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Summary

Time series models are often used in hydrology and meteorology to model

streamflows series in order to make forecasting and generate synthetic series

which are inputs for the analysis of complex water resources systems. In this

paper we introduce a new modeling approach for hydrologic and meteorological

time series assuming a continuous distribution for the data, where both the

conditional mean and conditional variance parameters are modeled. Bayesian

methods using standard MCMC (Markov Chain Monte Carlo Methods) are

used to simulate samples for the joint posterior distribution of interest. Two

applications to real data set illustrate the proposed methodology, assuming that

the observations come from a normal, a gamma or a beta distribution. A first

example is given by a time series of monthly averages of natural streamflows,
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measured in the year period ranging from 1931 to 2010 in Furnas hydroelectric

dam, Brazil. A second example is given with a time series of 313 air humidity

data measured in a weather station of Rio Claro, a Brazilian city located in

southeastern of Brazil. These applications motivate us to introduce new classes

of models to analyze hydrological and meteorological time series

Keywords: Hydrology time series data, Meteorological time series, Condi-

tional regression models, Bayesian analysis, MCMC methods.

1 Introduction

Time series models are often used in hydrology to model streamflow series in

order to make predictions and to generate synthetic series which are inputs

for the analysis of complex water resources systems (see, for example, Salas et

al., 1980, 1982; Hosking, 1984; Hipel & McLeod, 1994; Montanari et al., 1997;

Hasebe et al., 2000). In many studies, hydrologists also use time series data for

displaying the amount of rainfall that has fallen in a region for the past day,

year or a period of 10 years (see for example, Guimaraes & Santos, 2011, and

Lee & Lee, 2000).

Modeling hydrological variability is very important in the planning and

management of water resources. Many aspects of the hydrologic cycle could

be described by time series data. Researches, usually use time series data to

evaluate the resources of a water basin. Important variables related to stream-

flow and watershed describe streamflow properties such as monthly flows or

streamflow parameters. A time series model estimates the streamflow param-

eters. Different time series models as ARMA and higher orders of MA models

have been used by some authors when considering hydrologic regionalization of

watersheds (see for example, Chiang et al., 2002 a, b). Spectral analysis and

forecasting of hydrological time series also is considered by some authors (see,

for example, Marques et al., 2006).

Considering hydrological time series, the monthly streamflow series typically

have a periodic behavior in the mean and variance and in general, periodic

autoregressive models are adopted in de analysis of the data (see, for example,
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Modal & Wasimi, 2006). In this situation, usually it is assumed that the series

flow has a normal or log-normal distribution(see for example, Tesfaye et al.,

2006; Wang et al., 2009).
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Figure 1: Time series of monthly averages of natural Streamflows, measured in

the period 1931 to 2010, in Furnas hydroelectric dam, in southeastern Brazil.

Similar behavior have meteorological time series. In this case, given that

the relative air humidity is a random variable taking values in the open interval

(0, 1), usually it is assumed a beta distribution to analyze the data. Another

possibility to analyze the data set is to consider a transformation of the data

and to assume a normal distribution to the transformed data. As especial case,

we could assume a logistic transformation.

In this paper, a more general assumption is considered in the analysis of the

hydrological or meteorological time series conditional to the historical available

information: it is assumed that the data is generated from a normal, lognormal,

gamma or beta distribution, with conditional mean and variance, given respec-

tively, by E(Yt|Yt−1) and V (Yt|Yt−1). Thus a general model is proposed to ana-

lyze hydrological or meteorological time series, assuming that the observations

come from to the continuous biparametric exponential family of distribution.

To illustrate and motivate the use of the proposed models, we first consider a

data set consisting of the time series of monthly averages of natural streamflows,
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Figure 2: The air humidity time series data and the fitted periodical mean.

measured in the year period ranging from 1931 to 2010, in Furnas hydroelectric

dam, located in southeastern Brazil. This time series is shown in Figure 1. From

Figure 1, we observe that the streamflow series have a periodic behavior in the

mean and variance and in general periodic autoregressive models are assumed

in the analysis of this kind of time series data (Modal & Wasimi, 2006).

To take into account this heteroscedasticity in the time series of streamflows,

the model proposed in this paper assumes seasonal and autoregressive terms in

the modeling of the mean and variance parameters. In this way, we propose

a periodic and heteroscedastic model, in which the variance also presents a

autoregressive structure.

A second example, with behavior similar to the assumed hydrological time

series, we consider a meteorological time series given by weekly averages of air

humidity, measured in the city of Rio Claro, São Paulo state, Brazil. This

time series is displayed in Figure 2. In this case, given that the relative air

humidity is a random variable taking values in the open interval (0, 1), it is

assumed a beta distribution in the analysis of the data. Thus, a joint mean and

variance beta regression model, including seasonal and autoregressive terms in

both, mean and variance models, is proposed in this paper to analyze this type
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of data sets.

This paper is structured as follows: in section 2, the seasonality analysis

of the time series is introduced. In section 3, seasonal autoregressive models

are proposed. Section 4 present the results of the analysis of the hydrological

time series obtained using the proposed models, assuming normal and gamma

distributions. In section 5, the results of the analysis of air humidity time series

are presented. Finally, in section 6 some conclusions and future research topics

are included.

2 A Period model

In this section, we introduce a new modeling approach that includes seasonality

terms which better describes time series of monthly averages of natural stream

flows, denoted by Yt. As illustration, we consider a time series of monthly aver-

ages of natural Streamflows in Furnas hydroelectric dan, introduced in section 1

(see Figure 1). A spectral analysis is developed for this time series to determine

the time periods to be considered in the mean and variance model formulation.

Thus, if in the spectral analysis, the number of observations is T = 2q + 1,

where q is a positive integer number, the Fourier time series model given by,

yt = α0 +

q∑
i=1

(α1i cos(2πfit) + α2i sin(2πfit)) + ei (1)

is fitted, where fi = i/T is the ith harmonic of the fundamental frequency 1/T

and, α1i and α2i, i = 1, . . . , q, are the related coefficients and ei is an error term

assumed to have a particular parametric distribution.

Observe that the highest frequency is 0.5 cycle per month (time interval)

since the smallest period is 2 months. In the time series formulations to be

introduced in Section 3, only frequencies whose periods have a higher intensity

are considered.

Usually, in the case of monthly time series, these periods are given by periods

of 6 and 12 months. These periods will be presented in Section 4, where the

specification of the parameters related to the periods in done jointly with the
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specification of the parameters for the autoregressive models assumed for the

mean and variance. If some of these parameters show to be not significative

after a preliminary statistical analysis, the terms related to these parameters

are excluded from the model to develop a further analysis.

3 The Proposed Seasonal Autoregressive Model

In hydrological or meteorological time series, we assume that the observations of

interest variable are generated from a conditional continuous probability distri-

bution function. As special cases, we could assume that the observations were

generated from standard conditional probability distributions as normal,log-

normal, gamma, beta or exponential conditional density functions, denoted by

f(yt|Ht−1), t = 1, 2, . . . , n, where Ht−1 is the available information up time

t − 1 and thus Yt has conditional means and variances given respectively by

µt = E(Yt|Ht−1) and ht = Var(Yt|Ht−1), following the models:

µt = α0 +

q∑
i=1

(α1i cos(2πfit) + α2i sin(2πfit)) +

p∑
i=0

ϕiyt−i (2)

log(ht) = λ0 +

s∑
i=1

(λ1i cos(2πfit) + λ2i sin(2πfit)) +

r∑
i=0

θiyt−i + ϵi (3)

where β = {ϕ0, ϕ1, . . . , ϕp, α11, . . . , α1q, α21, . . . , α1q}, is the vector of param-

eters for the mean model and γ = {θ0, θ1, . . . , θr, λ11, . . . , λ1s, λ21, . . . , λ1s} is

the vector of the parameters of the variance model, fi = i/T the ith harmonic

of the fundamental frequency 1/T , and ϵi ∼ N(0, τ2), where the variance τ2

is an unknown parameter, N(a, b2) denotes a normal distribution with mean

equals to a and variance equals to b2. These parameters are estimated using a

Bayesian approach.

In order to illustrate the proposed methodology, we also include the equa-

tions to relate the mean and variance parameters in the gamma and beta dis-

tributions.

1. If Yt, t = 1, 2, . . . , n, follows a gamma conditional distribution G(pt, qt),

where G(p, q) denotes a gamma distribution with mean pq and variance
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pq2, the conditional mean and variance are related to the original param-

eters by the equations µt = ptqt and ht = µtqt.

2. If Yt, t = 1, 2, . . . , n, follows a beta distribution function B(pt, qt), the

reparametrization of the beta distribution density as function of the mean

and precision, ϕt = pt + qt, result to be appropriate in order to de-

fine the joint mean and precision beta regression models as appear in

Cepeda(2001). This reparametrization, where ϕ = p + q, p = µϕ and

q = ϕ(1 − µ), has been intensively used in the literature following the

joint modeling approach for the mean and precision beta parameters in-

troduced by Cepeda-Cuervo (2001) and Cepeda and Gamerman (2005),

under a Bayesian approach. It is important to point out that Ferrari and

Cribari-Neto (2004) also introduced modeling for the mean but consider-

ing constant precision parameters, under a classical approach. In all of

these cases, ϕ can be interpreted as a precision parameter in the sense

that, for fixed values of µ, larger values of ϕ correspond to smaller val-

ues for the variance of Y . This is not an easy interpretation. Thus, in

this paper, we use the mean and variance reparametrization of the beta

distribution function in the definition of joint mean and variance beta

regression models, taking into account µ(1−µ) > σ2, samples of the pos-

terior distribution of the parameters should be simulated in the subspace

of parameters that satisfy this property. Although this reparametrization

result in a complex expression for the beta distribution, it leads to a best

and more easily interpretation for the statistical analysis results in the

applications. In this reparametrization,

pt =
(1− µt)µ

2
t − µtσ

2
t

σ2
t

(4)

qt =
(1− µt)[µt − µ2

t − σ2
t ]

σ2
t

(5)

where the autoregressive seasonal beta regression model have the condi-

tional mean and variance model given by the equations (2) and (3).

Special cases can be proposed easily from this model. A first one, is a sea-

7



sonal mean model, with mean given by (2) and autoregressive variance without

seasonal terms. A second one, a seasonal mean model, with mean given by (2)

and seasonal variance without autoregressive terms. A third one, the autore-

gressive mean and variance model, without seasonal terms in the mean and in

the variance. A fourth one, an autoregressive model, with constant variance.

4 Hydrological Time Series

In this section we also consider as a motivation for the introduction of new

modeling for hydrological time series, the Furnas dam hydroelectric hydrolog-

ical time series introduced in section 1, assuming autoregressive conditional

heteroscedastic models.

As in Cepeda-Cuervo et al. (2012), the first step in the proposed analysis

is to determine the period for the harmonics of higher intensity in the spectral

analysis of the Stream flows data. In this way, we note that the harmonics of

higher intensity corresponds to the cycle (1/fi) of 6 and 12 months. Thus, the

seasonal term to be included in the mean equation model of the streamflow

series are given by: cos
(
2π
6 t

)
, sin

(
2π
6 t

)
, cos

(
2π
12 t

)
and sin

(
2π
12 t

)
.

Many autoregressive models could be assumed to analyze this data set. As

special cases, in section 4.1, we assume a normal conditional distribution and in

section 4.2, we assume a conditional gamma distribution. In order to apply the

Bayesian methodology independent normal prior distributions N(0, 10k), with

k = 2, are assumed for the parameters associated with the seasonal terms. For

the other parameter in the model, independent normal prior distributions with

k = 5 are assumed. For the parameter σ2
e , the variance of the error term intro-

duced in equation (1), we assume a gamma prior distribution, G(0.001, 0.001).

Observe that we are assuming very non-informative prior distributions for all

parameters.
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4.1 Normal seasonal time series

In this section, we present the results of the analysis of the time series of monthly

averages of natural streamflows, measured in the period 1931 to 2010, in hydro-

electric dam introduced in Section 1, assuming joint mean and variance autore-

gressive normal models. From the model given by equations (2) and (3), many

autoregressive models were considered and the obtained model with smallest

DIC (Deviance Criterion Information, introduced by Spiegelhalter et al, 2002)

value was the heteroscedastic normal regression model with conditional mean

and variance models given respectively by

µt = β0 + β1cos(2πt/6) + β2sin(2πt/6)

+β3cos(2πt/12) + β4yt−1 + β5yt−2 (6)

h2t = exp(γ0 + γ1yt−1 + γ2yt−3 + γ3cos(2πt/12) + et) (7)

Samples of the joint posterior distribution of interest were simulated using

standard MCMC (Markov Chain Monte Carlo) methods and the free available

WinBugs software (Spiegelhalter et al, 2003). In each of the cases, many sam-

ples were generated starting from different initial values. All of them showed

the same behavior, after a small burn-in period consisting of 3000 or 5000 gener-

ated samples.Convergence of the simulation algorithm was observed from trace

plots of the generated Gibbs samples.

For the model given by equations (6) and (7), the value of the logarithm of

the likelihood function evaluated at the obtained estimates for the parameters

of the model was given by −2logL = 10479.200 and the obtained DIC criterion

value used in Bayesian discrimination of models was given byDIC = 10876.500.

Monte Carlo estimates of the posterior means for each parameter based on the

generated Gibbs samples and their respective standard deviations are given,

respectively, in Tables 1 and 2 for this model including both autoregressive and

seasonal terms in the conditional mean and variance terms.
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Parameter β0 β1 β2 β3 β4 β5

Mean 77.44
(6.409)

62.1
(5.557)

40.45
(5.597)

162.7
(9.71)

0.674
(0.03023)

0.124
(0.02258)

Table 1: Double Normal seasonal model: Mean parameters estimates.

Parameter γ0 γ1 γ2 γ3 σ2
e

Mean 7.926
(0.1563)

0.002357
(2.097E−4)

5.559E − 4
(2.452E−4)

1.743
(0.1351)

1.005
(0.1768)

Table 2: Normal seasonal regression model:Variance parameters estimates.

4.2 Gamma seasonal time series

In this section we present the results of the analysis of the time series for

monthly averages of natural streamflows, measured in the period 1931 to 2010,

in Furnas hydroelectric dam, assuming joint mean and variance autoregressive

gamma models, that is, we assume that the observations of the interest are gen-

erated from a conditional gamma density function given by f(yt|Ht−1), where

Ht−1 is the information up to time t− 1 and Yt has conditional mean and con-

ditional variance given respectively by µt = E(Yt|Ht−1) and σ2
t = Var(Yt|Ht−1),

respectively, and defined by (6) and (7). For this model, the logarithm of the

likelihood function evaluated at the estimates for the parameters of interest is

given by −2logL = 10649 and the DIC value is given by 10862.300. Using the

DIC criterion to discriminate the two models (normal seasonal time series and

gamma seasonal time series), we observe better fit of the data for the gamma

seasonal time series model, since we have smaller DIC value for this model. The

posterior parameter estimates of the parameter together with the corresponding

standard deviation are given in Tables 3 and 4.

Parameter β0 β1 β2 β3 β4 β5

Mean 78.74
(7.126)

60.2
(5.645)

41.59
(5.567)

176.6
(8.615)

0.7239
(0.03278)

0.1181
(0.0238)

Table 3: Gamma seasonal model: mean parameters estimates.

Although the mean estimates given in Tables 1 and 3, and variance estimates

given in tables 2 and 4, show some agreement between the conditional normal
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Figure 3: Time series of monthly averages of natural Streamflow and normal

fit mean estimates.)
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Figure 4: Squared root of the expected volatility in the normal time series.

Parameter γ0 γ1 γ2 γ3 σ2
e

Mean 7.942
(0.1394)

0.002513
(1.829E−4)

5.467E − 4
(2.151E−4)

1.595
(0.1156)

0.3342
(0.107)

Table 4: Gamma seasonal model: variance parameters estimates.
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and gamma estimates, the DIC value of the conditional gamma models is smaller

than the DIC value of the conditional heteroscedastic models, showing that the

second model is better fitted by the monthly averages of natural streamflows

data.

5 Beta mean and variance seasonal applied to time

series analysis

In this section it is assumed that the time series data come from a beta dis-

tribution B(pi, qi), with mean and precision given respectively by (2) and (3).

To illustrate the application of the model we consider the time series of weekly

averages air humidity, measured in Rio Claro, located in southeastern Brazil,

from 18/10/2002 to 08/10/2008. This time series introduced in section 1, is

show in Figure 2.

5.1 Spectral analysis

As in Cepeda et al., (2012), the first step in the proposed analysis is to determine

the period of harmonics of higher intensity in the spectral analysis of the Stream

flows data. From this paper, we note that the harmonics of higher intensity

corresponding to the cycle (1/fi) of 26 and 52 days. Thus, the seasonal term

to be included in the mean equation model of the streamflow series are given

by: cos
(
2π
26 t

)
, sin

(
2π
26 t

)
, cos

(
2π
52 t

)
and sin

(
2π
52 t

)
.

5.2 Seasonal mean and conditional variance models

In this section, double seasonal beta repression models are proposed to analyze

the air humidity time series data. In this way, we assume the following models

for the mean and dispersion parameters:

logit(µti) = β0 + β1cos(2πti/52) + β2sin(2πti/52)

+β3cos(2πti/26) + β4sin(2πti/26) + β5logit(Yi−1) (8)

log(hti) = γ0 + γ1cos(2πti/52) + γ2sin(π/52) + γ3sin(π/26) + ei (9)

12



were considered, where ei ∼ N(0, σ2
e). Assuming independent normal prior

distributions for the regression parameters, βi ∼ N(0, 100), γj ∼ N(0, 100),

for i = 0, 1, . . . , 5, and j = 0, 1, . . . , 4, and a gamma prior distribution for

the variance of the error, σ2
e ∼ G(0.001, 0.001), 20000 samples of the posterior

distribution were also generated using the WinBugs software (Spiegelhalter et

al, 2003). Monte Carlo estimates for the posterior means of each parameter were

obtained from the final simulated Gibbs sample after an initial burn-in sample

period of 2000 samples.This ”burn-in” sample was discarded to eliminate the

effect of the initial values in the iterative procedure. After this ”burn-in” sample

period we simulated another 20,000 Gibbs samples choosing every 20th iteration

to get approximately non correlated samples, which gives a final sample of size

1,000 used to get the posterior summaries of interest. The posterior summaries

of interest are given in Table 5, for the mean parameters, and in Table 6, for

the variance parameters. The assumed initial values were β0 = 1, β1 = 0.2,

β2 = 0.01, β3 = 0.2, β4 = 0, β5 = 0, γ0 = −4, γ1 = 0, γ2 = 0, γ3 = 0,

σ2
e = 0, 12.

Parameter β0 β1 β2 β3 β4 β5

Mean 0.5845
(0.0469)

−0.2091
(0.03039)

0.09499
(0.02583)

−0.06574
(0.02488)

0.08705
(0.02481)

0.2741
(0.05449)

Table 5: Beta regression model: mean parameters estimates.

Parameter γ0 γ1 γ2 γ3 σ2
e

Mean −5.521
(0.07953)

0.2095
(0.1161)

0.2327
(0.1195)

−0.213
(0.1173)

0.02826
(0.05044)

Table 6: Beta regression model: variance parameter estimates.

The logarithm of the likelihood function evaluated at the obtained estimates

for the parameters of the model is given by logL = −853.082 and the DIC cri-

terium has value equal to −825.525. In Figure 5, we observe a good agreement

between data and the fitted mean, showing the good performance of the pro-

posed model. In Figure 6, we observe a good agreement for the variances,

observing that smaller the variances, smaller are the means. This behavior was

observed in the original time series. That is, we conclude that this model is
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very well fitted by the time series data.

6 Conclusions

In this paper, we introduced a new class of time series models assuming contin-

uous random variables within the exponential family.Special cases were consid-

ered assuming, normal, gamma and beta distributions.The proposed methodol-

ogy was illustrated considering hydrological time series and weather time series.

Under a Bayesian approach and using recent MCMC simulation procedures

and free available software, as the WinBugs software we observed that this new

class of models gives a great flexibility of fit for times series data, as observed in

some applications considering Brazilian hydrological and meteorological data.

These results could be a great interest in applications to hydrological and me-

teorological time series.
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