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ABSTRACT 

 

The Production-Assembly-Distribution System Design Problem: Modeling and Solution 

Approaches. (December 2007) 

Dong Liang, B.S.; M.S. Shanghai Jiao Tong University 

Chair of Advisory Committee: Dr. Wilbert E. Wilhelm 

 

This dissertation, which consists of four parts, is to (i) present a mixed integer 

programming model for the strategic design of an assembly system in the international 

business environment established by the North American Free Trade Agreement 

(NAFTA) with the focus on modeling the material flow network with assembly 

operations, (ii) compare different decomposition schemes and acceleration techniques to 

devise an effective branch-and-price solution approach, (iii) introduce a generalization of 

Dantzig-Wolf Decomposition (DWD), and (iv) propose a combination of dual-ascent 

and primal drop heuristics.   

The model deals with a broad set of design issues (bill-of-materials restrictions, 

international financial considerations, and material flows through the entire supply chain) 

using effective modeling devices. The first part especially focuses on modeling material 

flows in such an assembly system.  

The second part is to study several schemes for applying DWD to the production-

assembly- distribution system design problem (PADSDP). Each scheme exploits 

selected embedded structures. The research objective is to enhance the rate of DWD 
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convergence in application to PADSDP through formulating a rationale for 

decomposition by analyzing potential schemes, adopting acceleration techniques, and 

assessing the impacts of schemes and techniques computationally. Test results provide 

insights that may be relevant to other applications of DWD.  

The third part proposes a generalization of column generation, reformulating the 

master problem with fewer variables at the expense of adding more constraints; the sub-

problem structure does not change. It shows both analytically and computationally that 

the reformulation promotes faster convergence to an optimal solution in application to a 

linear program and to the relaxation of an integer program at each node in the branch-

and-bound tree. Further, it shows that this reformulation subsumes and generalizes prior 

approaches that have been shown to improve the rate of convergence in special cases.   

The last part proposes two dual-ascent algorithms and uses each in combination 

with a primal drop heuristic to solve the uncapacitated PADSDP, which is formulated as 

a mixed integer program. Computational results indicate that one combined heuristic 

finds solutions within 0.15% of optimality in most cases and within reasonable time, an 

efficacy suiting it well for actual large-scale applications.   
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1. INTRODUCTION 

 

1.1. Problem Statement  

The trend of globalization has encouraged companies to locate operations in countries 

that offer comparative advantages. This trend affects the design of supply chain systems 

by requiring that domestic designs be extended to international ones. The North Ameri-

can Free Trade Agreement (NAFTA) forms the second largest free-trade zone in the 

world. Lower tariffs and shorter transportation distances make it possible for U.S.-based 

companies to locate assembly operations in Mexico.  

The proposed research addresses the need of providing decision support aids for 

the strategic design of a production-assembly-distribution system in the international en-

vironment established by NAFTA. The problem we study is the production-assembly- 

distribution system design problem under NAFTA (PADSDPN). It is important to study 

PADSDPN because optimizing a production-assembly-distribution system and its supply 

chain enhances the competitiveness of a company in the global economy and because the 

PADSDPN structure and those of a number of related problems have proven especially 

challenging to branch-and-price (B&P). To facilitate description of PADSDPN, we use 

facility to indicate a supplier, a production plant, an assembly plant, or a distribution cen-

ter; and component to indicate a part, sub-assembly or end product.   

The domestic version of PADSDPN is the production-assembly-distribution sys- 

tem design problem (PADSDP), which extends the supply chain design problem (also  

 ____________ 
This dissertation follows the style of IIE Transactions. 
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called the production-distribution network design problem) with the consideration of 

bill-of-materials (BOM) restrictions on material flows. A BOM identifies the compo-

nents of an end product and indicates how raw materials and subassemblies form end 

products. Because of BOM restrictions, components are not independent and material 

flows through assembly operations are not conserved in the traditional way. The supply 

chain design problem involves prescribing decisions that (i) select a set of facilities 

based on their locations, capacities, and technologies; (ii) allocate components to facili-

ties for supply, production, assembly, or distribution; and (iii) plan the flow of materials 

(e.g. production, assembly, transportation, inventories, and backorders) through the sup-

ply chain. The objective of the supply chain design problem is to maximize after-tax 

profits (or minimize total costs).   

The international supply chain design problem considers international business 

factors such as border-crossing costs, transfer prices, income taxes, local-content rules, 

safe-harbor income tax rates, and exchange rates. The international PADSDP extends the 

international supply chain design problem by including BOM restrictions. PADSDPN is 

the international supply chain design problem with the special considerations associated 

with BOM and NAFTA.  

1.2. Organization of the Dissertation  

This dissertation is organized as follows. In section 2, we present a brief literature re-

view on formulations of the international supply chain design problem, solution ap-

proaches to it and its related problems, and B&P methods. In section 3, we present the 

mixed integer programming formulation of PADSDPN. In section 4, we compare a set 
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of decomposition schemes of DWD for PADSDP and adopt acceleration techniques in 

an attempt to develop insights into methods for improving the convergence of DWD in 

application to PADSDP. In section 5, we propose a generalization of column generation, 

reformulating the master problem with fewer variables at the expense of adding more 

constraints; the sub-problem structure does not change. This generalization can be used 

to design an acceleration technique and improve the convergence of DWD. In section 6, 

we design a combination of dual-ascent and primal heuristic for uncapacitated PADSDP. 

Finally, in section 7, we summarize conclusions and future research of this dissertation. 
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2. LITERATURE REVIEW 

 

This section presents brief reviews of the bodies of literature that deal with the interna-

tional supply chain design problem and the branch-and-price (B&P) approach to justify 

the proposed research. This section is organized as follows: subsection 2.1 reviews the 

literature on the international supply chain design problem; subsection 2.2 reviews the 

literature on classic problems related to our application, like facility location, network 

design, and multi-commodity network flow problems, and describes solution approaches 

to these classic problems; subsection 2.3 focuses on the literature related to B&P ap-

proach; subsection 2.4 reviews the literature on the dual-ascent methods; and subsection 

2.5 presents a brief summary of this section. 

2.1. International Supply Chain Design Problem  

The international supply chain design problem is a production-distribution network de-

sign problem that considers international business issues. Recent reviews (Geunes and 

Pardalos, 2003; Sarmiento and Nagi, 1999; Vidal and Goetschalckx, 1997, 2002) and 

books (Tayur et al., 1999) describe the state-of-the-art associated with the international 

supply chain design problem.  

Most production-distribution models in the literature have been mixed integer 

programs. Although some studies used stochastic programming models to address uncer-

tainty (Hodder and Dincer, 1986; Alonso-Ayuso et al., 2003; Huchzermeier, 1991; San-

toso et al., 2004), the state of the art does not allow instances of practical size and scope 

to be solved.  
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The production/distribution network design problem can be formulated as a 

mixed integer program (Schmidt and Wilhelm, 2000). Vidal and Goetschalckx (forth-

coming) discussed the limitation of modeling techniques applied to the network design 

problem and classified factors according to whether they can be modeled accurately or 

not. Most research on the network design problem considers these factors and assumes 

that they can be modeled using linear functions.  

International business factors, including tariffs, exchange rates, transfer prices, 

income taxes and regional trade rules (non-tariff trade barriers) are relatively difficult to 

formulate using linear functions. Cohen et al. (1989) formulated a non-linear model that 

considered transfer prices, exchange rates, and overhead allocation. Vidal and Goet-

schalckx (2001) maximized after-tax profits using a non-convex model that considered 

transfer prices and transportation charges. In spite of that, it is possible to linearize these 

non-linearities (Wilhelm et al., 2005).  

Although many papers on the international supply chain design problem have 

used mixed integer programming models; each addressed only a subset of relevant fac-

tors. Bartmess and Cerny (1993) presented a model with exchange rates, political im-

pacts, taxes, transfer prices, and costs, but without the design of the logistics network. 

Kouvelis and Rosenblatt (1997) proposed a model for global logistic network design 

with income taxes and regional trade rules, but without transfer prices. However, in real-

life applications, it is important to integrate all decisions (Verter and Dincer, 1992). So, 

the challenge of modeling the international supply chain design problem is to integrate 

all relevant factors in one linear model.  
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In this proposed research, we present a comprehensive mixed integer program 

focusing on assembly systems with international issues that represent the Texas–Mexico 

environment under NAFTA. In particular, we emphasize modeling material flows in the 

assembly system.  

2.2. Related Problems  

PADSDPN is related to several classical problems: facility location, supply chain design, 

production-distribution network design, fixed-charge network flow, network design and 

multi-commodity network flow problems. Figure 1 depicts a hierarchy among these 

problems, each of which has been studied extensively. Because the facility location 

problem is embedded in each of these related problems except the multi-commodity 

network flow problem and is known to be NP-hard (Nemhauser and Wolsey, 1999), each 

of them except the multi-commodity network flow problem is NP-hard. We present a 

hierarchical relationship of all related problems in Figure 1. 

The kernel of these related problems is the facility location problem, which is to 

locate a set of facilities in order to minimize the cost of satisfying demands (Hale, 2003). 

The facility location problem has been well studied and widely used. The simplest ver-

sion of the facility location problem is the uncapacitated facility location problem, which 

is NP-hard (Guignard and Jonhnson, 1979; Krarup and Pruzan, 1983). However, some 

special cases of the uncapacitated facility location problem can be solved in polynomial 

time, for example, the one on trees (Shaw, 1993, 1999). Krarup and Pruzan (1983) and 

Cournuejols et al. (1990) presented surveys of the uncapacitated facility location prob-

lem. Another, more difficult facility location problem is the capacitated one, which takes 



 7

the capacities of alternative facilities into consideration. Sridharan (1995) provided an 

overview of the capacitated facility location problem. The facility location problem can 

be formulated as integer programming models (Aikens, 1985).  

 

 

Figure 1. Hierarchical relationship of related problems 

 

Various extensions have been proposed for the facility location problem, adding 

factors like bill-of-materials (BOM) relationships among components, multi-

commodities, multi-echelons, inventories, and choices of facility types (Daskin, 1995; 

Drezner, 1995). For example, Barahona and Jensen (1998) studied the uncapacitated fa-

cility location problem with inventory. Hinojosa (2000) presented a the capacitated facil-
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ity location problem with two echelons and multiple time periods. Mazzol and Neebe 

(1999), Dasci and Verter (2001) and Lee (1991) studied the multi-commodity capaci-

tated facility location problem with a choice of facility types. Melkote and Daskin (2001) 

proposed a model for the capacitated facility location problem with network designs.  

Many studies have developed solution approaches for the facility location prob-

lem, including B&B (Akinc and Khumawala, 1977); polyhedral studies (Cho et al., 1983; 

Aardal, 1998; Aardal et al., 1995); dual decomposition approaches, including dual-

ascent methods (Guignard and Spielberg, 1979; Balakrishnan et al., 1989), Lagrangian 

Relaxation (Christofides and Beasley, 1983; Mazzol and Neebe, 1999; Hinojosa, 2000) 

and Danzig-Wolfe Decomposition (DWD) (Barahona and Jensen, 1998); primal decom-

position approaches, including Benders’ decomposition (Geoffrion and Graves, 1974; 

Cohen and Lee, 1988); the cross decomposition approach (Van Roy, 1983; Lee, 1993); 

and heuristics (Shi et al., 2004).  

One important generalization of the facility location problem is the fixed-charge 

network flow problem. Nemhauser and Wolsey (1999) provided examples on how to 

model the facility location problem as the fixed-charge network flow problem, which is 

to establish arcs to form a network that supports commodity flows to satisfy demands. 

The fixed-charge network flow problem is widely applied to transportation planning and 

telecommunication problems (Magnanti and Wong, 1984; Ambrosino and Scutella, 

2005). The fixed-charge network flow problem is a special case of the network design 

problem. It assumes that only one possible capacity is installed on each arc while the 

network design problem allows the selection from alternative capacities for each arc. 
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Both the fixed-charge network flow and network design problem can be formulated as 

mixed integer programs. The supply chain design problem is also called the production-

distribution network design problem (Hale, 2003; Klose and Drexl, 2005). It is a special 

case of the network design problem in which the network is acyclic.  

PADSDP extends the supply chain design problem by including BOM relation-

ships in a multi-echelon assembly system. Material flows through nodes representing 

assembly operations in PADSDP are not conserved as they are in the minimum-cost 

network flow problem because the flow of components into such a node is not equal to 

the flow of assemblies that departs the node. A hyper-graph in which each arc can have 

more than two adjacent nodes can be used to represent the assembly flow network (Gallo 

and Pallottino, 1992). The international supply chain design problem extends the supply 

chain design problem considering of international business factors. PADSDPN can be 

viewed as either the extension of PADSDP or the international supply chain design prob-

lem with the special considerations associated with BOM and NAFTA.  

Solution approaches for the network design problem comprise three categories: 

polyhedral studies, such as branch & cut (Magnanti and Raghavan, 2005); decomposi-

tion approaches, such as Benders’ decomposition (Costa, 2005), B&P (Shaw, 1993; 

Henningsson et al., 2002; Teo and Shu, 2004) and Lagrangian relaxation (Gendron and 

Crainic, 1994, 1996; Crainic et al., 2001; Elhedhli and Goffin, 2005); and heuristics, 

such as tabu search (Craninic et al., 2000), genetic algorithms (Turkay and Artac, 2005), 

simulated annealing (Jayaraman and Rose, 2003), Greedy Randomized Adaptive Search 
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Procedures (GRASP) (Alvarez et al., 2005) and primal-dual heuristics (Melkonian and 

Tardos, 2005).  

Costa (2005) presented a survey of research that applied Benders’ decomposition 

to the fixed-charge network flow problem. One milestone in the application of Benders’ 

decomposition is that Geoffrion and Graves (1974) used Benders’ decomposition to 

solve the multi-commodity capacitated facility location problem. Gendron et al. (1999) 

presented a comprehensive survey of models and dual decompositions for the network 

design problem and listed several Lagrangian relaxation decomposition schemes for the 

network design problem. Gendron and Crainic (1994, 1996) and Crainic et al. (2001) 

discussed the performance of sub-gradient and bundle methods in solving the fixed-

charge network flow problem. Clarke and Gong (1995) presented a path-based model for 

the general capacitated network design problem and used B&P to optimize it. Chabrier 

et al. (2004) presented a case study of the network design problem comparing different 

optimization techniques. They emphasized the need for a robust solution approach and 

provided some benchmarks.  

Benders’ decomposition can be regarded as the dual version of DWD; i.e., the 

application of DWD to the dual of the original problem (Nemhauser and Wolsey, 1999). 

The difficulty of applying Benders’ decomposition is that the master problem includes 

integer constraints and we must solve the master problem iteratively. The performance 

of Benders’ decomposition typically degrades as the size of an instance increases be-

cause the master problem becomes more difficult to solve. In comparison with Benders’ 

decomposition, B&P uses the B&B framework to deal with integer constraints. The mas-
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ter problem of B&P is relatively easy to solve so that B&P is able to solve large-scale 

instances.  

One important structure embedded in the network design problem is the multi-

commodity network flow problem, which is a generalization of the network flow prob-

lem. In the multi-commodity network flow problem, several commodities share the same 

underlying network and compete for arc capacities as the total cost for the flows of all 

commodities is minimized.  

The multi-commodity network flow problem can be formulated as a linear pro-

gram and is a so-called easy problem. However, many studies have investigated methods 

to design a more efficient way to solve the multi-commodity network flow problem in-

stead of using the linear programming simplex method. Kennington (1978), Assad 

(1978), Ahuja et al. (1993) and Ahuja (1997) provided surveys on its formulations and 

solution approaches.  

One important issue related to the multi-commodity network flow problem is the 

formulation; two have been studied extensively: the arc-based model, whose variables 

represent flows on arcs, and the path-based model, whose variables represent flows on 

paths. Actually, the formulation of the multi-commodity network flow problem is 

closely related to the solution approach. The DWD of the arc-based model is the corre-

sponding path-based model. Other formulations are extensions of the basic two. For ex-

ample, cycle-based models whose variables represent flows on cycles can be reformu-

lated as path-based models (Barnhart et al., 1995) because one cycle can be represented 

as a symmetric difference of a set of paths. Jones et al. (1993) presented a very good 
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analysis of the impact of formulation on the success of DWD in solving the multi-

commodity network flow problem. They compared the origin-destination-specific for-

mulations and the destination- specific formulations. A column in the former represents 

a path-following flow from one single origin to one single destination. A column in the 

latter represents a tree-following flow from all origins to one single designation. Because 

one tree-following flow can be decomposed into a set of path-following flows, the au-

thors represented the tree-following column as the aggregation of a set of path-following 

columns. They observed that the origin-destination-specific formulation typically offers 

a faster rate of convergence than the destination-specific one and provided computa-

tional evaluation to complement their analysis.  

Exact solution approaches for the multi-commodity network flow problem com-

prise two main categories: partitioning and decomposition approaches. Partitioning ap-

proaches avoid directly working with a linear programming basis for the entire problem 

by partitioning the basis into several smaller ones, which correspond to special constraint 

structures. In the multi-commodity network flow problem these smaller bases corre-

spond to network balance constraints and can be optimized by the more efficient net-

work algorithms, then used to construct a complete basis for the original problem (Rosen 

1964; Barnhart et al., 1995; McBride and Mamer, 2004). Decomposition approaches for 

the multi-commodity network flow problem are traditionally classified as either cost-

decomposition (also called price-directive decomposition or dual decomposition) or re-

source-decomposition (also called resource-directive decomposition or primal decompo-

sition) (Nazareth, 1987; Cappanera and Franaioni, 2003).  
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The idea underlying resource-decomposition methods is to allocate a portion of 

the capacity of each arc to each commodity. Given an allocation of arc capacities, the 

minimum flow cost can be obtained efficiently by solving a set of minimum-cost net-

work flow problems, one for each commodity. So, the difficulty of solving the multi-

commodity network flow problem is in finding an optimal allocation of capacities. The 

sub-gradient method is the most common method for finding an optimal allocation 

(Shetty and Muthukrishnan, 1990; De Leone et al., 1993). 

Compared with direct allocation in resource decomposition, cost decomposition 

uses prices to indirectly allocate arc capacities, pricing arc capacities and letting com-

modities find their own minimum cost flow based on these prices. One method for cost 

decomposition, Lagrangian relaxation, relaxes the capacity constraints into the objective 

function. Solving the multi-commodity network flow problem is equivalent to finding 

optimal Lagrangian multipliers. DWD is another cost decomposition method; the 

equivalence between Lagrangian relaxation and DWD is well known (Lemarechal, 

2001). For problems that can be decomposed by DWD, we can define an equivalent La-

grangian relaxation by dualizing constraints corresponding to those in the master prob-

lem of DWD (vice versa). In this way, we define corresponding Lagrangian relaxation 

and DWD formulations, whose sub-problem structures are exactly the same and which 

give exactly the same bounds. The primary difference between Lagrangian relaxation 

and DWD is in how prices (i.e., Lagrangian multipliers or dual values of the restricted 

master problem (RMP)) are updated. Lagrangian relaxation simply moves Lagrangian 
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multipliers along sub-gradients with pre-defined step sizes, while DWD must find opti-

mal dual values for RMP.  

Several solution methods apply to a cost decomposition. Dual-ascent, sub-

gradient, and bundle methods are often used in conjunction with Lagrangian relaxation 

(Ferris and Horn, 1998; Frangioni and Gallo 1999; Villavicencio, 2005). DWD is a form 

of column generation (CG) (Wilhelm, 2001; Jones et al., 1993; Barnhart et al., 1995; 

Holmberg and Yuan, 2003). Frangioni (2002) proposed a unified framework for cost de-

composition approaches; dual-ascent, sub-gradient, bundle, and CG methods can all be 

cast into this framework. Another successful method for cost decomposition is the ana-

lytic center cutting plane method (ACCPM), which uses the interior point method to up-

date dual values for RMP (Goffin et al., 1996).  

2.3. B&P Solution Approaches  

For the proposed model, real-world instances will be very large, so that even the linear 

programming relaxation will be difficult to solve. Decomposition approaches are a good 

choice for solving such large-scale instances. We propose a B&P approach to optimize 

the proposed model. Now, we briefly review the B&P method.  

Dantzig and Wolfe (1960) and Gilmore and Gomory (1961) initiated two types 

of CG independently. The former introduced DWD for linear programs and the latter 

devised CG to solve the cutting stock problem. CG has become one of the techniques 

that are most successful in dealing with large-scale linear (e.g., Ford and Fulkerson, 

1958; Gilmore and Gomory, 1961) and integer programs (e.g., Desaulniers et al., 2001). 

Embedding CG within a B&B context, B&P is an important development of CG for 
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solving integer programs. Appelgren (1969) presented the earliest use of B&P, solving a 

ship-scheduling problem. Desrosiers et al. (1984) applied B&P successfully to the vehi-

cle routing problem; subsequently, it has been used to advantage in many applications, 

including integer multi-commodity flow (Alvelos and Valerio de Carvalho, 2007; Barn-

hart et al., 1997), cutting stock (Ben Amor et al., 2005; Valerio de Carvalho, 2005), and 

crew scheduling (Desaulniers et al., 2001) problems. Recent surveys on CG include 

those of Wilhelm (2001), Desrosiers and Lubbecke (2002) and Desaulniers et al. (2005).  

Implementing CG poses a number of challenges (Vanderbeck, 2002, 2005; Lub-

becke et al., 2002). One challenge is to accelerate the convergence performance of CG. 

Many studies have enhanced the performance of CG. Relative to the challenge of accel-

erating convergence, stabilization is one of the most important issues. Considering the 

linear programming dual of the master problem, DWD may converge slowly because 

dual variable values oscillate, meaning that dual variables may jump from values that 

generate a good column for the primal RMP at one iteration to values that generate a bad 

column at the next iteration. The basic idea is that stabilization dampens oscillation by 

penalizing it (e.g. Ben Amor et al., 2004). Different types of penalty functions have been 

used to stabilize dual variable values. Ben Amor et al. (2004) proposed a piecewise lin-

ear penalty function. Quadratic functions have also been employed, rendering the master 

problem non-linear in stabilization methods that are equivalent to bundle methods for 

non-smooth optimization (Frangioni, 2002).  

Another means of accelerating convergence is to add cuts in the dual space to re-

strict the feasible range of values for each dual variable (Ben Amor et al., 2006). Valerio 
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de Carvalho (2005) proposed this idea and applied it to accelerate solution of cutting 

stocking problems. Vanderbeck and Savelsbergh (2006) discussed the use of exchange 

vectors, each of which is the difference between two feasible sub-problem solutions. Ex-

change vectors can be used to obtain valid dual cuts. The dual cuts proposed by Valerio 

de Carvalho (2005) can be also viewed as exchange vectors.  

Researchers have also studied the convergence performance of DWD, which is a 

form of CG, as a function of problem formulation. Jones et al. (1993) studied the effects 

of column aggregation/disaggregation for the multi-commodity network flow problem 

by representing a tree-following column as the aggregation of a set of path-following 

columns, providing a trade-off between the arc-based and the path-based models. More 

generally, the arc-based model represents the original, compact formulation, which has a 

few columns and a compact coefficient matrix, and the path-based model represents the 

extensive formulation of DWD, which has a large number of columns and an extensive 

coefficient matrix. DWD provides one way to change a compact form to an extensive 

one and some other transformations do the reverse (Villeneuve et al., 2003).  

Barnhart et al. (1995) proposed a cycle-based model with variables representing 

flows on cycles, each of which can actually be formulated as an exchange vector because 

one cycle can be viewed as the symmetric difference of two paths (Cornuejols, 2001). 

The authors implemented DWD on the cycle-based model and obtained significant run-

time improvement. Alvelos and Valerio de Carvalho (2007) proposed an extended model 

on the planar multicommodity flow problem by adding a set of variables and inequalities 

and used CG to solve the extended model. All these reformulations can be considered to 
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be variable-redefinition approaches (Martin, 1987), provides one way to investigate 

compact and extensive formulations.  

Another challenge is to adapt CG in the context of B&B. To implement such a 

B&B framework, which has been used successfully to solve mixed integer programs, the 

analyst must specify i) branching rules; ii) methods to fix variables; iii) techniques to re-

optimize nodes in the B&B tree; and iv) steps to initialize. These issues are closely re-

lated to the solution approach used at B&B nodes. For example, one re-optimization 

technique in a simplex-based B&B algorithm is to simply shares the parent node’s basis 

information with its children. By comparison, an equivalent re-optimization technique 

for B&P is more complicated because both the basis information and generated columns 

must be shared between the parent node and its children. Some research has addressed 

these implementation issues (Desaulniers et al., 2001; Lubbecke et al., 2002; Vander-

beck, 2004).  

2.4. Dual-ascent Methods  

Dual-ascent algorithms work with a dual problem (e.g., linear program dual or Lagran-

gian dual), solving it by iteratively updating dual variable values so that they are always 

feasible and produce successive dual solution values (i.e., bounds) that improve mono-

tonically. After finding a good (not necessarily an optimal) dual solution, the algorithm 

constructs a primal feasible solution by employing complementary slackness (Guignard 

and Rosenwein, 1989). The pair of primal and dual solutions provides both upper and 

lower bounds, respectively, on the optimal solution value. Dual-ascent algorithms typi-

cally use problem-specific techniques to update dual variable values and can be viewed 
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as a special implementation of Lagragian relaxation, which is typically solved by the 

sub-gradient method (Guignard and Rosenwein, 1989; Holmberg, 2001). They have 

been applied successfully to a variety of problems, including facility location (Erlenkot-

ter, 1978), network design (Balakrishnan et al., 1989), and multi-commodity network 

flow (Barnhart, 1993; Barnhart and Sheffi, 1993), that are related to PADSDP.  

The kernel of PADSDP is the uncapacitated facility location problem, which is to 

locate a set of facilities in order to minimize the cost of satisfying demands (Nemhauser 

and Wolsey, 1999). Erlenkotter (1978) and Guignard (1988) proposed dual-ascent algo-

rithms for the uncapacitated facility location problem. A number of studies have applied 

dual-ascent approaches to adaptations of the uncapacitated facility location problem, in-

cluding the multi-echelon variation (Van Roy and Erlenkotter, 1982; Gao and Robinson, 

1992), the location problem with a balancing requirement (Crainic and Delorme, 1993; 

Robinson and Gao, 1996), and a multilevel version (Bumb and Kern, 2001). Further-

more, Guignard and Opaswongkarn (1990) proposed a dual-ascent approach to the ca-

pacitated facility location problem.  

The fixed-charge network flow problem is a generalization of the facility location 

problem (Nemhauser and Wolsey, 1999). Researchers have designed dual-ascent ap-

proaches to both uncapacitated fixed-charge network flow problems (Balakrishnan et al., 

1989) as well as the capacitated version (Herrmann et al., 1996; Gendron, 2002). 

Balakrishnan et al. (1994) devised dual-ascent algorithms for networks with special 

topological structures (e.g., multi-level networks).  
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Motivated by these successful results in application to related problems, we de-

velop a dual-ascent approach for UPADSDP. Since material flows through assembly op-

erations in UPADSDP are not conserved in the traditional way, we use a hypergraph in 

which arcs can have more than two adjacent nodes to represent the assembly flow net-

work (Gallo and Pallottino, 1992).  

2.5. Summary  

The international supply chain design problem can be viewed as the network design 

problem with a set of side constraints. This review reveals that dual decomposition ap-

proaches work well in application to the network design problem, encouraging us to use 

this approach in the proposed research. In addition, instances of our proposed model are 

fairly large in real-life applications. A traditional simplex-based B&B algorithm does not 

have the capability to solve such large instances, so it is important to devise new solution 

approaches that can deal with such large-scale instances.  
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3. MIXED INTEGER PROGRAMMING MODEL* 

 

In this section, we model material flows in the supply chain associated with the assembly 

operations in a comprehensive mixed integer programming model for the production-

assembly-distribution system design problem under NAFTA (PADSDPN) proposed by 

Wilhelm et al. (2005).  

The comprehensive model for PADSDPN is proposed by Wilhelm et al. (2005). 

It deals with a complex set of issues to integrate relevant decisions and lead to useful 

results. In this dissertation we discuss on modeling the material network with assembly 

operations.  

3.1. Material Flow Network with Assembly Operations  

3.1.1. Traditional networks with balance constraints 

We define notation used to formulate the material flow network in Table 1, including 

indices, sets, parameters, and decision variables. To facilitate presentation, we design 

logic in the notation. For example, we always use 1p  to denote a component that is used 

to produce component p , which, in turn, is used to produce component 2p . Thus, these 

indices can imply the bill-of-materials (BOM) relationship 1 2p p p→ →  in which 1p  

( p ) is a component in the set of components used to make p  ( 2p ). Similarly, material 

flows are always transferred from facility 1f  to facility f  and then to facility 2f ; that is, 

____________ 
*Part of this section is reprinted with permission from Wilhelm, W. E., D. Liang, B. R. T. 
Vasudeva, D. Warrier, X. Zhu, S. Bulusu (2005) Design of international assembly sys-
tems and their supply chains under NAFTA. Transportation Research Part E, 41, 467-
493. doi:10.1016/j.tre.2005.06.002 
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the corresponding facility relationship 1 2f f f→ →  in which 1p , p , and 2p  are han-

dled by facilities 1f , f , and 2f , respectively (i.e., 1p  ( p ) is shipped from 1f  to f  

(from f  to 2f ). A special class of components p  is end products, which we also denote 

by the index e  (i.e., p e≡ ) when it is important to distinguish end products. We define 

cost parameters G . Relative to the operation that assembles component p , we define 

*p  as the first type of component (i.e. with the smallest index) that comprises compo-

nent p . *
ep  has the same meaning of *p  and emphases that component p  is used to 

assemble end product e . We indicate indices of summation and of constraint enumera-

tion over sets over (e.g., p P∈  or t T∈ ) such that this model can be implemented by 

modeling tools (e.g., AMPL). We present the notation as follows: 

 

Table 1. Notation 

Indices  
Ee P∈  End products 

1 2, ,f f f F∈  Facilities: 1f  ( f ) is immediately upstream of facility f  ( 2f ) 

k K∈  Transportation modes (here, we consider only one mode) 

l L∈  Locations, which are specific areas in one country 

1 2, ,p p p P∈  Components: 1p and 3p  ( p ) are used to produce component p  ( 2p ) 

*p  Predecessor of component p with minimal index, * min{ }pp P↑=  
*
ep  Predecessor of component p with minimal index in e , *

,min{ }e e pp P↑=  

t T∈  Time periods in the planning horizon 
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Table 1. Continued 

Parameters: G  parameters represent discounted costs in U.S. dollars 
eftD  Demand for end product e  at facility f  during period t  
B
eftG  Backorder cost for end product e  at facility f during period t  
O
fG  Fixed cost of operating facility f   

I
pftG  Inventory holding cost for component p at facility f during period t  
A
pfG  Fixed cost of opening facility f to handle component p  

2

S
pff tG  Cost to facility 2f  of purchasing raw material p from supplier f  during period t  

2

T
pff ktG  Variable cost of transporting p from f to 2f via transportation mode k during period t  

V
pftG  Variable cost of operating facility f  to handle component p during period t  

e
pM  Number of each scaled component p in the BOM for end product e  

 
Sets 

F  Facilities  

lF  Facility alternative at l  

pF  Facility alternatives for p  

L  Locations 

P  Components  

eP  Components in the BOM for e  

fP  Components processed at facility alternative f  

T  Time periods 
 
Decision variables  

e
ftb  Number of backorders for end product e  at facility f during period t  

2

e
pp fth  Sub-amount of pfth  for assembly of component 2p  in end product e  

2 2

1,e
pp ff ktu  Sub-amount of 

2

1
pff ktu  for assembly of component 2p  in end product e  

2

2,e
pp ftu  Sub-amount of 

2

2
pp ftu  used to produce end product e  
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Table 1. Continued 

fx  1 if facility f  is activated, 0 else 

pfy  1 if component p is handled by facility f , 0 else 

 

 

We now present constraints on modeling the material network with assembly op-

erations in the comprehensive PADSDPN model (Wilhelm et al., 2005).  
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1,
, 1

e
pp f fktf k

u∑       eftD= ; ∀ e , p , 2p , f , t         (3-6) 

1

2,
,

e
p pftf t

u∑         =
, eftf t

D∑ ; ∀ e , p , 1p         (3-7) 

e
ftb ,

2

e
pp fth ,

2 2

1,e
pp ff ktu ,

2

2,e
pp ftu     0≥                                            (3-8) 

The above model presents one way to formulate the material flow network with 

assembly operations. At a node representing an assembly operation, the scaled flow on 

each incoming arc is the same as the flow on the outgoing arc. For each assembly opera-

tion, we redirect each input arc - except the one of lowest index number - to a sink node, 
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allowing flow to conform to classical network-flow balance at all nodes. We set the de-

mand at each sink node to assure flow of the number of components needed in all end 

products demanded.  

Equalities (3-2) enforce flow balance at source nodes (i.e., suppliers of raw mate-

rials), assuring that the sum of all flows out, 
2 2

1,e
pp ff ktu , equals the total demand plus the 

requirement of the sink node, 
,e eftf t

M D∑ . The BOM need not be a tree; for example, 

p  could be incorporated in several sub-assemblies 2p  to make one end product e . 
2

e
ppA  

defines the number of p  used to manufacture 2p  for e and e
pM  indicates the number of 

different subassemblies, denoted individually using 2p , that incorporate p .  

Equalities (3-3) enforce flow balance for component p , which is transported 

from other facilities 1f  to facility f , considering the sum of shipments 
2 1

1,e
pp f fktu ; inven-

tory changes at f ,  
2 ,( 1)

e
pp f th − 2

e
pp fth− ; and flow out to manufacture 

2

2,e
pp ftu . We invoke 

equalities (3-3) only relative to the arc of lowest index number, *
ep . Flow balance equali-

ties (3-1) assure that all flows incoming to the assembly operation, *
2,

e

e
p pft

u  and 
1

2,e
p pftu , are 

equal with each other (i.e., the flow of components on each arc incoming to an assembly 

operation must equal the flow on the departing arc).  

Equalities (3-4) enforce flow balance of component p  at facility f  considering 

manufacturing inputs *
2,

e

e
p pft

u , the sum of shipment 
2 1

1,e
pp f fktu  from each other 1f  to f , the 

sum of inventory changes 
2 2,( 1)( )e e

pp f t pp fth h− −  at f , the sum of manufacturing outputs 
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2 1

1,e
pp f fktu  of p  for downstream assembly 2p  at f  , and the sum of shipments 

2 1

1,e
pp f fktu  of  

p  to each 2p  from f  to other 2f  by k . A special case arises if p  and 2p  are assigned 

to the same f . If these components were produced in f  and 2f , respectively, (3-3) and 

(3-4) would allow inventory of p  to be held at both f  and 2f  (i.e., both before and af-

ter transport between the facilities) as depicted in the material flow network of Figure 

2(a). However, if facility f produces both, our model allows only one inventory of f  

and 2f  to be held at f  so that the material flow network uses only one node to model 

this inventory as depicted by Figure 2(b). Furthermore, capacity constraints on quantities 

transported within f  are not needed, eliminating decision variables 
2 1

1,e
pp f fktu  and 

1

1
pf fktu  

for 2f f= . 

 

 

Figure 2. Special-case alternatives for modeling inventory of component p at f 

(3-3) 

(3-4) 
(3-4) 

(3-4) 

(3-3) 
(3-3) 
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 (a): Inventories of component p  before 
and after transportation in a facility f  

pf2 

pf 

 (b): Single inventory of component 
p  held in a facility f  

pf

Transporataion Manufacturing Inventory 
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Equalities (3-5) enforce flow balance of end product e  at distribution center f  

in period t , considering the sum of units transported from facility 1f , 
2 1

1,e
pp f fktu ; change in 

inventory at facility f , 
2 2,( 1)( )e e

pp f t pp fth h− − ; change in the number of outstanding backor-

ders at facility f , ,( 1)( )e e
f t ftb b+ − ; and the sum of flow out facility 2f , 

2 2

1,e
pp ff ktu , required to  

 

 

Figure 3. BOM 

 

 

Figure 4. Facility alternatives 
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satisfy demand. Our model holds end-product inventory at distribution centers rather 

than at the facility that completes final assembly. Equalities (3-6) ensure the flow bal-

ance of end product e  handled in distribution center 1f  and transported into at customer 

zone f  by mode k , 
2

1,
1

e
pp f fktu , satisfy the demand for e  at customer zon f  in period t , 

eftD . Note that equalities (3-5) and (3-6) hold for end product e . In order to use an index 

consistently in variable 
2 1

1,e
pp f fktu  to represent the component transported, if p e= , we de-

fine 2p p e= = . Equalities (3-7) ensure flow balance at the sink node, requiring inflows, 

1

2,e
p pftu , to equal the required total, 

,
( 1)e eftf t
M D− ∑ . Equalities (3-2) and (3-6) imply 

equalities (3-7) because of the properties of the network flow problems. Here we give 

the balance condition explicitly. Figure 3 depicts a simple BOM, in which components 

1p  and 2p  are assembled to form end product e . Figure 4 (Zhu, 2005) describes facility 

alternatives for producing components 1p 1 2
1 1( , )f f  and 2p 1 2

2 2( , )f f , assembling them to 

comprise e 1 2( , )e ef f  and distributing e 1 2( , )D Df f . 

Figure 5 depicts the portion of the material flow network related to time period t ; 

curved arcs represent flows (i.e., inventories or backorders) between consecutive time 

periods.  

3.1.2. Hyper-graph model  

Dealing with BOM flows poses special problems in assembly systems. At a node repre-

senting an assembly operation, incoming arcs carry flows of different components; and 

the outgoing arc, flow of the assembly. Such multi-commodity flows do not conform to 

the classical flow balance associated with minimum-cost network-flow problems. That is, 
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flow balance equalities (3-1) assure that all flows incoming to the assembly operation are 

equal with each other, but they destroy the structure of the classic network flow problem. 

We make the changes to the assembly node such that a hyper-edge includes all involved  

 

 

Figure 5. Assembly flow network for end product e in one time period 

 

(3-2) Merge these nodes to source nodes 
 

(3-3) 

(3-1) 

(3-4) 

(3-5) 

(3-6) 

(3-7) 

p1f1
1 p1f1

2 

p1f4
1 p1f4

2 

p2f2
2 p2f2

1 

p2f4
2 p2f4

1 

e fD
2

D2 

e fe
1 e fe

2

e fD
1

D1 

Sink 

From other time 
period 

i) Dotted line ellipse represents the source node associated with constraints (9a) 
ii) Dotted line rectangles include nodes associated with constraints (9b)-(9f); 
iii) Dotted line arcs redirect flow to the sink node, which is constrained by (7d), that is, the flow is equal 
to the corresponding flow into the assembly node associated with constraints (9b); 
iv) Curved arcs within dotted line rectangles, which are associated with constraints (9b) & (9c), represent 
inventory, within dotted line rectangle to constraints (9d) represent backorder and inventory. 



 29

 

Figure 6. Assembly flow network for end product e in one time period (Hyper-graph) 
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The above hyper-graph of the material flow network with assembly operation can 

be viewed as an extension of the time-space network. A time-space network is a special 

application of the state-transfer graph, whose nodes can represent specific locations at 

specific times and whose edges can represent the changes of states of locations or times, 

to describe the material flow in our model. To describe the material flow network with 

assembly operation, we use an extension of the time-space network, the component-time-

space network, in which each node represents a specific component p  at a specific facil-

ity alternative f  during a specific time period t , and each arc represents a change of 

state of component p  (i.e., production or assembly), facility alternative f  (i.e., trans-

portation), or time period t  (i.e., inventories or backorders). Because an assembly opera-

tion has flows of several parts in and the flow of only the assembly out, we represent it 

as a hyperedge, which allows multiple tails and heads. The component-time-space net-

work can be also viewed as a special application of the state-transfer graph.  

3.2. Summary 

Wilhelm et al. (2005) contributed a model that represents the complexities of the interna-

tional design problem, integrating relevant enterprise-wide decisions in the US-Mexico 

business environment under NAFTA. This paper was part of a team effort. The contribu-

tion of this dissertation is to model the material network with assembly operations.  

PADSDPN can be viewed as an extension of PADSDP. The most important 

piece of PADSDPN is PADSDP. Our research in the rest of the dissertation focuses on 

the solution approach to PADSDP.  
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4. COMPARISON OF DECOMPOSITION SCHEMES* 

 

The purpose of this section is to study several decomposition schemes for applying 

Dantzig-Wolfe decomposition (DWD) to the production-assembly-distribution system 

design problem (PADSDP). Each scheme exploits selected embedded structures. Spe-

cific research objectives are to enhance the rate of DWD convergence in application to 

PADSDP through formulating a rationale for decomposition by analyzing potential 

schemes, adopting acceleration techniques, and assessing the impacts of schemes and 

techniques computationally.  

This section is organized in five sections and is self contained. Subsection 4.1 

presents the PADSDP model in a compact way to facilitate our discussion. Subsection 

4.2 describes certain embedded structures that can be exploited by decomposition 

schemes. Subsection 4.3 presents a selected set of decomposition schemes and accelera-

tion techniques. Subsection 4.4 evaluates the schemes and acceleration techniques com-

putationally. Finally, subsection 4.5 offers concluding comments.  

4.1. Compact Representation of PADSDP Model  

Compared with the representation on the material network in section 2, the compact rep-

resentation of PADSDP model employs az  to present the flow on a  - be it production, 

assembly, distribution, inventory or backorder, which is scaled in terms of the number of  

____________ 
*This section is reprinted with permission from Liang, D., W. E. Wilhelm (2007a) De-
composition Schemes and Acceleration Techniques in Application to Production-
assembly-distribution System Design. Computers & Operations Research, Available 
online. doi:10.1016/j.cor.2007.07.003 
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end products to facilitate the flow conservation at each node. The material flow network 

for each end product e  comprises a layer of nodes and arcs for each time period, t T∈ ; 

each node represents a pft  combination (i.e., component ep P∈  allocated to alternative 

f  during period t ). Each directed arc ea A∈  represents a change of state for the mate-

rial that flows across it. An arc with both ends in one layer (i.e., period) indicates pro-

duction, assembly, or distribution, while an arc pointing from a node in period t  ( )1t +  

to another in period 1t +  ( )t  allows inventory (backorder) carry over. Subset pftA A⊆  

denotes directed arcs representing (depending upon the type of facility) the supply, pro-

duction, assembly, or distribution of p  at f  during t ; and pftA+  ( )pftA− , directed arcs that 

start (end) at node pft .  

Decision variables fx  and pfy , and set and parameter definition are almost the 

same as those in section 0. We now present the PADSDP model in a compact way:  

Model ℘  

Min O
f f

f F

G x
∈
∑  

e p

A
pf pf

e E p P f F

G y
∈ ∈ ∈
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V
a a
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G z
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fx     {0,1}∈  ∀ f F∈    | |F                  (4-8) 

     pfy    {0,1}∈  ∀ , ,e pe E p P f F∈ ∈ ∈  | |
e

p
e E p P

F
∈ ∈
∑∑      (4-9) 

   az  0≥   ∀ , ee E a A∈ ∈    | |A      (4-10). 
 

We include the last column in (4-1)-(4-10), which specifies the number of con-

straints of each type ( | |•  denotes the cardinality of set • ), to facilitate later discussion of 

our decomposition schemes. We assume that the bill-of-materials (BOM) for each end 

product e  is a tree structure and requires a unique set of components. Sets P  and A  

comprise disjoint subsets eP  and eA  for e E∈ . Set E  is the alias of EP , the set of end 

products.  

Objective function (4-1)) minimizes total cost, including fixed costs related to 

opening f , O
fG , and allocating p  to f , A

pfG , and variable costs (sourcing, producing, 

assembling, transporting, or stocking) for components that flow on arc a , V
aG . Con-

straint (4-2) relates fx  and az , requiring the workload for components allocated to f  

observe capacity ftQ  (or 0 if 0fx = ) during t . Workload parameter pfq  - the time to 

process each component of type p  at f  times the number of p  that comprise e , peN  - 

scales flow in terms of the end product. Each constraint (4-3) assures that an alternative 

is opened if any component is allocated to it. Each constraint (4-4) is an aggregated vari-

able upper bound (AVUB) constraint, so that pfy  restricts related flows az  for pfa A∈  

(i.e., pf pftt T
A A

∈
≡∪ ) to at most eD , the total demand for e  in all periods (note: az  is 

scaled in terms of the number of e ). Flow associated with p  can go through f  only if it 
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is allocated to f  (i.e., 1pfy = ). Each constraint (4-5) allows at most one alternative to 

be opened at one location, l . Each constraint (4-6) imposes a budget limitation eB  on the 

fixed cost associated with all ep P∈  for e . Each constraint (4-7) requires the flow out of 

node pft  minus the flow in to equal the demand for p  at f  during t , pftD . Constraints 

(4-8) and (4-9) require variables fx  and pfy  to be binary, respectively, and (4-10)) im-

pose non-negativity restrictions on variables az .  

4.2. Special Structures in the Model 

Model ℘ embeds three special constraint structures. One structure comprises (4-6) and 

(4-9), forming an NP-hard, multiple-choice knapsack problem for each e  that can be 

solved by a pseudo-polynomial dynamical programming algorithm (e.g., Dudzinski and 

Walukiewicz, 1987). This structure, which we call sub-problem type one (SP1), does not 

have the Integrality Property (Geoffrion, 1974). Set covering constraints (e.g., 

p
pff F

y
∈∑ 1≥ , ∀ , ee E p P∈ ∈ ), requiring p  to be allocated to at least one alternative, 

can be also included in SP1. A second structure comprises (4-7) and (4-10), forming a 

minimum-cost flow problem on a hyper-graph. This structure, sub-problem type two 

(SP2), is a linear program and can be solved in polynomial time (Cambini et al., 1997). 

The third structure comprises (4-4), which link variables in SP1 and SP2.  

We define an extension of SP1 (SP1E) that comprises SP1 (i.e., (4-6) and (4-9)), 

(4-4), and (4-10); and an extension of SP2 (SP2E) that comprises SP2 (i.e., (4-7) and (4-

10)), (4-4), and the linear relaxation of (4-9) (i.e., 0 1, , ,pf e pfy e E p P f F≤ ≤ ∈ ∈ ∈ ). 

Proposition 4.1 and Proposition 4.2 show that SP1E polynomially reduces to SP1 and 
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that SPE2 can be reformulated as SP2. Because (4-4), (4-6), (4-7), (4-9), and (4-10) are 

separable relative to e , we introduce notation SP1( e ), SP2( e ), SP1E( e ), and SP2E( e ) 

to represent SP1, SP2, SP1E, and SP2E, respectively, relative to e . 

Proposition 4.1: SP1E( e ) polynomially reduces to SP1( e ).  

Proof: For e E∈ , SP1E( e ) can be formulated as:  

SP1E( e ) ( )
*

1 max ,  . .(4-4),(4-6),(4-9),(4-10) for .
e p e ppft

a a pf pfSP E e
p P f F t T p P f Fa A

Z c z c y s t e
∈ ∈ ∈ ∈ ∈∈

= +∑ ∑∑ ∑ ∑ ∑  

We show that any optimal solution of SP1E( e ) can be obtained from an optimal solution 

to the corresponding SP1( e ). Given an optimal feasible solution sol  to SP1E( e ), (i) if 

0pfy = , values of az  for pfa A∈  are zero, and (ii) if 1pfy = , values must be prescribed 

for az , pfa A∈ , to maximize ( )
*

1SP E eZ  while satisfying  
, pft

at T a A
z

∈ ∈
≤∑ eD ; that is, values 

of az  for pfa A∈  are obtained by solving the continuous knapsack problem  

CKP( pf ) * max ,  . . (4-10)  and  for a given .
pft pft

pf a a a e
t T t Ta A a A

g c z s t z D pf
∈ ∈∈ ∈

= ≤∑ ∑ ∑ ∑  

Here, *
pfg  is defined as the optimal objective value of a continuous knapsack problem 

CKP( pf ). Thus, values of az  in sol  satisfy *
, pft

a a pf pft T a A
c z g y

∈ ∈
=∑  for the given pf  by 

(i) and (ii). Replacing 
, pft

a at T a A
c z

∈ ∈∑  with *
pf pfg y  in the objective function, we get:  

SP1( e ) *max ( ) ,  
e p

pf pf pf
p P f F

g c y
∈ ∈

+∑ ∑  . .   (4-6) and (4-9) for s t e .  

The number of continuous knapsack problems of the form CKP( pf ) is | |
e

pp P
F

∈∑ . For 

each pf , *
pfg  can be obtained in polynomial time because CKP( pf ) is a linear program 
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and can be solved in polynomial time (Bazaraa et al., 2005). Thus, SP1E polynomially 

reduces to SP1. ■  

We define the linear relaxation LP of model ℘, which replaces constraints (4-8) 

with 0 1,fx≤ ≤  f F∈  and (4-9) with 0 1, , ,pf e pfy e E p P f F≤ ≤ ∈ ∈ ∈ . Because pfy  

variables are incorporated only in AVUB constraints (4-4), which force them to be posi-

tive, it is clear that (4-4) must be active at optimality in a continuous relaxation, provided 

cost coefficients are positive (i.e., 0A
pfG > ).  

Proposition 4.2: SP2E( e ) can be reformulated as SP2( e ).  

Proof: AVUB constraints (4-4) hold at equality. Variable pfy  can be replaced by 

, pft
at T a A

z
∈ ∈∑ / eD  so that pfy  and constraints (4-4) can be eliminated from SP2E( e ).■ 

 

 

Figure 7. Symmetric structure of model 

 

 

 

pfy az

Constraints (4-5) 

Constraints (4-3)

fx

Constraints (4-7) 

Constraints (4-2)

Constraints (4-6) 
Constraints (4-4)
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4.3. Decomposition Schemes and Acceleration Techniques 

This subsection discusses the five decomposition schemes that we study and justifies 

their use. In addition, it describes the techniques that we adopt to accelerate DWD con-

vergence. Here, we point out several characteristics of Model ℘ that can be exploited by 

decomposition schemes.  

Figure 7 depicts symmetrical relationships embedded in Model ℘: (4-2) links 

each fx  to several az  for 
f

pfp P
a A

∈
∈∪ , (4-3) links each fx  to several pfy  for fp P∈ , 

and (4-4) links each pfy  to several az  for pfa A∈ . In addition, Model ℘ imposes re-

strictions on fx , pfy , and az  individually.  

 

  x 1y ny 1z nz   

(4-2)  P 1W … nW   
  F 1V  

(4-3)  F  
  F nV  
  1D 1B  

(4-4)   
  nD nB   

(4-5)  A  
  1M  

(4-6)   
  nM  
  1N  

(4-7)   
  nN   

Figure 8. Matrix representation of model (4-2)-(4-7) 
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Figure 8 depicts (4-2)-(4-7) in matrix notation, highlighting block diagonal forms. 

x , 1y , , ny , 1z , , nz  represent vectors of variables fx , pfy , az , respectively; each 

superscript relates a vector to one of the | |n E=  end products. Matrices A , 1B , , nB , 

1D , , nD , F , P , 1M , , nM , 1N , , nN , 1V , , nV  and 1W , , nW  represent 

constraint coefficients associated with these vectors. Finally, we note that certain con-

straints (e.g., (4-4), (4-6), and (4-7)) are separable relative to e  and we exploit this char-

acteristic in our schemes to facilitate solution by dealing with smaller sub-problems.  

4.3.1. Decomposition schemes  

Primary concerns in designing a decomposition scheme are to obtain small sub-problems 

that can be solved effectively, a small restricted master problem (RMP) that is not highly 

degenerate, a favorable comparison with other schemes, and a form amenable to effec-

tive acceleration techniques. One goal is to facilitate solution by obtaining a sub-problem 

exhibits a block diagonal structure so that it can be separated into several small sub-

problems (Bazaraa et al., 2005) to facilitate sub-problem solution, while avoiding the 

Integrality Property, allowing RMP to give tighter bounds than LP . Another goal is to 

achieve a favorable rate of convergence as measured by the number of iterations re-

quired to solve RMP. This rate depends on the number rows in RMP and restrictions on 

the values of dual variables in the linear programming dual of RMP (DRMP). Degener-

acy of RMP also slows the rate of convergence so that schemes that result in highly de-

generate RMPs are not desirable. For example, the polytope formed by (4-3) and bounds 

on fx  and pfy  variables is degenerate. Similarly, (4-4) and bounds on pfy  and az  forms 

a degenerate polytope.  



 39

We focus our study on five decomposition schemes, which are based on the four 

sub-problem structures described in subsection 4.2 0(SP1, SP1E, SP2, and SP2E): allo-

cation decomposition (A), flow decomposition (F), AVUB-allocation decomposition 

(VA), AVUB-flow decomposition (VF), and allocation-flow decomposition (AF). Each 

scheme involves relaxing a subset of binary constraints and comprises a block diagonal 

structure that can be exploited to facilitate its solution. Table 2 details these schemes.  

 

Table 2. Partitions of constraints and variables for decomposition schemes 

 Scheme (A) Scheme (VA) Scheme (F) Scheme (VF) Scheme (AF)
MP (1)-(4), (6), (7), (9) (1), (2), (4), (6), (7) (1)-(5), (7), (8) (1), (2), (4), (5), (7) (1)-(4), (7) 
SP (5), (8) (3), (5), (8), (9) (6), (9) (3), (6), (8), (9) (5), (6), (8), (9) 

C
on

st
ra

in
ts

 

Relax (7): 0 1fx≤ ≤  (7): 0 1fx≤ ≤
(7): 0 1fx≤ ≤  

(8) 0 1pfy≤ ≤

(7): 0 1fx≤ ≤  

(8): 0 1pfy≤ ≤  
(7): 0 1fx≤ ≤

MP 
fx , az  fx  fx , pfy  fx  fx  

V
ar

ia
bl

es
 

SP 
pfy  pfy , az  az  pfy , az  pfy , az  

SP Structure SP1 SP1E SP2 SP2E SP1 & SP2 

 

 

While other combinations of constraints could be used to form decomposition 

schemes, our preliminary analysis excludes them as unworthy of consideration. For ex-

ample, all of our schemes relegate fx  and related constraints (i.e., (4-2), (4-3), and (4-5)) 

to master problem because there are few such variables and our preliminary computa-

tional experience showed that prescribing them in sub-problem does not provide suffi-

cient leverage to facilitate RMP solution. Further, any scheme with fx  in sub-problem 

can be viewed as an extension of one of our five schemes. For example, one can view a 
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scheme that relegates (4-2), (4-3) and (4-4) to master problem as an extension of (AF), 

but we expect that it would convergence more slowly than (AF) because it requires mas-

ter problem to coordinate three types of variables, while (AF) deals with only two types. 

Finally, we avoid schemes for which sub-problem has the Integrality Property.  

Considering constraints (4-4), (4-6), and (4-7), a total of 38 2=  schemes are pos-

sible. One of these schemes places (4-4), (4-6), and (4-7) in master problem so that sub-

problem is vacuous; another places (4-4), (4-6), and (4-7) in sub-problem, which cannot 

be solved effectively, and a third relegates (4-6) and (4-7) to master problem and places 

(4-4) in sub-problem, which poses no special structure to exploit. We study the remain-

ing five possible schemes.  

4.3.2. Acceleration techniques  

We adopt two acceleration techniques. The first, which we call column disaggregation 

(CD), was proposed in application to the multi-commodity network flow problem by 

Jones et al. (1993), who analyzed the impact of formulation on the success of DWD. CD 

decreases the number of columns in master problem. In scheme (F), the solution to 

SP2( e ) prescribes material flow to satisfy the demands for end product e  from all cus-

tomer zones during all periods. We can disaggregate this flow into a set of flows, each of 

which satisfies the demand for e  from one customer zone during one period. We refor-

mulate ℘ using disaggregated variable eft
az , which represents the scaled amount of flow 

on arc a  to satisfy demand eftD , so that az
,{ : 0}e eft

eft
at T f F D

z
∈ ∈ >

= ∑  for , ee E a A∈ ∈ . CD 

increases the number of sub-problems and, thus, the number of convexity constraints in 
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master problem. Letting eCZ  represent the number of customer zones for e , the number 

of convexity constraints will increase from | |E  in scheme (F) to | |ee E
CZ T

∈
⋅∑  for CD, 

increasing the run time to solve RMP.  

The second technique, extra dual cuts (EDC), was proposed by Valerio de Car-

valho (2005) in application to the cutting stock problem. EDC adds columns to RMP and 

the corresponding cuts in DRMP. These cuts do not affect the optimal objective value of 

DRMP but provide additional restrictions in the dual space that can improve the rate at 

which column generation convergences.  

The difficulty in applying EDC is in specifying these dual cuts. In our application, 

a feasible solution to SP1( e ) allocates components to alternatives under budget limita-

tion (4-6). Following Valerio de Carvalho (2005), we obtain EDCs by using the symmet-

ric difference of two feasible solutions to SP1( e ). Each EDC is associated with a vector 

representing the reallocation of a component to a different alternative to reduce cost rela-

tive to the budget; that is, i) reallocate p  from f  to the next cheaper alternative, or ii) 

forbid p  to be allocated to f  if f  is already the cheapest one. To generate EDCs, we 

order all alternatives to which p  can be allocated according to highest A
pfG  value first. 

The number of EDCs is equal to the number of possible allocations of components to 

alternatives, 
,

| |
e

pe E p P
F

∈ ∈∑ . A pre-processing step can generate a batch of these dual cuts 

and incorporate them in RMP. Reallocating p  to a non-adjacent (on the ordered list) 

cheaper alternative can be achieved by making a sequence of adjacent-alternative reallo-

cations. To forbid the allocation of p  to an alternative other than the cheapest one, we 
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can reallocate it to the cheapest alternative and then forbid the cheapest one. Given a 

feasible solution *y  to SP1( e ), which represents an allocation of components to alterna-

tives under budget restriction (4-6), each reallocation on *y  yields another solution to 

SP1( e ). The advantage that EDCs offer is that fewer columns from SP1 need be incor-

porated in RMP, improving convergence.  

Next, we use a small example to illustrate EDCs. Suppose e  comprises two 

components 1 2{ , }p p  and associated sets of alternatives 1 2 3{ , , }f f f  and 1 3{ , }f f , respec-

tively; costs A
pfG  satisfy 

1 1 1 2 1 3

A A A
p f p f p fG G G≥ ≥  and 

2 1 2 3

A A
p f p fG G≥ . The vector 

=y
1 1 1 2

( , ,p f p fy y  
1 3 2 1 2 3

, , )p f p f p fy y y . Suppose we have SP1( e ) solution =y (1,1,0,1,1)T , 

which allocates 1p  to 1f  and 2f  and 2p  to 1f  and 3f . We can introduce EDCs repre-

senting the reallocation of a component to reduce cost by using a cheaper alternative or 

by forbidding some alternative. For 1p , we introduce vectors ( 1,1,0,0,0)T− , 

(0, 1,1,0,0)T−  and (0,0, 1,0,0)T− . ( 1,1,0,0,0)T−  reallocates 1p  from 1f  to 2f , 

(0, 1,1,0,0)T−  reallocates 1p  from 2f  to 3f , and (0,0, 1,0,0)T−  forbids the allocation of 

1p  to 3f . With these three vectors, we can construct ( 1,0,1,0,0)T− = ( 1,1,0,0,0)T−  

+ (0, 1,1,0,0)T− , indicating the reallocation of 1p  from 1f  to 3f . For 2p , we have 

(0,0,0, 1,1)T−  and (0,0,0,0, 1)T− , which can construct (0,0,0, 1,0)T− = (0,0,0, 1,1)T−  

+ (0,0,0,0, 1)T−  to forbid the allocation of 2p  to 1f . The SP1( e ) solution (1,0,1,0,1)T , 

which allocates 1p  to 1f  and 3f  and 2p  to 3f , can be constructed from allocation 

(1,1,0,1,1)T  and reallocations (0, 1,1,0,0)T− , (0,0,0, 1,1)T− , and (0,0,0,0, 1)T− .  
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We use CD and EDC to enhance decomposition schemes (F) and (AF), respec-

tively, giving disaggregation-flow decomposition (DF) and allocation-flow with dual 

cuts decomposition (AFD). 

4.4. Computational Results  

We conduct all experiments on a PC with a 2.8 GHz Pentium IV processor and 1 GB of 

RAM using Visual Studio C++ 6.0 and the CPLEX 9.0 callable library. The purpose of 

our tests is to assess the influences of decomposition schemes and acceleration tech-

niques on the convergence of DWD so we focus on their performances at the root node 

of the branch-and-bound (B&B) tree, following studies such as Vanderbeck (2006, 

2005), Sherali et al. (2005), Glover et al. (1997) , Hu and Johnson (1999). Reporting the 

(optimal) integral solution would require use of branch-and-price (B&P) and that is be-

yond the scope of this subsection.  

4.4.1. Test instances  

We use real-world data sources to specify attributes of locations (i.e., costs of labor, land 

and capital), alternatives (i.e., labor, land, and cost/unit of capacity, total capacity, and 

economies of scale), and components (i.e., setup times; workloads for assembling, stock-

ing, or transporting; and demands for end products). Our experiments are based on six 

factors (and associated levels): | |T  (12 or 24); | |E  (1, 4, or 8); the number of compo-

nents in the BOM for end products, BOMS  (3, 7, or 15); the type of BOM, BOMT  (a 

vertical path or a binary tree); the number of alternatives to which each component can 

be allocated, FA  (4 or 8); and the capacity tightness ratio, CT  (0.1 or 0.2). We define a 

scenario as a unique selection comprising one level of each factor. Each scenario is 
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tested in ten instances, each of which has the same factor-level selection but is generated 

using a unique set of random number seeds. We consider eight scenarios, generating pa-

rameters and sets (e.g., ,O
fG P ,etc. ) used in Model ℘. Table 3 details the level of each 

factor associated with each scenario. Table 4 details the sizes of instances and results of 

applying CPLEX to LP . Because all instances related to each scenario required about 

the same run time, we report average values for the ten instances associated with each 

scenario.  

 

Table 3. Factor levels that determine each scenario 

Scenario | |T  | |E  BOMS  BOMT  FA  CT  
1 12 1 3 Vertical path 4 0.2
2 24 1 3 Vertical path 4 0.2
3 12 4 7 Binary tree 4 0.2
4 24 4 7 Binary tree 4 0.2
5 12 4 15 Binary tree 4 0.2
6 24 4 15 Binary tree 4 0.2
7 12 8 15 Binary tree 8 0.1
8 24 8 15 Binary tree 8 0.1

 

Table 4. CPLEX results 

Scenario Binary Continuous Number Rows Run Time (secs.) SITR 
1 24 1036 454 0.0111 223.9
2 24 2092 886 0.0326 460.8
3 146 8352 2610 0.1327 1664.5
4 146 16858 4990 0.4235 3300.1
5 294 16997 5396 0.9719 4972.1
6 294 34327 10365 4.6562 9399.8
7 1166 118031 21897 11.9688 12725.4
8 1166 237522 42229 110.3453 26532.4
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Measures in Table 4 include the numbers of relaxed binary variables (BIN), con-

tinuous variables (CONT), and constraints (ROW), as well as average total run time (RT) 

in seconds and average number of Simplex iterations (SITR).  

Table 5 gives results. The size of a PADSDP instance increases rapidly with 

2| | | | | |P F T⋅ ⋅ , rendering the linear relaxation of our model challenging to solve and 

highlighting the importance of studying the performance of DWD at the root node of the 

B&B search tree. Scheme (VA) cannot solve some instances of scenarios 3 to 8 within 

20 minutes, so we designed smaller scenarios 1 and 2 to compare schemes (A) and (VA). 

We do not report run times for (A) and (VA) on instances 3 to 8, nor run times for other 

schemes in application to scenarios 1 and 2 because they can solve the larger instances 

of scenarios 3 to 8. Test results allow the DWD convergence rates of schemes to be 

compared, providing insights into the impacts of parameters on instance size and the ef-

ficacy of each decomposition scheme. We study the performance of each scheme in 

solving RMP at the root node using several measures of performance: total run time (RT) 

in seconds, bound prescribed by RMP (BND), improvement in bound (IMPR) (i.e., per-

cent improvement from the value of the optimal LP solution to BND), number of RMP 

iterations (RITR), total run time to solve sub-problems (SPT), total run time to solve 

RMP (RMPT), and number of columns generated (COLS). Note that we add all improv-

ing columns from sub-problems at each RMP iteration. We also tested various CPLEX 

solvers in application to DWD. After comparing primal and dual simplex solvers and 

finding that the latter is faster in this application, we report results using only the latter. 
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Our preliminary analysis also showed that CPLEX’s barrier algorithm was not competi-

tive so we do not report run times for that option.  

 

Table 5. Results 

# Scenario Scheme RT(secs.) BND IMPR RITR COLS
1 1 A 0.1248 4600628698.5542 0.00% 12.5  10.5 
2 1 VA 10.0671 4600628698.5542 0.00% 813.9  811.9 
3 2 A 0.4874 8258955987.0453 0.00% 18.6  16.6 
4 2 VA 233.184 8258955987.0453 0.00% 2276.8 2274.8
5 3 A 4.0735 55317769707.8944 0.00% 32.6  91.9 
6 3 F 0.0374 55476851293.6798 0.00% 10.5  17.9 
7 3 VF 0.0391 55476851293.6798 0.00% 13.0  29.4 
8 3 DF 0.1002 55476851293.6798 0.00% 7.0  518.7 
9 3 AF 0.5530 55317769707.8944 0.00% 58.0  285.7 
10 3 AFD 0.0499 55317769707.8944 0.00% 13.5  54.3 
11 4 A 15.8937 127445221460.0990 0.02% 40.4  111.4 
12 4 F 0.0689 127853210969.3860 0.00% 10.8  21.3 
13 4 VF 0.0655 127853210969.3860 0.00% 11.8  28.4 
14 4 DF 0.2393 127853210969.3860 0.00% 6.4  1011.6 
15 4 AF 2.2126 127445221460.0990 0.02% 66.7  334.4 
16 4 AFD 0.0797 127445221460.0990 0.02% 14.4  63.5 
17 5 A 56.2719 131513567768.2590 0.09% 89.9  274.2 
18 5 F 0.1486 132848989533.7790 0.00% 20.9  51.6 
19 5 VF 0.1828 132848989533.7790 0.00% 27.0  70.4 
20 5 DF 0.3672 132848989533.7790 0.00% 10.4  1178.9 
21 5 AFD 0.4673 131513567768.2590 0.09% 53.1  254.6 
22 6 A 384.0343 204840753142.5190 0.03% 119.6  325.7 
23 6 F 0.4531 206644712109.8640 0.00% 35.9  83.8 
24 6 VF 0.5017 206644712109.8640 0.00% 39.8  99.1 
25 6 DF 1.1469 206644712109.8640 0.00% 11.1  2553.5 
26 6 AFD 0.9874 204840753142.5190 0.03% 67.9  286.2 
27 7 F 1.8843 334941838394.1040 0.00% 36.0  196.3 
28 7 VF 3.7233 334941838394.1040 0.00% 63.0  292.5 
29 7 DF 35.4953 334941838394.1040 0.00% 24.4  13137.5 
30 8 F 10.5938 661818112752.7330 0.00% 106.9  320.2 
31 8 VF 10.7579 661818112752.7330 0.00% 70.1  296.2 
 

 

 

 



 47

4.4.2. DWD convergence  

In this subsection, we outline a set of measures that relate each scheme to DWD conver-

gence and formulate two conjectures that we assess through computational tests.  

DWD represents each sub-problem polytope in master problem as the convex 

combination of its extreme points (to facilitate discussion, we assume that sub-problem 

polytopes are bounded); each corresponds to a column in master problem. The number 

of these columns depends on the sub-problem polytopes, which we describe by three 

measures: i) the number of decision variables in sub-problem, ii) the number of con-

straints in sub-problem, and iii) the number of convexity constraints in RMP, which is 

the same as the number of sub-problems.  

The number of extreme points in a sub-problem polytope is likely correlated with 

(i) and (ii). The standard form of a linear program has n  variables and m  constraints.  

The number of basic feasible solutions, which is greater than or equal to the number of 

feasible extreme points, is less than or equal to n
m nC +

 (Bazaraa et al., 2005). As m  in-

creases, the value of n
m nC +

 increases. Intuitively, a sub-problem polytope with fewer vari-

ables and constraints has fewer extreme points, although this may not be true in all cases. 

If sub-problem exhibits a block diagonal structure, it can be decomposed into several 

small sub-problems (Bazaraa et al., 2005), likely reducing the number of columns in 

master problem and improving the rate of convergence.  

To prescribe an optimal solution to RMP, an optimal basis, a combination of t  

columns from the set of s  columns in master problem, must be found. An upper bound 

on the number of possible bases is t
sC . If s  is not large relative to t , t

sC  is not large, so 
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there are relatively few bases to search over. Thus, we conjecture that a master problem 

formulation with fewer columns may lead to faster convergence.  

Conjecture 4.3: The number of iterations required to prescribe an optimal solution to 

RMP is positively correlated with the number of columns in master problem. 

RMP converges slowly due to the oscillation of dual variable values (Ben Amor 

et al., 2004). Convergence can be improved by restricting each dual variable value to a 

small region. We use three measures of RMP to describe restrictions on dual variables 

values in DRMP: (i) the number of constraints in RMP; (ii) the number of columns in 

RMP; and (iii) the order of degeneracy of RMP. The number of constraints in RMP de-

termines the number of dual variables in DRMP. More dual variables increase the di-

mension of the dual space and result in more degrees of freedom so that it may become 

more difficult to restrict each dual variable value to a small region. A larger number of 

columns in RMP correspond to more cuts in the associated dual space, which helps to 

restrict the oscillation of dual variable values. An optimal degenerate solution in RMP 

corresponds to alternative optimal solutions in DRMP so that RMP degeneracy leads to 

more degrees of freedom and may allow dual variables to take on a wider range of feasi-

ble values.  

Conjecture 4.4: Weaker restrictions on values of dual variables in DRMP lead to slower 

RMP convergence.  

4.4.3. Analysis of decomposition schemes  

Table 6 summaries measures discussed in subsection 4.4.2 for the five schemes. Meas-

ures related to the sub-problem polytope include the number of variables in sub-problem 
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(SPV), the number of constraints in sub-problem (SPC), the number of extreme points 

associated with the sub-problem polytope (SPEP), the number of diagonal blocks (i.e., 

convexity constraints) (CNV). Measures affecting restrictions on dual variable values in 

DRMP include the number of variables in RMP (RMPV), the number of non-convexity 

constraints in RMP (RMPC), and constraints that may cause RMP to be degenerate 

(DEG). Other measures include the expected solvability of sub-problem and RMP, and 

relationships among bounds. 

We use MP(-), RMP(-), DRMP(-), and SP(-) to denote master problem, RMP, 

DRMP, and sub-problem, respectively, associated with scheme -. Based on the numbers 

of constraints and variables in master problem and sub-problem, it is easy to obtain SPV, 

SPC, RMPV, and RMPC in Table 6. SP(A) and SP(VA) employ SP1 and SP1E, respec-

tively. SP(F) and SP(VF) employ SP2 and SP2E, respectively. SP(AF) includes both 

SP1 and SP2. Suppose that *
IPZ  ( *

LPZ ) is the optimal objective value of ℘ ( LP ) and 

*
AZ  ( *

VAZ , *
FZ , *

FZ , *
VFZ , and *

AFZ ) is the lower bound provided by scheme (A) ((VA), 

(F), (VF), and (AF)) (i.e., the optimal solution to RMP at the root node of the B&B tree), 

*
LPZ * *

F VFZ Z= = ≤ * * *
A VA AFZ Z Z= = ≤ *

IPZ  because SP1( e ) and SP1E( e ) do not have the 

Integrality Property. The number of convexity constraints in RMP(AF) is equal to 2 | |E , 

half correspond to SP1; and half, to SP2. Other schemes include | |E  convexity con-

straints.  

In scheme (A), the number of extreme points of the SP1( e ) polytope is equal to 

the number of combinations of alternatives to which ep P∈  might be allocated. p  must 
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be allocated to at least one alternative in pF , giving | |2 1pF −  combinations. If ep P∈  can 

be allocated independently to alternatives, the number of combinations is 

| |(2 1)p

e

F

p P∈
−∏ . In scheme (VA), given a solution to SP1( e ), we can obtain a set of so-

lutions to SP1E( e ), each using a different solution to one CKP( pf ). The number of 

CKP( pf ) solutions for all pf  combinations is 
,

| |
e p

pfp P f F
A

∈ ∈∏  for a given solution to 

SP1( e ). The total number of solutions to SP1E( e ) is equal to 

,
| |

e p
pfp P f F

A
∈ ∈∏ i | |(2 1)p

e

F

p P∈
−∏ . We expect that the SP1E( e ) polytope has many more 

extreme points than the SP1( e ) polytope of scheme (A). Because RMP(A) is huge (only 

constraints (4-6) and (4-9) are placed in sub-problem), it can not be expected to be read-

ily solvable. Compared with RMP(A), RMP(VA) includes fewer constraints and vari-

ables. Constraints (4-3) and (4-4) cause RMP(A) to be degenerate while (4-3) cause 

RMP(VA) to be degenerate. 

In scheme (F), the number of extreme points of the SP2( e ) polytope is equal to 

the number of spanning hyper-trees in the hyper-graph defining the assembly flow net-

work (Cambini et al., 1997). In scheme (VF), constraints (4-4) hold at equality, so each 

solution to SP2( e ) corresponds to a solution to SP2E( e ). Polytopes associated with 

SP2E( e ) and SP2( e ) have the same number of extreme points. We expect the solvabil-

ity of RMP(F) is better than that of RMP(A) and RMP(VA) because it comprises fewer 

constraints and variables. RMP(VF) promotes solvability by comprising fewer con-

straints and variables than RMP(F). (4-3) and (4-4) cause RMP(F) to be degenerate, and 

(4-3) cause RMP(VF) to be degenerate.  
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Table 7. Analyses of enhanced decomposition schemes 

  Scheme (DF) Scheme (AFD) 

SPV | |A  | | | |pp P
A F

∈
+∑  

SPC | | | |pp P
F T

∈
⋅∑  | | (| | 1) | |pp P

F T E
∈

⋅ + +∑  

SPEP SPEP(DF) = SPEP(F) SPEP(AFD) = SPEP(AF) 

R
ep

re
se

nt
at

io
ns

 
of

 S
P 

CNV | |ee E
CZ T

∈
⋅∑  2 | |E  

SP Solvability SP2, polynomial SP1 & SP2 

RMPV | | | |pp P
F F

∈
+∑  | | | |F A+  

RMPC 
| | | | | | 3 | | | |pp P
L F T F E

∈
+ ⋅ + +∑

 

| | | | | | 2 | |pp P
L F T F

∈
+ ⋅ + ∑  

R
es

tri
ct

io
ns

 o
n 

du
al

s 

DEG DEG(DF) = DEG(F) DEG(AFD) = DEG(AF),   
adding extra dual cuts for constraints (3) 

Expected RMP Solv-
ability 

More challenging than Scheme (F) 
because of extra convexity constraints 

A little more challenging than Scheme (AF)
because of extra dual cuts 

RMP Bound *
DFZ = *

LPZ  *
AFDZ = *

AZ ≥ *
LPZ  

 

 

In scheme (AF), sub-problem has a block diagonal structure that is decomposed 

to form sub-problems with the SP1( e ) and SP2( e ) structures. The number of columns in 

MP(AF) is the sum of the number of extreme points associated with both SP1( e ) and 

SP2( e ) polytopes. We expect that the solvability of RMP(AF) is as good as RMP(VF) 

because both have about the same number of constraints and variables. Constraints (4-3) 

and (4-4) cause RMP(AF) to be degenerate.  

Schemes (DF) ((AFD)) is based on (F) ((AF)). CD increases the numbers of sub-

problems and convexity constraints in master problem from | |E  in (F) to | |ee E
CZ T

∈
⋅∑  
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in (DF), while scheme (AFD) enhances (AF) by adding 
,

| |
e

pe E p P
F

∈ ∈∑  EDCs in RMP. 

Table 7 summarizes these two enhanced schemes.  

4.4.4. Analysis of computational results  

Results show the impact of increasing instance size on the efficacy of each scheme. Only 

(F) and (VF) can solve all instances of the largest scenarios within 20 minutes; they lead 

the list of schemes ordered according to fastest run time first: (F), (VF), (DF), (AFD), 

(AF), (A), and (VA).  

Because SP1( e ) and SP1E( e ) do not have the Integrality Property, *
LPZ =  

* *
F VFZ Z= *

DFZ= ≤ * * * *
A VA AF AFDZ Z Z Z= = = *

IPZ≤ . IMPR is small because fixed and vari-

able costs are positively correlated in real-world data, for which a location with lower 

fixed costs may likely have lower variable costs. Thus, budget limitations (4-6) will, in 

general, not be binding at the optimal solution.  

We focus on DWD convergence, exploring the advantages and disadvantages of 

alternative decomposition schemes, which distribute the challenges of complexity be-

tween master problem and sub-problem. We seek to show which factors affect the rate of 

convergence of DWD. We also use results to evaluate the two conjectures posed in sub-

section 4.4.2. Results support our conjectures, demonstrating that the expected number 

of iterations required to prescribe an optimal solution to RMP is likely to be positively 

correlated with the number of columns in master problem and that weaker restrictions on 

the values of dual variables in DRMP lead to slower convergence in prescribing an op-

timal solution to RMP.  
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To distinguish the relative performance of each scheme, we compare them in 

pairs, each of which is chosen relative to measures presented in subsection 4.4.2. Figure 

9 depicts these pair wise comparisons, using each vertex to represent a scheme and each 

edge to represent a comparison. Schemes in the same row embed the same of type of 

sub-problem. We focus on two performance measures, RITR and RT, for six pairs of 

schemes compared in the following six subsections.  

 

 

Figure 9. Comparison of decomposition schemes 

 

 

4.4.4.1. Scheme (F) vs Scheme (DF)  

Compared with (F), (DF) employs CD to accelerate convergence. CD decreases the 

number of columns in master problem so MP(DF) includes fewer columns than MP(F). 

Table 5 shows that RMP(DF) requires fewer RITR than RMP(F), supporting Conjecture 

Constraints 
AVUB in MP

Constraints 
AVUB in SP

Acceleration  
Techniques 

A

AFD AF

F VFDF 

VA SP1 

SP2 

SP1, SP2 
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4.3. However, a disadvantage of CD is that it places more convexity constraints in 

RMP(DF), making it more challenging. Table 5 shows that RT(DF) exceeds RT(F), re-

flecting the fact that (DF) takes longer than (F) at each RMP iteration.  

4.4.4.2. Scheme (AF) vs Scheme (AFD)  

(AFD) enhances (AF) by adding EDCs to RMP(AFD) to accelerate convergence. The 

solvabilities of RMP and sub-problem in both schemes are about the same. Table 5 

shows the effectiveness of EDCs, which can reduce RITR required to solve RMP(AFD). 

EDCs restrict the values of dual variables in DRMP, tending to accelerate the conver-

gence of RMP. Results support Conjecture 4.4.  

4.4.4.3. Scheme (A) vs Scheme (VA)  

Table 5 shows that (A) requires fewer RITR and less RT than (VA). Because SP1E in 

(VA) can be polynomially reduced to SP1 in (A), the solvability of sub-problems in both 

schemes is about the same. Compared with SP1, SP1E can be expected to have more ex-

treme points, so MP(VA) involves more columns than MP(A). Affirming Conjecture 4.3, 

RMP(A) converges faster than RMP(VA). The rate of convergence also depends upon 

restrictions in the dual space. (A) incorporates constraints (4-4) in master problem while 

(VA) includes them in its sub-problem. According to Conjecture 4.4, restrictions on dual 

variables in DRMP(A) are apparently weaker than those on DRMP(VA) because 

DRMP(VA) does not include dual cuts associated with variables az  (there are more az  

variables than constraints (4-4)); DRMP(VA) does not involve dual variables associated 

with (4-4) but DRMP(A) does. However, neither (A) nor (VA) promotes solvability be-

cause the number of constraints and variables in RMP(A) and RMP(VA) are almost the 
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same as those in LP . RMP must be solved iteratively, so (A) and (VA) require more 

RT than CPLEX does to solve LP .  

4.4.4.4. Scheme (F) vs Scheme (VF) 

SP2E in (VF) can be reformulated as SP2 in (F), so the solvability of sub-problems in 

both schemes is about the same. SP2 and its corresponding SP2E have the same number 

of extreme points. Conjecture 4.3 can not be used to estimate the rate of convergence. (F) 

includes constraints (4-4) in master problem while (VF) includes them in its sub-

problem. DRMP(VF) has fewer dual variables that DRMP(F) but RMP(VF) does not 

involve pfy  variables so that associated dual cuts are not incorporated in DRMP(VF). 

Constraints (4-4) are implied as equalities in (VF), restricting RMP(VF) more than 

RMP(F), which includes (4-4) as inequalities. Restrictions on the values of variables in 

DRMP(F) are weaker than those on DRMP(VF). Affirming Conjecture 4.4, (F) requires 

fewer RITR than (VF). Compared with RMP(A) and RMP(VA), RMP(F) and RMP(VF) 

incorporate fewer constraints and variables. Both (A) and (VA) promote solvability. Ta-

ble 4 and Table 5 show that both (A) and (VA) require less RT than CPLEX.  

4.4.4.5. Scheme (VF) vs Scheme (AF)  

(VF) includes constraints (4-4) in sub-problem and constraints (4-6) in master problem, 

while (AF) includes (4-6) in sub-problem and (4-4) in master problem. SP(AF) has a 

block diagonal structure that can be decomposed into independent SP1 and SP2. MP(AF) 

includes additional columns from SP1 compared with MP(VF). By Conjecture 4.3, we 

expect that RMP(VF) converges faster than RMP(AF) because it involves fewer col-

umns. In contrast to RMP(VF), RMP(AF) includes constraints (4-4), which induce a 
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high order of degeneracy but play an important role in coordinating columns from SP1 

and SP2. Because (4-4) induce RMP degeneracy, dual variables may assume different 

values in alternative optimal dual solutions, explaining why RMP(AF) converges more 

slowly than RMP(VF). Results in Table 5 affirm Conjecture 4.4.  

4.4.4.6. Scheme (F) vs Scheme (AFD) 

Table 5 shows that RMP(F) converges faster than RMP(AFD). Because (AFD) employs 

both SP1 and SP2 but (F) employs only SP2, MP(F) involves fewer columns than 

MP(AFD), apparently promoting the convergence of RMP(F) according to Conjecture 

4.3. In particular, as the instance size increases, the number of columns from SP1 in 

(AFD) increases, allowing (F) to converge much faster than (AFD) on large-scale in-

stances. (F) and (AFD) deal differently with variables pfy  and associated constraints (4-

6). (F) relegates them to master problem while (AFD) places them in sub-problem. Vari-

ables pfy  in (F) can be viewed as dual cuts in DRMP(F). Compared with dual cuts in 

DRMP(AFD), dual cuts related to pfy  variables in (F) seem to be more effective based 

on the results shown in Table 5.  

However, RMP(AFD) provides a better bound than RMP(F) because SP1 does 

not have the Integrality Property. If we use (AFD) in B&P, the tighter bound can be ex-

pected to reduce the number of nodes explored in the B&B search tree so that (AFD) 

would generate fewer columns than (F). If budget limitations (4-6) were tight, we expect 

that (AFD) would be a good choice in B&P.  
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4.5. Summary  

In this subsection, we study several schemes for applying DWD to PADSDP, and its ob-

jectives, enhancing the rate of DWD convergence by formulating a rationale for decom-

position by analyzing potential schemes, adopting acceleration techniques, and assessing 

the impacts of schemes and techniques computationally. It also attains its goal, system-

atically studying the broad range of factors (e.g., numbers of columns and rows in master 

problem and its degeneracy, the structure (Integrality Property, separability into small 

sub-problems) of sub-problem and its solvability) that affect the performance of DWD.  

We focus on the methodology, exploring advantages and disadvantages of alter-

native decomposition schemes, which distribute the challenges of complexity between 

master problem and sub-problem. We seek to understand what factors affect the per-

formance of DWD, especially its rate of convergence. We summarize a set of measures 

that describe decomposition schemes and pose conjectures that lend insights into the rate 

of convergence. Computational tests provide empirical evidence that supports our intui-

tive conjectures. We also adopt two techniques for accelerating convergence and demon-

strate their positive influence. 
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5. A GENERALIZATION OF DANTZIG-WOLFE DECOMPOSITION* 

 

In this section, we extend the idea of adding extra dual cuts and propose a generalization 

of Dantzig-Wolfe decomposition (DWD), reformulating the master problem with fewer 

variables at the expense of adding more constraints; the sub-problem structure does not 

change. It shows both analytically and computationally that the reformulation promotes 

faster convergence to an optimal solution in application to a linear program and to the 

relaxation of an integer program at each node in the branch-and-bound (B&B) tree. Fur-

ther, it shows that this reformulation subsumes and generalizes three approaches that 

have been shown to improve the rate of convergence in special cases.  

5.1. Introduction  

DWD was proposed initially as a technique for solving a large-scale linear program 

(Dantzig and Wolfe, 1960) by reformulating it in terms of a master problem and one or 

more sub-problems. The master problem typically comprises a huge number of columns; 

but, to avoid dealing with all of them explicitly, a restricted master problem (RMP) in-

corporates a limited number of columns that are generated as needed by solving the as-

sociated sub-problem(s) in a well-known column-generation (CG) procedure (Wilhelm, 

2001). DWD can also be applied to the linear relaxation of an integer program, embed-

ding the reformulation within branch-and-bound to form a branch-and-price (B&P) ap-

proach. Another type of CG (Type II as defined by Wilhelm, 2001) poses a master probl- 

____________ 
*This section is reprinted with from Liang, D., W. E. Wilhelm (2007b) A generalization 
of column generation to Accelerate Convergence, submitted to Mathematical Program-
ming. Once the paper is accepted, the journal will hold the copyright to its contents.  
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em – often a set covering model (e.g., Desrochers, Desrosiers and Solomon, 1992) – and 

formulates one or more sub-problems to generate columns as needed. DWD represents 

each sub-problem polytope by forming a convex combination of the columns (i.e., ex-

treme-point solutions) it generates, while Type II CG enters improving columns into the 

RMP basis directly, without forming such convex combinations.  

The effectiveness of CG depends upon the number of iterations required to pre-

scribe an optimal solution. All sub-problems are typically solved at each iteration so that, 

depending upon column-pool management tactics, either the most improving column or 

all improving columns can be made available to RMP. The average-case performance of 

CG is quite acceptable in many applications (e.g., multi-commodity network flow and 

cutting stock problems); although, in the worst case, it may be necessary to generate an 

exponential number of columns to optimize RMP. A key challenge is to accelerate CG 

convergence by reducing the number of iterations (equivalently, the number of generated 

columns) needed to prescribe an optimal solution (Vanderbeck and Savelsbergh, 2006).  

The purpose of this section is to present a generalization of DWD (DWDG) with 

the goal of accelerating convergence. Our primary set of research objectives investigates 

DWDG in application to linear programs, establishing a theoretical basis, providing 

geometric insight through a numerical example, and showing how DWDG improves 

convergence through analytical means, subsuming and generalizing approaches that 

have been shown to improve convergence in special cases, and reporting computational 

experience. Our second set of research objectives explores equivalent issues related to 

DWDG in application to integer programs, for which run time depends on the rate of 
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convergence as well as the tightness of bounds provided by RMP at each node in the 

B&B tree.  

We have organized the body of this section in three subsections. Subsection 5.2 

addresses the primary set of research objectives that deal with applying DWDG to linear 

programs; similarly, subsection 5.3 addresses the second set of research objectives re-

lated to integer programs. Finally, subsection 5.4 summarizes conclusions. This section 

contributes by generalizing classical DWD, formalizing DWDG, showing that it acceler-

ates convergence, and describing how it subsumes and generalizes approaches that are 

known to improve convergence in special cases.  

5.2. DWDG for Linear Programs  

DWD can be viewed as a form of variable redefinition (Martin, 1987), since it represents 

the sub-problem polytope as a convex combination of its extreme points (Dantzig, 1960). 

That is, DWD employs an extreme-point representation of the sub-problem polytope, 

while the original problem uses the intersection of a set of half-spaces, the half-space 

representation. Each point in the sub-problem polytope can be represented as a convex 

combination of a set of vectors (i.e., k kk K
λ

∈
=∑x x ; 1kk k

λ
∈

=∑ ; 0kλ ≥ , k K∈ , where 

kx  denotes an extreme point and K  is the index set of extreme points of that polytope). 

Non-negative values of multipliers { }kλ , k K∈  must satisfy the convexity constraint. In 

addition, each point in the sub-problem polytope can also be represented as a linear 

combination of a set of vectors (e.g., j jj J
x

∈
=∑x e , where n J=  is the dimension of 

vector x , je  is the thj  unit vector, and jx  is the thj  element of x . { }jx , j J∈  must 
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satisfy all constraints that define facets of the polytope. Compared with the convex com-

bination, this linear combination typically involves fewer variables (i.e., K n>  where 

K  denotes the cardinality of K ) but more constraints (i.e., the convex combination en-

tails fewer convexity constraints than the number of constraints required by the linear 

combination).  

An open question is whether or not it is possible to exploit a trade-off between 

the numbers of variables and constraints in a master problem to improve the rate of con-

vergence of CG by representing the sub-problem polytope as a mixture of both extreme-

point and half-space representations (i.e., both convex and linear combinations). We 

show that such a favorable trade-off exists and can be achieved by DWDG.  

This subsection addresses our primary set of research objectives, investigating 

DWDG in application to linear programs. We begin with a brief review of DWD, then 

present our reformulation, DWDG. Next, we provide a rich geometrical interpretation of 

DWDG through a small numerical example. We establish a theoretical foundation for 

DWDG and analyze how it affects convergence. We show DWDG subsumes and gener-

alizes an approach that has been shown to improve convergence of DWD in application 

to the linear multi-commodity network flow problem. Finally, we report tests that evalu-

ate convergence numerically. Our investigation shows DWDG can reduce the number of 

columns that must be generated to prescribe an optimal solution, improving the conver-

gence behavior of CG.  

5.2.1. Dantzig-Wolfe decomposition  

Consider a linear program ( )P  of the form  
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 ( )P max  Tc x    
  s.t. ≤Ax b  (5-1) 
  =Dx d  (5-2) 
  ≥x 0  (5-3). 

 

Here, n
+∈x R  represents an n -vector of non-negative decision variables and n∈c R  is 

the n -vector of objective function coefficients. p n×∈RA  and q n×∈RD  are matrices of 

constraint coefficients. p∈b R  and q∈d R  are right-hand-side values. 

To facilitate presentation, we deal with a single, bounded sub-problem, noting, 

however, that, in a typical application, D  may have a block diagonal structure so that 

the sub-problem is separable into a set of independent sub-problems.  Multiple and un-

bounded sub-problems can easily be addressed but require more intricate notation. Ap-

plying DWD, we can decompose ( )P , placing constraints (5-2) and (5-3) in the sub-

problem and relegating constraints (5-1) to the master problem, to obtain the following 

DWD master problem ( )MP :  

 ( )MP  max ( )T
k kk K
λ

∈∑ c x    

  s.t. ( )k kk K
λ

∈
≤∑ Ax b  (5-4) 

  1kk K
λ

∈
=∑  (5-5) 

  0,k k Kλ ≥ ∈ .  

 

As before, K  represents the index set of extreme points in the sub-problem polytope 

(i.e., columns in ( )MP ). Letting p
+∈Rω  and α ∈R  correspond to dual variable values 

associated with constraints (5-4) and (5-5), respectively, sub-problem ( )SP  can be for-

mulated as  
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 ( )SP min ( )T T α− +ω A c x    
  s.t. (5-2) and (5-3).   
 

5.2.2. Reformulation 

Consider a second linear program ( ')P  vis-à-vis ( )P :  

 ( ')P  max Tc x' + Tc y   
  s.t. Ax' + Ay ≤ b  (5-6) 
  x' + y ≥ 0  (5-7) 
   Dx' = d  (5-8) 
  Dy = 0 (5-9)
   x' ≥ 0  (5-10) 
   y unrestricted. (5-11) 

 

n
+∈x' R , which corresponds to x  in ( )P , is an n -vector of non-negative decision vari-

ables and n∈y R  is an n -vector of decision variables that are unrestricted in sign. All 

other symbols are the same as in ( )P .  

Definition 5.1: Problems 1( )π  and 2( )π  are equivalent if, for any feasible solution to 

1( )π , there is a corresponding feasible solution to 2( )π  with the same objective function 

value and vice versa.  

Proposition 5.2: Problems ( )P  and ( ')P  are equivalent.  

Proof: ( )⇒  Suppose =x x  is a feasible solution to ( )P ; the corresponding feasible so-

lution to ( ')P , ( , )x' y ( , )= x 0 , has the same objective function value, Tc x . Because x  

satisfies constraints (5-1)-(5-3), it is trivial that ( , )x 0  satisfies constraints (5-6) -(5-11). 

Thus, ( , )x 0  is feasible with respect to ( ')P .  

( )⇐  Consider a feasible solution to ( ')P , ( , ) ( , )=x' y x y ; the corresponding solution to  
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( )P , =x ( )+x y , has the same objective function value, ( )T +c x y . ( , )x y  satisfies 

constraints (5-8) and (5-9) (i.e., =Dx d , = 0Dy ), so ( )+x y  satisfies constraints (5-2) 

(i.e., ( ) ++ =D x y Dx + Dy = d 0 = d ). ( , )x y  satisfies constraints (5-6) and (5-7) (i.e., 

+ ≤ bAx Ay , + ≥ 0x y ), so +x y  satisfies constraints (5-1) and (5-3) (i.e., 

( )+ ≤A x y b , ( )+ ≥x y 0 ). Thus, ( )+x y  is feasible with respect to ( )P . ■  

Please note the equivalence of solutions ( , )x y  and ( , )+x y 0  in ( ')P .  

Corollary 5.3: For feasible solution ( , ) ( , )=x' y x y  in ( ')P , ( , ) ( , )= +x' y x y 0  is also 

feasible with respect to ( ')P . Both ( , )x y  and ( , )+x y 0  have the same objective func-

tion value.  

5.2.2.1. DWD applied to ( ')P   

We introduce DWDG by applying DWD to problem ( ')P , forming ( )LMPI' , one sub-

problem with constraints (5-8) and (5-10), and a second with (5-9) and (5-11):  

( )LMPI'  max ( )T
kk K
λ

∈∑ c x + ( )T
l ll L
µ

∈∑ c y  (5-12) 

 s.t. ( )k kk K
λ

∈∑ Ax + ( )l ll L
µ

∈∑ Ay ≤ b  (5-13) 

  ( )k kk K
λ

∈∑ x + ( )l ll L
µ

∈∑ y ≥ 0  (5-14) 

  kk K
λ

∈∑ 1=  (5-15) 

  kλ 0≥ , k K∈  (5-16) 

  lµ unrestricted, l L∈  (5-17). 
 

Here, K  is the same as in ( )MP . Letting p
+∈ω R , n

−− ∈u R  (i.e., n
+∈u R ) and α ∈R  

correspond to dual variable values associated with constraints (5-13), (5-14), and (5-15), 

respectively, we define sub-problem ( ')SPI :  



 66

 ( ')SPI  min ( )T T T α− − +ω A u c x   
  s.t. (5-8) and (5-10).   

 

where constraints (5-8) and (5-10) are exactly the same as (5-2) and (5-3), respectively, 

so that sub-problems ( ')SPI  and ( )SP  have the same set of constraints. A feasible solu-

tion to ( ')SPI  generates a vector (i.e., a column) that we denote by kx  for k K∈ . Sub-

problem ( ')SP  is defined as:  

 ( ')SP  min ( )T T T− −ω A u c y    
  s.t. (5-9) and (5-11).   

 

Constraints (5-9) and (5-11) define a linear subspace of n . One important property of a 

linear subspace is that any vector in it can be represented as a linear combination of vec-

tors that span it. In particular, if these spanning vectors are linearly independent, they 

comprise a basis of the linear subspace. The size of the basis associated with a linear 

subspace (i.e, the number of linearly independent vectors spanning the subspace) is 

equal to the dimension of the subspace (Bazaraa et al., 2005). A feasible solution to 

( ')SP  generates a vector (i.e., a column) that we denote by ly  for l L∈  (equivalently, 

{ }|l Ly ).  Letting C  be the collection of index sets, each of which, L , corresponds to a 

set of vectors that spans the linear subspace (i.e., ∀ L ∈C ). Note that each selection of 

L  leads to a different ( )LMPI' .  

Another property of a linear subspace is that if ly  is in the subspace, then lε y , 

for ε∀ ∈ , is also in the subspace (Bazaraa et al., 2005). If ( T T−ω A u )T
l−c y 0≠ , the 

objective function value ( ')SP  can be made unbounded by setting ε  to  +∞ or −∞ . To 
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avoid this situation, we can restrict the norm of y . ( ')SP  is easy to solve by projecting 

( )T T T− − −ω A u c  orthogonally onto the subspace defined by (5-9) and (5-11) and nor-

malizing the projected vector.  

In addition to lµ  variables for l L∈ , ( )LMPI'  includes n  (i.e., the dimension of 

vector x ) additional constraints (5-14) in comparison with ( )MP . Each selection of L  

leads to a different ( )LMPI' , and some selections may not require all constraints (5-14) 

to be included in ( )LMPI' . For example, if we select L  such that the thr  constraint (5-

14), ( ) ( ) 0rk k rl lk k l L
x yλ µ

∈ ∈
+ ≥∑ ∑ , has 0rly =  for each l L∈ , this constraint is im-

plied by 0rkx ≥ , 0kλ ≥ , k K∈  and can be eliminated because it is redundant. In par-

ticular, if we select K =∅ , all constraints (5-14) are redundant and can be eliminated, 

and ( )LMPI'  is exactly the same as ( )MP . In the worst case, the number of constraints 

(5-14) might be large, but we can control this number by our selection of K . To facili-

tate subsequent discussions, we use { }|l Ly  and { }|k Kx  to abbreviate { }ly , l L∈  and 

{ }kx , k K∈ , respectively, so long as ambiguity would not result.  

5.2.2.2. Selection of K   

Due to the equivalence of ( ')P  and ( )LMPI' , ( )l ll L
µ

∈
≡∑y y . Further, Corollary 5.3 

shows that the optimal solution to ( ')P  may have =y 0 . These relationships raise the 

question of whether the optimal solution of ( )LMPI'  can be prescribed even if vectors 

{ }|j Ly  do not span the linear subspace defined by (5-9) and (5-11). The answer to this 

question is yes, as we relate below.  
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If 0lµ = , the index l  corresponding to vector ly  can be removed from L  with-

out changing ( )*
LZ MPI' , where (-)*Z  represents the optimal objective function value of 

problem ( )− . However, columns { }\L l  may not form a basis. Thus, index set L  need 

not correspond to vectors that span the linear subspace defined by (5-9) and (5-11). Let 

D  be the collection of all index sets, including the empty set, and ⊂C D .  

Proposition 5.4: Problem ( )LMPI'  is equivalent to ( )MP  for each L ∈D .  

Proof: ( )⇒  Let λ  and Lµ  represent vectors of variables ( )kλ , k K∈  and ( )lµ , l L∈ ; 

λ , Lµ  represent the vector of values ( )kλ , k K∈  and ( )lµ , l L∈ , respectively; and L0  

represent the 0  vector of dimension L .  

Suppose ( ) ( ), ,L L=λ µ λ µ  is a feasible solution to ( )LMPI' , ( , )x' y = ( , )x y  (i.e., 

( , ) ≡x y ( ) ( )( ),k k l lk K l L
λ µ

∈ ∈∑ ∑x y  is the corresponding feasible solution to ( ')P ). 

( , ) =x' y ( , )+x y 0  is also feasible with respect to ( ')P  and has the same objective value 

by Corollary 5.3. Proposition 5.2 shows that ( )+x y  is the corresponding solution in 

( )P . We can find a feasible solution to ( )MP  with the same objective function value 

that ( )+x y  gives in ( )P , which also corresponds to the solution value that ( ), Lλ µ  

gives in ( )LMPI' .  

( )⇐  Trivial. Given any feasible solution to ( )MP , we only need to add L L= 0µ  and 

obtain the corresponding solution to ( )LMPI'  with the same objective value. ■  
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Actually, the { }ly  columns are redundant in ( )LMPI'  since the optimal solution 

value of ( )LMPI' , ( )*
LZ MPI' , is the same whether these columns are included or not. 

Thus, additional constraints can be imposed on lµ  in ( )LMPI'  without changing 

( )*
LZ MPI'  and we now propose a sufficient condition to do so. The following proposi-

tion deals with ( )LMPI" , which we obtain by including constraints (18) in ( )LMPI' :  

( )LMPI"  max ( )T
k kk K
λ

∈∑ c x   + ( )T
l ll L
µ

∈∑ c y   

 s.t. (5-13)-(5-17)    

   ( )l ll L
µ

∈∑ g ≤ h  (5-18). 
 

Proposition 5.5: If L L= 0µ  satisfy constraints (5-18) (i.e., ≥h 0 ), then ( )MP , ( )LMPI' , 

and ( )LMPI"  are equivalent.  

Proof: Given any feasible solution to ( )MP , we need only add L L= 0µ  to obtain the cor-

responding solution to ( )LMPI" . Given any feasible solution to ( )LMPI" , it is also fea-

sible solution with respect to ( )LMPI'  since it is a relaxation of ( )LMPI" . Given any 

feasible solution to ( )LMPI' , Proposition 5.4 shows that we can always find a corre-

sponding solution to ( )MP . So, ( )MP , ( )LMPI' , and ( )LMPI"  are equivalent. ■  

In particular, we can specify constraints (5-18) as 0, 0l lµ µ≤ − ≤  (i.e., 0lµ = ) in 

( )LMPI" ; that is, setting any lµ  variable in ( )LMPI'  equal to 0 will not change 

( )*
LZ MPI' .  
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Remark 5.6: If K =∅ , constraints (5-14) are redundant and ( )LMPI'  is exactly the 

same as ( )MP .  

5.2.3. Geometrical interpretation  

We now demonstrate that DWDG provides the flexibility of representing the sub-

problem polytope by combining both extreme-point and half-space representations. In 

general, the extreme point representation (e.g. ( )MP ) uses K  variables and one con-

vexity constraint, while the half-space representation (e.g. ( )P ) uses n  variables and q  

constraints (5-2) in ( )P . We illustrate the geometrical interpretation of combining ex-

treme-point and half-space representations by using the project-and-restore procedure, 

which includes i) projecting polytope Π  along direction 1y  onto hyper-plane Γ  to ob-

tain polytope y1( )ΓΠ ; ii) formulating the extreme-point presentation for polytope 

y1( )ΓΠ ; and iii) restoring polytope Π  as the linear combination of points in y1( )ΓΠ  and 

direction 1y . Figure 10 depicts an example of this procedure. We construct the linear 

program ( )LPE : 

( )LPE  max 114x  + 27x + 35x  (i) 
 s.t.  1x  + 22x + 36x 54≤  (ii) 
  18x  + 3x 32≤  (iii) 

1F   13x  − 28x + 39x 1≤  (iv) 
2F   19x  + 22x + 3x 55≤  (v) 
3F   14x−  + 22x + 3x 16≤  (vi) 
4F   1x−  + 2x − 33x 8≤ −  (vii) 

  1x  − 23x + 33x 2≤ −  (viii) 
  12x−  + 2x − 3x 1≤ −  (ix) 
  13x  + 2x − 3x 14≤  (x) 
  1x , 2x , 3x 0≥  (xi) 
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Suppose that we apply DWD to ( )LPE  using seven constraints (iv)-(xi) to define 

the sub-problem polytope (see Figure 10(a)) and relegating constraints (ii) and (iii) to the 

master problem. The seven extreme points of the sub-problem polytope (i.e., 1x , 2x , …, 

7x ) are (3,10,8) , (3,11,6) , (1,7,6) , (4,7,5) , (3,10,5) , (4,5,3) , and (1,5,4) , respec-

tively. The projection direction is 1 (0,1,1)T=y  and the hyper-plane Γ  is 1 2 33x x x− + −  

8= − , corresponding to constraint (vii). Figure 10(a) shows the projection of Π  along 

direction 1y  onto hyper-plane Γ  to obtain y1( )ΓΠ . y1( )ΓΠ  has three extreme points 

(3,10,5) , (4,5,3) , and (1,5,4)  (i.e, 5x , 6x , and 7x ). Each extreme point of y1( )ΓΠ  cor-

responds to at least one extreme point of Π  (e.g., 2x , 5x ). Some extreme points of Π  

(e.g., 1x ) may be projected to inner points of y1( )ΓΠ . The following property is associ-

ated with the projection.  

Property 5.7: The number of extreme points of y1( )ΓΠ  is no more than the number of 

extreme points of Π . An extreme point in y1( )ΓΠ  can be represented as a linear combi-

nation of 1y  and a selected extreme point of Π  (Damiano and Little, 1988).  

Figure 10(b) describes the restoration. A linear combination of points in y1( )ΓΠ  

and direction 1y  generates an affine subspace containing polytope Π . To complete the 

restoration of Π , the inequalities that represent facets 1F , 2F , 3F , and 4F  must be in-

corporated to restrict the affine subspace appropriately. The number of such inequalities 

that must be incorporated is less than the total number of facets of Π  in this example. In 

fact, this property holds in general.  



 72

 

 

Figure 10. An example sub-problem polytope 

 

 

Property 5.8: The number of facets invoked to restore Π  need be no more than the 

number of facets of Π  (Damiano and Little, 1988).  

By Property 5.7, any extreme point of y1( )ΓΠ , k
Γx , can be represented as a linear 

combination of 1y  and one of the extreme points of Π , kx , (i.e., k
Γ =x  1k κη+x y , where 

κη  is a constant, k KΓ∈ ; and K KΓ ⊆ , is the index set of extreme points of y1( )ΓΠ ). 

Any point Γx  in y1( )ΓΠ  can be represented as a convex combination of extreme points 

(i.e., Γ =x kk K
λ

Γ

Γ Γ
∈∑ kx , st. 1kk K

λ
Γ

Γ
∈

=∑  and 0kλ
Γ ≥ , k KΓ∈ ). By using Γ

kx  to replace 

1k κη+x y  (i.e., Γ
kx = 1k κη+x y ), k KΓ∈ , we obtain Γ =x  ( )1k kk K κη λ

Γ

Γ
∈

+∑ x y  

1k k kk K k K κλ η λ
Γ Γ

Γ Γ
∈ ∈

= +∑ ∑x y , st. 1kk K
λ

Γ

Γ
∈

=∑  and 0kλ
Γ ≥ , k KΓ∈ . Any point in Π , 

x , can be represented as a linear combination of 1y  and a point, Γx , in y1( )ΓΠ  (i.e., 

(a) project 

1( )ΓΠ y

6x  

7x  

5x

1y  

4x  

3x  

2x

1x
Π

1( )ΓΠ y  

1F

3F

2F  

4F  

1y

(b) restore 
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=x 1 1µ
Γ + =x y  kk K

λ
Γ

Γ Γ
∈

+∑ kx ( )1 1 kk K κµ η λ
Γ

Γ
∈

+∑y , st. 1kk K
λ

Γ

Γ
∈

=∑ ; 0kλ
Γ ≥ , k KΓ∈ ; 

and 1µ  unrestricted). Property 5.8 shows that x  must satisfy a subset of constraints that 

define facets of Π  (i.e., ≤ fFx ). Any point in Π , x , can be represented as 

x = 1 1µ
Γ + =x y kk K

λ
Γ

Γ Γ
∈

+∑ kx ( )1 1 kk K κµ η λ
Γ

Γ
∈

+∑y , st. ( )k kk K
λ

Γ

Γ
∈∑ Fx  

+ ( )1 1µFy + ( )1 k kk K
η λ

Γ

Γ
∈∑ Fy ≤ f ; 1kk K

λ
Γ

Γ
∈

=∑ ; 0kλ
Γ ≥ , k KΓ∈ ; and 1µ  unrestricted. 

Because K KΓ ⊆ , the reformulation employs fewer variables than does the extreme-

point representation. Further, because ≤ fFx  represents a subset of constraints of Π , 

the reformulation employs fewer constraints than the half-space representation.  

The project-and-restore procedure can be applied recursively. Relevant projec-

tion directions are defined by vectors { }|l Ly  and relevant projection hyper-planes can 

each be represented as a convex combination of a subset of extreme points of Π . We 

project polytope Π  along direction 1y  onto a hyper-plane Γ  to obtain polytope y1( )ΓΠ , 

which can be used to restore Π . We then project y1( )ΓΠ  along 2y  onto another hyper-

plane 'Γ  to obtain y y1 2'[ ( )] ( )Γ ΓΠ , which can be used to restore y1( )ΓΠ . We can repeat 

this procedure. Property 5.7 tells us that y y1 2'[ ( )] ( )Γ ΓΠ  has no more extreme points than 

y1( )ΓΠ , which, in turn, has no more extreme points than Π . Property 5.8 shows that we 

can restore Π  ( y1( )ΓΠ ) from y1( )ΓΠ  ( y y1 2'[ ( )] ( )Γ ΓΠ ) by using no more than the number 

of facets of Π  ( y1( )ΓΠ ).Property 5.7 and Property 5.8 provide the flexibility to manage 

the numbers of extreme points and facets employed (i.e., the number of columns and 
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rows in a master problem) since each extreme point corresponds to a column; and each 

facet, to a row.  

5.2.4. Improving convergence  

Different possible selections of L  lead to master problems of different sizes,  reflecting 

a range of cases in the trade-off and affecting the number of columns that must be gener-

ated to achieve optimality.  

Continuing the example depicted in Figure 10, we apply DWD to ( )LPE . Using 

the Big-M method, DWD prescribes the optimal solution on the seventh iteration after 

generating and entering six improving columns:  

Iteration RMP objective Sub-problem solution Minimum reduced cost
1 - 500000 (3,10,8)  0<  
2 -119602.7 (4,5,3)  0<  
3 -17324.23 (1,5,4)  0<  
4 129.6205 (3,10,5)  0<  
5 137.8333 (4,7,5)  0<  
6 138.6207 (3,11,6)  0<  
7 138.6667 -     0≥ ; stop 
 

Now, we design DWDG adding column 1 (0,1,1)T=y  and constraints associated 

with 1F , 2F , 3F  and 4F  (i.e., (iv), (v), (vi), and (vii), respectively) in addition to (i) and 

(ii) in the master problem. The sub-problem is unchanged. Using the Big-M method, 

DWDG prescribes the optimal solution on the third iteration after generating and enter-

ing two improving columns.  

Iteration RMP objective Sub-problem solution Minimum reduced cost
1 -3499988 (3,11,6)  0<  
2 138.5000 (4,7,5)  0<  
3 138.6667 -     0≥ ; stop 
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This small example shows that DWDG can reduce the number of iterations, ac-

celerating convergence but at the cost of increasing run time per iteration because more 

constraints must be incorporated in the master problem.  

We now provide a theoretical foundation that explains this behavior, dealing with 

two cases: L∈C  and L∈D . First, for the special case in which L∈C , the following 

proposition shows that DWDG can converge rapidly.  

Proposition 5.9: Given L∈C , only one column need be generated from set K  to repre-

sent the feasible solution set of ( )LMPI'  and prescribe an optimal solution to ( )LMPI' .  

Proof: Let 1x  be any column from K  and 1λ  be the associated decision variable in 

( )LMPI' . For any feasible solution x  to ( )P , we show that vector x  can be represented 

by vectors 1x  and { }|l Ly ; that is, ( )1 1 l ll L
λ µ

∈
+∑x = x y  with 1 1λ =  to satisfy convex-

ity constraint (5-15).  

Because 1x  and x  satisfy constraints (5-8) (i.e., 1 =Dx d  and =Dx d ), 

( )1− =D x x 0 . Thus, 1( )= −y x x  is in the linear subspace, =Dy 0 . Vectors { }|l Ly  

span this linear subspace, so we can find { }|l Lµ such that ( )1−x x  = ( )l ll L
µ

∈∑ y .  

For any feasible solution x  to ( )P , we obtain solution ( , )λ µ = 

{ }{ }1 1; 0, \ 1 ; ,k lk K l Lλ λ µ= = ∈ ∈  to ( )LMPI'  and =x 1 +x ( )l ll L
µ

∈∑ y . Because x  

satisfies constraints (5-1)-(5-3) in ( )P , 1 +x ( )l ll L
µ

∈∑ y  satisfies constraints (5-13)- (5-

14) in ( )LMPI' . Because 1 +x ( )l ll L
µ

∈∑ y  satisfies constraints (5-15)-(5-16), ( , )λ µ  is 

feasible with respect to ( )LMPI' .  
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By Proposition 5.4, ( )MP  and ( )LMPI'  are equivalent, so ( )P  and ( )LMPI'  are 

equivalent. If =x 1 +x ( )l ll L
µ

∈∑ y  is an optimal solution to ( )P  with 

T =c x ( )( )1
T

l ll L
µ

∈
+∑c x y , ( , )λ µ  is an optimal solution to ( )LMPI'  with the same ob-

jective function value. Thus, given { }|l Ly  that span the linear subspace, =Dy 0 , we 

need only one column {1}  (i.e., 1x ) from K  to obtain an optimal solution to ( )LMPI' . ■  

Proposition 5.9 shows that, if L  represents a set of vectors that span the linear 

subspace, we can guarantee that a subset of K  comprising a single index can be used to 

represent the set of feasible solutions to ( )LMPI' . The number of lµ  variables (i.e., L ) 

is at most equal to the dimension of the linear subspace defined by (5-9) and (5-11) (i.e., 

at most n ). Employing CG to solve DWDG, we only need to generate at most 1n +  col-

umns, one from K  and at most n  vectors that collectively span the subspace. Thus, 

DWDG can affect the number of columns that need to be generated to prescribe an op-

timal solution and may facilitate convergence.  

However, including lµ  variables in the master problem entails invoking con-

straints (5-14) and makes the basis of the master problem larger, rendering RMP more 

challenging to solve at each iteration. DWDG can improve the convergence of DWD by 

reducing the number of variables in the master problem, albeit at the cost of increasing 

run time per iteration because more constraints must be incorporated in the master prob-

lem.  

Proposition 5.9 deals with the special case in which L∈C . An open question is 

whether or not Proposition 5.9 can be generalized for L∈D ; that is, whether or not a 
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subset LK  of K  can be used to represent the set of feasible solutions to ( )LMPI'  if L  

does not define a basis of the linear subspace. We propose the following proposition for 

the more general case in which L∈D .  

Proposition 5.10: For each L∈D , we need only find a subset LK  of K  to represent the 

feasible solution set of ( )LMPI' .  

Proof: If L =∅ , LK  is K  and ( )LMPI'  is the same as ( )MP . Otherwise, suppose that 

we project polytope Π , which is defined by (5-8) and (5-10), along direction 

y1 ∈{ }|j Ly  onto any hyper-plane Γ , which is not parallel to y1 , to obtain polytope 

y1( )ΓΠ . Refer to the paragraph following Property 5.8. By Property 5.7, any point in Π , 

x , can be represented as x 1 1µ
Γ= +x y = k kk K

λ
Γ

Γ
∈

+∑ x ( )1 1 kk K κµ η λ
Γ

Γ
∈

+∑y ; st. 

1kk K
λ

Γ

Γ
∈

=∑ ; 0kλ
Γ ≥ , k KΓ∈ ; and 1µ  unrestricted). Here, K KΓ ⊆ , is the index set of 

extreme points of y1( )ΓΠ .  

By Proposition 5.4, given any feasible solution to ( )LMPI' , we can find a corre-

sponding feasible solution to ( )MP  (i.e., a point in Π , which is also feasible with re-

spect to (5-2) and (5-3)) with the same objective function value. Thus, any feasible solu-

tion to ( )LMPI'  can be represented as ( )1 1 'k kk K
λ µ

Γ

Γ
∈

+∑ x y  st. 1kk K
λ

Γ

Γ
∈

=∑ ; 0kλ
Γ ≥ , 

k KΓ∈ ; and 1 'µ  unrestricted, here we define 1 'µ =  1µ + kk K κη λ
Γ

Γ
∈∑  and LK  can be 

viewed as KΓ . This projection procedure can be repeated for each vector in { }|l Ly . ■  
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The importance of Proposition 5.10 is that, for any L , we can use a subset LK  of 

K  in DWDG. That is, the number of columns in ( )LMPI'  may be smaller than the num-

ber in ( )MP . This, we expect would require fewer columns to be generated to prescribe 

an optimal solution to ( )LMPI' .  

5.2.5. Case study 1: the linear multi-commodity network flow problem  

This section discusses application of DWDG to the multi-commodity network flow 

problem, describing how it subsumes and generalizes an approach that is known to im-

prove convergence in this special case.  

An arc-based model in which variables represent flows on arcs is a common 

formulation of the multi-commodity network flow problem. An alternative, path-based 

formulation, in which variables represent flows on paths, is also widely used and corre-

sponds to the DWD of the arc-based model. Letting ( )P  (see subsection 0) represent the 

arc-based model, constraints (5-1) represent capacity limitations on arcs and (5-2) re-

quire flow balance at each node based on the network comprising the (index) set of 

nodes N  and arcs ij  where ,i j N∈ ; i j≠ . For each commodity t  in the (index) set T , 

let tP  denote the set of simple paths from the origin of commodity t  to its destination; 

and tb , the flow requirement for commodity t . If arc ij  is on path tp P∈ , parameter 

pt
ija  = 1; otherwise, pt

ija  = 0. Letting ptc  denote the cost of a unit of flow on path p ; and 

iju , the capacity that arc ij  provides for the flow of all commodities, the path-based 

model is  
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 min t
pt pt

t T p P
c λ

∈ ∈∑ ∑    

 s.t. t
pt

p P
λ

∈∑ = tb t T∈   

  t
pt pt

ijt T p P
a λ

∈ ∈∑ ∑ ≤ iju , ;i j N i j∈ ≠   

  ptλ ≥ 0 t T∈ , tp P∈ .  
 

Barnhart et al. (1995) introduced a third formulation, a cycle-based model, in 

which variables represent flows on cycles. Alvelos and Valerio de Carvalho (2007) pro-

posed an extended model, which is similar to the cycle-based model. This extended 

model, which is a special case in which DWDG is applied to the arc-based formulation 

( )P , is based on the index set S  of circuits. Parameter s
ijγ  = 1 if arc ij  is a forward arc 

of circuit s S∈ , = 1−  if ij  is a backward arc of s , and 0 if ij  does not belong to s . Let-

ting ˆsc  denote the cost of one unit of flow on circuit s ; and sµ , the decision variable 

that prescribes the flow on circuit s , the extended model is  

min t
pt pt

t T p P
c λ

∈ ∈∑ ∑  + ˆs s
s S

c µ
∈∑  (5-19) 

s.t. t
pt pt

ijt T p P
a λ

∈ ∈∑ ∑  + s s
ijs S
γ µ

∈∑ ≤ iju  , ;i j N i j∈ ≠  (5-20) 

 t
pt pt

ijt T p P
a λ

∈ ∈∑ ∑  + s s
ijs S
γ µ

∈∑ 0≥   , ;i j N i j∈ ≠  (5-21) 

 t
pt

p P
λ

∈∑   tb=  t T∈  (5-22) 

 ptλ   0≥  t T∈ , tp P∈  (5-23) 

   sµ 0≥  s S∈  (5-24). 
 

It is easy to map this extended model to ( )LMPI' ; constraints (5-19) -(5-24) cor-

respond to (5-12)-(5-17) of ( )LMPI' , respectively, and vectors of parameters pt
ija  and s

ijγ , 
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which are generated as sub-problem solutions, correspond to kx  and ly , respectively. 

{ }|l Ly  can be viewed as flow on a set of circuits because they satisfy =Dy 0  if (5-8) 

and (5-10) represent the network flow balance constraints. Constraints (5-21) make sure 

that flows on arcs can not be negative.  

However, constraints (5-19)-(5-24) and (5-12)-(5-17) are different in two ways. 

One is that the right hand side (RHS) of convexity constraint (5-15) is 1 while the RHS 

of (5-22) is tb . We can scale ptλ  as tb ˆ ptλ  so that RHS of (5-22) is also equal to 1. The 

other is that sµ  is non-negative while lµ  is unrestricted. We can set lµ l lµ µ+ −= − , 

, 0l lµ µ+ − ≥  and force 0lµ
− = , which will not change the objective value of ( )LMPI'  as 

Corollary 5.3 implies.  

Alvelos and Valerio de Carvalho (2007) reported computational tests demonstrat-

ing that this extended model prescribes an optimal solution in fewer CG iterations and 

(at least 35%) less run time than the path-based model. The reason for this improved 

convergence behavior is straightforward. The linear combination of flow on one path, 

kx , with a flow on the circuit, ly , can represent flow on another path; that is, redirecting 

a flow from one path to another (Alvelos and Valerio de Carvalho, 2007). And, if we 

include { }|l Ly  (i.e., allowing for many flow redirections), it is easy to see that fewer 

path flows are needed to achieve optimality. For the planar graph, a simple enumeration 

procedure can be used to identify simple circuits { }|l Ly  and the number of such circuits 



 81

is polynomial (Alvelos and Valerio de Carvalho, 2007). The authors designed a simple 

enumeration procedure to find { }|l Ly  and added them to the initial RMP.  

The disadvantage of the extended model is that it includes constraints (5-21), 

which make RMP larger and more challenging to solve. Barnhart et al. (1995) avoided 

constraints (5-21) by adding extra constraints on lµ  that imply constraint (5-21). Letting 

( )P  (see subsection 5.2.1) represent the arc-based model, constraints (5-1) represent ca-

pacity limitations on arcs and (5-2) require flow balance at each node. ( )MP  (see sub-

section 5.2.1) represents the path-based model. Barnhart et al. (1995) formulated the cy-

cle-based model ( )CMP  as follows:  

 ( )CMP max 1( )T
l ll K

µ
∈

−∑ c x x  + 1
Tc x   

  s.t. 1( )l ll K
µ

∈
−∑ A x x 1( )≤ −b Ax   

   ll K
µ

∈∑ 1=  (5-25)

   lµ 0≥ , l K∈ .  
 

where 1x  corresponds to { }kx , k ∈ LK {1}= K⊆ . We define 1{ }l −x x , l K∈  as { }ly , 

l L∈ , and obtain ( )LMPI" , which can be obtained by applying DWDG to the arc-based 

formulation ( )P  as we now show:  

max ( ){1}
T

k kk
λ

∈∑ c x  + 1\{1}
( )T

l ll K
µ

∈
−∑ c x x  (5-26) 

s.t. 
{1}

( )k kk
λ

∈∑ Ax   + 1\{1}
( )l ll K

µ
∈

−∑ A x x ≤ b  (5-27) 

 
{1}

( )k kk
λ

∈∑ x   + 1\{1}
( )l ll K

µ
∈

−∑ x x ≥ 0  (5-28) 

 
{1} kk
λ

∈∑   1=  (5-29) 

 kλ   0≥ , {1}k ∈  (5-30) 
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   lµ Unrestricted, l K∈  (5-31) 

   \{1} ll K
µ

∈∑ 1≤  (5-32) 

   lµ− 0≤ , l K∈  (5-33). 
 

It is easy to map ( )CMP  to constraints (5-26) -(5-33) to show that the cycle-based 

model of Barnhart et al. (1995) is a special case of DWDG. Constraints (5-32) and (5-33) 

correspond to (5-18). Also, (5-32) is exactly the same as (5-25) in ( )CMP  since 1µ  can 

be viewed as a slack variable. Constraints (5-28) are redundant because 

{1}
( )k kk

λ
∈∑ x + 1\{1}

( )l ll K
µ

∈
−∑ x x  ( )l ll K

µ
∈

= ∑ x ≥ 0 . Thus, ( )CMP  is a special case in 

which DWDG is applied to the arc-based formulation ( )P  of the multi-commodity net-

work flow problem. Barnhart et al. (1995) avoid dealing with constraints (5-28). The au-

thors showed that their method, which is a special application of DWDG obtained by 

adding restrictions on lµ , reduced the number of columns generated by an average 

29.6% in comparison to DWD. Their test instances were based on a set of message-

routing problems in which the underlying network involved 500 nodes, 1300 arcs, and 

5850 commodities. 

5.2.6. Computational tests on the linear generalized assignment problem  

This section describes the computational tests we conduct to study the rate of conver-

gence that DWDG achieves in application to a linear program. For this purpose, we ap-

ply DWD to solve the linear relaxation of the generalized assignment problem (GAP) 

that Savelsbergh (1997) used in his application of B&P to the corresponding integer 

problems. The master problem includes the (disjoint) assignment constraints =Ax b  and 
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each sub-problem comprises a single (knapsack) constraint, which we solve as a linear 

program using Dantzig’s Rule (Nemhauser and Wolsey, 1999).  

The forms of the constraints in GAP differ from the “standard” forms defined in 

( )P  (subsection 0). The GAP constraints relegated to the master problem are “= ” in-

stead of “≤ ” as in the corresponding constraint (5-1) of ( )P . Thus, the associated dual 

variables ω  in GAP are unrestricted (in ( )P  the corresponding dual variables associated 

with (5-1) are nonnegative). GAP sub-problem constraints are “≤ ” instead of “=” as in 

the corresponding constraint (5-2) of ( )P , but this can easily be accommodated by 

changing ( ')P  so that both constraints (5-8) and (5-9) are of the “≤ ” form, maintaining 

the equivalence between ( ')P  and ( )P . Further, the corresponding change to ( ' )LMPI  

is that lµ  in (5-17) must be non-negative to retain the equivalence of ( ' )LMPI  and 

( )MP : given ≤Nx d  and ≤Ny 0 , we can assure ( )l ll
µ ≤∑N y 0  and ( )l ll

µ+∑N x y  

≤ d  only when 0lµ ≥  (this cannot be guaranteed if 0lµ <  were allowed).  

We obtain y  columns in DWDG in the following way. For each agent i , we 

generate a set of y  columns, each of which represents that reallocation of agent i  from 

job j  to job 1j + . Note that we order jobs according to non-increasing weights associ-

ated with agent i  in the knapsack constraint. Thus, the reallocation will not violate the 

knapsack constraint and the number of y  columns for each agent is ( 1)n − . We generate 

a total number of ( 1)n m− ×  y  columns in a batch and add them to the initial RMP of 

DWDG. Also, we need to include constraints corresponding to (5-14) in ( )LMPI'  RMP. 
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Table 8 presents test results. The first column defines the instance using the tuple 

( )#, ,m n , where #  denotes one of the four methods (A, B, C, or D) Savelsbergh (1997) 

used to generate parameter values; m , the number of agents; and n , the number of jobs. 

Following Savelsbergh (1997), we use each parameter setting to generate 10 instances 

and record the average and maximum for two measures of performance: number of itera-

tions, number of degenerate iterations, and run time (in seconds). Six columns give these 

measures for DWD; and six, for DWDG.  

Results reinforce our analysis, clearly showing that DWDG used fewer CG itera-

tions (and, correspondingly, fewer degenerate iterations) to solve each case than DWD. 

All run times are small; DWDG required less time to solve 7 of the 12 cases and slightly 

more in the remaining 5 cases. For each of the four # categories, DWD requires some-

what more time and proportionally slightly more degenerate iterations when m  has its 

largest value. This result can be explained by the fact that the number of extra con-

straints in RMP of DWDG (i.e., (5-14) in ( )LMPI' ) is equal to ( 1)n m− × . If m  is large, 

the number of rows in RMP of DWDG is fairly large, somewhat increasing the order of 

degeneracy, and RMP becomes more challenging to solve in comparison with the RMP 

of DWD.  

5.3. DWDG for Integer Programs 

This section addresses our second set of research objectives, which relate to the applica-

tion of DWDG to integer programs. We begin by reviewing use of DWD in B&P, then 

present our reformulation, DWDG. The third subsection discusses issues relevant to 

solving integer programs. The following two subsections describe how DWDG sub-
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sumes and generalizes approaches that has been shown to improve the rate at which CG 

converges in application to the cutting stock and production-assembly-distribution sys-

tem design problems, respectively. Finally, we relate computational tests designed to 

assess the efficacy of DWDG in application to integer programs.  

5.3.1. DWD for integer programs  

Consider an integer program ( )IP  of the form  

 ( )IP max Tc x  
  s.t. ≤Ax b  
  =Dx d (5-34)
  n

+∈x (5-35).
 

Here, n
+∈x  represents an n -vector of non-negative integer decision variables and 

n∈c  is an n -vector of rational objective coefficients. p n×∈A  and q n×∈D  are ma-

trices of rational constraint coefficients. p∈b  and q∈d  are rational, right-hand-side 

coefficients.  

As before, we deal with a single (bounded) sub-problem. We decompose ( )IP , 

placing constraints (5-34) and (5-35) in the sub-problem, resulting in the master problem 

( )IMP :  

( )IMP  max ( )T
k kk K
λ

∈∑ c x    

 s.t. ( )k kk K
λ

∈
≤∑ Ax b  (5-36) 

  1kk K
λ

∈
=∑  (5-37) 

  0,kλ ≥ k K∈  (5-38) 

  ( ) n
k kk K
λ +∈
∈∑ x  (5-39). 
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Here, K  represents the index set of columns in ( )IMP , which correspond to extreme 

points of the sub-problem in the classic convexification approach or to feasible integer 

solutions to the sub-problem in the discretization approach (Vanderbeck, 2003). Note 

that DWD deals with the linear relaxation of ( )IMP  and does not include constraints (5-

39), which are used implicitly in fixing variables in the B&B search tree (i.e., B&P 

branches on variables x , not kλ ). Letting p
+∈ω  and α ∈  correspond to dual vari-

able values associated with constraints (5-36) and (5-37), respectively, sub-problem 

( )ISP  can be formulated as:  

 ( )ISP  min ( )T T α− +ω A c x    
  s.t. (5-34) and (5-35).   
 

 

5.3.2. Reformulation 

We introduce a second integer program ( ')IP  vis-à-vis ( )IP :  

 ( ')IP  max Tc x' + Tc y  
  s.t. Ax' + Ay ≤ b  
  x' + y ≥ 0  
  Dx' = d (5-40)
  Dy = 0 (5-41)
  x' n

+∈ (5-42)
  y n∈ (5-43).

 

Here, n
+∈x' , which corresponds to x  in ( )IP , represents an n -vector of non-negative 

integer decision variables. n∈y Z  is an n -vector of integer decision variables that are 

unrestricted in sign. All other symbols are the same as in ( )IP .  
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Proposition 5.11: Problems ( )IP  and ( ')IP  are equivalent.  

Proof: Similar to the proof for Proposition 5.2.■  

We apply DWD to ( ')IP , placing constraints (5-40) and (5-42) in one sub-

problem and (5-41) and (5-43) in another. Suppose that set { }|l Ly , which typically has 

unbounded cardinality, represents all vectors satisfying constraints (5-41) and (5-43). Let 

L  represent any index set of vectors ly  and D  be the collection of all index sets. Apply-

ing DWDG for integer programs with L ∈D , we obtain  

( )LIMPI'  max ( )T
k kk K
λ

∈∑ c x + ( )T
l ll L
µ

∈∑ c y  (5-44) 

 s.t. ( )k kk K
λ

∈∑ Ax + ( )l ll L
µ

∈∑ Ay ≤ b  (5-45) 

  ( )k kk K
λ

∈∑ x + ( )l ll L
µ

∈∑ y ≥ 0  (5-46) 

  kk K
λ

∈∑ 1=  (5-47) 

  kλ 0≥ , k K∈  (5-48) 

  lµ Unrestricted, l L∈  (5-49) 

  ( )k kk K
λ

∈∑ x + ( )l ll L
µ

∈∑ y n
+∈  (5-50). 

 

Here, K  is the same as in ( )IMP . DWDG deals with the linear relaxation (5-44)-(5-49), 

invoking (5-50) implicitly in the branching process. Letting p
+∈ω , n

+∈u  and α ∈  

correspond to dual variables associated with constraints (5-45), (5-46), and (5-47), re-

spectively, we define sub-problem ( ')ISPI  as:  

 ( ')ISPI  min ( )T T T α− − +ω A u c x   
  s.t. (5-40) and (5-42).   

 



 89

Constraints (5-40) and (5-42) in ( ')ISPI  are exactly the same as (5-34) and (5-35) Error! 

Reference source not found.in ( )ISP , so sub-problems ( ')ISPI  and ( )ISP  have the 

same set of constraints. In addition, a second sub-problem, ( ')ISP , is associated with 

( )LIMPI' :  

 ( ')ISP  min ( )T T T− −ω A u c y    
  s.t. (5-41) and (5-43).   

 

Proposition 5.12: Problems ( )LIMPI'  and ( )IMP  are equivalent for each L ∈D .  

Proof: Trivial.■ 

Analogous to Proposition 5.5, the following proposition deals with ( )LMPI" , 

which we obtain by including constraints ( )l ll L
µ

∈∑ g ≤ h  in ( )LIMPI' :  

( )LIMPI" ma ( )T
k kk K
λ

∈∑ c x + ( )T
l ll L
µ

∈∑ c y   

 s.t. (5-45)-(5-50)   

  ( )l ll L
µ

∈∑ g ≤ h  (5-51). 
 

Proposition 5.13: If L L= 0µ  satisfy constraints (5-51) (i.e., ≥h 0 ), then ( )IMP , 

( )LIMPI' , and ( )LIMPI"  are equivalent.  

Remark 5.14: If L =∅ , constraints (5-46) are redundant for ( )LIMPI' .  

5.3.3. Issues related to integer programs  

B&P works with the linear relaxation of the master problem to obtain a bound at each 

node of the B&B tree; it branches on variables x  from the original problem ( )IP , which 

are formulated as decision variables in the sub-problem instead of the master problem 
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( )IMP . If the thj  variable in vector x , jx , is selected to branch upon, an additional 

constraint associated with this variable must be included in the sub-problem ( )ISP  asso-

ciated with each resulting child node. A B&P formulation obtained by applying DWDG 

to ( )IP  is analogous to a B&P formulation obtained by applying DWD to ( ')IP .  

Proposition 5.11 establishes that a feasible solution to ( ')IP , ( , )x y , corresponds 

to feasible solution to ( )IP , +x y , with the same objective function value, and a feasi-

ble solution to ( )IP , +x y , corresponds to a feasible solution to ( ')IP , ( ,0)+x y , with 

the same objective function value. Thus, any feasible solution ( , )x y  to ( ')IP  corre-

sponds to the feasible solution to ( ')IP , ( ,0)+x y , with the same objective function 

value. Feasible solutions with respect to ( ')IP  in the form of ( ,0)+x y  can be identified 

relatively easily in the context of B&P because jx  can be branched upon only if the cor-

responding jy  is fixed to zero. If the thj  variable in vector y , jy , is fixed to zero in 

sub-problem ( ')ISP , the thj  variable in vector x , jx , can be branched upon by includ-

ing an additional constraint associated with this variable in the sub-problem ( ')ISP  as-

sociated with each resulting child node. In the context of B&P, sub-problems ( )ISP  and 

( ')ISP  have the same set of constraints after branching on the same set of variables in 

both. However, DWDG requires the ability to generate columns from sub-problem 

( ')ISP  with 0jy = . This is not difficult to implement in most applications because fix-

ing 0jy =  has the same effect as removing this variable from the sub-problem.  
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One advantage of DWD applied to integer programs is that it may obtain models 

with a stronger linear relaxation. An issue raised here is about the tightness of bounds 

provided by DWDG. Overall, the bound provided by DWDG is no worse than the one 

provided by the linear relaxation of ( )IP  and at most as good as the one provided by the 

linear relaxation of ( )IMP  (i.e., by DWD). Actually, the tightness of the bound provided 

by DWDG depends on { }|l Ly  in ( )LIMPI'  (i.e., the selection of L ) so that problem-

specific knowledge may be needed to make an appropriate selection.  

5.3.4. Case study 2: the integer cutting stock problem  

Valerio de Carvalho (2005) introduced the following model of the cutting stock problem 

( )CSP : 

 ( )CSP  min ( )T
k kk K
λ

∈∑ c x    

  s.t. ( )k kk K
λ

∈
−∑ Ix ( )≤ −b  (5-52)

  ,n
kλ +∈ k K∈ .  

Here, I  is the identity matrix, b  represents the vector of non-negative demands, each 

kx  represents a cutting pattern, and variable kλ  represents the number of times cutting 

pattern k  is used. Sub-problem ( )CSP SP−  generates cutting patterns:  

 ( )CSP SP− max ( )T T−ω I c x    

  s.t. T W≤w x  (5-53)

  x n
+∈  (5-54).

 

Here, ω  is the vector of dual variable values associated with constraints (5-52) and con-

straints (5-53) and (5-54) restrict cutting patterns.  
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Valerio de Carvalho (2005) proposed the use of dual cuts, equivalently including 

additional columns in the master problem:  

( ')CSP min ( )T
k kk K
λ

∈∑ c x + ( )T
l ll L
µ

∈∑ c y   

 s.t. ( )k kk K
λ

∈
−∑ Ix + ( )l ll L

µ
∈

−∑ Iy ( )≤ −b  (5-55) 

  kλ
n
+∈ , k K∈  (5-56) 

  lµ
n
+∈ , l L∈  (5-57). 

 

Here, all symbols are the same as ( )CSP  and vectors { }|k Kx  are also generated using 

( )CSP SP− . Valerio de Carvalho (2005) defined a family of valid dual cuts, each of 

which corresponds to a ly  vector and exploits the fact that a given length can be cut and 

used to fulfill the demand for a smaller length in the cutting stock problem (Valerio de 

Carvalho, 2005). { }|l Ly  can also be obtained from the following sub-problem 

( ')CSP SP− :  

 ( ')CSP SP− max ( )T T−ω I c y    

  s.t. T 0≤w y   

  y n∈ .   
 

Please note that Valerio de Carvalho (2005) only studied the linear relaxation of 

( )CSP  in their computational tests; that is, they dealt with the linear relaxations of (5-56) 

and (5-57). To manage the number of columns in RMP, Valerio de Carvalho (2005) in-

cluded only a polynomial number of these dual cuts with the feature that each element in 

vector ly  belongs to { 1,0,1}− . Furthermore, the author proves that the lower bound 
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given by the optimal solution of the linear relaxation of the extended model with dual 

cuts is equal to the one given by Glimore-Gomory model (Valerio de Carvalho, 2005). 

The authors used a heuristic to generate a set of these dual cuts and a pre-processing step 

to incorporate them in RMP, and demonstrated an average 75.9% reduction in the num-

ber of CG iterations and 94.8% reduction in the number degenerate pivots in an experi-

ment that involves 120 instances.  

We introduce two reformulations, ( )IIIMP , which comprises (5-36)-(5-39) except 

the convexity constraint (5-37), and corresponding ( )II
LIMPI' , which comprise (5-44)-

(5-50) except (5-47). It is obvious that ( )IIIMP  and ( )II
LIMPI'  are equivalent. We can 

map the Glimore-Gomory model of the cutting stock problem to ( ) IIIMP .  

Proposition 5.15: The work of Valerio de Carvalho (2005) can be viewed as a special 

application of DWDG.  

Proof: We can obtain ( )II
LIMPI'  corresponding to ( )CSP  as follows:  

 ( )II
LIMPI' min ( )T

k kk K
λ

∈
−∑ c x  + ( )( )T

l ll L
µ

∈
−∑ c y   

  s.t. (5-55), (5-56), and (5-57)     

   ( )k kk K
λ

∈∑ x  + ( )l ll L
µ

∈∑ y  ≥ 0  (5-58).
  

Constraints (5-58) are implied by (5-55) because ( )k kk K
λ

∈
+∑ Ix ( )l ll L

µ
∈∑ Iy ≥ b ≥ 0 . 

Removing constraints (5-58) from ( ) II
LIMPI'  yields ( ')CSP , which was proposed by 

Valerio de Carvalho (2005). Because the sub-problem is of the “≤ ” form, lµ  is non-

negative (see section 5.2.6). ■  
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One disadvantage of DWDG is that the large number of constraints (5-46) makes 

the master problem more challenging to solve. However, for some special applications 

(e.g., cutting stock problem), constraints (5-46) might be implied by constraints (5-45); 

such constraints (5-46) would be redundant and could be eliminated. Without constraints 

(5-46), the primal master problem in DWDG can be thought of as a relaxation of the 

primal master problem in DWD because the former includes additional variables 

{ }|l Lµ . The column associated with each variable lµ  corresponds to a cut in the space 

associated with the linear programming dual of the master problem. Adding variables lµ  

does not change the optimal objective function value of the primal problem, so these 

dual cuts do not cut off all optimal dual solutions in the case in which there are alterna-

tive optimal dual solutions. But, they provide additional restrictions in the dual space, 

which may serve to improve convergence by limiting the range of values that associated 

dual variables can assume (Ben Amor et al., 2006).  

Vanderbeck and Savelsbergh (2006) commented on the work of Valerio de Car-

valho (2005), interpreting dual cuts in the cutting stock problem as exchange vectors, 

each of which is the difference between two vectors that represent feasible sub-problem 

solutions; that is, ly 1 2
( )k k= −x x  and 

1 2
( )l k k= −Dy D x x = − =d d 0 , so that ly  satisfies 

(5-41) and (5-43). Adding sub-problem solution vector kx  to a linear combination of a 

set L  of exchange vectors (i.e., k +x  ( )l ll L
µ

∈∑ y ) forms a particular linear combination 

that can generate another sub-problem solution so that the sub-problem solver need not 

be used to generate all sub-problem solutions (i.e., k +Dx ( )l ll L
µ

∈∑ Dy = + =d 0 d  and 
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k +x ( )l ll L
µ

∈∑ y n∈ ). In the cutting stock problem, the particular linear combination 

of a feasible sub-problem solution and a set L  of exchange vectors can be used to con-

struct other feasible sub-problem solutions (i.e., k +x ( )l ll L
µ

∈∑ y ≥ ≥b 0 , because the 

vector of right-hand-side coefficients, b , is always non-negative for the cutting stock 

problem). However, for other applications the feasibility of such combinations can not 

be guaranteed because ∃ ( k +x ( )l ll L
µ

∈∑ y ≥ 0 ). In contrast, DWDG includes additional 

constraints (5-14) or (5-46) to guarantee that the particular linear combination (i.e., 

k +x ( )l ll L
µ

∈∑ y ) always generates other feasible sub-problem solutions. So, DWDG 

subsumes and generalizes the methods of Valerio de Carvalho (2005) and Vanderbeck 

and Savelsbergh (2006), which add dual cuts or exchange vectors, respectively.  

5.3.5. Case study 3: production-assembly-distribution system design  

Liang and Wilhelm (2007a) (i.e., section 4) applied dual cuts to the production-

assembly-distribution system design problem, which employs two different types of sub-

problems. One sub-problem type is a 0-1 knapsack, which allocates components to facil-

ity alternatives under a budget limitation. Space considerations preclude a detailed ex-

planation of their model here; however, we outline the relationship of their work to 

DWDG in this subsection to relate that this special case of DWDG accelerates conver-

gence and reduces run time.  

Following the work of (Valerio de Carvalho, 2005), the authors designed dual 

cuts by using the symmetric difference of two feasible solutions from the knapsack type 

sub-problem. Each dual cut corresponds to one ly  column, which represents the reallo-
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cation of a component to a different alternative to reduce cost relative to the budget limi-

tation. Given a feasible solution representing an allocation of components to alternatives 

under the budget limitation, each reallocation yields another feasible allocation. Thus, 

fewer columns from the knapsack type sub-problem need be incorporated in RMP, im-

proving convergence. A pre-processing step can generate a batch of these dual cuts and 

incorporate them in RMP. Furthermore, adding these dual cuts will not affect the tight-

ness of the bound. Test results show an average reduction of 77.6% in the number of CG 

iterations and 94.1% in run time for each of 20 instances. This work can also be viewed 

as a special case that DWDG subsumes and generalizes.  

5.3.6. Computational tests on the integer generalized assignment problem  

This subsection describes the computational tests we conduct to evaluate the efficacy of 

DWDG in application to an integer program. For this purpose, we solve the generalized 

assignment problems that Savelsbergh (1997) used in his study. As in subsection 5.2.6, 

the master problem includes the (disjoint) assignment constraints =Ax b  and each sub-

problem comprises a single (knapsack) constraint, which we now solve as an integer 

program using 0-1 knapsack code (Martello et al., 1999). 

Our tests explore two issues that affect run time: first, how does DWDG affect 

the rate of convergence of CG at each node in the B&B tree; and, second, how does 

DWDG affect the tightness of bounds provided by RMP at each node.  

Similar to the definition of y  columns in subsection 5.2.6, each y  column here 

represents that reallocation of agent i  from job j  to job 1j + . The total number of y   
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columns is ( 1)n m− × ; we generate them in a batch and add them to the initial RMP of 

DWDG. Also, we need to add constraints corresponding to (5-46) in ( )LIMPI'  to RMP. 

Table 9 presents test results. The first column defines each the instance using the 

tuple ( )#, ,m n . Following Savelsbergh (1997) we use each parameter setting to generate 

10 instances and record the average and maximum for three measures of performance: 

number of iterations, number of degenerate iterations, run time (in seconds), and bound 

provided at the root node, which we compare with the optimal value in terms of the per-

cent gap. Eight columns give these measures for DWD; and eight, for DWDG. Results 

reinforce our analysis, clearly showing that DWDG needs fewer CG iterations (and 

fewer degenerate iterations) than DWD in all cases. However, DWDG may require a 

longer run time and a correspondingly larger portion of CG iterations that are degenerate 

in some cases, in particular, if m  is large. The reason is the same as that in section 5.2.6. 

Also, we can see that the bound provided by DWDG is not as tight as that provided by 

DWD. 

5.4. Summary 

The section presents a generalization of DWD (DWDG) that achieves the goal of accel-

erating convergence. It attains a set of primary research objectives for investigating 

DWDG in application to linear programs by establishing a theoretical basis, providing 

geometric insights through a numerical example, and showing how DWDG improves 

convergence through analytical means, subsuming and generalizing approaches that 

have been shown to improve convergence in special cases, and reporting successful 

computational experience. It also accomplishes its second set of research objectives, ex-
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ploring equivalent issues related to DWDG in application to integer programs; in par-

ticular, it describes how DWDG subsumes and generalizes approaches that has been 

shown to improve the rate at which CG converges in application to the cutting stock and 

production-assembly-distribution system design problems and relates computational 

tests that provide insights into the efficacy of DWDG.  

In application to a linear program, DWD and DWDG differ in the way they rep-

resent points in the polytope associated with the sub-problem. The former represents 

these points as a convex combination of the extreme points of that polytope, while the 

latter represents them using a mixture of both convex and linear combinations of rele-

vant points. DWDG leads to a master problem with fewer columns, but at the cost of 

adding more rows.  This paper shows that DWDG does, however, accelerate the rate of 

convergence, reducing the run time required to prescribe an optimal solution.  
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6. DUAL-ASCENT AND PRIMAL HEURISTICS FOR  

PRODUCTION-ASSEMBLY-DISTRIBUTION SYSTEM DESIGN* 

 

This section proposes two dual-ascent algorithms and uses each in combination with a 

primal drop heuristic to solve the uncapacitated production-assembly-distribution system 

design problem (UPADSPD), which is formulated as a mixed integer program. Compu-

tational results indicate that one combined heuristic finds solutions within 0.15% of op-

timality in most cases and within reasonable time, an efficacy suiting it well for actual 

large-scale applications.  

6.1. Introduction 

In this section, we propose two dual-ascent algorithms and use each in combination with 

a primal drop heuristic to solve UPADSDP, which is important as a basic model for de-

signing enterprises and their supply chains, both domestic and global. UPADSDP ex-

tends the facility location problem by including bill-of-materials (BOM) relationships in 

a multi-echelon assembly system that operates over multiple time periods. And it is also 

a simplification of PADSDP by removing capacity-type constraints.  

This paper is motivated by the need to optimize assembly systems and their sup-

ply chains so that companies can better compete in the global economy and by the chal-

lenges posed by the size of mixed-integer-programs that have been formulated to model  

____________ 
*This section is reprinted with from Liang, D., W. E. Wilhelm (2007c) Dual-ascent and 
primal heuristics for production-assembly-distribution system design, submitted to Dis-
crete Optimization. Once the paper is accepted, the journal will hold the copyright to its 
contents.  
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UPADSDP. The primary contribution that this paper makes is the proposed solution 

method, which yields tight lower bounds (actually near-optimal solutions) within rea-

sonable run times so that it is well suited for large-scale instances.  

The body of this section is organized in five sections. Subsection 6.2 describes 

our model. Subsection 6.3 presents our dual-ascent algorithms and 6.4 presents the pri-

mal drop heuristic. And subsection 6.5 describes computational results. Finally, subsec-

tion 6.6 offers summaries.  

6.2. UPADSDP Model  

UPADSDP integrates three types of decisions (i.e., opening facilities, allocating compo-

nents to facilities, and routing material flows) and holds the objective of minimizing the 

total cost associated with these decisions without considering the capacity-type con-

straints in PADSDP. Here we use the same index, set, parameter and variable definition 

in section 4. We now formulate our UPADSDP model:  

Model (PA )  

*( )Z PA  = Min O
f f

f F

G x
∈
∑  

e p

A
pf pf

e E p P f F

G y
∈ ∈ ∈

+∑∑ ∑  
e

V
a a

e E a A

G z
∈ ∈

+∑∑                             (6-1) 

   fx−    pfy+      0≤ ,   ∀ , ,e pe E p P f F∈ ∈ ∈              (6-2) 
  
     e pfD y−

pft

a
t T a A

z
∈ ∈

+∑ ∑  0≤ ,     ∀ , ,e pe E p P f F∈ ∈ ∈    (6-3) 

    
pft pft

a a
a A a A

z z
+ −∈ ∈

−∑ ∑  pftD= ,  ∀ , , ,e pe E p P f F t T∈ ∈ ∈ ∈    (6-4)   

         fx     {0,1}∈ ,  ∀ f F∈        (6-5)
  
  pfy    {0,1}∈ ,  ∀ , ,e pe E p P f F∈ ∈ ∈    (6-6) 
  
      az  0≥ ,   ∀ , ee E a A∈ ∈     (6-7).
      



 102

We also assume that each end product has a BOM that is a tree structure and re-

quires a unique set of components. Thus, sets P  and A  can be partitioned with respect 

to end product e  into disjoint subsets eP  and eA  for each e E∈ ; correspondingly, objec-

tive (6-1) and constraints (6-3), (6-4), (6-6), and (6-7) are separable relative to e . The 

meaning of objective (6-1) and constraints (6-2)-(6-7) are the same as those in PADSDP.  

An alternative formulation, (PD ), of UPADSDP is to use disaggregated flow 

variables 
,{ : 0}e eft

eft
at T f F D

z
∈ ∈ >∑  to replace aggregate flow variable az  in objective (6-1) and 

constraints (6-3), and (6-4). Similarly, constraints (6-3) and (6-4) can be disaggregated 

relative to eft
az  as shown in (6-9) and (6-10). (PD ) can be represented as:  

Model (PD )  

  *( )Z PD  = Min O
f f

f F

G x
∈
∑  

e p

A
pf pf

e E p P f F

G y
∈ ∈ ∈

+∑∑ ∑  
,{ : 0}

( )
e eft

e

V eft
a at T f F D

e E a A

G z
∈ ∈ >

∈ ∈

+∑∑ ∑  (6-8) 

s.t. (6-2), (6-5), (6-6) 
' 'ef t pfD y− ' '

pft

ef t
a

t T a A

z
∈ ∈

+∑ ∑ 0≤ , ∀ ' ', , , ' , ' : 0e p e ef te E p P f F t T f F D∈ ∈ ∈ ∈ ∈ >      (6-9) 

' ' ' '

pft pft

ef t ef t
a a

a A a A

z z
+ −∈ ∈

−∑ ∑ ' 'pf tD= , ∀ ' ', , , , ' , ' : 0e p e ef te E p P f F t T t T f F D∈ ∈ ∈ ∈ ∈ ∈ >  (6-10) 

          eft
az 0≥ , ∀ , , , : 0e e efte E a A t T f F D∈ ∈ ∈ ∈ >     (6-11). 

 

Model (PD ) comprises more constraints and continuous variables than (PA ). 

Letting eCZ  represent the number of customer zones for e , one az  variable in (PA ) 

becomes | |ee E
CZ T

∈
⋅∑  variables of type eft

az  in (PD ) and one constraint (6-3) will be-

come | |ee E
CZ T

∈
⋅∑  constraints of type (6-9). Thus, the linear relaxation of (PD ) be-

comes more changeling because it is much larger. However, the linear relaxation of (PD ) 
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can provide a tighter bound than that of (PA ) because the former is a disaggregated ver-

sion of the latter (Nemhauser and Wolsey, 1999).  

We assume that O
fG  and A

pfG  are non-negative, reflecting actual costs. Otherwise, 

if these costs are negative, then the values of corresponding binary variables should each 

be set to one and they can be eliminated from the problem. Based on this assumption, we 

define the linear relaxation of (PD ), (P ), by relaxing constraints (6-5) and (6-6) as:  

(6-12) fx       0≥ , ∀ f F∈       

(6-13)   pfy    unrestriced , ∀ , ,e pe E p P f F∈ ∈ ∈ .  
 

Here we do not use 0 , 1f pfx y≤ ≤  because pfy 0≥  is implied by (6-3) and (6-7). Be-

cause costs of ,f pfx y  are non-negative and the problem is to minimize the cost, ,f pfx y  

will stay as small as possible in the optimal solution. So, fx 1≤  and pfy 1≤  are implied 

We now introduce the linear programming dual of (P ), ( D ). It is obvious that *( )Z D  

*( )Z= P ≤ *( )Z PD , where *( )Z −  represents the optimal objective value of ( )− .  

Model ( D )  

*( )Z D  = Max  
' '

' '

' : 0 '

( )
e p e ef t

f t
pft pft

e E p P f F t T f F D t T

D ω
∈ ∈ ∈ ∈ ∈∈ > ∈

+∑∑ ∑∑ ∑ ∑                                               (6-14) 

                            
: p

pf
p P f F

µ
∈ ∈
∑    O

fG≤ ,  ∀ lf F∈                                                          (6-15) 

' '

' '

' : 0 'e ef t

f t
pf

f F D t T

υ
∈ > ∈
∑ ∑  pfµ−    A

pfG= , ∀ , ,e pe E p P f F∈ ∈ ∈                                    (6-16) 

' '
' '

:

( / )
e f pft

f t
pf ef t

p P f P t T a A

Dυ
∈ ∈ ∈ ∈

−∑ ∑ ∑   ' '

:e f pft

f t
pft

p P f P t T a A

ω
+∈ ∈ ∈ ∈

+∑ ∑ ∑ ' '

:e f pft

f t
pft

p P f P t T a A

ω
−∈ ∈ ∈ ∈

−∑ ∑ ∑ V
aG≤ , 

∀ ' ', , ' , ' : 0e e ef te E a A t T f F D∈ ∈ ∈ ∈ >     (6-17) 
             pfµ 0≥ ,               ∀ , ,e pe E p P f F∈ ∈ ∈                                                  (6-18) 

             ' 'f t
pfυ 0≥ ,           ∀ ' ', , , ' , ' : 0e p e ef te E p P f F t T f F D∈ ∈ ∈ ∈ ∈ >           (6-19) 
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             ' 'f t
pftω  unrestriced ,  ∀ ' ', , , , ' , ' : 0e p e ef te E p P f F t T t T f F D∈ ∈ ∈ ∈ ∈ ∈ >  (6-20). 

 

One important substructure in (D ) is defined as follows: Given the values of dual 

variables ' 'f t
pfυ , (i.e., ' 'f t

pfυ ), ( D ) can be simplified as  

Model (SP): *(SP)Z  = max 
' '

' '

' : 0 '

( )
e p e ef t

f t
pft pft

e E p P f F t T f F D t T

D ω
∈ ∈ ∈ ∈ ∈∈ > ∈
∑∑ ∑∑ ∑ ∑ , s.t.(6-17) and (6-20).  

Please note that RHS associated with constraint (6-17) is ' '
' ', , :

( / )
e f pft

f t
pf ef tp P f P t T a A

Dυ
∈ ∈ ∈ ∈∑  

V
aG+ , the cost per unit of flow on hyper-arc a . SP can be decomposed with respect to 

each end product e  (i.e., SP( e )) so that each resulting sub-problem corresponds to the 

linear dual of a shortest path problem on the hypergraph. *(SP)Z = *(SP( ))
e E

Z e
∈∑ . 

SP( e ) can be solved in polynomial time (Gallo and Pallottino, 1992) (see step 2-(a) in 

subsection 6.3.2) using an algorithm that is similar to a network labeling algorithm (e.g., 

Dijkstra algorithm). ' ' |
pft

f t
pft a A

ω +∈
 is the label on the head node of the hyper-arc, and 

' '
, , :e f pft

f t
pftp P f P t T a A

ω−∈ ∈ ∈ ∈∑  is the summation of the labels on the tail nodes of the hyper-arc.  

In the following subsections, we discuss our approaches for obtaining solutions 

to the mixed-integer program model (PD ). We measure the quality of our solution to 

each instance using the gap between the values of the solution our approach prescribes 

and the optimal solution.  

6.3. Dual-ascent Solution Approach  

In order to design our dual-ascent algorithm, we first study inherent relationships be-

tween different types of dual variables. Constraints (6-15) show that dual variable pfµ , 
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which is associated with constraint (6-2), plays the role of distributing fixed cost O
fG  to 

different components processed at facility f  (i.e., fp P∈ ). Given the value of variable 

pfµ , pfµ , dual variable ' 'f t
pfυ , which is associated with constraint (6-9), distributes the 

fixed cost A
pfG pfµ+  that is associated with satisfying demands ' 'ef tD , ' ,D

ef F∀ ∈  't T∈ , 

when component p  is processed at f  to assemble end product e . Thus, the total cost 

on arc a  is equal to the variable cost, V
aG , plus fixed cost, ' '

' '/ ,f t
pf ef t pfD a Aυ ∈  (i.e., RHS 

in (SP( e ))). The dual-ascent algorithm updates pfµ  and ' 'f t
pfυ  as it seeks to distribute 

fixed costs O
fG  and A

pfG  on arc a  so that the objective function value can be improved 

monotonically. In the following sections, we propose two algorithms to update pfµ  and 

' 'f t
pfυ . 

6.3.1. Dual-ascent algorithm one (DAA1)  

This algorithm is based on the following observation. Given values of ' 'f t
pfυ  variables 

(also values of pfµ  variables by (6-16)), ( D ) can be simplified as a set of sub-problems 

SP( e ) e E∈ , each of which can be solved as a shortest path problem on the hypergraph. 

Increasing the value of ' 'f t
pfυ , ' 'f t

pfυ , increases the cost on arc a  (i.e., 

V
aG ' '

' '( / )f t
pf ef tpf

Dυ+∑ ) and can increase the length of the shortest paths (note, there 

may exist multiple shortest paths on the hypergraph); that is, ' '
' '

( )f t
pft pftepft f t

D ω∑ ∑  (i.e., 

the objective value of ( D )) becomes larger. Because (6-16) holds at equality (i.e., 

' '
' '

f t
pff t

υ∑ = pfµ + A
pfG ), pfµ  increases as ' 'f t

pfυ  increases. However, pfµ  must satisfy 
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constraints (6-15) (i.e., O
pf fp

Gµ ≤∑ ), so ' 'f t
pfυ  and pfµ  can not be increased without 

bound. Thus, the summation on all ' 'f t
pfυ  variables is equal to  ( )A

pf pfpf
G µ+∑  by (6-16), 

which is always less than A
pfpf

G∑ O
ff

G+∑  by (6-15). We start with setting all ' 'f t
pfυ  

and pfµ  variables to zero, then increase their values one by one until we can not increase 

them further because of restriction (6-15).  

Furthermore, given any component p , the set of arcs associated with ' 'f t
pfυ , 

pf F∈  forms a valid arc cut (Liang and Wilhelm, 2007a); that is, component p  must be 

supplied by at least one facility pf F∈  and any shortest path must contain one of these 

arcs (i.e., 
p

pff F
a A

∈
∈∪ ). Increasing the values of all ' 'f t

pfυ , pf F∈  associated with a 

given p  by one unit will increase the length of the shortest path by one unit. By (6-15) 

and (6-16), the summation of all ' 'f t
pfυ  variables must be less than A O

pf fpf f
G G+∑ ∑ , so 

increasing the values of ' 'f t
pfυ , pf F∈  for a given p  by one unit will use | |pF  units of 

resource of A O
pf fpf f

G G+∑ ∑  and improve the objective function value by one unit. 

However, it is not necessary to simultaneously change all ' 'f t
pfυ , pf F∈  for a give p . 

We only need to change those ' 'f t
pfυ  on the shortest paths. Based on that, we then decide 

how many ' 'f t
pfυ , pf F∈  for a given p  must be updated simultaneously to improve the 

objective function value. Please note that the model includes multiple components and it 

is attractive to select one p  such that we only need to increase a small number of ' 'f t
pfυ , 
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pf F∈  simultaneously. Based on this, we decide the order in which to update ' 'f t
pfυ  and 

pfµ . The following section details DAA1.  

The underlying material flow network can be represented as an acyclic hyper-

graph. DAA1 solves a set of shortest path problems, each on a hypergraph (i.e., SP( e ), 

e E∀ ∈ ). The shortest path algorithm on an acyclic hypergraph is similar to the one on 

an acyclic graph that numbers nodes in topological order, then goes through all nodes in 

that order, setting the label of each to represent the length of the shortest path from the 

source node to it (Gallo and Pallottino, 1992).  

Step 0: Initialization  

Set variables pfµ 0=  and ' 'f t
pfυ 0= ; and set n 1=  ( n  represents how many pfµ , pf F∈  

update simultaneously for a given p P∈ ).  

Step 1: Update labels ' 'f t
pftω  and ' 'f t

pftω  at each node of each material flow network for 

' 'ef tD   

Using shortest path algorithms to update two labels at each node to record the lengths of 

the shortest paths from the current node to the source and sink nodes, respectively, in all 

material networks associated with ' 'ef tD , ' ', ' , ' : 0e ef te E t T f F D∀ ∈ ∈ ∈ > . See the fol-

lowing section for details.  

Step 2: Update values of all pfµ  and ' 'f t
pfυ  according to n  and labels ' 'f t

pftω  and ' 'f t
pftω   

For each material network associated with ' 'ef tD , first determine the duality gap of each 

node (i.e., ' ' ' 'f t f t
pft pftω ω− ), which is used to set the value of ' 'f t

pfυ∆  (step 2-(a) in subsection 
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6.3.2); then update  ' 'f t
pfυ∆  with the consideration of the dependence among ep P∈  and 

n  (i.e., how many ' 'f t
pfυ , pf F∈  update simultaneously for a given p ), (step 2-(b)&(c) 

in subsection 6.3.2); next, accumulate ' 'f t
pfυ∆  to set the value of pfµ∆  (step 2-(d) in sub-

section 6.3.2); after that, update pfµ∆  with the restriction of ''
( )

f
p f pfp P

µ µ
∈

+ ∆∑  O
fG≤  

(step 2-(e) in subsection 6.3.2); finally, according to values pfµ∆ , update ' 'f t
pfυ∆  so that 

' '
' '

f t
pf pff t

υ µ∆ = ∆∑ , and update values of pfµ  and ' 'f t
pfυ  by pf pf pfµ µ µ← + ∆ , ' 'f t

pfυ ←  

' ' ' 'f t f t
pf pfυ υ+ ∆  (step (f)-(i) in subsection 6.3.2). See the following section for details.   

If some ' ' 0f t
pfυ∆ ≠ , go to Step 1; Else if 1n +  does not exceed the largest possi-

ble number of facility alternatives for component p , max | |p P pF∈ , then set n ← 1n +  

and Return to Step 1.  

6.3.2. Implementation details for DAA1  

Step 1: Labeling nodes in the material network associated with one demand ' 'ef tD   

a) Set the forward label ' 'f t
pftω  on each node  

Assign the forward label zero to each supplier node (i.e., node with incoming arcs) and 

+∞  to each other node. Then Go through all nodes according to the topological order, 

set the forward label as follows:  

For node corresponding to indices pft  and ' 'f t  (i.e., each node corresponds to one flow 

conservation constraint (6-10)), check all its incoming arcs. Set ' 'f t
pftω =  
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1 1 1

' 'min ( )f t
a a p f tc ω+∑ , where 

1 1 1

' 'f t
p f tω∑  is the summation of all forward labels of the tail 

nodes of arc a .  

b) Set the backward label ' 'f t
pftω  on each node  

For the only demand node, assign its forward label ' 'f t
pftω  to the backward label. For all 

other nodes, assign backward labels to −∞ . Then go through all nodes according to re-

verse topological order, setting the backward label on each node as follows:  

For the node corresponding to indices pft  and ' 'f t  (i.e., each node corresponds to one 

constraint (6-10)), check all its outgoing arcs. Set ' 'f t
pftω =

2 2 2

' ' ' 'max ( )f t f t
a p f t a pftcω ω− −∑ , 

where 
2 2 2

' 'f t
p f tω  is the backward label of the head node of arc a  and ' 'f t

pftω∑  is the sum-

mation of the forward labels of all other tail nodes of arc a .  

Step 2: Update values of all pfµ  and ' 'f t
pfυ  according to n  and labels ' 'f t

pftω  and ' 'f t
pftω   

At each material network associated with ' 'ef tD , we calculate all ' 'f t
pfυ∆ , 

, ,e pp P f F∈ ∈  using all ' 'f t
pftω  and ' 'f t

pftω   

a) Determine the duality gap for each node in the material network associated with ' 'ef tD   

If ' ' ' 'f t f t
pft pftω ω− 0< , error (there is a shorter path than current shortest path).  

If ' ' ' 'f t f t
pft pftω ω− 0= , this node can be on the shortest path; we can increase the value of 

' 'f t
pfυ  to extend the length of the shortest path.  

If ' ' ' 'f t f t
pft pftω ω− 0> , this node is not on the shortest path.  
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For each pf ' 'f t , set ' 'f t
pfυ∆ = ' ' ' '

' 'min {( ) }f t f t
t T pft pft ef tDω ω∈ − . Component p  must be proc-

essed by at least one facility alternative pf F∈ .  

Given component p , ' 'f t
pfυ∆ 0=  for at least one alternative pf F∈  and ' 'f t

pfυ∆ 0≥  for 

other alternative; that is, the shortest path must contain one of the nodes with indices 

pft ' 'f t , pf F∈ , t T∈ ); furthermore, updating the values of ' 'f t
pfυ , pf F∈  with 

' 'f t
pfυ∆ 0=  simultaneously to the smallest non-zero ' 'f t

pfυ∆  among alternative pf F∈  (i.e., 

' 'min { 0}
p

f t
f F pfυ∈ ∆ > ) can increase the length of the shortest path without changing the 

current shortest path.  

b) Update ' 'f t
pfυ∆ , considering the dependence among ep P∈   

Components ep P∈  in the same hypergraph are dependent (i.e., updating ' 'f t
pfυ , ep P∈  

serially changes the current shortest path). To avoid this, updating ' 'f t
pfυ∆ ' ' / | |f t

pf ePυ← ∆ .  

c) Update ' 'f t
pfυ∆ , considering changes ' 'f t

pfυ∆ 0= , pf F∈  simultaneously  

For each p , no less than one ' 'f t
pfυ∆ 0= , pf F∈ . We need to update ' 'f t

pfυ  for pf F∈  

simultaneously; otherwise, we can not improve the length of the shortest path. Given p , 

suppose n  represents the number of ' 'f t
pfυ , pf F∈  that must be updated simultaneously. 

We sort ' 'f t
pfυ∆ , pf F∈  in non-decreasing order. We can increase the value of the first n  

' 'f t
pfυ∆  until all of them are equal to the value of the ( 1)thn +  ' 'f t

pfυ∆ . Thus, set the value 

of the first n  ' 'f t
pfυ∆  to the value of the ( 1)thn +  ' 'f t

pfυ∆ , and set remaining ' 'f t
pfυ∆  to zero.  

Given ' 'ef tD , check upper bounds associated with pfµ∆  for all ,e pp P f F∈ ∈ .  



 111

For each p , do the following:  

d) Given p , use ' 'f t
pfυ∆  to obtain pfµ∆  s.t. " " ' '

" "
( )f t f t

pf pff t
υ υ+ ∆ ≤∑ ( ) A

pf pf pfu Gµ+ ∆ +  for 

each , pf F∈ ; i.e., " " ' '
" "

max{( ) ,0}f t f t A
pf pf pf pf pff t

u Gµ υ υ∆ = + ∆ − −∑ . If pf F∃ ∈ , such 

that 0pfµ∆ > , go to (b); else go to (h).  

e) Given p , make sure that ''
( )

f

O
p f pf fp P

Gµ µ
∈

+ ∆ ≤∑  for each pf F∈   

If ''
( )

f

O
p f pf fp P

Gµ µ
∈

+ ∆ ≤∑  for all pf F∈ , go to (e); otherwise, for those pf F∈  such 

that  ''
( )

f
p fp P

µ
∈∑ O

pf fGµ+∆ > ; calculate ratio 1r  such that ' 1'
( )

f
p f pfp P

rµ µ
∈

+ ∆∑ O
fG= , 

where 1r = ( )
f

O
f pfp P

G µ
∈

−∑ 0/ |
f

pfp P
µ >∈

∆∑ ; update the value of pfµ∆ , 1pf pfrµ µ∆ ← ∆ .  

f) Given p , use pfµ∆  to update ' 'f t
pfυ∆  for each pf F∈   

If " " ' '
" "

( )f t f t
pf pff t

υ υ+ ∆ >∑ ( ) A
pf pf pfu Gµ+ ∆ + , calculate 2r  such that " "

" "
( )f t

pff t
υ +∑  

' '
2

f t
pfr υ∆ = ( ) A

pf pf pfu Gµ+ ∆ + , where 2r = " " ' '
" "

(( ) ( )) /A f t f t
pf pf pf pf pff t

u Gµ υ υ+ ∆ + − ∆∑ ; re-

set the value of ' 'f t
pfυ∆  as ' ' ' '

2
f t f t
pf pfrυ υ∆ ← ⋅∆ .  

g) Given p , balance ' 'f t
pfυ∆  for pf F∈   

Suppose n  represents the number of ' 'f t
pfυ∆  changed simultaneously in (c), all these n  

' 'f t
pfυ∆  among pf F∈  should change consistently. If one of them becomes smaller, all 

others should become smaller too. Reset these n  ' 'f t
pfυ∆  by using the smallest ' 'f t

pfυ∆  

among them.  

h) Given p , update ' 'f t
pfυ : ' ' ' ' ' 'f t f t f t

pf pf pfυ υ υ← + ∆  for pf F∈ . 
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i) Given p , update " " ' '
" "

max{( ) ,0}f t f t A
pf pf pf pf pff t

Gµ υ υ µ∆ = + ∆ − −∑  and update pfµ : 

pfµ ← pf pfµ µ+ ∆  for pf F∈ .  

6.3.3. Dual-ascent algorithm two (DAA2)  

As we discuss in subsection 6.3.1, increasing the value of ' 'f t
pfυ  can increase the length of 

the shortest paths and improve the objective function value. Meanwhile, decreasing the 

value of ' 'f t
pfυ  may not affect the length of the shortest paths (i.e., the objective function 

value). The change of ' 'f t
pfυ  leads to a change of pfµ  because of constraints (6-16) (i.e., 

' '
' '

f t
pff t

υ∑ = pfµ A
pfG+ ). And the changes of pfµ  variables must satisfy constraints (6-15) 

(i.e., O
pf fp

Gµ −∑ 0≤ ).  

Figure 11 describes how to improve the objective function value without violate 

(6-15). The solid line represents the fact that increasing pfµ  can increase the length of 

the shortest path (i.e., the objective function value). The broken line represents that de-

creasing pfµ  will not affect the objective function value. At node 2f , we can improve 

the objective function value by increasing the value of 
1 2p fµ , and decreasing the values 

of 
2 2p fµ , 

3 2p fµ , and 
4 2p fµ , so that 

2
2f

O
pf fp P

Gµ
∈

−∑ 0≤  is not violated; this does not affect 

the objective value. DAA2 works to update the value of ' 'f t
pfυ  such that the values of pfµ  

reach a balanced status; that is, pfµ  can not be increased or decreased further to improve 

the objective value. We describe DAA2 as follows.    
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Figure 11. Balance status 

 

 

Step 0: Initialization  

Set values of variables pfµ / | |O
f fG P=  and ' 'f t

pfυ ' ' ' '' '
( / | | ) ( / )O A

f f pf ef t ef tf t
G P G D D= + ⋅ ∑ .  

Step 1: Update labels ' 'f t
pftω  and ' 'f t

pftω  at each node of each material network for 

' 'ef tD   

Using shortest path algorithms to update two labels at each node, representing the 

lengths of the shortest paths from the current node to the source and sink nodes, respec-

tively, in all material networks associated with ' 'ef tD , , ' ,e E t T∀ ∈ ∈  ' '' : 0e ef tf F D∈ > . 

(Same as DAA1).  

Step 2: Update values of all pfµ  and ' 'f t
pfυ  according to labels ' 'f t

pftω  and ' 'f t
pftω   

For each material flow network associated with ' 'ef tD , first determine the duality gap for 

each node and set the value of ' 'f t
pfυ∆  based on ' ' ' 'f t f t

pft pftω ω−  (step 2-(a) in subsection 

1p  3p 4p2p

3f2f1f

pfµ  
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6.3.4); then update ' 'f t
pfυ∆ , considering the dependence among ep P∈ , and average 

' 'f t
pfυ∆ , pf F∈  for given p , considering 0pf pfµ µ− ∆ ≥  (step 2-(b), (c), & (d) in subsec-

tion 6.3.4); next, sum ' 'f t
pfυ∆  on 'f  and 't  to set the value of pfµ∆  (i.e., 

' '
' '

f t
pff t

υ∆ =∑ pfµ∆ ) according to constraint (6-16) (step 2-(e) in subsection 6.3.4); after 

that, update pfµ∆  for the balance (step 2-(f)&(g) in subsection 6.3.4); finally, according 

to values pfµ∆ , set ' 'f t
pfυ∆ , and update values of pfµ  and ' 'f t

pfυ : pf pf pfµ µ µ← + ∆ , 

' ' ' ' ' 'f t f t f t
pf pf pfυ υ υ← + ∆  (step 2-(h)&(i) in subsection 6.3.4). See the following section for 

details.  

Stop if a balance is achieved for each p  and f  (i.e., all ' ' 0f t
pfυ∆ = ), or, if the ob-

jective value does not improve appreciably over the last ten iterations (i.e., all ' 'f t
pfυ∆ s 

are small enough); otherwise, go to Step 1.  

6.3.4. Implementation details for DAA2  

Step 2: Update values of all pfµ  and ' 'f t
pfυ  according to labels ' 'f t

pftω  and ' 'f t
pftω   

Calculate all ' 'f t
pfυ∆ , , ,e pp P f F∈ ∈  using all ' 'f t

pftω  and ' 'f t
pftω  associated with ' 'ef tD   

a) Determine the duality gap for the material flow network associated with ' 'ef tD , as 

DAA1 does.  

b) Update ' 'f t
pfυ∆  considering the dependence among ep P∈ , as DAA1 does.  

For each ,e pp P f F∈ ∈ , make sure that 0pf pfµ µ− ∆ ≥   

c) Set ' '
' '

min( , )f t
pf pf pff t

µ µ υ∆ = ∆∑  in order to make sure that 0pf pfµ µ− ∆ ≥ .  
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If pf pfµ µ∆ = , we must satisfy that ' ' ' '
3 0 0' ' ' '

| |f t f t
pf pf pff t f t

r υ υ µ≥ <∆ + ∆ =∑ ∑ , where 3r =  

' '
0' '

( | ) /f t
pf pff t

µ υ <− ∆∑ ' '
0' '

|f t
pff t

υ ≥∆∑ . Update ' 'f t
pfυ∆ , which is negative: ' 'f t

pfυ∆ ←  

' '
3

f t
pfr υ∆ .  

Given ep P∈ , average all ' 'f t
pfυ∆  for pf F∈   

d) ' 'f t
pfυ∆ = ' ' ' 'f t f t

p pfυ υ∆ − ∆  with ' 'f t
pυ∆ ≡ ' ' / | |

p

f t
pf pf F

Fυ
∈

∆∑ , such that ' '

p

f t
pff F

υ
∈

∆∑  0= .  

If ' ' 0f t
pfυ∆ ≥ , increase ' 'f t

pfυ  to make the shortest path longer.  

If ' ' 0f t
pfυ∆ < , reduce ' 'f t

pfυ ; this will not change the length of the shortest path. 

For each , ,e pp P f F∈ ∈  calculate pfµ∆  

e) Calculate ' '
' '

f t
pf pff t

µ υ∆ = ∆∑ ; note ' '
' '

0
p p

f t
pf pff F f t f F

µ υ
∈ ∈

∆ = ∆ =∑ ∑ ∑ .  

We can guarantee that 0pf pfµ µ+ ∆ ≥  because of (c).  

Check balances for each ,e pp P f F∈ ∈   

f) Balance at p  

If 0pfµ∆ ≥ , increase pfµ . (Tight status)  

If 0pfµ∆ < , decrease pfµ  if possible. (Loose status) 

Given p  for at least one pf F∈ , 0pfµ∆ ≥ ; and for others, 0pfµ∆ <  (note: p  must be 

processed at one pf F∈  for which 0pfµ∆ ≥ ).  

Given p , if for all pf F∈ , 0pfµ∆ = , we have reached balance for this p .  

g) Balance at f : 0pf pff p p f
µ µ∆ = ∆ =∑ ∑ ∑ ∑   
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Case 1: 0
f

pfp P
µ

∈
∆ =∑ , balance; use pfµ∆  to update pfµ : pf pf pfµ µ µ← + ∆ ; 

Case 2: 0
f

pfp P
µ

∈
∆ <∑  (loose status), use pfµ∆  to update pfµ : pf pf pfµ µ µ← + ∆ ;  

Case 3: 0
f

pfp P
µ

∈
∆ >∑  (tight status), if ( )

f

O
pf pf fp P

Gµ µ
∈

+ ∆ ≥∑ , update pfµ∆ : pfµ∆  

← 4 pfr µ∆   using ratio 4r  (if 0pfµ∆ > ) such that ( )
f

O
pf pf fp P

Gµ µ
∈

+ ∆ =∑ , where 

4r = ( O
fG −

f
pfp P

µ
∈∑ − 0| )

f
pfp P

µ ≤∈
∆∑ 0/ |

f
pfp P

µ >∈
∆∑ ; use pfµ∆  to update pfµ : pfµ  

← pfµ + pfµ∆ .  

h) Given pfµ∆ , update ' 'f t
pfυ∆  to satisfy that ' '

' '
f t

pf pff t
µ υ∆ = ∆∑   

After the updation in (f) and (g), it is not always true that ' '
' '

f t
pf pff t

µ υ∆ = ∆∑ . If it is not, 

update ' 'f t
pfυ∆ : ' 'f t

pfυ∆ ← ' '
5

f t
pfr υ∆ , where 5r = ' ' ' '

0 0' ' ' '
( | ) / |f t f t

pf pf pff t f t
µ υ υ< ≥− ∆ ∆∑ ∑  so that 

pfµ∆ =  ' '
' '

f t
pff t

υ∆∑ .  

i) Given p , update ' 'f t
pfυ  and pfµ : ' ' ' ' ' 'f t f t f t

pf pf pfυ υ υ← + ∆  and pf pf pfµ µ µ← + ∆  for 

pf F∈   

6.4. Primal Drop Heuristic  

The objective in constructing a primal solution is to minimize the gap between it and a 

known dual solution. Because the gap can be measured as the total violation of comple-

mentary slackness (Gao and Robinson, 1996), the constructed primal solution should 

violate as few as possible of the complementary slackness conditions associated with the 

current dual solution. Intuitively, the meaning of complementary slackness in our appli-
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cation can be explained as follows. If the value of dual variable ' 'f t
pfυ  is zero, we know 

that no arcs associated with this dual variable will remain on any shortest path (other-

wise, if its value is changed, the value of this dual variable can be increased to improve 

the objective function value). If no flows of component p  go through facility alternative 

f , pfy  can be set to zero in the primal solution. Based on this observation, it seems that 

the condition to decide whether pfy  is set to zero or one can depend on whether the ma-

terial flows go through those arcs associated with ' 'f t
pfυ . We can use the solution from the 

dual-ascent algorithm to obtain this information.  

Gao and Robinson (1996) discussed a drop heuristic (DH) applied to a two-

echelon location problem. We use this idea to our application. According to the values of 

dual variables ' 'f t
pfυ , we can fix a set of pfy  variables to zero. And fx  can be fixed to 

zero if all variables pfy , fp P∈ , are fixed to zero. Remaining fx  and pfy  variables will 

be set to one temporarily. We then solve a set of SP( e )s to obtain values of az  variables 

based on the temporary setting of fx  and pfy  to obtain a primal objective function value. 

DH processes fx  and pfy  variables that have been given the temporary value of one 

(i.e., drops the value from one to zero), one by one to improve the objective function 

value. That is, if dropping fx  or pfy  can improve the objective function value, we fix it 

to zero. Please note that each time one fx  or pfy  is dropped, we must solve a set of 

SP( e )s to obtain corresponding values of az  and the objective function. If SP( e ) hap-

pens to be infeasible, the corresponding objective function value is set as +∞  (a very 
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high total costs). The drop procedure stops when the objective function value can not be 

improved further by dropping an fx  or a pfy  variable. Thus, all fx  and pfy , which are 

not fixed to zero, will be set to one permanently. We now detail DH.  

This heuristic can be viewed as a greedy algorithm. It starts with an initial feasi-

ble primal solution, then greedily fixes a pfy  or an fx  to zero to obtain the largest pos-

sible improvement of the objective function value. It stops if the objective function value 

can not be improved by dropping a pfy  or an fx .  

Main Procedure:  

Step 0: Check pfy  associated with arcs on the shortest paths in the material flow 

network.  

For each pf , calculate ' ' ' '
' ' ' 'min {min {( ) }}f t f t

f t t T pft pft ef tDω ω∈ −  based on the values of ' 'f t
pftω , 

' 'f t
pftω  at the last iteration of the dual-ascent algorithm. If ' '

' 'min {min {( f t
f t t T pftω∈ −  

' '
' ') }}f t

pft ef tDω 0>  (i.e., no arcs pfa A∈  are in the shortest paths), fix 0pfy = . The mean-

ing is that since no material flow goes through nodes with indices pf  because they are 

not on the shortest path, p  is not processed at f  (i.e., 0pfy = ). Fix 0fx =  if all vari-

ables pfy  associated with fx  (i.e., fp P∈ ) are fixed to zero.  

Step 1: Construct a primal solution based on the fixing in step 0.  

Step 0 fixes certain pfy  and fx  variables to zero; set all other pfy  and fx  variables to 

one temporarily. Based on these values, calculate the flow variable values and obtain the 

current objective value.  



 119

For each p , arcs associated with all pf F∈  form a valid arc cut. Component p  must be 

supplied by at least one of the facility pf F∈  and any shortest path must contain these 

arcs (i.e., pfa A∈ ). That is, for at least one pf  for pf F∈ , 

' ' ' '
' ' ' 'min {min {( ) }} 0f t f t

f t t T pft pft ef tDω ω∈ − = . Thus, for each p , at least one facility alterna-

tive pf F∈  will be opened. Thus, it is guaranteed that the initial solution constructed by 

DH is feasible.  

Step 2: Find a pfy  variable to drop (determine if its value can be flipped to zero).  

For each pfy  with value one, calculate the difference between the objective function 

value with 1pfy = , * ( =1)pfZ yPD , and the objective function value with 0pfy = , 

* ( =0)pfZ yPD . This difference represents the improvement that the objective function 

value would realize if pfy  were fixed to zero. If fixing 0pfy =  would lead to an infeasi-

ble primal solution, fix this 1pfy =  and the corresponding 1fx =  permanently; or, if the 

difference is positive (i.e., * ( =1)pfZ yPD
* ( =0)>0pfZ y− PD ), record the improvement.  

Among all pfy  variables with temporary value one, find pfy  with pf =  

*arg max{ ( =1)pfZ yPD
* ( =0)>0}pfZ y− PD  (i.e., the pfy  with the largest improvement).  

This step is to find a pair pf  such that p  will not be processed at f  (i.e., 0pfy = ) to 

achieve the largest possible reduction of the total costs.  

Step 3: Find fx  variable to drop.  

For each fx  with value one, calculate the difference between the objective function val- 
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ue with 1fx = , * ( =1)fZ xPD , and the objective function value with 0fx = , * ( =0)fZ xPD . 

The intuitive meaning of this difference is the same as that in step 2. If fixing 0fx =  

would lead to an infeasible primal solution, fix this 1fx =  permanently; or, if the differ-

ence is positive ((i.e., * ( =1)fZ xPD
* ( =0)fZ x− PD >0), record the improvement.  

Among all fx  variables with a temporary value of one, find fx  with f =  

*arg max{ ( =1)fZ xPD
* ( =0)>0}fZ x− PD  (i.e., the fx  that gives the largest improvement in 

objective function value).  

This step finds which facility f  can be closed to obtain the largest reduction in the total 

costs.  

Step 4: Stop criteria.  

If neither step 2 nor 3 finds an improvement, stop; otherwise, compare the improvements 

from steps 2 and 3 and identify the better one. Fix the corresponding pfy  or fx  to zero, 

then go to step 1.  

If we can find a pfy  in step 2 or an fx  in step 3, we select the one with larger reduction 

in cost. Otherwise, we can not improve the current objective function value further by 

simply flipping (or dropping) one pfy  or one fx  to zero.  

6.5. Computational Results  

The objectives of our tests are to investigate the solution qualities (i.e., the gap between 

primal and dual solutions) and run times for DAA1 (DAA2) each used in combination 
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with DH (i.e., DAA1-DH and DAA2-DH). We conduct all experiments on a PC with a 

2.8 GHz Pentium IV processor and 1 GB of RAM using Visual Studio C++ 6.0.  

We use four factors to describe each case, the number of time periods, | |T  (10 or 

20); the number of end products, | |E  (4 or 8); the number of components in the BOM 

for end products, BOMS  (7, 15, or 31); and the number of facility alternatives for each 

component, FA  (4 or 8). We also assume that the BOM is a binary tree. Columns 2-5 of 

Table 10 detail the level of each factor associated with each case. Specifying one level of 

each of the four factors defines a case and determines the number of variables and con-

straints in model (PD ).  

 

Table 10. Factor levels and problem size of each test set 

Scenario | |T  | |E  BOMS FA  BIN CONT ROW 
1 10 4 7 4 146 277560 66072 
2 20 4 7 4 146 1123760 262672 
3 10 4 15 4 294 564760 137224 
4 20 4 15 4 294 2282560 543344 
5 10 4 15 8 587 3916560 558848 
6 20 4 15 8 587 15791680 2235488
7 10 4 31 8 1176 7877520 1151776
8 20 8 31 8 2344 63514080 9237216

 

 

Column 6-8 of Table 10 give the number of binary variables (BIN), number of 

continuous variables (CONT), and number of constraints (ROW) for each case. 

CONT= 3 2| | | |E BOMS FA T⋅ ⋅ ⋅  so it is a function of all factors. For example, model (PD ) 

for a system that includes 8 end products, 32 components for each end product, 8 facility 

alternatives for each component, and 20 time periods, includes more than 60 million 
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( 3 28 32 8 20⋅ ⋅ ⋅ ) continuous variables. Since optimizing a mixed- integer-program includ-

ing so many continuous variables could be expected to be quite challenging, investigat-

ing DAA1-DH and DAA2-DH is reasonable.  

We design eight cases based on real-world considerations, including prices in 

different locations, facility alternatives, processing times for components, transport times, 

and demands, which are related to the population. Each facility alternative is defined by 

its location and the prices of labor, land, and capital required to open it. Component 

processing times determine workloads for producing, assembling, stocking, and trans-

porting. For each case, we generate eight instances, which all have the same factor-level 

selection but each instance has a unique set of random number seeds to generate parame-

ters and sets (e.g., ,O
fG P , etc.) used in the model.  

We analyze run time and solution quality in terms of the gap between primal and 

dual solutions for DAA1-DH and DAA2-DH, ( )GAP P D− ,  

( )GAP P D− = (100) ( *
#DDA DHZ − − *

#DDAZ ) / *
#DDA DHZ −                                               (6-21).  

DDA# represents DDA1 or DDA2. *
#DDA DHZ −  is the objective function value of the pri-

mal solution obtained by DDA1-DH or DDA2-DH. And *
#DDAZ  is the objective function 

value of dual solution obtained by DAA1 or DAA2. The initial primal solution in Step 0 

of DH depends on the dual values at the last iteration of the dual-ascent algorithm. Thus, 

different dual-ascent algorithms may lead DH to prescribe different primal solutions.  

Table 11 (Table 12) records measures of the run times for solving instances in 

each case, including the range and average of the run times for DAA1, DAA2, DAA1-
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DH, and DAA2-DH. DAA1-DH is not competitive with respect to run time; it requires a 

run time that increases dramatically with instance size because it invokes steps 1 and 2 

many times to update values of dual variables ' 'f t
pfυ  and pfµ . In comparison, DAA2-DH 

is much faster than DAA1-DH. Figure 12 plots the average run times of DAA2 and for 

DH in combination with DAA2 (i.e, DAA2-DH) versus the number of continuous vari-

ables; it also includes corresponding regression models. Run times for DAA2 and DH 

are approximately linear with the number of continuous variables. This is reasonable be-

cause the main part of each heuristic involves obtaining forward and backward labels for 

all nodes in the network, which requires step 2 to process all arcs in the network. On av-

erage, DAA2 and DH need around 150 seconds to solve the largest of our test in stances, 

which involve more than 60 million continuous variables. Considering these results and 

the resulting linear regression model, DAA2-DH could be used to solve larger instances 

in actual applications.  

 

Table 11. Run times for DAA1 and DH 

 DAA1 DH 

Scenario 
Range  

(seconds) 
Average (sec-

onds) 
Range  

(seconds) 
Average (sec-

onds) 
1 2.52 - 5.55 3.36 0.13 - 0.73 0.26 
2 1.77 - 19.13 11.50 0.39 - 3.27 1.20 
3 0.72 - 21.05 9.15 0.25 - 1.09 0.66 
4 3.16 - 93.03 31.02 1.33 - 11.16 3.81 
5 69.77 - 193.83 101.61 3.91 - 52.77 19.45 
6 62.64 - 1045.33 624.40 32.28 - 278.56 170.94 
7 311.67 - 944.36 782.85 45.41 - 145.88 80.68 
8 272.86 - 8939.75 4483.95 139.92 - 1520.02 591.45 
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Table 12. Run times for DAA2 and DH 

 DAA2 DH 

Scenario 
Range  

(seconds) 
Average (sec-

onds) 
Range  

(seconds) 
Average (sec-

onds) 
1 0.31 - 0.61 0.45 0.16 - 0.45 0.24 
2 1.06 - 2.95 1.87 0.25 - 2.23 0.79 
3 0.44 - 2.80 1.22 0.25 - 1.36 0.76 
4 2.45 - 8.50 3.93 1.73 - 11.50 4.18 
5 5.08 - 9.84 7.17 6.17 - 43.44 14.41 
6 31.61 - 47.28 38.94 22.11 - 312.34 119.11 
7 12.86 - 28.66 19.03 22.69 - 67.56 46.02 
8 123.59 - 174.22 147.80 140.66 - 1162.47 417.20 

 

 

DAA1 and DAA2 each provides a dual feasible solution, while DH provides a 

feasible primal solution as well as an estimate on its quality (i.e., the primal-dual gap). 

Table 13 gives the gap between the primal and dual solutions prescribed by DAA1-DH 

and DAA2-DH, reporting the range and average of the gap (defined as (6-21)) over all 

instances associated with each case.  

 

Table 13. Gaps for DAA1-DH and DAA2-DH 

 DAA1-DH ( )GAP P D−  DAA2-DH ( )GAP P D−  
Scenario Range Average Range Average 

1 0.01% - 0.12% 0.06% 0.02% - 0.14% 0.08% 
2 0.01% - 0.06% 0.04% 0.01% - 0.07% 0.04% 
3 0.00% - 0.06% 0.02% 0.00% - 0.06% 0.04% 
4 0.00% - 0.06% 0.02% 0.00% - 0.05% 0.03% 
5 0.02% - 0.09% 0.04% 0.02% - 0.11% 0.05% 
6 0.02% - 0.04% 0.03% 0.01% - 0.11% 0.07% 
7 0.02% - 0.05% 0.04% 0.02% - 0.09% 0.04% 
8 0.00% - 0.02% 0.01% 0.00% - 0.05% 0.02% 
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Overall, DAA1-DH provides a small gap than DAA2-DH. Both DAA1 and 

DAA2 work well in combination with DH and both combinations prescribe primal solu-

tions within a 0.08% gap. The worst average gap in our tests is only 0.15%. 
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Figure 12. Run time vs number of continuous variables 

 

 

Table 14 gives measures (range and average) of the run times CPLEX required to 

solve cases 1-4 of the mixed-integer program model (PD ). Here, CPLEX solves all 

cases to optimality rather than solving the linear relaxation of (PD ). CPLEX can not 

solve cases 5-8 because they require prohibitive amounts of storage capacity. It is obvi-

ous that CPLEX takes longer to solve these cases than DAA2-DH (see in Table 12)). 

Table 14 also presents, for each case, the gap between the optimal primal solution ob-
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tained using CPLEX and the corresponding primal solution obtained using DAA2-DH, 

which is defined as  

( )GAP P O− = (100) ( *
2DDA DHZ − − *ZPD ) / *ZPD                                                           (6-22).  

Because the optimal objective function value is within the range of the primal 

and dual bound, the gap defined in (6-22) is always smaller than the one in (6-21). Gaps 

reported in Table 14 are fairly small. The average gap is 0.01% and the largest gap is 

0.04%. It seems that the DAA2-DH is a reasonable solution approach, which gives a fa-

vorable trade-off between run time and solution quality.  

 

Table 14. Run time for CPLEX and the gap between heuristic and optima solutions  

 Run Times ( )GAP P O−  

Scenario 
Range  

(seconds) 
Average (sec-

onds) 
Range Average 

1 3.11 - 4.08 3.48 0.00% - 0.04% 0.01% 
2 17.45 - 23.91 19.70 0.00% - 0.03% 0.01% 
3 7.81 - 9.72 8.68 0.00% - 0.03% 0.01% 
4 44.11 - 63.06 53.95 0.00% - 0.03% 0.01% 

 

 

6.6. Summary  

This section presents two dual-ascent algorithms and uses each in combination with a 

primal drop heuristic to solve the uncapacitated production-assembly-distribution system 

design problem (UPADSDP). Tests show that the resulting heuristic (DAA2-DH) is ef-

fective. It can solve instances that include more than one thousand binary and sixty mil-

lion continuous variables within twenty minutes. For all instances, the gaps between the 
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primal and dual solution are less than 0.15%. Thus, the proposed method can be used to 

solve large-scale instances within reasonable time.  
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7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

 

This paper mainly discussed the model and solution approach to PADSDP. It achieves 

its objective. Relative to section 3, we formulate the design of the production-assembly- 

distribution system as a mixed integer program, which is challenging to solve. We em-

ploy CG to solve PADSDP. Relative to section 4, we compare five decomposition 

schemes and two acceleration techniques in application to PADSDP. We identify the 

impacts of various measures associated with schemes and propose conjectures that lend 

insights into the rate of convergence. Computational tests provide empirical evidence 

that supports our qualitative analyses. Relative to section 5, we extended one of the ac-

celeration techniques to a more general concept to improve the rate of convergence of 

CG. We established a theoretical foundation and provided geometric insights through a 

small example. Finally, Relative to section 6, we discussed the dual-ascent and primal 

heuristics applied to UPADSDP. Computational results indicate that this heuristic can 

find solutions with good quality and within reasonable time, the efficiency and large-

scale suiting it well for actual applications.   

Relative to section 4, future research can be directed to devising special tech-

niques for implementing DWD in the B&P framework, e.g., by specifying i) branching 

rules; ii) methods to fix variables; iii) techniques to re-optimize nodes in the B&B tree; 

and iv) steps to initialize. All of these issues are also affected by the decomposition 

schemes. The solution approach to PADSDP here can be extended to deal with 

PADSDPN by Wilhelm et al. (2005). The extended model would include additional con-
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straints and variables to represent the international business environment but does not 

affect the fundamental decomposition schemes.  

Relative to section 5, future research can contribute by devising implementation 

techniques to apply DWDG to linear programs using different strategies for managing 

the numbers of variables and constraints to quantify the trade off between problem for-

mulation and the run time needed to prescribe an optimal solution. In addition, future 

research could seek methods to assure that DWDG will prescribe tight bounds, allowing 

effective solution of integer programs consistently. For example, methods to select a 

subset of { }|l Ly  may achieve a trade off between accelerating convergence and tighten-

ing bounds. Further, the set { }|l Ly  can be determined dynamically at each node of the 

B&B tree, depending upon the variables that are fixed. Finally, computational tests could 

evaluate the efficacy of DWDG in a broader range of applications.  

Relative to section 6, future research to extend on i) DAA2-DH can be embedded 

in a B&B framework to obtain tighter bounds and to fix binary variables at each node in 

the B&B tree; ii) DAA2-DH can be extended to deal with capacitated PADSDP.  
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