
Rock burst is one of main engineering geological problems greatly threatening the safety of construction. Prediction of 
rock burst is always an important issue concerning the safety of workers and equipments in tunnels. In this paper, a novel 
PNN-based rock burst prediction model is proposed to determine whether rock burst will happen in the underground 
rock projects and how much the intensity of rock burst is. The probabilistic neural network (PNN) is developed based on 
Bayesian criteria of multivariate pattern classification. Because PNN has the advantages of low training complexity, high 
stability, quick convergence, and simple construction, it can be well applied in the prediction of rock burst. Some main 
control factors, such as rocks’ maximum tangential stress  , rocks’ uniaxial compressive strength  , rocks’ uniaxial tensile 
strength  and elastic energy index of rock   are chosen as the characteristic vector of PNN. PNN model is obtained 
through training data sets of rock burst samples which come from underground rock project in domestic and abroad. 
Other samples are tested with the model. The testing results agree with the practical records. At the same time, two real-
world applications are used to verify the proposed method. The results of prediction are same as the results of existing 
methods, just same as what happened in the scene, which verifies the effectiveness and applicability of our proposed work.
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El fracturamiento o explosión de rocas es uno de los principales problemas en ingeniería geológica que amenaza 
significativamente la seguridad de una construcción. La predicción del fracturamiento de rocas es importante para 
la seguridad de los trabajadores y el equipamiento en túneles. En este artículo se propone un nuevo modelo de 
predicción de fracturamiento de rocas basado en una red neuronal probabilística (PNN por sus siglas en inglés) 
para determinar la posible ocurrencia e intensidad de uno de estos eventos en proyectos subterráneos. La PNN se 
desarrolló con base en un criterio Bayesiano para la clasificación multivariada de patrones. Debido a que la PNN 
tiene las ventajas de una menor complejidad de adiestramiento, estabilidad, rápida convergencia y simplicidad en 
su construcción, se puede adecuar en la predicción del fracturamiento de rocas. Algunos factores principales de 
control, como la fuerza máxima tangencial de rocas, la resistencia de compresión uniaxial, la fuerza de tensión 
uniaxial, y el índice de energía elástica de las rocas fueron escogidos como los vectores característicos de la PNN. 
El modelo se obtuvo a través del adiestramiento de datos sobre fracturamiento de rocas en proyectos subterráneos 
en diferentes localidades. Otras datos también se analizaron con el modelo. Los resultados de la evaluación se 
ajustan a los registros observados. Simultáneamente, se utilizaron dos aplicaciones prácticas para verificar el método 
propuesto. Los resultados de la predicción son similares a los de métodos existentes, un factor que además se 
presentó en las pruebas de campo, lo que demuestra la efectividad y la aplicabilidad de la metodología propuesta.
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1. Introduction

A rock burst is a sudden and violent expulsion of rock from the 
surrounding rock mass. Rock burst is considered a dynamic instability 
phenomenon of surrounding rock mass of un-derground space in high geostatic 
stress and caused by the violent release of strain energy stored in the rock 
mass. Rock burst occurs during excavating underground space in the form of 
a stripe of rock slices or rock fall or throwing of rock fragments, sometimes 
accompanied by crack sound. Rock bursts are related to the fracture of rock 
in place and require two conditions for their occurrence:  stress in the rock 
mass sufficiently high to exceed its strength, and physical characteristics of 
the rock which enable it to store energy up to the threshold value for sudden 
rupture. Rocks which yield gradually in plastic strain under load usually do 
not generate rock bursts. The likelihood of rock bursts occurring increases as 
the depth of the mine increases. Rock bursts are also affected by the size of 
excavation, becoming more likely if the excavation size is around 180m and 
above. Induced seismicity such as faulty methods of mining can trigger rock 
bursts. Other causes of rock bursts are the presence of faults, dikes, or joints 
(Dong et al., 2013).

Because rock burst occurs suddenly and intensely, it usually causes 
injury including death to workers, damage to equipment, and even substantial 
disruption and economic loss of under-ground space excavation. Therefore, 
there is a need for the development of suitable computa-tional methods for 
the prediction and control of rock bursts particularly for a safe and economic 
underground excavation for construction or mining in the burst-prone 
ground. For this case, numerous related research works, concerning about 
the mechanism, characteristics or type, the cause of formation, the critical 
conditions and preventive methods of rock burst have been con-ducted by 
many researchers. Many researchers have suggested various theories, many 
predic-tion methods, and empirical correlation, such as fuzzy-base evaluation 
method (Wang et al., 1998; Amoussou et al., 2013), distance discriminant 
analysis (Wang et al., 2009; Wang et al., 2017), support vector machine 
(SVM) (Zhao, 2005; Zhou et al., 2012, extension-theory-based method 
(Xiong et al., 2007), rough-set-based method (Yang, 2010), unascertained 
measurement method(Shi et al., 2010), numerical simulation (Zhen & Gao, 
2017; Zhu et al., 2010) and case study (Mansurov, 2001).

These studies offered new ideas and approaches for rock burst 
prediction. However, each method discussed above has its  advantages and 
disadvantages, and understanding, predicting and controlling the rock bursts 
still pose a considerable challenge for underground engineering. 

As an important means, the ANN-based method for prediction of 
rock burst has been adopted by many researchers gradually in recent years 
(Bai et al., 2002; Zhang et al., 2012). Ar-tificial neural network technique is 
considered the most effective and reliable artificial intelli-gence methods for 
solving classification, prediction and recognition problems. 

Currently, back propagation (BP) and radial basis function (RBF) 
networks are used in the field of prediction of robust classification. However, 
for network training, they are all easily trapped in local minimum values. 
Probabilistic neural network (PNN), on the other hand, is a feedforward 
neural network. It is derived from the Bayesian network and a statistical 
algorithm called kernel Fisher discriminant analysis. It was introduced by 
Specht and Donald(1990). Be-cause PNN has the advantages of low training 
complexity, high stability, quick convergence, and simple construction, it has 
a wide range of application in model classification, identification, prediction, 
as well as fault diagnosis and other fields(Adeli and Panakkat, 2009; Song et 
al., 2007; Ataa et al., 2017; Rutkowski, 2004 ). In this work, according to the 
practice of complicat-ed problems of the rock burst prediction, the PNN is 
applied to predicting rock burst classifica-tion.

2. Material and Methods

2.1. Criteria and indexes of rock burst and rock burst classification

2.1.1. Criteria considering stress in surrounding rock
The criteria listed in Table 1 were proposed early, and only considered 

the stress level in surrounding rock. Furthermore, different scholars chose 
different parameters as an evaluation index of criterion for rock burst, and 
the classification of rock burst intensity also differed from each other. So it is 
difficult to use these criteria in the construction of underground engineering.

Table 1. Criteria only considering stress in surrounding rock.

2.1.2. Comprehension criteria considering stress, properties of surround-

ing rock and energy
1) The following criterion is presented with rock burst tendency index 

and energy condition of surrounding rock (Dong et al, 2013).

                                                                                                                                     (1)

                                                                                                                          (2)

                                                                                                                         (3)

                                                                                                                                  (4)
 

where Wqx is the rock burst tendency index; σ1 and σ2 are the major and middle 
principal stress in surrounding rock, respectively; μ is the Poisson ratio.

2) It is stipulated that rock burst could occur if σө / σc  ≤ Ks in which the 
value of Ks related to σt / σc criterion.

3) Kidybinski (1981) proposed an elastic energy index Wet. No rock 
burst activity, moderate rock burst activity and strong rock burst activity, meet 
the conditions Wet <2.0, 2.0≤ Wet ≤5.0, and Wet >5.0, respectively.

2.1.3 Input characteristic vector for PNN  
The indexes of criterion should reflect the main factors of rock burst - 

the properties and stress of surrounding rock. At the same time, they should 
be obtained easily and can be compared with each other for different cases. In 
this work, the compressive rock strength σc, tensile strength σt, elastic energy 
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index Wet and the maximum tangential stress σө are chosen as the indexes of 
criterion. Compressive rock strength σc, tensile strength σt, and elastic energy 
index Wet can indicate the properties of surrounding rock, and the tangential 
stress σө can reflect the virgin geostatic stress condition and the influence of 
the shape and dimension of the underground space on rock burst. In this work,  
σө, σc, σt and Wet are selected as the input index for PNN model to predict the 
degree of rock burst activity. Hence, the input characteristic vector for PNN 
is [σө, σc, σt, Wet]. 

2.1.4 Classification for intensities of rock burst
According to the extent and intensity of the characteristics of the rock 

burst phenomenon in the underground openings, the grade of rock burst is 
divided into four degrees, namely none rock burst, light rock burst, moderate 
rock burst, strong rock burst, respectively. So the PNN model output is rock 
burst degree, output = [none rock burst, light rock burst, moderate rock burst, 
strong rock burst]. Also, the division of rock burst degree can be described in 
Table 2 (Wang et al., 1998; Zhou et al., 2012; Zhang et al., 2004) 

Table 2. Standard of classification for intensities of rock burst.

number of category өq. Additionally, σ is the smoothing parameter.
Figure 1 depicts a schematic diagram of the multi-class classification 

PNN. X is a vector to be classified as the neurons in the input layer. It is 
passed to the corresponding neurons in the hidden layer with no change. The 
hidden layer then transmits each neuron in the accumulated layers. At this 
point, the output obtained by the accumulation layer is the estimation of the 
probability density function of each pattern for the test vectors. Accordingly, 
the category of the occurrence of the maximum probability of the current test 
vector is the one that corresponds to the largest probability density function. 
This function is the output of the accumulation layer. The neuron output with 
the probability density maximum is 1; the corresponding category is the one 
to which h belongs.

 

2.2. PNN-based Rock burst Prediction Model

2.2.1 Outline of PNN
Probability neural networks are a tool for handling uncertainty for 

improving learning per-formance. Probability uncertainty and fuzziness 
uncertainty processing play a key role in boost-ing classification systems 
including extreme learning machines and decision trees (Wang et al., 2015; 
Lu et al., 2015). PNN is essentially a classifier that places the Bayes estimate 
in a feed-forward neural network. The central concept of Bayes criterion 
classification is the minimal ‘‘predictable risk’’ of the Bayes decision. The 
Bayes decision is based on the non-parametric estimation of the probability 
density function; accordingly, it obtains the classification results. Based on its 
advantages, such as rapid training time, a stable and simple neural structure, 
and good convergence, it is suitable for use in defect recognition.

For a multi-class problem with σ1, σ2, , σq, σs, we apply to the above 
issues two types of classification problems in Bayes decision classification. 
For p-dimensional vector X = {x1, x2,  , xp} based on the Bayes decision rule, 
we determine the status of өϵөq with its measurement set, 

                                                                                               (5)

In the Equation (5), hq represents the priori probability of  ө = өq, d(x)  
as the Bayes decision of test vector X , hk is the priori probability of ө = өk, 
and lq and lk are incorrectly classified into other categories of losses. The latter 
should belong to өq and өk. Besides, fq (x) and fq (x) are probability density 
function of  өq and өk, respectively.

                                                                       (6)
 

where X is a sample of the input vector to be classified, p is the dimension of 
sample vectors, xqj is the j-th sample of the category өq, and mq is the sample 

Figure 1. Schematic diagram of the multi-class classification PNN.

2.2.2 PNN modeling for prediction of rock burst
The number of input layer neurons of PNN is the same as the 

dimensionality of the input characteristic vector. Based on discussed above,  
σө, σc, σt, and Wet are selected as the input characteristic vector for PNN model 
and the input vector of PNN = [σө, σc, σt, Wet]. Hence, the number of input 
layer neurons of PNN is 4.

The number of output neurons of PNN is the same as the number of 
classification of rock burst activity. According to the section 2.4, the grade of 
rock burst is divided into four degrees, and the PNN model output is rock burst 
degree and the output vector = [none rock burst, light rock burst, moderate 
rock burst, strong rock burst]. So the number of output layer neurons is 4.

The number of hidden layer neurons is determined by the training data 
set. The number of hidden layer neurons is equal to the sum of the number of 
each category of training sample 

The number of accumulation layer neurons is the same as the number 
of classification of rock burst activity. Here, the number of accumulation layer 
neurons is 4. 

The design of PNN modeling for prediction of rock burst includes the 
following aspects: a collection of data sets, data preprocessing, build a PNN, 
network model, training PNN, testing PNN etc. The design process is shown 
in Figure 2.
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Figure 2. The design process of PNN modeling for prediction of rock burst.

3. Results
Rock burst samples which come from underground rock projects in 

domestic and abroad are collected as training data set (Show in Table 3) and 
testing data set (Show in Table 4) to verify the rationality of our posed method. 

The relationship among the indexes of criteria, the occurrence of rock 
burst and its intensity is very complicated. For the sake of the capability of 
PNN for pattern recognition, we attempt to predict the rock burst activity by 
using PNN. 

Four degrees of rock burst activity, including none rock burst, light rock 
burst, moderate rock burst and strong rock burst are indicated by 1, 2, 3 and 
4, respectively.

PNN model and criterion are obtained through training data sets of rock 
burst samples which come from underground rock projects in domestic and 
abroad. The training effect and the training error are shown in Figure 3. It is 
noted from Figure 3 that the misjudgment ratios of training samples using 
PNN model is 0, which prove that the PNN has a good learning performance. 
Figure 4 is the perdition results of testing samples. From the Figure 4, we 
can find that the prediction accuracy of PNN model is 100%. The results 
show that the prediction results agree well with the practical records, which 
prove the PNN-based rock burst model is useful and available and can be 
applied to the prediction for the possibility and classification of rock burst in 
underground engineering. 

Table 3. Collected samples of rock burst.

Table 4. Testing samples.
 

Figure 3. The training of PNN.
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Figure 4. The perdition results of testing samples.

The results of the PNN-based method are compared with that SVM-
based method, BP-based method, and LVQ-based method. The calculated 
results of PNN, SVM, BP and LVQ are listed in Table 3. From Table 3, we 
can find that the misjudgment ratios of tested samples using SVM, BP, LVQ, 
and PNN are 10%, 20%, 20% and 0, respectively. The compared predicted 
results show that it is feasible and appropriate to use PNN model for rock 
burst prediction.

Table 5. Comparison of calculation results by different methods.

To study the effectiveness and feasibility in engineering practice 
applications, two real-world examples are analyzed by using our posed PNN-
based rock burst prediction method. 
Case 1: Tongyu tunnel engineering 

Tongyu Tunnel is currently one of the most deep-lying and longest 
tunnels in Chongqing, China.  Its geological conditions are incredibly 
complex. The measured data of rock burst in depth 900m at a cross section of 
K21+680 of Tongyu tunnel are listed in Table 6 (He et al., 2008). Applying 
our proposed prediction model to rock burst prediction of this engineering, 
the result of prediction is light rock burst activity. The results agree well with 
the practical records.

Table 6. Prediction of rock burst in depth of 900 m at the cross section of K21+680 
of Tangyu tunnel.

Case 2: Qinnling tunnel engineering
The QingLing tunnel is the longest railway tunnel in China and takes 

the third place in the world at present. Reference (Thaldiri et al., 2017; Li 
and Wang, 2009) provides rock burst measured data for of QingLing tunnel 
engineering. Some measured data listed in Table 7. Table 7 compared the 
performance of the proposed method with existing BP-based method (Bai 
et al., 2002) and unascertained measurement method(Shi et al., 2010). From 
the Table 7, the result of prediction is same as the results of existing BP-
based method and unascertained measurement method, just same as what 
happened in the scene. This case further confirms that the PNN-based method 
is effective and practical in the application of prediction of rock burst. On 
the other hand, PNN-based method has the advantages of low training 
complexity, high stability, quick convergence, and simple construction. 

Table 7. A case of Qinling tunnel is analyzed by using our proposed method.

4. Discussion
In this paper, a novel PNN-based rock burst prediction model is 

proposed to determine whether rock burst will happen in the underground 
rock projects and how much the intensity of rock burst is. PNN model is 
obtained through training data sets of rock burst samples which come from 
underground rock project in domestic and abroad. Other samples are tested 
with the model. The testing results agree with the practical records. At the 
same time, two real-world applications are used to verify the proposed 
method. The results of prediction are same as the results of existing methods, 
just same as what happened in the scene, which verifies the effectiveness and 
applicability of our proposed work.

5. Conclusions
Because PNN has the advantages of low training complexity, high 

stability, quick convergence, and simple construction, it can be well applied 
in the prediction of rock burst. In this work, a PNN-based prediction model 
of rock burst is presented. According to the mechanism of rock burst, rocks’ 
maximum tangential stress σө, rocks’ uniaxial compressive strength σc, rocks’ 
uniaxial tensile strength σt and elastic energy index Wet are defined as the 
criterion indices for rock burst prediction in the proposed PNN-model. Some 
collected rock burst samples which come from underground rock projects 
in domestic and abroad and two real-world engineering in China are used to 
verify the new model. The prediction results demonstrated that the developed 
PNN-based prediction model is effective and efficient approach to predict 
rock burst potential grade.
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