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trital Francisco José de Caldas and the Universidad Nacional in Bogotá - Colombia. A
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Abstract

Fuzzy Linear Programming (FLP) is an extension of linear programming that allows us

to deal with inexact coefficients like the ones that appear in real decision-making problems

where human estimations of those coefficients involve uncertainty.

For the past 40 years there has been a vibrant research activity on methods to solve Fuzzy

Linear Programming (FLP) problems with uncertain coefficients, especially its constraints.

Some real decision-making problems need to represent multiple human expert estimates with

no consensus among their perceptions or opinions, so there is a need for finding solutions to

this kind of practical issues. In this thesis, both a general model and a method for solving

FLP problems whose constraints are represented as Type-2 fuzzy numbers based on the per-

ceptions and opinions of multiple experts, are proposed.

Keywords: Fuzzy set theory, Operations Research, Linear programming, Optimiza-

tion, Type-2 fuzzy sets.

Abstract

La Programación Lineal Difusa (FLP) es una extensión de programación lineal que nos per-

mite manejar coeficientes inexactos como aquellos que aparecen en situaciones reales de toma

de decisiones donde dichos parámetros incluyen incertidumbre proveniente del razonamiento

humano.

En los últimos 40 años ha habido un vibrante movimiento en investigación alrededor de

métodos para resolver problemas FLP con coeficientes inciertos, especialmente sus restric-

ciones. Algunos problemas reales de toma de decisiones necesitan múltiples estimaciones

dadas por múltiples expertos, los cuales no necesariamente están de acuerdo en sus opin-

iones y/o percepciones, por lo que se necesita encontrar soluciones a dichos problemas. En

esta Tesis Doctoral, se propone tanto un modelo como un método para la resolución de

problemas FLP cuyas restricciones son números difusos Tipo-2 provenientes de múltiples

opiniones y percepciones de múltiples expertos.

Palabras clave: Teoŕıa de conjuntos difusos, Investigación de operaciones, Progra-

mación lineal, Optimización, Conjuntos diifusos Tipo-2.
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Chapter 1

Introduction and Motivation

During the last six decades, optimization and heuristic techniques became an important

tool for decision makers, usually managers or engineers. Uncertainty in decision making

increases the complexity of the problem because the solution method have to deal with: i)

an appropriate representation of the uncertainty, ii) the effects on the behavior of the system

due to the possible fluctuations introduced by the uncertainty and iii) a strategy or method

to find a decision or solution that balances adequately the goals of the decision making

problem with the uncertainty of achieving them.

The two most popular frameworks used to represent uncertainty are probability theory (ran-

dom variables) and fuzzy logic (fuzzy sets) alongside appropriate methods to analyze and

solve decision-making problems. While probability theory is based on measuring repeated

events to compute its frequency and infer the frequency of occurrence of known events in

order to have an idea of the behavior of a random variable, fuzzy sets measure the perception

of concepts and words regarding a random variable.

Probability theory originated on early 1700’s with Bernoulli’s works on probable events,

and started to be developed to measure randomness of the occurrence of known events

which are defined over a well known variable a.k.a Probabilistic Uncertainty. Its application

over different scenarios is wide, worth to mention statistical inference, experimental design,

multivariate analysis, and stochastic optimization.

As fast as Lofti A. Zadeh created fuzzy sets in 60’s, its use in computing with words (as

Type-n fuzzy uncertainty) was proposed, where his main focus were classical fuzzy sets (a.k.a

Type-1 fuzzy sets). Type-1 fuzzy sets measure numerical uncertainty regarding a word or

concept defined over a variable a.k.a Fuzzy Uncertainty. The analysis of non-probabilistic

uncertainty is a recent area that offers an appropriate starting point to cover these problems,

visualized in a fuzzy sets environment in the sense that no perfect measurement exists. From

late 70’s, decision making has been influenced by Zadeh’s results, so Linear programming

(FLP) has applied its definitions to cover imprecision on their parameters, having successful

applications in the last four decades.

This way, both approaches are considered itself as theories, where their most popular op-
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timization applications are stochastic and fuzzy programming including stochastic linear

programming and fuzzy linear programming. Many problems not only include randomness

and/or numerical uncertainty but fuzzy, such as the one coming from imprecision of numer-

ical measures and human perception about its meaning (usually expressed by words and

concepts).

On the other hand, many LP cases have lost numerical data or they have unreliable data, so

the parameters of the model have to be defined using experts as information source. Percep-

tions of different experts about the parameters of an LP include two kinds of uncertainty:

numerical and linguistic (words and concepts), so LPs in those conditions cannot be fully

covered by classical fuzzy sets, or statistical approaches.

Uncertainty related to words and Type-2 fuzzy sets for words are called to be important

fields of study in the solution of complex problems. This work shows a way to use Type-

2 fuzzy sets to cover uncertainty coming from perceptions of multiple experts alongside

numerical imprecision over the constraints of an LP problem, in order to solve LPs that

include linguistic uncertainty.

This Doctoral thesis is divided into two main parts: a first one that presents preliminary

concepts and the main aspects of the initial proposal, and a second part that shows the

results of the work, including two optimization methods for solving LPs with Interval Type-

2 fuzzy constraints, two application examples alongside its respective explanations, and the

obtained publications of this thesis. Finally, this report shows some concluding remarks, and

the bibliography used in the work.



Chapter 2

The initial proposal

2.1 Problem Identification

Many decision making problems has no either historical data or information, so the knowl-

edge of the experts is an alternative for solving the problem. LP models are popular, so its

use in cases where only information from experts is available, is an interesting field to be

covered.

A common issue presented in many applications is related to the perception of different

experts about its parameters. This leads to misspecification increasing its uncertainty level.

So, those opinions should be considered by the analyst when trying to find an optimal

solution. Figure 2.1 shows how different opinions can lead to define a Type-2 fuzzy set in

decision making scenarios.

Figure 2.1: Different experts’ opinions

The relatively recent use of Type-2 fuzzy sets has opened an important window for mod-

eling engineering problems under uncertainty. Its applicability to LP, decision making and

related problems seems to be wide. Furthermore, the design of optimization methods for
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LP problems involving linguistic uncertainty is an opened problem, where Type-2 fuzzy sets

appeared as useful uncertainty-based information measures.

It seems that the natural course in fuzzy optimization is going to uncertain fuzzy sets from

crisp sets. More specifically, the research problem is related with the following aspects:

• There is no an optimization method for handling the experts’ opinions and perceptions

of different variables of the system.

• Different kind of uncertainties can be presented when an LP model is defined, so the

use of linguistic uncertainty arises as a new field to be covered.

• The absence of decision making techniques for solving discord fuzzy LP problems in the

sense that different experts can define different fuzzy sets to represent his individual

perception about imprecise variables of the system.

Then, the main question of the problem becomes:

How to involve higher uncertainty levels to LP problems?

This problem can be divided in two main aspects: a first one related to mathematical

definitions about the model itself and a second one related to optimization methods that

potentially should be used to find solutions to the problem.

Some additional questions complements the problem:

1. What analytical and geometrical issues has the use of Interval Type-2 fuzzy sets on

the constraints of the LP model?

2. Can the classical optimization methods be extended to LP models with Interval Type-2

fuzzy constraints?

3. What mathematical and application issues should be kept in mind for defining a linear

programming problem in this framework?

This work focuses on provide basic mathematical definitions about linguistic uncertain LP

models and the design of an optimization method for this kind of problems. As always, some

selected theories should be taken as a basis for extending the problem by means of Type-2

fuzzy sets and solve it.

Remark 1 An important limitation of the use of fuzzy sets in some applications is related

to the definition of their shapes. This problem is not addressed in this work since LP models

are not intended to represent the dynamic behavior of a system but reach optimal solutions

over predefined systems. This way, we assume that the experts’ definitions of the shapes of

fuzzy sets lead to feasible problems like in classical LP models.
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2.1.1 Objectives

General Objective :

Define an optimization model that allows to solve LP problems where its constraints includes

linear Interval Type-2 fuzzy sets.

Specific Objectives

• Formally define the concept of a solution of an Interval Type-2 fuzzy LP problem.

• Develop a formal framework to solve LP problems with Interval Type-2 constraints.

• Evaluate the potential techniques that can find solutions to Interval Type-2 fuzzy LP

problems, including an extension of the Zimmermann’s method.

• Develop an optimization method for a linear programming model with IT2FS con-

straints.

• Validate the developed method through both simulated and study cases related to

industrial engineering sciences like logistics and production planning.

2.2 Antecedents and rationale

Optimization, heuristics and statistical techniques have had an important role in decision

making during the last sixty years, being useful for engineers, economists, staticians, man-

agers and people that make decisions as best as possible according to their goals.

Uncertainty is an important aspect of information which is defined in different ways, de-

pending on the problem and its characteristics. For our purposes we refer to uncertainty

in two ways: uncertainty from randomness that is defined as probabilistic measures where

there is no discussion about its definition, so we can say that probabilities are Precise. On

the other hand, uncertainty coming from the perception of an expert about a concept related

to a variable which can be measured by a Concept or Word with Imprecision.

Standard optimization techniques assume that the parameters of the system are uncertainty-

free and precise, which is not true in many real applications. Stochastic programming deals

with optimization problems where its parameters are random and comes from probabilistic

measures. On the other hand, the analysis of non-probabilistic uncertainty coming from

imprecision about a variable x ∈ X offers an appropriate starting point to cover problems

related to imprecise values of x ∈ X . This imprecision may appear in the parameters of

an LP model, so its potential applications are wide. LP models are among the most used

techniques for decision making under uncertainty due to its applicability, efficiency, and

capability to fit into hybrid concepts.
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2.2.1 From Type-1 to Interval Type-2 LPs

As we pointed out before, a Type-2 fuzzy set can deal with multiple experts’ opinion. This

way, Type-1 Fuzzy LP (T1FLP) deals with imprecision coming from a single expert, and

Interval Type-2 Fuzzy LP (IT2FLP) deals with imprecision coming from multiple experts

which leads to have uncertainty over the linguistic label of a set A.

The use of Type-2 fuzzy sets in LP instead of Type-1 fuzzy sets allows us to handle higher

uncertainty levels which come from typical scenarios where the problem is being defined by

multiple experts, and they are not in agreement of using a single fuzzy set for representing

their perceptions about the problem.

The classical models proposed by Zimmermann, Verdegay, Rommelfanger, and Ramı́k among

others are based on the idea of satisfying one or more fuzzy objectives regarding a set of fuzzy

constraints, where all sets are defined by a single expert. The presented work is intended to

extend the results of the soft constraints method to an IT2FLP problem defined by multiple

experts, using a similar reasoning done by classical authors.

The use of fuzzy sets in LP problems has been treated by different approaches, all of them

trying to deal with imprecision on the parameters of a LP model through a linguistic variable

that defines a fuzzy set in order to measure the perception of an expert about a parameter.

Uncertainty related to linguistic variables (words) is given by different sources, so Type-2

fuzzy sets for words is a tool that deals with the opinion and perception of multiple experts

for solving complex problems.

We can summarize optimization techniques as follows:

Deterministic → Simplex, Interior point methods

Probabilistic → Stochastic processes, Stochastic optimization

Imprecise-valued → Fuzzy Optimization, Fuzzy LP

Linguistic → Type-2 fuzzy sets

Now, the problem of having higher uncertainty levels in fuzzy optimization is an open prob-

lem which we propose to be handled through Type-2 fuzzy sets, as a way to represent the

knowledge of the experts about the problem.

Fuzzy Linear Programming (FLP) is an approach which deals with imprecision on the pa-

rameters of an LP model using fuzzy sets. This model still faces with some open problems

such as non-polynomial complexity1, integer problems, etc, and our proposal which is related

to higher uncertainty levels.

1Although the simplex method proposed by Dantzig [10] has polynomial resolution time in practice,

Klee and Minty [11] demonstrated that there is a family of instances where the simplex method spends an

exponential solving time. This gave a formal framework to later develop Interior Point methods.
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2.3 The Linear Programming (LP) problem

The mathematical representation of the LP model is as follows:

Max
x

z = c′x+ c0

s.t. (2.1)

Ax 6 b

x > 0

where (x, c) ∈ R
n, c0 ∈ R, b ∈ R

m and A ∈ R
m×n.

According to Mora [12], Bazaraa [13], Dantzig [10], and Dantizg & Thapa [14] this model

assumes that all its parameters are deterministic. This means it has neither uncertainty nor

imprecision on A, b, c and c0. In other words, the parameters of a classical LP model are

considered as constants.

A crisp LP problem {c′x |Ax 6 b, x > 0} is the problem of solving n inequalities of the

system Ax 6 b achieving the best value of given a goal z = c′x, where a solution is a vector

x ∈ R which satisfies all the constraints of the problem Ax 6 b, {c′x |Ax 6 b, x > 0}. An

optimal solution x∗ is an extreme point with coordinates (x1, x2, · · · , xn) for which there is

no improvement of z, that is z∗ = sup{c′x |Ax = b, x > 0}, so we also have that z(x∗) >

z(x) ∀ x ∈ R.

From another point of view, the LP problem is based on the idea of composing a feasible

region which is simply the intersection among all constraints (defined as inequalities), and

then find the best value of the goal function z = c′x. Now, a solution is then any point

x ∈ R
n enclosed into ∩i∈RmAx 6 bi, and its optimal solution is simply sup

z=c′x

{∩i∈RmAx 6 bi}.

2.3.1 LP methods and algorithms

The LP model has well known optimization methods, and some extensions of the LP general

model shown in (3.11) have well defined solutions. The well known simplex method proposed

by Dantzig [10], and Dantizg & Thapa [14] and some interior point methods (see Karmarkar

[15] and [16], Mehrotra [17], Mehrotra & Ye [18], Mizuno et.al [19] and Roos et.al [19]) are

widely applied in LP problems due to their efficiency and robustness.

In this work, we are not focused on the complexity of the algorithm used to achieve a so-

lution, so we apply classical simplex routines over GAMSR© and MatLabR©. Perhaps the

selection of an efficient algorithm is an important computational aspect in optimization, our

goal is to find a solution of the problem before designing specialized algorithms.
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2.4 Basics on Fuzzy sets theory

2.4.1 Computing with words

As fuzzy sets were introduced by Lofti A. Zadeh in 1965, they became an alternative for

solving uncertain problems. The term “Computing with Words” was coined by Zadeh [20],

[21] and Jerry Mendel [22], [23], [24], [25] to refer to the way of how to represent words,

ideas and concepts for solving problems. This modeling framework tries to compute words

as inputs of a computing machine in order to obtain a word as an output while handling

linguistic uncertainty through Type-2 fuzzy sets (or higher-order fuzzy sets).

Although this framework is still not fully usable in optimization problems, its concepts, defi-

nitions of linguistic uncertainty, and uncertain fuzzy sets are compatibles with optimization.

The aim and scope of this work is to define a general model for LP problems with param-

eters treated as Interval Type-2 Fuzzy Sets (IT2FS) and design an optimization method.

The main idea is to deal with the perception and opinion of multiple experts about the

parameters of an LP model under linguistic uncertainty as a decision making tool.

2.4.2 Imprecision and fuzzy sets

Classical uncertainty is defined by probabilistic concepts and all their measures are based

on experimental evidence. This means that both probabilistic and stochastic approaches

assume that all observations are realizations of a well known process, and the underlying

uncertainty is considered as uncontrollable noise.

On the other hand, some problems have imprecise information about X . An alternative

way to handle this problem is by asking an expert for its own perception of the variable, so

his/her opinion may be a starting point to represent it.

As usual, the expert does not know the truth about X and different experts can have differ-

ent perceptions. Next sections are intended to explain how the concepts of both imprecision

and/or uncertainty can be applied in optimization.

Imprecision

The concept of imprecision is intimately related with uncertainty and the information needed

to define a specific variable. According to Klir [26], [27] and Wang and Klir [28], uncertainty

involved in any problem-solution situation can be given by some information deficiency, so

this concept is related to the information perceived by the analyst.

Another point of view is given by the mathematical body of evidence of X . X can be defined

as a constant, but it also can be defined by any function that represents imprecision over

the universe of discourse, so X can be represented through different measures: Fuzzy, Rough
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Sets, etc.

Uncertainty

According to Mendel [29], [22] and Klir & Yuan [26], the following sources of uncertainty

can be found in the quantitative analysis:

Uncertainty : Attribute of information, it is related to imprecision, vagueness and ambiguity

measures of a granular variable X , for instance, an interval valued variable x ∈ [x1, x2].

i) Fuzziness : Lack of definite or sharp distinctions.

ii) Ambiguity : One to many relationships.

a) Nonspecifity : Two or more alternatives are left unspecified.

b) Discord : Disagreement in choosing among several alternatives.

Roughly speaking, uncertainty represents higher levels of information deficiency, and their

measures are more complex than classical fuzzy sets. Some recent approaches used to mea-

sure this kind of uncertainty are Type-2 fuzzy sets, Intuitionistic fuzzy sets and interval-

valued sets, which are defined in next sections.

2.4.3 Crisp, Type-1 and Type-2 fuzzy sets concepts

First, some basic suppositions and concepts are presented before define the focus of this work.

Membership function

The concept of membership function is a generalization of the indicator function used in

classical sets theory. In this work, the indicator function is applied as membership function

without distinction. The definition of a membership function µA(·) is:

µA(·) : X → [0, 1] (2.2)

Remark 2 In this work we define the Universal Set (x ∈ U) as the space of real numbers,

so we have that (x ∈ R).

Singleton and Crisp sets

A set S is called singleton {S} if has a single element x ∈ R. In the real numbers R, S is a

constant.

S := {x : x = S} (2.3)
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This implies that µS(x) = 1, and µS(·) = 0 for every x /∈ S

S : X → {0, 1}

A set S is called Crisp if it is composed by an interval of elements that either belong or not

to S, that is:

µS(·) =

{

1 for x ∈ S

0 for x /∈ S
(2.4)

where S is an interval of elements [x̌, x̂], x, x̌, x̂ ∈ R.

Note that the membership function of a crisp set is defined as

µS(·) : X → {0, 1} (2.5)

Formally, the LP problem uses Singleton namely Constant, and Crisp namely Deterministic

or Boolean sets, so classical optimization LP models and algorithms are based on classical

sets operations.

Type-1 fuzzy sets

A fuzzy set is a generalization of a Crisp or Boolean set. It is defined on an universe of

discourse X and is characterized by a Membership Function namely µA(x) that takes values

in the interval [0,1]. A fuzzy set A may be represented as a set of ordered pairs of a generic

element x and its grade of membership function, µA(x), i.e.,

A = {(x, µA(x)) | x ∈ X} (2.6)

Now, A is contained into a family of fuzzy sets F = {A1, A2, · · · , Am}, each one with a

membership function {µA1
(x), µA2

(x); · · · , µAm
(x)} where µA(·) is a measure of belonging

of x regarding the fuzzy set A.

Here, A is a Linguistic Label that defines the sense of the fuzzy set through the concept

A, and it is the way how an expert perceives X and the shape of Ai. These concepts are

explained as follows.

Definition 1 (Membership Function µA(x)) The Membership Function of a set A called

µA(x) is a function which represents the degree of similarity of an element x ∈ X to the fuzzy

set A. It takes values in the interval [0,1], that is:

µA(x) : X → [0, 1] (2.7)

Formally, F is the set of all possible membership functions that x ∈ X could take. This

leads to an infinite number of fuzzy sets, which can be obtained as follows:

F = [0, 1]X
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Henceforth we do not make any distinction between a membership function µA(·) and its

linguistic label A when refer to a membership function, and we will refer to a Type-1 fuzzy

set by using µA(x) or A.

In this approach, µA(x) is defined either by mathematical evidence or by an expert who

establish his perception about X by means of A and its membership function µA(x). This

flexibility becomes fuzzy sets into an alternative tool for solving uncertain problems which

comes from imprecision. Some basic definitions of fuzzy sets are:

The height of A, h(A), of a fuzzy set is the largest membership degree obtained by any

element in A, this is

h(A) = sup
x∈X

A(x)

Now, the Normalization Law of a probability function sets that

∫ ∞

−∞

f(x; θ)dx = 1

while a Normalized fuzzy must fulfill

max
x∈X

{µA(x)} = 1

Remark 3 There is the possibility of having non-normalized fuzz sets, this meansmax
x∈X

{µA(x)} 6=

1. In this work we only consider normalized fuzzy sets due to its interpretability and mathe-

matical properties. This implies that h(A) = 1.

The Support of A, supp(A), is composed by all the elements of X that have nonzero mem-

bership in A, this means

supp(A) = {x |µA(x) > 0} ∀ x ∈ X (2.8)

The Core of a fuzzy set core(A) is the crisp set that contains all the elements of X that have

h(A) as membership degree, this is h(A) = 1

core(A) = {x |µA(x) = 1} ∀ x ∈ X (2.9)

The α-cut of µA(x) namely αA represents the interval of all values of x which has a mem-

bership degree equal or greatest than α, this means:

αA = {x |µA(x) > α} ∀ x ∈ X (2.10)

where the interval of values which satisfies αA is defined by

αA ∈

[

inf
x

αµA(x), sup
x

αµA(x)

]

(2.11)
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1

µA

x ∈ Rx̌ x̂

αA

x̄x1 x2

Figure 2.2: Type-1 Fuzzy set A

For simplicity we denote x1 = inf
x

αµA(x) and x2 = sup
x

αµA(x). A graphical display of a

triangular fuzzy set is given in Figure 2.2.

Note that supp(A) is the α-cut made over A for α = 0 and core(A) is the α-cut made over

A for α = 1. This is equivalent to say supp(A) = 0A and core(A) = 1A.

Here, A is a Type-1 fuzzy set, its universe of discourse is the set of all values x ∈ R,

the support of A, supp(A) is the interval x ∈ [x̌, x̂] and µA is a triangular function with

parameters x̌, x̄ and x̂. α is the degree of membership that an specific value x has regarding

A and the dashed region is an α-cut done over A.

A desirable property of a fuzzy set is the convexity, defined as follows

Theorem 1 (Klir [26]) A fuzzy set A on R is convex iff

A(λx1 + (1− λ)x2) > min[A(x1), A(x2)]

for all x1, x2 ∈ R and all λ ∈ [0, 1], where min denotes the minimum operator.

This property is especially useful in optimization because non-convex fuzzy sets have non-

continuous αA which implies that we should face the problem of having multiple intervals

that fulfill αA. To avoid this problem, we provide the following remark

Remark 4 For simplicity purposes, all the fuzzy sets used in this work are convex, often

known as α-convex sets. The set shown in Figure 2.2 is an example of an α-convex set.

Type-2 fuzzy sets

Now, a Type-2 fuzzy set is a collection of infinite Type-1 fuzzy sets into a single fuzzy set.

It is defined by two membership functions: The first one defines the degree of membership

of the universe of discourse Ω and the second one weights each one of the first Type-1 fuzzy

sets.
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According to Jerry Mendel in his book “Uncertain Rule-Based Fuzzy Logic Systems: Intro-

duction and New Directions”, (see [29]), [30], [22], [31], [32], [33], [34], [35], [36], [37], [38],

[39] some basic definitions of Type-2 fuzzy sets are given next:

Definition 2 (Type-2 fuzzy set) A Type-2 fuzzy set, Ã, is described as the following or-

dered pairs:

Ã = {(x, µÃ(x)) | x ∈ X} (2.12)

where µÃ(x)) is composed by an infinite amount of Type-1 fuzzy sets in two ways: Primary

fuzzy sets Jx weighted by Secondary fuzzy sets fx(u). In other words

Ã = {((x, u), Jx, fx(u)) | x ∈ X ; u ∈ [0, 1]} (2.13)

And finally we can get the following compact representation of Ã

Ã =

∫

x∈X

∫

u∈Jx

fx(u)/(x, u) =

∫

x∈X

[
∫

u∈Jx

fx(u)/u

]/

x, (2.14)

where x is the primary variable, Jx is the primary membership function associated to x, u

is the secondary variable and
∫

u∈Jx
fx(u)/u is the secondary membership function.

Uncertainty about Ã is conveyed by the union of all of the primary memberships, called the

Footprint Of Uncertainty of Ã [FOU(Ã)], i.e.

FOU(Ã) =
⋃

x∈X

Jx (2.15)

Therefore, the FOU includes all the embedded Jx weighted by the secondary membership

function fx(u)/u. These Type-2 fuzzy sets are known as Generalized Type-2 fuzzy sets,

(T2FS), since fx(u)/u is a Type-1 membership function. Now, an Interval Type-2 fuzzy set

(IT2FS) is a simplification of a T2FS in the sense that its secondary membership function

is assumed to be 1, as follows

Definition 3 (Interval Type-2 fuzzy set) An Interval Type-2 fuzzy set, Ã, is described

as:

Ã =

∫

x∈X

∫

u∈Jx

1/(x, u) =

∫

x∈X

[
∫

u∈Jx

1/u

]/

x, (2.16)

The main difference between T2 FS and IT2 FS lies in fx(u)/u, while a T2 FS uses any form

of Type-1 membership functions, an IT2 FS uses 1 as a unique weight for each Jx, being an

interval fuzzy set.

A FOU is bounded by two membership functions: An Upper membership function (UMF)

µ̄Ã(x) and a Lower membership function (LMF) µ
Ã
(x).
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αµ
A

x̄

FOU

Figure 2.3: Interval Type-2 Fuzzy set Ã with Uncertain � = �

For discrete universes of discourse X = {x1, x2, · · · , xN} and discrete Jx, an Embedded T1

FS, Ae has N elements, one each from Jx1
, Jx2

, · · · , JxN
, namely u1, u2, · · · , uN , e.g.

Ae =
N
∑

i=1

ui/xi ui ∈ Jxi
⊆ [0, 1] (2.17)

A graphical representation of these concepts is given in Figure 2.3

Here, ã is a Type-2 fuzzy set, the universe of discourse is the set x ∈ X , the support of Ã,

supp(Ă) is the interval x ∈ [x̌, x̂] and µÃ is a linear function with parameters x̌, x̂, x̌, x̂ and

x̄. α µ̄A(x) is the degree of membership an specific value x has regarding the upper fuzzy set

Ā and αµ
A
(x) is the degree of membership an specific value x has regarding the lower fuzzy

set A. FOU is the Footprint of Uncertainty of the Type-2 fuzzy set and Ae is a Type-1 fuzzy

set embedded in its FOU.

An infinite number of embedded Ae Type-1 fuzzy sets are in the FOU, each one representing

the knowledge of an expert about the universe of discourse or his perception about it. This

“knowledgeability” of an expert is weighted by a T2FS through the secondary membership

function, so an IT2FS do a uniform weighting of all Ae contained into its FOU. Figure 2.3

shows an IT2FS and its bounds where the opinion of all experts about X through a is given

by an uncertain word Ã with multiple perceptions about the word A embedded into FOU.

Now, as a fuzzy set involves more uncertainty sources, it becomes more complex (mathe-

matically speaking) and the search of defuzzified measures is also more complex. This leads

us to think that the search of an optimal value is also a complex problem and optimization

under linguistic uncertainty should be a more complex problem than either a Type-1 fuzzy

or crisp problem.

Another example of a Type-2 fuzzy set is given by its vertical slice

Note that each x has a primary membership function Jx weighted by a secondary membership

function.

Therefore, in this work we refer to Type-1 fuzzy sets when we refer to imprecision about a
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Figure 2.4: Vertical slice of a Type-2 fuzzy set

variable X and Type-2 fuzzy sets when we refer to an uncertain variable X . An uncertain

Type-1 fuzzy set can be represented by a Type-2 fuzzy set, in the sense that there exist the

possibility of having fuzziness and/or ambiguity about the choice of a Type-1 fuzzy set.

2.5 The Fuzzy Linear Programming model (FLP)

The fuzzy optimization field is treated by Klir & Yuan [26], Klir & Folger [27], Y. J. Lai

& C. Hwang [40], Timothy J. Ross [41], J. Kacprzyk & S. A. Orlovski [42], Zimmermann

[43, 44] who propose two methods by using RHS parameters treated as Type-1 fuzzy sets

called Soft Constraints. Tanaka & Asai [45] and Tanaka, Okuda & Asai [46] propose fuzzy

solutions for FLP problems, among others.

This work focuses on the Soft Constraints model introduced by Zimmermann [43, 44] due to

its popularity. Its simplicity and interpretability becomes into an appropriate basic model to

be extended to a Type-2 fuzzy environment. The mathematical representation of this model

is

Max
x

z = c′x+ c0

s.t.

Ax . B (2.18)

x > 0

where x ∈ R
n, c ∈ R

n, c0 ∈ R, A ∈ R
n×m. B denotes the set of fuzzy constraints, where

every of their elements Bi is defined by two parameters b̌i and b̂i (see Figure 2.5).
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1

µBi

b̌i b̂i b ∈ R

b . Bi

Figure 2.5: Fuzzy set Bi

This approach assumes that the Right Hand Side (RHS) parameters of an LP problems as

Type-1 fuzzy sets. To do so, Zimmermann designed an algorithm that solves this kind of

problems through an α-cut approach, which consists on defining a set of solutions z̃(x∗) to

find a joint-optimal α− cut for z̃(x∗) and b̃. The method is summarized next:

Algorithm 1

1. Calculate an inferior bound called Z Minimum (ž) by using b̌ as a frontier of the model.

2. Calculate a superior bound called Z Maximum (ẑ) by using b̂ as a frontier of the model.

3. Define a Fuzzy Set z̃(x∗) with bounds ž and ẑ and trapezoidal membership function.

This set represents the degree that any feasible solution has regarding the optimization

objective.

4. Create an auxiliary variable α and solve the following LP model

Max {α}

s.t.

c′x+ c0 − α(ẑ − ž) = ž (2.19)

Ax+ α(b̂− b̌) 6 b̂

x > 0

This method uses α as a decision variable that finds the max intersection among all fuzzy

constraints. This means that α operates as an overall satisfaction degree of all fuzzy con-

straints, so also it represents a defuzzification degree that returns a fuzzy measure that

reaches a crisp optimal solution of the global problem.
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Some conceptual papers about fuzzy and possibilistic optimization are given by Lodwick

& Jamison [47], Lodwick & Bachman [48], M. Inuiguchi & M. Sakawa [49, 50], Masahiro

Inuiguchi & Jaroslav Ramı́k [51], and Figueroa & López [52].

Other important advances of theory of Fuzzy Optimization are given by Jaroslav Ramı́k [53]

who find solutions of FLP with fuzzy objective functions, Masahiro Inuiguchi [54] define some

necessity measures for optimization problems, Heinrich Rommelfanger [55] did an important

discussion about multicriteria problems with mixed variables, M. Kurano, M. Yasuda, J.

Nakagami & Y. Yoshida [56] describe an optimization method for fuzzy perceptive transition

matrices by using average mesures, Tomoe Entani & Hideo Tanaka [57] use interval-valued

probability to find optimal solutions analytic hierarchy process (AHP) problems, Hiroaki

Ishii, Yung Lung Lee & Kuang Yih Yeh [58] use fuzzy measures to make optimal selection of

candidates for facility location, João Paulo Carvalho & José Tomé [59] use fuzzy logic systems

to optimize causal rule bases by using fuzzy boolean nets, C.A. Silva, J.M.C. Sousa & T.A.

Runkler [60] addressed a Logistic problem by using fuzzy weighted aggregation, obtaining

optimal solutions and N. Mahdavi-Amiri & S.H. Nasseri [61] design a dual simplex method

for LP problems with trapezoidal membership functions.

Multicriteria Linear Fractional Programming (MOLP) problem is treated by Choo [62] and

Kornbluth [63], and a fuzzy approach called Multiobjective Fuzzy Linear Fractional Pro-

gramming (MOFLP) was designed by Lee and Tcha [64] to solve multiple linear inequalities.

Yan-Kuen, Sy-Ming & Yu-Chih [65] propose a method based on the max-Archimedean com-

position by means of max-Archimedean t-norm composition. Ghodousiana & Khorram [66]

proposed a fuzzy operator constructed by the convex combination of two known operators,

max-min and max-average compositions. B.B. Pal, B.N. Moitra & U. Maulik [67] solve

fuzzy multiobjective linear fractional programming (FMOLFP) problems by using goal pro-

gramming, and Masatoshi Sakawa & Ichiro Nishizaki [68] solve two-level fuzzy fractional

problems.

Lertworasirikul, Fang, Nuttle & Joines [69] reported the design and implementation of a

fuzzy DEA (Data Envelopment Analysis) BCC model based in α− cut defined on Possibility

and Credibility measurements. This model is called FDEA (Fuzzy DEA) and proposes an

alternative means to measure the efficiency with imprecise data, later Lertworasirikul, Fang

& Joines [70] propose a possibilistic approach of the above model. T. León, V. Liern, J.L.

Ruiz & I. Sirvent [71] define a fuzzy set of efficient DMU’s (Decision Making Units) and

solve a fuzzy optimization model by using symmetric triangular fuzzy sets. Peijun Guo &

Hideo Tanaka [72] propose a fuzzy DEA-Regression Analysis (RA) model called DEARA,

under the base that DEA is a reference method while RA is an average method. S. Saati

and A.d Memariani [73] propose a methodology to handle the classical fuzzy DEA model by

using a common set of weights (CSW) and an auxiliary variable (γ).

G.R. Jahanshahloo, M. Soleimani-damaneh & E. Nasrabadi [74] propose a methodology for

evaluating and ranking of the DMUs of the model by using concepts of fuzzy inputs-outputs.

They compare their results with the proposal of Peijun Guo & Hideo Tanaka [72]. Angelov
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[75] proposed a method for intuitionistic FLP, and Dubey et.al. [76] used interval fuzzy sets

in LP problems. An application of IT2FS to the DEA model was reported by Qin et.al

[77] where they applied Type reduction of the IT2 parameters of the DEA problem before

solving as an LP problem. Those applications are based on the concept of Type-reduction

of a T2FS before optimizing it, so its results has no implicit fuzzy uncertainty.



Part II

The Proposal





Chapter 3

The IT2FLP model

In this section, we propose a mathematical programming model to solve an LP problem

involving Type-2 fuzzy constraints. Some concepts about uncertain constraints and the

meaning of optimality under fuzzy uncertainty are presented to understand the proposed

results.

3.1 Uncertain constraints

There are many ways to define the “knowledgeability” of an expert, so an infinite number

of Ae fuzzy sets can be seen into FOU (Ã). Each Ae is a representation of either the the

knowledge of an expert about A or his perception about it. When multiple experts are

defining a constraint, linguistic issues and multiple opinions about the same word A do

appear, which is an uncertainty source itself.

Now we have defined what a Type-2 fuzzy set is, then an uncertain constraint can be defined

as follows

Definition 4 (IT2FS Constraint - Figueroa [78]) Consider a set of constraints of an

FLP problem defined as an IT2FS called b̃ defined on the closed interval b̃i ∈ [ bi, bi ], {bi, bi} ∈

R and i ∈ Nm. The membership function which represents b̃i is:

b̃i =

∫

bi∈R

[

∫

u∈Jbi

1/u

]/

bi, i ∈ Nm, Jbi ⊆ [0, 1] (3.1)

Note that b̃ is bounded by both Lower and Upper primary membership functions, namely

µ
b̃
(x) with parameters b̌ and b̂ and µ̄b̃(x) with parameters ¯̌b and

¯̂
b. Now, the (FOU) of the

set b̃ can be composed by two distances called △ and ∇, defined as follows.

Definition 5 (Figueroa [78]) Consider an Interval Type-2 FLP problem (IT2FLP) with

restrictions in the form 6. Then △ is defined as the distance between b̌ and b̌, △ = b̌ − b̌

and ∇ is defined as the distance between b̂ and b̂, ∇ = b̂− b̂.
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b ∈ Rb̌ b̌ b̂ b̂

αb

αb

b

FOU
△

∇

∇ 6= △

Figure 3.1: IT2FS constraint with joint uncertain △ & ∇.

A graphical representation of b̃i is shown in Figure 3.1

In Figure 3.1, b̃ is an IT2FS with linear membership functions µ
b̃
and µ̄b̃. A particular value

b has an interval of infinite membership degrees u ∈ Jb, as follows

Jb ∈
[

αµ̄b̃,
αµ

b̃

]

∀ b ∈ R (3.2)

where Jb is the set of all possible membership degrees (u) associate to b ∈ R. αµ̄b̃ is the α-cut

made over the upper membership function of b̃, and αµ
b̃
is the α-cut made over the upper

membership function of b̃, where the α-cut of a fuzzy set b is defined as αb = {x |µb(x) > α}.

Now, the FOU of b̃ can be composed by the union of all values of u, as defined as follows

Definition 6 (FOU of b̃) As defined in (3.2), it is possible to compose the footprint of

uncertainty of b̃, u ∈ Jb as follows:

FOU(b̃) =
⋃

b∈R

[

αµ̄b̃,
αµ

b̃

]

∀ b ∈ b̃, u ∈ Jb, α ∈ [0, 1] (3.3)

Remark 5 Definition 6 presents an L-R Type-2 fuzzy set as the union of all possible L-R

Type-1 fuzzy sets into its FOU. Definition 4 defines an uncertain constraint as a monotonic

decreasing Type-2 fuzzy set which represents the statement “Approximately less or equal than

bi”. In this way, we refer to an uncertain constraint as the IT2FS defined in Definitions 5

and 6 with a membership function as displayed in Figure 3.1.

Alternatively, we can decompose b̃ into α-cuts, as shown in Figure 3.2.

In this Figure, b̃ is an IT2FS composed by two piece-wise linear membership functions µ
b̃

and µ̄b̃. A particular value b projects an interval of infinite membership degrees u ∈ Jb, as

follows

Jb ∈
[

α1 b̄, α2b
]

∀ b ∈ R (3.4)
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Figure 3.2: IT2FS constraint Ax - b̃

where Jb is the set of all possible membership degrees associated to b ∈ R, and the interval

obtained by a particular membership degree namely α ∈ [0, 1] is

αb̃ →
[

αb, αb
]

∀ α ∈ [0, 1], u ∈ Jb, (3.5)

In the case of an IT2FS, we have that u = 1, so all values of u ∈ Jb are 1, which is an interval

itself. Note that also αb̃, and subsequently αb̄ and αb lead to intervals.

We can use the concept of an α-cut of a classical fuzzy set, extended to an IT2FS in order

to use interval optimization methods for finding a solution of an IT2FLP. Then, the α-cut

of an IT2FS b̃ namely αb̃ can be expressed as:

αb̃ = {x |µb̃(x, u) > α} ∀u ∈ Jb ⊆ [0, 1] (3.6)

Now, αb̃ is bounded by the α-cut of their membership functions:

αb̄ = {x |µb̄(x, u) > α} ∀u ∈ Jb ⊆ [0, 1] (3.7)
αb = {x |µb(x, u) > α} ∀u ∈ Jb ⊆ [0, 1] (3.8)

Since for an IT2FS u = 1 for every Jb, then the α-cut of an IT2 fuzzy constraint is equivalent

to:
αb̃ = {x |µb̃(x) > α} ∀u ∈ Jb (3.9)

In this way, the crisp bounds of the α-cut of an IT2 fuzzy constraint called αc-cut, is defined

as follows:
αc

b̃ = {x |µb̃(x) = α} ∀u ∈ Jb (3.10)

This leads to obtain the following boundaries of αc

b̃:

αc

µb(x) = inf
b
{x |µb̃(x) = α} ∀u ∈ Jb (3.11)

αc

µb̄(x) = sup
b

{x |µb̃(x) = α} ∀u ∈ Jb (3.12)
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αµb̃

αFOU (b̃)

Figure 3.3: α-cuts αb̃ and αc

b̃ of a constraint b̃.

For simplicity, we rename (3.11) and (3.12) as αc

b and αc

b̄ respectively. Figure 3.3 presents

a graphical representation of αc

b and αc

b̄.

Note that an α-cut made over the FOU of an IT2FS contains an infinite amount of embedded

α-cuts, hence we only use the αc-cut at a level α as defuzzification measure. In the following

sections, some definitions about LP problems with IT2FS constraints are provided together

with a method for finding optimal solutions in terms of x ∈ R regarding z and b̃.

The problem of having a type-2 fuzzy constrained problem cannot solved in a closed form, so

there is a need for finding an appropriate solution. Some interesting ideas about the concept

of an optimal solution in terms of the decision variables x ∈ R given uncertain constraints b̃,

can be discussed. A first way would be to use Type-reduction to all IT2FS based on centroid

methods, and afterwards solve the resultant interval-valued optimization problem. However,

this is not recommendable because the centroid of an IT2FS constraint is usually outside its

FOU. Another easy way is by using the Center of FOU which is simply to use the center

of ∇ and △ as extreme points of a fuzzy set embedded into the FOU of b̃, and then apply

the Zimmermann’s method. This method can be used in cases where the analyst has no a

defuzzification criteria.

We have based our results in the Bellman-Zadeh fuzzy decision making principle, so the idea

is to find a maximum intersection value between all constraints and Z. To do so, we need to

provide some definitions of LP problems with IT2FS constraints in order to design a method

for finding an optimal solution in terms of x ∈ R regarding z and b̃.
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3.2 The IT2FLP model

Given the concept of an IT2FS constraint and the definition of an FLP (see Figueroa and

Hernández [1, 2]), an uncertain constrained FLP model (IT2FLP) can be defined as follows:

Max
x∈X

z = c′x+ c0

s.t.

Ax - b̃ (3.13)

x > 0

where x, c ∈ R
m, c0 ∈ R, A ∈ R

n×m. b̃ is an IT2FS vector defined by two primary membership

functions µ
b
and µ̄b. - is a Type-2 fuzzy partial order.

The binary relation - for classical fuzzy sets has been proposed and investigated by Ramı́k

and R̆imánek [79]. Let A and B be two fuzzy numbers. Then A - B if and only if

sup αA 6 sup αB and inf αA 6 inf αB for each α ∈ [0, 1], where αA and αB are α-cuts of A and

B respectively, and αA := [inf αA, sup αA] and αB := [inf αB, sup αB]. This binary relation

satisfies the axioms of a partial order relation on F(R) and is called fuzzy max order (see

Figueroa-Garćıa, Chalco-Cano & Román-Flores [80]). It is possible to extend the fuzzy max

order to the case of Ax - b̃, as follows:

Theorem 2 Let b̃ ∈ R+ be an IT2FS constraint as defined in Definition 4, f(x) be a real

function defined over b, f(x) ∈ b, then the binary relation -, f(x) - b̃ holds if only if

f(x) 6 αb̃, α ∈ [0, 1], this is

f(x) 6 inf αb̃, α ∈ [0, 1]. (3.14)

where αb̃ is the α-cut of b̃, and f(x) is a real function over b ∈ R
+.

Proof 1 From a crisp point of view, f(x) - b̃ implies that every α-cut done over B̃ can be

decomposed into the crisp points inf αb̃ := αc

b, sup αb̃ := αc

b̄, so αc

b̃ := [inf αb̃, sup αb̃] := [b, b̄].

This implies that

f(x) 6 αc

b̃, α ∈ [0, 1], (3.15)

thus, if the condition (3.15) holds then the following condition

f(x) 6 αc

b, α ∈ [0, 1] (3.16)

is enough to proof that f(x) - b̃, since f(x) 6 αc

b 6 αc

b̄, α ∈ [0, 1].

Corollary 1 Let B a Type-1 fuzzy set as shown in Figure 2.5 embedded into the FOU of b̃

as defined in (2.17). The binary relation ., f(x) . B holds if only if f(x) 6 αB, α ∈ [0, 1].

This is equivalent to the following result

f(x) 6 αB, α ∈ [0, 1]. (3.17)

where αB is the α-cut of B, and f(x) is a real function over b ∈ R
+.
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Proof 2 Follows directly from proof of Theorem 2.

Two possible partial orders - and % can be used depending on the problem. We only

use linear membership functions since we solve LP models using classical algorithms, which

means less complexity. The membership function of - (see Figure 3.1) is:

µ
b̃
(x; b̌, b̂) =























1, x 6 b̌

b̂− x

b̂− b̌
, b̌ 6 x 6 b̂

0, x > b̂

(3.18)

and its upper membership function (see Figure 2.2) is:

µ̄b̃(x;
¯̌b,
¯̂
b) =























1, x 6 ¯̌b
¯̂
b− x
¯̂
b− ¯̌b

, ¯̌b 6 x 6
¯̂
b

0, x >
¯̂
b

(3.19)

3.3 Methodology for solving an IT2FLP

A first approach for solving IT2FS problems is by reducing its complexity into a simpler

form in order to use well known algorithms. In this case, we propose the following three-step

methodology:

1. Compute a fuzzy set of optimal solutions namely z̃

2. Apply a Type-reduction strategy to find a single fuzzy set Z embedded into the FOU

of z̃

3. Apply the Zimmermann’s soft constraints method to find a crisp solution

This allows us to see the above problem as the problem of finding a vector of solutions

x ∈ R
m such that:

Max
x∈Rn

α

{

m
⋂

i=1

{ b̃i, bi}
⋂

z̃

}

(3.20)

where α is the α-cut made over all fuzzy constraints b̃i and z̃, defined as follows

µz̃(b̃)(z) = sup
z=c′x∗+c0

min
i

{

µb̃i
(x∗) | x∗ ∈ R

m
}

(3.21)

Given µz̃, the problem becomes in how to find the maximal intersection point between z̃ and

b̃, where α is an auxiliary variable. In practice, the problem is solved by x∗, so α allows us
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Figure 3.4: IT2FLP proposed methodology

to find x∗ according to (3.20). The proposed methodology for using α over z̃ and b̃ to find

x∗ is presented in Figure 3.4.

Figure 3.4 shows the three basic steps of this approach: fuzzification, fuzzy optimization,

and defuzzification. The main idea is to compute the fuzzy set Z̃ before applying a Type-

reduction method for Type-2 fuzzy sets, to finally obtain a crisp solution using the Zimmer-

mann’s soft constraints method. Now, there are two important conditions which ensures

that an IT2FLP has an optimal solution in some point of supp(b̃): feasibility and convexity

which are described next

3.4 Feasibility of an IT2FLP

An important condition to be satisfied by any LP problem before being optimized is that it

should be feasible. The extension of this concept to an IT2FLP leads us to think that the

problem should be feasible at every element of the halfspace generated by b ∈ supp(b̃) (see

Niewiadomski [81, 82]). In other words:

Proposition 3 (Feasibility of the IT2FLP) An IT2FLP is feasible iff the system

A(xij) 6
¯̂
bi ∀ i ∈ Nm (3.22)

is feasible itself.

This means that an IT2FLP is feasible only if the broadest value of supp(b̃) is feasible, i.e.

the boundary provided by
¯̂
b. It is clear that if a solution in this point exists, then every

value of b 6
¯̂
b is feasible as well, since they are contained into the convex hull defined by

¯̂
b

(see Wolsey [14], and Papadimitriou and Steiglitz [83]).
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3.5 Convexity of an IT2FLP

Another important condition to be satisfied by any LP model is convexity. In an LP problem,

convexity means that the halfspace generated by all A(xij) 6 b should be continuous and

compact. This implies that every set b should not be empty (non-null).

An IT2FLP has to guarantee two convexity conditions: a first one regarding b ∈ supp(b̃)

and a second one regarding µb̃. This leads us to the following proposition:

Proposition 4 (Convexity of an IT2FLP) An IT2FLP is said to be convex iff

A(xij) - b̃ ∀ i ∈ Nm (3.23)

is a non-null halfspace, and b̃ is composed by convex µb̃ and µ
b̃
membership functions.

According to Kearfott and Kreinovich [84], global optimization is only possible for convex

objective functions, so the Proposition 4 agrees with this. As z̃ is a function of b̃, then we

need to guarantee that µb̃ be convex to ensure that z̃ be convex as well.

This definition of uncertain constraints is a starting point for designing optimization methods

which deal with linear IT2FS, so its use in different scenarios is an open problem for decision

making sciences.

3.6 Existence of an optimal solution of an IT2FLP

Apart from feasibility and convexity of an IT2FLP, the existence of an optimal defuzzification

value α which is a basic feasible solution, should be proven. To do so, we have to show that

at least one of the embedded sets into the FOU of b̃ is an optimal solution of the system,

defined as the following FLP

Max {α}

s.t.

c′x+ c0 − α(ẑ − ž) = ž

Ax+ α(b̂− b̌) 6 b̂

x > 0

Lemma 1 Assume that IT2FLP has a non-degenerate optimal solution, i.e., there exists

an optimal basic feasible solution α for which there exists a basis matrix AB such that the

problem

ABα = [ž, b̂], xN = 0, α ∈ [0, 1] (3.24)

where xN is a vector of non-basis variables.

Then there exist dual vectors y ∈ Rm and s ∈ Rn, which can be partitioned conformally with

x such that

A′
By = cB, sB = 0, N ′y + sN = cN , sN ∈ [0, 1]
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Proof 3 Let P = {p ∈ Bn : ABpB +NpN = 0, pN ∈ [0, 1]} where pb is a basis vector, pN is

a non-basis vector, and N is a non-basis matrix. Then, since α > 0, we have that p ∈ P is

a feasible direction i.e., which is feasible to LP for β ∈ [0, 1]. Now, given that α is optimal

for c = 1, then c′p = p > 0 holds for p ∈ P. Hence,

0 6 p = c′BpB + c′NpN = (cN − (NA−1
B )′cB)

′pN

where cB is the vector of basis costs, and cN is a vector of non-basis costs.

It is clear that [cB, cN ] = [ž, b̂], so for AB, we can define y and s from (3.24). It remains to

show that sN > 0 holds, and the above equation gives

0 6 p = s′NpN

Keeping in mind that pN is an arbitrary vector, p = S ′
NpN implies that sN > 0, and the proof

is complete.

This lemma shows us that if p = s′NpN > 0, then s′NpN is a feasible (non-optimal) direction

of the dual problem which is (by duality) the optimal direction of the primal problem, this

is s′NpN = α where s′N = α and pN = c = 1.

From another point of view, b̂ ∈ △, b̌ ∈ ∇ (see Definition 5) and Z is a Type-1 fuzzy set

enclosed into the FOU of z̃. This leads us to the following result:

ž = f−1
1 (b̂) ⇔ ∇z = f−1

1 (△b)

ẑ = f−1
2 (b̌) ⇔ △z = f−1

2 (∇b)

α∗ = g1(c, x
∗), b = g2(A, x

∗) ⇔ x∗ → α∗, b

Now, if b̂ ∈ △b and b̌ ∈ ∇b are feasible points (see Proposition 3) and µB is a set of

convex membership functions, then ž = f−1
1 (b̂) and ẑ = f−1

2 (b̌) should be feasible with

convex µZ . Note that the shapes of µB and µZ are opposed by definition, so the Bellman-

Zadeh fuzzy decision making principle (see Bellman and Zadeh [85]) leads us to see that

(Z
⋂

B1

⋂

· · ·
⋂

Bn) is non-null.

Every T1FLP is solved using the auxiliary variable α, so every T1FLP enclosed into △b and

∇b has an associated α. We can see that if ž = f−1
1 (b̂) and ẑ = f−1

2 (b̌) are feasible points

with linear µZ , then 0 < (µZ

⋂

µB1

⋂

· · ·
⋂

µBn
) < 1. Therefore α < 1 is a feasible variable,

so α(ẑ − ž) and α(b̂ − b̌) are feasible as well, which is enough to show the existence of a

solution of the T1FLP through α.



34 3 The IT2FLP model



Chapter 4

The concept of optimal solution under

fuzzy uncertainty

In this chapter, some additional aspects are pointed out regarding IT2FLPs. A first aspect

is related to the concept of an optimal solution under fuzziness, a second aspect is about

the computation of the set of optimal solutions called z̃, and the third one regards to the

behavior of the Algorithm 1 (Zimmermann’s soft constraints method) inside z̃. All aspects

are explained next.

4.1 What is a fuzzy optimal solution?

In crisp LP models, the concept of a feasible solution is based on the idea of having a

convex halfspace where any element contained into it, is feasible (or possible). In our case,

this concept should be extended to halfspace which has no crisp boundaries, it has fuzzy

boundaries related to a membership degree.

As shown in Section 3.4, the boundary of the vector B, b̂, generates a halfspace namely h(·)

generated by the set of all the values of x contained into the support of Bi, x ∈ supp(Bi).

This way, a fuzzy constrained LP is feasible only if the polyhedron (or polytope) generated

by h(·) is a non-trivial set, that is:

P = {x | h(·) 6 b̂}, (4.1)

where P is a non-trivial set of solutions (polyhedron or polytope) of a crisp LP model. Here,

P is a convex set of solutions of all possible solutions bounded by b̂.

Therefore, any feasible solution has an associated membership degree, which leads us to

define the following

Definition 7 Let x′ ∈ P any feasible solution of
∑

aijx
′
j = b′i where b′i ∈ h(·). Then, the

linear combination
∑

aijx
′
j belongs to Bi with a membership degree µBi

(x′).
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This means that every feasible solution x′ can be projected into each Bi, with a membership

degree µBi
(x′), which basically is equivalent to say that in a fuzzy environment, we have not

only a feasible solution x′, we have its membership degree µBi
(x′) as well. Figure 4.1 shows

what a fuzzy feasible solution is.

1

µBi

α

Bi

x ∈ Rb̂b̌ b′i
∑

aijx
′
j

µBi
(x′)

Figure 4.1: Fuzzy feasible solution x′ projected over Bi

4.1.1 Fuzzy optimal solution

The concept of optimal solution of a fuzzy constrained LP is close to the optimality concept

in LP. While in a crisp LP we have that an optimal solution is a vector x∗ for which the

function z = c′x is certainly maximal, in a fuzzy constrained LP we have a set of optimal

solutions (Z) which is a function of αB. This leads us to the following definition

Definition 8 A fuzzy optimal solution is defined as a vector x∗ for which ∃ x : max{αZ =

c′x |Ax 6 αB, x > 0, α ∈ [0, 1]}, so αZ(x∗) > αZ(x) ∀ x ∈ B. B ⊆ R
+ is the set of all feasible

values of x, and αZ(x∗) is the optimal objective value of c′x∗ given α.

Hence, a fuzzy optimal solution is a vector x∗ which fulfills all constraints and obtains a

maximal value of the goal z′∗ = c′x∗, at a membership degree α′∗. Now, as we are using αB

as a crisp value, then the value of each αZ(x∗) is a crisp global optimal solution.

In Figure 4.2, a particular value of z′ comes from an LP model, so what we have is an optimal

solution z′ = c′x∗ given a particular value α, projected into αB. Note that between ž and ẑ

there is an infinite amount of possible optimal solutions (see Algorithm 2.5).

Also note that as more α values are used, more x∗ and αZ(x∗) values exists. Indeed, there is

an infinite amount of possible optimal solutions that can be computed, each one leading to

a global optimal value given α.

Now, the concept of optimal solution in a fuzzy environment is a fuzzy set itself, which is a

function of the parameters of the problem (and their membership functions). This leads to

think about the concept what a fuzzy global optimal solution means.
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1

µZ

α

Z

x ∈ Rẑž z′

z′ = c′x∗

µZ(x
∗)

Figure 4.2: Fuzzy optimal solution z′ = c′x∗ projected over Z

4.1.2 Fuzzy global optimal solution

The importance of having a global optimal solution in LP problems is large, since it is a

key point for implementations and development of new algorithms. In many applications,

decision makers ask for a single solution because they want to have a single operation point

which returns the best possible results.

This is useful when the analyst asks for a solution to be implemented, but in practice there

is no reliability that optimal results can be applied. What sometimes happen is that the

optimal solution cannot be implemented, so there is a need for having choices to be applied.

This makes sense to the fuzzy approach, since it obtains a set of optimal solutions that the

analyst can use to compare the obtained results in practice to a set of possible choices. This

allows to see how close (or far) are its results from the best possible solution.

In general, there is a need for having a relationship between theoretical optimal and what

it is obtained in practical applications. Moreover, there is a need for clarify the sense of

having an fuzzy optimal decision and what it means in practice. To do so, we have to take

a look about concepts of global optimal solutions and its extension to a fuzzy environment.

The existence of a global optimal solution has become one of the most important issues when

solving optimization problems, so when involving fuzzy uncertainty to the analysis, we need

to think not only in crisp results but in membership degrees.

Then, it is clear that the search of a global optimal solution in a fuzzy environment should

include a search of a uncertainty (imprecision) degree in which a decision has to be optimal,

or at least plausible. To do so, we have to find a fuzzy global solution keeping in mind the

following key aspects:

• How to find crisp optimal solutions

• A fuzzy decision making criteria
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• How to find an optimal solution which fulfills fuzzy decision making criteria and still

crisp optimal

The Bellman-Zadeh fuzzy decision making principle (see [85]) (its fuzzy LP version is shown

in 3.6), where the main idea is to solve a max−min decision making problem given known

fuzzy sets. This leads to find a single optimal intersection point between fuzzy constraints

and the goal (see (2.19) in Algorithm 2.5), and consequently a solution x∗ located at αB and
αZ.

This way, we can infer that a fuzzy global solution can be considered as a solution which is

crisp global optimal given a fuzzy decision making criteria. As usual, find a crisp

point which fulfils both requirements is expensive, so there is a need for using well known

optimization methods able to handle the shapes of all fuzzy sets while computing optimum

solutions.

Various authors have proven the existence of boundaries for optimal values of a given goal

function when solving fuzzy optimization problems, Ramı́k [86], Fiedler et.al [87], and Zim-

mermann [44, 43] have defined well known methods for finding the boundaries of the goal

function (ž and ẑ in this case).

This leads us to think in the following situation: what is the usefulness of the solutions

between ž and ẑ?. This question leads us to think in all those points as alternatives to

decision making in practical applications.

4.1.3 Operation points

From a practical point of view, there is no any certainty of reaching the optimal solution.

When having a single optimal solution, the analyst should set the system in terms of that

referring point in order to get its best performance.

If the analyst has choices or operation points, then decision making can be enriched because

the analyst can use those points when setting the system, so basically if the system does

not reach the expected results, the analyst can compare its current performance to a set of

possible choices and see how good the performance of the system is. Then, an operation

point is defined as follows:

Definition 9 (Operation point) An operation point is a set of observed values of b namely

b′ contained into the boundaries of B, b′ ∈ [b̌, b̂] which leads to the optimal solution x∗, and

z′.

An operation point is then an observed performance of the system which obeys to given

running conditions. What in real implementations decision maker observes, is what an

operation point is itself, so as many of running conditions can be applied to the system, as

many of operation points the analyst can compare to make a decision.

To do so, we propose the following rank index for comparing an operation point (what was

measured in real world) of the system against the optimal results after fuzzy decision making.
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Definition 10 (Ranking a solution) Let b′ a set of observed constraints b′ ∈ [b̌, b̂], Z be

the set of optimal solutions provided by any fuzzy decision making method, z′ ∈ Z be the

optimal solution of the LP problem given b′, α∗ its optimal uncertainty degree, z∗ the optimal

solution of the fuzzy problem given α∗, and α′ the membership degree of z′ into Z. Then the

relative degree of fulfilment (Dfz′) of z
′ compared to z∗ is:

Dfz′ =
z′ − z∗

ẑ − ž
(4.2)

which is equivalent to

Dfz′ = α′ − α∗ (4.3)

It is clear that Dfz′ ∈ [−1, 1], so its interpretation is as follows: if Dfz′ > 0 then the

observed values of b′ lead to improve the expected results; if Dfz′ < 0 then observed values

of b′ did not reach the expected results, and if Dfz′ = 0, then the values of b′ have reached

the expected results.

A comprehensive graph is provided in Figure 4.3

Crisp

constraints b
Fuzzy

Constraints

Fuzzifier

Compute Z

Fuzzy Decision

making

Optimal

solution (x∗, α∗)

Relative degree Dfz′

of (z′, α′)
Crisp LP

Observed

data b′
Solution

x∗, z′, α′
Comparison

Figure 4.3: Comparing observed values of b

Therefore, we can see that every operation point (b′) observed in reality leads to x∗, z′, α′,

having its own Dfz′. This allows us to compare the performance of the observed system and

take actions to improve it. Moreover, Dfz′ allows us to compare different operation points

at different stages of the system in order to make an appropriate decision.

4.1.4 Application example

The application example is taken from Klir and Folger [27], example 15.8 at page 413.

Assume that a company makes two products. Product P1 has a $0.4 per unit profit and

product P2 has a $0.3 per unit profit. Product P1 requires twice as many labor hours as

each product P2. The total available labor hours are at least 500 hours per day, and may be

possible extended to 600 hours per day, due to some special arrangements for overtime work.

The supply of material is at least sufficient for 400 units of both products P1 and P2, per

day, but may be possible extended to 500 units per day according to previous experience.
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The problem is, how many units of products P1 and P2 should be made per day to maximize

the total profit? The main problem can be expressed as follows

Max
x

z = 0.4x1 + 0.3x2 (profit)

s.t.

x1 + x2 . B1 (material)

2x1 + x2 . B2 (labor hours)

x1, x2 > 0

Then we have b̌ = [400; 500] and b̂ = [500; 600]. Using the Algorithm 2.5 (Zimmermann’s

method). the obtained results are ž = 130, ẑ = 160, z∗ = 145, α∗ = 0.5, x∗
1 = 100 and

x∗
2 = 350.

Now suppose that the analyst did an experiment to try to set the system, and after all

their attempts, the available labor hours and material were 530 and 415 units respectively,

b′ = [415; 530]. Then, the obtained results for this operation point were z′ = 136, α′ =

0.2, x∗
1 = 115 and x∗

2 = 300. The relative degree of fulfilment of the current operation point

is

Dfz′ =
136− 145

160− 130
= −0.3 (4.4)

This means that this current operation point has not been reached the expected results

(since Dfz′ < 0), so the analyst has to take actions to improve the system’s performance.

Now suppose that the analyst has taken more actions to improve the availability of their

resources. After some negotiations and improvements, it can increased the available labor

hours and material to 560 and 465 units respectively, so b′ = [465; 560]. Then, the obtained

results for this operation point were z′ = 149, α′ = 0.6333, x∗
1 = 95 and x∗

2 = 370. The

relative degree of fulfilment of the current operation point is

Dfz′ =
149− 145

160− 130
= 0.1333 (4.5)

At this point, the current operation point of the system has overtaken its expected perfor-

mance (since Dfz′ > 0), so the analyst has taken actions which have improved the system’s

performance.

4.1.5 Computing the set of optimal solutions z̃

The fuzzy set of optimal solutions can be obtained by applying the Zadeh’s extension prin-

ciple and the computation of the optimal bounds of the problem. This means that z̃ is a

function of the optimal values of the problem z∗ = c(x∗) regarding the bounds of b̃.

Now, µz̃ is a linear function of x∗, z∗ = c(x∗) and b̃i, then we can define its bounds as function

of the bounds of b̃i, as defined in Definition 5. This way, we can extend this property to the

IT2FLP by using (3.21), and convex optimization tools to compose z̃ through b̃i(Ax) and

z∗ = c(x∗).
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Note that b̃i is a fuzzy partial order in the form - or % (see Theorem 2) with well defined

parameters b̌, ¯̌b, b̂ and
¯̂
b. Mathematically speaking we can compute the bounds of the global

optimization problem by using each one of these parameters. To do so, the following relations

are defined

Theorem 5 (Bounds of z̃) Let (6.12) be an optimization problem where b̃ is composed by

µ
b̃
with parameters b̌ and b̂, and µ̄b̃ parametrized by ¯̌b and

¯̂
b (see Appendix). Then the fuzzy

set µz̃ is composed by µ
z̃
and µ̄z̃ in the following way.

µ
z̃
(z; ž, ẑ) =



















0, z 6 ž
z − ž

ẑ − ž
, ž 6 z 6 ẑ

1, z > ẑ

(4.6)

µ̄z̃(z; ¯̌z, ¯̂z) =



















0, z 6 ¯̌z
z − ¯̌z
¯̂z − ¯̌z

, ¯̌z 6 z 6 ẑ

1, z > ¯̂z

(4.7)

where ž, ẑ, ¯̌z, and ¯̂z are crisp parameters computed from b̃.

Proof 4 Firstly, we can assume the following:

b̌ > b̂ (4.8)

¯̌b >
¯̂
b (4.9)

b̌ 6 ¯̌b (4.10)

b̂ 6
¯̂
b (4.11)

Now, replacing b by each of the above parameters in the following crisp LP problem:

max z = c(x) + c0

s.t.

Ax 6 b (4.12)

x > 0

we can obtain the following optimal results as functions of z∗:

b̌ → ˆ̌z (4.13)

b̂ → ˆ̂z (4.14)

¯̌b → ž (4.15)

¯̂
b → ẑ (4.16)
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Then, the computation of each bound of µb̃(Ax) leads to a corresponding bound of µz̃, and

by mathematical induction is clear that:

ž > ẑ (4.17)

¯̌z > ¯̂z (4.18)

ž 6 ¯̌z (4.19)

ẑ 6 ¯̂z (4.20)

so we can compose µz̃ by its primary membership functions µ
z̃
and µ̄z̃ in the following way:

µ
z̃
(z; ž, ẑ) =



















0, z 6 ž
z − ž

ẑ − ž
, ž 6 z 6 ẑ

1, z > ẑ

and its upper membership function is:

µ̄z̃(z; ¯̌z, ¯̂z) =



















0, z 6 ¯̌z
z − ¯̌z
¯̂z − ¯̌z

, ¯̌z 6 z 6 ẑ

1, z > ¯̂z

which concludes the proof.

On the other hand, an interesting question arises from the analysis of µz̃: Is there exists the

possibility of having a linear combination of b̃i that reaches out a solution outside µz̃? To

answer that, we define the following corollary

Corollary 2 (FOU of z̃) The FOU of z̃ is defined as follows

FOU(z̃) =
⋃

z∈Z

[

µ
z̃
(z∗), µz̃(z

∗)
]

(4.21)

FOU(z̃) =
⋃

z∈Z

Jz∗ (4.22)

where Jz∗ is composed by (4.6) and (4.7).

Proof 5 Straightforward to the reader.

Corollary 2 defines that all possible Type-1 fuzzy sets Z are embedded into FOU (z̃). Defi-

nition 4, convex µ̄b̃ and µ
b̃
alongside equations (4.8) to (4.11) allow us to think that there is

no choice to have a linear fuzzy set outside ∇ and △, so the question has a natural answer:

No. This is not possible if we consider that µb̃ is composed by linear primary membership

functions and µz̃ is also a linear fuzzy set, so there is no any possibility to define a linear

combination of b̃i that reaches a value outside µz̃.
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Solution procedure of an IT2FLP

Until now our main problem is how to deal with interval fuzzy sets, since most of fuzzy

optimization methods were designed for Type-1 fuzzy sets, and what we have is an interval

of infinite choices. This way, our proposal is based on finding two endpoints enclosed into △

and ∇ (see Figure 2.2), and use these points as the parameters of a single fuzzy set, suitable

to be optimized using the Algorithm 1.

5.1 First method

Figueroa [78, 88], Figueroa [3], and Figueroa et.al [4] have proposed a method to find an

optimal fuzzy set embedded into the FOU of the problem using △, ∇ as auxiliary variables

weighted by c△ and c∇ and the Zimmermann’s method. A description of the algorithm is

presented next.

Algorithm 2

1. Compute an optimal inferior boundary called Z minimum (ž) by using b̌ + △ as

a frontier of the model, where △ (see Definition 5) is an auxiliary set of variables

weighted by c△ which represents the lower uncertainty interval subject to the following

statement:

△ 6 ¯̌b− b̌ (5.1)

To do so, △∗ is obtained solving the following LP problem

Max
x,△

z = c′x+ c0 − c△ ′△

s.t.

Ax−△ 6 b̌ (5.2)

△ 6 ¯̌b− b̌

x > 0
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2. Compute an optimal superior boundary called Z maximum (ẑ) by using
¯̂
b + ∇ as

a frontier of the model, where ∇ (see Definition 5) is an auxiliary set of variables

weighted by c∇ which represents the upper uncertainty interval subject to the following

statement:

∇ 6
¯̂
b− b̂ (5.3)

To do so, ∇∗ is obtained solving the following LP problem

Max
x,∇

z = c′x+ c0 − c∇ ′∇

s.t.

Ax−∇ 6 b̂ (5.4)

∇ 6
¯̂
b− b̂

x > 0

3. Find the final solution using the third and subsequent steps of the Algorithm 1 using

the following values of b̌ and b̂

b̌ = b̌+△∗ (5.5)

b̂ = b̂+∇∗ (5.6)

Remark 6 (About c△ and c∇) In Algorithm 2, we have defined c△ and c∇ as the weights

of △ and ∇. In other words, c△i and c∇i are the unitary cost associated to increase each

resource b̌i and b̂i respectively.

Remark 7 (Max−Min objectives) The proposed algorithm was designed for maximiza-

tion problems, so equations (5.5) and (5.6) apply to a Max goal. For a min goal, equations

(5.2), (5.4), (5.5) and (5.6) have to be changed.

Therefore, △ and ∇ are auxiliary variables that operate as Type-reducers1, where △∗
i and

∇∗
i become b̌i and b̂i as the inputs of the Zimmermann’s method which returns ž∗, ẑ∗ and α∗

(see Section 2.5).

5.2 Second method

Figueroa and Hernández [5] have designed a method for solving IT2FLP problems using

Interval Linear Programming (ILP). This way, the main idea of this proposal is to pre-

defuzzify all constraints b̃ using an α-cut to obtain an interval optimization problem, and then

1A Type-reduction strategy regards to a method for finding a single fuzzy set embedded into the FOU of

a Type-2 fuzzy set.
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solve this new problem using bounded LP methods such as the simplex method, Karmarkar

interior point methods, Khachiyan, etc. Now, the Bellman-Zadeh fuzzy decision making

principle is based on the idea of obtaining a maximum intersection among fuzzy goals and

constraints for making a decision (see Bellman and Zadeh [85]), in the sense that we propose

to pre-defuzzify the problem before find a solution using crisp and interval optimization

methods, so our approach is a crisp-interval feasible operation point given a value of α-cut.

Some facts about this proposal are:

1. The complexity of b̃ can be reduced using α-cuts, which lead to an ILP problem.

2. The solution provided by the proposed approach is an operation point x∗ which is

optimal in the sense of a crisp LP problem, not in the Bellman-Zadeh decision making

principle.

3. An optimal solution is understood as an extreme point for which we have z∗ =

inf{c′x |Ax = α̃b, x > 0}. It can be computed using any optimization method. As

there is a single optimal value for z, any choice of an optimization algorithm should

obtain the same value z∗.

Then the idea is to reduce the complexity of an IT2FLP using α-cuts to solve the problem

as an interval-valued one. Although there are different ways to solve the same problem, we

propose the methodology shown in Figure 5.1 (see Figueroa and Hernández [5]).

Crisp constraints B

Fuzzy

Constraints
Bounds

of αb̃

Fuzzifier

αccut over b̃

Compute z̃

Interval

Optimization

Crisp optimal

solution (x∗, γ∗, z∗)

Interval

set Z

Interval LP Optimization Process

Figure 5.1: Interval optimization methodology

This methodology introduces a pre-defuzzification α-cut for finding a solution of the resultant

ILP model by means of classical linear optimization methods. The procedure is summarized

as follows.

Algorithm 3

1. Select a pre-defuzzification level named α for all fuzzy constraints.
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2. Compute the αc − cut for all fuzzy constraints, αc

b̃i. This generates an interval in the

form [α
c

bi,
αc

b̄i] (see (3.11) and (3.12)).

3. Set a new variable γi:
αc

bi 6 γi 6
αc

b̄i (5.7)

4. Solve the problem as an ILP model in the form:

Max
x,γ

z = c′x+ c0 − cγ ′γ

s.t.

Ax− γ 6 αc

b (5.8)
αc

b 6 γ 6 αc

b̄

x > 0

where x, c, cγ ∈ R
n; b, γ ∈ R

m; c0 ∈ R, and A ∈ R
n×m.

5. Return x∗, γ∗ and z∗.

Remark 8 (About cγ) The cost cγ defined in our method is the unitary cost of increasing

an specific resource. Different choices of cγ could lead to different results, so we recommend

to analyze the shadow prices of the LP model using αc

b before defining cγ.

Remark 9 (On computing z̃) The set z̃ is an interval set of optimal solutions defined by

two boundaries z and z̄ which comes from the following equations:

αc

b → z (5.9)
αc

b̄ → z̄ (5.10)

This means that z and z̄ comes from the LP model shown in (5.8) using αc

b and αc

b̄ respec-

tively.

5.2.1 Selecting α

It is clear that the selection of α is an entirely expert-based issue. The values of x∗ and γ∗

depend on the selection of α, so the analyst can use one of the following four main choices

of α (for a maximization goal):

Pessimistic α: This scenario is provided by selecting α = 1 → 1b̃. This means that the

analyst has a pessimistic perception about uncertainty on b̃ since he/she thinks that the

system should have the minimum availability of resources, more than likely.
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Optimistic α: In this case we have α = 0 → 0b̃. This means that the analyst thinks that

the system should have the minimum availability of their resources, with a low possibility of

occurrence.

Uniform α: This option uses 0 6 αc 6 1 → αc

b̃. The analyst selects a single defuzzification

degree α for all constraints, following their perception about the system.

Non-uniform α: This choice uses 0 6 αc
i 6 1 → αc

b̃i. The analyst selects a different

defuzzification degree αi for each constraint b̃i.

In this way, the analyst can use any of the proposed choices to pre-defuzzify all constraints

b̃ depending on the necessities of the system and/or their perception about its behavior.

5.3 Optimization software

Most of the reported FLP applications and models are based on convex optimization tech-

niques. This means that all the solutions of FLP models can be obtained by using classical

optimization principles, so the main problem is how to compose the set of all possible optimal

solutions, and a satisfaction degree regarding all fuzzy constraints.

However, Rommelfanger [89, 90, 91] has designed some specialized computer routines for

several FLP models: Soft constraints, fuzzy objective coeficients and fuzzy piecewise techno-

logical coeficients. Although those routines are available for T1FLP, we tend to use convex

optimization software as GAMSR© and MatLabR© due to their flexibility and capabilities to

handle large problems.
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Chapter 6

Application examples

6.1 Production Planning example

An important activity in Production Planning is the optimization of the production quanti-

ties of “j” products. LP models are efficient at solving the problem in terms of the capacities

of the system as well as the demand of each product. Time units are widely used to express

the capacities of the system. However, different units can be used to measure capacities such

as energy, materials, space, money units, etc. All of them are included in a general model

where these capacities and demands are expressed as restrictions of an LP model and its

solution is found through the optimal mix of products regarding an objective function.

In this example, multiple experts have defined the demands of the system using their ex-

pertise and perceptions about the markets. If each expert defines demands using the same

concept, we obtain the FOU of an IT2FS, so we can compose an IT2FS around the same

demand. This way, in a case where different experts define the demands in different ways

over the same linguistic label, it is possible to bypass from a fuzzy model to an Type-2 one

by using IT2FSs.

Fuzzy production planning problems have been addressed by Peidro et.al [92, 93], Mula

et.al [94], Lee et.al [95, 96], Chanas et.al [97], Ángeles et.al [98], and Gen et.al [99], so we

address a Mixed Production Planning problem (MPP) using a production, inventory and

backorder strategy under a utility maximization objective. This example has been taken from

Figueroa et.al [4]. For simplicity, we only consider resources capacity, workforce availability
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and constrained demands as defined as follows:

Max z =
n

∑

j=1

K
∑

k=1

Spjk [x
r
jk + xo

jk + xs
jk]−

[Cprjk x
r
jk + Cpojk x

o
jk + Cpsjk x

s
jk + hjk qjk + ojk sjk] (6.1)

s.t.
n

∑

j=1

tsijk x
r
jk 6 Acrik ∀ i ∈ Nm; k ∈ NK (6.2)

m
∑

i=1

n
∑

j=1

tsijk Opi x
r
jk 6 Wcrk ∀ k ∈ NK (6.3)

m
∑

i=1

n
∑

j=1

ejkl [x
r
jk + xo

jk] 6 Aekl ∀ k ∈ NK ; l ∈ NL (6.4)

m
∑

i=1

n
∑

j=1

rmjkr [x
r
jk + xo

jk] 6 Amkr ∀ k ∈ NK ; r ∈ NR (6.5)

n
∑

j=1

tsijk x
o
jk 6 Acoik ∀ i ∈ Nm; k ∈ NK (6.6)

m
∑

i=1

n
∑

j=1

tsijk Opi x
o
jk 6 Wcok ∀ k ∈ NK (6.7)

xs
jk 6 Asjk ∀ j ∈ Nn; k ∈ NK (6.8)

n
∑

j=1

aj qjk 6 Ak ∀ k ∈ NK (6.9)

xr
jk + xo

jk + xs
jk + qj,k−1 + sjk − qjk − sj,k−1 6 d

(+)
jk ∀ j ∈ Nn; k ∈ NK (6.10)

xr
jk + xo

jk + xs
jk + qj,k−1 + sjk − qjk − sj,k−1 > d

(−)
jk ∀ j ∈ Nn; k ∈ NK (6.11)

xr
jk; x

o
jk; x

s
jk; qjk, sjk > 0 (6.12)

Index sets:

Nm is the set of all “i” resources, i ∈ Nm, Nm = 1, 2, · · · , m.

Nn is the set of all “j” products, j ∈ Nn, Nn = 1, 2, · · · , n.

NK is the set of all “k” periods, k ∈ NK , NK = 1, 2, · · · , K.

NL is the set of all “l” energy units, l ∈ NL, NL = 1, 2, · · · , L.

NR is the set of all “r” raw materials, r ∈ NR, NR = 1, 2, · · · , R.

Decision variables:

xr
jk: Amount of product “j” to be manufactured in regular time per period “k”.

xo
jk: Amount of product “j” to be manufactured in overtime per period “k”.
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xs
jk: Amount of product “j” to be manufactured by outsourcing per period “k”.

qjk: Inventory amount of product “j” to be held per period “k”.

sjk: Shortage amount of product “j” to be supported in the period “k”.

Parameters:

Spjk = Unitary selling price of product “j” in the period “k”.

Cprjk = Unitary production cost for the Regular time of product “j” in the period “k”.

Cpojk = Unitary production cost for overtime of product “j” in the period “k”.

Cpsjk = Unitary outsourcing cost for the product “j” in the period “k”.

tsijk = Unitary standard production time that product “j” uses from the “i” resource in the

period “k”.

Opi = Amount of workers needed to operate resource “i”.

ejkl = Amount of the “l” energy units used to manufacture product “j”, in the period “k”.

rmjkl = Amount of the “r” raw material units used to manufacture product “j”, in the

period “k”.

aj = Amount of space (in area or volume units) used to hold an unit of product “j”.

d
(−)
jk = Minimum demand of product “j” in the period “k”.

d
(+)
jk = Maximum (Potential) demand of product “j” in the period “k”.

Acrik = Available capacity on regular time of resource “i” in the period “k”, expressed in

hours.

Wcrk = Available capacity on regular time of workforce in the period “k”, expressed in hours.

Acoik = Available capacity on overtime of resource “i” in the period “k”, expressed in hours.

Wcok = Available capacity on overtime of workforce in the period “k”, expressed in hours.

Aekl = Availability of the energy type “l” in the period “k”, expressed in energy units.

Amkr = Availability of the raw material type “r” in the period “k”, expressed as units as

Kg, Lt, etc.

Asjk = Available outsourced units of product “j” in the period “k”.

Ak = Available space units (in area or volume units) in the period “k”.

The example is composed by 4 products manufactured in 3 stations for 4 periods on the base

of the crisp model shown in (6.1). It is solved by the methods presented in Algorithm 1 and

Algorithm 2 with a brief discussion about the results of both MPP models. For the sake of

understanding, we refer to the Zimmermann’s classical fuzzy method as the Soft MPP, and

the IT2FS approach as the Uncertain MPP.

It is possible to get multiple opinions and estimates coming from different experts of the

demands of the system, leading to uncertain demands denoted by D̃jk. Therefore, an IT2FS

approach is a suitable way to deal with those opinions and estimates of that variable. Hence,

the IT2FLP model for the MPP problem should be solved in two stages before using the

Zimmermann’s method: a first MPP model in terms of (5.2) and a second one in terms of

(5.4). A graphical representation of an uncertaind demand D̃jk is shown in Figure 6.1.
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1
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ď

(+)
jk
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¯̂
d

(+)
jk

µ
(−)
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ď
(−)
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(−)
jk

FOU
△

(+)
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∇
(+)
jk∇

(−)
jk

Figure 6.1: IT2FS for djk, D̃jk.

Thus, the MPP in terms of (5.2), Tables 1 and 2 is presented next

Max z =
n

∑

j=1

K
∑

k=1

Spjk [x
r
jk + xo

jk + xs
jk]−

[Cprjk x
r
jk + Cpojk x

o
jk + Cpsjk x

s
jk + hjk qjk + ojk sjk] (6.13)

s.t.
n

∑

j=1

tsijk x
r
jk 6 Acrik ∀ i ∈ Nm; k ∈ NK (6.14)

m
∑

i=1

n
∑

j=1

tsijk Opi x
r
jk 6 Wcrk ∀ k ∈ NK (6.15)

m
∑

i=1

n
∑

j=1

ejkl [x
r
jk + xo

jk] 6 Aekl ∀ k ∈ NK ; l ∈ NL (6.16)

m
∑

i=1

n
∑

j=1

rmjkr [x
r
jk + xo

jk] 6 Amkr ∀ k ∈ NK ; r ∈ NR (6.17)

n
∑

j=1

tsijk x
o
jk 6 Acoik ∀ i ∈ Nm; k ∈ NK (6.18)

m
∑

i=1

n
∑

j=1

tsijk Opi x
o
jk 6 Wcok ∀ k ∈ NK (6.19)

xs
jk 6 Asjk ∀ j ∈ Nn; k ∈ NK (6.20)

n
∑

j=1

aj qjk 6 Ak ∀ k ∈ NK (6.21)

xr
jk + xo

jk + xs
jk + qj,k−1 + sjk − qjk − sj,k−1 −△

(+)
jk 6 0 ∀ j ∈ Nn; k ∈ NK (6.22)

xr
jk + xo

jk + xs
jk + qj,k−1 + sjk − qjk − sj,k−1 −△

(−)
jk > 0 ∀ j ∈ Nn; k ∈ NK (6.23)
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△
(−)
jk 6 d̂

(−)
jk −

¯̂
d

(−)
jk (6.24)

△
(+)
jk 6 ď

(+)
jk − ¯̌d

(+)
jk (6.25)

xr
jk; x

o
jk; x

s
jk; qjk, sjk > 0

Here, △
(−)
jk is related to D̃

(−)
jk , △

(+)
jk is related to D̃

(+)
jk , C

△(−)
jk and C

△(+)
jk are the unitary

cost of uncertainty associated with increasing an unit of △
(−)
jk or △

(+)
jk , and (5.2) as defined

before. Now, the uncertain MPP model in terms of (5.4) is:

Max z =

n
∑

j=1

K
∑

k=1

Spjk [x
r
jk + xo

jk + xs
jk]−

[Cprjk x
r
jk + Cpojk x

o
jk + Cpsjk x

s
jk + hjk qjk + ojk sjk] (6.26)

s.t.
n

∑

j=1

tsijk x
r
jk 6 Acrik ∀ i ∈ Nm; k ∈ NK (6.27)

m
∑

i=1

n
∑

j=1

tsijk Opi x
r
jk 6 Wcrk ∀ k ∈ NK (6.28)

m
∑

i=1

n
∑

j=1

ejkl [x
r
jk + xo

jk] 6 Aekl ∀ k ∈ NK ; l ∈ NL (6.29)

m
∑

i=1

n
∑

j=1

rmjkr [x
r
jk + xo

jk] 6 Amkr ∀ k ∈ NK ; r ∈ NR (6.30)

n
∑

j=1

tsijk x
o
jk 6 Acoik ∀ i ∈ Nm; k ∈ NK (6.31)

m
∑

i=1

n
∑

j=1

tsijk Opi x
o
jk 6 Wcok ∀ k ∈ NK (6.32)

xs
jk 6 Asjk ∀ j ∈ Nn; k ∈ NK (6.33)

n
∑

j=1

aj qjk 6 Ak ∀ k ∈ NK (6.34)

xr
jk + xo

jk + xs
jk + qj,k−1 + sjk − qjk − sj,k−1 −∇

(+)
jk 6 0 ∀ j ∈ Nn; k ∈ NK (6.35)

xr
jk + xo

jk + xs
jk + qj,k−1 + sjk − qjk − sj,k−1 −∇

(−)
jk > 0 ∀ j ∈ Nn; k ∈ NK (6.36)

∇
(−)
jk 6 ď

(−)
jk − ¯̌d

(−)
jk (6.37)

∇
(+)
jk 6

¯̂
d

(+)
jk − d̂

(+)
jk (6.38)

xr
jk; x

o
jk; x

s
jk; qjk, sjk > 0
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Here, ∇
(−)
jk is related to D̃

(−)
jk , ∇

(+)
jk is related to D̃

(+)
jk , C

∇(−)
jk and C

∇(+)
jk are the unitary

uncertainty costs associated with increasing an unit of ∇
(−)
jk or ∇

(+)
jk , respectively. All data

used in this example is shown in Tables 1, 2, 3, and 4 (see Appendix).

6.1.1 FLP results

Solving the problem as a soft MPP using the results of Algorithm 1, (3.12) and the parameters

shown in Table 3, we found that ž=15’223.900 is obtained using ď
(+)
jk and ẑ=15’282.940 is

obtained through d̂
(+)
jk . The optimal satisfaction degree is α1=0.5 and the maximal utility

of the system is 15’229.750. A detailed report of the solution is shown in Table 6.1 and its

graphical representation is shown next.

1

µZ

Zž
15’223.900

z∗

15’229.750

ẑ
15’282.940

α1Z∗

0.5

z∗

15’229.750

Figure 6.2: Obtained solution Z∗ for soft demands

6.1.2 IT2FLP results

By using the Algorithm 2, Propositions 3 and 4, and the parameters shown in Table 4, an

uncertain problem is solved using the simplex algorithm. The optimal satisfaction degree is

α1=0,7076 and the optimal values of z computed by the Algorithm 3 through key points of

D̃jk (see Figure 6.3) are:

ď
(+)
jk → ž = 15′208.730

¯̌d
(+)
jk → ¯̌z = 15′247.030

d̂
(+)
jk → ẑ = 15′252.880

¯̂
d

(+)
jk → ¯̂z = 15′311.860

Each of the above values of z̃ are computed by applying the simplex algorithm to its respec-

tive value of D̃jk. On the other hand, ž∗=15’229.250 and ẑ∗=15’281.160 are obtained after

computing (5.1) and (5.3) which become (5.5) and (5.6). This means that △
(+)∗
jk and ∇

(+)∗
jk
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Table 6.1: Summary report of both soft and uncertain problems
Soft demands problem Uncertain demands problem

j, k xr∗
jk I∗jk S∗

jk xr∗
jk I∗jk S∗

jk △
(+)∗
jk ∇

(+)∗
jk

1,1 11700 2688 0 11700 2490.32 0 320 440

1,2 3200 0 0 3200 0 0 0 0

1,3 2400 0 0 2400 0 0 0 0

1,4 3400 0 0 3400 0 0 0 0

2,1 17216.66 13426.17 0 17216.66 13110.24 0 241 364

2,2 6350 3250 0 6350 3250 0 0 0

2,3 4200 2450 0 4200 2450 0 0 0

2,4 2600 0 0 2600 0 0 0 0

3,1 18313.64 26833.31 0 18313.64 26409.6 0 117 338

3,2 4500 0 0 4500 0 0 0 0

3,3 0 0 0 0 0 0 0 0

3,4 10636.37 1295.87 0 10636.37 1186.53 0 144 312

4,1 16926.55 37281.37 0 16926.55 36704.55 0 277 351

4,2 5174.96 0 0 5174.96 0 0 0 0

4,3 1900 0 0 1900 0 0 0 0

4,4 7031.83 2585.7 0 7031.83 2347.79 0 254 205

operate as location points in the FOU of D̃jk, which is useful to bypass from an uncertain

problem to a soft one before using the Zimmermann’s method, so this can be interpreted

as a Type-reduction method. The maximal utility of the system is 15’265.981 through an

α-cut of 0,7076. Table 6.1 shows a detailed report of the IT2FLP solution; and Figure 6.3

shows a graph of z̃.

1

µz̃

z̃ž
15’208.730

z∗

15’265.981

ž∗

15’229.250

¯̌z
15’247.030

¯̂z
15’311.860

ẑ∗

15’281.160

α1Z∗

0.7076

ẑ
15’252.880

Z∗

z∗

Figure 6.3: Solution Z∗ embedded in the FOU of z̃.

In the interval FLP approach, C
△(+)
jk and C

∇(+)
jk work as incremental costs to bypass from

the certain feasible region to an uncertain region. These uncertainty costs are supported by

the system in order to increase its demand, understood as the opportunity cost of covering

the market.
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As shown in Table 6.1, the model yields a crisp optimal solution for both soft and uncertain

demands. Note that the production levels xr∗
jk are the same, only varying the inventory levels

I∗jk. This indicates that both models are consistent on their results, going from fuzzy to crisp

measures obtaining an optimal solution, and collecting the opinion of the experts in this case

represented by non-probabilistic uncertainty related to the demands of the market.

6.1.3 Discussion of the results

As the problem involves higher uncertainty measures, decision making processes become

complex. The FLP model reaches a solution based on a single perception about the demands

of the market instead of the IT2FLP model that involves an infinite amount of perceptions

about the same concept.

Both the FLP approach and the IT2FLP one reach an α1 degree, the difference between

the two lies in their modeling process. The final results are similar, this means that the

production levels xr∗
jk are the same and the optimal profits are similar, though at different

satisfaction degrees.

The optimal satisfaction degree α∗ operates as a location point for planning the demands

that the system should cover in terms of its production strategy. Notice that the IT2FLP

approach yielded a higher satisfaction degree with better profits than the FS approach. This

means that the FLP approach tries to cover less demands than the IT2FLP approach with

less profits, and the IT2FLP model tries to achieve an equilibrium point among demands,

profits and uncertainty.

The IT2FLP model returns a higher value of z∗ than the FLP approach, even using C
△(+)
jk

and C
∇(+)
jk as uncertainty costs. This means that the analyst can make better decisions,

even by paying for some uncertainty costs. The possibility of having multiple experts might

become an opportunity for decision making achieving positive results since the use of multiple

choices and opinions can lead to better results and profits.

6.2 Simulated Data example

The following application data is used to explain how the Algorithm 3 works. All necessary

data to solve the problem is shown as follows.

A =















5 4 3

2 2 2

3 3 4

4 1 2

3 2 3















; b̌ =















25

35

20

30

20















; b̂ =















36

52

33

48

40















b̌ =















30

40

28

38

29
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b̂ =















48

55

38

51

49















; c =







11

10

11






; cγ =















0.5

0.5

0.5

0.5

0.5















The Algorithm 3 uses a predefuzzification degree α per approach. Firstly, the uniform

approach is solved using an α = 0, 75 which leads to the following values:

0,75b =















33.25

47.75

29.75

43.5

35















; 0,75b̄ =















43.5

51.25

35.5

47.75

44















Now, the selected values of αi for the non-uniform approach, and the resultant values of αc

b̃i
are as follows:

αi =















0.5

0.25

0.6

0.85

0.4















; αib =















30.5

39.25

27.8

45.3

28















; αi b̄ =















39

43, 75

34

49, 05

37















The boundaries of z̃ are computed as proposed by Figueroa [6]. The resultant fuzzy set is

shown in Figure 6.4.
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ž
86

ẑ
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Figure 6.4: Set of optimal solutions Z̃

In this figure we show the set of all possible optimal solutions Z̃ and the solutions for

α = 0, α = 0.75 and α = 1. A detailed report of the obtained solution is shown next.
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Table 6.2: Optimization results for α = 0, 0.75, 1 and αi

α x∗
1 x∗

2 x∗
3 γ∗

1 γ∗
2 γ∗

3 γ∗
4 = γ∗

5 z∗

0 0,25 5 3 5 0 8 0 80

0.75 7,09 0 4,18 12 0 5 0 115

1 6,14 0 4,27 10,2 0 5,8 0 106,5

αi 3,88 1,63 4,38 8,5 0 6,2 0 99,7

6.2.1 Discussion of the results

All methods have obtained an optimal solution. Note that both z∗ and x∗ have different

results because γ and cγ change the boundaries of the problem as a function of αc. This

means that the decision maker has to analyze the implications of using any of the presented

choices.

At this point, an optimal solution of the problem is obtained in terms of x∗ and γ∗. For the

sake of understanding, the proposed method uses a predefuzzification degree α before using

any optimization algorithm, so γ operates as an auxiliary variable that reaches a defuzzified

value of each constraint.

The values of cγ are additional degrees of freedom that the analyst should keep in mind

before applying our proposal. In this example, those costs has to be paid by the system, so

the method achieves a solution where the system has to increase only selected constraints to

improve z, even by paying for γ.

There are some interesting reasons for: the method selects the constraints that increase

the objective function, accomplishing (6.12) instead of a simpler reasoning of treating all

constraints in the same way.

Note that there is an infinite amount of possible choices of xij that can solve the problem,

so we point out that our approach is based on the idea of a selection done over the possible

set of choices through αc.

6.3 Behavior of the Zimmermann’s method into z̃

Even when the Zimmermann’s method has a linear behavior (if considered as a single model),

the existence of infinite sets B into the FOU of b̃ permits that infinite choices of b̂ ∈ △ and

b ∈ ∇ can be selected to perform an IT2FLP. Figueroa and Hernández [7] has shown that the

Zimmermann’s method has no a linear behavior for different selections of b̂ and b̌. Anyways,

any selection is inside z̃ as shown in last section.

The experimental evidence has been obtained by computing optimal solutions for some se-

lected combinations of fuzzy sets using two key points b̌ and b̂ enclosed into △ and ∇

respectively. The selected combinations of parameters for computing α∗ are:
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Pessimistic approach: This approach uses µb, namely b̌ and b̂, based on the idea of having

the minimum possible availability of resources.

Optimistic approach: This approach uses µb̄, namely ¯̌b and
¯̂
b, based on the idea of having

the maximum possible availability of resources.

min-max approach: This approach uses b̌ and
¯̂
b, based on the idea of having extreme

availability of resources.

max-min approach: This approach uses ¯̌b and b̂, based on the idea of having extreme

availability of resources.

Incremental approach: This approach divides △ and ∇ into a set of proportional values

from b̌ to ¯̌b and b̂ to
¯̂
b using a value δ ∈ [0, 1], as follows:

b̌ = b̌+△ ∗ δ (6.39)

b̂ = b̂+∇ ∗ δ (6.40)

Note that δ = 0 and δ = 1 equals to the pessimistic and optimistic approach.

A maximization problem of four variables and five fuzzy constraints using the following data

is solved to show the behavior of the Algorithm 1 regarding the selected combinations of

b̂ ∈ △ and b̌ ∈ ∇:

A =
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Now, we have selected 9 equally distributed values of δ, δ = {0.1, 0.2, · · · , 0.9} for which we

computed the mixed approach. Note that each of the resultant problems have a value of ž, ẑ

and z∗ = f(α∗, ž, ẑ). The results are summarized in Table 6.3, and using the results of the

Theorem 5, we compute z̃ which is displayed in Figure 6.5.

6.3.1 Discussion of the results

The largest and smallest values of α were achieved by the δ = 0.4 and max−min approach

respectively. This means that the FOU of b̃ contains extreme points of α. This also suggests
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Table 6.3: Optimization results for different values of α.
Value α∗ z∗ ž ẑ

Pessimistic 0.5 25,125 22 28,25

Optimistic 0.5149 29,377 25 33,5

min−max 0.5194 27,973 22 33,5

max−min 0.5 26,625 25 28,25

δ = 0.1 0.5 25,650 22,3 29

δ = 0.2 0.5072 26,124 22,6 29,5474

δ = 0.3 0.515 26,586 22,9 30,0579

δ = 0.4 0.5208 27,037 23,2 30,5684

δ = 0.5 0.5189 27,433 23,5 31,0789

δ = 0.6 0.5171 27,828 23,8 31,5895

δ = 0.7 0.5154 28,223 24,1 32,1

δ = 0.8 0.5138 28,619 24,4 32,6105

δ = 0.9 0.5138 29,003 24,7 33,075

1

µZ̃

z∗ ∈ Rž
25

z∗

Jz∗

ẑ
28.25

ẑ
33.5

ž
22

q qqqq q q q q q q q q

Figure 6.5: Boundaries of z̃

that extreme points (max−min and min−max) do not lead to larger values of α.

At a first glance, ž, z∗, ẑ and α∗ seem not to be proportional to δ. To do so, we compute the

variational rate, namely θ as

θαi = αi − αi−1 ∀i ∈ δ (6.41)
θz∗i = z∗i − z∗i−1 ∀i ∈ δ (6.42)
θži = ži − ži−1 ∀i ∈ δ (6.43)
θẑi = ẑi − ẑi−1 ∀i ∈ δ (6.44)

The obtained results are shown in Table 6.4

Note that the behavior of α, z∗ and ẑ has no linear increments, so we can see that even when

ž is linearly incremented, the remaining results has no a proportional variation rate. This

leads us to think that the soft constraints method has no a linear behavior, even when it is

an LP problem itself.
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Table 6.4: Variational rate θ for α, z∗, ž and ẑ.
Value θα∗ θz∗ θž θẑ

δ = 0.1 0 0.525 0.3 0.750

δ = 0.2 0.0072 0.474 0.3 0.547

δ = 0.3 0.0078 0.463 0.3 0.511

δ = 0.4 0.0058 0.451 0.3 0.511

δ = 0.5 -0.0019 0.395 0.3 0.511

δ = 0.6 -0.0018 0.395 0.3 0.511

δ = 0.7 -0.0017 0.395 0.3 0.511

δ = 0.8 -0.0016 0.395 0.3 0.511

δ = 0.9 0 0.385 0.3 0.465

δ = 1 0.0011 0.374 0.3 0.425

On the other hand, the interaction between z(x∗) and B is not proportional to δ, so the soft

constraints method leads to nonlinear results.

There is no any α less than 0.5, so it seems that α has minimum and maximum boundaries.

It is clear that α 6 0.5, so the soft constraints method fits the Bellman-Zadeh fuzzy decision

making principle through LP methods to achieve nonlinear results.

The shape of b̃ affects the solution and the behavior of α as well. Different configurations of

µb and µb̄ lead to different values of α∗, so its behavior is a function of the FOU of b̃. The

effect of having multiples shapes into the FOU of b̃ is to have nonlinear increments of α, z∗, ž

and ẑ.

Also note that if we compute linear increments on µb instead of proportional increments,

their results should be different from using µb̄, due to their shapes.

Finally, note that any value z ∈ R (except ¯̌z and ẑ) in the IT2FLP approach has no a single

membership value as pointed out before. In this case, every z ∈ R has an interval set of

membership degrees, namely u ∈ Jz∗ ⊆ [0, 1], similarly as shown in Figures 6.5 and 3.1.
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Chapter 7

Concluding Remarks

The presented thesis final report shows a mathematical programming model (see model

(6.12)) for LP problems whose constraints involve linguistic uncertainty coming from multi-

ple expert perceptions and opinions (see Figueroa & Hernández [1, 2]), and Section 5 presents

two methods to solve an IT2FLP problem which are applied to different examples.

An extension of the Zimmermann soft constraints method [43, 44] (equivalent to Verdegay’s

model [100], see Section 2.5) to an IT2FSs environment is presented and solved using LP

optimization methods. Some theoretical and geometrical considerations has been presented

in Section 3.1, Definitions 4, 5, and equation (3.4), in order to provide better information to

decision makers.

Two application examples (see Chapter 6) have been solved using the proposed methods, a

production planning in Section 6.1 and a simulated example in Section 6.2. Some practical

considerations about the behavior of the Zimmermann’s soft constraints method regarding

Type-2 fuzzy constraints are provided in Section 6.3 to improve decision making.

The concept of fuzzy optimal solution regarding IT2FLP has been presented and discussed

in Definition 7 (see Chapter 4), and the existence of an optimal solution is proven in Section

3.6. Feasibility condition is defined in Section 3.4, and convexity conditions are defined in

Section 3.5, which provide robustness to the proposal. Some considerations about the prac-

tical implications of our proposal are glimpsed in Section 4.1.3, and some recommendations

regarding its application are provided in Section 6.3.
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Fuzziness and Soft Computing. Volume 313. Springer Verlag (2014).

[7] Figueroa-Garćıa, J.C., Hernández, G.: Behavior of the soft constraints method applied

to Interval Type-2 Fuzzy linear programming problems. Lecture Notes in Computer Science

7996 (1) (2013) 101-109.

[5] Figueroa-Garćıa, J.C., Hernández, G.: Solving linear programming problems with Interval

Type-2 fuzzy constraints using interval optimization. In: 32th Annual NAFIPS conference.

Volume 32., IFSA-IEEE (2013) 1-6.

[9] Figueroa-Garćıa, J.C., Hernández, G.: A note on ”Solving Fuzzy Linear Programming

problems with Interval Type-2 RHS”. In: 32th Annual NAFIPS conference. Volume 32.,

IFSA-IEEE (2013) 1-6.

[6] Figueroa-Garćıa, J.C., Hernández, G.: Computing optimal solutions of a linear program-

ming problem with Interval Type-2 fuzzy constraints. Lecture Notes in Computer Science

7208 (2012) 567-576.

[3] Figueroa-Garćıa, J.C., Hernández, G.: Interval Type-2 fuzzy linear programming: Uncer-

tain constraints. In: IEEE Symposium Series on Computational Intelligence, IEEE (2011)

1-6.

[4] Figueroa et.al: Multi-period mixed production planning with uncertain demands: Fuzzy
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7.1.2 Awards

The following awards and grants are also a component of the results of this Thesis:

• IFSA (International Fuzzy Sets Association) Young Talent award. Given at FEDCSIS

2012 conference for the paper ”An approximation method for Type Reduction of an

Interval Type-2 fuzzy set based on α-cuts” (see Figueroa-Garćıa [101]).

• NAFIPS (North American Fuzzy Information Processing Society) Best Interval Ses-
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linear programming problems with Interval Type-2 fuzzy constraints using interval op-

timization” (see Figueroa-Garćıa and Hernández [5]).

• IFORS (Institute for Operational Research) grant to attend ELAVIO (Escuela Lati-

noamericana de Verano en Investigación de Operaciones). February 5-11, 2012 - Bento

Ģonzalves, Brasil.
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Appendix A

This appendix shows Tables 1, 2, 3, and 4 which are used in the first application example.

Table 1: Capacities ACik and available labor hours WCk.
k AC1k AC2k AC3k WCk

1 6105 5280 3960 22200

2 5610 6435 5610 19200

3 4455 5775 5940 16800

4 5362.5 5610 6270 23800

Table 2: Unitary standard production time, tsijk
tsijk ∀ k = 1, 2, 3, 4.

i, j tsi1k tsi2k tsi3k tsi4k

ts1jk 0.15 0.25 0.25 0.15

ts2jk 0.25 0.1 0.12 0.09

ts3jk 0.12 0.28 0.21 0.34
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Table 3: Production, inventory, backorder costs and soft demands.
Unitary costs. Soft demands.

j, k Cprjk Spjk hjk ojk C
△(+)
jk C

∇(+)
jk ď

(−)
jk d̂

(−)
jk ď

(+)
jk d̂

(+)
jk

1,1 225 350 12 156.25 12 14 3700 3900 8775 9249

1,2 165 300 14 168.75 12 14 3200 3400 7650 8128

1,3 160 280 13 150 12 14 2400 2700 6075 6834

1,4 105 220 15 143.75 12 14 3400 3500 7875 8107

2,1 205 320 12 143.75 18 20 2650 2800 6300 6657

2,2 175 300 14 156.25 18 20 3100 3400 7650 8390

2,3 160 270 13 137.5 18 20 1750 1900 4275 4641

2,4 225 330 15 131.25 18 20 2600 2800 6300 6785

3,1 53 190 12 171.25 20 18 1950 2100 4725 5088

3,2 74 220 14 182.5 20 18 3700 3900 8775 9249

3,3 103 250 13 183.75 20 18 2450 2600 5850 6208

3,4 138 320 15 227.5 10 18 4000 4100 9225 9456

4,1 160 350 12 237.5 10 10 2650 2800 6300 6657

4,2 90 270 14 225 12 10 3300 3400 7650 7882

4,3 65 210 13 181.25 12 10 1900 2100 4725 5222

4,4 50 240 15 237.5 12 10 2400 2500 5625 5859

Table 4: Uncertain demands.
j, k ď

(−)
jk

¯̌d
(−)
jk d̂

(−)
jk

¯̂
d
(−)
jk ď

(+)
jk

¯̌d
(+)
jk d̂

(+)
jk

¯̂
d
(+)
jk

1,1 3700 4070 3900 4290 8661 8981 9039 9479

1,2 3200 3520 3400 3740 7594 7821 8002 8274

1,3 2400 2640 2700 2970 5899 6287 6654 6943

1,4 3400 3740 3500 3850 7805 8083 7909 8340

2,1 2650 2915 2800 3080 6201 6442 6415 6779

2,2 3100 3410 3400 3740 7580 7818 8292 8525

2,3 1750 1925 1900 2090 4077 4501 4510 4785

2,4 2600 2860 2800 3080 6201 6422 6633 6848

3,1 1950 2145 2100 2310 4664 4781 4951 5289

3,2 3700 4070 3900 4290 8714 8994 9026 9372

3,3 2450 2695 2600 2860 5631 5994 6097 6405

3,4 4000 4400 4100 4510 9169 9313 9299 9611

4,1 2650 2915 2800 3080 6187 6464 6478 6829

4,2 3300 3630 3400 3740 7513 7725 7797 8064

4,3 1900 2090 2100 2310 4603 4909 5020 5395

4,4 2400 2640 2500 2750 5516 5770 5784 5989
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