

PREDISEÑO INTEGRAL DE LA VIA PUENTE LA LIBERTAD – EL ARBOLITO, SECTOR K17+970 AL K19+970

JULIAN CARDONA CASTRO MAURICIO ANTONIO CORTES REINA

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MANIZALES

FACULTAD DE INGENIERIA Y ARQUITECTURA ESPECIALIZACIÓN EN VÍAS Y TRANSPORTE MANIZALES, MARZO DE 2005

PREDISEÑO INTEGRAL DE LA VIA PUENTE LA LIBERTAD – EL ARBOLITO, SECTOR k17+970 AL K19+970

JULIAN CARDONA CASTRO COD. 5304003

MAURICIO ANTONIO CORTES REINA COD. 5304006

Director

Ingeniero FELIPE VILLEGAS

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MANIZALES

FACULTAD DE INGENIERIA Y ARQUITECTURA ESPECIALIZACIÓN EN VÍAS Y TRANSPORTE MANIZALES, MARZO DE 2005

TABLA DE CONTENIDO

INTRODUCCION	1
1 OBJETIVOS	2
1.1 OBJETIVO GENERAL	
1.2 OBJETIVOS ESPECIFICOS	2
2 DESCRIPCION DE LA ZONA DEL PROYECTO	3
2.1 VIA EN ESTUDIO:	3
3 PREDISEÑO GEOMETRICO	
3.1 GENERALIDADES	5
3.1.1 METODOLOGIA	
3.1.2 RECOLECCION DE LA INFORMACION	
3.1.3 ESPECIFICACIONES ACTUALES DE LA VIA	
3.2 CRITERIOS DE DISEÑO	
3.2.1 VELOCIDAD	
3.2.2 VELOCIDAD DE DISEÑO	
3.2.3 VISIBILIDAD	7
3.2.3.1 DISTANCIA DE VISIBILIDAD E PARADA	
3.2.3.2 DISTANCIA DE VISIBILIDAD DE ADELANTAMIENTO	
3.2.3.3 DISTANCIA DE VISIBILIDAD EN INTERSECCIONES	
3.2.3.4 DISTANCIA DE VISIBILIDAD DE ENCUENTRO	
3.3 ALINEAMIENTO HORIZONTAL	
3.3.1 ALINEAMIENTOS CURVOS Y RECTOS	
3.3.2 SECCION TRANSVERSAL EN RECTA	
3.4 CURVAS CIRCULARES	11
3.4.1 DEFLEXIONES MENORES ENTRE TANGENTES	
3.4.2 ENTRETANGENCIA	
3.4.3.1 CURVAS CIRCULARES SIMPLES	
3.4.4 PERALTE	
3.4.4.1 COEFICIENTE DE FRICCION LATERAL	
3.4.4.2 VALORES MAXIMOS DEL PERALTE	
3.4.4.3 RADIOS MINIMOS ABOLUTOS	
3.4.4.4 TRANSICION DEL PERALTE	
3.4.4.5 CARTERA DE TRANSICION DE PERALTES	
3.4.4.6 DESARROLLO DEL PERALTE	
3.4.4.7 CURVAS DE TRANSICION	
3.4.4.8 CARTERA DE CURVAS DE TRANSICION	
3.5 ALINEAMIENTO VERTICAL	
3.5.1 PENDIENTE	
3.5.2 CURVAS VERTICALES	
3521 CARTERA DE CURVAS VERTICIES	

ESTUDIO D	E ESTABILIDAD DE LADERAS	36
4.1 RESUL	TADOS DEL ANÁLISIS DE ESTABILIDAD	37
	PESOR DEL DEPÓSITO POTENCIALMENTE INESTABLE	
37		
4.1.1.1	No Agua No Sismo	37
4.1.1.2	No Agua y Si Sismo	
4.1.1.3	Si Agua y No Sismo	38
4.1.1.4	Si Agua y Si Sismo	38
4.1.2 ES	PESOR DEL DEPÓSITO POTENCIALMENTE INESTABLE	3 M.
38		
4.1.2.1	No Agua No Sismo	
4.1.2.2	No Agua y Si Sismo	38
4.1.2.3	Si Agua y No Sismo	38
4.1.2.4	Si Agua y Si Sismo	38
4.2 PROCE	SOS EROSIVOS	39
	OCESOS DE EROSIÓN SUPERFICIAL	
4.2.2 PR	OCESOS DE EROSIÓN PROFUNDA O MOVIMIENTO DE I	MASA
39		
	IO GEOTECNICO	
	spección Geotécnica	
	lumna Estratigráfica:	
4.3.3 Pro	ppiedades Geotécnicas de los Materiales	
4.3.3.1	Carta de Plasticidad	
4.3.3.2	Pasante del tamiz 200	
4.3.3.3	Limite Líquido	
4.3.3.4	Humedad Natural	
4.3.3.5	Índice de plasticidad	
4.3.3.6	Peso Unitario	
4.3.3.7	Angulo de Fricción Interno	
4.3.3.8	Cohesión	
4.3.3.9	Resistencia a la Compresión Inconfinada	
	sayos de Laboratorio y Campo	
	DE CONTROL DE AGUA	
	TUDIO HIDROLOGICO Y EVALUACION HIDRAULICA	
4.4.1.1		
4.4.1.2	Cuenca del rió Chinchiná	
4.4.1.3	Microcuencas de la zona de estudio	
	SEÑO DE LAS OBRAS GEOTECNICAS	
	scisa K18 + 060	
	scisa K18 + 500	
	scisa K 18 + 720 al 18+ 735	
	scisa K 19 + 030 al 19+ 080	
	ACION HIDRAULICA	
	LCULO CAUDALES LINEAS DE DREANAJE	
4.6.2 CA	PACIDAD HIDRAULICA DE LAS OBRAS	49

	4.6.2.	1 BOX CULVERT K 19+520 Y K 19+460	50
	4.6.2.2	2 CANAL K 19+080 PROPUESTO	50
	4.6.2.3	Tubería 27" en concreto K 18+500 PROPUESTA	51
	4.6.2.4	4 Box K 18+640 y K 18+560	52
	4.6.3	CHEQUEO OBRAS HIDRULICAS	52
	4.6.4	INVENTARIO DE OBRAS EXISTENTES Y POR CONSTRUIR	53
5	PREDIS	EÑO DEL PAVIMENTO	55
	5.1 PAF	RAMETROS Y FACTORES DE DISEÑO	55
	5.1.1	ANÁLISIS DE TRÁNSITO	55
	5.1.2	ANÁLISIS DE LA SERIE HISTÓRICA	55
	5.1.3	PERÍODO DE DISEÑO	55
	5.1.4	PROYECCIÓN DEL VOLUMEN DE TRÁNSITO PARA EL AÑO	DE
	PUESTA	A DE FUNCIONAMIENTO DEL PROYECTO	56
		PROYECCIÓN DEL VOLUMEN TOTAL DEL TRÁNSITO EN	
	PERÍOD	O DE DISEÑO	58
	5.1.6	VOLUMEN DE VEHÍCULOS PESADOS ESPERADOS EN	EL
	PRIMER	RAÑO DE SERVICIO PORA EL CARRIL DE DISEÑO	60
	5.1.7	CALCULO DE EJES EQUIVALENTES DE 8.2 Tn	60
	5.1.8	CARACTERIZACIÓN DE LA RESISTENCIA DE DISEÑO DE	LA
	SUBRAS	SANTE	61
	5.2 DIS	EÑO POR EL MANUAL DE DISEÑO DE PAVIMEN ⁻	ros
		OS EN VÍAS CON BAJOS VOLÚMENES	
	5.2.1	DESCRIPCIÓN ALTERNATIVA ESTRUCTURA BA	JOS
	VOLUM	ENES:	63
	5.2.2	Especificaciones:	
		EÑO POR EL MÉTODO AASHTO	
	5.3.1		
	5.3.2	Cálculo del número estructural y análisis de capas	65
		EÑO POR EL MÉTODO EMPÍRICO DE LA ROAD NOTE 31/1993	
		QUEMAS DE LAS ALTERNATIVAS OBTENIDAS	
	5.5.1	/	
		s en Vías con Bajos Volúmenes)	
		MÉTODO AASHTO	
	5.5.3	MÉTODO ROAD NOTE 31 DE 1993	
6		ASICO DE MANEJO AMBIENTAL	
		grama de educación ambiental	
	6.1.1	Justificación	
	6.1.2	Objetivos	
	6.1.3	Impactos a controlar	
	6.1.4	Tiempo de ejecución	
	6.1.5	Costos	
		grama de señalización nocturna y diurna de la obra	
	6.2.1	Justificación	
	6.2.2	Objetivos	
	6.2.3	Impactos a controlar	/1

6.2.4	Descripción de actividades	72
6.2.5	Participantes	
6.2.6	Tiempo de Duración	
6.2.7	Costos del Programa	
6.2.8	Responsable	
6.3 P	rograma de acercamiento y comunicación de la realización	
proyecto	- -	
6.3.1	Justificación	
6.3.2	Objeto	73
6.3.3	Impactos a controlar	
6.3.4	Descripción de actividades	73
6.3.5	Participantes	74
6.3.6	Tiempo de ejecución	74
6.3.7	Costo del programa	74
6.3.8	Responsable	74
6.4 P	rograma de rocería y limpieza	74
6.4.1	Justificación	74
6.4.2	Objetivos	74
6.4.3	Impactos a controlar	75
6.4.4	Descripción de actividades	75
6.4.5	Tiempo de ejecución	75
6.4.6	Costo	75
6.4.7	Responsable	75
6.5 P	rograma de empradización	75
6.5.1	Justificación	75
6.5.2	Objetivos	75
6.5.3	Impactos a controlar	76
6.5.4	Tiempo de ejecución	76
6.5.5	Costos	76
6.5.6	Responsable	
6.6 P	rograma de manejo y disposición final de sobrantes	76
6.6.1	Justificación	
6.6.2	Objetivos	76
6.6.3	Impactos a Controlar	77
6.6.4	Tiempo de ejecución	77
6.6.5	Costos del programa	77
6.6.6	Responsable	
6.7 P	rograma de seguimiento y control de la maquinaria y equipos	77
6.7.1	Justificación	77
6.7.2	Objetivos	77
6.7.3	Impactos a controlar	78
6.7.4	Tiempo de ejecución	78
6.7.5	Costos del Programa	78
6.7.6	Responsable	
6.8 P	rograma de seguimiento y monitoreo	78

PREDISEÑO INTEGRAL DE LA VIA PUENTE LA LIBERTAD EL ARBOLITO, SECTOR K17+970 AL K19+970

	6.8.1	Justificación	78
	6.8.2	Objetivos	78
	6.8.3	Impactos a controlar	78
	6.8.4	Tiempo de ejecución	
	6.8.5	Costos del programa	79
	6.8.6	Responsable	79
7	PRESU	PUESTO Y APU	80
	7.1 VIA	PUENTE LA LIBERTAD - EL ARBOLITO en el sector k17+970	AL
	K19+970		80
	7.2 ANA	ALISIS DE PRECIOS UNITARIOS DE LA OBRA VIA PUENTE	LA
	LIBERTAD	- EL ARBOLITO EN EL SECTOR K17+970 AL K19+970	82
8	CONCL	JSIONES Y RECOMENDACIONES	89
R	IRI IOGRAF	-ίΔ	٩n

LISTA DE TABLAS

Tabla 3.1 Velocidades de diseño según tipo de carretera y terreno	7
Tabla. 3.2 DISTANCIA DE VISIBILIDAD PARA LA VELOCIDAD DE DISEÑO	8
Tabla 3.3 DISTANCIA DE ADELANTAMIENTO PARA LA VELOCIDAD	DE
DISEÑO.	9
Tabla 3.4 OPORTUNIDADES DE ADELANTAR POR TRAMOS DE CIN	
KILOMETROS.	9
Table 3.6 COEFICIENTES DE EDICCION LATERAL	11
Table 3.0 COLLICIENTES DE L'INICOION ENTENAL	17
Tabla 3.7 RADIOS MINIMOS ABSOLUTOS	15
Tabla 3.8 RELACION ENTRE PENDIENTE MAXIMA (%) Y VELOCIDAD	
DISEÑO	
Tabla 4.1. Lista de chequeo para caracterización de procesos eros	
CORPOCALDAS, (2002)	
TABLA 4.2 CARACTERIZACIÓN DE LOS PROCESOS EROSIVOS	
TABLA 4.3 Resumen de capacidad hidráulica del elemento en m³/ seg	
Según la pendiente	50
TABLA 4.4 Resumen de capacidad hidráulica del elemento en m³/ seg	
Según la pendiente	
TABLA 4.5 Resumen de capacidad hidráulica del elemento en m³/ seg	
Según la pendiente	
TABLA 4.6 Resumen de capacidad hidráulica del elemento en m³/ seg	
Según la pendiente TABAL 4.7 CHEQUEO DE LAS OBRAS HIDRAULICAS	52
Tabla 5.1 CATEGORIA DE LA VIA	
Tabla 5.2 Volumen Total del Tránsito en el Período de Diseño	
Tabla 5.3 Cálculo de los Factores de Carga	
TABLA 5.4 CBRs DE DISEÑO OBTENIDOS POR LA CORRELACION CON C	
DE DISEÑO OBTENIDOS POR LA CORRELACION CON EL ENSAYO PDC	
TABLA 5.5 CUADRO RESUMEN CBRs & Módulos Resilientes	
TABLA 5.6 TRANSITO	63
TABLA 5.7 CATEGORÍA DE LA SUBRASANTE	
TABLA 5.8 ESPESORES OBTENIDOS	
TABLA 5.9 VALORES DE RESISTENCIA PARA LOS MATERIALES	
TABLA 5.10 ESPESORES OBTENIDOS AASHTO	66

LISTA DE ANEXOS

ANEXO 1	ENSAYOS DE LABORATORIO
ANEXO 2	GRAFICA DE CBR
ANEXO 3	CARTERA DE DIAGRAMA DE PERALTES
ANEXO 4	CARTERA DE MOVIMIENTO DE TIERRA
ANEXO 5	ANEXO FOTOGRAFICO
ANEXO 6	PLANO LOCALIZACION GENERAL DEL PROYECTO
ANEXO 7	PLANOS FORMACIONES SUPERFICIALES
ANEXO 8	PLANOS MAPA GEOLOGICO
ANEXO 9	PLANOS DE PENDIENTES
ANEXO 10	PLANOS MAPA USOS DEL SUELO
ANEXO 11	PLANOS LOCALIZACION OBRAS
ANEXO 12	PLANO PERFIL GEOLOGICO
ANEXO 13	PLANO DETALLES CONSTRUCTIVOS OBRAS
ANEXO 14	PLANOS DISEÑO HORIZONTAL Y VERTICAL
ANEXO 15	PLANOS SECCIONES TRANVERSALES

RESUMEN

La vía en estudio "Puente La Libertad – el Arbolito", hace parte de la red secundaria de carreteras del Departamento de Caldas, dicha vía se encuentra localizada en Villamaría, Municipio turístico por excelencia y ruta obligada de acceso al Parque Nacional Natural de los Nevados. Es de allí donde radica la importancia del estudio, para desarrollar alternativas que mejoren el acceso a dichos centros y poder desarrollar una nueva industria de gran aceptación en nuestro país, el ecoturismo.

El desarrollo del estudio comprendió el prediseño de la "Vía Puente la Libertada – el Arbolito", en el sector localizado entre las abscisas K17+970 al K19+970.

El prediseño se inició con el levantamiento topográfico de la zona en la cual esta localizada la vía existente, dicho trabajo se realizó con ayuda de una estación total, la cual nos arroja una serie de puntos, que son interpretados a través del programa AUTO CAD Land, generándonos el modelo del terreno y localización de la vía existente. A través de una serie de herramientas del programa se realizó el prediseño geométrico de la vía en planta y perfil, guiados siempre con las especificaciones técnicas del INVIAS, pero sin ser de estricto cumplimiento.

Simultáneamente se realizaron visitas de campo para el desarrollo de activadas de recolección de información para el desarrollo de los estudios de:

- Estabilidad de laderas
- Inventario de obras y capacidad hidráulica
- Estudios del suelo y ensayos de laboratorio
- Estudios Geológicos
- Estudios Hidrológicos

Posteriormente con los resultados de los ensayos de suelo (CBR), y con la variable transito se procedió a realizar el prediseño del pavimento por los métodos de: Bajos Volúmenes de Tránsito del INSTITUTO NACIONAL DE VIAS –INVIAS-, AASHTO y ROAD NOTE 31 1993.

Una vez realizados los prediseños y estudios, sé evaluó y cuantifico las cantidades de obras y precios del mercado para la elaboración de los A.P.U y el presupuesto de obra.

ABSTRACT

The road studied "Puente La Libertad – El Arbolito", is part of the Caldas's Department secondary vial web, this road is located at Villamaria, a tourist city by excellence and forced route to the "Parque Nacional Natural de los Nevados". It is there where the importance of the study is, to develop alternatives that improve the access to these centres and develop a new industry of great acceptance in this country; ecotourism.

The study comprised the redesign of the road "Puente La Libertad – El Arbolito", at the sector located between abscises K17+970 and K19+970.

The redesign begins the topographical survey of the zone which is located the actual road, this labour took place with the help of total station, it is obtain a series of points, these are interpreted with the software Auto CAD Land, generating a terrain model along with the actual road's location. Using software's tools geometrical redesign on ground plant and cross section was done, always guide by the INVIAS technical specifications, but without fulfilling at all.

Simultaneously site visits were made to develop activities related to the recollection of data such as:

- 1. Stability Analysis of slopes
- 2. I inventory of works and hydraulic capacity
- 3. Soil laboratory essays
- 4. Geological prospection
- 5. Hydrologic research

Subsequently using soil essays results (CBR), transit variable, pavement pre design took place by the following methods: Low transit volume (INVIAS), AASHTO, ROAD NOTE 31 1993

After all these pre design and studies, quantity of labour was quantified to elaborate the Unitary Prices Analysis A.P.U. and final budget with update prices.

INTRODUCCION

Este proyecto fue realizado teniendo en cuenta la necesidad actual que tiene el Departamento de Caldas en mejorar su red vial para aprovechar el potencial turístico representado en el Parque Nacional de Los Nevados.

Por tal motivo La Gobernación de Caldas se encuentra interesada en mejorar las condiciones de estas vías y para ello se hace necesario realizar los estudios pertinentes para mejorar el acceso al principal atractivo turístico de la Región.

Una de estas vías es la comprendida entre los sectores PUENTE LA LIBERTAD - EL ARBOLITO, la cual solo presenta un porcentaje bajo de vía en buenas condiciones, restando aproximadamente 15 kilómetros de vía por mejorar geométricamente y construir una estructura de pavimento que hagan más fácil el acceso a este parador turístico.

Es por eso que presentamos en este trabajo la propuesta de una primera etapa de mejoramiento encaminada a realizar un pre - diseño para el mejoramiento geométrico y estructural de la vía PUENTE LA LIBERTAD - EL ARBOLITO. Ya que en la actualidad dicha vía se encuentra en un estado avanzado de deterioro, en muchas partes de su recorrido adolece de una capa de rodadura continua que dé estabilidad a la vía en cuanto a seguridad, comodidad, y rapidez de los desplazamientos.

1 OBJETIVOS

1.1 OBJETIVO GENERAL

Realizar el prediseño integral la vía PUENTE LA LIBERTAD - EL ARBOLITO en el sector k17+970 AL K19+970.

1.2 OBJETIVOS ESPECIFICOS

Realizar el prediseño geométrico del tramo de vía en estudio, aplicando el programa Auto CAD Land y las especificaciones técnicas del INVIAS, sin que estas sean de obligatorio cumplimiento.

- Realizar el prediseño de las obras de contención y de control de aguas que garanticen la estabilidad de la vía.
- Realizar el prediseño del pavimento del tramo de vía.
- Realizar los presupuestos de las diferentes alternativas planteadas.
- Realizar el estudio de estabilidad de laderas.
- Realizar el plan básico de manejo ambiental.

2 DESCRIPCION DE LA ZONA DEL PROYECTO

2.1 VIA EN ESTUDIO:

VIA PUENTE LA LIBERTAD - EL ARBOLITO: Esta vía se encuentra localizada en el Municipio de Villamaría, el cual esta situado en el Distrito Centro sur del Departamento de Caldas.

La vía en estudio tiene una longitud aproximada de 25 Km., partiendo del Puente la Libertad y terminado en el sector conocido como El Arbolito o Mirador, que es la primera parada obligada antes de ingresar al parque Nacional de Los Nevados. Allí se puede disfrutar de la primera panorámica del Volcán Nevado de El Ruiz.

De la totalidad de la vía PUENTE LA LIBERTADA EL ARBOLITO, el estudio de prediseño se realizo en el tramo comprendido entre las abscisas k17+970 (Localizada 400 metros antes de Termales del Ruiz) y el K19+970.

La vía presenta una superficie de rodadura en Doble riego en una extensión de aproximadamente 3 kilómetros contados a partir de la abscisa K21+970 hacia el Arbolito, el resto de su longitud presenta superficie granular dispersa. La vía tiene un ancho actual de vía que varia entre los 4.50 mts y 5.00 mts, posee cunetas en tierra a igual que una gran cantidad de obras transversales a lo largo de todo el tramo, todas ellas en funcionamiento. La mayoría de estas obras fueron construidas en Tubería que van desde las 18" de diámetro a las 24", existen otras como Box Coulvert pero en menor cantidad.

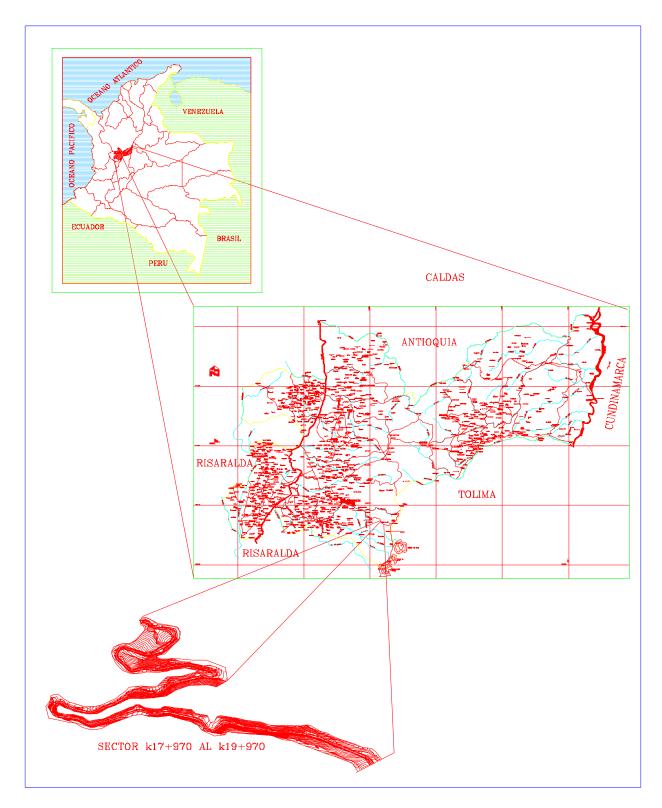


FIGURA 2.1 Localización del Proyecto

3 PREDISEÑO GEOMETRICO.

3.1 GENERALIDADES

Debido a las condiciones medioambientales y de localización de la vía en estudio no se diseño un nuevo alineamiento sino que se mejoro el existente tratando en los posible de cumplir las especificaciones técnicas del INVIAS, lo cual no fue posible en gran parte del proyecto debido a las condiciones especiales de la vía tales como topografía, localización dentro de un parque natural entre otros. Lo que limita los movimientos de tierra y las intervenciones a la flora del sitio.

3.1.1 METODOLOGIA

Para la elaboración del prediseño se realizo el levantamiento topográfico de la vía existente y de los laterales con el fin de tener suficiente información topográfica del sitio para poder mejorar las condiciones de la vía existente. Después se introdujo esta información al programa de diseño en el cual se hicieron los ajustes necesarios para mejorar las condiciones de comodidad y seguridad de la vía.

3.1.2 RECOLECCION DE LA INFORMACION

Como se menciono anteriormente la principal información fue el levantamiento topográfico de la vía en estudio, adicionalmente se hicieron visitas a la vía con el fin de recolectar la información geotécnica, hidrológica, geológica e hidráulica. Además se realizo el inventario de las obras existentes y de los taludes, para saber en que condiciones se encontraban y que se le podría hacer para mejorar la vía en general.

También se realizaron ensayos de laboratorio para examinar las propiedades mecánicas de los suelos de la zona en estudio.

3.1.3 ESPECIFICACIONES ACTUALES DE LA VIA

En la actualidad de vía carece tanto de un trazado geométrico adecuado como de una capa de rodadura que brinde seguridad al usuario, por esta razón el objetivo de este proyecto no es solo mejorar la superficie de rodadura sino mejorar el diseño geométrico, el diseño de la obras de estabilidad y las de protección de la banca.

La vía en estudio denominada Km. 17+970 al Km. 19+970 de la vía Puente la Libertad – El Arbolito tiene las siguientes características generales, de acuerdo con la clasificación del Instituto Nacional de Vías (INVIAS):

Clasificación tipo: CARRETERA TERCIARIA.

Tipo de terreno: MONTAÑOSO.

Tipo de superficie de rodadura: AFIRMADO.

Tipo de vía de acuerdo a su capacidad de servicio: BICARRIL

Ancho promedio de la calzada: 5.00 m.

3.2 CRITERIOS DE DISEÑO

Para el desarrollo del proyecto se tendrán en cuenta las especificaciones y los criterios de diseño del Manual De Diseño Para Carreteras del INVIAS, como son:

3.2.1 VELOCIDAD

El diseño geométrico de una carretera se debe definir en relación directa con la velocidad a la que se quiere que circulen los vehículos en condiciones aceptables de comodidad y seguridad.

El manual del INVIAS define diferentes tipos de velocidad tales como: velocidad puntual, velocidad instantánea, velocidad de recorrido, velocidad especifica, velocidad de marcha, velocidad de operación y velocidad de diseño, esta ultima la que mas nos interesa por el tipo de proyecto por lo cual la definiremos a continuación.

3.2.2 VELOCIDAD DE DISEÑO

La velocidad de diseño se define como la máxima velocidad segura y cómoda que puede ser mantenida en una sección determinada de vía. Además es la velocidad guía o de referencia que permite definir las características mínimas de todos los elementos del trazado, en condiciones de comodidad y seguridad.

El manual del INVIAS en el numeral 3.1.3.1 establece el rango de las velocidades de diseño que se deben utilizar en función del tipo de carretera según su definición legal y el tipo de terreno.

Tabla 3.1 Velocidades de diseño según tipo de carretera y terreno.

TIPO DE	TIPO DE		DAD DE DIS d (Km./Hr)	SEÑO
CARRETERA	TERRENO	30 40		50
	Plano			
Carretera	Ondulado			
terciaria	Montañoso			
	Escarpado			

Nota: Para este proyecto se asumirá una velocidad de diseño de 30Km./Hr.

3.2.3 VISIBILIDAD

Una de las características más importantes que deberá ofrecer el proyecto de una carretera al conductor de un vehículo es la facilidad de ver hacia adelante, tal que le permita realizar una circulación segura y eficiente. La distancia de visibilidad se define como la longitud continua de carretera que es visible hacia adelante por el conductor de un vehículo que circula por ella.

Por lo anterior, para el proyecto de carreteras, deberán tenerse en cuenta cuatro tipos de distancias de visibilidad:

- Distancia de visibilidad de parada.
- * Distancia de visibilidad de adelantamiento.
- Distancia de visibilidad de cruce.
- Distancia de visibilidad de encuentro.

3.2.3.1 DISTANCIA DE VISIBILIDAD E PARADA

Se considera como distancia de visibilidad de parada de un determinado punto de una carretera, la distancia necesaria para que el conductor de un vehículo que circula aproximadamente a la velocidad de diseño, pueda detenerlo antes de llegar a un obstáculo que aparezca en su trayectoria.

En la Tabla 3.2.2 del manual de diseño geométrico del INVIAS se presentan los valores recomendados para las distancias mínimas de visibilidad de parada para diferentes velocidades de diseño, para tramos de rasantes a nivel (p = 0). De la cual tomamos los valores para la velocidad de diseño de este proyecto.

Tabla. 3.2 DISTANCIA DE VISIBILIDAD PARA LA VELOCIDAD DE DISEÑO.

Vd	norcención – de fricción		΄ Π Ι Ι Ι Ι Ι Ι Ι		Distancia de visibilidad, (m)		
(Km/hr)	percepción – reacción (m)		durante el frenado (m)	Calculada	Recomendada		
30	16.68	0.40	8.05	24.73	25		

Cuando se tengan carreteras con pendientes de rasante con valores absolutos superiores al 3%, tanto en ascenso (+p) como en descenso (-p), se deberán realizar las correcciones necesarias a las distancias de visibilidad de parada dadas en la tabla anterior para tramos a nivel.

3.2.3.2 DISTANCIA DE VISIBILIDAD DE ADELANTAMIENTO

Se dice que un tramo de carretera tiene distancia de visibilidad de adelantamiento, cuando la distancia de visibilidad en ese tramo es suficiente para que, en condiciones de seguridad, el conductor de un vehículo pueda adelantar a otro, que circula por el mismo carril a una velocidad menor, sin peligro de interferir con un tercer vehículo que venga en sentido contrario y se haga visible al iniciarse la maniobra de adelantamiento.

La distancia de visibilidad de adelantamiento deberá considerarse únicamente para carreteras de dos carriles con tránsito en las dos direcciones, donde el adelantamiento se realiza en el carril del sentido opuesto.

De la tabla 3.2.3 del manual de diseño del INVIAS extrajimos la mínima distancia de visibilidad de adelantamiento para la velocidad de diseño.

Tabla 3.3 DISTANCIA DE ADELANTAMIENTO PARA LA VELOCIDAD DE DISEÑO.

Velocidad de diseño Km./Hr)	Mínima distancia de adelantamiento (m)
30	150

Como una guía de la Tabla 3.2.4 del manual del INVIAS, se recomienda la frecuencia con la que se deben presentar las oportunidades de adelantar o el porcentaje mínimo habilitado para adelantamiento en el tramo, de acuerdo a la velocidad de diseño.

Tabla 3.4 OPORTUNIDADES DE ADELANTAR POR TRAMOS DE CINCO KILOMETROS.

Velocidad de diseño Vd. (Km/Hr)	30-50	60-80	90-100
Longitud mínima con distancia de visibilidad de adelantamiento en %	20%	30%	40%

3.2.3.3 DISTANCIA DE VISIBILIDAD EN INTERSECCIONES

La presencia de intersecciones rurales a nivel, hace que potencialmente se puedan presentar una diversidad de conflictos entre los vehículos que circulan por una y otra vía. La posibilidad de que estos conflictos ocurran, puede ser ampliamente reducida mediante la provisión apropiada de distancias de visibilidad de cruce y de dispositivos de control acordes.

En el manual del INVIAS se analizan diferentes condiciones de los eventos que se peden presentar en una intersección y las recomendaciones para atenderlos. Estos eventos no serán analizados puesto que en este proyecto no encontramos ninguna intersección.

3.2.3.4 DISTANCIA DE VISIBILIDAD DE ENCUENTRO

En las carreteras terciarias de una calzada y sin diferenciación de carriles, la distancia de visibilidad de encuentro es la longitud mínima disponible de carretera, visible para los conductores que circulan en sentidos opuestos, obligados a llevar a cabo la maniobra para esquivarse.

Esta longitud debe ser lo suficientemente larga, para permitirle a los vehículos que viajan a la velocidad de diseño en sentidos contrarios, esquivarse y cruzarse con seguridad a una velocidad de 10 Km./h.

Esta distancia se debe determinar con base a un tiempo de percepción-reacción de un segundo y una deceleración similar a la de frenado hasta esquivarse y cruzarse a una velocidad de 10 Km./h, mediante la siguiente relación:

$$D_e = 2(0.278V_d) + (V_d^2 - 100 / 254 (f_1 + p) + (V_d^2 - 100 / 254 (f_1 - p))$$

Donde:

D_e = distancia de visibilidad de encuentro, (m)

V_d = velocidad de diseño, (Km./h)

 f_{i} = coeficiente de fricción longitudinal llanta-pavimento

p = pendiente de la rasante (tanto por uno), + ascenso, - descenso

3.3 ALINEAMIENTO HORIZONTAL

El alineamiento horizontal está constituido por alineamientos rectos, curvas circulares, y curvas de grado de curvatura variable que permiten una transición suave al pasar de alineamientos rectos a curvas circulares o viceversa o también entre dos curvas circulares de curvatura diferente. El alineamiento horizontal debe permitir una operación suave y segura a la velocidad de diseño.

3.3.1 ALINEAMIENTOS CURVOS Y RECTOS

Durante el diseño de una carretera nueva se deben evitar tramos en planta con alineamientos rectos demasiado largos. Tales tramos son monótonos durante el día, especialmente en zonas donde la temperatura es relativamente alta, y en la noche aumentan el peligro de deslumbramiento, por las luces del vehículo que avanza en sentido opuesto.

En el caso de este proyecto no se presentaran estos casos debido a las condiciones tipográficas del sitio.

Como elemento de curvatura variable en el desarrollo se utilizará la espiral clotoide, por razones de seguridad, comodidad y estética.

3.3.2 SECCION TRANSVERSAL EN RECTA.

El manual del INVIAS en la Figura 3.3.1. muestra las formas de inclinación de la sección transversal de acuerdo con el número de carriles, calzadas y la dirección del tránsito, empleadas en un sector recto de carretera. Con el fin de facilitar el drenaje, la inclinación transversal mínima para capa de rodadura pavimentada es del 2%, la cual va ha se utilizada en este proyecto.

3.4 CURVAS CIRCULARES

Las curvas circulares se corresponden con una curvatura constante, la cual es inversamente proporcional al valor del radio.

En el diseño de carreteras corresponde a un elemento geométrico de curvatura rígida. La longitud del arco circular se determina multiplicando el valor del radio y el ángulo de deflexión o de giro del arco circular en radianes.

3.4.1 DEFLEXIONES MENORES ENTRE TANGENTES

Para ángulos de deflexión entre dos tangentes menores o iguales a 6°, en el caso de que no puedan evitarse, se realizará la unión de las mismas mediante una curva circular, sin clotoides, de radio tal que cumpla con los criterios de la Tabla 3.3.1 del manual del INVIAS, la cual presentamos a continuación:

Tabla 3.5 DEFLEXIONES MENORES ENTRE TANGENTES

Angulo entre alineamientos	6°	5°	4 °	3°	2°
Radio mínimo (m)	2000	2500	3500	5500	9000

3.4.2 ENTRETANGENCIA

El INVIAS presenta el análisis de la entretangencia teniendo en cuenta dos situaciones:

Curvas de distinto Sentido. Considerando el empleo de curvas de transición, puede prescindirse de tramos de entretangencia rectos. Si el alineamiento se hace con curvas circulares únicamente, la longitud de entretangencia debe satisfacer la mayor de las condiciones dadas por la longitud de transición, de acuerdo con los valores de pendiente mínima para rampa de peraltes y por espacio recorrido a la velocidad de diseño en un tiempo no menor de 5 segundos.

Curvas del mismo sentido. Por su misma naturaleza, deben considerarse indeseables en cualquier proyecto de carreteras, por la inseguridad y disminución de la estética que representan. Para garantizar la comodidad y seguridad del usuario, la entretangencia para el diseño en terreno ondulado, montañoso y escarpado con espirales, no puede ser menor a 5 segundos y para diseños en terreno plano con arcos circulares, no menor a 15 segundos de la velocidad de diseño. Como por dificultades del terreno, son a veces imposibles de evitar, se debe intentar siempre el reemplazo por una sola.

3.4.3 CARTERAS TOPOGRAFICA DEL ALINEAMIENTO HORIZONTAL

3.4.3.1 CURVAS CIRCULARES SIMPLES

PI	PC	PT	Δ	TIPO	RADIO	LONG.
17+970						
17+993.558	17+984.203	18+002.341	34-38-27	IZQ.	30.0000	18.1380
18+145.797	18+127.774	18+161.061	54-29-31	DER.	35.0000	33.2870
18+285.134	18+208.345	18+258.818	152-12-17	IZQ.	19.0000	50.4730
18+311.562	18+293.294	18+325.149	66-14-35	IZQ.	28.0000	31.8550
18+343.149	18+338.492	18+347.606	29-00-40	DER.	18.0000	9.1140
18+374.747	18+368.868	18+380.479	22-10-28	IZQ.	30.0000	11.6110
18+456.486	18+443.642	18+468.878	26-17-20	DER.	55.0000	25.2360
18+605.366	18+596.298	18+614.239	20-33-29	IZQ.	50.0000	17.9410
18+686.849	18+679.917	18+693.508	27-28-43	IZQ.	28.0000	13.5910

PI	PC	PT	Δ	TIPO	RADIO	LONG.
18+727.828	18+711.906	18+741.182	55-54-47	DER.	30.0000	29.2760
18+793.864	18+773.462	18+811.195	54-02-56	IZQ.	40.0000	37.7330
18+837.576	18+822.375	18+852.547	17-17-15	DER.	100.0000	30.1720
18+924.405	18+906.669	18+940.756	39-03-40	DER.	50.0000	34.0870
18975+236.	18+956.304	18+993.726	21-26-28	DER.	100.0000	37.4220
19030+276.	19+003.785	19+039.832	108-42-11	IZQ.	19.0000	36.0470
19+069.15	19+039.832	19+081.494	103-45-11	IZQ.	23.0073	41.6620
19+128.006	19+110.827	19+144.519	27-34-39	DER.	70.0000	33.6920
19+173.752	19+158.875	19+186.497	52-45-14	IZQ.	30.0000	27.6220
19+305.955	19+293.61	19+317.033	44-44-08	DER.	30.0000	23.4230
19+346.406	19+335.646	19+356.309	39-27-45	IZQ.	30.0000	20.6630
19+381.059	19+372.929	19+388.808	30-19-35	DER.	30.0000	15.8790
19+476.866	19+459.1	19+492.538	47-53-47	DER.	40.0000	33.4380
19+521.059	19+500.237	19+531.124	98-18-59	IZQ.	18.0000	30.8870
19+568.873	19+555.16	19+580.884	49-07-49	DER.	30.0000	25.7240
19+692.259	19+684.968	19+699.525	08-20-27	IZQ.	100.0000	14.5570
19+787.718	19+759.917	19+814.97	19-42-52	DER.	160.0000	55.0530
19+967.884	19+951.865	19+982.338	43-48-56	DER.	40.0000	30.4730

3.4.4 PERALTE

El peralte es la inclinación transversal, en relación con la horizontal, que se da a la calzada hacia el interior de la curva, para contrarrestar el efecto de la fuerza centrífuga de un vehículo que transita por un alineamiento en curva. Dicha acción está contrarrestada también por el rozamiento entre ruedas y pavimento.

El análisis de las fuerzas que actúan sobre el vehículo cuando este se mueve alrededor de una curva de radio constante, indica que el peralte máximo está dado por la ecuación:

$$E+ft = V^2 / 127R$$

donde:

e : Peralte en metros por metroft : Coeficiente de fricción lateralV : Velocidad del vehículo, (Km./h)

R: Radio de la curva, (m)

3.4.4.1 COEFICIENTE DE FRICCION LATERAL

Está determinado por numerosos factores, como estado de las superficies en contacto, velocidad del vehículo, presión de inflado entre otros. Sobre la determinación de valores prácticos para diseño se han realizado innumerables pruebas por parte de diferentes organizaciones, las cuales han llegado a algunas conclusiones:

- El coeficiente de fricción es bajo para velocidades altas.
- Se adoptan los coeficientes de fricción lateral, dados en la tabla 3.3.2. del manual del INVIAS. De la cual tomamos los valores para la velocidad de diseño del proyecto.

Tabla 3.6 COEFICIENTES DE FRICCION LATERAL

Velocidad especifica Km./Hr	Coeficiente de fricción lateral
30	0.180

3.4.4.2 VALORES MAXIMOS DEL PERALTE

Para carreteras de tipo rural el INVIAS fija un peralte máximo del 8%, el cual permite mantener aceptables velocidades específicas y no incomodar a vehículos que viajan a velocidades menores.

3.4.4.3 RADIOS MINIMOS ABOLUTOS

En la tabla 3.3.3 del manual del INVIAS se encuentran los radios mínimos absolutos para las velocidades específicas indicadas, de la cual tomamos el radio mínimo absoluto para la velocidad de diseño del proyecto.

Tabla 3.7 RADIOS MINIMOS ABSOLUTOS

Velocidad especifica	Peralte máximo	Fricción lateral	Radio mínimo (m)	
Km./Hr	recomendado (%)	máxima	Calculado	Recomendado
30	8.0	0.180	27.60	30.00
40	8.0	0.172	49.95	50.00
50	8.0	0.164	80.68	80.00
60	8.0	0.157	119.61	120.00

Es de anotar que debido a la topografía del sitio del proyecto este radio mínimo no se podrá cumplir en todas la curvas.

3.4.4.4 TRANSICION DEL PERALTE

Las longitudes de transición, se consideran a partir del punto donde el borde exterior del pavimento comienza a levantarse, partiendo de un bombeo normal, hasta el punto donde se conforma el peralte total para cada curva, la longitud de transición para terrenos ondulado, montañoso y escarpado corresponde a la longitud de la espiral más la distancia requerida, de acuerdo con la pendiente de la rampa de peraltes, para levantar el borde externo del bombeo normal a la nivelación con el eje.

Para el cálculo de la longitud de transición se utilizará la siguiente expresión:

Lt = Le + X (m)

Donde:

Lt : Longitud de transición, (m) Le : Longitud de espiral, (m)

X : Longitud de desarrollo del bombeo normal, (m).

3.4.4.5 CARTERA DE TRANSICION DE PERALTES

Curva Número 1 Información Detallada					
Abs. PC	17984.203	Abs. PT	18002.341		
Radio	30	Longitud	18.138		
Entrada Espiral	0	Abs. TE	17984.203		
Salida Espiral	0	Abs. ET	18002.341		
Metodología	А	Dirección	Left arc		
Inicio	17984.203	Final	18002.341		
Peralte	0.07	Rollover:	OFF		
Transición de Entrada					
Runout:	5	Abscisa	17961.703		
Runoff:	17.5	Inicio Abscisa	17966.703		
% Runoff:	100	Final Abscisa	17984.203		
Transición de Salida					
Runout:	5	Abscisa	18023.966		
Runoff:	17.5	Inicio Abscisa	18001.466		
% Runoff:	95	Final Abscisa	18018.966		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

Curva Número 2 Información Detallada					
Abs. PC	18048.956	Abs. PT	18048.956		
Radio	15	Longitud	0		
Entrada Espiral	36.767	Abs. TE	18012.19		
Salida Espiral	42.051	Abs. ET	18091.007		
Metodología	А	Dirección	Right arc		
Inicio	18048.956	Final	18048.956		
Peralte	0.08	Rollover:	OFF		
Transición de Entrada					
Runout:	4.234	Abscisa	18027.956		
Runoff:	16.766	Inicio Abscisa	18032.19		
% Runoff:	100	Final Abscisa	18048.956		
Transición de Salida					
Runout:	4.234	Abscisa	18069.956		
Runoff:	16.766	Inicio Abscisa	18048.956		
% Runoff:	100	Final Abscisa	18065.722		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

	Curva Nú	imero 3			
Información Detallada					
Abs. PC	18127.774	Abs. PT	18161.061		
Radio	35	Longitud	33.287		
Entrada Espiral	0	Abs. TE	18127.774		
Salida Espiral	0	Abs. ET	18161.061		
Metodología	А	Dirección	Right arc		
Inicio	18127.774	Final	18161.061		
Peralte	0.06	Rollover:	OFF		
Transición de Entrada					
Runout:	5	Abscisa	18123.774		
Runoff:	20	Inicio Abscisa	18128.774		
% Runoff:	-5	Final Abscisa	18148.774		
Transición de Salida					
Runout:	5	Abscisa	18165.061		
Runoff:	20	Inicio Abscisa	18140.061		
% Runoff:	-5	Final Abscisa	18160.061		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

	Curva Nú	mero 4			
Información Detallada					
Abs. PC	18208.345		18258.818		
Radio	19	Longitud	50.473		
Entrada Espiral	0	Abs. TE	18208.345		
Salida Espiral	0	Abs. ET	18258.818		
Metodología	A	Dirección	Left arc		
Inicio	18208.345	Final	18258.818		
Peralte	0.08	Rollover:	OFF		
Transición de Entrada					
Runout:	5	Abscisa	18204.345		
Runoff:	20	Inicio Abscisa	18209.345		
% Runoff:	-5	Final Abscisa	18229.345		
Transición de Salida					
Runout:	5	Abscisa	18262.818		
Runoff:	20	Inicio Abscisa	18237.818		
% Runoff:	-5	Final Abscisa	18257.818		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

Curva Número 5 Información Detallada				
Abs. PC	18293.294	Abs. PT	18325.667	
Radio	28	Longitud	32.373	
Entrada Espiral	0	Abs. TE	18293.294	
Salida Espiral	0	Abs. ET	18325.667	
Metodología	А	Dirección	Left arc	
Inicio	18293.294	Final	18325.667	
Peralte	0.08	Rollover:	OFF	
Transición de Entrada				
Runout:	5	Abscisa	18268.294	
Runoff:	20	Inicio Abscisa	18273.294	
% Runoff:	100	Final Abscisa	18293.294	
Transición de Salida				
Runout:	0	Abscisa	18325.667	
Runoff:	0	Inicio Abscisa	18325.667	
% Runoff:	0	Final Abscisa	18325.667	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 6 Información Detallada					
			<u> </u>		
Abs. PC	18338.492	Abs. PT	18347.606		
Radio	18	Longitud	9.114		
Entrada Espiral	0	Abs. TE	18338.492		
Salida Espiral	0	Abs. ET	18347.606		
Metodología	А	Dirección	Right arc		
Inicio	18338.492	Final	18347.606		
Peralte	0.08	Rollover:	OFF		
Transición de Entrada					
Runout:	0	Abscisa	18338.492		
Runoff:	0	Inicio Abscisa	18338.492		
% Runoff:	0	Final Abscisa	18338.492		
Transición de Salida					
Runout:	5	Abscisa	18352.406		
Runoff:	20	Inicio Abscisa	18327.406		
% Runoff:	-1	Final Abscisa	18347.406		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

Curva Número 7 Información Detallada				
Abs. PC	18368.868	Abs. PT	18380.479	
Radio	30	Longitud	11.611	
Entrada Espiral	0	Abs. TE	18368.868	
Salida Espiral	0	Abs. ET	18380.479	
Metodología	А	Dirección	Left arc	
Inicio	18368.868	Final	18380.479	
Peralte	0.07	Rollover:	OFF	
Transición de Entrada				
Runout:	3.514	Abscisa	18353.257	
Runoff:	12.097	Inicio Abscisa	18356.771	
% Runoff:	100	Final Abscisa	18368.868	
Transición de Salida				
Runout:	3.514	Abscisa	18396.09	
Runoff:	12.097	Inicio Abscisa	18380.479	
% Runoff:	100	Final Abscisa	18392.576	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 8 Información Detallada					
Abs. PC	18443.642	I	18468.878		
Radio	55	Longitud	25.235		
Entrada Espiral	0	Abs. TE	18443.642		
Salida Espiral	0	Abs. ET	18468.878		
Metodología	А	Dirección	Right arc		
Inicio	18443.642	Final	18468.878		
Peralte	0.07	Rollover:	OFF		
Transición de Entrada					
Runout:	5	Abscisa	18428.642		
Runoff:	10	Inicio Abscisa	18433.642		
% Runoff:	100	Final Abscisa	18443.642		
Transición de Salida					
Runout:	5	Abscisa	18483.878		
Runoff:	10	Inicio Abscisa	18468.878		
% Runoff:	100	Final Abscisa	18478.878		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

Curva Número 9				
Información Detallada				
Abs. PC	18550.455	Abs. PT	18550.455	
Radio	7.65	Longitud	0	
Entrada Espiral	22.664	Abs. TE	18527.791	
Salida Espiral	23.18	Abs. ET	18573.635	
Metodología	А	Dirección	Right arc	
Inicio	18550.455	Final	18550.455	
Peralte	0.08	Rollover:	OFF	
Transición de Entrada				
Runout:	5	Abscisa	18525.455	
Runoff:	20	Inicio Abscisa	18530.455	
% Runoff:	100	Final Abscisa	18550.455	
Transición de Salida				
Runout:	5	Abscisa	18575.455	
Runoff:	20	Inicio Abscisa	18550.455	
% Runoff:	100	Final Abscisa	18570.455	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 10				
Información Detallada				
Abs. PC	18596.298	Abs. PT	18614.239	
Radio	50	Longitud	17.94	
Entrada Espiral	0	Abs. TE	18596.298	
Salida Espiral	0	Abs. ET	18614.239	
Metodología	А	Dirección	Left arc	
Inicio	18596.298	Final	18614.239	
Peralte	0.04	Rollover:	OFF	
Transición de Entrada				
Runout:	5	Abscisa	18581.298	
Runoff:	10	Inicio Abscisa	18586.298	
% Runoff:	100	Final Abscisa	18596.298	
Transición de Salida				
Runout:	5	Abscisa	18629.239	
Runoff:	10	Inicio Abscisa	18614.239	
% Runoff:	100	Final Abscisa	18624.239	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 11 Información Detallada				
Abs. PC	18679.917	Abs. PT	18693.508	
Radio	28	Longitud	13.591	
Entrada Espiral	0	Abs. TE	18679.917	
Salida Espiral	0	Abs. ET	18693.508	
Metodología	А	Dirección	Left arc	
Inicio	18679.917	Final	18693.508	
Peralte	0.08	Rollover:	OFF	
Transición de Entrada				
Runout:	3.563	Abscisa	18662.326	
Runoff:	14.028	Inicio Abscisa	18665.889	
% Runoff:	100	Final Abscisa	18679.917	
Transición de Salida				
Runout:	3.563	Abscisa	18696.37	
Runoff:	14.028	Inicio Abscisa	18678.779	
% Runoff:	-5	Final Abscisa	18692.807	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 12 Información Detallada				
Abs. PC	18711.906		18741.182	
Radio	30	Longitud	29.276	
Entrada Espiral	0	Abs. TE	18711.906	
Salida Espiral	0	Abs. ET	18741.182	
Metodología	А	Dirección	Right arc	
Inicio	18711.906	Final	18741.182	
Peralte	0.07	Rollover:	OFF	
Transición de Entrada				
Runout:	3.384	Abscisa	18696.88	
Runoff:	11.642	Inicio Abscisa	18700.264	
% Runoff:	100	Final Abscisa	18711.906	
Transición de Salida				
Runout:	3.384	Abscisa	18743.984	
Runoff:	11.642	Inicio Abscisa	18728.958	
% Runoff:	-5	Final Abscisa	18740.6	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 13 Información Detallada				
Abs. PC	18773.462	Abs. PT	18811.195	
Radio	40	Longitud	37.733	
Entrada Espiral	0	Abs. TE	18773.462	
Salida Espiral	0	Abs. ET	18811.195	
Metodología	А	Dirección	Left arc	
Inicio	18773.462	Final	18811.195	
Peralte	0.06	Rollover:	OFF	
Transición de Entrada				
Runout:	5	Abscisa	18769.212	
Runoff:	15	Inicio Abscisa	18774.212	
% Runoff:	-5	Final Abscisa	18789.212	
Transición de Salida				
Runout:	5	Abscisa	18814.695	
Runoff:	15	Inicio Abscisa	18794.695	
% Runoff:	-10	Final Abscisa	18809.695	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 14				
Información Detallada				
Abs. PC	18822.375	Abs. PT	18852.547	
Radio	100	Longitud	30.172	
Entrada Espiral	0	Abs. TE	18822.375	
Salida Espiral	0	Abs. ET	18852.547	
Metodología	А	Dirección	Right arc	
Inicio	18822.375	Final	18852.547	
Peralte	0.02	Rollover:	OFF	
Transición de Entrada				
Runout:	5	Abscisa	18817.425	
Runoff:	5	Inicio Abscisa	18822.425	
% Runoff:	-1	Final Abscisa	18827.425	
Transición de Salida				
Runout:	5	Abscisa	18862.547	
Runoff:	5	Inicio Abscisa	18852.547	
% Runoff:	100	Final Abscisa	18857.547	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 15				
Información Detallada				
Abs. PC	18906.669	Abs. PT	18940.756	
Radio	50	Longitud	34.087	
Entrada Espiral	0	Abs. TE	18906.669	
Salida Espiral	0	Abs. ET	18940.756	
Metodología	А	Dirección	Right arc	
Inicio	18906.669	Final	18940.756	
Peralte	0.04	Rollover:	OFF	
Transición de Entrada				
Runout:	5	Abscisa	18891.669	
Runoff:	10	Inicio Abscisa	18896.669	
% Runoff:	100	Final Abscisa	18906.669	
Transición de Salida				
Runout:	5	Abscisa	18944.756	
Runoff:	10	Inicio Abscisa	18929.756	
% Runoff:	-10	Final Abscisa	18939.756	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 16				
Información Detallada				
Abs. PC	18956.304	Abs. PT	18993.726	
Radio	100	Longitud	37.422	
Entrada Espiral	0	Abs. TE	18956.304	
Salida Espiral	0	Abs. ET	18993.726	
Metodología	А	Dirección	Right arc	
Inicio	18956.304	Final	18993.726	
Peralte	0.02	Rollover:	OFF	
Transición de Entrada				
Runout:	5	Abscisa	18946.304	
Runoff:	5	Inicio Abscisa	18951.304	
% Runoff:	100	Final Abscisa	18956.304	
Transición de Salida				
Runout:	5	Abscisa	18998.676	
Runoff:	5	Inicio Abscisa	18988.676	
% Runoff:	-1	Final Abscisa	18993.676	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 17 Información Detallada				
Abs. PC	19003.785	Abs. PT	19039.832	
Radio	19	Longitud	36.047	
Entrada Espiral	0	Abs. TE	19003.785	
Salida Espiral	0	Abs. ET	19039.832	
Metodología	А	Dirección	Left arc	
Inicio	19003.785	Final	19039.832	
Peralte	0.08	Rollover:	OFF	
Transición de Entrada				
Runout:	5	Abscisa	18998.985	
Runoff:	20	Inicio Abscisa	19003.985	
% Runoff:	-1	Final Abscisa	19023.985	
Transición de Salida				
Runout:	5	Abscisa	19064.832	
Runoff:	20	Inicio Abscisa	19039.832	
% Runoff:	100	Final Abscisa	19059.832	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 18				
Información Detallada				
Abs. PC	19039.832	Abs. PT	19081.494	
Radio	23.007	Longitud	41.662	
Entrada Espiral	0	Abs. TE	19039.832	
Salida Espiral	0	Abs. ET	19081.494	
Metodología	А	Dirección	Left arc	
Inicio	19039.832	Final	19081.494	
Peralte	0.08	Rollover:	OFF	
Transición de Entrada				
Runout:	5	Abscisa	19014.832	
Runoff:	20	Inicio Abscisa	19019.832	
% Runoff:	100	Final Abscisa	19039.832	
Transición de Salida				
Runout:	5	Abscisa	19086.294	
Runoff:	20	Inicio Abscisa	19061.294	
% Runoff:	-1	Final Abscisa	19081.294	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 19 Información Detallada				
Abs. PC	19110.827	Abs. PT	19144.519	
Radio	70	Longitud	33.692	
Entrada Espiral	0	Abs. TE	19110.827	
Salida Espiral	0	Abs. ET	19144.519	
Metodología	А	Dirección	Right arc	
Inicio	19110.827	Final	19144.519	
Peralte	0.03	Rollover:	OFF	
Transición de Entrada				
Runout:	5	Abscisa	19098.327	
Runoff:	7.5	Inicio Abscisa	19103.327	
% Runoff:	100	Final Abscisa	19110.827	
Transición de Salida				
Runout:	5	Abscisa	19149.444	
Runoff:	7.5	Inicio Abscisa	19136.944	
% Runoff:	-1	Final Abscisa	19144.444	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 20				
Información Detallada				
Abs. PC	19158.875	Abs. PT	19186.497	
Radio	30	Longitud	27.622	
Entrada Espiral	0	Abs. TE	19158.875	
Salida Espiral	0	Abs. ET	19186.497	
Metodología	А	Dirección	Left arc	
Inicio	19158.875	Final	19186.497	
Peralte	0.07	Rollover:	OFF	
Transición de Entrada				
Runout:	5	Abscisa	19154.05	
Runoff:	17.5	Inicio Abscisa	19159.05	
% Runoff:	-1	Final Abscisa	19176.55	
Transición de Salida				
Runout:	5	Abscisa	19208.997	
Runoff:	17.5	Inicio Abscisa	19186.497	
% Runoff:	100	Final Abscisa	19203.997	
Sub base	None			
Transición de Entrada	0	Transición de salida	0	

Curva Número 21 Información Detallada					
	intormacion	Detallada			
Abs. PC	19293.61	19317.033			
Radio	30	Longitud	23.424		
Entrada Espiral	0	Abs. TE	19293.61		
Salida Espiral	0	Abs. ET	19317.033		
Metodología	А	Dirección	Right arc		
Inicio	19293.61	Final	19317.033		
Peralte	0.07	Rollover:	OFF		
Transición de Entrada					
Runout:	5	Abscisa	19271.11		
Runoff:	17.5	Inicio Abscisa	19276.11		
% Runoff:	100	Final Abscisa	19293.61		
Transición de Salida					
Runout:	5	Abscisa	19321.858		
Runoff:	17.5	Inicio Abscisa	19299.358		
% Runoff:	-1	Final Abscisa	19316.858		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

Curva Número 22					
	Información				
Abs. PC	19335.646	Abs. PT	19356.309		
Radio	30	Longitud	20.663		
Entrada Espiral	0	Abs. TE	19335.646		
Salida Espiral	0	Abs. ET	19356.309		
Metodología	А	Dirección	Left arc		
Inicio	19335.646	Final	19356.309		
Peralte	0.07	Rollover:	OFF		
Transición de Entrada					
Runout:	1.681	Abscisa	19328.32		
Runoff:	5.645	Inicio Abscisa	19330.001		
% Runoff:	100	Final Abscisa	19335.646		
Transición de Salida					
Runout:	1.681	Abscisa	19363.635		
Runoff:	5.645	Inicio Abscisa	19356.309		
% Runoff:	100	Final Abscisa	19361.954		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

Curva Número 23 Información Detallada					
Abs. PC	19372.929		19388.808		
Radio	30	Longitud	15.879		
Entrada Espiral	0	Abs. TE	19372.929		
Salida Espiral	0	Abs. ET	19388.808		
Metodología	А	Dirección	Right arc		
Inicio	19372.929	Final	19388.808		
Peralte	0.07	Rollover:	OFF		
Transición de Entrada					
Runout:	4.584	Abscisa	19368.505		
Runoff:	15.945	Inicio Abscisa	19373.089		
% Runoff:	-1	Final Abscisa	19389.034		
Transición de Salida					
Runout:	4.584	Abscisa	19409.337		
Runoff:	15.945	Inicio Abscisa	19388.808		
% Runoff:	100	Final Abscisa	19404.753		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

0 W 0					
	Curva Núr Información				
	IIIIOIIIIacioii	Detallaua I			
Abs. PC	19459.1	19492.538			
Radio	40	Longitud	33.438		
Entrada Espiral	0	Abs. TE	19459.1		
Salida Espiral	0	Abs. ET	19492.538		
Metodología	А	Dirección	Right arc		
Inicio	19459.1	Final	19492.538		
Peralte	0.06	Rollover:	OFF		
Transición de Entrada					
Runout:	5	Abscisa	19439.1		
Runoff:	15	Inicio Abscisa	19444.1		
% Runoff:	100	Final Abscisa	19459.1		
Transición de Salida					
Runout:	5	Abscisa	19497.388		
Runoff:	15	Inicio Abscisa	19477.388		
% Runoff:	-1	Final Abscisa	19492.388		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

Curva Número 25 Información Detallada					
Abs. PC	19500.237	I	19531.124		
Radio	18	Longitud	30.887		
Entrada Espiral	0	Abs. TE	19500.237		
Salida Espiral	0	Abs. ET	19531.124		
Metodología	А	Dirección	Left arc		
Inicio	19500.237	Final	19531.124		
Peralte	0.08	Rollover:	OFF		
Transición de Entrada					
Runout:	2.739	Abscisa	19497.607		
Runoff:	10.954	Inicio Abscisa	19500.346		
% Runoff:	-1	Final Abscisa	19511.3		
Transición de Salida					
Runout:	2.739	Abscisa	19544.817		
Runoff:	10.954	Inicio Abscisa	19531.124		
% Runoff:	100	Final Abscisa	19542.078		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

Curva Número 26					
	Información	Detallada			
Abs. PC	19555.16	Abs. PT	19580.884		
Radio	30	Longitud	25.724		
Entrada Espiral	0	Abs. TE	19555.16		
Salida Espiral	0	Abs. ET	19580.884		
Metodología	А	Dirección	Right arc		
Inicio	19555.16	Final	19580.884		
Peralte	0.07	Rollover:	OFF		
Transición de Entrada					
Runout:	5	Abscisa	19550.335		
Runoff:	17.5	Inicio Abscisa	19555.335		
% Runoff:	-1	Final Abscisa	19572.835		
Transición de Salida					
Runout:	5	Abscisa	19603.384		
Runoff:	17.5	Inicio Abscisa	19580.884		
% Runoff:	100	Final Abscisa	19598.384		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

Curva Número 27					
Información Detallada					
Abs. PC	19684.968	19699.525			
Radio	100	Longitud	14.558		
Entrada Espiral	0	Abs. TE	19684.968		
Salida Espiral	0	Abs. ET	19699.525		
Metodología	А	Dirección	Left arc		
Inicio	19684.968	Final	19699.525		
Peralte	0.02	Rollover:	OFF		
Transición de Entrada					
Runout:	5	Abscisa	19674.968		
Runoff:	5	Inicio Abscisa	19679.968		
% Runoff:	100	Final Abscisa	19684.968		
Transición de Salida					
Runout:	5	Abscisa	19709.525		
Runoff:	5	Inicio Abscisa	19699.525		
% Runoff:	100	Final Abscisa	19704.525		
Sub base	None				
Transición de Entrada	0	Transición de salida	0		

Curva Número 28								
Información Detallada								
Abs. PC 19759.917 Abs. PT 19814.								
Radio	160	Longitud	55.053					
Entrada Espiral	0	Abs. TE	19759.917					
Salida Espiral	0	Abs. ET	19814.97					
Metodología	А	Dirección	Right arc					
Inicio	19759.917	Final	19814.97					
Peralte	0.02	Rollover:	OFF					
Transición de Entrada								
Runout:	5	Abscisa	19749.917					
Runoff:	5	Inicio Abscisa	19754.917					
% Runoff:	100	Final Abscisa	19759.917					
Transición de Salida								
Runout:	5	Abscisa	19824.97					
Runoff:	5	Inicio Abscisa	19814.97					
% Runoff:	100	Final Abscisa	19819.97					
Sub base	None							
Transición de Entrada	0	Transición de salida	0					

Curva Número 29 Información Detallada								
Abs. PC	Abs. PC 19951.865 Abs. PT 19982.33							
Radio	40	Longitud	30.473					
Entrada Espiral	0	Abs. TE	19951.865					
Salida Espiral	0	Abs. ET	19982.338					
Metodología	А	Dirección	Right arc					
Inicio	19951.865	Final	19982.338					
Peralte	0.06	Rollover:	OFF					
Transición de Entrada								
Runout:	5	Abscisa	19931.865					
Runoff:	15	Inicio Abscisa	19936.865					
% Runoff:	100	Final Abscisa	19951.865					
Transición de Salida								
Runout:	5	Abscisa	20002.338					
Runoff:	15	Inicio Abscisa	19982.338					
% Runoff:	100	Final Abscisa	19997.338					
Sub base	None		_					
Transición de Entrada	0	Transición de salida	0					

3.4.4.6 DESARROLLO DEL PERALTE

Para este proyecto el desarrollo del peralte se hará girando el pavimento de la calzada alrededor del eje. Lo cual permite un desarrollo más armónico y provoca menor distorsión de los bordes de la corona.

3.4.4.7 CURVAS DE TRANSICION

En caso de requerirse este tipo de curvas se utilizara la espiral clotoide debido a las siguientes ventajas:

Una curva espiral diseñada apropiadamente proporciona una trayectoria natural y fácil de seguir por los conductores, de tal manera que la fuerza centrífuga crece o

decrece gradualmente, a medida que el vehículo entra o sale de una curva horizontal.

La longitud de la espiral se emplea para realizar la transición del peralte y la del sobreancho entre la sección transversal en línea recta y la sección transversal completamente peraltada y con sobreancho de la curva.

El desarrollo del peralte se hace en forma progresiva, con lo que se consigue que la pendiente transversal de la calzada sea, en cada punto, la que corresponde al respectivo radio de curvatura.

La flexibilidad de la clotoide y las muchas combinaciones del radio con la longitud, permiten la adaptación a la topografía, y en la mayoría de los casos la disminución del movimiento de tierras, para obtener trazados más económicos.

3.4.4.8 CARTERA DE CURVAS DE TRANSICION

PARAMETROS DE LA ESPIRAL

ESPIRAL	ABS. TE	ABS. EC	LONG.	θ	Р	x	Y	К	CUERDA LARGA	CUERDA CORTA
ESP. DE ENTRADA	18+012.19	18+048.956	36.7660	70-13-10	3.5599	31.6154	13.4836	17.5005	26.7662	14.3291
ESP. DE SALIDA	18+048.956	18+085.723	36.7670	70-13-10	3.5599	31.6154	13.4836	17.5005	26.7662	14.3291
ESP. DE ENTRADA	18+527.791	18+550.455	22.6640	84-52-17	2.5883	18.1711	9.5545	10.5518	17.3136	9.5929
ESP. DE SALIDA	18+550.455	18+573.118	22.6630	84-52-17	2.5883	18.1711	9.5545	10.5518	17.3136	9.5929

3.5 ALINEAMIENTO VERTICAL

3.5.1 PENDIENTE

Los valores mínimos para pendiente longitudinal están determinados por las condiciones de drenaje. De todas maneras, la inclinación de la línea de máxima pendiente en cualquier punto de la calzada no será menor que 0.5%; salvo justificación, no se proyectarán longitudes de rampas o pendientes cuya distancia de recorrido a la velocidad de diseño sea inferior a 10 segundos, dicha longitud se medirá entre vértices contiguos.

En la tabla 3.4.1 del manual del INVIAS tomamos la relación entre pendiente máxima y la velocidad de diseño.

Tabla 3.8 RELACION ENTRE PENDIENTE MAXIMA (%) Y VELOCIDAD DE DISEÑO

TIPO DE CARRETERA	TIPO DE TERRENO	VELOCIDAD DE DISEÑO Vd (Km./Hr)			
CARRETERA	TERRENO	30	40	50	
_	Plano	-	7	7	
Carretera	Ondulado	11	11	10	
terciaria	Montañoso	14	13	13	
	Escarpado	16	15	14	

3.5.2 CURVAS VERTICALES

Las curvas verticales son las que enlazan dos tangentes consecutivas del alineamiento vertical, para que en su longitud se efectúe el paso gradual de la pendiente de la tangente de entrada a la de la tangente de salida. Deben dar por resultado una vía de operación segura y confortable, apariencia agradable y con características de drenaje adecuadas. El punto común de una tangente y una curva vertical en el origen de ésta, se representa como PCV y como PTV el punto común de la tangente y la curva al final de ésta. Al punto de intersección de dos tangentes consecutivas se le denomina PIV, y a la diferencia algebraica de pendientes en ese punto se le representa por la letra A. Las curvas verticales pueden ser cóncavas o convexas.

Para una operación segura de los vehículos al circular sobre curvas verticales, especialmente si son convexas, deben obtenerse distancias de visibilidad adecuadas, como mínimo iguales a la de parada.

Debido a los efectos dinámicos, para que exista comodidad es necesario que la variación de pendiente sea gradual, situación que resulta más crítica en las curvas cóncavas, por actuar las fuerzas de gravedad y centrífuga en la misma dirección.

Debe también tenerse en cuenta el aspecto estético, puesto que las curvas demasiado cortas pueden llegar a dar la sensación de quiebre repentino, hecho que produce cierta incomodidad.

La curva vertical recomendada es la parábola cuadrática, cuyos elementos principales y expresiones matemáticas se explican claramente en el titulo 3.4.4.1 del manual del INVIAS.

Para el presente diseño tomamos como mínima longitud de curvas verticales 30m y procurando que si llegan a coincidir las abscisas de las curvas verticales y horizontales las primeras deberán desarrollarse en su totalidad dentro de las segundas.

NOTA: El diseño horizontal y vertical se encuentran en el plano DIPLA-DISGEM 8.

3.5.2.1 CARTERA DE CURVAS VERTICLES

ABSCISA	PUNTO	СОТА	PENDIENTE DE ENTRADA (%)	PENDIENTE DE SALIDA (%)	LONGITUD
18+019.327	PCV	3446.879			
18+034.327	PIV	3447.867	6.5851	11.9652	30
18+049.327	PTV	3449.662			
18+056.908	PCV	3450.569			
18+086.908	PIV	3454.158	11.9652	7.6596	60
18+116.908	PTV	3456.456			
18+130.022	PCV	3457.461			
18+145.022	PIV	3458.61	7.6596	10.0897	30
18+160.022	PTV	3460.123			
18+517.660	PCV	3496.208			
18+547.660	PIV	3499.234	10.0897	7.1767	60
18+577.660	PTV	3501.387			
18+822.561	PCV	3518.963			
18+837.561	PIV	3520.04	7.1767	4.5679	30
18+852.561	PTV	3520.725			
18+866.523	PCV	3521.363			
18+881.523	PIV	3522.048	4.5679	8.4015	30
18+896.523	PTV	3523.308			
18+959.143	PCV	3528.569			
18+974.143	PIV	3529.829	8.4015	6.0709	30
18+989.143	PTV	3530.74			
19+009.058	PCV	3531.949			
19+024.058	PIV	3532.86	6.0709	9.5245	30
19+039.058	PTV	3534.288			
19+080.141	PCV	3538.201			
19+095.141	PIV	3539.63	9.5245	5.8829	30
19+110.141	PTV	3540.513			
19+311.504	PCV	3552.359			
19+326.504	PIV	3553.241	5.8829	11.267	30
19+341.504	PTV	3554.931			
19+352.211	PCV	3556.137			
19+367.211	PIV	3557.827	11.267	7.1975	30
19+382.211	PTV	3558.907			
19+703.809	PCV	3582.054			
19+728.809	PIV	3583.853	7.1975	8.0057	50
19+753.809	PTV	3585.855			

4 ESTUDIO DE ESTABILIDAD DE LADERAS.

Para el análisis de estabilidad se hicieron las siguientes consideraciones:

Por medio de observaciones de campo, datos tomados en las perforaciones y la estratificación de la roca, se puede determinar que el tipo de deslizamiento que se presenta en la zona con mayor frecuencia es el traslacional.

Para el análisis de falla traslacional se empleará el método Duncan y Buchignani, debido a que este simula apropiadamente el fenómeno de inestabilidad. La formula empleada para el cálculo del factor de seguridad es la siguiente:

 $FS = A \times (Tan (\phi)/ Tan (\beta)) + B \times (c/(PUT \times z))$

Donde:

FS = Factor de Seguridad

A = Parámetro función de las condiciones de agua

B = Parámetro función de la inclinación del talud

Φ = Angulo de Fricción

β = Angulo de inclinación de la superficie de falla

C = Cohesión de la superficie de contacto

PUT = Peso unitario del suelo

Z = Espesor del depósito con potencialidad de deslizarse.

Para este análisis se estudiaron las siguientes condiciones:

- Sin Agua y Sin Sismo.
- Sin Agua y Con Sismo.
- Con Agua y Sin Sismo.
- Con Agua y Con Sismo.

Los parámetros utilizados para el análisis de estabilidad fueron los valores sensiblemente inferiores al promedio de las propiedades de cada uno de los suelos involucrados encontradas en los ensayos, debido al tipo de ensayo de corte (No consolidado No drenado)

El parámetro de presión de poros se calculó en función de la forma como aflora el agua sobre la cara del talud mediante la siguiente expresión:

ru =
$$(PUW / PUT) \times (1/(1 + Tan (\beta) \times Tan (\theta))$$

Donde:

ru = Parámetro de presión de poros

PUW = Peso unitario del agua PUT = Peso unitario del suelo

β = Inclinación del plano correspondiente a la superficie de falla.

 θ = Angulo que tienen las líneas de flujo con respecto a la horizontal si el

flujo va hacia la cara del talud.

La aceleración sísmica utilizada para el análisis es de 250 gals. Con este valor se puede calcular el coeficiente de aceleración.

Ah = (Ac/g) Donde:

Ah = Coeficiente de Aceleración Sísmica

Ac = Aceleración del sismo promedio de la región

g = Aceleración de gravedad

4.1 RESULTADOS DEL ANÁLISIS DE ESTABILIDAD

Debido a que las características de las formaciones superficiales son homogéneas en el área de influencia del proyecto, el análisis de estabilidad tiene validez tanto para los taludes naturales como para los taludes antrópicos.

4.1.1 ESPESOR DEL DEPÓSITO POTENCIALMENTE INESTABLE 2 M:

4.1.1.1 No Agua No Sismo

Los factores de seguridad son superiores a la unidad para todas las inclinaciones analizadas. El menor valor se presenta para inclinaciones de 60 grados

4.1.1.2 No Agua y Si Sismo

Los factores de seguridad son superiores a la unidad para todas las inclinaciones analizadas. El menor valor se presenta para inclinaciones de 60 grados.

4.1.1.3 Si Agua y No Sismo

Los factores de seguridad son superiores a la unidad para todas las inclinaciones analizadas. El menor valor se presenta para inclinaciones de 60 grados.

4.1.1.4 Si Agua y Si Sismo

Los factores de seguridad son superiores a la unidad para todas las inclinaciones analizadas. El menor valor se presenta para inclinaciones de 60 grados.

4.1.2 ESPESOR DEL DEPÓSITO POTENCIALMENTE INESTABLE 3 M.

4.1.2.1 No Agua No Sismo

Los factores de seguridad son superiores a la unidad para todas las inclinaciones analizadas. El menor valor se presenta para inclinaciones de 50 grados

4.1.2.2 No Agua y Si Sismo

Los factores de seguridad son superiores a la unidad para todas las inclinaciones analizadas. El menor valor se presenta para inclinaciones de 50 grados.

4.1.2.3 Si Agua y No Sismo

Los factores de seguridad son superiores a la unidad para todas las inclinaciones analizadas. El menor valor se presenta para inclinaciones de 50 grados.

4.1.2.4 Si Agua y Si Sismo

Los factores de seguridad son inferiores a la unidad para taludes comprendidos entre 35 y 80 grados. El menor valor se presenta para inclinaciones de 50 grados.

4.2 PROCESOS EROSIVOS

Estos proceso se caracterizaran de acuerdo a la tabla 5.1 Lista de chequeo para caracterización de procesos erosivos CORPOCALDAS, (2002).

4.2.1 PROCESOS DE EROSIÓN SUPERFICIAL

Erosión remontante. Este proceso se origina por el progreso gradual hacia la cabecera de una cuenca fluvial como consecuencia del afloramiento de manantiales. Este fenómeno es observado 100 mts antes del Hotel Termales del Ruiz.

4.2.2 PROCESOS DE EROSIÓN PROFUNDA O MOVIMIENTO DE MASA

En la zona en estudio únicamente encontramos un proceso de movimiento de masa el cual se clasifica como DESLIZAMIENTO ROTACIONAL. (FIGURA 4.1).

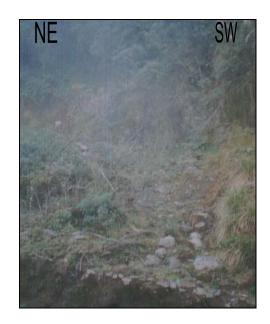


FIGURA 4.1 Deslizamiento rotacional

Tabla 4.1. Lista de chequeo para caracterización de procesos erosivos CORPOCALDAS, (2002).

Fecha	Localización	Clima: Soleado () Lluvioso ()			Fecha de ocurrencia del e	vento	
1. TIPO	4. MATERIAL	9. VARIABLE DETERMINANTE DE LA INESTABILIADAD		10. HIDROLOGIA		17. MORFOMETRIA	23. RECOMENDACIONES
0. Desconocido	Suelo orgánico	0. Desconocido	10a. Contenido de agua de los materiales	10b. Altura del niv	rel freático	1. Longitud	1. Evacuación
Deslizamiento	2. Suelo residual	Pérdida de soporte lateral natural	0. Desconocido	A. Normal	B. Nivel de carga y descarga	Amplitud: a. Corona, b. En la mitad del cuerpo, c. Base del cuerpo	2. Demolición
2. Caída-desprendimiento	 Secuencia piroclástica 	2. Pérdida de soporte en la base	1. Seco	0. Desconocido	0. Desconocido	3. Profundidad	3. Recubrir con plásticos áreas afectadas (corona)
3. Flujo	4. Rocas metamórficas	3. Pérdida de soporte en la base por socavación	2. Húmedo	Por encima de la corona	Por encima de la corona	4. Az/Buz	Sellamiento de grietas
4. Volamiento	 Rocas sedimentarias 	4. Sobresaturación por Iluvia	3. Mojado	2. Por debajo de la corona	2. Por debajo de la corona	Altura del escarpe principal	5. Reparación de acueducto
5. Reptación	6. Rocas volcánicas	5. Presión lateral	4. Empozado	3. En la corona	16. EFECTOS	6. Altura del escarpe lateral	6. Reparación de alcantarillado
6. Sagging	7. Rocas intrusivas	6. Esfuerzo o vibración temporal (sismo)	Escurrimiento	4. En el cuerpo	0. Ninguno	7. Material infrayacente al superficie de ruptura	7. Revisión de acueducto y/o alcantarillado
7. Subsidencia	8. Rocas cataclásticas	7. Elevación del NAF (Nivel de aguas freáticas)	6. Flujo	5.En la base del cuerpo	Sistema de alumbrado	8. Volumen	8. Desvío temporal de aguas lluvias
8. Avalancha	9. Dep. coluviales	8. Humedad y secamiento	11. SUELO RURAL	13. TIPO DE VEGETACIÓN	2. Cultivos	9. Posición en la ladera: a. Baja, b. Media, c. Alta	9.Limpiezas de obras
9. Complejo	10. Dep. aluviales	9. Mal manejo de aguas lluvias y escurrimiento	1. Agrícola	Sin vegetación área improductiva	3. Bosques naturales	19. GRIETAS	10.Captación de afloramiento de aguas
10. Propagación lateral	11. Dep. glaciares	10. Sobrecarga en la corona	2. Pecuario	2. Vegetación rastrera (pastos)	4. Plantaciones	0. Desconocido	11. Monitoreo visual
11. Terracetas	12. Rellenos	11. Remolde del suelo	3. Industrial	3. Rastrojo bajo (menor 0,4m) Brinzal	5. Carreteras	1.Sobre la corona	12. Perfilado del talud
12. Socavación de orillas	 Dep. fluvio- volcánicos 	12. Cambio del uso del suelo	4. Minero	4. Rastrojo medio (0,4) Latizal	6. Carreteable	2. Sobre los escarpes laterales	13. Evitar remover materiales en la base
2.SUBTIPO	14. Otros	13. Tipo de cobertura vegetal	5. Forestal	5. Rastrojo bajo (mayor de 1,0) Fustal	 Sistema de acueducto y alcantarillado 	3. En el cuerpo transversales	14.Construir drenes en zanja
0. Desconocido	5. TALUD O LADERA	 Defectos en el sistema de acueducto y alcantarillado 	6. Recreacional	 Cultivos permanente (café, plátanos, cítricos, etc) 	8. Puentes	En el cuerpo longitudinales	15. Construir drenes sub horizontales
1. Rotacional	Desconocido	15.Deficiencia en el control y entrega de aguas lluvias	7. Agroforestal	7. Cultivos transitorios (fríjol, maíz, tomates, etc	9. Boca toma	20. FORMAS DE LAS GRIETAS	16. Construir acequias
2. Traslacional	1. Natural	16. Disposición inadecuada de residuos sólidos	8. Condominios	Bosque productor	10. Viviendas, edificaciones	1. Continuas	17. Construir cunetas
3. Diédrico	2. Antrópico	17. Materiales cizallados, fracturados, meteorizados o sensibles	9. Suburbano	9. Bosque protector	11. Pérdidas de vida	2. Discontinuas	18.Construir zanjas colectoras
4. Compuesto	3. Ambos	18. Discontinuidad a favor de la pendiente	10 Ganadero		12. Obras de estabilización	21. MEDIDAS DE TRATAMIENTO EXISTENTES	19.Construir canales de bajada
5. Lahar	6. PROFUNDIDAD	19. Angulo de la pendiente	12. EROSIÓN SUPERFICIAL AL INTEROR DEL MOVIMIENTO	14. CARACTERISTICAS DE LA VEGETACIÓN	13. Campos deportivos	1. Terrazas	20.Señalizar
6. Flujo de lodo	Desconocido	20. Longitud de la pendiente	Desconocido	Desordenada, parcialmente muerta	14. Manantiales	2. Canales	21. Descopar árboles (previa solicitud permiso)
7. Flujo de escombro		21. Cambio de permeabilidad	Erosión laminar	Sin ella en la pendiente	15. Drenaje	Muros de contención	22. Erradicar árboles (Previa solicitud permiso)
8. Solifluxión 3. ACTIVIDAD	2. Profundo 7. ESCARPE	 Sobrecarga de material sólido en corrientes hídricas Minería 	Erosión en surcos Erosión en cárcavas	2. Baja densidad	16. Potreros 17. Terreno naturales		23. Aprovechamiento forestal (Previo permiso)
ACTIVIDAD Desconocido		23. Mineria 24. Cambios de permeabilidad	Erosion en carcavas Pipas o tubificaciones	Contraste en y fuera del deslizamiento Cambios por el drenaie	17. Terreno naturales 18. Otros	Box culvert y/o transversales Otros	Destapar cauce represado Construir barreras de protección
1. Activo		25. Cambios litológicos	5. Ravines	15. DRENAJE	18. SUPERFICIE DE RUPTURA		26. Estudio geológico-geotécnico
2. Inactivo	2. Lateral		6. Terracetas	Desordenada	Desconocida	22. PENDIENTES MORFOLOGICAS	27.Instrumentación topográfica
8. CUERPO	3. Ambos		7. Tierras malas	1. Anómalo	1. Única	Desconocida	28. Instrumentación geotécnica
Desconocido	4. Múltiple		Caminos de ganado	Acumulación de aguas	2. Múltiple		29. Reubicación viviendas
1. Existente			9. Antrópico	3. Fuentes	3. Discontinua		30.Revegetalización
2. Inexistente			10. Socavamiento de fondos lateral	4. Excesivo drenaje	4. Continua	3. Recta	31. Reforestación
						4. Nichos	32. Obras bio ingenieriles
						5. Escalonadas	33. Obras de contención
						6. Bloques rotados	34. Canalización abierta
							35. Canalización cerrada
							36. Barras transversales (diques)
	24. ESQUEMA			25. PERFIL INTERPRETATIVO			Construir pavimento Construir peatonal
	21.25402.00						
	39. Construir transversal						
							40. Otras

TABLA 4.2 CARACTERIZACIÓN DE LOS PROCESOS EROSIVOS

°N	TIPO	SUBTIPOO	ACTIVIDAD	MATERIAL	TALUD O LADERA	PROFUNDIDAD	ESCARPE	CUERPO	VARIABLE DE INESTABILIDAD	HIDROLOGIA	SUELO	EROSION	TIPO DE VEGETACION	DRENAJE	EFECTOS	SUPERFICIE DE RUPTITA	LONGITUD	AMPLITUD	GRIETAS	FORMA DE LAS GRIETAS	MEDIDAS DE TRATAMIENTO	PENDIENTE MORFOLÓGICA	RECOMENDACIONES
5. 3. 1	2	2	2	6	2	1	1	1	4 19	3	5	0	4	2	6	1	4	3	0	0	7	5	31
5. 3. 2	1	1	2	11	2	1	1	1	4 19	2	5	2	4	3	6	1	8	15	0	0	0	3	31

4.3 ESTUDIO GEOTECNICO

4.3.1 Prospección Geotécnica

Para la caracterización de la vía se programaron una serie de perforaciones con el fin de determinar las propiedades físicas y mecánicas de las unidades superficiales. Los ensayos de laboratorio programados fueron: para cada uno De cada perforación fueron extraídas muestras para realizar Granulometría por lavado, limites de Atterberg (Límite Líquido, Límite Plástico), humedad natural, Peso unitario húmedo y Peso unitario seco.

Los demás parámetros serán tomados de la literatura mediante correlaciones empíricas.

4.3.2 Columna Estratigráfica:

La columna estratigráfica en el área de estudio se describe de la siguiente manera:

Material heterogéneo de textura limo arcillosa y limo arenosa color pardo oscuro proveniente de antiguas explanaciones sobre la parte alta de ladera con espesor promedio de 0.3 m.

Debajo de los depósitos heterogéneos se encuentran los depósitos de caída piroclástica formados por intercalaciones de limos Arenosos y mantos de lapili color pardo oscuro y gris amarillento, con un espesor que varía desde unos cuantos centímetros hasta 3 metros, dependiendo de la topografía de la zona.

Infrayaciendo los depósitos de caída piroclástica se presentan las rocas ígneas porfiríticas.

Cada una de las perforaciones se describe en el anexo 1.

4.3.3 Propiedades Geotécnicas de los Materiales

4.3.3.1 Carta de Plasticidad

Textura: limo arcillosa y limo arenosa

Color: Pardo oscuro y gris, en algunos sectores se aprecian óxidos de hierro color marrón.

Clasificación sistema unificado arenas limosas (SM), gravas bien y mal gradadas (GP, GM).

4.3.3.2 Pasante del tamiz 200

Las arenas limosas presentan valores promedio de 18.16 % indicando que la fracción gruesa predomina en estos materiales. Para las gravas el valor es menor a 14%.

4.3.3.3 Limite Líquido

En las arenas el límite liquido presenta valores promedio de 62.83 % Este valor indica que los materiales presentan una plasticidad alta. Para las gravas no se pudo determinar.

4.3.3.4 Humedad Natural

El valor promedio para las arenas es de 55.12 %; para las gravas el valor es de 19,80 %.

4.3.3.5 Índice de plasticidad

Los valores encontrados son superiores al 7%. Con este valor se considera que el potencial de expansión es bajo. Para las gravas no se pudo determinar esta propiedad.

4.3.3.6 Peso Unitario

El valor promedio para los depósitos arenosos es de 1,80 Ton/m3. Para las gravas es sensiblemente mayor.

4.3.3.7 Angulo de Fricción Interno

33 Grados; este valor de ángulo de fricción se considera alto para los suelos de la región.

4.3.3.8 Cohesión

El valor de esta propiedad es de 2 Ton/m2, este valor se considera bajo.

4.3.3.9 Resistencia a la Compresión Inconfinada

El valor de esta propiedad es de 11 Ton/m2, valor considerado alto y siendo un indicativo de la buena consistencia de los materiales.

4.3.4 Ensayos de Laboratorio y Campo

En el anexo 1 de ensayos de laboratorio se presentan cada uno de los ensayos realizados para la caracterización geotécnica de los materiales detectados en la zona de estudio.

4.4 OBRAS DE CONTROL DE AGUA.

Para realizar el prediseño de las obras de control de agua necesarias para garantizar un mejor desempeño del pavimento que se construya se realizo el estudio hidrológico y la evaluación hidráulica de las obras de la zona.

4.4.1 ESTUDIO HIDROLOGICO Y EVALUACION HIDRAULICA

El área de estudio se localiza en el parque Nacional de los Nevados, a una altura de 3500 msnm. La zona corresponde a un relieve montañoso, donde predominan los pastos; los efectos naturales como el clima húmedo y artificiales como lo es el sobrepastoreo genera la degradación del la estructura del suelo favoreciendo la formación de terracetas y procesos erosivos.

El clima se desarrolla en condiciones de frío y alta irradiación, con ciclos diurnos de extremas temperaturas, comprende bosque andino caracterizado por vientos fuertes, alta nubosidad, nieblas frecuentes y sistemas de aguas termales sulfatadas y alcalinas.

En la zona de estudio se observan una serie de líneas de drenaje que hacen parte de la Cuenca del Ríoclaro.

4.4.1.1 Cuenca del Ríoclaro

Nace en los arenales del Nevado Santa Isabel a 4400 msnm, en una zona de características de páramo. Presenta áreas boscosas protectoras, recibe las aguas de la quebrada Nereidas a 2300 msnm, originada del deshielo del glaciar Nereidas a los 5000 msnm y la quebrada molinos a los 1900 msnm, las dos quebradas se integran en una sola corriente denominada Rioclaro que confluye en le río Chinchiná.

4.4.1.2 Cuenca del rió Chinchiná

Esta cuenca abarca la región central del departamento de Caldas, con un área de 113.263 Ha que comprende parte del territorio de los municipios de Manizales, Neira, Villamaría, Chinchiná, Palestina.

Su principal fuente hídrica es el rió Chinchiná que nace a una altura de 3600 msnm en la laguna la negra localizada en el páramo de letras, en inmediaciones de los municipios de Manizales (Vereda la Esperanza) y Villamaría (Vereda Frailes), corre en sentido este oeste, posteriormente en la parte oeste del municipio de Manizales cambia su dirección al norte, para entregar sus aguas al rió Cauca a una altura de 800 msnm en la hacienda el Retiro municipio de Palestina; entre sus principales afluentes se encuentran las quebradas el Mangón, la Zulia, la Maria, California, Chupaderos, Chupaderitos, el Perro, Manizales, río Claro, El Rosario, Manzanares, Purgatorio y el río Guacaica.

4.4.1.3 Microcuencas de la zona de estudio

Se encuentra interceptando la vía en diferentes puntos, las cuales la salvan por medio de Pontones, alcantarillas de cajón o simplemente la atraviesan, corresponden a corrientes menores por el caudal que transita por ellas.

El estado general de estas obras para el manejo de agua es regular debido al mantenimiento que se les hace y las condiciones climatológicas de la zona de estudio.

En el anexo chequeo de las obras hidráulicas se pude observar los caudales de estas líneas de drenaje y la capacidad hidráulica de las estructuras que atraviesan.

4.5 PREDISEÑO DE LAS OBRAS GEOTECNICAS

En el tramo de estudio se tienen como principal problema el deficiente manejo de las aguas de escorrentía y de las aguas provenientes de nacimientos que en algunos casos son de origen termal. Las obras propuestas en cada uno de los sitios detectados como críticos se presentan a continuación:

4.5.1 Abscisa K18 + 060

Al igual que para el caso anterior, los problemas se asocian a la falta de obras de manejo de aguas en el corredor. Las obras requeridas en este tramo son: Canal rectangular desde K18+050 al K18+100

Poceta

Canal trapezoidal mayor Tipo I

4.5.2 Abscisa K18 + 500

Los problemas de estabilidad se asocian a la falta de obra de manejo de aguas. Las obras requeridas en este tramo son:

2 Transversales una en el K18+460 y la segunda en el K18+520

2 Pocetas

Canal trapezoidal tipo II

Canal trapezoidal tipo I, este se une al canal trapezoidal anterior.

4.5.3 Abscisa K 18 + 720 al 18+ 735

Las obras propuestas en este sector consideran el mejoramiento de un talud, en este caso se plantean una serie de obras bioingenieriles tales como:

Trinchos en guadua Abancalamiento Perfilamiento de negativos Revegetalización con especies nativas.

4.5.4 Abscisa K 19 + 030 al 19+ 080

En este sector se requieren obras de manejo de aguas principalmente a continuación se hace un listado de cada una de ellas:

Poceta

Canal trapezoidal Tipo II

NOTA: La localización, el detalle de los canales y de las obras de contención se encuentran en los planos DIPLA-LOCOBRA 5 Y DIPLA-DETALLES 7.

4.6 EVALUACION HIDRAULICA.

4.6.1 CALCULO CAUDALES LINEAS DE DREANAJE

Para el cálculo de los tiempos de concentración de la microcuenca se utilizo la ecuación de:

CALIFORNIA CULVER PRATICE (minutos)

$$Tc = 0.0195 * \left(\frac{L^3}{H}\right)^{0.385}$$
 Donde:
L = Longitud del cauce principal (m)
H = Desnivel máximo en el cauce (m)
Tc = Tiempo de Concertación (min)

LINEA DE DRENAJE	ABSC	ISA	AREA	LONGITUD	ESTRUCTURA
1	K 19+	520	0.8	400	Box
2	K 19+	460	0.4	200	Box
3	K 18+	640	0.2	130	Box
4	K 18+	560	0.3	150	Box
5	K 18+	080	0.6	200	Canal
LINEA DE DRENA	JE		L	н	Тс
1		400		100	3.35
2			200	100	1.51
3		130	40.3	1.30	
4	150		49.5	1.42	
5			200	20	2.80

Para el cálculo de los caudales utilizamos la formula por el método racional:

$$Q = (\frac{C * i * A}{360})$$

Donde:

Q = Caudal (m3/sg)

A = Area de la cuenca (hectáreas)

C = Coeficiente (0,45) corresponde a suelos con vegetación ligera y pendientes entre el 50% y el 20%

i = Intensidad de Iluvia (mm/hora)

Para halla r la intensidad se utilizo la ecuación de las curvas del IDF (mm/hr):

$$I = \frac{\left\{456 + \left[-Ln\left[-Ln\left[1 - \frac{1}{Tr}\right]\right] - 0.53\right] \frac{96.2}{1.05}\right\}}{(t+5)^{0.62}}$$

No.	Тс	i (Tr 2)	i (Tr 10)	i (Tr 20)	i (Tr 50)	i (Tr 100)	Area
1	3.35	127	152	161	173	182	0.80
2	1.51	148	177	188	202	213	0.40
3	1.30	151	181	192	206	217	0.20
4	1.42	150	179	190	204	215	0.30
5	2.80	133	158	168	181	190	0.60

С	Q(2) (M³/Sg)	Q(10) (M³/Sg)	Q(20) (M³/Sg)	Q(50) (M³/Sg)	Q(100) (M3/Sg)
0.45	0.13	0.15	0.16	0.17	0.18
0.45	0.07	0.09	0.09	0.10	0.11
0.45	0.04	0.05	0.05	0.05	0.05
0.45	0.06	0.07	0.07	0.08	0.08
0.45	0.10	0.12	0.13	0.14	0.14

4.6.2 CAPACIDAD HIDRAULICA DE LAS OBRAS

Para cada una de las obras existentes en las líneas de drenaje hallaremos su capacidad hidráulica:

La capacidad para estas obras se determinada por la ecuación de Manning.

$$Q = \frac{1}{n} * R^{2/3} * S^{1/2} * A$$

Donde:

Q = Caudal (m3/sg)

n = Coeficiente de rugosidad (Concreto = 0.013)

S = pendiente %

R = Radio hidráulico

A = Area

4.6.2.1 BOX CULVERT K 19+520 Y K 19+460

VARIABLES	DATOS	S (%)
n	0.013	1
Base menor	1.00	2
Base mayor	1.00	3
Altura	2.00	4
Lamina	1.90	5
(B-b)R/2	0.00	6
Area	1.90	7
Perímetro	4.80	8
radio hidráulico	0.40	9

TABLA 4.3 Resumen de capacidad hidráulica del elemento en m³/ seg. Según la pendiente

1%	2%	3%	4%	5%	6%	7%	8%	9%
Q	Q	Q	Q	Q	Q	Q	Q	Q
7.879	11.143	13.647	15.759	17.619	19.300	20.847	22.286	23.638

4.6.2.2 CANAL K 19+080 PROPUESTO

VARIABLES	DATOS	S (%)
n	0.020	1
Base menor	0.40	2
Base mayor	1.00	3
Altura	0.60	4
Lamina	0.50	5
(B-b)R/2	0.25	6
Area	0.33	7
Perímetro	1.52	8
radio hidráulico	0.21	9

TABLA 4.4 Resumen de capacidad hidráulica del elemento en m³/ seg. Según la pendiente

1%	2%	3%	4%	5%	6%	7%	8%	9%
Q	Q	Q	Q	Q	Q	Q	Q	Q
0.582	0.822	1.007	1.163	1.300	1.425	1.539	1.645	1.745

4.6.2.3 Tubería 27" en concreto K 18+500 PROPUESTA

VARIABLES	DATOS
n	0.013
Diámetro	27"

TABLA 4.5 Resumen de capacidad hidráulica del elemento en m³/ seg. Según la pendiente

1%	2%	3%	4%	5%
V	٧	٧	٧	V
5.30	4.74	4.11	3.35	2.37
Q	Q	Q	Q	Q
1.960	1.753	1.516	1.240	0.897

4.6.2.4 Box K 18+640 y K 18+560

VARIABLES	DATOS	S (%)
n	0.013	1
Base menor	2.00	2
Base mayor	2.00	3
Altura	1.00	4
Lamina	0.90	5
(B-b)R/2	0.00	6
Area	1.80	7
Perímetro	3.80	8
radio hidráulico	0.47	9

TABLA 4.6 Resumen de capacidad hidráulica del elemento en m³/ seg. Según la pendiente

1%	2%	3%	4%	5%	6%	7%	8%	9%
Q	Q	Q	Q	Q	Q	Q	Q	Q
8.414	11.899	14.573	16.828	18.814	20.609	22.261	23.798	25.241

4.6.3 CHEQUEO OBRAS HIDRULICAS

El chequeo de las obras se realizara para un periodo de retorno de 50 años, así:

TABAL 4.7 CHEQUEO DE LAS OBRAS HIDRAULICAS

LINEA DE DRENAJE	ESTRUCTURA	CAUDAL DRENAJE TR = 50 años (m3/sg)	CAPACIDAD HIDRAULICA (m³/seg.)	CALIFICACIÓN
1	Box	0.17	7.8	OK
2	Box	0.10	7.8	Ok
3	Box	0.05	8.4	Ok
4	Box	0.08	8.4	Ok
5	Canal	0.14	0.58	OK

4.6.4 INVENTARIO DE OBRAS EXISTENTES Y POR CONSTRUIR

	Tipo de obra				- Descole T		Talud	Leun	Agua		Cunetas					
Abscisa	Cabe	ezote	Po	oceta	Trai	nsversal	Des	COIE	raiuu	oup.	7,	jua	Janotas		Observaciones	
	Izq	Der	Obst.	Buena	Т#	Diámetro (plg)	Tierra	Revest.	Izq	Der	Perm.	Temp.	Revest	Tierra		
17+970				Х	T49	вох	Gavión								En general esta en buen estado (igual a la 18+080)	
18+000		Χ			T48	24"	Fall				Х			I-D	Transversal en mal estado y descole fallado	
18+040							Cuneta		X						FALTA OBRA	
18+090					T47		Fall		Χ						Tanques en mal estado y descole fallado	
18+080							Cuneta		Χ		Х				FALTA OBRA dirigir el agua a la 18+090	
18+080	Obs	Obs	Χ		T46	ı	Χ		Χ		X			I-D	Tranversal obstruida	
18+160	Χ	Χ		X	T45	24"	X		Χ			X		I-D	Transversal	
18+285	Χ		Χ		T44	18"	Χ			Χ		X		I-D	Transversal	
18+300	Χ			X	T43	24"	Χ			Χ		X		I-D	Transversal	
18+345	Obs	Obs	Χ		T42	24"	X			Χ	X			I-D	Transversal	
18+375	Obs	Obs	Χ		T41	18"	Χ			Χ	X			I-D	Transversal	
18+440	Х	Obs		X	T40	24"	Χ			Х	Х			I-D	Transversal - Capta la mayor parte de la 18+445	
18+445							Vía			Х	Х			I-D	FALTA OBRA dirigir el agua a la 18+440 (igual a la 18+620)	
18+470	Х	Obs	Х		T39	24"	Х			Х	Х			I-D	Línea de drenaje (igual a la 18+560)- Transversal	
18+560					T38	BOX			Χ		Х			D	Línea de drenaje - Transversal	
18+640					T37	BOX			Χ		Х			D	Línea de drenaje - Transversal	
18+665	Χ	Χ		Х	T36	18"	Χ		Χ			Х		D	Transversal	
18+730	Obs	Obs		Χ	T35	24"	Χ		Χ			X		D	Transversal	

			Т	ipo de c	bra		Dos	scole	Talu	d Sup.	۸	7112	Cune	ntae	
Abscisa	Cabe	ezote	Po	ceta	Т	ransversal	Des	Descole Talud Sup. Agua Cunetas Observaciones		Observaciones					
	Izq	Der	Obst.	Buena	T #	Diámetro (plg)	Tierra	Revest.	Izq	Der	Perm.	Temp.	Revest	Tierra	
18+745									Χ						Deslizamiento menor
18+810	Χ	Χ		Χ	T34	24"	Χ		Χ			Χ		D	Transversal
18+970	Obs	Obs		Х	T33	18"	Obst.		Χ			Х		D	Transversal obstruida
19+080							Vía			Χ	Х				FALTA OBRA para captar la línea de drenaje
19+090										Χ					Deslizamiento menor
19+165	Χ	Χ	Χ		T32	18"		Х		Χ		Х		I-D	Transversal - Zona de caída de rocas y escorrentía superf.
19+380	Χ	Χ		Х	T31	18"	Obst.			Χ		Χ		I-D	Transversal obstruida
19+400															Deslizamiento menor
19+460	Χ	Χ			T30	BOX 1x2		Χ		Χ	Χ			I-D	Línea de drenaje - Transversal
19+520	Χ	Χ			T29	BOX 1x2		Х		Χ	Χ			I-D	Línea de drenaje - Transversal
19+590										Χ	Х			I-D	Talud erosionado por escorrentía superficial
19+600		Χ	Χ		T28	24"	Χ			Χ	Χ			I-D	Transversal
19+700	Χ	Obs	Χ		T27	24"	Χ			Χ		X		I-D	Transversal obstruida
19+840	Χ	Χ		Χ	T26	24"	Χ			Χ		Χ		I-D	Transversal
19+935		Χ		Х	T25	18"	Х			Χ	Χ			I	Transversal - Capta agua de la casa y del talud
19+970										Χ	Х				FALTA OBRA - Casa Roja - Descola agua limpia

5 PREDISEÑO DEL PAVIMENTO

5.1 PARAMETROS Y FACTORES DE DISEÑO

5.1.1 ANÁLISIS DE TRÁNSITO

La mayoría de métodos utilizados para el diseño de pavimentos consideran el transito en términos de repeticiones de ejes patrones de diseño. Para este diseño utilizaremos ejes sencillos equivalentes de 8.2 Toneladas, cuya valoración exige el conocimiento de la magnitud de las cargas pesadas circulantes, a efectos de establecer su respectiva equivalencia con el eje patrón de diseño.

5.1.2 ANÁLISIS DE LA SERIE HISTÓRICA

En el proceso de recopilación de la información de la vía en estudio no se encontraron datos de conteo. Pero en la publicaciones del INVIAS se hallo una serie históricas desde el año 1998 hasta el 2002 de la estación 442 que contabiliza los vehículos que transitan desde el puente la libertad hasta el sector de la esperanza. De allí tomamos que un 2% de estos vehículos son los que transitan por la vía en estudio; este no deja de ser un valor muy conservador pero nos puede dar una buena aproximación al transito por esta vía en temporada alta de turismo.

De la serie histórica del INVIAS tenemos que el TPDs en el año 2002 para la vía puente la libertad la esperanza es de 1346 veh/día; de este valor tomamos el 2% y obtenemos el transito de la vía del proyecto en el año 2002 así: 1345 x 2% = 27 veh/día

5.1.3 PERÍODO DE DISEÑO

De acuerdo al Manual de Diseño de Pavimentos Asfálticos en Vías con Medios y Altos Volúmenes de Tránsito del INVIAS, de acuerdo al TPD del año 2004 (estimado mediante una proyección geométrica de los datos de la estación 442 nos da un TPDs de 29 veh/día), la vía en estudio, presenta la siguiente categoría:

Tabla 5.1 CATEGORIA DE LA VIA

				III		
Descripción	Caminos estratégic		con	tránsito	mediano,	caminos
Importancia	Medianamente Importante					
Tránsito Promedio Diario	< 1.000					

Según la clasificación anterior, el manual recomienda un período de diseño estructural en un rango de 10 a 20 años, para este proyecto calcularemos una estructura de pavimento para un período de servicio mínimo a 10 años.

5.1.4 PROYECCIÓN DEL VOLUMEN DE TRÁNSITO PARA EL AÑO DE PUESTA DE FUNCIONAMIENTO DEL PROYECTO.

Los volúmenes de tránsito al realizar el proyecto estará compuesto por el Tránsito Existente (TE) y el Tránsito Atraído (TAt).

TA = TE + TAt

El tránsito existente es el que se moviliza en la vía en condiciones normales de operación y cuando no se ha efectuado ningún tipo de mejora o rehabilitación vial.

El tránsito atraído se considera siempre y cuando se realice una mejora a la vía en estudio. Como a la fecha no se ha llevado a cabo ninguna mejora completa, el tránsito atraído se considera igual a cero.

Tránsito actual; Para determinar el transito actual el se tomó la base histórica mencionada.

El tránsito promedio diario (TPDs) que se obtuvo fue de 29 vehículos/día, distribuidos de la siguiente manera:

- Vehículos pesados (B + C) = 15, correspondientes a un 52%
- Vehículos livianos (A) = 14, correspondientes a un 48%.

Transito futuro: El proyecto se llevará a cabo en menos de un año por esta razón la proyección del transito se debe hacer para este mismo periodo. A partir de la puesta en funcionamiento del nuevo pavimento aparece el transito atraído; por lo tanto se debe tener en cuenta. Tenemos que:

- (1) TF = TA + ITE
- (2) TA = TE + TAt
- (3) ITE = CNT + TD + TG

Reemplazando (2) y (3) en (1) tenemos:

$$TF = TE + TAt + CNT + TD + TG$$

Donde:

TF = tránsito futuro

TA = tránsito actual

ITE = incremento del tránsito esperado

TE = tránsito existente estimado = 27 vehículos/día

TAt = tránsito atraído

CNT = crecimiento normal del tránsito

TD = tránsito desarrollado TG = tránsito generado

Transito atraído: se hicieron las siguientes consideraciones:

TAt = TE x (% de condiciones locales + % alternabilidad vial)

Condiciones locales (5%): asumimos el 5% del transito actual. Esto basado en el mejoramiento de la carretera una vez terminado el proyecto.

TE x $0.05 = 27 \times 0.05 = 2 \text{ vehículos/día}$

Alternabilidad vial (3%): Una vez terminada la pavimentación de este tramo de carretera, y dependiendo los entes gubernamentales pueden se pueden ver incentivados a pavimentarla completamente para incrementar el atractivo turístico gracias a la mejora de los tiempos de viaje.

TE x $0.03 = 27 \times 0.03 = 1 \text{ vehículos/día}$

Luego:

TAt = 2 + 1 = 3 vehículos/día

TA = TE + TAt = 27 + 3 = 30 vehículos/día

Crecimiento vehicular de la zona: se tomo del 3% de acuerdo con los conteos de la serie histórica de la estación 442

CNT = TE x 0.03 = 27 x 0.03 = 1 vehículos/día

El tránsito desarrollado (TD): se estableció en un 5% basados en el incremento generado por el desarrollo económico de la región y las mejoras del suelo aledaño al tramo a mejorar. El tránsito adicional desarrollado será:

$$TD = TE \times 0.05 = 29 \times 0.05 = 2 \text{ vehículos/día}$$

El tránsito generado (TG): este transito es la suma de todos los vehículos que transitarían por el sector gracias a la mejoría de la vía, basados principalmente en los atractivos turísticos de la región. El porcentaje asumido es del 15% esto debido al potencial turístico de la zona en la cual esta ubicado el proyecto.

$$TG = TA \times 0.10 = 29 \times 0.15 = 5 \text{ vehículos/día}$$

Por lo tanto:

El tránsito proyectado a un año será de:

$$TF = TA + ITE = 32 + 8$$

TF = 40 vehículos/día (en el año de base)

5.1.5 PROYECCIÓN DEL VOLUMEN TOTAL DEL TRÁNSITO EN EL PERÍODO DE DISEÑO

Después de calculado el TPDs para el año de puesta en funcionamiento la vía el cual es de 40 veh/día, se procedió a calcular el volumen de tránsito para cada año de la vida de diseño de acuerdo al modelo de Regresión Geométrica:

Tabla 5.2 Volumen Total del Tránsito en el Período de Diseño

Vía Puente La Libertad - El Arbolito (estación 442)

AÑO	TPDs		V(en el año de funcionamiento)	V Total
1992	19	1		6.935
2002	27	2		9.855
2004	29			10.585
2005	40	3		14.600
2006	41		V1 =	15.123
2007	43		V2 =	15.664
2008	44		V3 =	16.225
2009	46		V4 =	16.806
2010	48		V5 =	17.407
2011	49		V6 =	18.031
2012	51		V7 =	18.676
2013	53		V8 =	19.345
2014	55		V9 =	20.037
2015	57		V10=	20.754
2016	59		V11=	21.497
2017	61		V12=	22.267
2018	63		V13=	23.064
2019	65		V14=	23.890
2020	68		V15=	24.745
SUMATOR	RIA =			308.131

- (1) = Tránsito Promedio Diario registrado en conteo vehicular anterior.
- (2) = Tránsito Promedio Diario Semanal (TPDs) durante último conteo vehicular.
- (3) = Tránsito Promedio Diario que circulará por el carril de diseño en el año de puesta de servicio del pavimento.

 $Vt = 365 \times TPDs \times [(1+i)^n -1]/i$

5.1.6 VOLUMEN DE VEHÍCULOS PESADOS ESPERADOS EN EL PRIMER AÑO DE SERVICIO PORA EL CARRIL DE DISEÑO

El tránsito promedio diario semanal calculado que circulará en el año de puesta en servicio del pavimento es de 40 veh/día. De acuerdo a esto y teniendo en cuenta que el porcentaje de camiones según INVIAS es del 33% (13 camiones) y de buses es del 17% (7 buses), en el año de puesta en servicio del proyecto (2005) circularan 20 vehículos livianos por día.

De acuerdo a los dato de la estación de conteo los vehículos pesados se distribuyen de la siguiente manera: C2P=23.7%, C2G=45.0%, C3-4=11.5%.

5.1.7 CALCULO DE EJES EQUIVALENTES DE 8.2 Tn.

El daño producido por los diferentes tipos de vehículos que circulan por la carretera es proporcional al que genera un eje patrón. Por esta razón se calcula un factor equivalente de carga el cual al multiplicarse por el numero de cargas de cada tipo de vehículo se vuelven cargas equivalentes del eje patrón de 18.2 Tn.

Para este cálculo se debe tener en cuenta que el tránsito promedio diario semanal que circulará en el año 10 del proyecto será de 57 veh/día y de acuerdo al porcentaje de camiones según INVIAS que es del 33% (19) y de buses es del 17% (10), en el año 2015 transitarán 29 vehículos comerciales/día aproximadamente, con la siguiente distribución: C2P=23.7% (5), C2G=45.0% (9) y C3-4=11.5% (2).

Teniendo en cuenta los factores de equivalencia de carga por eje (AASHTO) para los diferentes tipos de vehículos, se calculó el número de repeticiones de ejes de 8.2 Tn en el carril de diseño así:

Tabla 5.3 Cálculo de los Factores de Carga

Tipo	de Vehículo	Factor de Equivalencia	TPDs ₂₀₀₄	Ejes Equivalentes A 8.2 TN
Buses	Bus Metropolitano	Bus Metropolitano 1.0		10
Camiones	C2P	C2P 1.14		6
	C2G	3.44	9	31
	C3-4	3.76	2	8
Totaļ Ejes	55			

Dado que estos volúmenes fueron contabilizados en los dos sentidos de circulación, de acuerdo al comportamiento vehicular de la zona se tomó el 50% del conteo para el carril denominado de diseño (55/2 ≈ 28), así el número total de ejes equivalentes de 8.2 Ton, se obtiene multiplicando las repeticiones de ejes en el período de diseño así:

Nº de Ejes Equivalentes de 8.2 Ton. = 28 ejes/día x 365 días x 10 años

= 102200 Ejes Equivalentes de 8.2 Ton. en el Período de Diseño

La variable de tránsito se puede caracterizar por medio del parámetro NDT (Número de Diseño con el Tránsito); el cual se obtiene a partir de convertir, el efecto producido por los diferentes tipos de ejes que circulan por la vía en el daño que generará un eje patrón; para tal fin se calcula el Factor de Equivalencia de Cargas (AASHTO) y se multiplica por los diferentes números de ejes de cargas para volverlos ejes simples de 8.2 toneladas.

Por definición:

NDT = Ejes Equivalentes de 8.2 Ton / 7300

NDT = 14

De acuerdo con el valor de NDT, el tipo de tránsito que circulará por la vía se clasifica como tránsito bajo.

5.1.8 CARACTERIZACIÓN DE LA RESISTENCIA DE DISEÑO DE LA SUBRASANTE

La capacidad portante o resistencia de la subrasante se obtendrá mediante la correlación del ensayo PDC con el CBR (tabla 6.4), obtenidos de los ensayos de laboratorio.

TABLA 5.4 CBRs DE DISEÑO OBTENIDOS POR LA CORRELACION CON CBRs DE DISEÑO OBTENIDOS POR LA CORRELACION CON EL ENSAYO PDC

ABSCISA	PROFUNDIDAD (cm.)	CBRs DE DISEÑO	
K17 + 970	De 0 a 44	1,4	
K18 + 170	De 14 a 33	2,8	
K18 + 370	De 15 a 38	5,4	
K18 + 570	De 10 a 94	2,0	
K18 + 770	De 0 a 81	16,6	
K18 + 970	De 37 a 93	6,8	
K19 + 170	De 0 a 2 (sigue roca)	7,9	
K19 + 370	De 30 a 92	2,2	
K19 + 570	De 12 a 53	2,8	
K19 + 770	De 0 a 80	3,7	
K19 + 970	De 8 a 34	1,7	

Nota: Se tomaron los CBRs de diseño más críticos de los Ensayos de Penetración Dinámica de Cono (PDC), anotando que se tomaron prácticamente del estrato 2 identificado en los ensayos.

Se recomienda en el Km 19 + 570, la substitución del material a una profundidad de 50 cm. (en una franja de 30 m de vía)

Para determinar el valor de diseño de la subrasante utilizamos el percentil 75 el cual es crítico aun comparado con los resultados de los ensayos efectuados a las muestras tomadas. De acuerdo a lo anterior obtenemos.

TABLA 5.5 CUADRO RESUMEN CBRs & Módulos Resilientes

PERCENTIL	CBR	Módulo Resiliente (Kg/cm²)
50	3.7	330
75	2.1	220
87.5	1.8	200

5.2 DISEÑO POR EL MANUAL DE DISEÑO DE PAVIMENTOS ASFÁLTICOS EN VÍAS CON BAJOS VOLÚMENES

El procedimiento de diseño desarrollado en este Manual es aplicable a pavimentos de carreteras interurbanas y tienen en cuenta el bajo nivel de tránsito de algunas vías. El diseño exige la valoración del tránsito pesado previsto durante el primer año de servicio (estimado en el numeral 6.1.6) y de la resistencia de la subrasante; veamos:

TABLA 5.6 TRANSITO

Designación	Rango de tránsito acumulado por carril de diseño		
T2	11 < 20 < 25		

TABLA 5.7 CATEGORÍA DE LA SUBRASANTE

Clasificación de la Subrasante	CBR %		
S1	2.1		

5.2.1 DESCRIPCIÓN ALTERNATIVA ESTRUCTURA BAJOS VOLUMENES:

Con la información obtenida Niveles de Tránsito (T2) y Condiciones de Resistencia de los Suelos de Subrasante (S1), se obtuvo el siguiente diseño:

TABLA 5.8 ESPESORES OBTENIDOS

Сара	H (cm.)
Carpeta Asfáltica	5
Base Granular (BG1)	15
Subbase Granular (SBG1)	20

5.2.2 Especificaciones:

BG1 = Debe cumplir con la norma INV 330.

SBG1 = Debe cumplir con la norma INV 320.

5.3 DISEÑO POR EL MÉTODO AASHTO

5.3.1 PARÁMETROS Y CÁLCULOS PRELIMINARES

Para el diseño se tuvo en cuenta los siguientes criterios de pavimento flexible:

Factor de equivalencia de carga. El cual fue calculado anteriormente.

El tránsito estimado fue de 102200 ejes en el período de diseño.

El Módulo Resiliente según la ecuación que lo correlaciona con el valor de CBR, formulada por HEUKELOM Y KLOMP (MR (psi) = $1,500 \times CBR$) equivale a MR=3150 psi.

Para ajustar el cálculo del transito utilizamos con los factores equivalentes AASHTO. Utilizamos la ecuación para el diseño de pavimentos flexibles de donde calculamos el número estructural.

ECUACIÓN 5.1.

$$\log_{10} (W_{18}) = Z_R \times S_0 + 9,36 \times \log_{10} (SN + 1) + 0,20 + \cdots + \frac{\log_{10} \left[\frac{\Delta PSI}{4,2-1,5} \right]}{0,40 + \frac{1.094}{(SN + 1)^{5,19}}} + 2,32 \times \log_{10}) M_R + 8,07$$

La confiabilidad en el desempeño del pavimento para las condiciones de tránsito y medio ambiente sugerida de acuerdo a la clasificación funcional de la vía es R=95% (ZR=-1.645) Y S0=0.49.

La serviciabilidad inicial, p0, se asumirá en 4.2 y la final, pt, en 2.0, para obtener un $\Delta PSI = 2.2$.

En la tabla 6.9 se observan los valores de módulos y coeficientes de capa que se utilizaron. Estos valores corresponden a los valores típicos más utilizados.

TABLA 5.9 VALORES DE RESISTENCIA PARA LOS MATERIALES

Material	CBR	Módulo (ksi)	Coeficiente	
Concreto Asfáltico		30.500 kg/cm2 = 435	a1 = 0.440	
Base	80	2.000 kg/cm2 = 28	a2 = 0.130	
Subbase	25	950 kg/cm2 =14	a3 = 0.100	

5.3.2 Cálculo del número estructural y análisis de capas

Se asumió un número estructural inicial (SN) de 4; según la ecuación 1 se obtuvo:

SN _{ALL}	W ₁₈		
3.5	111.919		
3,4	92.043		
3,46	103.556		

Se determina el número estructural necesario, SN1, sobre la capa de base, y se deduce el espesor real de la capa de rodadura en concreto asfáltico, D1:

W18	SN₁		
104.904	1.54		

$$D1 = SN1 / a1 = 1.54 / 0.44 = 3.5 plgs$$

Por lo tanto

$$SN1 = D1 \times a1 = 2.5 \times 0.44 = 1.10$$

Los coeficientes de drenaje de las capas de base y subbase se tomaran iguales a 1.0

Se determina el número estructural necesario, SN2, sobre la capa de subbase y se calcula el espesor real de la capa de rodadura, D2,:

SN2 SBG

W18	SN ₂		
103.086	2.02		

$$D2 = (SN2 - SN1) / (a2 \times m2) = (2.02 - 1.10) / (0.130 \times 1.0) = 7 plgs$$

D2'= 7 plgs > 4 plgs CUMPLE.

Por lo tanto.

$$SN2' = D2' \times (a2 \times m2) = 6 \times (0.130 \times 1) = 0.38$$

El número estructural necesario, SN3, es igual al número estructural total establecido para el diseño, SN, y así se determina el espesor real de la capa de subbase D3':

D3 =
$$(SN3-SN1*-SN2*)/(a3 \times m3) = (3.46-1.10-0.38)/(0.100 \times 1.0) = 19.8 plgs$$

D3'= 20 plgs

El número estructural suministrado es:

$$SN = (2.5 \times 0.44) + (6 \times 0.130 \times 1.0) + (20 \times 0.100 \times 1.0) = 3.88 > 3.46 \text{ OK!}$$

Los espesores definitivos son:

TABLA 5.10 ESPESORES OBTENIDOS AASHTO

Сара	H (cm.)		
Carpeta Asfáltica	2.5" = 6 cm.		
Base Granular	6" = 15 cm.		
Subbase Granular	20" = 50 cm.		

5.4 DISEÑO POR EL MÉTODO EMPÍRICO DE LA ROAD NOTE 31/1993

Esta versión conserva la caracterización del tránsito como repeticiones de ejes equivalentes a ejes estándar de 8.200 kilogramos y la caracterización de la resistencia de la subrasante mediante el CBR.

Se tomará como valor de diseño, el valor de resistencia que sea menor que el 75% de los resultados obtenidos, o sea, un percentil de diseño del 75%; lo que equivale a un valor de CBR del 2,1%.

Este valor de CBR se le asigna a uno de los rangos determinados por la Nota Vial para la clase de resistencia de la subrasante, que para este caso arrojó la clase **S1** dentro del rango de CBR (%) = 2

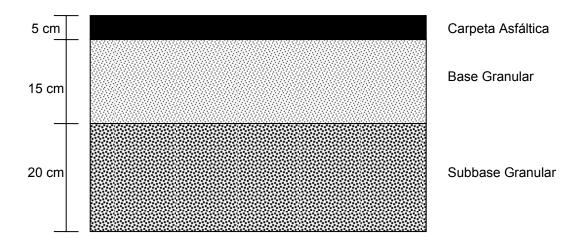
Este método recomienda que la vida de diseño sea igual al período de análisis con el fin de minimizar la vida residual del pavimento, y para este caso se recomienda una vida de 15 años debido a la incertidumbre de la proyección.

El diseño de espesores es relativamente insensible al número de repeticiones de carga, por lo cual se maneja dentro de una serie de clases, que para este caso fue de:

CLASE DE TRANSITO	RANGO (10 ⁶ ejes estándar equivalentes)		
T1	< 0.3		

La opción de espesores de diseño arrojados por el método de la Nota Vial 31 de 1993, es la siguiente:

Capa de Rodadura = Tratamiento superficial doble Base granular = 150 mm = 15 cm. Sub-base granular = 175 mm = 17.5 cm. Relleno seleccionado = 300 mm = 30 cm.


NOTA = Es de anotar que el método define que si la capa de rodadura se construye con 5 cm. de material bituminoso flexible (asfalto), 15 cm de base granular, 20 cm de subbase granular y 30 cm de relleno seleccionado; la vida de diseño puede verse incrementada y/o un número admisible de repeticiones de carga mayor (de hasta 1.000.000 de ejes en un período de 15 años).

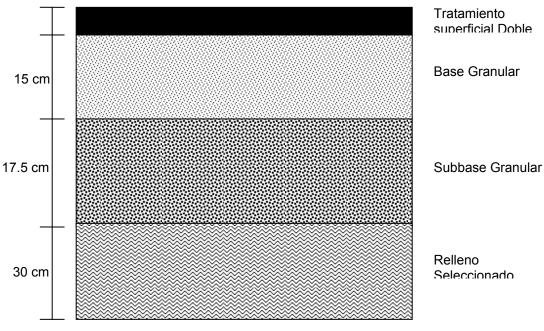
5.5 ESQUEMAS DE LAS ALTERNATIVAS OBTENIDAS

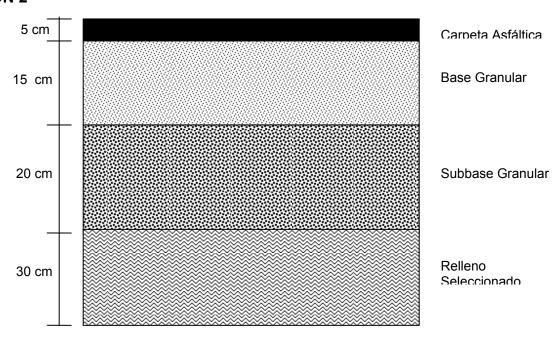
5.5.1 MÉTODOS EMPIRICOS (Manual de Diseño de Pavimentos Asfálticos en Vías con Bajos Volúmenes)

Se tomó el Manual de Diseño de Pavimentos Asfálticos en Vías con Bajos Volúmenes de Tránsito de INVIAS

5.5.2 MÉTODO AASHTO

De este método se obtuvo el siguiente diseño:




5.5.3 MÉTODO ROAD NOTE 31 DE 1993

El método de diseño contempla las variables de diseño tales como: la estimación del tránsito en repeticiones de ejes, determinación de la resistencia de la subrasante, selección de la combinación de materiales y espesores más económica. Se muestran dos opciones.

OPCION 1

OPCION 2

6 PLAN BASICO DE MANEJO AMBIENTAL

El Plan de Manejo Ambiental elaborado para este proyecto pretende minimizar los impactos negativos en cada una de las actividades del proceso de construcción de la obra. Para lo cual se desarrollarán los siguientes programas:

6.1 Programa de educación ambiental.

6.1.1 Justificación

Mediante la implementación de este programa se pretende educar a todo el personal que forme parte del proyecto en la importancia de proteger el medio ambiente.

6.1.2 Objetivos

Procurar que todo el personal que intervenga en el desarrollo del proyecto se comprometa con la tarea de proteger el medio ambiente.

6.1.3 Impactos a controlar

Con la educación del personal se pretende mitigar aquellos impactos causados por la falta de conocimiento de las normas o de las propiedades de los materiales a utilizar. Enseñando las formas correctas de almacenamiento, la forma de disponer los desechos sin que estos generen un impacto negativo, entre otros.

Descripción de actividades

Este programa se desarrollara mediante conferencias dictadas al personal que se va vinculando a la obra en las cuales se les darán las pautas necesarias para cuidar el medio ambiente.

Participantes

Todo el personal de la obra.

6.1.4 Tiempo de ejecución

Este programa debe desarrollarse durante la etapa de contratación del personal antes de iniciar la obra al igual que cuando ingrese personal nuevo durante el transcurso de la obra.

6.1.5 Costos

Este programa no debe generar costos adicionales al proyecto por lo cual se debe incluir en la administración por parte del contratista.

6.2 Programa de señalización nocturna y diurna de la obra.

6.2.1 Justificación

En el proceso de construcción de obras de rehabilitación es necesario instalar señales preventivas con el fin de proteger a los usuarios de la vía. Además se hace necesario en las horas del día y en las zonas donde se encuentre personal trabajando contar con personal con señales de pare o siga para dar el derecho de vía a los autos que circulen por el sector.

Por otro lado es necesario en horas de la noche instalar señales luminosas en las zonas donde se requiera.

6.2.2 Objetivos

Indicar al contratista de la obra que debe dar cumplimiento a las normas establecidas por el Ministerio de Obras Públicas y Transporte de acuerdo con la resolución 1937 del 30 de marzo de 1994.

6.2.3 Impactos a controlar

Evitar los accidentes de transito en la etapa de construcción del proyecto.

6.2.4 Descripción de actividades

De acuerdo con la resolución 1937/94 se deben establecer como mínimo seis (6) señales en cada frente de trabajo y por lo menos cinco (5) señales en los sitios considerados como peligrosos. Estas señales deben estar localizadas a 200 m antes de cada uno de estos sitios, con avisos sucesivos a medida que se vaya aproximando al sitio de labores, en zonas de curvas la señalización se debe localizar previamente a la obra, desde el inicio de la curva.

La señalización debe estar complementada con conos de colores, canecas y barricadas, de acuerdo con las circunstancias de cada sitio.

Se deben localizar antorchas en la noche, en los frentes de trabajo y puntos donde se presente algún tipo de riesgo para los transeúntes o los conductores; estas antorchas deben permanecer encendidas desde las 18 horas hasta las 6 horas del día siguiente.

Las áreas de trabajo deben estar debidamente demarcadas con cinta reflectiva durante el tiempo que duren las obras del proyecto.

Durante el día se deben localizar dos obreros uno a la entrada del proyecto y otro a la salida, los cuales estarán encargados de dirigir el tráfico vehicular.

6.2.5 Participantes

Para el desarrollo de este programa se elegirán algunos de los obreros para que sean los encargados de ir moviendo las señales a medida que la obra avance. También se realizara un entrenamiento especial a las personas encargadas de otorgar el derecho de vía a los automóviles que transiten por los sitios donde se estén llevando a cabo los trabajos.

6.2.6 Tiempo de Duración

Este programa se debe desarrollar durante todo el proceso de construcción de la obra.

6.2.7 Costos del Programa

Este programa tiene un costo aproximado de cuatro millones cuatrocientos ochenta mil pesos (\$4'480.000,00).

6.2.8 Responsable

El directo responsable deberá ser el contratista, pero con la supervisión de una Interventoría ambiental contratado por la entidad ejecutora del proyecto.

6.3 Programa de acercamiento y comunicación de la realización del proyecto.

6.3.1 Justificación

El programa de acercamiento y comunicación a la población es indispensable para el desarrollo de del proyecto tanto en la parte de consecución de la mano de obra como en la colaboración que pueda prestar la comunidad.

6.3.2 Objeto

Dar a conocer el proyecto a la comunidad en general.

6.3.3 Impactos a controlar

La generación de falsa expectativas en el desarrollo del proyecto.

6.3.4 Descripción de actividades

Realizar reuniones informativas con la comunidad en general con el fin de enterarla sobre el proyecto, el personal que va ha estar a cargo entre otros.

6.3.5 Participantes

La firma constructora designara una persona encargada de las reuniones con la comunidad. La cual actuara en coordinación con la interventoría.

6.3.6 Tiempo de ejecución

Se deben desarrollar charlas durante toda la ejecución del proyecto para que la comunidad conozca en que etapa se encuentro.

6.3.7 Costo del programa

El programa no debe generar ningún costo adicional al proyecto y su costo deberá ser asumido en su totalidad por el contratista.

6.3.8 Responsable

La responsabilidad recaerá directamente sobre el contratista.

6.4 Programa de rocería y limpieza.

6.4.1 Justificación

Para el buen desarrollo de las actividades del proyecto se hace necesario rozar y limpiar la vía antes de iniciar las demás actividades de este.

6.4.2 Objetivos

Limpiar la vía a rehabilitar para mejorar las condiciones de trabajo.

6.4.3 Impactos a controlar

Incremento de los accidentes en la etapa de construcción.

6.4.4 Descripción de actividades

Esta actividad consiste en limpiar la vía en los sitios donde el pasto este muy alto y obstaculice el buen funcionamiento de la vía durante su rehabilitación.

6.4.5 Tiempo de ejecución

Al iniciar la ejecución del proyecto.

6.4.6 Costo

El costo aproximado de esta actividad es de quinientos ochenta y cuatro mil pesos aproximadamente.

6.4.7 Responsable

El contratista con la supervisión del interventor ambiental.

6.5 Programa de empradización

6.5.1 Justificación

Este programa es parte fundamental en la estabilización de las laderas inestables.

6.5.2 Objetivos

Recuperar las laderas afectadas por la erosión.

6.5.3 Impactos a controlar

Evitar la erosión y el arrastre de material de las laderas.

6.5.4 Tiempo de ejecución

Este programa se desarrollará después de ejecutar las obras de perfilada de taludes y tardara el tiempo que sea necesario para la siembra de las especies.

6.5.5 Costos

El costo aproximado de este programa es de setecientos un mil novecientos cincuenta y dos pesos (\$ 701.952).

6.5.6 Responsable

El contratista bajo la supervisión de la Interventoría ambiental.

6.6 Programa de manejo y disposición final de sobrantes

6.6.1 Justificación

Las obras de rectificación de una vía existente requieren un mínimo movimiento de tierra. El sobrante de este movimiento debe ser dispuesto adecuadamente en sitios antes elegidos por el interventor o por la entidad contratante con el fin de no generar impactos ambientales negativos.

6.6.2 Objetivos

Minimizar los daños ambientales por la mala disposición de los residuos.

6.6.3 Impactos a Controlar

Cambios abruptos en el uso del suelo. Daños de la vegetación existente. Contaminación de las corrientes de agua.

6.6.4 Tiempo de ejecución

Durante toda la ejecución del proyecto, garantizando que al finalizar los trabajos no se encontrará ningún desperdicio en un lugar distinto al dispuesto por la Interventoría o por la entidad contratante.

6.6.5 Costos del programa

El programa tiene un costo aproximado de veintinueve millones seiscientos cuarenta y cuatro mil ochocientos pesos (\$29.644.800,00).

6.6.6 Responsable

El contratista, bajo la supervisión de la Interventoría Ambiental.

6.7 Programa de seguimiento y control de la maquinaria y equipos

6.7.1 Justificación

Se busca evitar que la maquinaria y equipos usados en la ejecución del proyecto causen un impacto ambiental negativo.

6.7.2 Objetivos

Verificar que la maquinaria que se utilizará en la ejecución del proyecto se mantenga en buen estado.

6.7.3 Impactos a controlar

Contaminación de suelo, de las fuentes de agua o de al atmósfera.

6.7.4 Tiempo de ejecución

Este seguimiento se debe realizar durante toda la ejecución del proyecto.

6.7.5 Costos del Programa

El costo de este programa debe ser incluido en el contrato de interventoría ambiental.

6.7.6 Responsable

El contratista bajo la supervisión de la Interventoría Ambiental

6.8 Programa de seguimiento y monitoreo

6.8.1 Justificación

Con la ejecución de este programa se debe asegurar el cumplimiento del presente plan de manejo ambiental.

6.8.2 Objetivos

Este programa pretende dar a la interventoría ambiental las pautas necesarias par hacer cumplir adecuadamente cada uno de los programas del plan.

6.8.3 Impactos a controlar

Todos los mencionados en los anteriores programas.

6.8.4 Tiempo de ejecución

Este programa se debe ejecutar durante toda la ejecución del proyecto.

6.8.5 Costos del programa

Este programa tiene un costo aproximado de nueve millones de pesos (\$9'000.000,00)

6.8.6 Responsable

Interventor Ambiental y/o el contratista, según lo disponga la entidad contratante.

7 PRESUPUESTO Y APU

7.1 VIA PUENTE LA LIBERTAD - EL ARBOLITO en el sector k17+970 AL K19+970

ITEM	NOMBRE	UNIDAD	CANTIDAD	PRECIO	TOTAL
1	Replanteo topográfico	ml	2,000	\$ 1,046	\$ 2,092,000
2	Excavaciones en material común incluye conglomerado)	m3	4,000	\$ 7,739	\$ 30,956,000
3	Excavaciones en roca	m3	1,500	\$ 31,772	\$ 47,658,000
4	Concreto cunetas revestidas	m3	200	\$ 255,961	\$ 51,192,200
5	Subbase granular	m3	2,500	\$ 25,898	\$ 64,745,000
6	Base granular triturada	m3	2,000	\$ 35,898	\$ 71,796,000
7	Imprimación con emulsión CRL	m2	10,000	\$ 2,029	\$ 20,290,000
8	Mezcla densa en caliente MDC- 2	m3	500	\$ 235,037	\$ 117,518,500
9	Material filtrante	m3	500	\$ 32,438	\$ 16,219,000
10	Geotextil NT 1600	m2	3,000	\$ 2,263	\$ 6,789,000
11	Retiro de sobrantes	m3	2,000	\$ 11,580	\$ 23,160,000
12	Enrocado para canal trapezoidal tipo i y ii	m3	70	\$ 133,400	\$ 9,338,000
13	Concreto ciclópeo fundaciones	m3	1	\$ 193,824	\$ 193,824
14	Concreto ciclópeo elevaciones	m3	4	\$ 217,344	\$ 869,376
15	Suministro e instalación tubería de 24	ml	30	\$ 174,081	\$ 5,222,430
16	Concreto canal rectangular	m3	200	\$ 275,214	\$ 55,042,800
17	Transporte material > 40 km (corte subbase base afirmado)	m3-km	265,000	\$ 702	\$ 186,030,000
ITEM	NOMBRE	UNIDAD	CANTIDAD	PRECIO	TOTAL

18	Plan de manejo ambiental	gl	1	\$ 3,500,000	\$ 3,500,000
19	Revegetalización con grama	m2	120	\$ 4,570	\$ 548,400
20	Trinchos en guadua	ml	100	\$ 23,710	\$ 2,371,000
21	Ensayos de laboratorio	un	60	\$ 46,000	\$ 2,760,000
22	Limpieza de obras	un	30	\$ 25,391	\$ 761,730
23	Rocería	m2	3,000	\$ 152	\$ 456,000
					==========
	TOTAL COSTOS DIRECTOS				\$ 719,509,260
	COSTOS INDIRECTOS				
	=======================================				
	Costo Directo				\$ 719,509,260
	ADMINISTRACION		16.00%		\$ 115,121,482
	IMPREVISTOS		5.00%		\$ 35,975,463
	UTILIDAD		7.00%		\$ 50,365,648
					=========
	TOTAL COSTO OBRAS			TOTAL:	\$ 920,971,853.00

NOTA: El anterior presupuesto no incluye los costos generados por la INTERVENTORIA DE OBRA, ni los de la INTERVENTORIA AMBIENTAL.

7.2 ANALISIS DE PRECIOS UNITARIOS DE LA OBRA VIA PUENTE LA LIBERTAD - EL ARBOLITO EN EL SECTOR K17+970 AL K19+970

1	REPLANTEO TOPOGRAFICO				Equipo	Material	Gente	Otros
COMIS	Comisión topográfica	1/3155	mes	\$ 3,300,000		\$ 1,046		
	DIRECTO: \$ 1046/ ML					\$ 1,046		
	+28% AIU: \$ 1339/ ML							

EXCAVACIONES EN MATERIAL COMUN INCLUYE 2 CONGLOMERADO)

					Equipo	Material	Gente	Otros
HER01	Herramientas menores	0.191	un	\$ 1,000	\$ 191			
AYU01	Ayudante mas prestaciones	0.37	día	\$ 20,400			\$ 7,548	
	DIRECTO: \$ 7739/ M3				\$ 191		\$ 7,548	
	+28% AILL: \$ 9906/ M3							

3	EXCAVACIONES EN ROCA				Equipo	Material	Gente	Otros
HER01	Herramientas menores	0.727	un	\$ 1,000	\$ 727			
DIN01	Dinamita	0.33	kg	\$ 12,500		\$ 4,125		
CORD1	Cordón detonante 3 grs	3	ml	\$ 1,000		\$ 3,000		
FUL01	Fulminante	2	un	\$ 1,000		\$ 2,000		
AYU01	Ayudante mas prestaciones	0.9	día	\$ 20,400			\$ 18,360	
TRADI	Transporte dinamita	1	un	\$ 560				\$ 560
TALAD	Taladro	1.5	hora	\$ 2,000		\$ 3,000		
	DIRECTO: \$ 31772/ M3				\$ 727	\$ 12,125	\$ 18,360	\$ 560
	+28% AIU: \$ 40668/ M3							

4	CONCRETO CUNETAS REVESTIDAS				Equipo	Material	Gente	Otros
HER01	Herramientas menores	0.919	un	\$ 1,000	\$ 919			
CON10	Concreto 210 kg/cm2	1.05	m3	\$ 159,880		\$ 167,874		
CUA02	Cuadrilla mae-ofi-4ayudantes	0.49	día	\$ 163,200			\$ 79,968	
FOR04	Formaleta	2	un	\$ 3,600	\$ 7,200			
	DIRECTO: \$ 255961/ M3				\$ 8,119	\$ 167,874	\$ 79,968	
	+28% AIU: \$ 327630/ M3							

5	SUBBASE GRANULAR		Equipo	Material	Gente	Otros		
HER01	Herramientas menores	1.341	un	\$ 1,000	\$ 1,341			
SUBBA	Sub-base granular	1.25	m3	\$ 14,000		\$ 17,500		
CUA02	Cuadrilla mae-ofi-4ayudantes	0.003	día	\$ 163,200			\$ 490	
VIBRO	Vibro compactador autopropulsado	1/25	hora	\$ 50,000	\$ 2,000			
MOTON	Motoniveladora	1/15	hora	\$ 55,000	\$ 3,667			
CARRO	Carrotanque irrigador agua	0.04	hora	\$ 22,500	\$ 900			
	DIRECTO: \$ 25898/ M3				\$ 7,908	\$ 17,500	\$ 490	

6	BASE GRANULAR TRITURADA		Equipo	Material	Gente	Otros		
HER01	Herramientas menores	1.341	un	\$ 1,000	\$ 1,341			
BASEG	Subbase granular	1.25	m3	\$ 22,000		\$ 27,500		
CUA02	Cuadrilla mae-ofi-4ayudantes	0.003	día	\$ 163,200			\$ 490	
VIBRO	Vibrocompactador autopropulsado	1/25	hora	\$ 50,000	\$ 2,000			
MOTON	Motoniveladora	1/15	hora	\$ 55,000	\$ 3,667			
CARRO	Carrotanque irrigador agua	0.04	hora	\$ 22,500	\$ 900			
	DIRECTO: \$ 35898/ M3				\$ 7,908	\$ 27,500	\$ 490	
	+28% AIU: \$ 45949/ M3							

7	IMPRIMACION CON EMULSION CRL				Equipo	Material	Gente	Otros
EMULS	Emulsión para imprimación crl	0.6	lt	\$ 800		\$ 480		
CARRT	Carrotanque irrigador de asfalto	0.015	hora	\$ 31,250	\$ 469			
HER01	Herramientas menores	0.427	un	\$ 1,000	\$ 427			
CUA02	Cuadrilla mae-ofi-4ayudantes	0.004	día	\$ 163,200			\$ 653	
	DIRECTO: \$ 2029/ M2				\$ 896	\$ 480	\$ 653	
	+28% AIU: \$ 2597/ M2							_

8	MEZCLA DENSA EN CALIENTE MDC- 2				Equipo	Material	Gente	Otros
HER01	Herramientas menores	0.745	un	\$ 1,000	\$ 745			
CONCR	Concreto asfáltico	1.2	m3	\$ 180,000		\$ 216,000		
CUA02	Cuadrilla mae-ofi-4ayudantes	0.06	día	\$ 163,200			\$ 9,792	
VIBRO	Vibrocompactador autopropulsado	1/20	hora	\$ 50,000	\$ 2,500			
COMPA	Compactador tandem de llantas	1/22	hora	\$ 55,000	\$ 2,500			
TERMI	Finisher	1/20	hora	\$ 70,000	\$ 3,500			
	DIRECTO: \$ 235037/ M3				\$ 9,245	\$ 216,000	\$ 9,792	
	+28% AIU: \$ 300847/ M3							

9	MATERIAL FILTRANTE				Equipo	Material	Gente	Otros
CUA02	Cuadrilla mae-ofi-2ayudantes	0.021	día	\$ 163,200			\$ 3,427	
PIE01	Piedra	1.15	m3	\$ 25,000		\$ 28,750		
HER01	Herramientas menores	0.261	un	\$ 1,000	\$ 261			
	DIRECTO: \$ 32438/ M3				\$ 261	\$ 28,750	\$ 3,427	
	+28% AIU: \$ 41521/ M3							

10	GEOTEXTIL N.T. 1600				Equipo	Material	Gente	Otros
GEOTE	Geotextil n.t 1600	1.01	m2	\$ 1,600		\$ 1,616		
CUA02	Cuadrilla mae-ofi-4ayudantes	0.0039	día	\$ 163,200			\$ 636	
HER01	Herramientas menores	0.011	un	\$ 1,000	\$ 11			
	DIRECTO: \$ 2263/ M2				\$ 11	\$ 1,616	\$ 636	
	+28% AIU: \$ 2897/ M2			•				

11	RETIRO DE SOBRANTES				Equipo	Material	Gente	Otros
VOL01	Volqueta 6 m3	0.22	hora	\$ 42,000	\$ 9,240			
HER01	Herramientas menores	0.708	un	\$ 1,000	\$ 708			
AYU01	Ayudante mas prestaciones	0.08	día	\$ 20,400			\$ 1,632	
	DIRECTO: \$ 11580/ M3				\$ 9,948		\$ 1,632	
	+28% AIU: \$ 14822/ M3			•				

12	ENROCADO PARA CANAL TRAPEZOIDA	ENROCADO PARA CANAL TRAPEZOIDAL TIPO I Y II						Otros
HER01	Herramientas menores	1	un	\$ 1,000	\$ 1,000			
CON10	Concreto 210 kg/cm2	0.15	m3	\$ 159,880		\$ 23,982		
CUA02	Cuadrilla mae-ofi-4ayudantes	0.49	día	\$ 163,200			\$ 79,968	
FOR04	Formaleta	2	un	\$ 3,600	\$ 7,200			
PIE01	Piedra	0.85	m3	\$ 25,000		\$ 21,250		
	DIRECTO: \$ 133400/ M3				\$ 8,200	\$ 45,232	\$ 79,968	
	+28% AIU: \$ 170752/ M3			•				

13	CONCRETO CICLOPEO FUNDACIONES				Equipo	Material	Gente	Otros
HER01	Herramientas menores	1	un	\$ 1,000	\$ 1,000			
CON09	Concreto ciclópeo	1.05	m3	\$ 105,928		\$ 111,224		
CUA02	Cuadrilla mae-ofi-4ayudantes	0.5	día	\$ 163,200			\$ 81,600	
	DIRECTO: \$ 193824/ M3				\$ 1,000	\$ 111,224	\$ 81,600	
	+28% AIU: \$ 248095/ M3							

14	CONCRETO CICLOPEO ELEVACIONES				Equipo	Material	Gente	Otros
HER01	Herramientas menores	1	un	\$ 1,000	\$ 1,000			
CON09	Concreto ciclópeo	1.05	m3	\$ 105,928		\$ 111,224		
CUA02	Cuadrilla mae-ofi-4ayudantes	0.6	día	\$ 163,200			\$ 97,920	
FOR04	Formaleta	2	un	\$ 3,600	\$ 7,200			
	DIRECTO: \$ 217344/ M3				\$ 8,200	\$ 111,224	\$ 97,920	
	+28% AIU: \$ 278200/ M3							

15	15 SUMINISTRO E INSTALACION TUBERIA DE 24				Equipo	Material	Gente	Otros
HER01	Herramientas menores	1	un	\$ 1,000	\$ 1,000			
MOR01	Mortero 1:3	0.05	m3	\$ 182,410		\$ 9,121		
CUA02	Cuadrilla mae-ofi-4ayudantes	0.3	día	\$ 163,200			\$ 48,960	
TUB24	Tubería de 24	1	un	\$ 115,000		\$ 115,000		
	DIRECTO: \$ 174081/ ML				\$ 1,000	\$ 124,121	\$ 48,960	
	+28% AIU: \$ 222824/ ML							

16	CONCRETO CANAL RECTANGULAR				Equipo	Material	Gente	Otros
HER01	Herramientas menores	1	un	\$ 1,000	\$ 1,000			
CON10	Concreto 210 kg/cm2	1.05	m3	\$ 159,880		\$ 167,874		
CUA02	Cuadrilla mae-ofi-4ayudantes	0.5	día	\$ 163,200			\$ 81,600	
FOR04	Formaleta	3	un	\$ 3,600	\$ 10,800			
ACEBA	Acero de baja 37.000 p.s.i	20.5	kg	\$ 680		\$ 13,940		
	DIRECTO: \$ 275214/ M3				\$ 11,800	\$ 181,814	\$ 81,600	
	+28% AIU: \$ 352274/ M3							

TRANSPORTE MATERIAL > 40 KM (CORTE SUBBASE BASE 17 AFIRMADO)

				Equipo	Material	Gente	Otros
VOL01 Volqueta 7 m3	1/59.8	hora	\$ 42,000	\$ 702			
DIRECTO: \$ 702/ M3-KM				\$ 702			
+28% AIU: \$ 899/ M3-KM			•				

	8 PLAN DE MANEJO AMBIENTAL			Equipo	Material	Gente	Otros
OBMT	A Obras de mitigación ambiental	1	gl \$ 3,500,000				\$ 3,500,000
	DIRECTO: \$ 3500000/ GL						\$ 3,500,000
	+28% AIU: \$ 4480000/ GL		·				

19	REVEGETALIZACION CON GRAMA				Equipo	Material	Gente	Otros
HER01	Herramientas menores	1.05	un	\$ 1,000	\$ 1,050			
AYU01	Ayudante mas prestaciones	0.05	día	\$ 20,400			\$ 1,020	
GRAMA	Grama	1	m2	\$ 2,500		\$ 2,500		
	DIRECTO: \$ 4570/ M2				\$ 1,050	\$ 2,500	\$ 1,020	
	+28% AIU: \$ 5850/ M2			•				

20	TRINCHOS EN GUADUA	Equipo	Material	Gente	Otros			
HER01	Herramientas menores	2.5	un	\$ 1,000	\$ 2,500			
AYU01	Ayudante mas prestaciones	1/5	día	\$ 20,400			\$ 4,080	
GUADU	Guadua	8.5	ml	\$ 2,000		\$ 17,000		
ALAMB	Alambre galvanizado no 13	0.1	kg	\$ 1,300		\$ 130		
	DIRECTO: \$23710/ ML				\$ 2,500	\$ 17,130	\$ 4,080	
	+28% AIU: \$ 30349/ ML							

21	ENSAYOS DE LABORATORIO				Equipo	Material	Gente	Otros
ENSAY	Ensayos de laboratorio	1	gl	\$ 45,000				\$ 45,000
HER01	Herramientas menores	1	un	\$ 1,000	\$ 1,000			
	DIRECTO: \$ 46000/ UN				\$ 1,000			\$ 45,000
	+28% AIU: \$ 58880/ UN							

22	LIMPIEZA DE OBRAS				Equipo	Material	Gente	Otros
HER01	Herramientas menores	0.472	un	\$ 1,000	\$ 472			
AYU01	Ayudante mas prestaciones	1.2215	día	\$ 20,400			\$ 24,919	
	DIRECTO: \$ 25391/ UN				\$ 472		\$ 24,919	
	+28% AIU: \$ 32500/ UN			<u>.</u>				

23	ROCERIA				Equipo	Material	Gente	Otros
AYU01	Ayudante mas prestaciones	1/200	día	\$ 20,400			\$ 102	
HER01	Herramientas menores	0.05	un	\$ 1,000	\$ 50			
	DIRECTO: \$ 152/ M2				\$ 50		\$ 102	
	+28% AIU: \$ 195/ M2			•				

8 CONCLUSIONES Y RECOMENDACIONES

- Por las condiciones topograficas de la zona en la cual se realizara el proyecto, no se pudo cumplir con todas las especificaciones técnicas del INVIAS para este tipo de carreteras, pero el alineamiento tanto horizontal como vertical fue mejorado notablemente.
- Para el diseño del pavimento se utilizaron tres métodos: Bajos Volúmenes de Tránsito del INSTITUTO NACIONAL DE VIAS –INVIAS-, AASHTO y ROAD NOTE 31 1993. Con los cuales se obtuvieron estructuras similares, pero finalmente se adoptó la estructura de 5 cm concreto asfáltico, 15 de base granular y 20 de subbase, resultante del diseño por el método de Bajos Volúmenes de Tránsito del INVIAS.
- La solución de rehabilitación planteada en este proyecto debe ejecutarse a corto plazo, evitando a si daños mayores en la estructura y por ende sobrecostos al momento de la ejecución de la misma, al igual que la obsolescencia del prediseño.
- Los métodos de construcción y los materiales a utilizar deben regirse por las normas que especifican la construcción de carreteras en nuestro país.
- Para lograr la vida útil de las vías se debe realizar un mantenimiento periódico a lo largo de la vía, lo cual debe incluir no solo arreglos en la estructura del pavimento, sino la ejecución de un mantenimiento preventivo el cual consiste en la limpieza de cunetas, obras transversales, zonas de laderas.
- Toda la vía en estudio carece de señalización horizontal y vertical, por ello se recomienda su demarcación y ubicación de señales verticales en los sitios que contribuye a la seguridad del usuario.
- El patrimonio vial del departamento de Caldas debe ser conservado y mejorado cada día, para tal fin se deben realizar estudios periódicos que permitan diagnosticar problemas en las diferentes vías, al igual que su posible solución.

BIBLIOGRAFÍA

- 1. INSTITUTO NACIONAL DE VIAS. Manual de diseño de geométrico. 1998.
- 2. INSTITUTO NACIONAL DE VIAS. Manual de diseño de pavimentos asfálticos en vías con bajos volúmenes de transito. 1997
- 3. CORPOCALDAS, INVIAS. Manual para el control de la erosión. 1999
- 4. CARDENAS Grisales, James. Diseño Geométrico de Vías. ECOE ediciones 2000.
- 5. BRAVO Emilio, Paulo. Trazado y Localización de Carreteras. Tercera edición.
- 6. ROAD NOTE 31 1993.
- 7. Guía metodológica AASTHO. 1994.