this section, using the results in rigidity theory, we point out

that for any given integer n ≥ m, there exist Laman graphs of dimension m on n

vertices.

The following is shown in [27] using a simple graph theoretic argument.
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Lemma V.12. For a positive integer m, let G be a Laman graph of dimension m.

Then δ(G) ≥ m, where δ(G) is the minimum degree of G.

With the help of a special construction of Laman graphs, namely the “Han-

neberg’s 0-extension”, we notice that there exists Laman graphs of dimension m with

minimum degree exactly m with any vertex set of size at least m.

The graph Km is a Laman graph of dimension m. If G is a Laman graph of

dimension m, then the Hanneberg’s 0-extension of G is defined in [27, Page 112] as

the graph obtained by adding a vertex v and adding m non-parallel edges incident at

v. It can be verified (easily) that the Hanneberg’s 0-extension of any Laman graph

of dimension m is also a Laman graph of dimension m. Notice that Laman graphs of

dimension m that are constructed using only Hanneberg’s 0-extensions have a vertex

of degree exactly m.

The following result was observed in [27].

Lemma V.13. For positive integers m and n with n > m, there exists Laman graph

G of dimension m with |V (G)| = n and a vertex v of degree m. Moreover, the graph

G − v is also a Laman graph of dimension m.

See Figure 14 for examples on Laman graphs of dimension 2 and 3 constructed

from K2 and K3 respectively via Hanneberg’s 0-extension. Note that not all Laman

graphs of dimension m can be constructed only by Hanneberg’s 0-extensions from

Km. Figure 1 in Chapter I shows an example of a Laman graph of dimension 3 that

does not have any vertex of degree 3. Therefore, it cannot be obtained from K3 via

0-extensions.
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Fig. 14. Laman graphs of dimensions 2 and 3 constructed from K2 and K3 respectively

via Hanneberg’s 0-extensions

5.3.6. Questions on the existence of (r,s)-balanced graphs

As shown by an example in 1.4.2, the existence of a (r, s)-balanced graph G depends

on the values of r and s, and also the value of dr(G). We have the following conjecture:

Conjecture V.14. For any rational number r and any non-negative integer s > r−1

there exists (r, s)-balanced graphs G with arbitrarily large values of dr(G).

In view of the above conjecture, we pose the following two questions:

Question 1: For a rational number r, find the smallest possible non-negative integer

s such that there exists a (r, s)-balanced graph on a given number of vertices and

edges.

For 0 ≤ r < 2, the smallest s is 1 as our examples show. For r = m+1
2

, a Laman

graph of dimension m is an (r, s)-balanced graph when s = m − 1.

Question 2: For a rational number r and integers s and n, what is the smallest

value f(r, s, n) such that there exists an (r, s)-balanced graph G on n vertices such

that dr(G) = f(r, s, n)?
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5.4. Examples of (r1,s)-balanced graphs that are not (r2,s)-balanced for

r1 ≤ r2

If r1 and r2 are two rational numbers such that r1 < r2 and s is a non-negative integer

such that s > r2 − 1, then in Corollary V.3 we saw that any (r2, s)-balanced graph is

also (r1, s)-balanced. Here we show that the reverse implication is not true. For any

two positive rational numbers r1, r2 with 1
2
≤ r1 < r2 and for a sufficiently large value

of s, we give an example of an (r1, s)-balanced graph that is not an (r2, s)-balanced

graph. Examples with lesser values of s would be of interest.

Theorem V.15. Let r1 and r2 be rational numbers such that 1
2
≤ r1 < r2. Then there

exists an integer s ≥ r2 −1 and a (r1, s)-balanced graph G that is not (r2, s)-balanced.

Proof. Let m ≥ 1 be an integer such that m
2
≤ r1 < m+1

2
. Then by Lemma I.9, there

exist positive integers l and k with l ≤ k, such that

r1 =
k − l

k

(
m

2

)
+

l

k

(
m + 1

2

)
. (5.16)

Let s = m. Let G1 be a Laman graph of dimension m − 1 and let G2 be a Laman

graph of dimension m with ρ(G1) = ρ(G2) ≥ s+1, on the same vertex set V . Further,

let v ∈ V with degG1v = m − 1 and degG2v = m such that G1 − v and G2 − v are

Laman graphs of dimensions m−1 and m respectively. Such graphs, G1 and G2 with

the presence of the vertex v exist by Lemma V.13. Note that both G1 − v and G2 − v

are connected because they are Laman graphs.

Let G be the edge-disjoint union of G
m(k−l)
1 and G

l(m−1)
2 . The graph G − v is

connected since both G1 − v and G2 − v are connected. Thus ρ(G − v) = ρ(G) − 1.

This fact will be used later.
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Let us calculate the degree of the vertex v in G.

degG(v) = (k − l)m(m − 1) + lm(m − 1) = km(m − 1). (5.17)

Claim: G is (r1, s)-balanced but not (r2, s)-balanced. Since G1 is a (m
2
, m− 2)-

balanced graph and G2 is a (m+1
2

, m − 1)-balanced graph, we have

|E(G)| ≤ (k − l)m(m − 1)
(
|V (G)| −

m

2

)
+ lm(m − 1)

(
|V (G)| −

m + 1

2

)

= m(m − 1)

(
k|V (G)| − (k − l)

m

2
− l

m + 1

2

)

= km(m − 1)

(
|V (G)| −

(
k − l

k

(m

2

)
+

l

k

(m + 1

2

)))

= km(m − 1)(|V (G)| − r1)

by (5.16). Thus,

dr1(G) = m(m − 1)k. (5.18)

For H ⊆ G with ρ(H) ≥ s, we have

|E(H)| ≤ (k − l)m(m − 1)

(
ρ(H) − (

m

2
− 1)

)
+ lm(m − 1)

(
ρ(H) − (

m + 1

2
− 1)

)

= m(m − 1)

(
kρ(H) − (k − l)

(m

2
− 1

)
− l

(m + 1

2
− 1

))

= km(m − 1)

(
ρ(H) −

(
k − l

k

(m

2

)
+

l

k

(m + 1

2

)
− 1

))

= km(m − 1)
(
ρ(H) − (r1 − 1)

)
.

This implies that dr1(H) ≤ km(m − 1) = dr1(G). Thus G is (r1, s)-balanced.

By Lemma V.10, since ρ(G) ≥ s+1 and ρ(G−v) = ρ(G)−1, we notice that if G

is (r2, s)-balanced, then we must have degG(v) ≥ dr2(G). But from (5.17) and (5.18),

we have degG(v) = m(m−1)k = dr1(G). Also, since r1 < r2, we have dr1(G) < dr2(G)

by (5.1). Thus, degG(v) = dr1(G) < dr2(G) and therefore G is not (r2, s)-balanced.

Hence the theorem follows.
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5.5. An application

In this section, we provide an application of (r, s)-balanced graphs. This is an exten-

sion of the idea presented in [37] in the context network survivability.

We first recall the definitions in terms of graphs. Let r be a rational number and

s a non-negative integer such that s > r − 1. Also, let G be a graph with ρ(G) ≥ s.

For each subgraph H of G with ρ(H) ≥ s, we have

dr(H) =
|E(H)|

ρ(H) − (r − 1)
.

Also,

γs
r(G) = max{dr(H) : H ⊆ G, ρ(H) ≥ s}

and

µs(G) := min
X⊆E(G)

{
|X|

ω(G − X) − ω(G)
; ω(G − X) > ω(G), |V (G)| − ω(G − X) ≥ s

}
.

By Theorem V.1, G is (r, s)-balanced if γs
r(G) = dr(G) and/or dr(G) ≤ µs(G).

Recall that the quantity η1(G) is the minimum among the ratios |F |
ω(G−F )−ω(G)

for

all F ⊆ E(G) with ω(G − F ) > ω(G). Thus η1(G) gives the minimum among the

number of edges that can be removed from G per number of additional components

that is formed by the removal. Because of the relation between η1(G) and γ1(G), the

concept of 1-balanced graphs is related with the strength of graphs. We present an

extension of this idea to (r, s)-balanced graphs.

As we mentioned before, a network may represent a communication network or

a road network between cities. These networks are highly susceptible to attacks and

problems such as clustering in the case of communication network or traffic failures

in the case of road networks. As noticed in [37], the most vulnerable parts of these

networks are represented by the edges of the graph since vertices may represent the
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command centers of the network and may have high security.

A common motive of an enemy trying to attack a network is not to destroy the

whole network, but rather to disrupt some areas so that the normal functioning of

the system is affected for a certain amount of time. This is a typical consequence of

any traffic blockage in a road network.

The following are some key features that network planners may consider while

constructing their networks.

1. The edges of the network must be uniformly distributed so that there is no

special subgraph that looks “busy”, or in other words, has a lot of edges. If there is

such a special subgraph, it may be easily possible to isolate this subgraph when some

edges fail to function. While designing a network, the network owners already take

some security measures in safeguarding the command units. One form of security

in command modules may be achieved by grouping a certain number of vertices and

distributing the workload to all the vertices. The group of vertices selected for a

command unit must be highly reliable. Therefore, the number of vertices that form a

command unit is not more than a certain integer chosen by the network designers. On

the other hand, communications between various vertices of a command unit is high

and thus the number of edges between them is high. Requiring that the network be

a balanced graph is impractical because the command units may have higher average

degree compared to the whole graph. However, constructing a network that is r-

balanced for a sufficiently large rational number r, may be practical and may prove

to be useful in the context of network survivability.

2. Let us represent the network by a graph G. We may measure the effort

involved in deleting some edges in a network as the number of edges removed divided

by the number of additional components produced by the erasure of the edges in the

network. Suppose an enemy tries to erase some edges in the network only to leave
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behind a subnetwork of at least a reasonable size. Such a knowledgeable enemy is

aware of the cost involved in their mission and wants to reduce the effort involved in

attacking. Thus, the minimal effort that is required is µs(G) for some positive integer

s, rather than just µ0(G) (or, η1(G)).

Now, the effort involved in attacking all the edges of the graph G may be

measured as |E(G)|
|V (G)|−1

. But, due to several reasons, this effort may be taken as

dr(G) = |E(G)|
|V (G)|−r

≥ |E(G)|
|V (G)|−1

, where r is some positive rational number suitably chosen

by the network designers. The network owners may try to distract the enemies by

setting dr(G) smaller than µs(G), so that the effort involved in destroying all the

edges of the graph is lesser than destroying part of the edges of the graph.

Thus, constructing an (r, s)-balanced graph G answers the above concerns of the

network owner. On one hand, since dr(H) ≤ dr(G) for all subgraphs of rank at least

s, we see that the edges of the graph are spread out evenly, while the number of

vertices in any command module is not more than s . On the other hand, we have

dr(G) ≤ µs(G) and thus the network is not vulnerable to limited attacks.

5.6. A characterization

In this section, we present a characterization of r-balanced matroids when 0 ≤ r ≤ 1.

This characterization involves matroid duals and the quantity γ1(M).

Since d1(F ) is defined only for F ⊆ E with ρ(F ) > 0, to calculate γ1(M) of a

matroid M , it does not matter if M is loopless or not. We let η1(M) = γ1(M) = ∞

if ρ(M) = 0.

If M∗ denotes the dual of M , then by the definition of M∗, we have

ρ(M∗) = |E| − ρ(M). (5.19)

Therefore we have
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Lemma V.16. For a matroid M , γ1(M) = 1 if and only if η1(M
∗) = ∞ and

γ1(M
∗) = ∞ if and only if η1(M) = 1.

Proof. γ1(M) = 1 if and only if ρ(M) = |E|, or in other words, by (5.19), we have

ρ(M∗) = 0 which is equivalent to η1(M
∗) = ∞. Similarly, γ1(M

∗) = ∞ if and only

if ρ(M∗) = 0, so that, by (5.19), we have ρ(M) = |E|. Therefore, ρ(F ) = |F | for all

F ⊆ E. Thus |E|−|F |
ρ(M)−ρ(F )

= 1 and so η1(M) = 1.

For a loopless matroid M having a loopless dual M∗, the quantities η1(M
∗) and

γ1(M
∗) were calculated in [10] as follows:

Theorem V.17 (Catlin, Grossman, Hobbs and Lai). For any loopless matroid M on

the set E, having a loopless dual M∗,

η1(M∗) =
γ1(M)

γ1(M) − 1
,

and equivalently,

γ1(M
∗) =

η1(M)

η1(M) − 1
.

Combining Lemma V.16 and Theorem V.17, we have

Theorem V.18. For any matroid M on the set E and with dual M∗,

η1(M∗) =
γ1(M)

γ1(M) − 1
, if γ1(M) 6= 1,∞;

η1(M∗) = ∞ if γ1(M) = 1 and η1(M
∗) = 1 if γ1(M) = ∞. Also,

γ1(M
∗) =

η1(M)

η1(M) − 1
if η1(M) 6= 1,∞;

γ1(M
∗) = ∞ if η1(M) = 1 and γ1(M

∗) = 1 if η1(M) = ∞.

Corollary V.19. A matroid M is 1-balanced if and only if M∗ is 1-balanced.
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Proof. Using the computation of η1(M∗) and γ1(M
∗) in Theorem V.18, we have

γ1(M) = η1(M) if and only if γ1(M
∗) = η1(M

∗) i.e., M∗ is 1-balanced.

It is apparent that the dual of a 1-balanced matroid is balanced since the dual

is 1-balanced. However, for example, it is not true that duals of 0-balanced matroids

are 0-balanced. The graphs in Figure 15 are both 0-balanced and the duals of both

the graphs have density d0 = 9
3

= 3. It can be checked that the matroid dual of

the first graph is balanced. But the matroid dual of the second graph has 7 parallel

edges whose density d0 is 7
2

> 3. Hence the matroid dual of the second matroid is not

balanced.

Fig. 15. Duals of balanced graphs

The following theorem classifies all matroids whose dual matroids are r-balanced

when 0 ≤ r < 1.

Theorem V.20. Let M be a matroid on a set E. For 0 ≤ r < 1, M∗ is r-balanced

if and only if either ρ(M) ≤ 1 − r or γ1(M)(ρ(M) + r − 1) ≤ |E|.

Proof. For 0 ≤ r < 1, we have ηr(M) = min{µ0(M), dr(M)} by the definition of

ηr(M). But µ0(M) = η1(M).

Thus the matroid M∗ is r-balanced if and only if

η1(M
∗) ≥ dr(M

∗) =
|E|

ρ(M∗) − (r − 1)
. (5.20)
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From (5.20) and (5.19), we have

η1(M
∗) ≥

|E|

|E| − ρ(M) − (r − 1)
. (5.21)

Case (i) If η1(M∗) = ∞, then by the definition of η1, we have ρ(M∗) = 0, and hence

M∗ is r-balanced. In this case, we have γ1(M) = 1 by Lemma V.16. Since ρ(M∗) = 0,

by (5.19) we have ρ(M) = |E|. Hence γ1(M)(ρ(M) + r − 1) = 1(|E| + r − 1) < |E|

since r < 1.

Case (ii) If η1(M
∗) = 1, then by (5.21), M∗ is r-balanced if and only if

|E|

|E| − ρ(M) − (r − 1)
≤ 1

i.e., |E| ≤ |E| − ρ(M) − (r − 1) or ρ(M) ≤ 1 − r.

Case (iii) We may now assume that η1(M∗) 6= ∞ and η1(M∗) 6= 1. Hence by

Lemma V.16, γ1(M) 6= 1 and γ1(M) 6= ∞. By Theorem V.18,

η1(M∗) =
γ1(M)

γ1(M) − 1
. (5.22)

Noting |E| − ρ(M) + 1 > 0, by (5.21) and (5.22), we have

γ1(M)

γ1(M) − 1
≥

|E|

|E| − ρ(M) − (r − 1)

which is equivalent to

γ1(M)|E| − γ1(M)ρ(M) − γ1(M)(r − 1) ≥ γ1(M)|E| − |E|,

i. e., γ1(M)(ρ(M) + r − 1) ≤ |E|.

Since (M∗)∗ = M , Theorem V.20 may be considered as a characterization of

r-balanced matroids for 0 ≤ r < 1.

The following are algorithms to check if a matroid M is r-balanced for 0 ≤ r ≤ 1.
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The first algorithm works by using (5.4) and Theorem V.1.

Algorithm 1:

Step 1 : Find η1(M).

Step 2 : If dr(M) ≤ η1(M), then M is r-balanced. Else, M is not r-balanced.

The next algorithm follows from Theorem V.20.

Algorithm 2:

Step 1 : If ρ(M∗) ≤ 1 − r, then M is r-balanced. Else,

Step 2 : Find γ1(M
∗).

Step 3 : If γ1(M
∗) ≤ |E|

ρ(M∗)−1
, then M is r-balanced. Else, M is not r-balanced.

Since the time it takes to find η1(M) and γ1(M) is polynomial in the input size,

the time to find if M is r-balanced or not is polynomial in the input size.

5.7. Further questions

Question 3: If r > 1 and s is an integer greater than r − 1, is there an efficient

algorithm to check if a given graph is (r, s)-balanced?

Question 4: Given a graph G, find the minimum values of r and s such that G

is (r, s)-balanced.
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CHAPTER VI

PAIRS OF SUBMODULAR FUNCTIONS, BALANCED SETS AND DENSITY

The density functions on a graph give information about which subgraphs are densely

packed. For instance, the sets with high values of d1(G) correspond to subgraphs

where we can pack the largest (fractional) number of edge-disjoint forests. In the

literature, the density function d1(G) is generalized and defined in terms of a pair

of “submodular functions”. In this chapter, we show how our results presented in

Chapter IV extend to this generalized setting.

In Section 6.1 we recall some definitions and provide a brief survey of the gen-

eralized density function. In Section 6.2 some useful results are derived. In Section

6.3, we recall the definitions of “matroid extensions” from matroid theory. This will

be used in Section 6.4 to show our main result.

6.1. Background

A real-valued function f on the power set of a set E is said to be submodular if and

only if for all X, Y ⊆ E,

f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ).

If we have

f(X ∪ Y ) + f(X ∩ Y ) ≥ f(X) + f(Y ),

then f is said to be supermodular. For the purpose of this chapter, we assume that

all submodular functions used in this chapter take non-zero values on all non-empty

sets. The rank function of a loopless matroid is an example of such a submodular

function.

Throughout this chapter, we assume that the set E is non-empty. A submodular
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function f on the power set of a set E is a polymatroid function if and only if it takes

the value zero on φ and is non-negative and increasing, i.e., f(A) ≤ f(B) if A ⊆

B. We call an integer-valued polymatroid function an integer polymatroid function.

Edmonds and Rota [20] showed that if f is an integer polymatroid function, then f

induces a matroid on E whose rank function is rf(X) := min{f(Y )+|X−Y | : Y ⊆ X}

for X ⊆ E. See [64, Chapter 12] for a proof of this result. On the other hand, the

rank function of a matroid is an integer polymatroid function whose values do not

exceed the value one for any singleton set. If f is a rank function of a matroid, then

rf = f . Thus, an integer polymatroid function can be regarded as a generalization of

a matroid rank function. There are a number of instances where integer polymatroid

functions are found in the field of graph theory. We refer the readers to [64, Chapter

12] and [58, Chapter 9] for some examples and also for the study of submodular

functions in this context.

The following definition of “density” with respect to two submodular functions

is given by Narayanan [57], [58]. Let f1 and f2 be two positive-valued submodular

functions defined on the subsets of a set E. Let F = {f1, f2}. The density of

X ⊆ E(X 6= φ) with respect to F is the ratio

dF(X) =
f2(E) − f2(E − X)

f1(X) − f1(φ)
.

The set E is said to be balanced with respect to F if and only if E has the highest

density among all its subsets. If f1 is the rank function of a matroid on E and if

f2 is the cardinality function defined for all subsets of E, then the definition of dF

coincides with that of the density function d1.

Since f2 is submodular, the numerator of dF(X), namely f2(E)−f2(E−X), is less

than or equal to f2(X). Thus, if the value of dF(X) is high, then f2(X)/f1(X) is also

high. We conclude that the density function dF gives useful information about the
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relative value of f2(X) with respect to f1(X). In some cases, these relative values have

special meanings. For instance, if f1 is the rank function of a graph G and f2 is the

cardinality function defined on the edge sets of G, then the sets of the highest density

dF (or, d1) correspond to the subgraphs where we can pack the largest (fractional)

number of edge-disjoint forests.

Density for a pair of submodular functions has been studied in a different setting

through a concept called “principal partitions”. The subject of principal partitions

began with the study of graphs by Kishi and Kajitani [48], continued with matroids

by Bruno and Weinberg [5], Tomizawa [82] and Narayanan [57], and was subsequently

generalized to a pair of polymatriod functions by Iri [42]. The literature of the study

of principal partitions is large. We refer the readers to [58, Chapter 10] and [24,

Chapter IV, Section 7] for detailed treatments of the subject.

Let f1 and f2 be submodular functions on the subsets of a set E. The collection

of all sets which minimize λf1(X)+f2(E−X) over subsets of E, for any possible value

of λ ≥ 0, is called the principal partition of {f1, f2}. In [58], the function f2 is chosen

to be strictly increasing in order to achieve a nice containment relation between the

subsets that form the principal partition. The number λ0 is said to be a critical value

of {f1, f2} if there is more than one subset that minimizes λ0f2(X) + f1(E − X). It

is shown in [58] that E is balanced with respect to {f1, f2} if and only if the number

of critical values of {f1, f2} is one and is equal to f2(E)/f1(E).

For integers m, n with m ≥ n, the question of whether there is a 1-balanced

matroid on a set of m elements such that the rank of the whole matroid is n, is a

trivial one. The matroid Un,m, the uniform matroid of rank n on a m-element set, is

an example of a 1-balanced matroid with density m
n

.

In this chapter, we show that for any two positive numbers m, n, and a finite set

E such that m ≤ |E| and n ≤ |E|, there exist two matroids on E with rank function
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ρ1 and ρ2 such that ρ1(E) = n and ρ2(E) = m and if F = {ρ1, ρ2}, then E is balanced

with respect to F . This result is similar to Corollary IV.5 and the connection between

these two results is discussed in the last section of this chapter. Since we deal with

rank functions of matroids, some matroidal notations and concepts are recalled in

Section 6.3.

6.2. Lemmas

Let f be a function on the set E and let the function t be defined as t(X) := f(E−X)

for all X ∈ E. Then, we have

Lemma VI.1. The function f is submodular if and only if t is submodular.

Proof. Suppose f is submodular. Let X1, X2 ⊆ E. Then

E − (X1 ∪ X2) = (E − X1) ∩ (E − X2)

and

E − (X1 ∩ X2) = (E − X1) ∪ (E − X2).

By the submodularity of f , we have

f
(
(E − X1) ∩ (E − X2)

)
+ f

(
(E − X1) ∪ (E − X2)

)
≤ f(E − X1) + f(E − X2).

Therefore,

t(X1 ∪ X2) + t(X1 ∪ X2) = f
(
E − (X1 ∪ X2)

)
+ f

(
E − (X1 ∩ X2)

)

= f
(
(E − X1) ∩ (E − X2)

)
+ f

(
(E − X1) ∪

(
E − X2)

)

≤ f(E − X1) + f(E − X2)

= t(X1) + t(X2).

Thus t is submodular. The sufficiency of the theorem is proved by interchanging the
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roles of f and t in the proof for necessity.

Let f1, f2 be two polymatroid functions defined on a set E. Let F = {f1, f2}.

The denominator of dF(X) is f1(X) since f1(φ) = 0. For convenience, we denote the

numerator of dF(X) as h2(X) throughout the chapter, i.e., h2(X) = f2(E) − f2(E −

X). Thus dF(X) = h2(X)/f1(X). Note that h2(X) is a supermodular function since

by Lemma VI.1, it is clear that f2(E − X) is a submodular function.

Let

γF(E) = max
X⊆E

dF(X).

We call a set X ⊆ E a γF(E)-achieving set if dF(X) = γF(E).

Lemma VI.2. Let F = {f1, f2} be a set of two polymatroid functions on a set E. Let

X1, X2 be two non-empty γF(E)-achieving sets. Then X1 ∪ X2 is a γF(E)-achieving

set and if X1 ∩ X2 6= φ, then X1 ∩ X2 is also a γF(E)-achieving set.

Proof. Since X1 and X2 are γF(E)-achieving, we have

h2(X1)

f1(X1)
= γF(E) =

h2(X2)

f1(X2)
. (6.1)

Since h2 is supermodular and f1 is submodular, we have

h2(X1 ∪ X2) + h2(X1 ∩ X2) ≥ h2(X1) + h2(X2)

and

f1(X1 ∪ X2) + f1(X1 ∩ X2) ≤ f1(X1) + f1(X2).

Thus,

h2(X1 ∪ X2) + h2(X1 ∩ X2)

f1(X1 ∪ X2) + f1(X1 ∩ X2)
≥

h2(X1) + h2(X2)

f1(X1) + f1(X2)
. (6.2)
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Using Lemma I.8 on the right-hand side of (6.2) and then using (6.1), we have

h2(X1 ∪ X2) + h2(X1 ∩ X2)

f1(X1 ∪ X2) + f1(X1 ∩ X2)
≥

h2(X1) + h2(X2)

f1(X1) + f1(X2)

≥ min

{
h2(X1)

f1(X1)
,
h2(X2)

f1(X2)

}

= γF(E). (6.3)

Now, if X1 ∩ X2 = φ, we have h2(X1 ∩ X2) = 0 = f1(X1 ∩ X2) and so by (6.3) we

have

dF(X1 ∪ X2) =
h2(X1 ∪ X2)

f1(X1 ∪ X2)
≥ γF(E).

But dF(X1 ∪ X2) ≤ γF(E) and therefore dF(X1 ∪ X2) = γF(E), i.e., X1 ∪ X2 is

γF(E)-achieving.

Suppose X1 ∩ X2 6= φ. Applying Lemma I.8 on the left-hand side of (6.3), we

have

max

{
h2(X1 ∪ X2)

f1(X1 ∪ X2)
,
h2(X1 ∩ X2)

f1(X1 ∩ X2)

}
≥

h2(X1 ∪ X2) + h2(X1 ∩ X2)

f1(X1 ∪ X2) + f1(X1 ∩ X2)

≥ γF(E). (6.4)

But

h2(X1 ∪ X2)

f1(X1 ∪ X2)
≤ γF(E)

and

h2(X1 ∩ X2)

f1(X1 ∩ X2)
≤ γF(E).

Thus, we have

γF(E) ≥ max

{
h2(X1 ∪ X2)

f1(X1 ∪ X2)
,
h2(X1 ∩ X2)

f1(X1 ∩ X2)

}
≥ γF(E)
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by (6.4). But the above condition holds if only if

max

{
h2(X1 ∪ X2)

f1(X1 ∪ X2)
,
h2(X1 ∩ X2)

f1(X1 ∩ X2)

}
= γF(E)

and

h2(X1 ∪ X2)

f1(X1 ∪ X2)
= γF(E) =

h2(X1 ∩ X2)

f1(X1 ∩ X2)

by Lemma I.8. Thus X1 ∪ X2 and X1 ∩ X2 are γF(E)-achieving.

As an important consequence of Lemma VI.2, we note that there is a unique

maximal γF(E)-achieving set. This fact will be used frequently in the chapter.

Lemma VI.3. Let F = {ρ1, ρ2} be a set of two rank functions on a set E. If F0 is

the maximal γF(E)-achieving subset of E, then F0 is a flat in the matroid induced by

ρ1 on E.

Proof. Let Cl1 denote the closure function of the matroid induced by ρ1 on E. By

(CL1), F0 ⊆ Cl1(F0). Since ρ2 is increasing and E − Cl1(F0) ⊆ E − F0, we have

ρ2(E − F0) ≥ ρ2(E − Cl1(F0)).

Also, ρ1(F0) = ρ1(Cl1(F0)). Therefore, we have

γF(E) = dF(F0)

=
ρ2(E) − ρ2(E − F0)

ρ1(F0)

≤
ρ2(E) − ρ2(E − Cl1(F0))

ρ1(Cl1(F0))

= dF(Cl1(F0))

≤ γF(E).

Thus the above inequality is an equality and since there is only one maximal γF(E)-

achieving subset of E, we have F0 = Cl1(F0), i.e., F0 is closed with respect to ρ1.
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Let f be a real-valued function defined on the subsets of a non-empty set E.

Given X ⊆ E, we denote by fE/X the function f(X ∪ Y )− f(X) for all Y ⊆ E −X,

and call fE/X the contraction of f to E − X.

Lemma VI.4. Let F = {f1, f2} be a set of two polymatroid functions on a set E, such

that E is not balanced with respect to F and let F0 be the maximal γF(E)-achieving

subset of E. Let FE/F0 := {f
E/F0

1 , f
E/F0

2 }. If F ⊆ E − F0 is a non-empty set, then

dFE/F0 (F ) < γF(E).

Proof. Since F0 is the maximal γF(E)-achieving set and since F0 ∪ F is a subset of

E strictly containing F0, we have

dF(F0 ∪ F ) < γF(E). (6.5)

On the other hand, by the definition of contraction, we have

h2(F0 ∪ F ) = h2(F0) + h
E/F0

2 (F )

and

f1(F0 ∪ F ) = f1(F0) + f
E/F0

1 (F ).

Thus,

dF(F0 ∪ F ) =
h2(F0 ∪ F )

f1(F0 ∪ F )

=
h2(F0) + h

E/F0

2 (F )

f1(F0) + f
E/F0

1 (F )

≥ min

{
h2(F0)

f1(F0)
,
h

E/F0

2 (F )

f
E/F0

1 (F )

}

by Lemma I.8.

But

h2(F0)

f1(F0)
= dF(F0) = γF(E)
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and

h
E/F0

2 (F )

f
E/F0

1 (F )
= dFE/F0 (F ).

Hence,

dF(F0 ∪ F ) ≥ min{γF(E), dFE/F0(F )}. (6.6)

Now, if dFE/F0(F ) ≥ γF(E), then by (6.6), we have dF(F0 ∪ F ) ≥ γF(E), a contra-

diction to (6.5). Hence dFE/F0 (F ) < γF(E).

6.3. Matroid extensions

We refer the readers to Section 1.1.1 for the matroidal terms that appear in this

section.

Let M be a matroid on the set E with rank function ρ. If M is obtained from a

matroid N by deleting a non-empty subset T of E(N), then N is called an extension

of M . In particular, if |T | = 1, then N is a single-element extension of M . Crapo

[14] characterized all single-element extensions of a matroid.

The following Lemma is proved in the literature; see [64, Page 35] for example.

Lemma VI.5. If X and Y are two flats of a matroid M , then X ∩ Y is a flat.

A pair of flats (X, Y ) is a modular pair of flats if

ρ(X) + ρ(Y ) = ρ(X ∪ Y ) + ρ(X ∩ Y ).

An arbitrary set C of flats of a matroid M is called a modular cut if it satisfies the

following:

(1) If F ∈ C and F ′ is a flat of M containing F , then F ′ ∈ C.

(2) If F1, F2 ∈ C and (F1, F2) is a modular pair, then F1 ∩ F2 ∈ C.
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A trivial example of a modular cut in a matroid M is the set of all flats that

contain all the elements of F , for a fixed F ⊆ E. (This type of collection satisfies (1)

clearly and (2) follows by Lemma VI.5.)

We now provide a non-trivial example of a modular cut that is used in the next

section.

Lemma VI.6. Let M be a matroid on a set E and let e, f ∈ E. Let C be the set of

all flats F of M such that either {e, f} ⊆ F or {e, f} ⊆ E − F but f ∈ Cl(F ∪ {e})

(equivalently, by (CL4), e ∈ Cl(F ∪ {f})). Then, C is a modular cut of M .

Proof. (1) Let F ∈ C and let F ′ be a flat in M containing F . If {e, f} ⊆ F , then

since F ⊆ F ′, we have {e, f} ⊆ F ′. Therefore F ′ ∈ C. Suppose {e, f} ⊆ E − F

but f ∈ Cl(F ∪ {e}). If {e, f} ⊆ F ′, then F ∈ C. Hence, we may assume that

{e, f} 6⊆ F ′. If e ∈ F ′, then by (CL2) and (CL3), since F ∪ {e} ⊆ F ′, we have

Cl(F∪{e}) ⊆ Cl(F ′) = F ′. But f ∈ Cl(F∪{e}) and thus f ∈ F ′, a contradiction

since {e, f} 6⊆ F ′. Thus e 6∈ F ′. By a similar (symmetric) argument, we conclude

that f 6∈ F ′. Thus {e, f} ⊆ E−F ′. By (CL2), we have Cl(F∪{e}) ⊆ Cl(F ′∪{e}).

Since f ∈ Cl(F ∪ {e}), we see that f ∈ Cl(F ′ ∪ {e}) and therefore F ′ ∈ C.

(2) Let F1, F2 ∈ C such that (F1, F2) is a modular pair. Then by Theorem VI.5, F1∩F2

is a flat. If for each i = 1, 2, we have {e, f} ⊆ Fi, then {e, f} ⊆ F1 ∩ F2 and

therefore F1 ∩ F2 ∈ C. Thus, we assume without loss of generality that {e, f} ⊆

E−F1. Then, {e, f} ⊆ E−(F1∩F2). Since F1 ∈ C, we have f ∈ Cl(F1∪{e}). To

show f ∈ Cl
(
(F1∩F2)∪{e}), we show that ρ

(
(F1∩F2)∪{e, f}) = ρ(F1∩F2)+1.

We have two cases:
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(2.1) If {e, f} ⊆ F2, then (F1 ∩ F2) ∪ {e, f} = (F1 ∪ {e, f}) ∩ F2. But,

ρ
(
(F1 ∪ {e, f}) ∩ F2

)
+ ρ

(
(F1 ∪ {e, f}) ∪ F2

)

≤ ρ
(
F1 ∪ {e, f}

)
+ ρ(F2),

since ρ is submodular,

= ρ(F1) + 1 + ρ(F2),

since ρ(F1 ∪ {e, f}) = ρ(F1) + 1,

= ρ(F1 ∩ F2) + 1 + ρ(F1 ∪ F2),

since (F1, F2) is a modular pair.

Also, (F1 ∪ {e, f}) ∪ F2 = F1 ∪ F2. Thus the above inequality is in fact an

equality. Therefore, ρ
(
(F1 ∩ F2) ∪ {e, f}

)
= ρ(F1 ∩ F2) + 1.

(2.2) If {e, f} ⊆ E − F2, then (F1 ∩ F2) ∪ {e, f} = (F1 ∪ {e, f}) ∩ (F2 ∪ {e, f}).

By a similar reasoning as the above case, we have

ρ
(
(F1 ∪ {e, f}) ∩ (F2 ∪ {e, f})

)
+ ρ

(
(F1 ∪ {e, f}) ∪ (F2 ∪ {e, f})

)

≤ ρ
(
F1 ∪ {e, f}

)
+ ρ

(
F2 ∪ {e, f}

)

= ρ(F1) + 1 + ρ(F2) + 1

= ρ(F1 ∩ F2) + 1 + ρ(F1 ∪ F2) + 1

= ρ(F1 ∩ F2) + 1 + ρ
(
(F1 ∪ F2) ∪ {e, f})

)
,

since F1 ∪ F2 ∈ C and {e, f} ⊆ E − (F1 ∪ F2). Also, (F1 ∪ {e, f}) ∪ (F2 ∪

{e, f}) = (F1∪F2)∪{e, f}). Thus the above inequality is in fact an equality.

Thus ρ
(
(F1 ∩ F2) ∪ {e, f}

)
= ρ(F1 ∩ F2) + 1.

The lemma follows from (1) and (2).

Notation: For a matroid M , we denote the rank function of a matroid as ρM
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and the closure function as ClM .

If M is a matroid on a set E, all the possible single-element extensions of M via

addition of a new element e′ to E is described by the following result by Crapo [14].

Theorem VI.7 (Crapo [14]). Let C be a modular cut of a matroid M on a set E.

Then there is a unique single-element extension N of M on E ∪ {e′} such that C

consists of those flats F of M for which F ∪ {e′} is a flat of N having the same rank

as F . Moreover, for all subsets X of E,

ρN (X) = ρM(X) and

ρN (X ∪ {e′}) =






ρM(X), if ClM(X) ∈ C,

ρM(X) + 1, if ClM(X) 6∈ C.
(6.7)

Notation: The matroid N of the above theorem is denoted as M +C e′ and if C

is understood from context, we denote N simply by M + e′.

The following was also observed by Crapo [14]. (See [64, Page 255] for a proof.)

Corollary VI.8. If M is a matroid and C is a modular cut in M , then ρ(M +C e′) =

ρ(M) if and only if C 6= φ.

6.4. Transforming a set into a balanced set with respect to two matroid

rank functions

This section has our main result, namely, for any given positive integers, m and n, we

show the existence of two rank functions on a non-empty set E such that m ≤ |E|,

n ≤ |E| and E is balanced with respect to the functions with density m/n. The

method we use to prove this result is to take any two rank functions ρ1, ρ2 on the

set E and transform them into a new pair of rank functions so that E is balanced

with respect to the new pair if E is not balanced with respect to ρ1, ρ2. Thus, this
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is a generalization of our main result in Chapter IV. The following theorem is a

generalization of Theorem IV.4. Let e′ be a new element not in E.

Theorem VI.9. Let F = {ρ1, ρ2} be a set of two rank functions of two matroids on a

set E such that E is not balanced with respect to F . Then, there exists F ′ = {ρ′
1, ρ

′
2}

whose elements are rank functions of matroids on the set E ′ = (E ∪ {e′}) − {e}, for

some e ∈ E and e′ 6∈ E such that

1. ρ′
i(E

′) = ρi(E) for i = 1, 2, and

2. γF ′(E ′) ≤ γF(E). Further, if γF ′(E ′) = γF(E), then the maximal γF ′-achieving

subset of E ′ is properly contained in the maximal γF-achieving subset of E.

Proof. Let M1 and M2 be the matroids induced by ρ1 and ρ2 respectively. We denote

ClMi
simply as Cli. Let F0 be the maximal γF -achieving set of E. By Lemma VI.3,

F0 is a flat in M1. Since E is not balanced with respect to F , we have F0 6= E. Let

e ∈ F0 and f 6∈ F0.

Let C1 be the set of all flats F in M1 such that either {e, f} ⊆ F or {e, f} ⊆ E−F

but ρ1(F ∪ {e, f}) = ρ1(F ) + 1 and let C2 be the set of all flats in M2 that contain e.

By Lemma VI.6 and the discussion preceding it, we see that C1 is a modular cut in M1

and C2 is a modular cut in M2. Note that if F ⊆ F0, then ρ1(F ∪ {e, f}) > ρ1(F ) + 1

since f 6∈ F0 and F0 is a flat in M1. Thus Cl1(F ) 6∈ C1. This fact is used later in the

proof.

Let i ∈ {1, 2}. By Theorem VI.7, Mi + e′ is a matroid on E + e′. Let ρ′
i be the

rank function of Mi + e′. Then, for X ⊆ E, we have

ρ′
i(X) = ρi(X), (6.8)
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and

ρ′
i(X ∪ {e′}) =






ρi(X), if Cli(X) ∈ Ci,

ρi(X) + 1, if Cli(X) 6∈ Ci.
(6.9)

Consider the matroid Mi + e′ − e, which is obtained from Mi + e′ by deleting the

element e. The rank function of Mi + e′ − e is also ρ′
i. Notice that M1 + e′ − e is

isomorphic to M1 with e′ corresponding to e.

Let i ∈ {1, 2}. By Corollary VI.8,

ρ′
i(E ∪ {e′}) = ρ′

i(E). (6.10)

Thus e ∈ ClMi+e′−e(E ∪ {e′}) and therefore

ρ′
i(E ∪ {e′} − {e}) = ρ′

i(E ∪ {e′}). (6.11)

By (6.10) and (6.11), we have

ρ′
i(E ∪ {e′} − {e}) = ρ′

i(E). (6.12)

To prove the theorem, we prove:

(I) If F ⊆ E ′, then dF ′(F ) ≤ γF(E) with equality only if F ⊆ E and F is a

γF(E)-achieving subset of E.

If we show (I), then either γF ′(E ′) < γF(E) or γF ′(E ′) = γF(E), and if the latter

holds then the maximal γF ′(E ′)-achieving set is strictly contained in the maximal

γF(E)-achieving set since e′ is not contained in the maximal γF ′(E ′)-achieving set.

Hence the theorem follows.

Now, we prove (I). Let F ⊆ E ′. By (6.12), we have ρ′
2(E ′) = ρ2(E), so

dF ′(F ) =
ρ′

2(E ′) − ρ′
2(E ′ − F )

ρ′
1(F )

=
ρ2(E) − ρ′

2(E ′ − F )

ρ′
1(F )

. (6.13)
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We have two cases to consider:

Case (1): Suppose e′ 6∈ F . Then by the definition of ρ′
1, we have

ρ′
1(F ) = ρ1(F ). (6.14)

Also, since e′ ∈ E ′ − F and E ′ − F =
(
E − (F ∪ {e})

)
∪ {e′}, by the definition of ρ′

2

we have

ρ′
2(E ′ − F ) =






ρ2

(
E − (F ∪ {e})

)
, if e ∈ Cl2

(
E − (F ∪ {e})

)
,

ρ2

(
E − (F ∪ {e})

)
+ 1, if e 6∈ Cl2

(
E − (F ∪ {e})

)
.

If e ∈ Cl2
(
E − (F ∪ {e})

)
, then Cl2

(
E − (F ∪ {e})

)
= Cl2(E − F ) and thus

ρ2

(
E − (F ∪ {e})

)
= ρ2(E − F ). If e 6∈ Cl2

(
E − (F ∪ {e})

)
, then ρ2(E − F ) =

ρ2

(
E − (F ∪ {e})

)
+ 1 and therefore, ρ′

2(E ′ − F ) = ρ2(E − F ). Thus,

ρ′
2(E ′ − F ) = ρ2(E − F ). (6.15)

Substituting (6.14) and (6.15) in (6.13), we get

dF ′(F ) =
ρ2(E) − ρ′

2(E ′ − F )

ρ′
1(F )

=
ρ2(E) − ρ2(E − F )

ρ1(F )
= dF(F ).

Therefore,

dF ′(F ) ≤ γF(F ),

with equality only if F is a γ-achieving subset in E.

Case (2): Suppose e′ ∈ F , then since E ′ − F = E − (F ∪ {e} − {e′}) and

e′ 6∈ E ′ − F , we have

ρ′
2(E

′ − F ) = ρ2

(
E − (F ∪ {e} − {e′})

)
. (6.16)

Subcase (2.1): Suppose Cl1(F ) 6∈ C1. Using the definition of ρ′
1 and then using
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the submodularity of ρ1, we have

ρ′
1(F ) = ρ1(F − {e′}) + 1 ≥ ρ1(F ∪ {f} − {e′}). (6.17)

Also, since E − (F ∪ {e, f} − {e′}) ⊂ E − (F ∪ {e} − {e′}), we have

ρ2

(
E − (F ∪ {e} − {e′})

)
≥ ρ2

(
E − (F ∪ {e, f} − {e′})

)
. (6.18)

By (6.16) and (6.18), we get

ρ′
2(E

′ − F ) ≥ ρ2

(
E − (F ∪ {e, f} − {e′})

)
. (6.19)

Using (6.19) and (6.17) in (6.13), we have

dF ′(F ) =
ρ2(E) − ρ′

2(E ′ − F )

ρ′
1(F )

≤
ρ2(E) − ρ2

(
E − (F ∪ {e, f} − {e′})

)

ρ1(F ∪ {f} − {e′})

=
h2(F ∪ {e, f} − {e′})

ρ1(F ∪ {f} − {e′})
, (6.20)

where h2(X) denotes ρ2(E) − ρ2(E − X). Let F1 := (F ∪ {f} − {e′}) − F0. Since

f 6∈ F0, we have F1 6= φ. Since h2 is supermodular and ρ1 is submodular, we have

h2(F ∪ {e, f} − {e′}) ≤ h2

(
F0 ∪ (F ∪ {e, f} − {e′})

)
− h2(F0)

= h2(F0 ∪ F1) − h2(F0)

= h
E/F0

2 (F1), (6.21)

and

ρ1(F ∪ {f} − {e′}) ≥ ρ1

(
F0 ∪ (F ∪ {f} − {e′})

)
− ρ1(F0)

= ρ1(F0 ∪ F1) − ρ1(F0)

= ρ
E/F0

1 (F1). (6.22)
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Substituting (6.21) and (6.22) in (6.20) and then using Lemma VI.4, we have

dF ′(F ) ≤
h

E/F0

2 (F1)

ρ
E/F0

1 (F1)
= dFE/F0 (F1) < γF(E). (6.23)

Subcase (2.2): Suppose Cl1(F ) ∈ C1. As noted before, F 6⊆ F0. Thus, F2 :=

(F − {e′}) − F0 6= φ. By the definition of ρ′
1, we have

ρ′
1(F ) = ρ1(F − {e′}). (6.24)

Substituting (6.16) and (6.24) in (6.13),

dF ′(F ) =
ρ2(E) − ρ′

2(E ′ − F )

ρ′
1(F )

≤
ρ2(E) − ρ2

(
E − (F ∪ {e} − {e′})

)

ρ1(F − {e′})

=
h2(F ∪ {e} − {e′})

ρ1(F − {e′})
. (6.25)

Since h2 is supermodular and f1 is submodular, we have

h2(F ∪ {e} − {e′}) ≤ h2

(
F0 ∪ (F ∪ {e} − {e′})

)
− h2(F0)

= h2(F0 ∪ F2) − h2(F0)

= h
E/F0

2 (F2), (6.26)

and

ρ1(F ∪ {e} − {e′}) ≥ ρ1

(
F0 ∪ (F ∪ {e} − {e′})

)
− ρ1(F0)

= ρ1(F0 ∪ F2) − ρ1(F0)

= ρ
E/F0

1 (F2). (6.27)

Using (6.26) and (6.27) in (6.25), and then using Lemma VI.4, we get

dF ′(F ) ≤
h

E/F0

2 (F2)

ρ
E/F0

1 (F2)
= dFE/F0 (F2) < γF(E). (6.28)

Thus, (I) is true and the theorem follows.
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Corollary VI.10. Let m, n be two positive integers and let E be a non-empty set

such that |E| ≥ m and |E| ≥ n. Then, there exists two matroid rank functions ρ1 and

ρ2, such that ρ1(E) = n and ρ2(E) = m and E is balanced with respect to {ρ1, ρ2}.

Proof. Let ρ1 and ρ2 be the rank functions of the matroids, Un,|E| and Um,|E| re-

spectively, defined on the set E. If E is balanced with respect to {ρ1, ρ2}, we are

done. Otherwise, we apply Theorem VI.9 repeatedly, replacing ρi by ρ′
i after each

application, until E is balanced.

6.5. Application to graphic matroids

We saw earlier (when we defined dF) that dF is a direct extension of the function

d1(M), where M is a matroid. Theorem VI.9 can easily be adapted to the case when

ρ2 is the cardinality function defined on the power set of E. In this case, the function

ρ′
2 turns out to be the cardinality function defined on the power set of E ′. Thus,

repeated application of the theorem proves the existence of 1-balanced matroid on a

given number of elements with any given rank. If G is a graph, one may notice that

the Theorem VI.9 is a natural extension of Theorem IV.4.

If a matroid M is a cycle matroid of a graph, then M is called a graphic matroid.

Restating Theorem IV.4 in terms of rank functions, Theorem IV.4 shows that if ρ2

is the cardinality function and ρ1 is a rank function of a cycle matroid on a non-

empty set E, then ρ′
2 and ρ′

1 can be chosen as a cardinality function and a rank

function of a cycle matroid, respectively, of another set E ′ with E = E ′. On close

examination, we can notice that Theorem VI.9 is an extension of Theorem IV.4.

However, Theorem IV.4 cannot be derived from Theorem VI.9 since a matroid has

to satisfy some conditions in order to be graphic.
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CHAPTER VII

SUMMARY AND FUTURE WORK

(r, s)-balanced graphs for various different values of r and s have been found in

many places in the literature; balanced graphs, Laman graphs, (k, l)-sparse graphs,

1-balanced graphs are some them. The dissertation is a collective study of these

graphs with natural extensions to matroids.

In Chapters II and III, we provided constructions of large balanced and 1-

balanced graphs. These graph constructions are generalizations of the Cartesian

product of two graphs. An algorithmic method of transforming any given graph to a

1-balanced graph is presented in Chapter IV. In Chapter VI, this result is extended

to a density defined on a set by a pair of rank functions.

Our study of (r, s)-balanced graphs and matroids appears in Chapter V. The

study consisted of proving the existence of (r, s)-balanced graphs for various values

of r and s. The examples are constructed from Laman graphs of different dimen-

sions. The study of (r, s)-balanced graphs is extended naturally to matroids and

some relations between different classes of (r, s)-balanced matroids are shown. A nice

connection between (r, s)-balanced graphs and some vulnerability measures similar

to edge-connectivity is established. For 0 ≤ r < 1, we found a nice characterization

of r-balanced matroids using matroid duals, which also gave some useful algorithms

to decide if a given matroid is r-balanced. These algorithms are presented at the end

of Chapter V.

There are a number of directions to continue our study of (r, s)-balanced graphs.

These directions include proving the existence of (r, s)-balanced graphs (some ques-

tions are mentioned in Chapter V), finding algorithms to identify (r, s)-balanced

graphs.
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Another interesting set of questions originate from Theorem VI.9. Suppose in

Theorem VI.9, we restrict each of ρ1 and ρ2 to be a rank function of certain partic-

ular type of matroid on E, say, for example a graphic matroid, a uniform matroid,

a transversal matroid, etc. It would be worthwhile to derive results as similar to

Theorem VI.9, but with the restriction that ρ′
i is also of the same type as that of

ρi for i = 1, 2. Theorem IV.4 is one such result where ρ1 is the rank function of a

graphic matroid and ρ2 is the rank function of a uniform matroid.
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