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Área de investigación:
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La part de l’imagination

dans le travail scientifique

est la même que dans le

travail du peintre ou de

ľ’evrivain. Elle consiste à

découper le réel, et à

recombiner les morceaux

pour créer quelque chose

de neuf.

François Jacob, 1981.

[The part played by the

imagination in scientific

work is the same as in the

work of the painter or the

writer. It consists of cutting

up reality, and recombining

the pieces to create

something new.]
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Resumen

En este trabajo se propone la teoŕıa de propagadores empleando el método del orbital nu-

clear molecular para cualquier tipo de part́ıcula (APMO/PT). Esta metodoloǵıa es una

extensión de la teoŕıa del propagador electrónico para estudiar sistemas con más de un tipo

de especie cuántica, desarrollada e implementada en su versión diagonal en el programa de

qúımica cuántica LOWDIN. La metodoloǵıa fue aplicada para estudiar efectos cuánticos

nucleares en potenciales de ionización electrónicos y enerǵıas de enlace de protones en un

conjunto de átomos y moléculas de prueba. Los resultados obtenidos demuestran que el

nuevo método ofrece una descripción apropiada de los efectos isotópicos en potenciales de

ionización electrónicos y predicciones precisas de enerǵıas de enlace de protones, afinidades

protónicas y enerǵıas de solvatación de protones en sistemas moleculares.

Palabras clave: Funciones de Green, propagador, orbital molecular, orbital molecular

para cualquier part́ıcula, enerǵıa de enlace, autoenerǵıa.

Abstract

In this work we propose a propagator theory using the any particle molecular orbital approach

(APMO/PT). This theory is an extension of the electron propagator theory developed to

study more than one type of particles (quantum species) that has been implemented in the

LOWDIN quantum chemistry software. Our method was applied to study nuclear quantum

effects on electron and proton binding energies in a set of atoms and representative molecules.

Our results show that this new method can properly describe isotope effects on electronic

ionization potentials and predict proton binding energies as well as related properties such

as proton affinities and proton solvations energies in molecular systems.

Keywords: Green’s function, propagator, molecular orbital, any particle molecular

orbital approach, binding energy, self-energy
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1 Introduction

Over the years, quantum chemistry methods have become important tools for predicting and

understanding chemical phenomena [1–3]. Several quantum chemical approaches have been

developed so far, with a wide range of applicability and efficiency. The success of a specific

approach depends on its ability to produce accurate predictions of the observable of interest

in plausible computational times, while keeping a connection with chemical concepts that

are common for the entire chemical community. In summary, quantum chemistry methods

should be accurate, efficient and chemically meaningful.

Unfortunately, achieving a good performance on any of these aspects usually involves aban-

doning the other two. Hartree-Fock (HF) calculations, which are the starting point for most

of the methods in quantum chemistry, establish the one particle energies as the basis for

the definition of reactivity indices and reactivity concepts. However HF lacks of correlation

effects and its accuracy is low. Highly correlated methods based on a wavefunction approach,

such as Coupled-Cluster (CC) or Configuration Interactions (CI), can achieve high accuracy

on energy calculations (>1 kcal/mol), but the one particle properties lose into the multicon-

figurational description of the wavefunction. Methods based on Density Functional Theory

(DFT), such as Kohn-Sham (KS) are probably the most popular and widely employed by

computational chemists and can provide better accuracy than HF. However, one particle

properties such as orbitals energies are poorly described by most of the functionals currently

available [4, 5].

A third set of methods are those based on propagators (also known as Green’s functions or

its equivalent formulation of equation of motion). The electron propagator theory (EPT)

has proven to be useful to compute electronic binding energies in molecules, offering an

excellent compromise between computational efficiency and accuracy, while keeping all the

concepts associated to orbitals [6–18]. The major achievement of EPT is to offer an accurate

description of one particle functions by introducing an energy dependent potential called the

self-energy, which can be sistematically improved. In EPT, equations that contain correlated,

one-electron operators resemble the Kohm-Sham equations of DFT and also are related to

the extended Koopmans’ theorem approach, offering connections with the reactivity indices

defined in conceptual DFT.

The success of EPT in the calculation of electron binding energies is a strong indication

of the potential of propagator method to predict binding energies for other particles of

chemical relevance, such as the H+, which plays a mayor role determining acidity. Similarly,

propagator theory could provide insights into the reactivity of molecular systems containing
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positrons and other exotic particles, which has arisen as a new research topic in chemistry

[19, 20]. To achieve these new challenges, the EPT developed so far has to be extended to

study a system containing more than one type of quantum species.

A natural way to develop an propagator method to treat several quantum species is to employ

an Any Particle Molecular Orbital (APMO) wavefunction [21]. In the APMO method, the

total wavefunction is expressed as a product of the wavefunctions of each quantum species

that are treated on the same footing of electrons in regular electronic structure calculations.

The APMO and its equivalent approaches (Nuclear Molecular Orbital and Nuclear Electron

Orbital Methods) have been previously employed to simultaneously study electronic and

nuclear wavefunctions as well as systems comprising exotic particles [21–33].

In this thesis we develop a generalized propagator method to calculate binding energies for

any type of particle in composite molecular systems, using an APMO/HF wavefunction as

reference state. Henceforth, we will call our extended propagator method as APMO/PT. The

outline of this thesis is: In chapter 2 we present a brief review of propagator methods for many

body systems and the EPT. We also introduce the APMO approach. In chapter 3 we present

the theoretical development of APMO/PT. In chapter 4 we describe the implementation of

APMO/PT in the quantum chemistry program LOWDIN, especially designed to calculate

APMO wavefunctions. In chapter 5 we present an assessment of the developed APMO/PT

approximations to determine its performace an accuracy stuying: 1) nuclear quantum effects

(NQE) in electron detachment processes and 2) proton detachment processes and its related

properties, such as proton binding energies (PBE), proton affinities (PA) and proton solvation

energies (PSE). In Section 6 we summarize and provide concluding remarks.



2 Theoretical Background

In this chapter we present a brief review of the quantum mechanics and quantum chemistry

principles and methods employed in this work. For a detailed description of the following

topics, we invite the reader to check references [6, 34].

2.1 Preliminary concepts

2.1.1 Second Quantization

The second quantization is a powerful formalism for quantum mechanics that allow us to

introduce the antisymmetry property of the wavefunction onto the algebraic properties of

operators. Operators in second quantization are defined in a Fock Space, which is a gene-

ralization of the Hilbert that contents the states of the system with all the possible number

of quantum particles. The basic operators in second quantization are the annihilation and

creation operators, āi and ā†i . For a system of fermions whose wavefunction is represented

as an Slater determinant (an antisymmetrized product of one particle wavefunctions), the

creation operator, ā†i is defined as:

ā†i |χkχl....χN〉 = |χiχkχl....χN〉 (2-1)

If the Slater determinant includes the spin-orbital i, the result of applying ā†i is zero:

ā†i |χiχkχl....χN〉 = 0 (2-2)

This results is a consequence of the Pauli exclusion principle, that prevents two fermions to

occupy the same spin-orbital. Similarly, the annihilation operator eliminates a spin–orbital

from the left, an only from the left, of an Slater determinant:

āi|χiχkχl....χN〉 = |χkχl....χN〉 (2-3)

If the spin-orbital is not in the appropriate position to be eliminated, it must be placed in

the left part of the Slater determinant by switching spin-orbitals accordingly, for example:

āi|χkχlχi....χN〉 = −āi|χkχiχl....χN〉 = āi|χiχkχl....χN〉 = |χkχl....χN〉 (2-4)



2.1 Preliminary concepts 5

The previous rule introduces the property of antisymmetry of the fermionic wavefunction.

Creation and annihilation operators satisfy three anticommutation relations that are conse-

quences of the properties listed above:

ā†i ā
†
j + ā†j ā

†
i = 0 = [ā†i , ā

†
j]+ (2-5)

āiāj + āj āi = 0 = [āi, āj]+ (2-6)

āiā
†
j + ā†j āi = δij = [āi, ā

†
j]+ (2-7)

Finally, we define the vacuum state |〉, which is a normalized state without particles:

〈|〉 = 1 (2-8)

Using the definition of vacuum state, any Slater determinant can be expressed in terms of

creation and annihilation operators. For example:

|χiχjχk...χN〉 = ā†i ā
†
j ā
†
k...ā

†
N |〉 (2-9)

The previous equation illustrates the equivalency between an expression written in first

quantization an one written in second quantization. For instance, one and two electron

operators, O1 and O2, employed to describe a system of N interacting electrons, are written

in the first quantization formalism as follows:

O1 =
N∑
i

h(i) where h(i) = −1

2
∇2 −

m∑
1

Za
ria

(2-10)

O2 =
1

2

N∑
i,j

1

rij
(2-11)

where ri and rij represents the electron coordinates and interelectron distances, respectively.

In the second quantized formalism, definitions 2-10 and 2-11 turn onto:

O1 =
∑
ij

〈i|h|j〉ā†i āj (2-12)

O2 =
1

2

∑
ijkl

〈ij|kl〉ā†i ā
†
j ālāk (2-13)

These definitions can be easily tested applying it to the corresponding Slater determinant

wavefunction Ψ0 of the system. It is important to note that interaction potentials (in this

case one and two electron integrals) appear explicitly in the definitions 2-12 and 2-13.
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2.1.2 Green’s Function

The Green’s function method is a procedure usually employed to solve inhomogenious di-

fferential equations subject to specific boundary conditions. It is extensively used in many-

body theory to gradually improve trial wavefunctions. The Green’s Function, G(x, x′), of a

hermitian linear differential operator, L̂ = L̂(x), is defined by the following relation:

L̂G(x, x′) = δ(x− x′) (2-14)

where the δ(x−x′) is the dirac delta funtion. To illustrate how the Green’s functions can help

to solve inhomogeneous differential equations, we can multiply equation 2-14 by a function

f(x′) and integrate both sides of the equality in function of x′ to obtain:∫
L̂G(x, x′)f(x′)dx′ =

∫
δ(x− x′)f(x′)dx = f(x) (2-15)

Given that L̂ depends only in x, we can write the left side of the equation as the operator

acting over a function u(x), defined as follows:∫
L̂G(x, x′)f(x′)dx′ = L̂

∫
G(x, x′)f(x′)dx′ = L̂u(x) (2-16)

and finally:

L̂u(x) = f(x) (2-17)

Then, if we already know f(x) in Eq.2-17 and we want to determine u(x), all we have to do

is to calculate the Green’s function associated to the operator L̂ and determine u(x) as:

u(x) =

∫
dx′G(x, x′)f(x′) (2-18)

Green’s function can be easily calculated if operator L̂ admits a complete set of eigenvalues

λn and eigenfunctions Ψn. In other words, if eigenvector and eigenfunctions of L̂ satisfy the

completeness relation:

δ(x− x′) =
∞∑
n=0

Ψ∗n(x)Ψn(x′) (2-19)

From equation 2-19 is clear that the Green’s function must have the form:

G(x, x′) =
∞∑
n=0

Ψ∗n(x)Ψn(x′)

λn
(2-20)

Now we consider the following inhomogeneous equation:

(E −H0)a(x) = b(x) (2-21)
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where E is a parameter, and a(x) and b(x) are unknown and known function, respectively.

The Green’s function associated to the operator (E −H0) is written in terms of the eigen-

functions (ψα) and eigenvalues (E − E(0)
α ) of (E −H0):

G(x, x′, E) =
∞∑
n

ψ∗α(x′)ψα(x)

E − E(0)
α

(2-22)

and the solution of a(x) is:

a(x) =

∫
dx′

∞∑
n

ψα(x)ψ∗α(x′)

E − E(0)
α

b(x′) (2-23)

Eq.2-21 can be also represented in a matrix form (Heisengerg representation):

(E1−H0)a = b (2-24)

From the previous equation and Eq.2-18 is easy to see that the Green’s function will be

equivalent to:

G0(E) = (E1−H0)−1 (2-25)

If E0
α are the eigenvectors of H0 and cαi the coefficients of the eigenfunctions, each element

of G0 can be determined as:

(G0)ij =
∑
α

cαi c
α∗
j

E − E0
α

(2-26)

Now, if we wish to solve Eq.2-21 for an operator H, that can be expressed as H = H0 + V,

the Green’s function, G, will be:

G(E) = (E1−H0 −V)−1 (2-27)

and is easy to show that G obeys the equation:

G(E) = G0(E) + G0(E)VG(E) (2-28)

The previous equation, called the equation of motion, establishes a mathematical procedure

to generate approximations for the Green’s function of the operator H given that we know the

Green’s of H0. In quantum mechanics, the previous procedure is applied to find approximate

solutions of the Schrödinger equation.

2.2 Propagators

2.2.1 Definition

A propagator is a function that ”propagates” the wavefunction through time, in other words,

that let us to calculate properties of the system at time t from our knowledge of the same
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system at a reference time, t′. In order to observe the relation between propagators and

Green’s function, we are going to follow a deduction proposed in reference [6]. We begin with

the expression of the time-dependent Schrödinger equation for a system of N noninterating

particles:

H0ψ(ν, t) = i
∂ψ(ν, t)

∂t
(2-29)

expanding the wave function in terms of an orthonormal basis:

ψ(ν, t) =
∑
r

ur(ν)ar(t) (2-30)

and replacing it in equation 2-29 we obtain:

i
∂as(t)

∂t
−
∑
r

hsrar(t) = 0 (2-31)

where:

hsr =

∫
u∗s(ν)H0(ν)us(ν)dν (2-32)

Now, if we take a unitary transformation of x that diagonalizes the h (x†hx = ε), the solution

of the equation 2-31 can be written as:

as(t) =
∑
k

xskexp[−iεk(t− t′)]

(∑
r

x†krar(t
′)

)
(2-33)

such that |ar(t′)|=1, and |as(t′)|2=0 for s 6= r. Then the quantity:

|as(t)|2 = |
∑
k

xskexp[−iεk(t− t′)x†kr]|
2 (2-34)

is the probability of a particle to be ”observed” in spin orbital s at time t, when it is known

to be in spin orbital r at time t′ with unit probability.

Now lets consider the probability of detecting a particle leaving the system from the s spin-

orbital in time t provided that a particle enters in spin-orbital r at time t′. An injected

electron has access only to unoccupied orbitals, and if it enters at time t′, it cannot be

observed leaving the system prior to that time, i.e, t > t′. Then, the associated probability

will be:

Psr(t, t
′) = 0 (t < t′) (2-35)

Psr(t, t
′) = |

∑
n

xsk(1− fk)exp[−iεk(t− t′)]x†rk|
2 (t > t′) (2-36)
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Where fk is the occupation number (equal to 1 if the spin orbital is occupied or 0 if it is

unoccupied). An electron could, of course, be observed leaving the system in spin orbital s

at time t < t′ provided it is one of the N electrons in the system. This probability is zero

for t > t′, given that the electron only can be released from an occupied spin-orbital. In this

case we have:

P̂sr(t, t
′) = 0 (t > t′) (2-37)

P̂sr(t, t
′) = |

∑
n

xsk(fk)exp[−iεk(t− t′)]x†rk|
2 (t < t′) (2-38)

Then, the probability amplitude of the total scattering process is equal to:

Gsr(t, t
′) = −iθ(t− t′)

∑
n

xsk(1− fk)exp[−iεk(t− t′)]x†rk (2-39)

+iθ(t′ − t)
∑
n

xsk(fk)exp[−iεk(t− t′)]x†rk

where θ(t) is the Heaviside step function. The total probability is given by |Gsr(t, t
′)|2. In

this form Gsr(t, t
′) has the information of the probability amplitude of the process in which

one particle leaves a spin-orbital s at time t provided a particle enters in the spin-orbital r

at time t′. This is the propagator of a system of N noninteracting particles. It is easy to

show that the propagator satisfies the following relation:

H0Gsr(t, t
′) = δsrδ(t− t′) (2-40)

According to the definition of Eq.2-15, this allow us to establish that the propagator is the

Green’s function of the time-dependent Schrödinger equation.

2.2.2 Propagators and second quantization

Evaluating the energy of the wavefunction enunciated in equation 2-29 we obtain the ex-

pression:∫
ψ†(ε, t)hψ(ε, t)dε =

∑
s,r

hsra
†
s(t)ar(t) (2-41)

which is similar to the definition of one electron operator in the second quantization formal-

ism (2-12), suggesting that as(t) and its conjugate (a†s(t)) are related with the annihilation

and creation operators. In fact, as(t) and a†s(t) can be seen as operators rather than functions,

and can be shown that it satisfies the anticommutation properties of creation and annihila-

tion (Eqs.2-6 and 2-8). Now we can apply the same transformation used in Equation 2-33

over 2-41, obtaining:∑
s,r

hsra
†
s(t)ar(t) =

∑
k

(∑
s

a†s(t)xsk

)
εk

(∑
s

x†krar(t)

)
=
∑
k

εkā
†
kāk. (2-42)



10 2 Theoretical Background

The ground state of the electron system (incluiding electron interaction) can be written using

the vacuum state as:

|0〉 = ā1ā2...āN |〉 (2-43)

Now evaluating the following integral, written in bracket notation and using second quanti-

zation properties:∑
k

〈0|εkā†kāk|0〉 =
∑
k

εk〈0|ā†kāk|0〉 =
∑
k

fkεk (2-44)

That clearly confirms that the Hamiltonian H0 can be expressed as:

H0 =
∑
k

εkā
†
kāk =

∑
s,r

hsra
†
s(t)ar(t) (2-45)

From this definition and Eq. 2-31 we obtain the value of the commutation between H0 and

as(t):

[H0, as(t)]− =
∑
r

hsrar(t) (2-46)

The Green’s function defined in equation 2-39 for a system of N electrons is written in the

second quantization notation as:

Gsr(t, t
′) ≡ 〈〈as(t); ar(t′)〉〉 = −iθ(t− t′)〈0|as(t)a†r(t′)|0〉+ iθ(t− t′)i〈0|a†r(t′)as(t)|0〉 (2-47)

where θ is the Heaviside function. This follows from the expression of as(t) in equation 2-33.

The double bracket notation was introduced by Zubarev [6] and let us to define the general

form of a double time Green’s function or propagator as:

〈〈A(t);B(t′)〉〉 = −iθ(t− t′)〈0|A(t)B(t′)|0〉+ iθ(t− t′)i〈0|B(t′)A(t)|0〉 (2-48)

Where A and B are fermion-like dynamical operators, which could, for instances, be formed

as sums of products of simple second quantization operators.

2.2.3 Propagator’s notation

Equation 2-48 can be transformed to the energy domain by using a Fourier transformation,

assuming that H has a complete set of eigenvalues and eigenventors (H|n〉 = E|n〉) and

using the completeness relation:

〈〈A;B〉〉(E) = lim
η→∞

∑
n

[
〈0|A|n〉〈n|B|0〉

E − (En − E0) + iη
± 〈0|B|n〉〈n|A|0〉
E − (En − E0) + iη

]
(2-49)
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Tha above equation is called the spectral or Lehmann representation of the propagator.

Now, we can rearrange equation 2-49 taking the limit when η → 0 and multiplying it by E:

E〈〈A;B〉〉(E) =
∑
n

[
E
〈0|A|n〉〈n|B|0〉
E − (En − E0)

+ E
〈0|B|n〉〈n|A|0〉
E − (En − E0)

]
(2-50)

=
∑
n

(
1 +

E0 − En
E − (E0 − En)

)
〈0|A|n〉〈n|B|0〉

+
∑
n

(
1 +

En − E0

E − (En − E0)

)
〈0|B|n〉〈n|A|0〉 (2-51)

=
∑
n

[〈0|A|n〉〈n|B|0〉 ± 〈0|B|n〉〈n|A|0〉]

+

[∑
n

〈0|[A,H]−|n〉〈n|B|0〉
E − (En − E0)

+
∑
n

〈0|B|n〉〈n|[A,H]−|0〉
E − (E0 − En)

]
(2-52)

Notice that the last term in the above equation is the propagator of [A,H]− and B operators.

Then we can rewrite the above expression as:

E〈〈A;B〉〉 = 〈0|[A;B]±|0〉+ 〈〈[A,H]−;B〉〉E (2-53)

= 〈0|[A;B]±|0〉+ 〈〈A; [H,B]−〉〉E

This corresponds to a form of the equation of motion. Now it is possible to expand the above

equation following the same procedure, which leads to the expression:

〈〈A;B〉〉 =E−1〈0|[A;B]±|0〉+ E−2〈0|[[A,H], B]±|〉 (2-54)

+ E−3〈0|[[[A,H], H], B]±|0〉 − ...

In order to obtain a most compact notation we will introduce here the following parenthesis

notation:

(x|y) = 〈0|[x+, y]±|0〉 (2-55)

Now we are going to define the superoperators:

Ĥy = [H, y]− (2-56)

and

Îy = y (2-57)

With these definitions we can rewrite Eq.2-54 as:

〈〈A;B〉〉E = E−1(A|B) + E−2(A|ĤB) + E−3(A|Ĥ2B) + ... (2-58)
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now using the geometric series expansion:

E−1

∞∑
n=0

(Ĥ/E)n = E−1[Î − (Ĥ/E)]−1 = (EÎ − Ĥ)−1 (2-59)

the propagator can be written as

GA;B(E) = 〈〈A,B〉〉E = (A|(EÎ − Ĥ)−1B) (2-60)

where (EÎ − Ĥ)−1 is called the superoperator resolvent.

2.3 The Electron Propagator

2.3.1 Definition

The electron propagator is defined in terms of the electron field operators:

Grs(E) ≡ 〈〈a†r; as〉〉 (2-61)

=
∑
n

〈0N |a†r|nN−1〉〈nN−1|as|0N〉
E + En(N − 1)− E0(N)

+
〈0N |as|mN+1〉〈mN+1|a†r|0N〉
E + Em(N + 1)− E0(N)

The poles of the Green’s function (values of E for which function is indeterminated) are

equal to differences between energies of the N electron and N-1 and N+1 electron states,

corresponding to ionization potentials (IE) and electron affinities (EA) of the N electron

system. The numerators of the propagator related to the discontinuity of the Green’s func-

tion are called the Feynman-Dyson amplitudes (FDAs), and are related to the transition

probabilities for electron attachment and detachment processes:

U IE
a,n = 〈nN−1|aa|0N〉 (2-62)

UEA
i,n = 〈nN+1|a†i |0N〉 (2-63)

where a and i denoted unoccupied and occupied spin-orbitals. The FDAs can be used to

build the Dyson Orbitals (DOs) in terms of spin-orbitals:

|gn〉 =
N∑
i=1

|φi〉U IE
i,n =

N∑
i=1

|φi〉〈nN−1|ai|0N〉 =
N∑
i=1

cinφi (2-64)

|fn〉 =
N∑
i=1

|φi〉UEA
r,n =

N∑
i=1

|φi〉〈nN+1|a†r|0N〉 =
N∑
i=1

crnφi

These orbitals correspond to the overlap between the initial N electron state and the final

(N-1 or N+1) electron state. The integral is over the coordinates of all electrons except one

(x1), yielding a one-electron function that can be written as a linear combination of Hartree-

Fock (HF) canonical molecular orbitals (φi) in case that we use the HF approximation as

starting point to build the initial wave function |0N〉.
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2.3.2 Partitioning and inner projection

Using the notation introduced by Eq.2-60 for the propagator matrix, the one electron pro-

pagator matrix can be written as:

G(E) = (a|(EÎ − Ĥ)−1a) (2-65)

where a is a vector containing all the annihilation operators of the system. Ĥ is the su-

peroperator corresponding to the exact Hamiltonian operator of the electron system written

using second quantization:

H =
∑
p,q

hpqa
†
p aq +

1

4

∑
p,q,s,t

〈pq||st〉a†p a†q at as (2-66)

We point out that the superoperator resolvent has a negative exponent that cannot be easily

evaluated. To overcome this problem the following inner projection manifold is introduced:

h = a ∪ f3 ∪ f5 ∪ . . . (2-67)

h = {ai, aa} ∪ {a†iaaab, a†aaiaj} ∪ {a
†
ia
†
jaaabac, a

†
aa
†
baiajak} ∪ . . . (2-68)

where indices i, j, k, l stand for occupied orbitals and a, b, c, d for virtual or unoccupied or-

bitals. Notice that space h describes processes where the number of quantum particles of

the system changes by one. h also satisfies the completeness relation (h|h) = 1 that applied

to Eq.2-65 yields:

G(E) = (a|h)(h|(EÎ − Ĥ)|h)−1(h|a) (2-69)

where we have avoided the negative exponent of the superoperator resolvent. To proceed

with the calculation of G(E) we separate the space h into two orthogonal spaces, as follows:

h = a ∪ f (2-70)

f = f3 ∪ f5 ∪ . . . (2-71)

And then Eq.2-69 becomes:

G(E) =
[

1 0
] [E1− (a|Ĥa) −(a|Ĥf)

−(f|Ĥa) E1− (f|Ĥf)

]−1 [
1

0

]
(2-72)

Now using the following property of the inverse 2x2 matrix:[
A B

C D

]−1

=

[
A−BD−1C C −DB−1A

B − AC−1D D − CA−1B

]
(2-73)

the partitioned form of the inner matrix yields:

G−1(E) = E1− (a|Ĥa)− (a|Ĥf)[E1− (f|Ĥf)]−1(f|Ĥa) (2-74)
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Finally, we can separate the exact Hamiltonian H as H = H0 + V to obtain:

G−1(E) = E1− (a|Ĥ0a)− (a|V̂ a)− (a|Ĥf)[E1− (f|Ĥf)]−1(f|Ĥa) (2-75)

G−1(E) = G−1
0 − (a|V̂ a)− (a|Ĥf)[E1− (f|Ĥf)]−1(f|Ĥa) (2-76)

G−1(E) = G−1
0 −Σ(E) (2-77)

Which is the Dyson equation that allow us to find the poles of the exact Green’s function

by using the Green’s function of an already known reference Hamiltonian corrected by a

self-energy matrix, Σ(E), which introduces the corrections due to the perturbation V .

An alternative way to find the poles of the Green function is by finding the eigenvalues (ω)

of the superoperator Hamiltonian matrix H:

Uω = HU (2-78)

ωn
[

Ua,n Uf,n

]
=

[
(a|Ĥa) (a|Ĥf)

(f|Ĥa) (f|Ĥf)

][
Ua,n

Uf,n

]
(2-79)

In this formulation, the Dyson Orbital can be written as:

|gn〉 =
occ∑
a

Ua|φi〉+
virt∑
r

Ur|φi〉 (2-80)

The sum of the squared coefficients of the DO defines the pole strength. Pole strengths

above 0.9 indicate that the Koopmansâ¿�s one-electron description is qualitatively valid.

Diagonal approximations (see below) should provide accurate representations of the ioniza-

tion process if there is a single, dominant term in Equation 2-80. Lower pole strengths

(below 0.8) are generally an indication that shake-up states are to be expected, and nondi-

agonal approximations are recommended to accurately describe the ionization. The electron

propagator theory has been developed by introducing Moller-Plesset and Coupled Cluster

expansions of the wavefunction in Eqs.2-79 and 2-77. In the theoretical development we will

show details of this procedure, not for the case of an electronic system, but for a general

system contaning more than one fermionic species. With that aim we need to introduce first

an approach to treat several fermionic species using the Hartree-Fock approximation. This

approach is the any particle molecular orbital theory.

2.4 Any particle molecular orbital (APMO) theory

The basic idea behind the APMO approach is that the wavefunction of a finite system

comprising several type of particles (namely species) can be treated using the Hartree-Fock

approximation and applying the same set of methods that has been developed to treat

electronic wavefunctions in molecular systems under the Born-Oppenheimer approximation.

In this section we briefly review the APMO approach.
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2.4.1 APMO/HF theory

The molecular Hamiltonian, HTOT , includes contributions from classical and quantum par-

ticles, such that:

HTOT = −
NQ∑
i

1

2Mi

∇2
i +

NQ∑
i

NQ∑
j>i

QiQj

rij
+

NQ∑
i

NC∑
j

QiQj

rij
+

NC∑
i

NC∑
j>i

QiQj

rij
, (2-81)

where Qi is the charge of the particle i, and NQ and NC are the number of quantum and

classical particles, respectively [35].

At the APMO/HF level the molecular wavefunction, Ψ0, is approximated as a product of

single-configurational wavefunctions, Φα, for different types of quantum species α:

Ψ0 =
NQ∏
α

Φα. (2-82)

Each Φα is represented in terms of molecular orbitals (MO), ψαi . These ψαi are obtained by

solving the equations

fα(i)ψαi = εαi ψ
α
i , ∀i, α, (2-83)

Each fα(i) is an effective one-particle Fock operator for the quantum species α written as

fα(i) = hα(i) +Qα
2
∑
j∈α

[Jαj ∓Kα
j ] +

NQ∑
β 6=α

Qα

∑
j∈β

QβJ
β
j . (2-84)

In the above equation hα(i) is the one–particle core Hamiltonian,

hα(i) = − ∇
2
i

2Mα

+
NC∑
j

QC
j Qα

rij
(2-85)

and Jα and Kα are Coulomb and exchange operators defined as,

Jαj (1)ψαi (1) =

[∫
dr2ψ

α∗
j (2)

1

r12

ψαj (2)

]
ψαi (1), (2-86)

Kα
j (1)ψαi (1) =

[∫
dr2ψ

α∗
j (2)

1

r12

ψαi (2)

]
ψαj (1). (2-87)

The sign preceding the exchange operator in Eq. 2-84 is chosen depending on the bosonic

(positive) or fermionic (negative) nature of the α particles. In previous studies it has been

observed that the exchange integrals between individual nuclei are always negligible and as

a result they are neglected in our numerical treatment [25, 35].
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2.4.2 Second quantization in APMO theory

As shown in the preliminar sections, extending the propagator theory to multiple particles

requires to work in a second quantization approach. We introduce the elementary creation

and annhilation operators for the fermionic species α {ap, a†p} that act on the pth orbital of

the single–configuration wave function Φα and satisfy the following relations [6, 34]:[
aα†p , a

α
q

]
+

= aα†p a
α
q + aαq a

α†
p = δqp (2-88)[

aα†p , a
α†
q

]
+

=
[
aαp , a

α
q

]
+

= 0 (2-89)

Similarly for species β we will have the operators: {aP , a†P}. The following rule defines the

relation between operators of different species [25, 36]:[
a†p, a

†
P

]
−

=
[
ap, aP

]
− =

[
a†p, aP

]
− = 0 (2-90)

Employing the above notation, Eq. (2-81) can be written as [25, 37]:

HTOT =
NQ∑
α

Hα
0 + V α

1 + V α
2 (2-91)

with

Hα
0 =

∑
p∈α

(λα)2εαpa
†
pap (2-92)

V α
1 =

∑
p,q,r,s∈α

(λα)2〈pq||rs〉

[
1

4
a†pa

†
qasar − δqs〈nq〉a†par

]
(2-93)

V α
2 =

NQ∑
β 6=α

∑
p,q∈α
P,Q∈β

λαλβ〈pP |qQ〉
[

1

2
a†pa

†
PaQaq − δPQ〈nP 〉a

†
paq

]
(2-94)

Here, εαp is the pth orbital energy for species α and λα and λβ include the effects of signs and

charges of species α and β.

2.4.3 Many body perturbation expansion (MBPT) of the APMO

wavefunction

Taking the APMO/HF wavefunction, |Ψ0〉, as reference state, the exact APMO wavefunc-

tion, |Ψ〉, can be expanded as a perturbational series expressed as follows:

|Ψ〉 =(1 + T̂ )|Ψ0〉 (2-95)

|Ψ〉 =(1 + T̂1 + T̂2 + . . .)|Ψ0〉 (2-96)

|Ψ〉 =N−1/2

1 +
NQ∑
α

∑
i,a∈α

κai a
†
aai +

NQ∑
α

NQ∑
β>α

∑
i,a
I,A

κaAiI a
†
a a
†
A aI ai + . . .

 |Ψ0〉 (2-97)
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where N is a normalization constant and |Ψ0〉 is the APMO/HF wavefunction, as defined in

Eq. (2-82); i, j, . . . (a, b, . . .) stand for occupied (virtual) orbitals of α particles and I, J, . . .

(A,B, . . .) stand for occupied (virtual) orbitals of β particles and so on. The correlation

coefficients, κ, are obtained from Rayleigh–Schrödinger perturbation theory [27, 32, 38, 39].

For instance:

κai =
1

2

[∑
jbc

〈bc||aj〉
εi − εa

κbcij −
∑
jkb

〈ib||jk〉
εi − εa

κabjk

]
+

NQ∑
β 6=α

[∑
IbA

〈iI|bA〉
εi − εa

κbAiI −
∑
IjA

〈jI|aA〉
εi − εa

κaAjI

]
(2-98)

κaAiI =
〈iI|aA〉

εi + εI − εa − εA
; κabij =

〈ij||ab〉
εi + εj − εa − εb

(2-99)

2.4.4 Treatment of rotations and translations within the APMO

scheme

The APMO wavefunction for a molecular system where all the particles are considered quan-

tum mechanically should included the description of the translational and rotational motions.

The treatment of these motions is of special importance because the localized gaussian basis

sets employed in the APMO method are not a suitable basis set to construct the rotational

and translational wavefunctions. To avoid the problem of describing rotations and transla-

tions we can remove them from the total Hamiltonian. In this section we summarizes the

scheme proposed by Nakai et al [37, 40, 41] to do so.

Translational and rotational free treatment

The complete nuclear-electron Hamiltonian, called translational-rotational contaminated

(TRC) is expressed as:

ˆHTRC = T̂ e + T̂ n + V̂ ee + V̂ nn + V̂ en (2-100)

T̂ e = −
∑
p

1

2
∇(xq)

2 ≡
∑
p

t̂e(xp) (2-101)

T̂ n = −
∑
P

1

2mP

∇(xP )2 ≡
∑
P

t̂n(xP ) (2-102)

V̂ ee =
∑
p<q

1

rpq
≡
∑
p<q

vee(xpq); V̂
en =

∑
p,P

ZP
rpP
≡
∑
p<q

ven(xpP ); (2-103)

V̂ ee =
∑
P<Q

ZPZQ
rPQ

≡
∑
p<q

vnn(xPQ) (2-104)
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The total wavefunction can be approximated as:

Ψ = ΨnΨe (2-105)

Ψn = φn1φ
n
2 ...φ

n
N (2-106)

Ψe = |φe1φe2...φen〉 (2-107)

The Hartree-Fock equations can be written for the TRC as:

f̂ epφ
e
p = εepφ

e
p; f̂nP1

φn = εnP1
φn (2-108)

where the Fock operator is expressed as:

f̂ ep = ĥep +
n∑
i

(Ĵeei − K̂ee
i ) +

N∑
I

ĴenPI
; f̂nPI

= ĥnPI
+

N∑
J 6=I

ĴnnPJ
+

n∑
i

Ĵeni (2-109)

where

Ĵeei =

∫
φi(r1)V̂ ne(r1, r2)φi(r1)dr1 K̂ee

i =

∫
φi(r1) V̂ ne(r1, r2)φj(r1)φi(r2)dr1dr2 (2-110)

ĴnnPJ
=

∫
φI(r1)V̂ nn(r1, r2)φI(r1)dr1 ĴenPI

=

∫
φI(r1)V̂ ne(r1, r2)φI(r1)dr1 (2-111)

Ĵeni =

∫
φi(r1)V̂ ne(r1, r2)φi(r1)dr1 (2-112)

To remove translational and rotational corrections, the translational and rotational Hamil-

tonian are subtracted from ĤTRC :

ĤTF = ĤTRC −
1

2MTOT

∑
µ

∇(xµ)− 1

MTOT

∑
µ>ν

∇(xµ) · ∇(xν) (2-113)

ĤTRF = ĤTF −
x,y,z∑
α

1

2Îα

(∑
µ

Lα,µ + 2
∑
µ>ν

Lα,µ · Lα,ν

)
(2-114)

Then the following procedure is performed [37, 40]: 1) Coordinates of the system are trans-

formed to the those centered on the mass center (r) ; 2) rµ is expanded in a Taylor series

rµ = r0
µ + ∆rµ as well as the L operator: L̂α,µ = L̂0

α,µ + ∆L̂α,µ where L̂0
α,µ corresponds to

the zero-order rotational Hamiltonian (rigid rotor), where the position of nuclei are fixed to

the center of the basis set functions. 3) The translational and rotational Hamiltonians are

approximated to the nuclear translational and rotational Hamiltonians. By doing this, the

t̂n and v̂nn operators are modified as:

t̂nTF = −1

2
(

1

mP

− 1

MTOT

)∇2(rP ); t̂nTRF = t̂nTF −
x,y,z∑
α

1

2Îα
L̂0

2

α,P (2-115)

v̂nnTF =
ZPZQ
rPQ

+
1

MTOT

∇(rP ) · ∇(rP ); v̂nnTRF = t̂nTF −
x,y,z∑
α

1

Îα
L̂0

α,P · L̂0
α,Q (2-116)
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3.1 Extension of super-operator formulation for APMO

For a system comprising NQ fermionic species {α, β, ...} the spectral representation of a pq

element of one–α–particle Green function is given by:

Gα
pq(ω

α) =
∑
m

〈Ψ(Nα, Nβ, ...)|ap|Ψm(Nα + 1, Nβ, ...)〉〈Ψm(Nα + 1, Nβ, ...)|a†q|Ψ(Nα, Nβ, ...)〉
ωα − Em(Nα + 1, Nβ, ...) + E0(Nα, Nβ, ...)

(3-1)

+
∑
n

〈Ψ(Nα, Nβ, ...)|a†q|Ψn(Nα − 1, Nβ, ...)〉〈Ψn(Nα − 1, Nβ, ...)|ap|Ψ(Nα, Nβ, ...)〉
ωα − En(Nα − 1, Nβ, ...) + E0(Nα, Nβ, ...)

here |Ψn(Nα − 1, Nβ, ...)〉 (|Ψn〉 in the rest of the text) stands for the exact wavefunction

for a state n containing Nα− 1, Nβ,... particles of each species and En(Nα− 1, Nβ, ...) is its

corresponding energy. On the other hand |Ψm(Nα+ 1, Nβ, ...)〉 (|Ψm〉 in the rest of the text)

stands for the exact wavefunction for a state m containing Nα + 1, Nβ,... particles of each

species and Em(Nα + 1, Nβ, ...) is its corresponding energy. The parameter ωα has energy

units. It can be inferred that the poles of Eq. (3-1) correspond to exact binding energies for

particles of the species α.

Following Pickup and Goscinski[8] now we introduce the superoperator metric, defined as

(A|B) = 〈Ψ|[A†, B]+|Ψ〉, (3-2)

where A and B are two arbitrary operators (i.e. linear combinations of products of fermion–

like creation or annihilation operators). The identity and Hamiltonian superoperators, Î and

Ĥ, can be defined as:

ÎA = A (3-3)

ĤA = [A,HTOT ]− = AHTOT −HTOT A (3-4)

where the Hamiltonian, HTOT , is the APMO Hamiltonian in its second quantized form Eq

(2-91). Employing the above definitions, it is possible to write the α propagator matrix as:

Gα(ωα) = (aα|(ωαÎ − Ĥ)−1aα) (3-5)
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where aα contains all the single annihilation operators, {aαi , aαa}.
By applying Löwdin’s inner projection technique [42] with an appropiate superoperator space

hα [35], the inversion of the super-operator resolvent in Eq. (3-5) is avoided and only one

matrix inversion is needed:

Gα(ωα) = (aα|hα)(hα|(ωαÎ − Ĥ)hα)−1(hα|aα) (3-6)

The elements of the super-operator space, hα are defined in such a way that they changes the

number of α particles by one, while conserving the number of particles of the other species:

hα ={aα} ∪ {fα3 } ∪ {fα5 } ∪ . . . (3-7)

hα ={aα} ∪ {fααα3 , fβαβ3 , fγαγ3 . . .} ∪ {fα5 } ∪ . . .
hα ={aa, ai} ∪ {a†iaaab, a†aaiaj, a

†
IaaaA, a

†
AaiaI , a

†
ΓaiaΛ, a

†
ΛaaaΓ, . . .} ∪ {fα5 } ∪ . . .

The projection space, hα, can be partitioned for convenience into two orthogonal spaces: the

primary space, aα† = {aα†a , a
α†
i } and the complementary space, fα. The latter space contains

operators associated to ionizations of an α particle coupled to excitations of any type of

particle in the system. Using this partition, the propagator matrix can be rearranged as:

Gα(ωα) =
[

1 0
]ω

α1− (aα|Ĥaα) −(aα|Ĥfα)

−(fα|Ĥaα) ωα1− (fα|Ĥfα)


−1 1

0

 (3-8)

After some transformations, the above expression becomes:

Gα−1

(ωα) = (aα|(ωαÎ − Ĥ)|aα)− (aα|Ĥ|fα)
[
ωαÎ − (fα|Ĥ|fα)

]−1

(fα|Ĥ|aα) (3-9)

which can also be presented as a Dyson-like equation [6]

Gα−1

(ωα) = Gα−1

0 (ωα)− Σα(ωα) (3-10)

with

Gα
0(ωα)pq =

δpq
ωα − εαp

. (3-11)

The self-energy matrix for the α–type particle, Σα(ωα), is defined by Eq. (3-10). The self-

energy corresponds to a non-local and energy dependent potential that accounts for the

correlation and relaxation effects missing in the zero order solution of the Schrödinger equa-

tion. Note that if an untruncated manifold is included in fα, the poles of the propagator

correspond to the exact one–particle binding energies. In order to arrive at a definite ap-

proximation for the self-energy, the perturbative expansion (Eq. (2-95)) and the operator

space (Eq. (3-7)) must be truncated.
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3.2 Self-energy approximations in APMO

3.2.1 Evaluation of inner products

To get working equations for the self-energy we must expand the inner products appearing

in Eqs. 3-9 and 3-10 by introducing the perturbational series of Eq.2-95. Terms (aα|Ĥaα),

(fα|Ĥaα) and (fα|Ĥfα) can be expanded by following the rule:

(Y |Z) =〈Ψ0|(1 + T̂ †)[Y †, Z]−(1 + T̂ )|Ψ0〉 (3-12)

=(Y |Z)0 + (Y |Z)1 + (Y |Z)2 + (Y |Z)3 + . . .

For instance:

(aα|Ĥaα) =(aα|Ĥaα)0 + (aα|Ĥaα)1 + (aα|Ĥaα)2 + . . . (3-13)

An inner product evaluated up to order n correspond to:

(Y |Z)(n) =
n∑
i=0

(Y |Z)i (3-14)

Inner products appearing in Eq(3-9) can be categorized into 3 groups:

� Inner products between elements of the primary space, (aα|Ĥaα).

� Inner products between elements of the primary and complementary spaces, (aα|Ĥfα).

� Inner products between elements of the complementary spaces,(fα|Ĥfα).

An order by order construction of the self-energy is achieved by keeping a balance between

the truncation of the perturbational series and the truncation of the operator space-manifold

(Eq. (3-7)). Up to third order, calculations require the computation of inner products

comprising up to three quantum species (α, β, γ) and involving only the elements of the fα3
complementary space. With the aim of facilitating the evaluation of the inner products, we

follow the algebraic diagrammatic construction (ADC) procedure proposed by Cederbaum

et al [9, 10, 13, 36, 36, 43]. For treating several fermionic species we used the modification of

the diagrammatic method independently proposed by Cederbaum [36] and Nakai [25], which

is summarized in Table 3-1.

At first we define three type of vertices to represent species α, β and γ. Arrows leav-

ing vertices represents creation operators while annihilation operators correspond to arrows

directed towards vertices. In the particle-hole formalism, upward and downward arrows

represent “particle” and “hole” lines, respectively. In the following, we show the explicit

expressions for the inner products required to compute the full third order self-energy, as ob-

tained by the ADC procedure. We use the notation shown in table 3-2 for the spin-orbitals

indices.
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Table 3-1: Elements employed to build diagramms for several fermionic species

Element Representation

α, β andγ vertices

Creation operators: a†p, a
†
P

Annihilation operators: ap, aP

Intra-species interaction (pq||rs)

Inter-species interaction (pq|PQ)

Particles: a†a,a
†
A,...

Holes: ai,aI ,...

Table 3-2: Orbital indices for α, β and γ species

Species Occupied Virtual Either

α i, j, . . . a, b, . . . p, q

β I, J, . . . A, B, . . . P, Q

γ Γ, ∆, . . . Λ, Ξ, . . . Υ, Ω
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Figure 3-1: Diagramatic representation of fα3 operators: 2ph (left) and 2hp (right)

a†iaaab a†IaaaA a†aaiaj a†AaiaI

Primary-Primary spaces

Since the vector aα contents holes and particle operators, the matrix (aα|Ĥaα) can be fur-

ther divided into 4 blocks that we will call, Hα,α
h,h, Hα,α

p,p and Hα,α
h,p, Hα,α

p,h, corresponding to

products between two holes (hh), two particles (pp) or one hole and one particle (hp and

ph). Contributions to an element (p, q) of the matrix (aα|Ĥaα) are shown below, evaluated

through third order:

(ap|Ĥaq)0 = (ap|Ĥ0aq)0 = δpqεp (3-15)

(ap|Ĥaq)1 = (ap|Ĥaq)2 = 0 (3-16)

(ap|Ĥaq)3 =
∑
rs

(pq||rs)ρ(2)
rs +

NQ∑
β 6=α

∑
P,Q

(pq|PQ)ρ
(2)
PQ (3-17)

Where the elements ρ
(2)
rs for one species can be calculated as:

ρ
(2)
ij = −1

2

∑
k,a,b

κabikκ
∗ab
jk +

NQ∑
β 6=α

∑
a,I,A

κaAiI κ
∗aA
jI ; ρ

(2)
ab =

1

2

∑
i,j,c

κacij κ
∗ab
jk +

NQ∑
β 6=α

∑
i,I,A

κaAiI κ
∗bA
iI (3-18)

ρ
(2)
ia =

1

εi − εa

[
−
∑
j,k,b

(ji||kb)κabjk +
∑
j,b,c

(ab||jc)κbcij

]
(3-19)

+
NQ∑
β 6=α

1

εI − εA

[
−
∑
j,A,I

(ij|AI)κaAjI +
∑
b,A,I

(ia|AI)κbAiI

]

where κ are the correlation coefficients defined in Eqs. (2-98) and (2-99).

Primary-Complementary spaces

Operators belonging to the fα3 space can be classified into 2 holes 1 particle and 2 particle

operators, as shown in table 3-1. Consequently, the matrix (aα|Ĥfα) can be divided into 8

blocks: Hα,ααα
h,2hp , Hα,ααα

p,2hp , Hα,βαβ
h,2hp, Hα,βαβ

p,2hp, Hα,ααα
h,2ph , Hα,ααα

p,2ph , Hα,βαβ
h,2hp and Hα,βαβ

p,2hp. To build the

third order self-energy, inner products in this blocks needs to be computed up second order.

For an element (p, q), we have:
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(ap|Ĥa†iaaab)0 = (ap|Ĥa†aaiaj)0 = (ap|Ĥa†AaiaI)0 = (ap|Ĥa†IaaaA)0 = 0 (3-20)

(ap|Ĥa†iaaab)1 = 〈pi||ab〉 (ap|Ĥa†aaiaj)1 = 〈pa||ij〉 (3-21)

(ap|Ĥa†IaaaA)1 = 〈pI|aA〉 (ap|Ĥa†AaiaI)1 = 〈pA|iI〉 (3-22)

(ap|Ĥa†aaiaj)2 =
1

2

∑
b,c

〈pa||bc〉κbcij + (1− Pij)

∑
b,k

〈pk||bi〉κbajk +
NQ∑
β

∑
A,I

〈pA|iI〉κaAjI

 (3-23)

(ap|Ĥa†iaaab)2 =
1

2

∑
j,k

〈pi||jk〉κabjk + (1− Pab)

∑
j,c

〈pc||ja〉κbcji +
NQ∑
β

∑
A,I

〈pA|aI〉κbAiI

 (3-24)

(ap|Ĥa†AaiaI)2 =
∑
a,B

〈pA|aB〉κaBiI −
∑
a,J

〈aJ |pI〉κaAiJ −
∑
a,j

〈pj||ai〉κaAjI +
∑
J,B

〈pJ |iB〉κAJIB

(3-25)

(ap|Ĥa†IaaaA)2 =
∑
i,J

〈pI|iJ〉κaAiJ −
∑
i,B

〈pB|iA〉κaBiI −
∑
b,i

〈pb||ia〉κbAiI +
∑
J,B

〈pB|aJ〉κABIJ

(3-26)

Complementary-complementary spaces inner products

For third order calculations, the elements of these inner products needs to be evaluated up

to first order. The matrix elements between 2ph and 2hp type-operators vanish through first

order. For operators of only one species we have:

(a†aaiaj|Ĥa
†
bakal)0 = δabδikδjl [εi + εj − εa] (3-27)

(a†iaaab|Ĥa
†
jacad)0 = δijδacδbd [εa + εb − εi] (3-28)

(a†aaiaj|Ĥa
†
bakal)1 = −δab〈ij||kl〉+ (1− Pij)(1− Pkl)δik〈bj||al〉 (3-29)

(a†iaaab|Ĥa
†
jacad)1 = δij〈ab||cd〉 − (1− Pab)(1− Pcd)δac〈jb||id〉 (3-30)

For i < j k < l and a < b c < d in the 2hp and 2ph cases, respectively. In the case

of products involving 2 species we have:

(a†AaiaI |Ĥa
†
BajaJ)0 = δABδijδIJ [εI + εi − εA] (3-31)

(a†IaaaA|Ĥa
†
JabaB)0 = δIJδabδAB [εA + εa − εI ] (3-32)

(a†AaiaI |Ĥa
†
BajaJ)1 = −δij〈IB||AJ〉+ δAB〈iI|jJ〉 − δIJ〈iB|jA〉 (3-33)

(a†IaaaA|Ĥa
†
JabaB)1 = δab〈AJ ||IB〉 − δIJ〈aA|bB〉+ δAB〈aI|bJ〉 (3-34)

(a†aaiaj|Ĥa
†
AakaI)1 = −δik〈Aj|Ia〉 (3-35)

(a†iaaab|Ĥa
†
IacaA)1 = δac〈iA|bI〉 (3-36)
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Finally, for products involving 3 species:

(a†AaiaI |Ĥa
†
ΛajaΓ)0 = (a†IaaaA|Ĥa

†
ΓabaΛ)0 = 0 (3-37)

(a†AaiaI |Ĥa
†
ΛajaΓ)1 = −δij〈IΛ|AΓ〉 (3-38)

(a†IaaaA|Ĥa
†
ΓabaΛ)1 = δab〈AΓ|IΛ〉 (3-39)

(3-40)

3.2.2 Non-diagonal approximations

A way to find the poles arises from Eq.(3-9). Inspecting this equation we can realize that

the poles of the one-α-Green function, ωα, correspond to the eigenvalues of the so-called

super–Hamiltonian matrix, Ĥ:

ĤU = ωαU (3-41)[
(aα|Ĥaα) (aα|Ĥfα)

(fα|Ĥaα) (fα|Ĥfα)

] [
Uα
a,n

Uα
f,n

]
= ωαn

[
Uα
a,n

Uα
f,n

]
(3-42)

The super-operator matrix evaluate up to second and complete third order are:[
(aα|Ĥaα)(0) (aα|Ĥfα)(1)

(fα|Ĥaα)(1) (fα|Ĥfα)(0)

] [
(aα|Ĥaα)(3) (aα|Ĥfα)(2)

(fα|Ĥaα)(2) (fα|Ĥfα)(1)

]
(3-43)

For several quantum species, the structure of Ĥ become complex as it must include the inner

products between different combinations of second quantized operators for several species:

Ĥ =


(aα|Ĥaα) (aα|Ĥf3

ααα) (aα|Ĥf3
βαβ) (aα|Ĥf3

γαγ) . . .

(f3
ααα|Ĥaα) (f3

ααα|Ĥf3
ααα) (f3

ααα|Ĥf3
βαβ) (f3

ααα|Ĥf3
γαγ) . . .

(f3
βαβ|Ĥaα) (f3

βαβ|Ĥf3
ααα) (f3

βαβ|Ĥf3
βαβ) (f3

βαβ|Ĥf3
γαγ) . . .

(f3
γαγ|Ĥaα) (f3

γαγ|Ĥf3
ααα) (f3

γαγ|Ĥf3
βαβ) (f3

γαγ|Ĥf3
γαγ) . . .

...
...

...
...

. . .

 (3-44)

where we have considered only the fα3 space explicitly. If now we introduce the clasification

of operators as h, p, 2hp and 2ph, we arise to a more explicit form of the Ĥ matrix:

Ĥ =



Hα,α
h,h Hα,α

h,p Hα,ααα
h,2hp Hα,ααα

h,2ph Hα,βαβ
h,phh Hα,βαβ

h,hpp Hα,γαγ
h,phh Hα,γαγ

h,hpp . . .

Hα,α
p,h Hα,α

p,p Hα,ααα
p,2hp Hα,ααα

p,2ph Hα,βαβ
p,phh Hα,βαβ

p,hpp Hα,γαγ
p,phh Hα,γαγ

p,hpp . . .

Hααα,α
2hp,h Hααα,α

2hp,p Hααα,ααα
2hp,2hp Hααα,ααα

2hp,2ph Hααα,βαβ
2hp,phh Hααα,βαβ

2hp,hpp Hααα,γαγ
2hp,phh Hααα,γαγ

2hp,hpp . . .

Hααα,α
2ph,h Hααα,α

2ph,p Hααα,ααα
2ph,2hp Hααα,ααα

2ph,2ph Hααα,βαβ
2ph,phh Hααα,βαβ

2ph,hpp Hααα,γαγ
2ph,phh Hααα,γαγ

2ph,hpp . . .

Hβαβ,α
phh,h Hβαβ,α

phh,p Hβαβ,ααα
phh,2hp Hβαβ,ααα

phh,2ph Hβαβ,βαβ
phh,phh Hβαβ,βαβ

phh,hpp Hβαβ,γαγ
phh,phh Hβαβ,γαγ

phh,hpp . . .

Hβαβ,α
hpp,h Hβαβ,α

hpp,p Hβαβ,ααα
hpp,2hp Hβαβ,ααα

hpp,2ph Hβαβ,βαβ
hpp,phh Hβαβ,βαβ

hpp,hpp Hβαβ,γαγ
hpp,phh Hβαβ,γαγ

hpp,hpp . . .

Hγαγ,α
phh,h Hγαγ,α

phh,p Hγαγ,ααα
phh,2hp Hγαγ,ααα

phh,2ph Hγαγ,βαβ
phh,phh Hγαγ,βαβ

phh,hpp Hγαγ,γαγ
phh,phh Hγαγ,γαγ

phh,hpp . . .

Hγαγ,α
hpp,h Hγαγ,α

hpp,p Hγαγ,ααα
hpp,2hp Hγαγ,ααα

hpp,2ph Hγαγ,βαβ
hpp,phh Hγαγ,βαβ

hpp,hpp Hγαγ,γαγ
hpp,phh Hγαγ,γαγ

hpp,hpp . . .
...

...
...

...
...

...
...

...
. . .


(3-45)
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Note that these blocks can be evaluated by using the formulas of subsection 3.2.1. The

blocked structure of the Ĥα allows us to generate different approximations of the self-energy

by changing the order of perturbation at which each block is computed. This flexibility in

the construction of the super-Hamiltonian matrix has been extensively exploited by Ortiz

et al. to reduce the computational cost of electron propagator calculations by discarding

the evaluation of blocks with small contribution in the calculation of certain types of ion-

ization processes. The current version of the propagator module in the LOWDIN program

does not include non-diagonal methods, although some steps have been taken towards its

implementation.

3.2.3 Self-energy approximations

As exposed in the previous section, poles of the Green function can be determined by finding

the eigenvalues of super-Hamiltonian matrix. A second option is to solve the non-linear

Dyson equation (3-10). With that aim we have to build the self energy matrix, Σα. Using

the MBPT expansion proposed in section 2.4.3 for the APMO wavefunction, the second

order (2) and third order (3) APMO self-energies corresponds to:

Σα
(2)(ω

α) =(aα|Ĥfα3 )1

[
ωαÎ − (fα3 |Ĥfα3 )0

]−1

(fα3 |Ĥaα)1 (3-46)

Σα
(3)(ω

α) =Σα
(2)(ω

α) + Σα
3(ωα)

=Σα
(2)(ω

α) (3-47)

+ (aα|(ωαÎ − Ĥ)aα)3

+ (aα|Ĥfα3 )2

[
ωαÎ − (fα3 |Ĥfα3 )0

]−1

(fα3 |Ĥaα)1

+ (aα|Ĥfα3 )1

[
ωαÎ − (fα3 |Ĥfα3 )0

]−1

(fα3 |Ĥaα)2

+ (aα|Ĥfα3 )1

[
ωαÎ − (fα3 |Ĥfα3 )0

]−1

(fα3 |Ĥfα3 )1

[
ωαÎ − (fα3 |Ĥfα3 )0

]−1

(fα3 |Ĥaα)1

Ortiz proposed a new approximation for the third order self energy [44] by replacing the re-

gular MBPT expansion of the wavefunction (Eq.2-95) by a Coupled Cluster (CC) expansion,

in the evaluation of inner products:

(Y |Z) = 〈Ψ0|e−T̂ [Y †, Z]− e
T̂ |Ψ0〉 (3-48)

This change produces asymmetric propagator matrix. For instance, if T̂ is truncated to T̂2,

the evaluation of the inner products proceed by the following rules for each type of expansion:

(Y |Z) = 〈Ψ0|(1 + T̂ †2 )[Y †, Z]−(1 + T̂2)|Ψ0〉 (MBPT) (3-49)

(Y |Z) = 〈Ψ0|(1− T̂ †2 )[Y †, Z]−(1 + T̂2)|Ψ0〉 (CC) (3-50)
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By using Eq.3-50 to build the third order self-energy, several terms appearing in Eq.3-47

cancel out. The new self-energy matrix in third order is asymmetric and is written as:

Σα
(P3)(ω

α) =Σα
(2)(ω

α) + Σα
P3(ωα) (3-51)

=Σα
(2)(ω

α) + (aα|Ĥfα3 )1

[
ωαÎ − (fα3 |Ĥfα3 )0

]−1

(fα3 |Ĥaα)2

+ (aα|Ĥfα3 )1

[
ωαÎ − (fα3 |Ĥfα3 )0

]−1

(fα3 |Ĥfα3 )1

[
ωαÎ − (fα3 |Ĥfα3 )0

]−1

(fα3 |Ĥaα)1

Since this approximation can be seen as a reduced version of Eq.(3-47), it was designated as

P3 (partial third order).

3.2.4 Quasiparticle (diagonal) APMO methods

Several studies of the self-energy matrix for several ionization processes, such as valence

electron ionization of closed-shell molecules, generally indicate that off-diagonal elements of

the self-energy matrix in the canonical basis are small and can be neglected for the calculation

of binding energies [6]. This approach, known as the quasiparticle (diagonal) approximation,

leads to a simpler form of the Dyson equation:

ωαp = εαp + Σα
pp(ω

α) (3-52)

where εαp is the pth canonical orbital energy for the species α. The quasiparticle Dyson equa-

tion can be interpreted as a corrected Koopmans’ theorem, where the relaxation and corre-

lation effects missing in the Koopmans’s approximation are introduced through the diagonal

self–energy term: Σα
pp(ω

α). In APMO theory the term Σα
pp(ω

α) comprises interspecies and

intraspecies contributions. For instance, the working equation for the quasiparticle second

order APMO propagator method (APMO/P2) has the form:

ωαp = εαp + Σαα
2 pp(ω

α) +
NQ∑
β 6=α

Σαβ
2 pp(ω

α) (3-53)

Where the terms Σαα
2 pp(ω

α) and Σαβ
2 pp(ω

α) represent the intraspecies and interspecies con-

tributions to Σα
pp(ω

α) at second order, which are given by:

Σαα
2 pp(ω

α) =
∑

a,i>j∈α

|〈pa||ij〉|2

ωp + εa − εi − εj
+
∑

i,a>b∈α

|〈pi||ab〉|2

ωp + εi − εa − εb
(3-54)

Σαβ
2 pp(ω

α) =
∑
i∈α

∑
A,I∈β

|〈pA|iI〉|2

ωp + εA − εI − εi
+
∑
a∈α

∑
A,I∈β

|〈pI|aA〉|2

ωp + εI − εA − εa
(3-55)

At third order the self-energy becomes more complex, comprising terms with contributions of

up to three different species. The working equation for the quasiparticle third order APMO
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propagator method (APMO/P3) and the partial third order APMO propagator method

(APMO/PP3) can be written as:

ωαp = εαp + Σαα
2 pp(ω

α) +
NQ∑
β 6=α

Σαβ
2 pp(ω

α) +
NQ∑
β,γ

Σαβγ
3 pp(ω

α) (3-56)

ωαp = εαp + Σαα
2 pp(ω

α) +
NQ∑
β 6=α

Σαβ
2 pp(ω

α) +
NQ∑
β,γ

Σαβγ
P3 pp(ω

α) (3-57)

Where Σαβγ
3 pp(ω

α) and Σαβγ
P3 pp(ω

α) represent the diagonal terms of the matrices defined in

equations 3-47 and 3-51, respectively.

Results of third order poles can be improved by estimating higher order results. One ap-

proach to do so is the Outer Valence Green Function (OVGF) renormalization technique

proposed by Cederbaum []. We have adapted this renormalization procedure to the APMO

propagator approach. For the A version of the propagator method, the self-energy takes the

form:

ωαp = εαp + Σαα
2 pp(ω

α) +
NQ∑
β 6=α

Σαβ
2 pp(ω

α) + +
NQ∑

β 6=γ 6=α

Σαβγ
3 pp(ω

α) + (1 +Xβ
p )−1Σαβα

3 pp(ω
α)

+
NQ∑
β 6=α

(1 +Xβ
p )−1

[
Σαβα

3 pp(ω
α) + Σαββ

3 pp(ω
α) + Σααβ

3 pp(ω
α)
]
(3-58)

3.2.5 Working equations for diagonal propagator methods

In this section we present the explicit expressions of Eq. (3-52) evaluated at second and

third order, within the APMO approach. The second order transition operator method is

also introduced.

Second–order quasiparticle self-energy in APMO (APMO/P2)

In a system comprised for NQ quantum species, the second order self-energy terms for an

orbital p of the species α, have the following form:

Σ
α,α(2)
PP (ωp) =

∑
a,i>j∈α

|〈pa||ij〉|2

ωp + εa − εi − εj
+
∑

i,a>b∈α

|〈pi||ab〉|2

ωp + εi − εa − εb
(3-59)

Σ
α,β(2)
PP (ωP ) =

NQ∑
β 6=α

[∑
i∈α

∑
A,I∈β

|〈pA|iI〉|2

ωp + εA − εI − εi
+
∑
a∈α

∑
A,I∈β

|〈pI|aA〉|2

ωp + εI − εA − εa

]
(3-60)

Where the convention for virtual orbitals is the same of the table 3-2. Eq. (3-59) and Eq.

(3-60) are the working expressions to calculate corrected binding energies for α species at
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second order. The simple form of Eqs. (3-59) and Eq. (3-60) (reminiscent of the APMO/MP2

formulas) is suitable to analyze the nature of the self-energy correction. Pickup and Goscinski

[8, 34] proposed a decomposition of the second self-energy for electrons into relaxation and

correlation terms that can be used to identify which of these effects predominates in a specific

ionization process. This information is useful to design accurate and efficient approximations

to the self-energy for higher orders of perturbation theory. Following Pickup and Goscinski,

we can factorize the second self-energy expression for the APMO wavefunction. For the

intraspecies term we have:

Σα,α(2)
pp (ωp) =PRM + PRX + ORX

=
∑
i,a,b

|〈pi|ab〉|2

ωp + εi − εa − εb
+
∑
i 6=p

∑
a,j

|〈pa|ij〉|2

ωp + εa − εi − εj
+
∑
a,i

|〈pa|pi〉|2

ωp + εa − εp − εi
(3-61)

where the first term is the lowest order pair α-α correlation term in the system containingN α

particles, also known as the pair-removal correlation (PRM), which correspond to excitations

of the type
(
p→a
i→j

)
. The second term is an extra correlation term arising from excitations of

the type
(
i→p
j→a

)
in the system containing N − 1 electrons, and it is called pair-relaxation

(PRX). Note that this terms appears because in the ionized system, the orbital p becomes

a virtual orbital. The third term is the orbital relaxation term (ORX) which correspond

to single excitations from the remaining occupied orbitals in the system containing N − 1α

particles (i→ a with i 6= a). Similarly, for the interspecies term:

Σα,β(2)
pp (ωp) =PRM + PRX + ORX

=
NQ∑
β 6=α

∑
a,I,A

|〈pI|aA〉|2

ωp + εI − εa − εA
+

NQ∑
β 6=α

∑
i 6=p

∑
A,I

|〈pA|iI〉|2

ωp +
∑NQ

β 6=α εA − εi − εI

+
NQ∑
β 6=α

∑
A,I

|〈pA|pI〉|2

ωp + εA − εp − εI
(3-62)

now, the PRM term corresponds to the α-β correlation correction in the system containing

N α particles, corresponding to excitations of the type:
(
p→a
I→A

)
. The PRX term correspond to

α-β correlation correction in the system containing N−1 α particles:
(
i→p
I→A

)
. The interspecies

ORX term (ORX) involve single excitations for only β particles: (I → A), accounting for

relaxation of the orbitals belonging to quantum species different from α. Examples of the

application of the above decomposition will be presented in the following chapter.

Second–order + Transition Operator quasiparticle self-energy in APMO

(APMO/TOP2)

The second order expression for the self-energy can be derived using a grand-canonical refe-

rence ensemble, where occupations of orbitals are explicitly considered [45–48]. Doing this
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within the APMO approach, the second order self-energy becomes:

Σ
α,α(2)
PP (ωp) =

∑
a,i>j∈α

|〈pa||ij〉|2ninj
ωp + εa − εi − εj

+
∑

i,a>b∈α

|〈pi||ab〉|2

ωp + εi − εa − εb

+
∑

a,i>j∈α

|〈pi||pa〉|2(1− np)
ωp + εa − εp − εj

(3-63)

Σ
α,β(2)
PP (ωP ) =

NQ∑
β 6=α

[∑
i∈α

∑
A,I∈β

|〈pA|iI〉|2ninI
ωp + εA − εi − εI

+
∑
a∈α

∑
A,I∈β

|〈pI|aA〉|2

ωp + εI − εA − εa

]

+
NQ∑
β 6=α

∑
i∈α

∑
A,I∈β

|〈pA|pI〉|2(1− np)
ωp + εA − εp − εI

(3-64)

where np represents the occupation of the orbital p, ranging from zero to unit. Note that Eqs.

3-59 and 3-60 are special cases of 3-63 and 3-64 with np = 1. The transition operator (TO)

method, originally proposed by Slater [49], was generalized by Janak [50] in the framework

of density functional theory as the following theorem:

E(Nα)− E(Nα − 1) =

∫ 1

0

εi(np)dnp (3-65)

where E(Nα) and E(Nα − 1) represent the energy of the system contaning Nα and Nα − 1

α particles, respectively, np is the occupation number of the orbital p and εp its orbital

energy. The Janak’s theorem states that the ionization or attachment process can be seen

as a continuous process where the occupation number of an specific orbital changes from 0

to 1 or viceversa. The integral appearing in Eq.(3-65) can be approximated using a simple

quadrature:

∫ 0

1

εi(ni)dni ≈ ε(1/2)(1− 0) = ε(1/2) (3-66)

This means that the ionization or affinity energy associated to an orbital p can be approxi-

mated as the energy of the half-occupied orbital. Eq(3-63 and 3-64) allow the calculation of

the second order corrected binding energy for half-occupied orbital p, using an APMO/HF

reference state where the occupation of p has been already set to 1/2. The transition operator

+ second order propagator method for electrons (TOEP2) has proven to include more rela-

xation effects in the propagator calculation [48], producing results of superior accuracy than

the bare second order approach. The TOEP2 method is specially useful for the calculation

of core ionization, with average deviation of less than 1eV.
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Third order quasiparticle self-energies in APMO

The explicit formula for the quasiparticle third order terms within the APMO method can

be written using the W and U terms, which are defined as:

Wpaij =〈pa||ij〉+
1

2

∑
b,c

〈pa||bc〉〈bc||ij〉
εi + εj − εb − εc

+ (1− Pij)

∑
b,k

〈pk||bi〉〈ba||jk〉
εj + εk − εa − εb

+
NQ∑
β 6=α

∑
I,A

〈pA|jI〉〈iI|aA〉
εi + εI − εa − εA


(3-67)

Wpiab =〈pi||ab〉+
1

2

∑
j,k

〈pi||jk〉〈jk||ab〉
εj + εk − εa − εb

+ (1− Pab)

∑
j,c

〈pc||ja〉〈ji||bc〉
εi + εj − εb − εc

+
NQ∑
β 6=α

∑
I,A

〈pA|bI〉〈iI|aA〉
εi + εI − εa − εA


(3-68)

Upaij(ωp) =− 1

2

∑
k,l

〈pa||kl〉〈kl||ij〉
ωp + εa − εk − εl

− (1− Pij)

∑
b,k

〈pb||jk〉〈ak||bi〉
ωp + εb − εj − εk

+
NQ∑
β 6=α

∑
I,A

〈pA|jI〉〈iI|aA〉
ωp + εA − εj − εI


(3-69)

Upiab(ωp) =
1

2

∑
c,d

〈pi||cd〉〈cd||ab〉
ωp + εi + εc − εd

+ (1− Pab)

∑
j,c

〈pj||bc〉〈ic||ja〉
ωp + εj + εb − εc

+
NQ∑
β 6=α

∑
I,A

〈pI|bA〉〈iI|aA〉
ωp + εI − εb − εA


(3-70)

WpAiI =〈pA|iI〉+
∑
a,B

〈pA|aB〉〈iI|aB〉
εi + εI − εa − εB

−
∑
a,J

〈pI|aJ〉〈iJ |aA〉
εi + εJ − εa − εA

−
∑
a,j

〈pj||ai〉〈jI|aA〉
εj + εI − εa − εA

(3-71)

+
∑
J,B

〈pJ |iB〉〈AB||IJ〉
εI + εJ − εA − εB

WpIaA =〈pI|aA〉+
∑
i,J

〈pI|iJ〉〈iJ |aA〉
εi + εJ − εa − εA

−
∑
i,B

〈pA|iB〉〈iJ |aB〉
εi + εJ − εa − εB

−
∑
i,b

〈pi||ba〉〈iI||bA〉
εi + εI − εb − εA

(3-72)

+
∑
J,B

〈JI||BA〉〈pJ ||aB〉
εI + εJ − εA − εB

UpAiI(ωp) =−
∑
j,J

〈pJ |jA〉〈iI|jJ〉
ωp + εA − εj − εJ

+
∑
J,B

〈pJ |iB〉〈IJ ||BA〉
ωp + εB − εi − εJ

+
∑
j,B

〈pI|jB〉〈iA|jB〉
ωp + εB − εj − εI

(3-73)

−
∑
a,j

〈iI|aA〉〈pa||ij〉
ωp + εa − εi − εj

−
NQ∑

γ 6=β,γ 6=α

∑
Λ,Γ

〈IΛ|AΓ〉〈pΛ|iΓ〉
ωp + εΓ − εi − εΛ
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UpIaA(ωp) =
∑
b,B

〈pI|bB〉〈aA|bB〉
ωp + εI − εb − εB

−
∑
J,B

〈pJ |aB〉〈IJ ||BA〉
ωp + εJ − εa − εB

−
∑
b,J

〈pJ |bA〉〈aI|bJ〉
ωp + εJ − εb − εA

(3-74)

+
∑
i,b

〈iI|aA〉〈pi||ab〉
ωp + εi − εa − εb

+
NQ∑

γ 6=β,γ 6=α

∑
Λ,Γ

〈IΛ|AΓ〉〈pΛ|aΓ〉
ωp + εΛ − εa − εΓ

Using the previous definitions we can express the quasiparticle P3-APMO self-energy as:

Σ
α(P3)
PP (ωp) =

1

2

∑
a,i,j

〈pa||ij〉(Wpaij + Upaij(ωp))

ωp + εa − εi − εj
+

1

2

∑
i,a,b

〈pi||ab〉(Wpiab + Upiab(ωp))

ωp + εi − εa − εb
(3-75)

+
NQ∑
β 6=α

[∑
i,A,I

〈pA|iI〉(WpAiI + UpAiI(ωp))

ωp + εA − εI − εi
+
∑
a,A,I

〈pI|aA〉(WpIaA + UpIaA(ωp))

ωp + εI − εA − εa

]

and the Complete-P3 (CP3) APMO self-energy as:

Σ
α(CP3)
PP (ωp) =

∑
rs

〈pr||qs〉ρ(2)
rs +

NQ∑
β 6=α

∑
P,Q

(pq|PQ)ρ
(2)
PQ

+
∑
a,i,j

〈pa||ij〉(Wpaij +
Upaij(ωp)

2
)

ωp + εa − εi − εj
+
∑
i,a,b

〈pi||ab〉(Wpiab +
Upiab(ωp)

2
)

ωp + εi − εa − εb
(3-76)

+
NQ∑
β 6=α

[∑
i,A,I

〈pA|iI〉(WpAiI + UpAiI(ωp))

ωp + εA − εI − εi
+
∑
a,A,I

〈pI|aA〉(WpIaA + UpIaA(ωp))

ωp + εI − εA − εa

]

where the elements of the second order densities ρ
(2)
rs for a species α are given by equations

3-18 and 3-19.

3.3 Working equations written for all the diagonal methods
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4.1 The LOWDIN program

LOWDIN [51] is a computational program that implements the Any Particle Molecular Or-

bital (APMO) method. The current version of the code encompasses Hartree-Fock, second-

order Møller-Plesset, configuration interaction, density functional apart from propagator the-

ories. LOWDIN has been fully coded in the FORTRAN 2003 standard, with some C/C++

bindings to external libraries. Although FORTRAN 2003 is not a full Object Oriented Pro-

gramming (OOP) language, most OOP capabilities can be easily emulated, such as class

definitions, some polymorphism and inheritance [52]. Figure 4-1 shows an schematic repre-

sentation of LOWDIN structure, which is based on a CORE program with small programs

around it. These programs are completely encapsulated and independent from one another.

The basic structure of LOWDIN is the CORE program, that implements a set of tools to

load the input file, generate the molecular system and run all the requested tasks. This

program also include the INTEGRALS and SCF programs. The INTEGRALS program

evaluates the one- and two-particle integrals for the Gaussian Type Orbitals (GTOs) basis

set functions. One-particle integrals such as overlap, kinetic and nuclear attraction energy

have been implemented for Gaussian basis functions of any angular momentum following

Obara-Saika [53] and Head-Gordon-Pople [54] recursive schemes.

Two-particle interaction integrals of the type (pq|r12
−1|rs) are calculated either with propri-

etary routines or with LIBINT library [55]. Integrals of the type (pq|e−γr212|rs) are calculated

with the LIBINT library. Integrals can be stored on either memory or disk. Integrals stored

on disk are collected in stacks containing a maximum of 30.000 of them. Several stacks

are calculated simultaneously to exploit the computational power of the machine. Different

schemes have been implemented to exploit the permutational symmetry of the integrals.

The Self Consistent Field (SCF) program has been designed to minimize the energy of

a molecular systems composed of multiple quantum species for the Hartree-Fock APMO

scheme. In a multi-species calculation, LOWDIN creates Fock-like operators for every quan-

tum species, and this matrices are interated until convergence. Convergence acceleration

methods such as DIIS [56], level shifting [57] and optimal damping [58] have been imple-

mented and are fully operational for any type of quantum species.
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Figure 4-1: Structure of LOWDIN program.

4.2 Implementation of diagonal propagator approaches

The APMO propagator theory developed on section 3 was implemented in a new module

fully coded in the FORTRAN 2003 language standard [59] following the object-oriented

programming philosophy of LOWDIN program. The following subsections describe details

on the solution of the Dyson equation, the structure of the created propagator module and

other modifications done to LOWDIN program.

4.2.1 Solving the Dyson Equation

The diagonal Dyson equation has the form shown in Eq.(3-52):

ωαp = εαp + Σα
pp(ω

α
p ) (4-1)

Since the self-energy depends on ω, Eq.(3-52) is non-linear. Finding the solution of Eq.(3-52)

is equivalent to finding the zeros of the function f(ωα) defined as:

f(ωαp ) = ωαp − εαp − Σα
pp(ω

α
p ) (4-2)

This task can be accomplished by using the Newton-Raphson method:

ωαp,n+1 = ωαp,n −
f(ωαp,n)

f ′(ωαp,n)
(4-3)

Where a the value of ωα is determined iteratively. As exposed in section 3.2.5, up to third

order the self-energy includes three kind of terms, classified according to its dependence on
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ωα: 1) Independent terms 2) Terms depending once in ωαp and 3) terms depending twice in

ωαp . This means that up to third order, the self energy can be schematically represented as:

Σα
pp(ω

α
p ) = C +

∑
A,B

A

ωαp +B
+
∑
D,E,F

D

(ωαp + E)(ωαp + F )
(4-4)

where C is the sum of all the terms independent from ωα, A and E represent the numerators

of formulas 3-59 and3-60 or 3-63 and 3-64, and D, E and F the corresponding denominators.

Numerators are products of Coulomb and exchange integrals in the molecular orbital basis

(MO integrals) and denominators are sums of Hartree-Fock orbital energies. Using the

expression 4-4, f(ωαn) and its derivative with respect to ωαn , can be expressed as:

f(ωαp ) = ωαp − εαp − C −
∑
A,B

A

ωαp +B
−
∑
D,E,F

D

(ωαp + E)(ωαp + F )
(4-5)

f ′(ωαp ) = 1 +
∑
A,B

A

(ωαp +B)2
+
∑
D,E,F

D ∗ (2ωαp + E + F )

(ωαp + E)2(ωαp + F )2
(4-6)

Eqs. 4-3, 4-5 and 4-6 are the formulas implemented in LOWDIN program to solve the

diagonal Dyson equation.

4.2.2 The PROPAGATOR program in LOWDIN

The propagator program included in LOWDIN calculates corrected binding energies for any

type of particle species following the algorithm shown in Figure 4-2 and briefly described

below:

1. An APMO/HF calculation is performed. This calculation produces the interaction

integrals in the atomic basis (AO integrals) and the eigenvectors (molecular coefficient:

MC) and eigenvalues of the Hartree-Fock matrix.

2. Get the required interaction integrals in the molecular basis (MO integrals) by trans-

forming the AO integrals. This step is the blottleneck of the calculation.

3. Store the numerators and denominators of the self-energy.

4. Compute ωαp using the Newton-Raphson method (Eq.4-3) and Eqs.4-5 and 4-6. Itera-

tions stop when the difference in the value of ωαp between two consecutive iterations is

less than 0.0001 a.u.

The four index integrals transformation is performed by using one of the two modules avail-

able in LOWDIN to perform this task.
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Figure 4-2: Scheme of the operation of the propagator module implemented in LOWDIN

program

4.2.3 Other modifications to the LOWDIN code

The following list shows the modifications and other implementations that have been done

in LOWDIN program as part of this thesis:

1. Implementation of the module integralTransform2 for the four-index inte-

gral transformation: the previous version of LOWDIN had only one module for

integral transformation, based on a modified version of the program of Yamamoto et

al[60], called integralTransform. Although efficient, this module performs the trans-

formation of all the integrals (most of them not required for APMO/P2 calculations)

and uses N4 memory, with N the number of basis set functions. This fact limited the

applicability of the propagator method to small systems. To overcome this limitation,

a second integral transformation module, called integralTransform2, was fully coded

in LOWDIN following a matrix multiplication scheme [61]. The integralTransform2

module, although much less efficient than the integralTransform, has the advantage

of using only N2 memory, expanding the applicability of propagator calculations in

LOWDIN program to larger systems.

2. Implementation of the rotational and translational free schemes proposed

by Nakai (Section 2.4.4). This task was accomplished by modifying the modules

that performs the kinetic and overlap integrals calculation in LOWDIN.

3. Modification of the SCF program to assure convergence of TOP2 calcu-

lations. Using fractional occupations for an orbital can cause orbital rotations that
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Table 4-1: Control variables for propagator calculations in the LOWDIN program

Option Variable type Description
Default

value

IonizeMO INTEGER

Specifies the number of

the orbital to be calcu-

lated

All the or-

bitals are

calculated.

ionizeSpecie CHARACTER

Specifies only one species

for which the propagator

calculation will be run.

All the

species are

calculated

ptTransitionOperator LOGICAL

When .TRUE. activates

the TOP2 method.

Options IonizeMO,

ionizeSpecie and

MOfractionOccupation

are mandatory.

FALSE

MOfractionOccupation REAL

Specifies fractional occu-

pation of the orbital of

interest for the TOP2

method. Values between

0 and 1.

0.5 (Recom-

mended)

prevent SCF to converge. The SCF module of LOWDIN was modified to avoid orbital

rotations and assure convergence of TOP2 calculations.

4.3 Running propagator calculations in LOWDIN

The version 2.0 of LOWDIN program includes second and complete third order diagonal

propagator methods as well as the diagonal second order plus transition operator approach

(APMO/TOP2). Implementation of non-diagonal methods is in progress but it will not be

discussed in this work.

To perform a propagator calculations using LOWDIN, the order of perturbational series

must be specified in the TASKS block using the keyword propagatorTheoryCorrection, as

illustrated in Fig.(4-3). The options to control propagator calculations, described in table

4-1, must be specified in the OPTIONS block.
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SYSTEM_DESCRIPTION=’Water molecule’

GEOMETRY

e-(O) 6-31G 0.0000 0.0000 0.1173 multiplicity=1

e-(H) 6-31G 0.0000 0.7572 -0.4692

e-(H) 6-31G 0.0000 -0.7572 -0.4692

O_16 Nakai-TRF-7SPD 0.0000 0.0000 0.1173

H-a_1 Nakai-TRF-7SPD 0.0000 0.7572 -0.4692

H-b_1 Nakai-TRF-7SPD 0.0000 -0.7572 -0.4692

END GEOMETRY

TASKS

method = "RHF"

propagatorTheoryCorrection=2

END TASKS

CONTROL

! removeRotationalContamination=T

! removeTranslationalContamination=T

END CONTROL

Figure 4-3: Example of input file for APMO/P2 calculations in LOWDIN

4.3.1 Input file examples

Ionization energies for a water molecule using APMO/P2

Figure 4-3 shows the input file to perform a second order propagator calculations of the

water molecule. In this example nuclei and electron are treated as quantum particles. Note

that the GEOMETRY block includes the information of the particles, electronic multiplicity,

and the name and positions of the basis sets to be employed. The TASK block specifies a

restricted Hartree-Fock (RHF) calculation followed by the propagator calculation at second

order (propagatorTheoryCorrection=2). For third order calculations 2 is replaced by 3.

The CONTROL block also includes the options to remove the rotational and translational

contaminations (Section 2.4.4). These options are recommended for calculations where all

nuclei are treated quantum mechanically, although in the present example, they appear

commented (using the symbol !).

The results of the propagator calculation appears at the end of the the output file as a table,
as shown in figure 4-4. The KT and EP2 columns display the Koopmans (Hartree-Fock) and
propagator corrected binding energies in eV, respectively. The P.S. column displays the value
of the pole strength. Columns Sigma a-a and Sigma a-a display the values of Σα

pp and Σβ
pp,

as defined in Eq.(??). Note that the default calculation applies propagator theory to all the
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POST HARTREE-FOCK CALCULATION

PROPAGATOR THEORY:

==============================

PROPAGATOR FORMALISM FOR SEVERAL FERMIONIC SPECIES

ORDER OF CORRECTION = 2

SPECIE: e-

------------------------------------------------------------------------------------

Orbital KT (eV) Sigma a-a Sigma a-b EPT (eV) P.S

------------------------------------------------------------------------------------

1 553.8569 -19.7701 -0.1119 533.9750 0.7631

2 35.8160 -2.5987 -0.4668 32.7505 0.3661

3 18.4704 -1.2463 -0.4830 16.7411 0.6922

4 14.7729 -2.3422 -0.2690 12.1616 0.8494

5 13.3647 -2.9090 -0.2761 10.1797 0.8562

------------------------------------------------------------------------------------

SPECIE: O_16

------------------------------------------------------------------------------------

Orbital KT (eV) Sigma a-a Sigma a-b EPT (eV) P.S

------------------------------------------------------------------------------------

1 4836.1165 0.0000 -24.5030 4811.6135 0.7585

------------------------------------------------------------------------------------

SPECIE: H-a_1

------------------------------------------------------------------------------------

Orbital KT (eV) Sigma a-a Sigma a-b EPT (eV) P.S

------------------------------------------------------------------------------------

1 24.6233 0.0000 -7.6088 17.0145 0.8775

------------------------------------------------------------------------------------

SPECIE: H-b_1

------------------------------------------------------------------------------------

Orbital KT (eV) Sigma a-a Sigma a-b EPT (eV) P.S

------------------------------------------------------------------------------------

1 24.6233 0.0000 -7.6088 17.0145 0.8775

------------------------------------------------------------------------------------

Figure 4-4: Results of APMO/P2 calculations using LOWDIN
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species and all the occupied orbitals of the system. If the user wants to run calculations for
the orbitals of only one species, the option ionizeSpecie needs to be specified. In addition,
if the user is only interested on just one orbital, the option ptJustOneOrbital must be turn
on and the number of the orbital must be specified using the option IonizeMO, in addition
to the species name. For instance, to modify the example presented on figure 4-3 in order
to calculate only the corrected binding energy for the electronic HOMO (5th orbital) of the
water molecule the following options must be added to the CONTROL block:

CONTROL

...

IonizeMO=5

ionizeSpecie="e-"

ptJustOneOrbital=T

...

END CONTROL

Ionization energies for a water molecule using APMO/TOP2

Transition operator calculations are only available at second order. In a single calculation, only

one orbital of one specific species can have a fractional occupation. The default and recommended

occupation is 1/2. The variable ptTransitionOperator must be turn on, and the fractional

occupation must be specified using MOfractionOccupation along with the number of the orbital of

interest and the species it belongs. If the calculation is for electrons, the UHF reference state must

be employed. Fig. (4-5) illustrate how to use these options. The output file for the APMO/TOP2

calculation is shown in Fig.(4-6)
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SYSTEM_DESCRIPTION=’Water molecule’

GEOMETRY

e-(O) 6-31G 0.0000 0.0000 0.1173 multiplicity=1

e-(H) 6-31G 0.0000 0.7572 -0.4692

e-(H) 6-31G 0.0000 -0.7572 -0.4692

O_16 Nakai-TRF-7SPD 0.0000 0.0000 0.1173

H-a_1 Nakai-TRF-7SPD 0.0000 0.7572 -0.4692

H-b_1 Nakai-TRF-7SPD 0.0000 -0.7572 -0.4692

END GEOMETRY

TASKS

method = "UHF"

propagatorTheoryCorrection=2

END TASKS

CONTROL

ionizeSpecie="e-ALPHA"

IonizeMO=5

MOfractionOccupation=0.5

ptTransitionOperator=T

END CONTROL

Figure 4-5: Example of input file for APMO/TOP2 calculations in LOWDIN

POST HARTREE-FOCK CALCULATION

PROPAGATOR THEORY:

==============================

PROPAGATOR FORMALISM FOR SEVERAL FERMIONIC SPECIES

ORDER OF CORRECTION = 2 + TRANSITION OPERATOR

SPECIE: e-ALPHA

------------------------------------------------------------------------------------

Orbital KT (eV) Sigma a-a Sigma a-b EPT (eV) P.S

------------------------------------------------------------------------------------

5 12.1432 0.8333 -0.4043 12.5722 0.3398

------------------------------------------------------------------------------------

Figure 4-6: Results of APMO/TOP2 calculations using LOWDIN



5 Applications of APMO propagator

theory

In this chapter we present the numerical assessment of the propagator methods previously proposed.

The first three sections present calculation for atoms and molecules where nuclei and electrons are

treated quantum mecanically. We assess the performance of the propagator second order propagator

approximations proposed in sections 3.2.5 - 3.2.5 to predict electron and proton binding energies

[35, 62]. We also analyze the impact of removing the translational and rotational contaminations by

comparing with regular electronic structure calculations (in the case of electrons) and experimental

results. A phenomenological characterization of the proton and electron ionization proccesses is

proposed in terms of a decomposition of the self-energy term into its relaxation and correlation

contributions.

5.1 Calculation of electron binding energies

The propagator approximations implemented in LOWDIN program can be employed to perform re-

gular electron propagator calculations based on the BOA approximation. Nevertheless, LOWDIN

program can also performed non-BOA calculations where nuclei and electron are simultaneusly

treated quantum mechanically. In this section we present electron propagator calculations consid-

ering nuclei as quantum particles and analyze the effect of this treatment on the description of the

ionization process and the quality of the predicted electron ionization energies.

5.1.1 Atoms

In table 5-1 we contrast the experimental valence ionization energies for the atoms of the first three

periods of the periodic table with those calculated with regular electronic structure theory and the

APMO approach. APMO results were obtained employing the mass of the most abundant isotope

for each element. The translational contribution to the total energy was removed. We observe that

including NQE in the calculation of ionization energies for atoms only has a minor effect on the

average deviations of less than 0.025 eV.
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Table 5-1: Calculated valence ionization energies (in eV) for atoms. Electronic cc-pVTZ [63] and nuclear 7s7p [24] basis sets

were used.

Ionization EP2 APMO/EP2 TOEP2 APMO/TOEP2 Exp.a

Hb 13.6086 13.5965 13.6086 13.5896 13.5984

He 1S →2 S 24.5513 24.5405 24.2985 24.2882 24.5874

Li 2S →1 S 5.3670 5.3430 5.3678 5.3672 5.3917

Be 1S →2 S 8.9241 8.4646 8.9297 9.2575 9.3226

B 2P →1 S 8.6653 8.6679 8.3441 8.3459 8.2980

C 3P →2 P 11.9391 11.9408 11.3069 11.3083 11.2603

N 4P →3 P 14.4296 14.4308 14.4975 14.4988 14.5341

O 3P →4 P 12.9746 12.9746 13.0900 13.0896 13.6181

F 2P →3 P 16.3797 16.3795 16.9077 16.9089 17.4228

Ne 1S →2 P 20.1000 20.1013 21.1073 21.1078 21.5645

Na 2S →1 S 4.9840 4.9837 4.9841 4.9838 5.1391

Mg 1S →2 S 7.3547 7.3543 7.3571 7.3568 7.6462

Al 2P →1 S 5.9178 5.9181 5.8736 5.8740 5.9858

Si 3P →2 P 8.1110 8.1114 8.0542 8.0549 8.1517

P 4P →3 P 10.4901 10.4907 10.4670 10.4678 10.4867

S 3P →4 P 10.0281 10.0297 10.0181 10.0187 10.3600

Cl 2P →3 P 12.5953 12.5961 12.6902 12.6909 12.9676

Ar 1S →2 P 15.3891 15.3899 15.6029 15.6034 15.7596

∆ 0.3558 0.3831 0.2108 0.1934
a See Refs.[64] for experimental values. b Aug-cc-pVQZ basis set.

∆: Absolute average deviation from experimental values (in eV).
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Figure 5-1: Isotope effects calculated by APMO/EP2 methods in the ionization potential of

hydrogen atom isotopologues. Electronic aug-cc-pVQZ [63] and nuclear 17s [24]

basis sets were used.

5.1.2 Molecules

Now we turn our attention to molecules. In this case we need to take into account the following

considerations:

1. A rigorous treatment of the nuclear-electron wavefunction should consider all nuclei as quan-

tum particles. In that case translational and rotational motions are included in the total

wavefunction. However, as exposed in section 2.4.4, GTOs cannot properly describe trans-

lational and rotational wavefunctions. To deal with this problem, the translational and

rotational contaminations are removed and then an analysis of the impact of this correction

is required.

2. In regular propagator calculations for molecules, ionization energies are associated to vertical

values, with nuclear positions remaining fixed between the original and the ionized state at

any order of perturbation. In the APMO approximation this is not neccesarily true, given

that the self-energy terms include a contribution from nuclear relaxation. As a result, the

expected properties of nuclear wavefunctions, such as expected positions, will change between

the original and the ionized state. In terms of regular electronic structure theory this process

can be interpreted as partially adiabatic. In APMO theory a vertical ionization can be

obtained imposing a nuclear frozen approximation, where nuclear wave functions remain fixed

between the original and the ionized state. At zero order in the APMO theory, propagator

calculations for electrons predict vertical ionization energies because nuclear and electronic

wavefunctions remain frozen during the ionization proccess (Koopmans approximation). In

the case of higher order calculations an analysis of the impact of nuclear-electron relaxation

is still needed to determine the nature of the ionization process.

3. The simultaneous calculation of nuclear and electron wavefunctions in the APMO method

leads to the inclusion of NQEs. The impact on this effect on the study of the electron
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ionization process has to be determined.

In the following subsections we address each of the above points.

Effect of removing translational and rotational motions

Tables 5-2 and 5-3 show a comparison of valence electron binding energies calculated for a set of

small molecules employing APMO-P2 and TOP2 methods and regular electronic structure calcu-

lations using EP2 and TOEP2 methods. The performance of the APMO approach is similar to

that of the regular electronic structure calculations. Differences between the TRC, TF and TRF

treatments are within 0.1 eV for the P2 method and 0.05 eV for the TOEP2 calculation. We also

observe that in the case of the TOEP2 calculation, results considering quantum nuclei are slightly

better than those of regular electronic structure calculation.

A closer inspection to the results of tables 5-2 and 5-3 allow us to conclude that in most of the

cases differences between the regular propagator calculations and the APMO treatment considering

quantum nuclei are small, specially for the case of APMO-TRF calculations. However for molecules

such as methane and silane, differences are much larger. We will come back to this topic shortly

in the section about the impact of NQE on the electron ionization.

Now we analyze results for inner ionizations, where it is expected that nuclei have a larger impact

because of the larger interaction between nuclei and inner electrons. In this case we only compared

the results of APMO-TOEP2 calculations; it has been shown that this method is the most accu-

rate propagator method currently available to calculate inner ionization energies, where electron

relaxation makes up the main contribution to the self-energy term.

In first place we observe than inner ionization energies calculated with APMO methods are smaller

that those of regular structure calculations. We understood this result as an effect of the nuclear

delocalization that reduces the magnitude of the electron-nuclear attraction in comparison with

the BOA approximation, where nuclei are simply point charges. However, this effect seems to

have a negative effect on the quality of the prediction, as demonstrated by the magnitude of the

deviations respect to experimental values of the APMO-TOP2, which are much larger than the

regular TOEP2 calculation. Even the TRF treatment that has a a better performance than TF

and TRC, fails on achieving the same accuracy of the regular BOA treatment. Average deviations

of APMO-TOP2 are at least four times larger than those of regular TOEP2. These results allow

us to conclude that the APMO-TOEP2 treatment underestimates the electron-nuclear interaction

term, in other words, that more nuclear-electron correlation needs to be included to achieved a

better performance.

Now we analyze isotope effects. Figure 5-2 shows the results of the isotope shift between the

electron ionization energy of H2 and D2 molecules. In this case it is clear that the TRF calculation

produces better estimations of isotope effects that its TRC and TF counterparts.
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Table 5-2: Comparison between APMO -TRF -TF -TRC and regular BOA-EP2 calculations of valence and inner valence

ionization energies for a set of small molecules. Values in eV.

Koopmans result APMO-P2 and EP2

Molecule Orbital TRC TF TRF BOA TRC TF TRF BOA Expt.

LiH 1σ 8.037 8.053 8.120 8.172 7.966 7.969 7.940 7.943 7.90

BH3 1e 13.242 13.243 13.317 13.564 12.776 12.778 12.851 13.250 12.30

CH4 1t2 14.443 14.440 14.503 14.838 13.497 13.499 13.573 14.104 13.60

SiH4 1t2 12.923 12.923 12.965 11.936 12.492 12.490 12.518 12.680 12.30

F2 1π 18.169 18.147 18.114 18.093 14.276 14.256 14.227 14.209 15.83

1σg 20.462 20.447 20.433 20.410 20.466 20.456 20.449 20.432 21.10

HNC 1π 13.263 13.277 13.295 13.370 11.937 11.947 11.966 12.055 12.55

HCN 1π 13.470 13.457 13.446 13.469 13.513 13.501 13.492 13.665 13.61

HF 1π 17.469 17.435 17.490 17.528 14.441 14.417 14.548 14.706 16.19

NH3 3a1 11.458 11.453 11.488 11.612 9.671 9.680 9.749 10.179 10.80

2a1 25.202 25.264 25.323 25.677 23.975 22.931 22.998 23.410 23.10

H2O 1b1 13.651 13.631 13.668 13.748 11.213 11.205 11.307 11.506 12.78

1a1 15.486 15.487 15.603 15.740 13.388 13.404 13.554 13.821 14.74

HCI 1π 12.915 12.900 12.927 12.947 12.228 12.216 12.303 12.399 12.70

H2S 2b1 10.420 10.408 10.424 10.462 9.896 9.888 9.970 10.161 10.50

Average Deviation 0.82 0.82 0.86 0.94 0.77 0.72 0.68 0.66

TRC: Translation Rotational Contaminated.

TF: Translation Free.

TRF: Translationa Rotational Free.



5.1
C

alcu
lation

of
electron

b
in

d
in

g
en

ergies
47

Table 5-3: Comparison between APMO-TRF -TF -TRC and regular BOA-TOEP2 calculations of valence and inner valence

ionization energies for a set of small molecules. Values in eV.

Koopmans result APMO-TOP2 and TOEP2

Molecule Orbital TRC TF TRF BOA TRC TF TRF BOA Expt.

LiH 1σ 6.725 6.738 6.802 6.838 7.568 7.562 7.466 7.522 7.90

BH3 1e 11.738 11.755 11.967 12.397 12.233 12.235 12.457 13.163 12.30

CH4 1t2 12.384 12.396 12.467 13.224 12.897 12.901 14.031 14.312 13.60

SiH4 1t2 11.380 11.382 11.434 11.936 11.886 11.885 12.433 12.680 12.30

F2 1π 16.195 16.174 16.143 16.123 14.966 14.946 14.916 14.898 15.83

1σg 18.320 18.308 18.296 18.279 20.971 20.963 20.956 20.941 21.10

HNC 1π 10.649 10.662 10.686 10.785 11.910 11.923 11.945 12.025 12.55

HCN 1π 11.875 11.863 11.854 12.205 13.997 13.983 13.974 13.536 13.54

HF 1π 13.929 13.902 14.033 14.124 15.725 15.690 15.646 15.693 16.19

NH3 3a1 8.921 8.912 8.954 9.216 10.666 10.644 10.645 10.667 10.80

2a1 23.301 23.366 23.419 24.128 23.344 23.494 23.529 23.957 23.10

H2O 1b1 10.572 10.556 10.631 10.763 12.415 12.391 12.409 12.313 12.78

1a1 12.376 12.385 12.644 13.040 14.204 14.218 14.390 14.512 14.74

HCI 1π 11.421 11.407 11.451 11.478 12.628 12.610 12.649 12.588 12.70

Average Deviation 1.48 1.49 1.42 1.27 0.39 0.40 0.37 0.45

TRC: Translation Rotational Contaminated.

TF: Translation Free.

TRF: Translationa Rotational Free.
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Table 5-4: Comparison between APMO-TRF -TF -TRC and regular BOA TOEP2 calculations for 1s orbitals. Values in eV.

TOM values APMO-TOP2 and TOEP2

Molecule Atom TRC TF TRF BOA TRC TF TRF BOA Expt.

HF F 686.10 691.32 692.31 693.09 686.37 691.09 691.67 694.45 694.18

H2O O 533.09 536.91 537.68 539.16 533.40 537.20 537.98 539.81 539.86

H2CO O 532.40 534.20 535.90 538.20 532.95 534.69 536.10 538.83 539.48

C 290.33 291.11 291.69 294.10 290.55 291.26 291.99 294.20 294.47

CO O 535.89 537.84 539.86 541.54 536.29 537.63 540.58 542.20 542.39

C 293.60 294.43 295.88 297.05 294.05 294.88 296.32 297.48 296.13

HCN C 289.55 290.43 291.06 293.13 289.88 290.71 291.21 293.60 293.50

N 401.65 403.04 404.46 406.27 402.23 403.56 404.94 406.89 406.36

N2 N 414.91 416.14 417.74 419.12 405.54 406.77 408.35 409.73 409.83

F2 F 702.57 690.66 706.86 708.83 688.86 691.32 694.02 695.83 696.69

Average Deviation 5.47 3.98 3.60 2.75 5.32 3.42 2.05 0.48

TRC: Translation Rotational Contaminated.

TF: Translation Free.

TRF: Translationa Rotational Free.
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Figure 5-2: Isotope shift of the electron ionization energy between H2 and D2, as calculated

with APMO-HF and APMO-P2 approximations.

Nature of the electron ionization process: adiabatic or vertical ionization?

To gain better insights into the effects of nuclear-electron terms we compared the calculated ioniza-

tion energies for a set of small molecules with and without considering nuclei as quantum particles.

In Table 5-5 we separated the terms contributing to the corrected ionization energy in Eq. (3-10)

and present the Koopmans’ energies, εe−p , and the self-energy terms, Σ
e−,e−(2)
pp and Σ

e−,p+(2)
pp , ob-

tained from EP2, TOEP2, APMO/EP2 and APMO/TOEP2 propagator calculations for a set of

small molecules. A detailed analysis of the regular and APMO energy terms reveals: First, that

in all cases the zero order energy term, εαp , presents the largest energy variations (around 0.22 eV

and 0.20 eV for EP2 and TOEP2 methods, respectively). It is also observed that zero order values

for APMO methods are always smaller that those obtained considering hydrogen nuclei as fixed

particles. Since zero order values correspond to Koopmans approximation, it is not expected that

the observed effect is due to nuclear relaxation. Nevertheless, the lowering in zero order values can

be understood as a consequence of describing nuclei as quantum particles and not as point charges.

In this regard, Gonzalez et al. [32] demonstrated that by treating nuclei as charge densities there

is a lowering of the nuclear-electron attraction energy and consequently a reduction of electron

eigenvalues.

We also observe that differences of the Σ
e−,e−(2)
pp energies in regular and APMO methods are

considerably smaller than those of the εe−p terms. A comparison of Σ
e−,e−(2)
pp in regular and APMO

methods reveals that it is almost the same, with small average variations of 0.0066 eV and 0.0241

eV for EP2 and TOEP2 methods, respectively. The third decomposition term, Σ
e−,p+(2)
pp , contains

both, nuclear-electron relaxation and correlation terms. This term, only appearing in APMO

calculations, contributes little to the total ionization energy, with and average of 0.0171 and 0.0184

eV for APMO/EP2 and APMO/TOEP2 methods, respectively. These results are at least one order

of magnitude smaller than average differences between vertical and adiabatic ionization energies

[65], suggesting a small contribution from nuclear-relaxation terms.
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Table 5-5: Contributions to regular and APMO second order (EP2) and second order plus transition operator (TOEP2)

calculated valence ionization energies (in eV) for the set of small molecules. Electronic cc-pVTZ [63] and nuclear

7s7p [24] basis sets were used. Electrons and hydrogenic nuclei were treated quantum mechanically in APMO

calculations.

EP2 only electrons a APMO/EP2 a

Molecule Orbital (p) εe−p Σ
e−,e−(2)
pp Σ

e−,p+(2)
pp εe−p Σ

e−,e−(2)
pp Σ

e−,p+(2)
pp

LiH 1σ 6.8683 0.7098 0.0000 6.7688 0.6937 0.0518

BH3 1e 12.3965 0.7661 0.0000 11.8568 0.7806 0.0814

NH3 3a1 9.2158 1.4508 0.0000 8.9155 1.4568 0.0112

CH4 1t2 14.8387 -0.7339 0.0000 14.4193 -0.7220 0.0564

SiH4 1t2 13.2412 -0.4085 0.0000 12.8997 -0.3935 0.0759

H2O 1b1 10.7630 1.5528 0.0000 10.5055 1.5572 0.0014

HF 1π 14.1239 1.5691 0.0000 13.8492 1.5725 0.0008

H2S 2b1 9.1727 1.1131 0.0000 9.0836 1.1150 0.0005

HCl 1π 11.4779 1.1099 0.0000 11.3928 1.1094 0.0003

|∆|b 0.2298 0.0066 0.0171

TOEP2 only electrons a APMO/TOEP2 a

LiH 1σ 8.2006 -0.2034 0.0000 8.0661 -0.1765 0.0687

BH3 1e 13.5639 -0.3138 0.0000 13.2001 -0.3059 0.0762

NH3 3a1 11.6128 -1.4338 0.0000 11.4330 -1.4761 0.0054

CH4 1t2 13.2239 1.0883 0.0000 12.4633 1.1197 0.0802

SiH4 1t2 11.9363 0.7433 0.0000 11.4389 0.7663 0.0758

H2O 1b1 13.7510 -2.2419 0.0000 13.5972 -2.2857 -0.0053

HF 1π 17.5288 -2.8211 0.0000 17.4020 -2.8406 -0.0043

H2S 2b1 10.4619 -0.3010 0.0000 10.3988 -0.3282 -0.0010

HCl 1π 12.9461 -0.5474 0.0000 12.8887 -0.5633 -0.0008

|∆|b 0.1969 0.0239 0.0245
a See Ref.[66] for geometry details. b |∆|: Average absolute difference between regular and APMO methods.
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Table 5-6: Decomposition analysis for Σ
e−,p+(2)
pp (in eV) for the set of small molecules a. Electronic cc-pVTZ [63] and nuclear

7s7p [24] basis sets were used. Electrons and hydrogenic nuclei were treated quantum mechanically in APMO

calculations.

APMO/EP2 Σ
e−,p+(2)
pp

Molecule Orbital PRM PRX ORX ERX

LiH 1σ 0.0695 0.0000 -0.0008 0.0000

BH3 1e 0.0810 -0.0014 -0.0034 0.0000

NH3 3a1 0.0139 -0.0031 -0.0053 0.0000

CH4 1t2 0.0649 -0.0029 -0.0056 0.0000

SiH4 1t2 0.0795 -0.0013 -0.0022 0.0000

H2O 1b1 0.0040 -0.0029 -0.0064 0.0000

HF 1π 0.0022 -0.0016 -0.0049 0.0000

H2S 2b1 0.0017 -0.0013 -0.0014 0.0000

HCl 1π 0.0010 -0.0008 -0.0011 0.0000

APMO/TOEP2 Σ
e−,p+(2)
pp

LiH 1σ 0.0518 0.0000 -0.0003 0.0003

BH3 1e 0.0828 -0.0014 -0.0015 0.0015

NH3 3a1 0.0142 -0.0030 -0.0022 0.0022

CH4 1t2 0.0831 -0.0029 -0.0027 0.0027

SiH4 1t2 0.0768 -0.0010 -0.0012 0.0012

H2O 1b1 0.0046 -0.0030 -0.0028 0.0027

HF 1π 0.0026 -0.0017 -0.0020 0.0020

H2S 2b1 0.0019 -0.0013 -0.0007 0.0006

HCl 1π 0.0011 -0.0008 -0.0005 0.0005
a See Ref.[66] for geometry details.
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To explicitly quantify the nuclear-relaxation contribution, we have further decomposed Σ
e−,p+(2)
pp

into four terms, following a procedure analogous to that proposed by Pickup and Goscinski [8, 34]:

Σe−,p+(2)
pp (ωe−p ) =

λe−λp+
∑
ae−

∑
ip+

ap+

|〈pe−ip+|ae−ap+〉|2

ωe−p + εp+i − ε
e−
a − εp+a

+ λe−λp+
∑

ie− 6=pe−

∑
ip+

ap+

|〈pe−ap+|ie−ip+〉|2ne−i np+i
ωe−p + εp+a − εe−i − ε

p+
i

+ λe−λp+
∑
ip+

ap+

|〈pe−ap+|pe−ip+〉|2ne−i np+i
ωe−p + εp+a − εe−i − ε

p+
i

+ λe−λp+
∑
ip+

ap+

|〈pe−ip+|pe−ap+〉|2(1− ne−p )

ωe−p + εp+i − ε
e−
a − εp+a

(5-1)

In the above equation, the first term is the lowest order pair proton-electron correlation term in

the system containing N electrons; it is also known as the pair-removal correlation (PRM). The

second term is an extra correlation arising from excitations of the type
(ie−→pe−
ip+→ap+

)
in the system

containing N − 1 electrons, and it is called pair-relaxation (PRX). The third term is the orbital

relaxation term (ORX) which correspond to single excitations of the type ie− → pe−. The fourth

term is analogous to the third one, but it only appears when the transition operator method is

employed. We call this term extra relaxation (ERX). We highlight here that the first and second

terms contribute to proton-electron correlation, while the third and fourth terms contribute to

proton-electron relaxation.

Table 5-6 reports the decomposition of Σ
e−,p+(2)
pp into the contribution terms mentioned above. A

detailed examination of these contributions reveals that: first, in those cases where Σ
e−,p+(2)
pp has a

significant value (more than 0.01 eV), most of the contribution comes from the pair removal term

(PRM), which is a correlation term. Second, contributions from PRX, ORX and ERX (in the case

of APMO/TOEP2) are always smaller than 0.01 eV. Third, the two relaxation terms, ORX and

ERX, practically cancel out in APMO/TOEP2 calculations.

We observe that the contribution to total electron ionization energies of nuclear-electron relaxations

terms is small (less than 0.01 eV) in the case of EP2 calculations and negligible for TOEP2. We also

find that the largest effects on ionization energies come from zero order values. These observations

clearly indicate that the electron ionization proccess described by propagator approaches based

on APMO wavefunctions does not involve significant changes in nuclear wavefunctions; in other

words, they correspond to electron ionizations with large Franck-Condon factors, which are nearly

vertical.

Impact of NQE on electron ionization energies

Now we analyze the impact of NQE on the accuracy of calculated ionization energies. Results of

tables 5-2 and 5-3 reveals that as observed for zero order values, ionization energies calculated with

APMO propagator methods are smaller than those calculated with regular methods. As previously

discussed, this is a consequence of reduction in nuclear-electron attraction when considering nuclei

as quantum particles. As we will explain shortly, it can be also a consequence of including vibronic

coupling.

We point out that for some molecules, such as CH4 and SiH4, regular propagator methods predict

ionization energies that are much higher than the corresponding experimental values, as shown



5.1 Calculation of electron binding energies 53

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 1  2  3  4

Io
n

iz
a
ti

o
n

 e
n

er
g
y
 (

eV
)

n

Vertical values (Expt.)

Adiabatic values (Expt.)

EP2

TOEP2

APMO/EP2

APMO/TOEP2

Figure 5-3: Calculated ionization energies for n-alkanes (n=1-4). Electronic 6-31++G(d,p)

and nuclear DZSPDN [26] basis set were used.

in tables 5-2 and 5-3. BOA/TOEP2 predictions for CH4 and SiH4 are 0.5 and 0.3 eV larger, in

average, than the first experimental vertical ionization energy, respectively. In the case of these two

molecules, the ionized state experience a Jahn-Teller effect, leading to three possible symmetries in

the ionized state. For the CH4, for example, photoelectron spectra present three bands located at

13.6, 14.4 and 15.0 eV. Consequently, a regular electron propagator calculations, where nuclei are

treated as classical particles in fixed positions, cannot properly predict the lowest ionization energy

due to the lack of vibronic coupling, as demonstrated by Velasco et al. [67, 68].

However, propagator methods based on APMO wavefunctions predict ionization energies for CH4

and SiH4 that are closer to the first experimental ionization energy (13.6 eV), as evidenced in tables

5-2 and 5-3. These results suggest that part of the vibronic coupling can be included considering

hydrogen nuclei as quantum particles. We point out that by describing a hydrogen nuclei as charge

distributions instead of point charges, fluctuations in the potential due to nuclear motion can be

partially accounted for.

Inspired by methane results, we decided to investigate if hydrogen NQE are also observed in other

alkanes. In figure 5-3 we plot the calculated ionization potentials at the regular and APMO methods

for the first four n-alkanes. These results are contrasted with vertical and adiabatic experimental

values. We observe that ionization energies calculated with APMO methods are again in better

agreement with vertical ionization energies. We also find that the inclusion of hydrogen NQE with

APMO approaches leads to remarkable improvements of the calculated vertical ionization energies.

For instance, average deviations from experimental vertical values decrease from 0.39 eV to 0.06

eV with TOEP2 and APMO/TOEP2 approaches, respectively.

To gain a better insight into the origin of the improvement of the ionization energies of n-alkanes

with the inclusion of NQE, we have performed the energy decomposition scheme of Eq. (3-10).

Table 5-7 presents the Koopmans energies, εe−p , the self-energy terms, Σ
e−,e−(2)
pp and Σ

e−,p+(2)
pp ,

obtained from APMO/TOEP2 propagator calculations. We observe in all the systems conside-
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red that zero order energy terms, εep, present the largest energy variations when TOEP2 and

APMO/TOEP2 are compared, as previously shown. On the other hand, APMO/TOEP2 in-

traspecies terms, Σ
e−,e−(2)
pp , are very similar in magnitude while contribution from the interspecies

term, Σ
e−,p+(2)
pp are small. Although hydrogen NQE are mainly due to differences introduced at

zero order, it is important to point out that propagator corrections,Σ
e−,e−(2)
pp and Σ

e−,p+(2)
pp , are

necessary to gain experimental acurracy. The results presented in this section reveal that the ex-

plicit description of the nuclear degrees of freedom may have a significant impact on the description

of the electron ionization process.

Table 5-7: Contributions to the APMO/TOEP2 corrected valence ionization energies (in eV) for

n-alkanes (n=1-4). Electronic 6-31++G(d,p) and nuclear DZSPDN [26] basis sets were

used. Electrons and hydrogenic nuclei were treated quantum mechanically.

Only electrons a APMO method a

Molecule Orbital (p) εe−p Σ
e−,e−(2)
pp Σ

e−,p+(2)
pp εe−p Σ

e−,e−(2)
pp Σ

e−,p+(2)
pp

CH4 5 13.2802 0.8638 0.0000 12.4933 0.9000 0.0701

C2H6 9 12.1736 0.3425 0.0000 11.6141 0.2624 0.0752

C3H8 13 11.2983 0.4932 0.0000 10.9798 0.4491 0.0316

C4H10 17 10.8783 0.4038 0.0000 10.6017 0.3770 0.0288
a See Ref.[66] for geometry details.

5.2 Calculation of proton binding energies

The proton binding energy (PBE) can be defined as the energy change associated to the reaction

AH−→ A− + H+, in other words, corresponds to the energy required to release a proton from a

molecule, an extremely important value that defines the acid behaviour. Given that in an APMO

calculation, protons, as other nuclei, can be treated quantum mecanically, the APMO-propagator

allows the definition of a one proton Green function and the corresponding calculation of proton

binding energies.

In Subsection 5.2.1, we compare experimental and theoretical APMO/HF and APMO/PP2 values

of PBEs. APMO/HF and APMO/PP2 calculations were performed at the experimental geome-

tries [66] with the aug-cc-pVTZ[63] electronic and 7s7p[24] nuclear basis sets using the LOWDIN

program.

5.2.1 Influence of removing translational and rotational motions in

PBEs calculation

We calculated the PBEs for a set of small A-X (X = H, D) molecules at the APMO/HF and

APMO/P2 levels of theory and compared them with experimental values determined via Threshold

Ion-Pair Production Spectroscopy (TIPPS) [69–74]. As in the case of electron ionization energies,

we run calculations for the TRC, TF and TRF APMO wavefunctions.

Results summarized in Table 5-8 reveal that: 1) propagator corrections are very large. For instance,
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Figure 5-4: Isotope shift on proton binding energies calculated with APMO Koopmans and

propagator approximations. Values in eV.

we observe average deviations from experimental results around 9 and 0.2 eV at the APMO/HF and

APMO/P2 levels respectively. 2) predicted PBEs increases in the order TRC<TF<TRF. At the

Koopmans level TRF predictions are worse than those of TF or TRC treatments, and slightly worse

also in the case of P2 calculations. However, differences between TRF, TRC and TF propagator

results are much smaller than those at Koopmans’ level.

The increase of PBE for the TF and TRF treatments can be explained as a result of the localization

experienced by the nuclear wavefunction when these corrections are included [75]. A more localized

nuclear wavefunction interacts stronger with the electrons leading to larger values of PBEs. How-

ever, given that differences between TRF, TF and TRC treatments are small at the APMO/P2

level (0.01 and 0.02 eV) we conclude that the remotion of translational and rotational motions are

not crucial to determine absolute values of PBEs.

Table 5-8: Proton binding energies calculated using APMO Koopmans and propagator approxi-

mations. Values in eV.

Koopmans result Propagator P2

Molecule TRC TF TRF TRC TF TRF Expt.

HF 22.9513 23.0197 24.1554 16.0525 16.0699 16.2889 16.063

DF 23.555 23.6446 24.4389 16.2066 16.2281 16.3909 16.1347

HCl 23.2625 23.3038 24.5459 14.0099 14.0205 14.2751 14.4178

DCl 23.9078 23.9628 24.8449 14.1651 14.1788 14.3671 14.4729

HCN 23.8106 23.8581 24.0368 15.0779 15.0898 15.1335 15.1563

H2S 25.2611 25.3020 26.1179 15.5365 15.5477 15.7392 15.1828

Average Deviation 8.55 8.61 9.45 0.21 0.20 0.22

Instead, the inclusion of TRF corrections could become important to properly described isotope

effects. Experimental data presented in Table 5-8 reveal that deuterated molecules present larger

PBEs than their protonated counterparts. Figure 5-4 compares the magnitudes of the isotopic shifts

on PBEs for H2, HF and HCl molecules as calculated by APMO/HF and APMO/P2 approaches.

As observed in the case of electron binding energies, the APMO approaches suceed on predicting

the right trend of isotope effects, however only the TRF treatment provides results of the same

magnitude of the experimental values, even when absolute values of PBEs predicted with the TRF
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treatment are not better than those obtained with its TRC and TF counterparts.

In addition to the previous discussion, we anticipate that for calculations of PBEs in large systems,

the effect of considering all nuclei as quantum particles could be neglect. Consequently, in the rest

of this section, calculations where run treating hydrogen nuclei quantum mechanically and heavier

nuclei as point charges. In the rest of this section we will see how this approach is enough to provide

excellent predictions of proton binding energies and related properties.

5.2.2 Nature of the proton ionization process

To reveal the nature of the propagator correction for protons, we decomposed the self-energy term

(Eq. (??)) into pair-removal correlation (PRM), pair-relaxation (PRX) and orbital relaxation

(ORX), by following the procedure proposed by Pickup and Goscinski [8, 34]. For the inter-particle

term we have:

Σp+,e−(2)
pp (ωP ) =PRM + PRX + ORX

=
∑
A

∑
i,a

|〈Pi|Aa〉|2

ωP + εi − εA − εa
+
∑
I 6=P

∑
a,i

|〈Pa|Ii〉|2

ωP + εa − εI − εi

+
∑
a,i

|〈Pa|Pi〉|2

ωP + εa − εP − εi
(5-2)

The PRM and PRX terms are related to proton-electron correlation, while the ORX term is related

to electron relaxation after proton release. For all the A-X systems considered in Table 5-9, the

PRX term becomes zero because there is only one occupied proton orbital and the intraspecies

terms are zero because there is only one hydrogen nucleus present in each molecule.

For each of the molecular systems presented in Table 5-9 the magnitude of the ORX term is at least

50 times that of the PRM term. These results allow us to conclude that properly accounting for the

relaxation of the electronic density is crucial for determining accurate PBEs. APMO/HF approach

does not offer a quantitive description of the proton removal because Koopmans’s approximation

lacks relaxation effects. On the other hand, the APMO/PP2 approach recovers enough relaxation

to provide an improved estimation of PBEs. This analysis show that the proton ionization process

keep some characteristics of the ionization of internal electrons, where is well known that relaxation

effects are predominant. Table 5-9 also includes PBEs calculated by the ∆SCF procedure [76] to

estimate the relaxation effects at the APMO/HF level (RXL). Comparison of the ORX and RXL

terms reveals that their magnitudes are similar, suggesting that most of the relaxation effects come

from relaxation at the APMO/HF level [6, 8].

5.3 Application of PBEs calculation

In subsection 5.3.1, we report calculated PBEs for a set of organic molecules and compare them with

reported PAs. The PA of molecule A was calculated by optimizing the molecular structure with an

extra hydrogen atom, HA+, employing the VWN [78] functional and the 6-311++G(2d,2p) [79–82]

electronic basis set and the GEN-A2* [83, 84] auxiliary basis set. Optimizations were performed
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Table 5-9: Comparison between experimental and predicted PBEs calculated with

APMO/HF and APMO/PP2 methods and decomposition analysis for Σ
α,β(2)
PP (ωαP )

(in eV) for a set of small molecules. Electronic aug-cc-pVTZ [63] and protonic

7s7p [24] basis sets were used.

∆SCF Σ
p+,e−(2)
PP

Molecule Expa KT c Value RXL PP2b PRM ORX Total

DF 16.1347 23.3426 15.8203 -7.5223 15.8705 0.1004 -7.5725 -7.4721

HF 16.0630 22.7339 15.5148 -7.2191 15.6708 0.1529 -7.2161 -7.0632

HCN 15.1563 23.6996 14.2678 -9.4318 14.8340 0.1566 -9.0222 -8.8656

DCl 14.4729 23.8216 13.7753 -10.0463 13.9819 0.0950 -9.9347 -9.8397

HCl 14.4178 23.1572 13.4825 -9.6747 13.7764 0.1488 -9.5295 -9.3808

|∆|d 8.1020 0.6768 0.4222
a Determined by TIPPS technique[73, 74, 77]. b APMO/PP2 calculations.

c Koopmans (APMO/HF) values. d|∆|: Average deviation from experiment

using the deMon2k[85] software package. APMO/PP2 calculations were performed with the 6-311G

[79, 80] electronic and DZSPDN[26] nuclear basis sets using the LOWDIN program. The lowest

PBE value for each molecule was reported and compared with the experimental PA.

In subsection 5.3.2, we study the solvation of a proton in water. Structures of the type (H2O)nH+,

with n = 1−7 were modeled. A stochastic algorithm was employed to explore the potential energy

surface of these clusters and generate several cluster candidate structures. Candidate structures

underwent further optimization with the PW91 [86] density functional employing the 6-31++G**

[87, 88] orbital basis set and the GEN-A2* [83, 84] auxiliary basis set, using the deMon2k[85]

software.

In subsection 5.3.3, we estimate the proton hydration free energy. Total energies and PBEs of

(H2O)nH+ were calculated with APMO/HF and APMO/PP2 methods, respectively, employing

6-311G [79, 80] electronic and DZSPDN nuclear basis set [26], using the LOWDIN program [51].

After choosing the lowest PBE for each structure, the solvation energy of the proton was calculated

as a Boltzmann average of all isomeric structures [89, 90].

5.3.1 Prediction of proton affinities

The proton affinity (PA) of a species A is an intrinsic acidity measure. It is defined as the negative

of the enthalpy change of the gas-phase reaction [91]:

A + H+ → AH+ PA(A) = −∆H = −∆E(T ) +RT, (5-3)

here R is the universal gas constant, T is the absolute temperature and ∆E is the energy difference

between the AH+ and the molecule A. In the case of a nonlinear polyatomic molecules, ∆E can

be approximated in terms of translational, rotational, vibrational and electronic thermodinamical
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contributions:

∆E(T ) = ∆Erot(T ) + ∆Etrans(T ) + ∆Evib(T ) + ∆Eele. (5-4)

In an ideal gas approximation, ∆Etrans(T ) = −3
2RT . Values of ∆Erot(T ) becomes negligible

as shown in [92] given that ∆Erot,AH+(T ) ≈ ∆Erot,A(T ) and ∆Erot,H+(T ) = 0. After these

considerations, the PA expression becomes:

PA = −∆Eele −∆Evib +
5

2
RT. (5-5)

In APMO proton propagator calculations, PBEs account for changes due to proton release. In

our calculations electrons and hydrogen nuclei are treated quantum mechanically, consequently,

PBEs include ∆Eele and part of ∆Evib[93] (relaxation of quantum hydrogen atoms). The contri-

butions to ∆Evib(T ) associated to the motion of classical nuclei is assumed to be close to zero, i.e.,

∆Evib,A(T ) ≈ ∆Evib,HA+(T ). Proton affinities for standard conditions of temperature and pressure

(298.15 K and 1 bar) are approximated as:

PA ≈ PBE(AH+) + 0.064 eV (5-6)

where PBE(AH+) is the proton binding energy of the species AH+.

Table 5-10: Comparison between experimental and predicted proton affinities (in eV) using

APMO/HF and APMO/PP2 methods (Eq.5-6) for a set of organic and inorganic

molecules. Electronic 6-311G and protonic DZSPDN basis sets were employed a.

Proton affinity

Molecule Expb KTc P2d

Amines

NH3 8.85 16.68 8.79

CH3NH2 9.32 17.54 9.31

CH3CH2NH2 9.45 17.83 9.48

CH3CH2CH2NH2 9.51 17.89 9.51

(CH3)2NH 9.63 18.21 9.64

(CH3)3N 9.84 18.68 9.82

|∆|e 8.37 0.02

Aromatic

C6H5NH2 9.15 17.78 9.31

C6H5COO− 14.75 22.97 15.07

C6H5O− 15.24 23.70 15.53

|∆|e 8.44 0.26

Inorganic

HS− 15.31 24.24 14.82

CN− 15.31 23.60 14.80

NO−2 14.75 22.72 14.77

|∆|e 8.40 0.34
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Carboxylic Acids

HCOO− 14.97 22.66 14.86

CH3COO− 15.11 23.04 15.22

CH3CH2COO− 15.07 23.04 15.17

CH3(CH2)2COO− 15.03 23.09 15.23

CH3(CH2)3COO− 15.01 23.09 15.24

CH2FCOO− 14.71 22.41 14.65

CHF2COO− 14.32 21.92 14.19

CF3COO− 13.99 21.54 13.85

ClCH2COO− 14.58 22.43 14.63

Cl(CH2)2COO− 14.78 22.53 14.68

CH3COCOO− 14.46 22.40 14.60

|∆|e 7.83 0.12

|∆|e Total 8.12 0.14

a Geometries optimized at VWN/6-311++G(2d,2p) level.

Regular electronic structure calculation.

bReferences [94–98]

c APMO/HF proton affinities

d APMO/PP2 proton affinities

e|∆|: Average absolute difference.

In Table 5-10 we contrast the calculated PAs using APMO methods (employing Eq. (5-6)) and

experimental values[94–98] for a set of inorganic and organic molecules. The reported PAs are

associated to the proton with the lowest PBE, highlighted with green circles in Figures 5-5, 5-6,

5-7, and 5-8. We observe in Table 5-10 that the total average deviation from experiment for

APMO/PP2 is 0.14 eV (3.23 kcal/mol), which is one order of magnitude smaller than the average

deviation with the APMO/HF method. Table 5-10 also shows partial average deviations calculated

for molecules with the same functional group. We observe that predictions with the APMO/PP2

method for amines and carboxylic acids are in excellent agreement with experiment, with average

deviations of 0.02 (0.46) and 0.12 (2.77) eV (kcal/mol). Figures 5-5 and 5-6 compare observed

experimental trends for PAs associated to the homologous series of amines and carboxylic acids

with those calculated with APMO methods. We observe that both APMO/HF and APMO/PP2

reproduce the decreasing trend in the acidity of the ammonium ions (associated to to the increasing

trend in basicity of amines) and the decreasing trend in the acidity of carboxylic acids. However,

only APMO/PP2 produces quantitatively accurate results.

For aromatic and inorganic molecules we observe larger deviations. This can be attributed to large

nuclear relaxation effects that are not completely recovered at the APMO/PP2 level. Therefore,

higher order proton propagators are required for more accurate calculations of the PAs of these

systems.
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Figure 5-5: Proton affinities for primary amines (in kcal/mol), calculated at APMO/HF and

APMO/PP2 levels. Electronic 6-311G and protonic DZSPDN basis sets were

used.

Figure 5-6: Proton affinities for terminal carboxylic acids (in kcal/mol), calculated at

APMO/HF and APMO/PP2 level. Electronic 6-311G and protonic DZSPDN

basis sets were used.
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Figure 5-7: Proton affinities for substituted amines (in kcal/mol), calculated at APMO/PP2

level. Electronic 6-311G and protonic DZSPDN basis sets were used.

Figure 5-8: Proton affinities for substituted cloro-acetic acids (in kcal/mol), calculated at

APMO/PP2 level. Electronic 6-311G and protonic DZSPDN basis sets were

used.
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Despite the observed limitations, APMO/PP2 calculations are capable of providing reliable pre-

dictions of PAs, reproducing chemical trends in acidity. For instance, in Figures 5-7 and 5-8 we

present calculated PAs for series of substituted organic compounds. We observe in Figure 5-7 how

APMO/PP2 calculations properly predict differences in acidity between primary, secondary and

ternary amine ions. Inductive effects in acetic acid are also well described, as shown in Figure 5-8.

5.3.2 Analysis of protonated water structure employing PBEs

A PBE, when defined as a measure of the energy required to extract a selected proton from a

molecule, can be employed to analyze the propensity of a proton to be released. This feature is

exploited here to study of proton hydration.

To that aim, we calculated total energies and PBEs for a set of protonated water clusters, (H2O)nH+,

employing the APMO/HF and APMO/PP2 approaches. Geometries for clusters containing n =

2 − 7 water molecules were generated by employing a stochastic search algorithm. A total of 10,

20, 11, 26, 16 and 18 structures were generated for n = 2− 7, respectively. Additional geometries,

reported by Hodges et al[99] were also considered in this analysis.

Of all possible geometries generated for each n, we analyzed only those presenting the Lowest

Total Energy (LTE) and the Lowest Proton Binding Energy (LPBE). LTE structures are of special

importance because they are expected to resemble the most stable geometrical configuration of

a hydrated proton in solution whereas LPBE structures are related to geometrical configurations

where protons can be more easily donated. The geometries of LTE and LPBE are shown in Table

5-11.

We observe that the LTE and LPBE structures for n = 1 are the same. Structures for n = 2, 3

are very similar, presenting only small variations in dihedral angles between water molecules. For

n = 4 the LTE structure is the H9O+
4 eigencation, where the H3O+ cation is linked to three water

molecules through single hydrogen bonds. This structure has been already identified as the most

likely solvation structure for the hydrated proton [100]. In constrast, the LPBE structure presents

a four–member ring comprising an H3O+ cation and three water molecules, one of them linked to

the other two through a two–donor one acceptor hydrogen bond. Similar ring configurations have

been observed in pure water clusters [101–103].

At this stage large differences in the distribution of PBEs are observed. As shown in 5-12, for

structures with n = 4, differences in PBEs between all the protons of the LTE structures do not

exceed 1.2 kcal/mol . These results indicate that in the case of the H9O+
4 eigencation, protons

are already equivalent. This effect can be associated to “proton resonances” observed in molecular

dynamics simulations [100]. In constrast, differences in the PBEs for the LPBE structures reach

up to 16.4 kcal/mol and protons are consequently not equivalent. Protons associated to the double

acceptor water molecule present the smallest PBEs for n ≥ 4, as shown in Table 5-11. This

finding indicates that proton detachment on the LPBE structure produces a hydroxyl anion, that

eventually leads to a ring structure where a H3O+ and OH− coexist.

For n > 4, LTE structures present a H9O+
4 eigencation surrounded by water molecules forming

single hydrogen bonds. For n = 7, protons in the water molecules attached to the H9O+
4 cation

have the smallest PBEs and are expected to be more reactive. For n > 4, LPBE structures maintain

the features of the LPBE with n = 4, exhibiting ring structures composed by a H3O+ cation and
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water molecules. As for n = 4, the ring comprises a double hydrogen-bond acceptor water molecule

that has the protons with the smallest PBE.

Table 5-12 also shows differences in total energies (DTE) and differences in lowest PBEs (DPBE)

between LTE and LPBE structures, revealing that DTE are always smaller than DPBE for n > 2.

This fact suggests that although LTE and LPBE structures have similar total energies and can

coexist in gas phase and even in liquid water, the LPBE configurations are considerably more

reactive towards proton transfer than LTE structures.

In summary, the study of PBEs and total energies of protonated water clusters allows us to conclude

that protons with the largest susceptibility to be released, present in LPBE structures, are not those

belonging to H3O+ but those in double hydrogen-bond acceptor water molecules. We also point

out that even when LTE and LPBE structures have similar total energies, they have different

reactivities towards proton donation.

5.3.3 Estimation of proton hydration free energy

The proton hydration free energy, ∆Ghyd(H
+) is required for calculating acidity constants in water.

[104–108]. Regular approaches for estimating ∆Ghyd(H
+) usually involve taking the limit of the

difference between free energies of neutral and protonated n-water clusters as n increases[92, 108,

109].

Alternatively, we propose to utilize our propagator approach to estimate proton hydration energies

by considering the PBEs calculated for the set of protonated water clusters of the previous section.

The proton hydration process can be associated to the following reaction:

H+
(gas) → H+

(aq) (5-7)

As a first step, this process can be approximated by the reaction:

H+
(gas) + (H2O)n → H(H2O)+

n (5-8)

Enthalpies of Eq. (5-8) are calculated using Eq. (5-3) and Eq. (5-6). The entropy change is

obtained using the equation:

∆S = SH(H2O)+n
− S(H2O)n − SH+

(gas)
, (5-9)

where ∆S includes the entropy contribution of the free proton, S(H+), and the difference in entropy

of the structures, SH(H2O)+n
− S(H2O)n . Calculation of the proton entropy change using the Sakur-

Tetrode equation[92, 104, 110] yields the entropy factor, TSH+
(gas)

= 7.76 kcal/mol at standard

conditions of temperature and pressure (STD). Assuming that SH(H2O)+n
−S(H2O)n is negligible, the

change in entropy and the change in free energy can be approximated as:

T∆S = −7.76kcal/mol (5-10)

∆G = ∆H − T∆S (5-11)

∆G ≈ PBE− 5

2
RT − (−7.76kcal/mol) (5-12)

∆G ≈ PBE + 6.28kcal/mol (5-13)
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Table 5-11: Protonated water clusters with the Lowest Total Energy (LTE) and the Lowest

Proton Binding Energy (LPBE) for n = 1 − 7. Protons with the lowest PBEs

are highlighted with green circles.

na LTEb LPBEc

1

2

3

4

5

6

7

a Number of water molecules

b Structure with the lowest total energy

c Structure with the lowest proton binding energy
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Table 5-12: Lowest and highest proton binding energies (PBEs) calculated for protonated

water clusters with the Lowest Total Energy (LTE) and the Lowest Proton

Binding Energy (LPBE) for n = 1− 7. Differences in total energies and lowest

PBEs between LTE and LPBE structures are also included. The APMO/PP2

method, with electronic 6-311G and protonic DZSPDN basis sets, was used. All

values in kcal/mol.

na LTEb LPBEc DTEd DPBEe

LPBEf HPBEg LPBEf HPBEg

1 156.1 156.1 156.1 156.1 0.00 0.00

2 205.4 220.2 204.8 219.8 0.30 0.68

3 246.0 256.9 242.9 256.0 0.67 3.02

4 274.4 275.6 252.3 268.7 4.53 22.06

5 284.2 300.5 262.1 289.9 2.96 22.10

6 289.9 318.6 261.6 312.0 5.49 28.30

7 280.1 298.0 267.6 324.1 8.91 12.46

a Number of water molecules.

b Structure with the Lowest total energy.

c Structure with the Lowest proton binding energy.

d Difference in total energy between LTE and LPBE structures.

e Difference in lowest PBE between LTE and LPBE structures.

f Lowest proton binding energy in the structure.

g Highest proton binding energy in the structure.



66 5 Applications of APMO propagator theory

Table 5-13: Thermodynamic properties: ∆E, ∆H, T∆S and ∆G (in kcal/mol) calculated

for protonated water clusters n = 1 − 7 employing the APMO/PP2 method.

Electronic 6-311G and protonic DZSPDN basis sets were used.

na Nb PBEc ∆E ∆H T∆S ∆G

1 1 156.1 -157.0 -157.6 -7.76 -149.8

2 10 205.0 -205.9 -206.5 -7.76 -198.7

3 20 243.9 -244.8 -245.4 -7.76 -237.6

4 11 256.7 -257.6 -258.2 -7.76 -250.4

5 26 258.9 -259.8 -260.4 -7.76 -252.6

6 18 266.7 -267.6 -268.2 -7.76 -260.4

7 20 276.5 -277.4 -278.0 -7.76 -270.2

a Number of water molecules in cluster.

b Number of structures found.

c APMO/PP2 results

Average ∆Es were calculated using Boltzmann factors that are based on the total energies of the

cation and neutral clusters. The Boltzmann-weighted average energy of the cationic cluster is

subtracted from its neutral counterpart to produce PBEs for a given n.

Thermodynamic properties calculated at the APMO/PP2 level using the previous equations are

presented in Table 5-13. Values of ∆G as a function of n are shown in Figure 5-9; results at

APMO/HF level were also included for comparison.

An analysis of our results reveals that trends in ∆G calculated at APMO/HF and APMO/PP2 level

are similar, decreasing as n increases and presenting a smooth slope for n > 3. However, only the

APMO/PP2 approach reproduces quantitatively proton hydration free energies, as evidenced by

values of ∆G for n = 6− 7 (-260.4 kcal/mol and -270.2 kcal/mol, respectively). These estimations

are in excellent agreement with experimental and calculated proton hydration energies quoted in

literature [92, 107–109, 111, 112].

We suggest that a faster convergence on ∆G with respect to n could be achieved by including long–

range solvent effects, as shown by other authors [92, 108, 109]. Nevertheless, the results presented

here demonstrate that the proton propagator is a promising tool for predicting acid/base properties

such as the proton hydration free energy.
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Figure 5-9: Proton solvation energy free energies (in kcal/mol) calculated for protonated

water clusters, ∆G, as a function of n, employing the APMO/PP2 method.

Electronic 6-311G and protonic DZSPDN basis sets were used. Values quoted

in literature [92, 108, 109, 111, 112] are included for comparison.



6 Conclusions and perspectives

In this work we presented an extension of the propagator theory for the APMO approach. We

derived expressions for the second order APMO/PT using the APMO/HF wavefunction as refe-

rence state and implemented these equations in the LOWDIN program. We performed sample

calculations with the APMO/PT method on a set of atoms and small molecules to determine its

accuracy and performance.

As a first application of our method we studied NQE and isotope effects on molecular electronic

ionization calculations. In this case, we determined the importance of substracting the translational

and rotational contamination. Our results allowed us to conclude that the properly study of electron

ionization energies within the APMO framework requires the inclusion of higher orders of nuclear

electron correlations, specially to calculate inner ionization energies. We also found that calculation

of electron ionization energies using APMO/PT could give insights into the Jahn-Teller effects on

photoelectron spectra experienced by some systems such as methane. Despite of the limitation of

second order approximations, it was also shown that the APMO/P2 method suceeds on describing

isotope effects on electron ionization energies, especially when the rotational and translational

contaminations are removed.

As a second applications we utilized the APMO/PT method to calculate PBEs and PAs for a

set of inorganic and organic molecules. Our results revealed that the APMO/P2 approximation

suffices to quantitatively reproduce experimental trends in PBE with an average deviation of less

than 0.22 eV, with small influence of TRF and TF corrections. We also estimated proton affinities

with an average deviation of 0.14 eV and the proton hydration free energy using APMO/P2 with

a resulting value of -270.2 kcal/mol, in agreement with results reported in literature. The results

presented so far allow us to conclude that the proton propagator is a promising tool for calculating

and understanding acid/base chemistry, with the PBE as a reactivity index that gives information

of the relative acidity of protons in a molecule.

We believe that the proposed methodology opens up a wide range of applications in molecular

ionization studies of systems containing electrons, nuclei and other exotic particles such as muons

and positrons. We are currently exploring the application of our approach to study positron binding

energies and extending our method to renormalized non-diagonal versions of second and third order

with the aim of achieving higher accuracy in our calculations. Future work also will be devoted to

estimation of pKa values by combining our method with implicit solvent models and calculation of

PAs for large systems using a divide and conquer approach [113].
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[39] Per-Olov Löwdin. Studies in perturbation theory. ix. connection between various ap-

proaches in the recent development—evaluation of upper bounds to energy eigenvalues in

schr[o-umlaut]dinger’s perturbation theory. J. Math. Phys, 6(8):1341–1353, 1965. doi:

10.1063/1.1704781.

[40] Hiromi Nakai, Minoru Hoshino, Kaito Miyamoto, and Shiaki Hyodo. Elimination of trans-

lational and rotational motions in nuclear orbital plus molecular orbital theory. J. Chem.

Phys., 122(16):164101–164101, 2005.

[41] Kaito Miyamoto, Minoru Hoshino, and Hiromi Nakai. Elimination of translational and rota-

tional motions in nuclear orbital plus molecular orbital theory: Contribution of the first-order

rovibration coupling. J. Chem. Theory Comput., 2(6):1544–1550, 2006.
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