NON-NORMALITY OF CONTINUED FRACTION PARTIAL QUOTIENTS MODULO q

by

Arnold KNOPFMACHER and D.S. LUBINSKY

It is well known that almost all real numbers (in the sense of Lebesgue measure) are normal to base q where $q \geqslant 2$ is any integer base. More precisely, if $a \in\{0,1,2, \ldots, q-1\}$ and $d_{n}^{*}(a, q)$ denotes the number of occurences of the digit a amongst the first n digits in the "decimal" expansion base q of a real number x, with $0<x<1$, then for almost all $x \in(0,1)$,

$$
\lim _{n \rightarrow \infty} d_{n}^{*}(a, q) / n=q^{-1}
$$

It seems natural to wonder whether this normality property still holds for other representations for real numbers; in particular for the digits occurring in the regular continnued fraction expansion of $0<x<1$. Recall that each such x has a unique expansion in the form

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdot \cdot}}},
$$

where the positive integer digits a_{i} are known as the partial quotients. Unfortunately, for almost all $x \in(0,1)$ the partial quotients form an unbounded set of integers. It is there fore necessary to define what is meant by normality in such a case. One possible way is to consider the partial quotients modulo q and ask for the asymptotic frequency of occurrences of digits congruent to $a \bmod q$, if this exists. These asymptotic frequencies can in fact be deduced rather easily from the following general theorem of Khinchine [1, p.95]:

THEOREM. Let $c, \delta r e p r e s e n t ~ p o s i t i v e ~ c o n s t a n t s ~ a n d ~ s u p-~$ pose $0 \leqslant f(r)<c r^{\frac{1}{2}-\delta}, r=1,2,3, \ldots$ Then for almost all $x \in(0,1)$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(a_{k}\right)=\sum_{r=1}^{\infty} \frac{f(r) \ln \left\{1+\frac{1}{r(r+2)}\right\}}{\ln 2},
$$

where a_{k} denotes the k th partial quotient of x, for $1 \leqslant k \leqslant n$.

As far as we are aware, however, our particular quiestion has not explicitly been considered. Let $d_{n}(a, q)$ denote the number of occurences amongst the first n continued fraction partial quotients that are congruent to $a \bmod q$. For convenience let us denote the case $a=0$ by $d_{n}(q, q)$. It turns out, perhaps surprisingly, that the asymptotic frequencies $\lim _{n \rightarrow \infty} d_{n}(a, q) / n$ are not the same for each a and that in fact these frequencies form a strictly decreasing sequence of values as a increases from 1 to q. These values can be expressed exactly in terms of the gamma function as follows:

THEOREM. Let $a \in\{1,2, \ldots, q\}$. Then for almost all $x \in(0,1)$

$$
\lim _{n \rightarrow \infty} d_{n}(a, q) / n=\log _{2}\left(\frac{\Gamma\left(\frac{a}{q}\right) \Gamma\left(\frac{a+2}{q}\right)}{\left\{\Gamma\left(\frac{a+1}{q}\right)\right\}^{2}}\right) .
$$

Proof. For fixed $q>2$ and $a \in\{0,1,2, \ldots, q-1\}$ define

$$
f_{a, q}(r)= \begin{cases}1, & r \equiv a \bmod q \\ 0, & \text { otherwise. }\end{cases}
$$

Then $\frac{1}{n} \sum_{k=1}^{n} \sigma_{a, q}\left(a_{k}\right)$ represents the density of partial quotients which are congruent to $a \bmod q$ in the first n elements of the continued fraction. Using Khinchine's theorem and our previous notation (replacing the case $a=0$ by $a=q$)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f_{a, q}\left(a_{k}\right)=\lim _{n \rightarrow \infty} d_{n}(a, q) / n=\frac{1}{\ln 2} \sum_{r \equiv a \bmod q} \ln \left(1+\frac{1}{r(r+2)}\right) \\
& \quad=\log _{2} \prod_{n=0}^{\infty}\left(1+\frac{1}{(n q+a)(n q+a+2)}\right)=\log _{2} \prod_{n=0}^{\infty} \frac{(n q+a+1)^{2}}{(n q+a)(n q+a+2)} \\
& \quad=\log _{2} \prod_{n=0}^{\infty} \frac{\left(n+\frac{a+1}{q}\right)^{2}}{\left(n+\frac{a}{q}\right)\left(n+\frac{a+2}{q}\right)} .
\end{aligned}
$$

We can now evaluate the infinite product using Theorem 5 of Rainville [2, p.14]. Then simplifying using the identity $\Gamma(t+1)=t \Gamma(t), t \in R$, gives the result.

In particular we deduce that the asymptotic frequency of even partial quotients is $\log _{2} \frac{4}{\pi}=0.348504 \ldots$, and of odd partial quotients is $\log _{2} \frac{\pi}{2}=0.651496 \ldots$ The tables below gives the asymptotic frequencies for $q=3$ and $q=4$.

$$
\begin{aligned}
& \begin{array}{l|l|l|}
a=1 \\
a=2 & 0.546954 \ldots \\
a=3 & 0.274052 \ldots \\
0.178992 \ldots . & a=1 \\
& a=2 & 0.5 \\
a=3 & 0.239203 \ldots \\
a=4 & 0.151496 \ldots \\
0
\end{array} \\
& q=3 \quad q=4
\end{aligned}
$$

It is not hard to show that as $q \rightarrow \infty$,

$$
\prod_{n=1}^{\infty}\left(1+\frac{1}{(n q+a)(n q+a+2)}\right) \rightarrow 1
$$

and thus for fixed $k<q$, as $q \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} d_{n}(k, q) / n \rightarrow \log _{2}\left(1+\frac{1}{k(k+2)}\right)
$$

Of course $\log _{2}\left(1+\frac{1}{k(k+2)}\right.$ is the familiar expression for the asymptotic frequency of the proportion of partial quotient having the value k (see [1]). In particular for every q, $\lim _{n \rightarrow \infty} d_{n}(1, q)>\log _{2} \frac{4}{3}=0.415037 \ldots$

REFERENCES

[1] A.Ya. Khinchine, Continued Fractions. P.Noordhoff Ltd. (1963).
[2] E. Rainville, Special Functions, Chelsea Publ. Co. (1960).

Dept. of Computational \& Applied Mathematics University of the Witwatersrand P 0 wits 2050 South Africa.

Dept. of Mathematics
University of the Witwatersrand P 0 wits
2050 South Africa
(Recibido en mayo de 1990).

