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Abstract
We study some problems related to the synchronization of finite state automata

and the Černy’s conjecture. We focus on the synchronization of small sets of

states, and more specifically on the synchronization of triples. We argue that it

is the most simple synchronization scenario that exhibits the intricacies of the

original Černy’s scenario (all states synchronization). Thus, we argue that it is

complex enough to be interesting, and tractable enough to be studied via algo-

rithmic tools. We use those tools to establish a long list of facts related to those

issues.

We observe that planar automata seems to be representative of the synchroniz-

ing behavior of deterministic finite state automata. Moreover, we present strong

evidence suggesting the importance of planar automata in the study of Černy’s

conjecture. We also study synchronization games played on planar automata.

We prove that recognizing the planar games that can be won by the synchronizer

is a co-NP hard problem. We prove some additional results indicating that pla-

nar games are as hard as nonplanar games. Those results amount to show that

planar automata are representative of the intricacies of automata synchronization.

Keywords: Synchronizing automata, Černy’s Conjecture, synchroniza-

tion games.
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Preface

In this dissertation we study the concept of synchronization and its relations

to Černý Conjecture. We began studying the synchronization time of pairs.

This problem was completely solved, and it suggested that it could be a good

idea to study the synchronization time of triples. We arrived to our 2
3
-Černý

Conjecture. We verified that the conjecture holds true for several special classes

of automata, and for all the known sequences of slowly synchronizing automata.

By the way we observed that all the slowly synchronizing automata, registered

in the literature, are planar automata. This led us to study the synchronization

of planar automata.

0.1 Organization of the work

The introduction as well as Chapter 1 offers a review of the state of the art.

In chapter 2 we introduce the concept of subset synchronization, and more specifi-

cally the synchronization of small sets of states. We think that the above notion is

an interesting combinatorial concept that generalizes in a natural way the notion

of reset word. We studied the synchronizing times of k-tuples of states, focussing

on the synchronizing times of the hardest k-tuples. Moreover, we focus on the

cases k = 2 and k = 3.
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We focus in chapter 3 on the synchronizing times of triples, and we begin the

study of the 2
3
-Černý Conjecture. The latter conjecture states that given a n-

state synchronizing automaton, the synchronizing time of its hardest to synchro-

nize triple of states is bounded above by 2
3
n2 +o (n2). We prove that the 2

3
-Černý

Conjecture holds true for aperiodic, circular and prime length one-cluster au-

tomata. We also study the case of Eulerian automata, and we prove that a weak

version of the conjecture holds true for almost all the Eulerian automata.

In chapter 4 we characterize the algorithmic hardness of some synchronization

problems related to planar automata and we show that all those problems are as

hard as the unrestricted versions. We get most of those results by simply noticing

that their proofs for general automata work verbatim in the planar framework.

We get a new hardness result for planar and unrestricted automata. The proof of

this result for planar automata is not trivial. The aforementioned result is related

to the parameterized complexity of synchronizing small sets of states, we prove

that the corresponding algorithmic problem, as well as its planar restriction, are

NWL complete (see [27]).

In chapter 5 we introduce a strong version of the 2
3
-Černy conjecture. We intro-

duce the notion of extremal sequences and we prove that all the know extremal

seguences cannot refute the strong version of our conjecture.

In chapter 6 we introduce the synchronization games that we want to study, and

we show that some other games that were previously studied in the literature,

as for example accessibility games (see [27]), are special cases of synchronizing

games. We also study the length of optimal playing strategies, focussing on pair

synchronization games. We prove a quadratic upper bound, and we prove that

this quadratic bound is optimal. We investigate subset synchronization games
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played on planar non-synchronizing automata. We prove that it is co-NP hard

to recognize the planar games for which the synchronizer has a winning strategy,

and we also prove that the longest possible games are played on planar automata.

In chapter 7 we include some concluding remarks and some questions for future

research.



Introduction

Synchronization is an important topic in theoretical computer science, and it

is also important in the theory of finite state automata. Deterministic finite

state automata that are synchronizing are interesting examples of error resilient

systems: if a synchronizing automaton is taken out of control, it can be reset to

an specific state by feeding it with a synchronizing string.

The concept of synchronizing automata appears for the first time in the work

of Moore [39]. A finite state automaton is an elementary model of devices that

work in discrete time, such as computers or relay control systems. This leads to a

natural question: is it possible to restore the control of such device, if the current

state is not known, but the outputs produced by the device can be observed

under several actions? Moore proved that under certain conditions it is possible

to determine the state to which the automaton will arrive after an adequate

sequence of actions called experiments. The Gedanken-experiments of Moore

motivated the study of synchronizing automata which is nowadays, an active

research field. The recent review of Sandberg [47] is a good reference in the area.

Let us recall the notion of deterministic finite state automaton.

Definition 1. A DFA is a triple M = (QM,ΣM,δM) such that:

• QM is a finite set, the set of internal states of automaton M.

• ΣM is a finite alphabet, the input alphabet of M.
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• δM is the transition function of M, which is a function from QM ×ΣM to

QM.

Definition 2. Let M = (QM,ΣM,δM) be a DFA. We denote by Σ∗M the set of

finite strings over the alphabet ΣM. The function δ̂M : QM×Σ∗M → QM, defined

by the recursion:

δ̂M (q, w1...wn) = δM

(
δ̂M (q, w1...wn−1) , wn

)
,

δ̂M (q, w1) = δM(q, w1).

Function δ̂M determines the state that is reached when automaton scans the string

w1...wn, beginning in the state q.

Definition 3. We say that an automaton M is synchronizing, if and only if,

there exists a synchronizing string w ∈ Σ∗M, such that for all p, q ∈ QM, the

equality δ̂M (p, w) = δ̂M (q, w) holds.

Jan Černý [15] published his first paper on automata synchronization in 1964.

He presented in this paper a sequence that we denote with the symbol {Cn}n≥2.

Automaton Cn is a n−state automaton that can be synchronized by a word of

length (n − 1)2. Černý conjectured, that every synchronizing automaton has a

synchronizing word whose length is upperbounded by (n− 1)2 . This conjecture

is considered as the most important open problem in the combinatorial theory of

finite automata [55] .

A first attempt to solve the Černý problem consists in reduce its proof to a small

and representative enough class of automata. Volkov [54] proved the following

result in that direction:

Suppose that Černý conjecture holds for all complete automata with a strongly

connected transition graph. Then the conjecture holds for all complete automata,

both strongly connected and otherwise.

The above result motivated the study of different classes of automata for which
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Černý conjecture holds true. Let us list some of the most important results in

this direction.

1. Circular automata: an automaton is circular if there exists a letter a ∈ Σ

that induces a circular permutation over the set of states of the automaton. Pin

[44] proved that Černý conjecture holds true for circular automata with a prime

number of states. This result was improved by Dubuc [17], who proved the con-

jecture for all circular automata.

2. Aperiodic automata: an automaton is aperiodic, if and only if, its transition

semigroup is aperiodic. Trahtman [53] proved that Černý conjecture holds true

for aperiodic automata.

3. One-cluster automaton: an automaton is a one-cluster automaton if there

exits a ∈ Σ such that the graph of a is connected. Steinberg [49] proved that

Černý conjecture holds true for all the one-cluster automata for which the length

of the one-cluster cycle is a prime number. An important application of syn-

chronizing automata is related to code synchronization. Béal [5] proved that the

fast synchronization of codes is related to the fast synchronization of one-cluster

automata.

4. Eulerian automata: an automaton is Eulerian if the associated transition

digraph is Eulerian. Kari proved that Eulerian automata are synchronizing, and

he also proved that Černý conjecture holds true for this class of automata. Stein-

berg [50] proved how to deduce Kari’s solution by a method for obtaining bounds

on lengths of synchronizing words.

We consider that the above four classes constitute the most representative exam-

ple of classes of automata for which it has been proved that Černý Conjecture

holds true.

What is know about general automata ?

The first upper bound for general automata was proved by Černý [15] who proved

that the length of the shortest reset word not exceed the value 2n − n− 1. This
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result has been improved several times. Pirická and Rosenauerová proved in

1971 a better upper bound, they proved that the reset length is upperbounded

by 1
3
n3 − 3

2
n2 + 25

6
− 4. Pin established a better bound in 1981, namely (1

2
−

π
36

)n3 +o(n3). Then, in 1982, Pin [45] and Frankl [21] found a better bound n3−n
6

.

Quite recently, in 2018, Szykula improved this bound achieving the best current

upper bound: 114
685
n3 +O(n2).

The Automata with reset word close to the Černý bound are very rare [3]. Then,

it is natural to ask:

1. Are synchronizing automata frequent?

2. Does a synchronizing n-state automaton have a short synchronizing word with

high probability?

Berlinkov [7] proved that the probability that a random n-state automaton is

synchronizing is of the order O(1 − n−
1
2
|Σ|). Nicaud [41] proved that when an

automaton is chosen uniformly at random, the probability that it has a synchro-

nizing word of length O(n1+ε) tends to 1 when n tends to infinity. Thus, it seems

that most automata are synchronizing and can be synchronized with short reset

words. Why are we interested in the existence of short synchronizing strings?

Suppose one has to control a synchronizing automaton, it should include a reset

word into his toolkit: if the system is taken out of control, it can use this reset

word to drive the system towards a specific state that can be computed in ad-

vance. Notice that by doing so, the reset time will depend on the length of the

reset word. Then, it is better if he chooses to compute a shortest synchronizing

string.

Finally, it is important to remark that automata synchronization is not an iso-

lated field, and that it has many application in other fields of applied computer

science. One of the oldest and most surprising application is related to the setting

of mechanical pieces ( Natarajan [40]). There are applications related to coding

(Berlinkov [5]), game theory (Maubert [35]) and matrix mortality (Jungers [25]).
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Moreover, we have that automata synchronization is a special instance of the

Rendezvous problem studied in distributed computing (Rajsbaum [33]).



1 Synchronization of finite state

automata: Algorithmic aspects.

In this chapter we focus on some algorithmic problems related to the synchro-

nization of finite state automata. To begin with we notice that there are DFA

that are not synchronizing. Therefore, it is in important issue to determine which

are the automata that are synchronizing.

Proposition 1. A DFA M = (QM,ΣM, δM) is synchronizing if and only if for

every p, q ∈ QM there exists a word w ∈ Σ∗M such that δ̂M(p, w) = δ̂M(q, w).

Proof. (⇒) The automaton M is synchronizing. Thus, there exists a reset word

w ∈ Σ∗M such that δ̂M(p, w) = δ̂M(q, w), for every p, q ∈ QM. (⇐) Let q1, ..., q|QM|

be the states of M, and let w|QM|,|QM|−1 ∈ Σ∗M such that

δ̂M(q|QM|, w|QM|,|QM|−1) = δ̂M(q|QM|−1, w|QM|,|QM|−1).

Given i ≤ |QM|−1, set δ̂M(qi, w|QM|,|QM|−1) = q2
i . Compute a string w|QM|−1,|QM|−2

that synchronizes the states q2
|QM|−1 and q2

|QM|−2. Continue in this way until a

string w2,1 is computed. The string w|QM|,|QM|−1 · · · w2,1 synchronizes M .

The above proposition tells us that we can reduce the problem of synchronizing

an automaton to the problem of synchronizing each one of its pairs. Therefore we

say that reduction to pairs is a strategy that works for automata synchronization.

One can use proposition 1 to solve the problem of deciding which are the automata

that are synchronizing. To this end we have to introduce the square automaton.
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Definition 4. Let M be a n-state synchronizing automaton, and let p, q be two

states of M. The square automaton of M, denoted by M2, is the automaton

defined by:

• QM2 = {{p, q} : p, q ∈ QM} (p and q could be equal).

• ΣM = ΣM2.

• Given c ∈ ΣM the equality δM2 ({p, q} , c) = {δM (p, c) , δM (q, c)} holds.

Theorem 1. A DFA M = (QM,ΣM, δM) is synchronizing if and only if the set

∆M2 = {{p, q} ∈ QM2 : p = q} is accessible from any element of QM2.

Proof. Let p, q ∈ QM. A synchronizing string for p and q corresponds to a

path in the square automaton M2, which connects the node {p, q} and the set

∆M2 = {{p, q} ∈ QM2 : p = q}.

Let Synch be the problem defined by:

• Input: (M, k, (q1, ..., qk)), where M is a finite state automaton, k is an

integer and q1, ..., qk are k states of M.

• Problem: Compute a string w ∈ Σ∗M such that for all i, j ≤ k the equation

δM(qi, w) = δM(qj, w) holds.

It is easy to figure out a algorithm for this problem, which works, on input

(M, k, (q1, ..., qk)), as follows.

1. Use the graph (the automatonM2) and Dijkstra’s algorithm to compute a

string wk,k−1 that synchronizes the states qk−1 and qk.

2. Given i ≤ k − 1, set q2
i = δM(qi, wk−1,k). Use Dijkstra’s algorithm once

again to compute a string wk−1,k−2 that synchronizes the states q2
k−2 and

q2
k−1.
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3. Continue in this way until a string w2,1 is computed.

4. Ouput the string wk,k−1 · wk−1,k−2 · ... · w2,1.

Our algorithm runs in time O(kn4), where n is equal to the size of the input

automaton. Notice that one can use the above algorithm to recognize the set of

synchronizing automata in time O(n5).

We also consider an optimization problem that is naturally related to Synch,

and which we define in the following way.

Problem 1. (Synch [D] : Optimal synchronization of automata)

• Input: (M, k), M is a synchronizing automaton and k is an integer.

• Problem: Decide if the automaton M have a synchronizing string whose

length is bounded above by k.

Theorem 2. [18] Synch [D] is NP-hard.

Proof. To prove that Synch [D] is NP-complete we show that Sat is polyno-

mial time reducible to the latter problem. Let φ be a formula with k vari-

ables, say x1, ..., xk, and n clauses. The reduction produce an automaton Mφ =

(ΣMφ
, QMφ

, δMφ
). The set of states has size n(k + 1) + 1 and is partitioned in

the following three types of states:

• qi,j, where 1 ≤ i ≤ n and 1 ≤ j ≤ t.

• ci, where 1 ≤ i ≤ n.

• A special state s.

The alphabet ΣMφ
is equal to {0, 1} and is used to represent the possible assign-

ments for the variables x1, ..., xk.

Let φ(x1, ..., xt) = φ1(x1, ..., xt) ∧ · · · ∧ φn(x1, ..., xt). Let j ≤ k and let i ≤ n, we

use the symbol xj ∈ φi to indicate that the literal xj occurs in φi, and we use the
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symbol ∼ xj ∈ φi to indicate that the literal ∼ xj occurs in φi. The transition

function is defined as follows:

δMφ
(q, 0) =



qi,j+1 if q = qi,j and xj ∈ φi.

qi,j+1 if q = qi,j , j < t and xj,∼ xj /∈ φi.

ci if q = qi,j , j = t and xj,∼ xj /∈ φi.

s if q = qi,j and ∼ xj ∈ φi.

s if q = ci , 1 ≤ i ≤ n.

s if q = s.

and

δMφ
(q, 1) =



qi,j+1 if q = qi,j and ∼ xj ∈ φi.

qi,j+1 if q = qi,j , j < t and xj,∼ xj /∈ φi.

ci if q = qi,j , j = t and xj,∼ xj /∈ φi.

s if q = qi,j and xj ∈ φi.

s if q = ci , 1 ≤ i ≤ n.

s if q = s.

Observe that any string ω of length t+ 1 synchronizes the automatonMφ. Now

suppose thatMφ receives as input a string ω whose length is less than t. It may

correspond to a satisfiable assignment. If we runMφ, on input ω, and it reaches

the state ci, then the assignment φ is not satisfying. Notice that beginning at

qi,k, any string of length t− (k − 2) send the automaton to the sink s. Thus, let

us to consider the computation of the automaton Mφ, on input ω, when Mφ is

initialized at state qi,1. Suppose that the length of the string ω is upperbounded

by t and synchronizes the automaton Mφ, we have that δ̂Mφ
(qi,1, w) = s. Then,

the path from qi,1 to s does not reach the state ci. Thus, there is a satisfying

assigment for φ.
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Figure 1-1: Automaton Mφ, where φ(x1, x2, x3) = (x1∨ ∼ x2 ∨ x3) ∧ (x2 ∨ x3)

Suppose that φ has a satisfying assignment, then each clause has at least one

literal assigned to 1. Observe that this assignment allows us to compute a string

ω of length t. Note that δ̂M(qi,1, w) = s.Thus, ω is a synchronizing string forMφ

whose length is equal to t.

Now, we will prove that Synch [D] cannot be approximated within any constant

range (Heeringa [24]).

Definition 5. A stack cover is an automaton M = (QM,ΣM, δM) such that:

• The set of states QM is a disjoint union of states, say Q1∪Q2∪···∪Qn plus

a single state s. Each stack Qi is linearly ordered as qi1, ..., qi(li+1), where

qij ∈ Qi,and qi(li+1) = s.

• The alphabet is a set Σ of size m.

• The transition function is defined as follows:
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for each x ∈ Σ and for all 1 ≤ j ≤ li we have that, either δ(qij, x) = qij or

δ(qij, x) = qi(j+1) . We also have that δ(s, x) = s for all x ∈ Σ.

Theorem 3. [24] Synch [D] is is hard to approximate within any constant range.

Proof. An instance of the shortest common supersequence (SCS) is a set of strings

S = {ω1, ..., ωn} over an alphabet Σ of size m. That is, each ωi is a string in

Σ∗. The goal is to find the shortest string ω ∈ Σ∗ such that each string ωi

is a subsequence of ω. We can reduce an instance of SCS to a Stack Cover

instance of Synch [D] as follows. Given a set of strings A, we construct MA =

(QMA
,ΣMA

, δMA
), where:

• QMA
= {qij|1 ≤ i ≤ n, 1 ≤ j ≤ |ωi|} ∪ {s}.

• The alphabet ΣMA
= Σ.

• The transition function is defined as follows:

for all qij ∈ Q− {s} and a ∈ Σ the equality

δMA
(qij, a) =



s if a = ωij, j = |wi|,

qi(j+1) if a = ωij, j < |wi|,

qij Otherwise,

s if qij = s, a ∈ ΣMA

holds.

The transition function δMA
guarantees that for each state there is a single char-

acter that produces a transition to the next state in the stack. Notice that ω ∈ Σ∗

is a reset word forM, if and only if, ω is a supersequence for S. Jiang and Li [29]

showed that SCS has no α-approximation for any α > 0 unless P = NP. Here n

is the number of strings. This hardness result holds even when the strings have

constant length. It follows that Synch [D] is hard to approximate within any

constant range.
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There exists a strongest result, obtained by Gawrychowski and Straszak who

proved that for all ε > 0 it is NP-hard to approximate Synch [D] within the ratio

O(n1−ε) [23]. Notice that we can use the naive pair synchronization strategy

to desing an approximation algorithm that approximates Synch [D] within the

ratio O(n). Then, according to the aforementioned result of Gawrychowski and

Straszak the ratio O(n) is the better approximation that can be achieved in

polynomial time. We finish this introductory chapter here, having presented the

most important results related to the algorithmics of automata synchronization.



2 Subset Synchronization

Suppose that a troop of k agents is exploring an automaton M. Suppose also

that one wants to force all those agents to meet at a certain unspecified state.

Then, if one can broadcast a single message, the same one for the k agents, he

must choose to broadcast a string that synchronizes the locations (states) of those

agents. We can consider two possible scenarios. In the first scenario one does not

know the specific locations of the agents scattered through the territory, while in

the second scenario he knows those k locations. The first scenario is equivalent to

the classical Černý’s scenario because the only possible solution is to synchronize

all the states of M. The second one corresponds to subset synchronization, it

corresponds to synchronizing the k locations of the agents.

Definition 6. Let M be a synchronizing automaton and let q1, q2, ..., qk ∈ QM.

• We use the symbol st (M, q1, q2, ..., qk) to denote the length of a minimal

synchronizing string for those k states.

• We use the symbol stk (M) to denote the quantity

max {st (M, q1, q2, ..., qk) : q1, q2, ..., qk ∈ QM} ,

which is equal to the synchronizing time required by the hardest to synchro-

nize k-tuple of states of automaton M. We say that stk (M) is the k-tuple

rendezvous time of M.

• We use the symbol stk to denote the function defined by
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stk (n) = max {stk (M) :M is a n-state synchronizing automaton} ,

which we call the k-tuple rendezvous time function.

By an abuse of language we say that st (M, q1, q2, ..., qk) is the synchronizing time

of the tuple {q1, q2, ..., qk} .

We study the sequence {stk}k≥2 . We focus on the function RT : N→ R that is

defined by

RT (k) =

 0, if k = 0, 1

limn→∞
stk(n)
n2 , otherwise

2.1 The synchronizing time of pairs

Let M be a n-state synchronizing automaton, and let p, q be two states of M.

A minimal synchronizing string for p and q corresponds to a minimal path in the

square automaton M2, which connects the node {p, q} and the set ∆M2 . The

length of such a path is bounded above by the size of QM2\∆M2 , which is equal to

n(n−1)
2

. Then, we have that for all p, q ∈ QM, the inequality st (M, p, q) ≤ n(n−1)
2

holds.

We can prove that this bound is tight, by showing that for infinitely many n’s

there exists a n-state automaton, say Cn, such that st2 (Cn) = n(n−1)
2

. This task,

(which at first sight could seem easy), is by no means trivial. It is known that

the expected value of st|QM| (M) is O (|QM|) [28]. The latter means that most

synchronizing automata can be synchronized using short strings of linear size.

Then, we have that for most synchronizing automata all their pairs of states can

be synchronized with short strings of linear size.

Notice that a n-state automaton achieving the bound n(n−1)
2

must exhibit the

following singular feature: there exists a pair of states, which visits all the others

pairs of states before it gets synchronized. Let n be a fixed integer, the canonical
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construction of a n-state automaton exhibiting such a singular feature is the

following one:

• Use the n states, labelled 0, 1, ..., n− 1, to built a directed cycle of length n

whose arrows are colored with the letter a, and which are directed according

to the cyclic order 0 ≤ 1 ≤ · · · ≤ n− 1 ≤ 0.

• Add a loop colored with the letter b to any node in the set {1, ..., n− 1}.

Add an arrow (0, 1) , colored with the same letter b.

We use the symbol Cn to denote the synchronizing automaton that is obtained

from the above construction. Automaton Cn is best described by the graphic in

figure 2.1.

Theorem 4. Given n ≥ 2, if n is even the equality st2 (n) = n(n−1)
2

holds.

Proof. Consider the pair
(
1, n

2
+ 1
)
. When applying the synchronizing word

(ban−1)n−2a to
(
1, n

2
+ 1
)
, this pair will visit any possible pair of states before

it gets synchronized. Then, st2 (Cn) = n(n−1)
2
≤ st2 (n), and the theorem is

proved.

We get that RT (2) = 1
2
.

We have to observe that the case k = 2 is somewhat trivial given that in this very

special case the naive strategy (synchronize the set, pair by pair) is the unique

possible strategy.

Remark 1. It can be conjectured that Cn is the unique n-state automaton reaching

the bound st2(M) = n(n−1)
2

, this conjecture is false and it was refuted by Casas

and Montoya [11].

The sequence {Cn}n≥2 is the sequence of Černý automata.
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Figure 2-1: Automaton Cn

2.2 The synchronizing time of triples

In this section we study the 3-tuple rendezvous time and the related quantity

RT (3) . This section is closely related to the work of Gonze and Jungers [26] who

studied a complementary problem: they studied the synchronizing time required

by the easiest to synchronize triple of states. We ask: how large could be the

synchronizing time of a given triple? A first upper bound is n (n− 1) . It follows

from the following fact: in order to synchronize three states (say p, q and r),

one can choose to synchronize the first two states, (which costs at most n·(n−1)
2

characters), and then to synchronize the (at most) two remaining states. Thus,

we have.

Proposition 2. Given n ≥ 2, the inequality st3 (n) ≤ n (n− 1) holds.

We conjecture that the right upper bound is very much smaller. We can prove,

as a warm up, that the crude bound of proposition 2 is never achieved.

Given a set B, and given k ≥ 1, we use the symbol P=k (B) to denote the set
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{C ⊆ B : |C| = k} . LetM be an automaton and let A be a subset of P=2 (QM),

we use the symbolAc to denote the set {{p, q} : {p, q} ∈ P=2 (QM) & {p, q} /∈ A}.

Lemma 1. Given a synchronizing automatonM, and given a set A ⊂ P=2 (QM),

there exists {p, q} ∈ A such that st (M, p, q) ≤ |Ac|+ 1.

Proof. Suppose that for all {p, q} ∈ A it happens that st (M, p, q) > |Ac| + 1.

Let w be a minimal synchronizing string for the pair {p, q} ∈ A. Suppose that w

is equal to w1...w|Ac|w|Ac|+1...w|Ac|+k (with k > 1), and set

{x, y} =
{
δ̂M (p, w1...wk−1) , δ̂M (q, w1...wk−1)

}
.

Notice that a minimal synchronizing string for {x, y} is the string

u = wkwk+1...w|Ac|+k−1,

whose length is equal to |Ac| + 1. Notice that {x, y} /∈ A. Let Ψ be equal to

the sequence of pairs that are visited along the synchronization process of x, y as

determined by the string u. We have that the length of Ψ is equal to |Ac|, and

we have that Ψ is contained in Ac\ {{x, y}} .

Then, there exists a pair that is visited at least two times. But then, it should

be clear that we have arrived to a contradiction, given that u is a minimal syn-

chronizing string. Then, there must exist {p, q} ∈ A, such that the inequality

st (M, p, q) ≤ |Ac|+ 1 holds.

Corollary 1. Given n ≥ 2, the inequality st3 (n) ≤ n (n− 1)− 2 holds.

Proof. Let M be a n-state synchronizing automaton and let p, q, r be three dif-

ferent states ofM. Set A = {{p, q} , {p, r} , {q, r}} . Notice that |Ac| = n(n−1)
2
−3.

Thus, there exists {x, y} ∈ A, such that st (M, x, y) ≤ n(n−1)
2
− 2. Then, if we

choose to synchronize this pair first, we get a total synchronizing time that is

smaller than n (n− 1)− 2.
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Which are the right upper and lower bounds for st3(n)? There is a naive method

for computing lower bounds: one picks a sequence of synchronizing automata,

say {Mn}n≥2, and then estimates, for all n, the value of st3 (Mn) .

Notice that the inequality st3 (Mn) ≤ st3 (|QMn|) holds by definition. Now, if one

wants to get a nontrivial lower bound using such a naive idea, one must choose

a sequence of slowly synchronizing automata [3]. We choose to work with the

sequence {Cn}n≥2, which is the paradigmatic example of a hard to synchronize

sequence of automata (see below).

Proposition 3. Given n, we have that st3 (Cn) ≤ 2
3
n2, and for all n = 3k the

equality st3 (Cn) ≤ 2
3
n (n− 1) holds.

Proof. Let G (Cn) be the underlying digraph of Cn. An interval is a subset of QCn

which is connected in G (Cn).

Let I be an interval of size m, it can be clockwise rotated until it gets equal to

{0, ...,m− 1} . To this end, one can apply a string akI , where kI is a suitable

positive integer that is smaller than n. Then, if he applies letter b, he gets the

interval {1, ...,m− 1}, that is: there exists kI ≤ n − 1 such that δ̂
(
I, akIb

)
is

equal to {1, ...,m− 1} . Notice that this contraction procedure can be iterated a

large enough number of times until the interval gets equal to a singleton, which

corresponds to the interval being synchronized. Observe that given A ⊂ QCn ,

synchronizing A is the same as synchronizing the minimal length interval con-

taining A. Given a triple p, q, r, there exists an interval I such that p, q, r ∈ I and

|I| ≤ 2
3
n + 1. The synchronization of I corresponds to |I| − 1 contractions, and

the cost (in characters) of each one of those contractions is bounded above by n.

Then, we have that

st (Cn, p, q, r) ≤ n (|I| − 1) ≤ 2
3
n2.

Let n = 3k, and let I = {1, k + 1, 2k + 1}. It is easy to check that the syn-

chronization time of the set I is equal to 2
3
n (n− 1) (see [43]), it implies that
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st (Cn, 1, k + 1, 2k + 1) = 2
3
n (n− 1).

The best known lower bound for the reset time is Cerný Bound which is equal

to (n− 1)2. The best known upper bound is the cubic bound of Pin and Frankl

which is equal to n3−n−6
6

, and which is achieved by a greedy version of pair syn-

chronization: at each round one chooses to synchronize (from the set of states

that remain to be synchronized) the easiest to synchronize pair of states [20].

Notice that we used this greedy version of pair synchronization, when we stab-

lished the upper bound st3(n) ≤ n(n − 1) − 2. Notice also that the Pin-Frankl

Bound is the best upper bound that can be achieved by the solely application of

pair synchronization. Thus, we have that pair synchronization cannot yield sub-

cubic upper bounds. On the other hand, Černý Conjecture claims that optimal

synchronization takes just quadratic time. It can be argued that the core ques-

tion encoded by Černý problem is the following one: can we beat the naive pair

synchronization strategy? Thus, we have that Černý question is just an instance

of one of the ubiquitous questions of theoretical computer science: can we beat

the naive strategy?

It could be argued that the important results of Gawrychovski and Straszak

entails a negative answer to the above question [23]. However, we are not re-

stricting our attention to efficient (polynomial time) synchronization strategies.

The aforementioned results seem to imply that it is not possible to beat pair syn-

chronization in polynomial time. We ask: can we beat pair synchronization using

a computabe synchronization strategy? We will show (see below) that studying

the synchronizing times of tuples can pave the way to solve Černy’s problem. To

this end, it is necessary to study the synchronizing times of k-tuples for varying

k. Nevertheless, we will to focus on the case k = 3. Why? We consider that the

synchronization of triples is at the very heart of Černy’s problem. Notice that the

problem of synchronizing triples is the simplest synchronization scenario where it

makes sense to ask our motivating question: does there exist a synchronization
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strategy outperforming the naive reduction to pairs? Moreover, as we will see, we

count with an algorithmic tool that can be used to make some experiments.

Let H-TRIPLES be the problem defined by:

• Input: M, where M is a synchronizing automaton.

• Problem: Compute the hardest triple of M together with a minimal syn-

chronizing string for this triple.

Theorem 5. H-TRIPLES can be solved in time O
(
|M|9

)
.

Proof. Let M be an instance of H-TRIPLES. Consider the 3-power automaton

M3 defined by:

• QM3 = {{p, q, r} : p, q, r ∈ QM} (p, q and r are not necessarily pairwise

different).

• ΣM = ΣM3 , and given c ∈ ΣM the equality

δM3 ({p, q, r} , c) = {δM (p, c) , δM (q, c) , δM (r, c)} holds.

Computing a minimal synchronizing string for states p, q, r is the same as com-

puting a minimal path inM3, connecting the state {p, q, r} with the set ∆M3 =

{A ∈ QM3 : |A| = 1}. The latter problem can be solved in time O
(
|M|6

)
using

Dijkstra’s algorithm [17]. Then, the computation of the hardest triple of M can

be carried out in time O
(
|M|9

)
.

From now on, we use the symbol TRIPLES to denote the above algorithm. It

is important to remark that a similar argument, to the one used in the above

proof, can be used to prove that the problem of computing the hardest k-tuple

can be solved in time O
(
|M|3k

)
. Notice that k occurs in the exponent, which

is, in some sense, the worst possible behavior. We have to ask: is the occurrence

of k in the exponent unavoidable? Notice that it if were the case, we could not

claim that the problem of computing the hardest k-tuple is feasible (it becomes

not feasible for large values of k).
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2.3 The synchronizing time of k-tuples and Černy’s

conjecture

Pair synchronization provides us with nontrivial upper bounds for the function

RT and for the reset time of synchronizing automata, we have

RT (k) ≤ k−1
2

and st (n) ≤ n(n−1)2

2
.

Notice that for all k, the inequality stk (n) ≤ (k − 1) n(n−1)
2

holds. On the other

hand, it is not hard to prove the following proposition (see [43])

Proposition 4. stk (Cn) ≤
(
k−1
k

)
n (n− 1)

It follows from the work of Pereira [43] that

k−1
k

= inf {r : for all n the inequality stk (Cn) ≤ rn2 + o (n2) holds} .

The latter fact, and the former observation, motivates the following conjecture

Conjecture 1. (Parameterized Černý Conjecture) Let M be a synchro-

nizing finite state automaton and let k be an integer.

• The inequality stk (M) ≤
(
k−1
k

)
n (n− 1) holds.

• For all k ≥ 2 the equality RT (k) = k−1
k

holds.

The above conjecture is a strong asymptotic conjecture, it implies that the syn-

chronizing time of any n-state synchronizing automaton is bounded above by

n2 + o (n2) . Next proposition shows that one can get interesting consequences, if

he considers some small values of k.

Proposition 5. If RT (7) = 6
7
, the reset time of any n-state synchronizing au-

tomaton is bounded above by n3

7
+ o (n3) .
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Proof. Let M be a n-state synchronizing automaton. The synchronization of

M can be achieved by a sequence of rounds, at each round one synchronizes

seven states. Notice that after each round the number of states that remain

to be synchronized is reduced by no less than 6. Thus, full synchronization can

be achieved after no more than n
6

rounds, the length of each round is bounded

above by 6
7
n2 + o (n2) . Then, the synchronizing time of M is bounded above by

n3

7
+ o (n3) .

The reader must observe that the upper bound n3

7
+ o (n3) is asymptotically

stronger than The Pin-Frankl Bound, which is equal to n3−n−6
6

[20]. The reader

must take into account that The Pin-Frankl bound is the best upper bound (reg-

istered in the literature) on the reset time of synchronizing automata. There is

a recent preprint of Szykula who supposedly improves the latter upper bound

[52]. The upper bound of Szykula is equal to 114
685
n3 +O (n2) . Notice that Szykula

upper bound is asymptotically weaker than the bound n3

7
+ o (n3) .

Next proposition shows that the parametrized Černy’s conjecture is stronger than

the classical Černy’s conjecture

Proposition 6. If the parameterized Černy’s conjecture holds, then Černy’s con-

jecture must also hold.

Proof. Suppose that for all M, and for all k, the inequality

stk (M) ≤
(
k−1
k

)
n (n− 1)

holds. Then, given M it happens that

st|M| (M) ≤
(
|M|−1
|M|

)
|M| (|M| − 1) = (|M| − 1)2,

and then, the inequality st|M| (M) ≤ (|M| − 1)2 must hold.
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The above proposition indicates that studying the synchronization of small sets

of states could be a fruitful way of studying the synchronization of automata and

the related Černy’s conjecture.
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We have that:

st3 (Cn) =
⌊

2n(n−1)
3

⌋
≤ st3 (n) ≤ n (n− 1),

and we conjecture that Cerný automata contains the hardest to synchronize

triples of states. Thus, we conjecture that RT (3) = 2
3
, just two thirds of the

upper bound that is achieved by pair synchronization (pair synchronization im-

plies that RT (3) ≤ 1).

Conjecture 2. (The 2
3
-Černý Conjecture)

The equality RT (3) = 2
3

holds.

The above conjecture can be considered a big audacity: we only know that for

all n ≥ 1 the inequality

st3 (Cn) ≤ 2
3

(n (n− 1)) ≤ 2
3
n2

holds. Recall that most synchronizing automata can be synchronized with short

strings of linear length [28]. We say that a sequence of synchronizing automata is

superlinear, if and only if, the synchronizing time required by this sequence cannot

be bounded above by a linear function. The sequence {Cn}n≥2 is an important

example of a superlinear sequence, it was discovered by Jan Černy in 1964 [15].

Černy proved that sn (Cn) = (n− 1)2 , and he conjectured that for all n-state

synchronizing automaton, say M, the inequality sn (M) ≤ (n− 1)2 holds. It is

the famous Černy’s conjecture, which remains open after more than fifty years.
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Notice that this latter conjecture is asserting that for all n ≥ 1 the automaton

Cn is the hardest to synchronize n-state automaton.

3.1 The 2
3-Černý Conjecture for Some Special

Classes of Automata

We would like to provide evidence in favor of our conjecture, it is the main

aim of this chapter. There are many works on Černý Conjecture that face with

the following problem: to provide evidence in favor of this old and important

conjecture. It is fair to say that all those works can be classified into two groups:

1. The first group is constituted by works that are devoted to prove that Cerný

bound holds most of the time (with probability one), see references [7], [28]

and [41] .

2. The second group is constituted by works that are devoted to prove that

Cerný Conjecture holds true for some special classes of automata, see for

instance the references [17], [30], [49] and [53].

It follows easily from the results in [7] that the expected 3-tuple rendezvous time

is linear, and it implies that 2n2

3
upperbounds the 3-tuple rendezvous time of most

n-state automata. Thus, it is easy to prove for the 3-tuple rendezvous time the

same type of probabilistic results that are proved for the synchronizing time in

the aforementioned references. Therefore, we focus on providing the second type

of positive evidence.

Remark 2. A third type of positive evidence is provided in chapter 5. In this

chapter we study the extremal sequences of slowly synchronizing automata regis-

tered in the literature and we prove that the 3-tuple rendezvous time of all the

automata included in those sequences is upperbounded by 2
3
n2.
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There are many results asserting that Černý Conjecture holds true for special

classes of automata. Perhaps, the most celebrated are the results included in the

papers [17], [30], [49] and [53]. Those results can be summarized as follows: Černý

Conjecture holds true for aperiodic, circular, Eulerian and one-cluster (prime

length) automata. We ask: does The 2
3
-Černý Conjecture hold for the same four

classes of automata? First, some definitions:

Definition 7. Let C be a class of automata, we set

RT C (3) = inf {r : Φ (r, C)} ,

where Φ (r, C) is equal to the condition: the inequality

stk (M) ≤ rn2 + o (n2)

holds for all n and for any n-state synchronizing automaton in the class C.

Theorem 6. The 2
3
-Černý Conjecture holds for aperiodic automata.

Proof. It is clear that the synchronizing time upperbounds the 3-tuple rendezvous

time. Trathman proved that the synchronizing time of n-state aperiodic automata

is bounded above by n(n−1)
2

(see [53]), the best known upper bound is
⌊
n(n+1)

6

⌋
(see [54]). Notice that for all n the inequality

⌊
n(n+1)

6

⌋
≤ 2n2

3
holds. Thus, we get

that RT C (3) ≤ 2
3
.

It was easy to obtain our result for aperiodic automata as a corollary of the

classical result of Thratman. It is also easy to prove that the 2
3
-Černý Conjecture

holds true for one-sink automata.

Theorem 7. The 2
3
-conjecture holds true for the class of one-sink automata

Proof. Let p, q, r be the three states to be synchronized, and let s be the sink-

state. Given a state t, we use the symbol d (t) to denote the distance from t to

s. Observe that there exists a string Xt such that δ̂ (t,Xt) = s and |Xt| ≤ d (t).

Notice that if the equalities
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δ̂ (p, w) = δ̂(δ̂(q, w), u) = δ̂(δ̂(r, wu), v) = s

hold, then wuv is a synchronizing string for those three states. To finish with the

proof we notice that given k states q1, ..., qk, the inequality d
(
qπ(i)

)
≤ n holds.

Altogether, we have that the synchronizing time of the triple p, q, r is bounded

above by 3n. It is easy to check that the inequality 3n ≤ 2
3
n2 holds for all n ≥ 5.

Thus, we get that RT C (3) ≤ 2
3
.

We can get an interesting corollary from the above theorem. One of the first

important results concerning Cerny’s Conjecture is a result of Volkov [54] assert-

ing that if the conjecture holds true for all the strongly connected synchronizing

automata, then it must hold true for all the synchronizing automata. We prove

that an analogous fact holds for our 2
3

-Conjecture.

Remark 3. Notice that any automaton with more that one sink is not synchro-

nizing.

Theorem 8. If the 2
3
-Conjecture holds true for all the strongly connected syn-

chronizing automata, then it holds true for all the synchronizing automata.

Proof. Let M = (Q,Σ, δ) be a synchronizing automaton with n states, and let

S ⊂ Q be a subset of Q with exactly three elements. Let T be the subset of Q

constituted by the states at which the automaton M can be synchronized. Let

m = |T |, notice that if m = 1, the automaton has a sink state and there is nothing

to prove. Notice also that if m = n, automaton M is strongly connected, and

once again there is nothing to prove. Thus, we suppose that 1 < m < n.

Let γ be the restriction of δ to the set T × Σ. Notice that R = (T,Σ, γ) is

a strongly connected synchronizing automaton with m states. Let N be the

quotient automaton that is build from M by merging all the states of T into a

single state. Automaton N is a synchronizing automaton with exactly one sink

and its size is equal to n −m + 1. In order to synchronize the triple S, one can
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choose to work first on the automaton N , and then on the automaton R. In the

first stage one has to send all the states in S to the sink. In the second stage one

has to synchronize the (at most) three remaining states, which, as a result of the

first stage, belong to the set T (belong to the automaton R). The total time of

the synchronization process is bounded above by the sum of the times employed

in those two stages, this sum is equal to 2
3

(n−m+ 1)2 + 2
3
m2. We have that for

all 1 < m < n the inequality 2
3

(n−m+ 1)2 + 2
3
m2 ≤ 2

3
n2 holds. Thus, we get

that RT C (3) ≤ 2
3
, and the theorem is proved.

In the next section we prove that the Conjecture holds true for circular and prime

length one-cluster automata. We will have to work harder to get those two results.

3.2 Circular Automata

There are many results stating that Černý conjecture holds true for some different

classes of DFAs. Perhaps, the first and most celebrated of these results is the one

obtained by Dubuc, who proved the conjecture for the special case of circular

automata [17].

Definition 8. An automaton M = (Q,Σ, δ) is circular, if and only if, there

exists a ∈ Σ such that the action of a defines a full cycle on Q.

Dubuc’s proof is heavily based on the extension method introduced by Pin [44],

and which corresponds to a backward analysis of the synchronization process. It

is worth to remark that Pin introduced the method to prove a weaker result, he

proved that Černý conjecture holds true for all the circular automata of prime

size.

Let M = (Q,Σ, δ) be an automaton and suppose that |Q| = n. Let A ⊂ Q

and let w ∈ Σ∗, we set δ−1 (A,w) =
{
q ∈ Q : δ̂ (q, w) ∈ A

}
. Let u ∈ Σ∗, we

observe that u is a synchronizing string for M, if and only if, there exists p ∈ Q
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such that δ−1 ({p} , w) = Q. The latter observation allows us to think of the

synchronization process as if it were an extension process that begins with a

singleton (the synchronizing state) and ends with the whole set Q. The extension

process can be understood as a sequence of no more than n − 1 rounds, at each

round a larger extension is constructed.

Suppose that λ is an upper bound on the time employed at each extension round,

we have that λ (n− 1) is an upper bound on the synchronizing time of M.

Definition 9. Let λ > 0, we say that an automaton M is λ-extendable, if and

only if, for all A ⊂ Q there exists w ∈ Σ∗ such that |δ−1 (A,w)| > |A| and

|w| ≤ λ · |Q| .

Suppose that M is 1-extendable. An optimal extension process begins with the

choice of a state (the synchronizing state) that can be extended by the action

of a single letter, continues with the application of this character, and finishes

with a sequence of at most n − 2 extension rounds. Thus, the reset time of M

is upperbounded by (n− 2) · n+ 1, and this latter quantity is equal to (n− 1)2 .

Therefore, we have that Černý Conjecture holds true for any class of automata

whose members are all 1-extendable. We say, by an abuse of language, that 1-

extensibility implies Černý Conjecture. The proofs of Dubuc [17], Steinberg [49]

and Kari [49] reduce to show that circular, prime length one-cluster and Eulerian

automata are 1-extendable.

Remark 4. The notion of 1-extensibility does not imply The 2
3
-Černý Conjecture.

Suppose that M is 1-extendable, and let p, q, r be three states of M. Suppose as

well that those three states are included in the extension that is constructed after

i+ 1 rounds. We have that the synchronizing time of this triple is bounded above

by i ·n+1. Now suppose that we execute an optimal extension process. Notice that

after two rounds the constructed extension has at least three states. Let s, u and

v be three states included in this extension. Notice that the synchronizing time of
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the latter triple is less than n+ 1. Thus, given a n-state 1-extendable automaton

the synchronizing time of its easiest triples is bounded above by n+1. We get that

extensibility implies a strong upper bound on the triple rendezvous time of Junger

and Gonze [29]. However, we cannot say so much about the synchronizing time

of the hardest triples . We say that a triple p, q, r is i-hard, if and only if, for all

extension process the triple gets included in the constructed extension only after

more than i rounds. Suppose that the triple p, q, r is i-hard, if i is larger than 2
3
n

the synchronizing time of this triple could be larger than 2
3
n2. Thus, we conclude

that the extension method does not yield the upper bounds that we are looking for,

given that we cannot discard the existence of hard triples.

We can conclude from the above observations that triple synchronization cannot

be fully understood by means of a backward (extension) analysis. The synchro-

nization of triples requires back and forth. Fortunately, we can partially adapt

Pin’s extension method to study the 3-tuple rendezvous time. To this end we

have to break the synchronization process into two main stages:

• Stage 1. Expansion (back): a singleton is expanded until it gets equal to

a large subset of Q.

• Stage 2. Translation (forth): the chosen triple is moved into the large

subset that was constructed at stage one.

The above observations motivate the following definitions.

Definition 10. Let 0 ≤ λ < 1, we say that a n-state automatonM = (Q,Σ, δ) is

a λ-expander, if and only if, there exist s ∈ Q and w ∈ Σ∗ such that |δ−1 ({s} , w)| >

λn and |w| ≤ λn2 − n+ 1.

Definition 11. We say that automatonM is k-homogeneous, if and only if, given

p1, ..., pk ∈ Q and given A ⊂ Q such that |A| >
(
k−1
k

)
n, there exists u ∈ Σ≤n−1

such that δ̂ ({p1, ..., pk} , u) ⊂ A.
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Next theorem ensures that a suitable mixture of those two properties entails The

2
3
-Černý Conjecture

Theorem 9. Let M be a synchronizing automaton, if M is a 2
3
-expander and it

is also 3-homogeneous, then the 3-tuple rendezvous time of M is upperbounded

by 2
3
n2.

Proof. Let v be a string such that |v| ≤ 2
3
n2−n+1 and such that for some s ∈ Q

the inequality |δ−1 ({s} , v)| > 2n
3

holds. Pick p, q, r ∈ Q and u ∈ Σ≤n−1 such that

δ̂ ({p, q, r} , u) ⊂ δ−1 ({s} , v) . We have that the string uv synchronizes the triple

p, q, r and

|uv| ≤ (n− 1) +
(

2
3
n2 − n+ 1

)
= 2n2

3
.

The theorem is proved.

The above theorem yields a proof strategy: prove that circular automata are

2
3
-expanders and 3-homogeneous.

The proof of next lemma is straightforward.

Lemma 2. If automatonM is 1-extendable, then it is a λ-expander for all λ < 1.

An independent set forM is a set of strings w0, ..., wn−1, such that for all p, q ∈ Q

there exists i ≤ n− 1 for which the equality δ̂ (p, wi) = q holds (see [10]). Given

an independent set W = {w0, ..., wn−1}, we use the symbol LW to denote the

quantity max {|wi| : i ≤ n− 1} .

Lemma 3. If M has an independent set W = {w0, ..., wn−1} such that LW ≤

n− 1, then M is k-homogeneous for all k ≥ 1.

Proof. Let A ⊂ Q be a set such that |A| >
(
k−1
k

)
n, and let p1, ..., pk be k states

of M. Given i = 0, ..., n− 1, we set Ai = δ−1 (A,wi). We prove that there exists

i such that p1, ..., pk ∈ Ai.
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Suppose that for all i there exists xi ∈ {p1, ..., pk} such that xi /∈ Ai. We set

ai =
(
xi, δ̂ (xi, wi)

)
. Observe that we have defined a function a from {0, ..., n− 1}

to {p1, ..., pk} × (Q\A) , the function:

a (i) = ai

The size of {p1, ..., pk} × (Q\A) is strictly smaller than n, and hence function a

cannot be injective. Let i 6= j and suppose that ai = aj, we have that there exists

x ∈ {p1, ..., pk} such that δ̂ (x,wi) = δ̂ (x,wj), but it is clearly not possible. Thus,

we arrived to a contradiction and the lemma is proved.

Theorem 10. Let M be a n-state circular synchronizing automaton, we have

that st3 (M) ≤ 2
3
n2.

Proof. It follows from the work of Dubuc [17] that circular automata are 1-

extendable and hence 2
3
-expanders. Suppose that M is a circular automaton

with respect to letter a, and let W = {a0, ..., an−1}. We have that W is an inde-

pendent set and LW = n − 1. Therefore, we have that M is k-homogeneous for

all k ≥ 1. The theorem is proved.

We get as a corollary our result, we get that RT CI (3) = 2
3
, where CI is the class

of circular automata.

3.3 One-Cluster Automata

Next result refers the class of one-cluster automata [49].

LetM = (Q,Σ, δ) , and let a ∈ Σ. The a-skeleton of M is the transition digraph

of a, which is denoted with the symbol Ga,M and which is defined by:

• V (Ga,M) = Q

• (p, q) ∈ E (Ga,M), if and only if, δ (p, a) = q.
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Definition 12. We say that M is a one-cluster automaton, if and only if, there

exists a ∈ Σ such that the a-skeleton of M is connected.

Suppose that the a-skeleton of M is connected. The graph Ga,M is constituted

by a cycle CM, called the one-cluster cycle (or a-cycle), and a forest appended

to it. The length of the cycle is called the length of M and is denoted with the

symbol kM. The height of the forest is called the level of M and is denoted with

the symbol la (M) .

Definition 13. We say that M is a prime length one-cluster automaton, if and

only if, there exists a ∈ Σ such that the a-skeleton ofM is connected and the size

of the corresponding one-cluster cycle is prime.

One of the interesting applications of synchronizing automata is related to the

synchronization of codes [5]. The automata occurring in this application are one-

cluster, and it means that fast synchronization of one-cluster automata implies

fast synchronization of codes. Beal et al [5] proved that one-cluster automata are

2-extendable, and it implies that 2 (n− 1)2 is an upper bound on the synchroniz-

ing time of those automata.

Remark 5. We use the term Beal upper bound (result) to refer the bound 2 (n− 1)2.

Berlinkov proved that for all ε > 0, there exists a one-cluster automaton Mε

which is not (2− ε)-extendable [8]. The latter fact implies that the extension

method cannot be used, alone, to improve Beal upper bound. Which is the best

known upper bound for the synchronizing time of one-cluster automata? As far

as we know the best known upper bound for the synchronizing time of one-cluster

automata is given by the inequality

st (M) ≤ (2kM − 1) (|M| − 1) ,

which was proved by Carpi and D’Alessandro [10]. Observe that the above in-

equality cannot be used, alone, to improve the asymptotic inequality
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st (M) ≤ 2 |M|2 + o
(
|M|2

)
that is entailed by Beal upper Bound. Let OC be the class of one-cluster au-

tomata. The above inequality implies non-trivial results related to function

RT OC (k) . Notice that given k ≥ 2, the reduction to pair synchronization implies

that RT OC (k) ≤ k−1
2

, and notice that it is the strongest upper bound that can

be deduced from pair synchronization. On the other hand, Beal bound implies

that for all k ≥ 2 the inequality RT OC (k) ≤ 2 holds. Notice that 2 < k−1
2

for all

k ≥ 6. Thus, given k ≥ 6 the k-tuple rendezvous time of one-cluster automata

is very much smaller than it can be deduced from pair synchronization. How-

ever, if s = 3, 4, 5 we cannot use Beal bound to improve the upper bound on

the s-tuple rendezvous time that is achieved with the solely application of pair

synchronization.

Remark 6. Let s (n) be a quadratic upper bound on the reset time of a certain

class of automata, we conjecture that the upper bound 2
3
·s (n)+o (n2) holds for the

3-tuple rendezvous time of those automata. Let s (n) = 2 (n− 1)2, we know that

it is an upper bound for the reset time of one-cluster automata. Then, we would

have to prove that 4
3
n2 + o (n2) is an upper bound for the 3-tuple rendezvous

time of the latter class of automata. Notice that for all n ≥ 1 the inequality

n (n− 1) < 4
3
n2 holds, and notice that n (n− 1) is the upper bound that is achieved

with pair synchronization. Thus, it can be said that Beal bound does not impose

an additional challenge to us.

One can get a very much better upper bound if he supposes that the size of the

one-cluster cycle is a prime number. Steinberg proved that Cerný Conjecture

holds true for prime-length one-cluster automata [49].

Remark 7. It is interesting to observe that the prime size assumption has became

a frequent assumption in the investigations related to Černý Conjecture (see [44]).
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Theorem 11. LetM be a n-size one-cluster automaton, which is synchronizing,

and suppose that the size of CM is a prime, we have that s3 (M) ≤ 2
3
n2.

Proof. It follows from the work of Steinberg [49] that given A ⊂ CM, there

exists p ∈ Q and there exists a string w such that A ⊂ δ−1 ({p} , w) and |w| ≤

(|A| − 2)n+ 1 (subsets contained in the cycle are quickly synchronized).

First, we suppose that |CM| ≤ 2
3
n+1. In this case, there exist p ∈ Q and a string

w, such that 2
3
n2 − n + 1 and CM ⊂ δ−1 ({p} , w). Observe that for any triple

q, r, s ∈ Q it happens that δ̂
(
{q, r, s} , ala(M)

)
⊂ CM. Then, we have that ala(M)w

synchronizes the triple q, r, s and
∣∣ala(M)w

∣∣ ≤ la (M) + 2
3
n2 − n+ 1 ≤ 2

3
n2.

Now, we suppose that |CM| > 2
3
n + 1. We have that la (M) ≤ n − |CM| < 1

3
n.

We pick p ∈ Q and a string w such that |δ−1 ({p} , w) ∩ CM| ≥ 2
3
n+ 1 and |w| ≤

2
3
n2−n+ 1. Notice that the existence of p and w is ensured by Steinberg’s result.

Let q, r, s ∈ Q and let T = δ̂
(
{q, r, s} , ala(M)

)
. The largeness of δ−1 ({p} , w)

implies that there exists i ≤ |CM| − 1 such that δ̂ (T, ai) ⊂ δ−1 ({p} , w). We

get that ala(M)aiw synchronizes the triple q, r, s and
∣∣ala(M)aiw

∣∣ ≤ (n− |CM|) +(
2
3
n2 − n+ 1

)
+ |CM| ≤ 2

3
n2. The theorem is proved.

We get as a corollary of the above theorem that RT p-OC (3) = 2
3
, where p-OC is

the class of prime length one-cluster automata.

3.4 Eulerian automata

There exist interesting results on automata synchronization that can be inter-

preted as strong evidence in favor of the old Černý Conjecture. One of the main

aims of this chapter is to prove analogous results for the 3-tuple rendezvous time

of synchronizing automata. We was specially interested in adapting four specific

results related to four special classes of automata. We partially succeed: we re-

covered three of those results. In this section we discuss the remaining result,

that is: we discuss some facts that are related to the 3-tuple rendezvous time of
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Eulerian automata.

Definition 14. An automaton M is said to be Eulerian, if and only if, the

transition digraph of M is Eulerian (parallel edges are not allowed).

Remark 8. We have restricted the analysis to Eulerian automata without parallel

edges. It happens that the probabilistic argument used in the following section does

not work for automata with parallel edges. Thus, we will prove a weak result,

which is weak because of several reasons:

1. It is a probabilistic result.

2. The upperbound achieved in this result 3
4
n2 is weaker than the conjectured

upperbound 2
3
n2.

3. The argument only works for Eulerian automata of prime size and without

parallel edges.

However, we think that this weak result is worth to appear in this dissertation, we

think that some of the ideas used in the proof can be adapted to achieve a stronger

result.

Kari proved that Černý Conjecture holds true for Eulerian automata [30], he

proved that (n− 2) (n− 1) + 1 is an upper bound on the synchronizing time of

those automata. It is clear that Kari’s upper bound is not strong enough as

to imply that 2n2

3
+ o (n) is an upper bound on the triple rendezvous time of

Eulerian automata. Can we prove that the 2
3
-Černý Conjecture holds true for

Eulerian automata?.

Remark 9. From now on, and for the ease of computations, we focus on the

binary case.

Definition 15. Suppose that M = (Q, {a, b} , δ) is an Eulerian n-state synchro-

nizing binary automaton. Given A ⊂ Q, we say that A is unextendable, if and

only if, for all c ∈ {a, b} it happens that |δ−1 (A, c)| ≤ |A| .
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We would like to prove that any subset of Q can be quickly extended. Suppose

that A ⊂ Q is extendable, we have that A can be extended with the application of

a single character. On the other hand, we have that unextendable sets require the

application of longer strings. Suppose that in order to extend the set A one has

to apply a string w1 · · ·wn, the extension process driven by this string is divided

into two main stages:

• Stage 1. String w1 · · ·wn−1 transforms the set A into an extendable set: the

set δ−1 (A,w1 · · ·wn−1) is extendable.

• Stage 2. Character wn extends the set δ−1 (A,w1 · · ·wn−1) .

We say that n − 1, which is the time (number of characters) employed in the

first step, is the escape time. Notice that the escape time is the time required to

escape from the region constituted by the unextendable sets. Notice also that the

extension time, the time required for extension, is upperbounded by the escape

time plus one. Thus, it makes sense to study the escape time.

Remark 10. Let M = (Q, {a, b} , δ) be an Eulerian automaton, we suppose that

Q = {1, ..., n} , it allows us to identify the set A ⊆ Q with the boolean vector

vA = (s1, ..., sn) that is defined by

si = 1, if and only if, i ∈ A.

Let v ∈ Rn, we use the symbol sop (v) to denote the set {i ≤ n : vi 6= 0} Given

v, we partition the set sop (v) as follows:

va = {p ∈ sop (v) : |δ−1 (p, a)| = 2} ,

vb = {p ∈ sop (v) : |δ−1 (p, b)| = 2} ,

vu = {p ∈ sop (v) : |δ−1 (p, b)| = |δ−1 (p, a)| = 1} .

Definition 16. We use the symbol VM to denote the linear subspace of Rn that

is spanned by the set
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UM = {v ∈ Rn : |va| ≤ 2 |vb| and |vb| ≤ 2 |va|} .

Let A ⊂ Q, we have that A is unextendable, if and only if, the vector vA belongs to

VM. We say that VM is the unextendable subspace ofM. We use the unextendable

subspace of M to study the escape time.

Given d ∈ {a, b}, we define a linear map ψd : Rn → Rn as follows

ψd (ei) = vA, if and only if, δ−1 (i, d) = A.

Given w = w1 · · ·wn, we set

ψw = ψwn ◦ · · · ◦ ψw1 .

Suppose that for some w ∈ {a, b}∗ the vector ψw (vA) does not belong to VM.

It could happen, if and only if, the set δ−1 (A,w1 · · ·wn) is extendable, that is:

escaping from VM is at least as hard as escaping from the unextendable sets.

Let dM = dim (VM) , one can use a linear algebra argument (as the one used by

Kari [30]) to prove that dM is an upper bound on the time required to escape

from VM, that is: given A ⊂ Q there exists w ∈ {a, b}≤dM such that ψw (vA) does

not belong to VM. We get the following corollaries:

1. Automaton M is dM+1
n

-extendable.

2. Automaton M can be synchronized in time (dM + 1) (n− 2) + 1.

Thus, it remains to upperbound the dimension of VM. Set

RMa = {v ∈ Rn : (vi 6= 0) =⇒ |δ−1 (i, a)| = 2}

RMb = {v ∈ Rn : (vi 6= 0) =⇒ |δ−1 (i, b)| = 2}.

Notice that RMa and RMb are linear subspaces and notice also that those two

subspaces are included in the linear complement of VM. Let αM be equal to

max
{

dim
(
RMa

)
, dim

(
RMb

)}
, we have that dM ≤ n − αM. We focus on lower-

bounding the quantity αM.
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Recall that automatonM is synchronizing. Then, there exists a state q such that

{q} is extendable. The latter implies that there exists a non-null vector v{q} that

belongs to RMa ∪ RMb . We get that dM ≤ n− 1. Then, we have that

n (n− 2) + 1 = (n− 1)2

is an upper bound on the synchronizing time of n-state Eulerian automata. Can

we tune the above argument to get a better, and strong enough, upper bound?

The natural question is: how large is the space VM? One can conjecture that the

value of dM is very much smaller than n− 1. Notice that if dM were smaller than

2n
3
, we would get our upper bound for the 3-tuple rendezvous time ofM. LetM

be a n-state synchronizing Eulerian automaton, we would like to prove that

max
{

dim
(
RMa

)
, dim

(
RMb

)}
≥ n

3
.

Unfortunately, the latter assertion is not true. Let Mn be the n-state binary

automaton over the set {1, ..., n} and defined by

δ (p, x) =



p+ 1, if x = a and p < n

n, if x = a and p = n

p− 1, if x = b and p > 1

1, otherwise

We observe thatMn is an Eulerian synchronizing automaton containing exactly

two extendable states, the states 1 and n. Moreover, we have that dim
(
RMa

)
=

dim
(
RMb

)
= 1. Then, we have that the inequality αM ≥ 1 is tight, and as a

consequence we have that n−1 is the best possible upper bound for the parameter

dM.

Remark 11. Notice that the automata in the sequence {Mn}n≥1 can be synchro-

nized in linear time, and hence the 3-tuple rendezvous time of those automata is

linear.
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The above facts indicate that it is not possible to use the basic ideas of Kari’s proof

to show that 2n2

3
is an upper bound on the 3-tuple rendezvous time of Eulerian

automata. However, we can use those ideas to get a weaker probabilistic result.

Remark 12. LetM an p-state Eulerian automaton. We are going to explain the

reason why M is an automaton without parallel edges. If the transition digraph

of M has parallel edges, the colors assigned to each pair of parallel edges must

be different. This would imply that the probability of assigning identical colors

on each pair of edges is equal to zero. When the transition digraph of M has

many parallel edges, due to the previous reasoning, it would force us to have a

very small dimension αM. This value will play an important role to prove that

2
3
-Černý Conjecture holds true for Eulerian automata with a high probability.

3.4.1 RT p-E (3) ≤ 3
4 holds with probability one.

Let C be a class of synchronizing automata. We know that RT C (3) ≤ 1. Suppose

we prove that RT C (3) ≤ 1−ε. If ε ≥ 1
3

we get that RT C (3) ≤ 2
3

and we get that

the 2
3
-Černý Conjecture holds true for the class C. If 0 < ε < 1

3
we get a weaker

but highly nontrivial result. In this section we prove a weak result concerning the

3-tuple rendezvous time of Eulerian automata.We prove that if p is prime, then

it is almost sure that for all ε > 0 the quantity (3
4

+ ε)p2 is an upper bound on

the triple rendezvous time of p-state Eulerian automata.

It is known that the expected synchronizing time of n-state synchronizing au-

tomata is O (n) [7]. The latter fact implies that Černý upper bound holds true

with probability one. It also implies that the 2n2

3
upper bound on the 3-tuple

rendezvous time holds with probability one. However, we have to notice that the

set of Eulerian automata is a set of probability zero. Thus, the aforementioned

probabilistic result does not have implications on the expected synchronizing time

and the expected 3-tuple rendezvous time of Eulerian automata. If we want to

prove probabilistic results for Eulerian automata we have to prove them from
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scratch.

We would like to prove (at least) that The 2
3
-Cerný Conjecture holds true for Eu-

lerian automata with a high probability. We use some of the previous facts and

ideas to get a weaker result. Our strategy reduces to show that given ε > 0, given

p prime and given a p-state Eulerian automaton M the inequality αM ≥ p
4
− ε

holds with a high probability.

We have to show as well that the probability of G being synchronizing goes to

one when p goes to infinity.

Let G be an Eulerian digraph with p nodes and suppose that for all v the equalities

deg+
G (v) = deg−G (v) = 2

hold. We say in the later case that G is an Eulerian frame. A road coloring of G

corresponds to assign a color a or b to each one of the edges in G, the assignment

must satisfy the following constraint: given a node v, its two outgoing edges are

assigned different colors. Notice that if we choose a road coloring of G, say c, we

are simply choosing one of the Eulerian automata that can be constructed over

the fixed topology determined by frame G. We use the symbol Gc to denote the

latter automaton.

We say that a road coloring c is synchronizing, if and only if, automaton Gc is

synchronizing. Kari proved that given an Eulerian frame, there exists a road

coloring of it that is synchronizing [30].

We suppose that the set of nodes of G is the set {1, ..., p}. Notice that it is easy to

choose road colorings of G uniformly at random, it can be made in the following

way:

• Let v ∈ {1, ..., p} be a node, and let (v, i) and (v, j) be the two edges

going out from v. Suppose that i < j and set v1 = i and v2 = j. Choose

uniformly at random a bijection fv : {1, 2} → {a, b} . Given i = 1, 2, assign



46 3 The 2
3
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to edge (v, vi) the color f (i) . Choose the functions {fv : v ∈ {1, ..., p}} in

an independent way.

Let us fix a frame G with p nodes, and let rc (G) be the set of road colorings of

G. We set:

1. βG = Prc∈Urc(G) [Gc is synchronizing] .

2. γG (ε) = Prc∈Urc(G)

[
αGc ≥ p

4
− ε
]

We fix ε > 0, we want to prove that there exist two functions r, sε : N→ N such

that:

1. βG ≥ 1− r (p).

2. γG (ε) ≥ 1− sε (p) .

3. limp→∞ (r (p)) = limp→∞ (sε (p)) = 0.

The analysis of γG (ε) is fairly easy. Let w ∈ {1, ..., p} and let (i, w),(j, w) be the

two edges going into w. Notice that the colors of those two edges were chosen in

an independent way. Moreover, we have that

Prc [c (i, w) = a] = Prc [c (i, w) = b] = 1
2
.

Then, we have that

Prc [c (i, w) = c (j, w) = a] = Prc [c (i, w) = c (j, w) = b] = 1
4
,

and it implies that the expected dimensions of RGca and RGcb are both equal to p
4
.

It follows easily that there exists a function sε (n) such that.(
Prc
[
αGc ≥ p

4
− ε
])
≥ 1− sε (p) and limp→∞ (sε (p)) = 0.

The remaining task is a little bit more demanding.

Let c be a road coloring of G, we say that A ⊂ Q is a synchronizing subset of Gc,

if and only if, there exists a string w such that the equality
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|δGc (A,w)| = 1

holds. We use the symbol mGc to denote the size of the largest synchronizing

subsets of Gc, that is:

mGc = max {k : there exists a synchronizing subset A such that |A| ≥ k} .

Notice that Gc is synchronizing, if and only if, the equality mGc = p holds. Thus,

we want to prove that there exists a function r : N→ N such that

Prc [mGc = p] ≥ 1− r (p) and limn→∞ r (p) = 0.

Lemma 4. For all prime p and for all Eulerian frame G of size p the equality

Prc [mGc = n] = Prc [mGc ≥ 2]

holds.

Proof. Kari’s proved that for all road coloring c the number mGc divides p. Recall

that p is prime, then we have that the equality mGc = p holds, if and only if,

mGc ≥ 2. The equality

Prc [mGc = n] = Prc [mGc ≥ 2]

follows easily from the latter fact.

Lemma 5. Prc [mGc ≥ 2] ≥ 1− 2−p

Proof. Let s be a node, and let (q, s) , (r, s) be its two ingoing edges. If those two

edges are assigned the same color, then mGc ≥ 2. Thus, we have that Prc [mGc ≥ 2]

is lowerbounded by the probability that there exists a node s whose two ingoing

edges are assigned the same color, we use the symbol α (p) to denote this proba-

bility. If we fix s, the probability of not assigning the same colors to its ingoing

edges is 1
2
. It implies that α (p) ≥ 1− 2−p. Thus, we have that

Prc [mGc ≥ 2] ≥ α (p) ≥ 1− 2−p,
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and the lemma is proved.

Given the above series of lemmata we can conclude that

Theorem 12. Let Σ be an alphabet such that |Σ| ≥ 2, let ε > 0 and let p

be a prime number. Suppose that one chooses uniformly at random a p-state

Eulerian automaton without parallel edges over the alphabet Σ. Let P (p, ε) be the

probability that the chosen automaton is synchronizing and that all its triples can

be synchronized in time
(

3
4

+ ε
)
p2. We have that limp→∞ P (p, ε) = 1.

We can conclude, from the above theorem, that the inequality RT p-E (3) ≤ 3
4

holds with probability one.

Notation 1. We use the symbol E to denote the class of Eulerian synchronizing

automata , and the symbol p-E to denote the class of Eulerian synchronizing

automata of prime size.



4 On the synchronization of planar

automata

Černy’s conjecture holds true for all the strongly connected synchronizing au-

tomata, if and only if, it holds true for all the synchronizing automata. There-

fore, we say that the class of strongly connected automata is Černy-universal. We

conjecture that the same is true for the class of planar automata. Let us discuss

some facts that led us to formulate the Černy-universality conjecture for planar

automata.

We are interested in some algorithmic problems related to the synchronization

of DFA’s. The algorithmic complexity of most of those problems is well under-

stood, and there are many deep results characterizing their intrinsic hardness

(see for example [18], [23], [42] and the references therein). It happens that the

same hardness results can be obtained for planar automata by noticing that their

proofs for general automata work verbatim or with minor adjustments in the pla-

nar framework. Then, we have that the planar restrictions of the aforementioned

algorithmic problems are as hard as the unrestricted versions. It suggests that

the class of planar automata is an universal class with respect to the algorithmic

hardness of synchronization.

It is also interesting to observe that all the sequences of slowly synchronizing au-

tomata registered in the literature are sequences of planar automata. However,it

is important to remark that is fairly easy to transform a sequence of slowly syn-
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chronizing planar automata into a sequence of slowly synchronizing non-planar

automata. Suppose we have a sequence of slowly synchronizing planar automata,

and suppose that all those automata are quaternary (the sizes of their input al-

phabets are all equal to 4), then it suffices to insert a copy of K3,3 into each one

of the automata in the sequence while taking care of preserving the synchroniz-

ability. However, it seems that all the sequences of slowly synchronizing planar

automata have a planar core.

The above two observations are the origin of our conjecture. In this chapter we

present some new results that can be considered as additional evidence support-

ing the conjectured Černy-universality of planar automata. We think that the

aforementioned results are interesting in their own right.

4.1 On the algorithmic hardness of synchronizing

planar automata

We investigate the synchronization of finite state automata focussing on the class

of planar DFA’s.

Definition 17. A deterministic finite state automaton is planar, if and only if,

its transition digraph is planar.

Planar automata have been previously studied, and it is known that there are

regular languages which cannot be recognized by deterministic planar automata

[14]. This latter fact indicates that the class of planar automata is not universal

with respect to recognition power. However, we conjecture that this restricted

class is universal with respect to the hardness of synchronization. This conjecture

motivates us to study the synchronization of planar automata. Consider the

following two algorithmic problems:
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Problem 2. (Synch [P ] : Optimal synchronization of planar automata)

• Input: (M, k), where M is a synchronizing planar automaton and k is a

positive integer.

• Problem: decide if there exists a synchronizing string for M whose length

is upperbounded by k.

Problem 3. (ESynch [P ] : Deciding shortest reset length)

• Input: (M, k), where M is a synchronizing planar automaton and k is a

positive integer.

• Problem: decide if the shortest reset length of M is equal to k.

The following theorem characterizes the algorithmic hardness of Synch [P ] and

ESynch [P ].

Theorem 13. We have that

1. The problem Synch [P ] is NP complete.

2. Given ε > 0, it is NP hard to approximate the shortest reset length of planar

synchronizing automata within the ratio O (n1−ε), while the ratio O (n) can

be achieved in polynomial time.

3. ESynch [P ] is complete for the class DP

Proof. Proofs of the same results but for unrestricted automata are presented in

the references [18], [23] and [42]. It is enough to observe that the aforementioned

proofs work verbatim or with minor adjustments for planar automata.

In next section we add a further hardness result.
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4.1.1 The parameterized hardness of synchronizing small sets

of states

In this section we characterize the parameterized complexity of subset synchro-

nization .

Definition 18. Let Σ be a finite alphabet.

1. A parameterization of Σ∗ is a mapping k : Σ∗ → N that is polynomial

time computable.

2. A parameterized problem (over Σ) is a pair (Q, k) consisting of a set

Q ⊆ Σ of strings over Σ and a parameterization k of Σ∗.

Definition 19. Let Σ be a finite alphabet and let k : Σ∗ → N be a parameteriza-

tion

1. An algorithm A with input alphabet Σ is an fpt-algorithm with respect

to k if there is a computable function f : N → N and a polynomial p such

that for every x ∈ Σ∗ , the running time of A, on input x, is at most

f(k(x))p(|x|) .

2. A parameterized problem (Q, k) is fixed-parameter tractable if there is

an fpt-algorithm with respect to k that decides Q.

The following definition introduces the important concept of reduction in the

context of parameterized complexity.

Definition 20. Let (Q, k)and (Q̂, k̂) be parameterized problems over the alphabets

Σ and Σ̂ respectively. An fpt-reduction from (Q, k) to (Q̂, k̂) is a mapping

R : Σ∗ → (Σ̂)∗ such that:

1. For all x ∈ Σ∗ we have that x ∈ Q, if and only if, R(x) ∈ Q̂.
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2. R is computable by an fpt-algorithm (with respect to k). That is, there is a

computable function f and a polynomial p such that R(x) is computable in

time f(k(x))p(|x|).

3. There is a computable function g : N→ N such that k(R(x)) ≤ g(k(x)) for

all x ∈ Σ∗ .

Definition 21. The class NWL is defined as the closure under fpt-reductions of

the following problem.

Problem 4. (p-NWL : Deciding acceptance of parameterized space bounded com-

putations)

• Input: ((M, t) , k), where M is a nondeterministic Turing machine, t is a

positive integer given in unary, and k ≥ 1.

• Parameter: k.

• Problem: decide ifM accepts the empty input in at most t steps and check-

ing at most k cells.

Let L be a parameterized problem. Suppose we want to check that L belongs

to NWL. It is enough to exhibit a nondeterministic RAM, say N , accepting L

and satisfying the following constraint: let R (X, k) be the maximum number of

registers used byN , along its computations on input (X, k) , the quantity R (X, k)

is bounded above by a function r(k) that only depends on the parameter k (see

[27]).

Let p-Synch [P ] be the parameterized problem defined by:

Problem 5. (p- synch [P ] : Parameterized synchronization of planar automata)
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• Input: ((M, {q1, ..., qk} , l) , k) , whereM is a synchronizing planar automa-

ton and q1, ..., qk ∈ QM.

• Parameter: k.

• Problem: decide if there exists a synchronizing string of length l for the

states q1, ..., qk.

It is easy to prove that p- synch [P ] belongs to NWL. It is harder to prove that p-

synch [P ] is NWL hard. We prove the latter by exhibiting a fpt Turing reduction

of The parameterized longest common subsequence problem in p-Synch [P ] . The

parameterized longest common subsequence problem, denoted by p-LCS, is the

parameterized problem defined by:

Problem 6. (p-LCS : Parameterized longest common subsequence)

• Input: (({w1, ..., wk} ,Σ,m) , k) , where Σ is a finite alphabet, w1, ..., wk ∈ Σ∗

and m is a positive integer.

• Parameter: k.

• Problem: decide if there exists a string w ∈ Σ∗ such that for all i ≤ k the

string w is a substring of wi, and such that |w| = m.

Guillemot [27] proved that p-LCS is hard for NWL, and it means that our

reduction suffices.

Theorem 14. The problems p-Synch [P ] and p-Synch are NWL complete.

Proof. First we check that p-Synch belongs to NWL. To this end we construct

a suitable nondeterministic RAM accepting the problem p-Synch. The machine

works, on input ((M, {q1, ..., qk} , l) , k) , as follows:
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M stores in the first k registers a tuple of positive integers (s1, ..., sk) such that

for all i ≤ k the inequality si ≤ |QM| holds. It begins with (0, ..., 0), and

then it overwrites (q1, ..., qk). Set (s1
1, ..., s

1
k) = (q1, ..., qk). For all i ≤ l the

machine nondeterministically chooses a tuple
(
si+1

1 , ..., si+1
k

)
which can (over)write

on the first k registers, if and only if, there exists a ∈ ΣM such that the equality

δM
(
a, sij

)
= si+1

j holds for all j ≤ k. The machine accepts, if and only if, the

entries of the last tuple are all equal.

We get that p-Synch [P ] and p-Synch belongs to NWL. It remains to be proved

that p-Synch [P ] is NWL hard.

First we prove that p-LCS is fpt many-one reducible to p-Synch, and then we

prove that p-Synch is fpt Turing reducible to p-Synch [P ] .

First stage (Reducing p-LCS to p-Synch).

Let X = (({w1, ..., wk} ,Σ,m) , k) be an instance of p-LCS and let i ≤ k. We

use Baeza-Yates construction (see [4]) to compute in polynomial time a DFA, say

Mi, that accepts the language constituted by all the subsequences of wi.

Notice that for all i ≤ k we are using the automatonMi as a language acceptor.

The latter fact implies that for all i ≤ k there exists a marked state (the initial

state of Mi) which we denote with the symbol qi0. Moreover, we have that for

all i ≤ k there exists a nonempty subset of Qi, denoted with the symbol Ai, and

which is equal to the set of accepting states of automaton Mi.

We use the set {Mi : i ≤ k} to define an automatonM = (Ω, Q, δ) in the follow-

ing way:

1. Ω = Σ ∪ {d}, where d /∈ Σ.

2. Q =

(⊔
i≤k

Qi

)
t{q, p1, ..., pm+1}, where t denotes disjoint union, and given

i ≤ k, the symbol Qi denotes the set of states of the automatonMi. More-

over, we have that q, p1, ..., pm+1 /∈
⊔
i≤k

Qi.
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3. The transition function ofM, which we denote with the symbol δ, is defined

as follows

δ (a, p) =



δi (a, p) , if p ∈ Qi and a 6= d

q, if p ∈
⊔
i≤k

Ai and a = d

p1, if p ∈ (Qi\Ai) and a = d

q, if p = q

pj+1, if p = pj, j < m+ 1 and a ∈ Σ

p1, if p = pj, j < m+ 1, and a = d

q, if p = pm+1 and a = d

p1, if p = pm+1 and a 6= d

Let Y (X) be equal to
((
M,

{
q1

0, ..., q
k
0 , p1

}
,m+ 1

)
, k + 1

)
, it is the output of

our reduction. We check that X ∈ p-LCS, if and only if, the states q1
0, ..., q

k
0 , p1

can be synchronized in time m+ 1.

Suppose that (({w1, ..., wk} ,Σ,m) , k) is a positive instance of p-LCS. Let w ∈ Σm

such that w is a subsequence of each one of the strings w1, ..., wk. Let u = wd ∈

(Σ ∪ {d})m+1 , we claim that u synchronizes the states q1
0, ..., q

k
0 , p1. We have

that for all i ≤ k the state ̂δ (w, qi0) belongs to Ai. Moreover, we have that

̂δ (w, p1) = pm+1. Then, given r ∈
{

̂δ (w, x) : x ∈
{
q1

0, ..., q
k
0 , p1

}}
the equality

δ (d, x) = q holds. Thus, we get that u is a string that sends the states q1
0, ..., q

k
0 , p1

to the sink q. We conclude that the states q1
0, ..., q

k
0 , p1 can be synchronized in time

m+ 1.

Now suppose that the states q1
0, ..., q

k
0 , p1 can be synchronized in time m+ 1 by a

string u ∈ (Σ ∪ {d})m+1. We observe that the synchronizing state must be equal

to the sink q. We also observe that the distance between p1 and q is equal to

m+1, and it implies that the synchronization of the states q1
0, ..., q

k
0 , p1 cannot be

achieved with strings of length smaller than m+ 1. Given i ≤ m, we have that at

least one of the tokens is not placed on q at time i. The latter implies that the last
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character of u must be equal to d. Let u = wd. If w /∈ Σm, then ̂δ (w, p1) 6= pm+1

and u does not synchronize the set
{
q1

0, ..., q
k
0 , p1

}
. We can conclude that w ∈ Σm.

Suppose that there exists i ≤ k such that ̂δ (w, qi0) /∈ Ai, we get that ̂δ (wd, qi0) 6= q

and the string u = wd does not synchronize. Thus, we have that for all i ≤ k

the Baeza-Yates automatonMi accepts the string w. The later fact implies that

w is a subsequence of each one of the strings in the set {w1, ..., wk} , and we can

conclude that X is a positive instance of p-LCS.

It is interesting to observe that we used the states p1, ..., pm+1 to built a clock,

a gadget that was used to prevent that synchronization occurs earlier than time

m+ 1. It is not a surprise if we have to use clocks when we want to synchronize.

It happens that Baeza-Yates construction is non-planar, and hence if Y (X) is

equal to
((
M,

{
q1

0, ..., q
k
0 , p1

}
,m+ 1

)
, k + 1

)
, it could occur that the automaton

M is a non-planar one. Therefore, we have to proceed with the second reduction

Second stage (Reducing p-Synch to p-Synch [P ])

Let p-Synch [2] be the restriction of p-Synch to the set of instances

{((M, {q1, ..., qk} , l) , k) :M is a binary synchronizing automaton} .

The construction used in [6] yields a fpt many-one reduction of the problem p-

Synch in its restriction p-Synch [2]. We exhibit a fpt Turing reduction of the

problem p-Synch [2] in the problem p-Synch [P ].

Let ((M, {q1, ..., qk} ,m) , k) be an instance of p-Synch [2] . A planar drawing of

the automaton M is an embedding of its transition digraph in R2, and which

satisfies the following three constraints:

• Edges are mapped on simple curves.

• No three edges meet at a common crossing.

• Two edges meet at most once.
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LetM = ({a, b} , Q, δ). A Planar drawing ofM can be computed in polynomial

time in |Q|, and if the automatonM is a planar one, then the computed drawing

can be chosen to be a planar embedding (a drawing without crossings).

Suppose that M is non-planar, and let ρ be a planar drawing of M. Let e be

an edge (transition) of M, we use the symbol crρ (e) to denote the number of

crossings involving edge e. We have that for all ρ and for all e the inequality

crρ (e) ≤ 2 |Q| holds. The latter inequality follows from the following fact: au-

tomaton M has exactly 2 |Q| transitions (edges), and given that any two edges

meet at most once, each one of the edges can get involved in at most 2 |Q| − 1

crossings.

To begin with the reduction we compute a planar drawing of M, say ρ, and we

use ρ to compute a planar automaton N0. The computation of N0 goes as follows:

1. The input alphabet of N0 is equal to {a, b} × {0, 1} .

2. The set of states of automaton N0 contains the set {ρ (p) : p ∈ Q} . It is

important to remark that we will have to use 16 |Q|2−|Q| additional states.

3. Given e, a transition of M, edge e is represented in N by a path of length

8 |Q|. To construct the latter path we subdivide ρ (e) into 2 |Q| disjoint

segments. The segments can be chosen to be connected, with a nonempty

interior, and such that each one of the crρ (e) crossings involving e is an inner

point of one of those intervals. Moreover, we can choose the 2 |Q| segments

in such a way that each one of them contains at most one crossing. Notice

that we need no more than 2 |Q| segments because we have no more than

2 |Q| crossings. Each one of those 2 |Q| segments is in turn subdivided into

four subsegments. Those four segments are used to built the gadgets that

will allow us to eliminate the crossings involving the edge e. Thus, suppose

that e is directed from p to q and let 1 ≤ i ≤ 2 |Q|. We choose four points in

the i-th segment of ρ (e), let ve,i1 , v
e,i
2 , v

e,i
3 and ve,i4 be those four points, and
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suppose that ve,i1 is the start-point of the segment (the point that is closest

to ρ (p)). We also suppose that ve,i2 lies between ve,i1 and ve,i3 , while ve,i3 lies

between ve,i2 and ve,i4 . Moreover, the point ve,i4 belongs to the interior of the

i-th segment. If i = 1, we have that ve,11 = ρ (p). If i = 2 |Q| , we have that

v
e,2|Q|+1
1 = ρ (q). The points in the set

{
ve,ik : k ≤ 4, i ≤ 2 |Q| and e is an edge of M

}
are states of the automaton N0 that we want to construct. So far we have

only computed a subdivision of M.

4. Let i ≤ 2 |Q|, let I be the i-th segment and let r (e)i1 , r (e)i2 , r (e)i3 , r (e)i4 be

the four subsegments of I. Each one of those four segments become edges

of N . Given j ≤ 3, the edge r (e)ij is directed from ve,ij to ve,ij+1, while the

edge r (e)i4 , is directed from ve,i4 to ve,i+1
1 . Moreover, we assign to those four

edges the labels (c, 0) , (c, 1) , (c, 1) and (c, 0), where c is the label assigned

to edge e in M.

5. Now suppose that edges e and f meet at some point x. There exists i, j ≤

2 |Q| such that x lies on the i-th segment of e, and x lies on the j-th

segment of f. We can choose the points ve,i1 , v
e,i
2 , v

e,i
3 and ve,i4 , and the points

vf,j1 , vf,j2 , vf,j3 and vf,j4 in such a way that:

• The equalities ve,i3 = vf,j2 and ve,i4 = vf,j3 hold.

• If the labels of e and f are equal, the segments r (e)i3 and r (f)j2 are

equal, otherwise they meet each other only at the points ve,i3 and ve,i4 .

• If the labels of e and f are equal, the point x lies in the interior of

the segment r (e)i3, otherwise it lies in the interior of the simple closed

curve formed by r (e)i3 and r (f)j2 .

Notice that the above construction allows us to eliminate the crossing x.
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It is interesting to observe that the latter construction is somewhat asym-

metrical. The asymmetric nature of the construction is not a problem:

given two edges that meet each other at some point x, it makes not dif-

ference which edge plays the role of e and which one plays the role of f.

Suppose we are constructing the automaton N0 and we are given a pair of

edges ofM that meet each other, we can choose at random the role played

by each one of the two edges. Moreover, the asymmetrical nature of this

construction is used to prevent that tokens being synchronized on N0 use

the crossings of M to find shortcuts (see below).

6. Recall that we are trying to draw a planar automaton N0. To this end, we

use the set of points

P =
{
ve,ij : i ≤ 2 |Q| , j = 1, 2, 3, 4 and e is an edge of M

}
,

and the set of edges

E =
{
r (e)ij : i ≤ 2 |Q| , j = 1, 2, 3, 4 and e is an edge of M

}
.

Notice that |P | = 16 |Q|2, and E = 64 |Q|2 . If we add some loops we get a planar

synchronizing automaton denoted by N0. Let us check that N0 is synchronizing.

Let f : {a, b}∗ → ({a, b} × {0, 1})∗ be the homomorphism defined by: given k ≥ 1

and given w1 · · ·wk ∈ {a, b}∗ we have that f (w1 · · ·wk) is equal to

((w1, 0) (w1, 1) (w1, 1) (w1, 0))2|Q| · · · ((wk, 0) (wk, 1) (wk, 1) (wk, 0))2|Q| .

If the string w synchronizes the automatonM, then f (w) is a reset word for N0.

Moreover, if the string w synchronizes the states q1, ..., qk, we have that f (w)

synchronizes the states ρ (q1) , ..., ρ (qk). Notice that the latter property of N0

is almost all that we need. However, the latter property is not really enough,

notice that we also have to prevent the existence of short synchronizing strings

that do not belong to the image of f. The latter can happen because of the
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Figure 4-1: Elimination of the crossing

following: edges of M are represented in N0 by paths of length 8 |Q|, and the

tokens moving on N0 can prematurely leave those paths and find shortcuts thanks

to the crossings in M. We use clocks to avoid the latter possibility.

Let m ≥ 1 and let p be an state of M, we use the symbol Nm,p to denote the

planar automaton that is obtained from N0 by attaching to node ρ (p) a planar

digraph that we call Cm,p. The gadget Cm,p is computed from m and |Q| (it does

not depend on p), and it is used as a clock for the synchronization process. The

clock Cm,p is used to force two things:

• Optimal synchronization occurs at node ρ (p) (any other node is excluded).

• Synchronization cannot occur earlier than time 8m |Q| .

The construction of Cm,p must fulfill the following additional condition:

The states {q1, ..., qk} can be send to state p using m characters, if and only if,

the states ρ (q1) , ..., ρ (qk) and the clock-state w (p) can be synchronized in time

8m |Q| .

If we succeed with the construction of the automata {Nm,p : p ∈ Q} , then we
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Figure 4-2: The λ-th segment of Cm,p

can use this small set of automata to define our Turing reduction. If we want

to know whether the states {q1, ..., qk} can be synchronized in time m, it suf-

fices if we make exactly |Q| queries: given p ∈ Q we ask whether the states

ρ (q1) , ..., ρ (qk) , w (p) ∈ QNm,p can be synchronized at state ρ (p) in time 8m |Q| .

The clock Cm,p is constituted by m segments. Each one of those segments is

constituted by two directed paths of length 8 |Q|, which meet only at the start-

node (the start-node of both paths is the same, and it is the single common node).

Let λ ≤ m, we have that the λ-th segment is constituted by the states{
pi,λ,j,x : i ≤ 2 |Q| ; j = 1, 2, 3, 4;x = a, b

}
,

where p1,λ
1,a = p1,λ

1,b = p1,λ
1 (the start nodes are equal). If λ = 1, we set

p1,1
1,a = p1,1

1,b = w (p) ,

and we call this latter state the clock-state of Nm,p.

Given i ≤ 2 |Q| − 1 and given x = a, b, we add the edge
(
pi,λ1,x, p

i,λ
2,x

)
and we label

it with the letter (x, 0) . We also add the edges
(
pi,λ2,x, p

i,λ
3,x

)
and

(
pi,λ3,x, p

i,λ
4,x

)
and we

label them with the letter (x, 1) . Moreover we add the edge
(
pi,λ4,x, p

i+1,λ
1,x

)
an we

label it with the letter (x, 0). We glue together the λ-th segment and the λ+1-th
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by adding the edges
(
p

2|Q|,λ
4,a , p1,λ+1

1

)
and

(
p

2|Q|,λ
4,b , p1,λ+1

1

)
, and we label them with

the letters (a, 0) and (b, 0) (respectively).

We embed Cm,p in the plane in such a way that, after adding the edges
(
p

2|Q|,m
4,a , ρ (p)

)
and

(
p

2|Q|,m
4,b , ρ (p)

)
, the whole construction becomes planar. To achieve the lat-

ter, it suffices to use a miniaturized copy of Cm,p that can be inserted without

crossings into a small neighborhood of ρ (p). To finish with the construction we

add the necessary loops to obtain a full transition function.

We observe that the planar automaton Nm,p can be constructed in fpt time. We

also have that Nm,p is synchronizing. Let us check the latter. Automaton N0

could be synchronized before the insertion of Cm,p. Then, it suffices to send all

the states in Cm,p to the state ρ (p), and then synchronize the states that are

out of Cm,p. The former is quite easy to achieve, while the latter corresponds to

synchronize the automaton N0.

It only remains to be proved that the states q1, ..., qk can be simultaneously sent

to the state p using a string of length m, if and only if, the states ρ (q1) , ..., ρ (qk)

and w (p) can be synchronized in time 8m |Q| . Suppose that w ∈ {a, b}m sends

the states q1, ..., qk to the state p. Then, the string f (w) synchronizes the states

ρ (q1) , ..., ρ (qk) , w (p) . Now suppose that ρ (q1) , ..., ρ (qk) , w (p) can be synchro-

nized in time 8m |Q|, and let W ∈ ({a, b} × {0, 1})8m|Q| be a synchronizing string

for those states. String W sends the state w (p) to ρ (p). Notice that the mini-

mal paths connecting those two states are labeled by strings that belong to the

image of f . Thus, we have that there exists w ∈ {a, b}m such that the equality

W = f (w) holds. It remains to be proved that w synchronizes the states q1, ..., qk.

To prove the latter it is enough to show the following:

Claim. Let e = (p, q) be an edge of M that is labeled with the letter x ∈ {a, b},

and let i ≤ m. Suppose that we are moving the tokens that were placed at states

ρ (q1) , ..., ρ (qk) , w (p) according to the synchronizing string f (w), and suppose

that at time 8i |Q| + 1 a token is moved from ρ (p) = ve,11 to ve,12 . Then, at time
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8 (i+ 1) |Q| the same token is reaching the state ρ (q) .

(proof of the claim). Suppose that the claim is false. Then, we have that while

reading the substring W [8i |Q|+ 1, ..., 8 (i+ 1) |Q|] the token prematurely left

the path that represents the edge e. It could only happen at one of the crossings

involving e. Then, there exists f , and edge of M, and there exist k, l ≤ 2 |Q|

such that the k-th segment of e and the l-th segment of f meet each other. We

suppose that our lost token left the path representing e at this crossing. Let us

also suppose that the equalities

ve,k3 = vf,l2 and ve,k4 = vf,l3

hold. Notice that we are using, for the first time, the asymmetric architecture of

the crossing-gadgets. The lost token had to use the character

W [8i |Q|+ 4 (k − 1) + 4]

to leave the e-path, choosing edge
(
vf,l3 , vf,l4

)
instead of edge

(
ve,k4 , ve,k+1

1

)
. We

observe that the latter is not possible: there exist x, y ∈ {a, b} such that

W [8i |Q|+ 4 (k − 1) + 3] = (x, 0) ,

the label of
(
ve,k4 , ve,k+1

1

)
is equal to (x, 0), and the label of

(
vf,l3 , vf,l4

)
is equal

to (y, 1) . We can conclude that tokens cannot prematurely leave the edges ofM

and the claim is proved.

Given the automaton M and given S = {q1, ..., qk}, we use the symbol Ip,m,S to

denote the tuple

(Nm,p, {ρ (q1) , ..., ρ (qk) , w (p)} , 8m |Q|) .

We have that S can be synchronized in time m, if and only if, there exists p ∈ Q

such that the states ρ (q1) , ..., ρ (qk) , w (p) of the automaton Nm,p can be syn-

chronized in time 8m |Q|. Altogether we have a true table Turing reduction of

p-Synch [2] in p-Synch [P ] which can be computed in fpt time. The theorem is

proved.
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Remark 13. Let us use the symbol p-Synch [P, 4] to denote the restriction of

p-Synch [P ] to the class of planar automata defined over a four letter alphabet.

The above reduction shows that p-Synch [P, 4] is NWL complete.



5 The strong 2
3-Černy Conjecture

Let us introduce a stronger version of our main conjecture, namely: the 2
3
-Černy

conjecture.

Conjecture 3. (The strong 2
3
-Černy Conjecture)

For all n, the inequality sw3 (n) ≤ 2
3
n2 holds.

In this section we study some issues related to the above conjecture.

Definition 22. A strong refutation is a sequence
{
Mk(i)

}
i≥1

such that for all

i ≥ 1 we have that:

1. k (i+ 1) > k (i) .

2.
∣∣∣QMk(i)

∣∣∣ = k (i) .

3. s3

(
Mk(i)

)
> 2

3

∣∣∣QMk(i)

∣∣∣2
Definition 23. A sequence

{
Mk(i)

}
i≥1

is an extremal sequence, if and only if,

the inequality sk(i)
(
Mk(i)

)
≥ 2

3
k (i)2 holds.

Notice that any strong refutation of the 2
3
-Černy conjecture is an extremal se-

quence. Extremal sequences are very scarce [40], they constitute a subset of the

slowly synchronizing sequences that have been previously studied [3]. A first ex-

ample of an extremal sequence is Černy’s sequence, but we know that it cannot

be a strong refutation of the 2
3
-conjecture. There are few slowly synchronizing

sequences registered in the literature. We know of the eight sequences included
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in the paper [3], the two sequences included in the reference [32], and one further

sequence included in the reference [5]. We can show that all those 11 sequences

are not strong refutations.

To begin with, we notice that five out of the eight sequences included in [3] are

sequences of circular automata. Then, we know that those five sequences cannot

give place to strong refutations. It follows easily from the work of Pereira [43]

that the remaining three sequences, which are denoted with the symbols D”n,Hn

and En (in the references [3] and [43]) are not strong refutations.

We check that the sequences included in the references [32] and [5] are not strong

refutations.

5.0.1 The sequences of Kisilewicz and Szykula

Kisilewicz and Szykula [32] introduced two extremal sequences of automata,

which they denote with the symbols M and M’, and which are defined in the

following way:

Given n ≥ 3, we use the symbol Mn (Mn’) to denote the nth automaton in the

sequence M (M’). First, we define the automaton Mn = (Qn,Σ, δn). The set

Qn is equal to {1, ..., n} , the alphabet Σ is equal to {a, b, c}, and the transition

function δn is defined by

δn (i, a) =

 i+ 1 if 1 ≤ i ≤ n− 1

2 if i = n

δn (i, b) =

 2 if i = 1

i if 2 ≤ i ≤ n

δn (i, c) =


n if i = 1

i if 2 ≤ i ≤ n− 1

1 if i = n
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The definition ofMn’= (Qn,Σ, δn’) is almost the same, except that the transition

function δn’ behaves different when the second argument (the character being

read) is equal to c, in this case we have

δn’ (i, c) =

 i if 1 ≤ i ≤ n− 1

1 if i = n

Those two sequences of automata are best described by the figure 6.1. One in-

teresting fact about those two sequences is that they are the first (and unique)

quadratic sequences of irreducible non-binary automata registered in the litera-

ture [32]. We prove that those both sequences are not strong refutations.

Proposition 7. Sequences M and M’ are not strong refutations.

Proof. We make the proof for the sequence M, the proof for M’ is very similar.

Let n ≥ 1 and let Mn be the nth automaton in the sequence M. We suppose

that n = 3k, the proof for the remaining two cases is very similar. Let p, q and

r be the three states to be synchronized. There exists m ≤ n − 1 such that

δ̂ ({p, q, r} , am) is a triple l, g, f fulfilling the following conditions:

1. l = n

2. g ≤ f

3. f ≤ 2k

In order to synchronize the triple l, g, f one can use the string cb (an−2cb)
f−1

.

Then, given p, q and r, there exists m ≤ n−2 such that the string amcb (an−2cb)
f−1

synchronizes the triple p, q and r. The length of this string is bounded above by

n (2k − 1) + n. Notice that

n (2k − 1) + n = 2 (n · k)− n+ n

=
2

3
n2.

The proposition is proved.
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Figure 5-1: The first and second sequence of Kisilewicz-Szykula

It is worth to remark that the bound 2
3
n2 is never achieved, we used the algorithm

TRIPLES to analyze the smallest automata included in both sequences. This

analysis allowed us to compute the following table.

Case hardest triple synchronizing string length

n = 3 (k + 1) {2, 3 + k, 3 + 2k} a2kcb (an−2cb)
2k 2

3
n2−4

3
n

n = 3k + 4 {2, 3 + k, 4 + 2k} akcb (an−2cb)
2k+1 2

3
n2−4

3
n+2

3

n = 3k + 5 {2, 3 + k, 4 + 2k} (an−2cb)
2(k+1) 2

3
n2−4

3
n

It happens that the sequences M and M’ exhibit exactly the same behavior.

The above table tells us which are the hardest triples, which are the minimal syn-

chronizing strings for those triples, and which are the corresponding synchronizing

times for the automata included in both sequences. Kisilewicz and Szykula in-

troduced a further sequence of automata whose synchronizing time is Ω (n2) [32].

This third sequence is used to prove that for all λ ≥ 1 there exist automata that

are not λ-extendable. It is important to remark that this sequence is not ex-
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tremal, given that the synchronizing time of the n-th automaton in the sequence,

which has size n, is equal to n2+3
2

[32].

5.0.2 Berlinkov’s sequence.

Berlinkov introduced a futher sequence of slowly synchronizing automata, which

he used to prove that there are infinitely many automata that are not 2-extendable.

This sequence can be used to prove that the extension method does not yield an

upper bound for the synchronizing time of one-cluster automata that beats Beal’s

bound. (see reference [5]).

Berlinkov sequence is a doubly parameterized sequence of automata that we de-

note with the symbol {A (n, k)}n,k≥1 . It is interesting to observe that the nonex-

tensibility results of Kisilewicz and Szykula are stronger, but the sequence of

Berlinkov is harder to synchronize. The synchronizing time of A (n, k) is equal

to (n− 1) (n− 1) + 3, and its size is equal to n + k + 1. Notice that if we fix k,

the subsequence {A (n, k)}n≥1 becomes an extremal sequence.

We prove that the sequence of Berlinkov automata cannot give place to a strong

refutation. First we have to define the automaton A (n, k) = (Qnk,Σ, δnk) . The

set of states of A (n, k) is the set Qnk = {q0, ..., qn, s1, ..., sk} . The alphabet is

equal to {a, b}, and the transition function δnk is defined by

δnk (q, a) =


qi+1 if q = qi, 0 ≤ i ≤ n− 1

q0 if q = qn

q2 if q = sj, 1 ≤ j ≤ k

δnk (q, b) =



sj+1 if q = sj, 1 ≤ j ≤ k − 1

q0 if q = sk

s1 if q = q0

qi if q = qi, 1 ≤ i ≤ n
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The sequence of Berlinkov automata is best described by the graphic 5-2 which

represents the automaton A (m, 1)

Remark 14. Berlinkov proved that the automata A (n, 1) are not 2-extendable, it

means that for all n ≥ 3 there exists A ⊂ Qn1 such that for all w ∈ {a, b}<2(n+2)

the inequality |δ−1 (A,w)| ≤ |A| holds. It is important to observe that all the

Berlinkov automata are 2
3
-expanders in our sense. It follows easily from the fact

that A (n, k) is synchronized by the string w = a (ban)n−1 ba. Observe that, mod-

ulus the prefix a and the suffix ba, the word w has a period of length n + 1. It

indicates that each n+1 characters a merging must occur (going back, an enlarge-

ment must occur). The same is true of the automata included in the Kisiliewicz-

Szykula sequence mentioned above, each one of those automata is synchronized by

a quasi-periodic string, whose period is at most as large as the size of the automa-

ton. As far as we know, there are not examples in the related literature of strongly

connected automata that are not 2
3
-expanders. It must be that way, given that an

example of an automaton that is not a 2
3
-expander is almost a counterexample to

Černy’s conjecture.

Let us check that Berlinkov automata cannot refute the 2
3
-conjecture.

Proposition 8. The sequence of Berlinkov automata cannot give place to a strong

refutation.

Proof. Let n, k ≥ 1. The automaton A (n, k) has size n + k + 1, we prove that

the synchronization time of any triple is bounded above by 2
3

(n+ k + 1)2. We

suppose that n = 3t, the other two cases are proved in a similar way. Suppose

that {p, q, r} ⊆ {q0, ..., qn}. There exists m ≤ n − 1 such that δ̂ ({p, q, r} , am) is

a triple qi, qj and qk fulfilling the following conditions:

1. i = 0.

2. j ≤ k
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Figure 5-2: Berlinkov automaton A (m, 1)

3. r ≤ 2t

In order to synchronize the triple qi, qj, qr one can use the string ba(an−1ba)r−1.

Then, there exists m ≤ n such that amba(an−1ba)r−1 synchronizes the triple p, q, r.

The length of this synchronizing string is bounded above by (n+ 1) 2t, and we

have that for all k ≥ 1 the inequality

(n+ 1) 2t ≤ 2

3
(n+ k + 1)2

holds. The proposition is proved.

It is worth to remark that the bound 2
3
n2 is never achieved. The exact synchro-

nizing behavior of Berlinkov automata is described in full detail by the following

table.

Case hardest triple synchronizing string length

n = 3 (k + 1) {s1, qk+1, q2k+2} ba2k−2 (ban−2)
2k+1 2

3
n2−n

n = 3k + 4 {s1, qk+1, q2k+2} b (ban−2)
2k+1 2

3
n2−4

3
n+5

3

n = 3k + 5 {s1, qk+2, q2k+3} ba2k+2 (ban−2)
2k+2 2

3
n2−4

3
n+ 1
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It is important to remark that all the other sequences of slowly synchronizing au-

tomata registered in the literature, like the sequence of sink automata discovered

by Martugin [34], are not extremal, and hence they cannot give place to strong

refutations.

Given an extremal sequence, there are many naive ways of constructing new ex-

tremal sequences from the given one. All those naive constructions exhibit the

following feature: if one receives as output (of such a construction) a strong refu-

tation, then the input was already a strong refutation. Thus, at this point, we

do not know of another extremal sequence that must be checked. Gonze and

Jungers introduced a further sequence of synchronizing automata (see [29]). We

are not sure if such a sequence is an extremal one, but it seems to be a threat to

our conjecture (see below). We will prove that Gonze-Jungers’ sequence cannot

give place to a strong refutation.

5.0.3 The sequence of Jungers and Gonze

Gonze and Jungers [29] studied the synchronization times of the easiest to syn-

chronize tuples of states.

Let M be a synchronizing automaton, let

tk (M) = min ({s (M, q1, ..., qk) : q1, ..., qk are k different states of M}) ,

and let

Tk (n) = max ({tk (M) :M is a n-state synchronizing automaton}) .

Gonze and Jungers studied the sequence {Tk}k≥2 . Notice that for all n, the

equality Tn (n) = swn (n) holds. It means, among other things, that the study of

one of those sequences could pave the way to solve Černy’s problem.
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Observe that T2 (n) = 1 . Thus, k = 2 is a solved case. The first interesting case,

the case k = 3, is highly nontrivial. Gonze and Jungers focus on this case. They

use the term triple rendezvous time to refer the function T3 (n).

Notice that T3 (Cn) = n+1, which is the synchronizing time of the triple {0, 1, 2} .

One can conjecture, based on this fact, that T3 (n) ≤ n+ 1. It makes sense, given

that Černy automata are supposed to be the hardest to synchronize finite state

automata. Does this latter conjecture hold true?

Recall that we introduced the 1-extensability property in the previous section,

and recall that if all the synchronizing automata were 1-extendable, then Černy’s

conjecture would be true. We also have that if all the synchronizing automata

were 1-extendable, then the inequality T3 (n) ≤ n+1 would hold. It was believed

that all the synchronizing automata are 1-extendable, and it took a long period

of time until Berlinkov found his sequence of automata, which he used to refute

the latter conjecture [5]. It is important to remark, at this point, that Berlinkov

result does not refute Černy’s conjecture, which is entailed by some weaker ex-

tensibility assumptions.

Let M be a n-state synchronizing automaton and let A ⊂ QM, we define

E (M, A) as

E (M, A) = min {|w| : ∃q (δ−1 (q, w) ⊇ A)} ,

and given k ≤ n, we set

E (M, k) = min {A ⊂ Q; |A| = k : E (M, A)} .

We say thatM is weakly extendable, if and only if, for all k ≤ n it happens that

E (M, k) ≤ n (k − 2) + 1.

Proposition 9. If M is weakly extendable, then M can be synchronized by a

short string whose length is upperbounded by (n− 1)2.

Notice that the equality E (M, k) = tk (M) holds. Thus, the weakly extensibility

conjecture can be expressed as follows.
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Conjecture 4. For all k ≤ n, the inequality Tk (n) ≤ n (k − 2) + 1 holds.

The above conjecture holds true for k = 2. It also implies that for k = 3, the

inequality Tk (n) ≤ n+ 1 must hold. Gonze and Jungers [29] refuted this special

case of the conjecture (and hence the conjecture). To this end, they constructed

a sequence {GJ 2n+1}n≥4 of synchronizing automata, such that for all n ≥ 4 the

equality

T3 (GJ 2n+1) =
∣∣QGJ 2n+1

∣∣+ 3 = 2n+ 4

holds. It shows, among other things, that Černy automata are not completely

representative of the hardness of synchronization. It also shows that, once again,

the intricacies of synchronization begin to occur at k = 3.

The sequence of Gonze and Jungers, which we describe below, seems to be a

hard to synchronize sequence of automata: notice that all their triples are hard

to synchronize. Then, it could provide us with the counterexamples that we are

looking for. We show that it is not the case, we show that it is not a strong

refutation.

We will use the Symbol GJ to denote the sequence {GJ 2n+1}n≥4. Given i ≥ 4,

automaton GJ 2i+1 is a 2i + 1-state synchronizing automaton over the alphabet

{a, b}. This automaton is constituted by two linear graphs, connected together by

an hexagon, that we call the core, and whose nodes are labelled with the symbols

1, 2, 3, 4, 5, and 6. The graphic in figure 6.3 corresponds to the automaton GJ 9,

which is the smallest automaton in the sequence.

Automaton GJ 2n+3 is constructed from GJ 2n+1 in the following way:

1. We add two additional nodes labelled 2n + 2 and 2n + 3. Node 2n + 2 is

added to the linear graph on the bottom, while node 2n+ 3 is added to the

linear graph on the top.

2. We remove the loop attached to node 2n, and we add a bidirectional edge

connecting nodes 2n and 2n + 2, this new edge has the same label as the
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Figure 5-3: Automaton GJ 9

removed loop. A loop with the complementary label is attached to node

2n+ 2. We make the same work on the linear graph placed at the top.

Notice that it is easy to Identify the hardest triples of the automata occurring in

the sequences of Kisielewicz-Szykula as well as in the sequence of Berlinkov. It

is not the case with the sequence GJ. We could not compute the hardest triples

of those automata. However, we can prove that for all n ≥ 4, the synchronizing

time of any pair of states of GJ 2n+1 is bounded above by 2n+1
2

+ 2 · (2n+ 1) + 10.

It implies that s3 (GJ 2n+1) ≤ 5 (2n+ 1) + 20. Therefore, we get as a corollary

that the sequence GJ is not a strong refutation.

Lemma 6. Let n ≥ 9 be an odd integer, we have that s2 (GJ n) ≤ n
2

+ 2 · n+ 10.

Proof. Let n ≥ 9 be an odd integer, and let p, q be two states of GJ n. We show

that those states can be synchronized using a string of length n
2

+ 2 · n+ 10. The

synchronization process is divided in three stages. In the first stage one of the

states is sent to node 3. In the second stage the remaining state is sent to node
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1, while taking care of maintaining the position of the first state (at node 3). In

the third stage the states 1 and 3 are synchronized.

1. The first stage of the process can be accomplished with a string of length

n
2
.

2. In the second stage we make the following:

a) Let x be the position of the second state. We check if there exists an

outgoing edge labelled with the letter b and pointing to the right. If

it is the case we say that node x fulfills condition B. If it is not the

case, we apply letter a. Notice that, after the application of letter a,

the second state will be located at a node fulfilling condition B, while

the first state will be located at node 3.

b) Now, the location of the second state fulfills condition B. We move

this state to the core. To this end, we use a string (bbba)m, where m

is some integer lesser than n
4
. Notice that, for all m ≥ 1, it happens

that after the application of the string (bbba)m the first state will be

still located at node 3.

c) If the second state enters the core at node 1, we have finished. Other-

wise, it must enter the core at node 6. In this second case we use the

string bbaab to move this state to node 1. Notice that the first state

will maintain its position at node 3. The total cost of the second stage

is bounded above by n+ 6.

3. The synchronization of the pair {1, 3} can be accomplished using the string

babbbbb (ab)
n−7
2 abba. The cost of this stage is bounded above by n+ 4.

Corollary 2. Let n be an odd integer, the inequality s3 (GJ n) ≤ 5 ·n+ 20 holds.

Moreover, for all n ≥ 15 the inequality s3 (GJ n) ≤ 2
3
· n2 holds.



6 Synchronization games on planar

automata

In this chapter we study synchronization games on planar automata. We prove

that recognizing the planar games that can be won by the synchronizer is co-NP

hard . We prove some additional results indicating that planar games are as hard

as nonplanar games. Those results amount to show that planar automata are

representative of the intricacies of automata synchronization.

This chapter is organized into three sections. In section 1 we introduce the syn-

chronization games that we want to study, and we show that some other games

that were previously studied in the literature, as for example accessibility games

(see [27]), are special cases of synchronization games. In section 2 we study the

length of optimal playing strategies, focussing on pair synchronization games.

We prove a quadratic upper bound, and we prove that this quadratic bound is

optimal. We exhibit a sequence of pair synchronizing games achieving the afore-

mentioned upper bound. We observe that the constructed sequence is planar, and

then we ask if planar automata are the hardness core of synchronization games.

In section 3 we investigate subset synchronization games played on planar non-

synchronizing automata. We prove that it is co-NP hard to recognize the planar

games for which the synchronizer has a winning strategy, and we also prove that

the longest possible games are played on planar automata.
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This chapter is related to the investigations on Černy’s Conjecture (see [55] and

the references therein). We have chosen to investigate the novel notion of syn-

chronization games introduced in [22]. There are some previous works that study

synchronization of automata from the point of view of game theory: The afore-

mentioned work of Fominykh et al [22] define a new class of accessibility games

related to synchronization, while Gonze and Jungers use game theoretical tech-

niques to study the synchronizing time of automata [27]. We generalize the notion

of synchronization games, and this generalization allow us to study accessibility

games (see [27]) as a special case of our games. Then, we focus on synchroniza-

tion games played on planar automata. We decided to focus on the latter type of

automata given that we have showed before that this special class of automata

seems to be representative of the intricacies of synchronization [36]

6.1 Synchronization games

Volkov et al [22] introduced a class of combinatorial games on automata that is

related to synchronization.

Definition 24. A synchronization game is given by a triple (M, Sc, Sp), such

that:

1. M is a synchronizing automaton, say M = (Q,Σ, δ) .

2. Sc, Sp ⊆ Σ.

The game is played by two contenders, the synchronizer and the spoiler. At odd

rounds the synchronizer must choose a character from Sc, while at even rounds

the spoiler must choose a character from Sp. The goal of the synchronizer is to

produce (in despite of the spoiler choices) a synchronizing string forM. The aim

of the spoiler is to avoid synchronization.
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Definition 25. Let M is a synchronizing automaton.

• We say that game (M, Sc, Sp) is standard, if and only if, the equalities

Sc = Sp = Σ hold.

• We say that M is winnable, if and only if, the synchronizer has a winning

strategy for the standard game (M,Σ,Σ) .

Volkov et al showed that there exist synchronizing automata that are not winnable

[22].

Proposition 10. The Černy automaton Cn is not winnable.

It is natural to ask: which are the winnable automata?

Definition 26. A subset synchronization game is given by a 4-tuple (M, Sc, Sp,A),

such that:

• M = (Q,Σ, δ) is a synchronizing automaton.

• Sc, Sp ⊆ Σ.

• A ⊂ Q.

The goal of the synchronizer is to synchronize the set A. Volkov et al [22] proved

the following.

Proposition 11. An automaton M is winnable, if and only if, the synchronizer

has winning strategies for all the synchronization games in the set

{(M,Σ,Σ, {p, q}) : p, q ∈ Q} .

Therefore, we say that reduction to pairs holds true for synchronization games.

It can also be proved (see below) that the synchronizer has a winning strategy

for the game (M, Sc, Sp), if and only if, he has a winning strategy for each one

of the games in the set
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{(M, Sc, Sp, {p, q}) : p, q ∈ Q},

and it means that reduction to pairs also holds for non-standard games. We use

the term pair-synchronization games to refer the games of the form (M, Sc, Sp, {p, q}) .

Reduction to pairs yields a polynomial time algorithm for the recognition of the

games that are won by the synchronizer, as well as a cubic upperbound on the

length of his optimal strategies [22].

6.1.1 Aplications of synchronization games

It is important to remark that the investigation on synchronization games can

have important applications. We would like to notice that many different combi-

natorial games can be represented as special cases of synchronization games. It

is the case with the accessibility games studied by Gurevich et al [27]

Definition 27. An accessibility game is given by a triple (G, v,A), where G is a

finite digraph, v is a node of G and A is a set of nodes.

The game is played by two contenders that we call Alice and Bob. At the begin-

ning of the game a token is placed on node v. Alice chooses an outgoing edge, say

(v, u) ∈ E (G) , and the token is moved along this edge to be placed on node u.

Then, Bob chooses an edge going out from u, and moves the mark consistently.

The game continues in this way, Alice playing at odd rounds and Bob playing at

even rounds. The goal of Alice is to place the token on a node included in the

set A.

Proposition 12. If G is a regular digraph of degree k, then the accessibility game

(G, v,A) can be represented by a pair synchronization game.

Proof. Suppose that the outdegree of the nodes of G is equal to k. Given v ∈ G,

one can randomly choose a linear ordering of the edges going out from v. Doing so

is the same as labelling those outgoing edges with the letters {1, ..., k} . It can be
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done simultaneously for all the nodes of G. We observe that if one labels all the

edges of G according to the latter procedure, he gets an automatonMG. Suppose

we have constructed such an automaton. Then, we can add a new node s. Given

an edge (v, a) such that a ∈ A, we replace this edge by a new edge (v, s), and we

attach to (v, s) the label that was attached to (v, a) . Moreover, given i ≤ k, we

add a loop (s, s) with label k. We notice that winning the game (G, v,A) is the

same as winning the standard game (NG, {1, ..., k} , {1, ..., k} , {v, s}) . Thus, the

accessibility game (G, v,A) is correctly represented by the latter pair synchro-

nization game.

Let us prove that the regularity hypothesis is not essential.

Proposition 13. If G is a no regular digraph , then the accessibility game

(G, v,A) is represented by a standard synchronization game.

Proof. Now suppose that G is not regular, and let k be the maximum outdegree

of the nodes of G. Given v ∈ G, if deg+ (v) < k, we add a node sv and we

add k − deg+ (v) edges directed from v to sv. Moreover, we attach k loops to

node sv. If we do the later for all the nodes of G, we get a regular digraph H.

We observe that the game (G, v,A) is the same as the game (H, v,A). Thus,

we can conclude that accessibility games are suitably represented by standard

synchronization games.

Now, let us prove that the converse is true.

Proposition 14. Standard synchronization games can be represented by accessi-

bility games.

Proof. Let (M,Σ,Σ, A) be a standard subset synchronization game, and let k =

|A| . The k-tuple automaton M(k) = (Qk,Σ, δk) is the automaton given by:

• Suppose that Q is the set of states of M, then Qk = {C ⊆ Q : |C| ≤ k} .
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• The input alphabet of M(k) is the same as the input alphabet of M.

• Function δk is defined by δk (C, b) = {δ (q, b) : q ∈ C} .

Let S be the set {C ∈ Qk : |C| = 1}, and let G be the underlying digraph ofM(k).

It is easy to check that the synchronization game (M,Σ,Σ, A) is the same as the

accessibility game (G,A, S) .

Thus, we can conclude that the important class of accessibility games studied by

Gurevich et al [27] is the same as the class of standard subset synchronization

games.

Remark 15. It seems that subset synchronization games can be used to represent

a wide variety of games, and it also seems that the claimed versatility of those

games comes from the possibility of playing nonstandard games.

6.2 On the length of optimal playing strategies

Given A ⊆ Q, we use the symbol δ (A,w) to denote the set

{
p ∈ Q : ∃a ∈ A

(
δ̂ (a, w) = p

)}
.

Consider a game (M, Sc, Sp). The synchronizer can play in the following way:

• He picks a pair p, q ∈ Q, and he plays the game (M, Sc, Sp, {p, q}).

• Suppose the synchronizer wins the game (M, Sc, Sp, {p, q}), and suppose

that w1...wm is the ordered sequence of characters that were chosen by

the two contenders along this game. Then, the synchronizer picks r, s ∈

δ (Q,w), and he plays the game (M, Sc, Sp, {r, s}) . He continues playing

in this way until all the states get synchronized.
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It follows that if the synchronizer has a winning strategy for all the pair-synchronization

games, then he has a winning strategy for the game (M, Sc, Sp) . Moreover, if

m is an upperbound on the length of the optimal strategies for all the pair-

synchronization games that can be played onM, then m · (|Q| − 1) is an upper-

bound on the length of an optimal strategy for the game (M, Sc, Sp) . Then, if

m ∈ O
(
|Q|2

)
we get that optimal playing strategies have cubic length.

Theorem 15. Let M be a n-state synchronizing automaton, if the synchronizer

has a winning strategy for the game (M, Sc, Sp, {p, q}), then he has a winning

strategy whose length is upperbounded by 2 ·

 n

2

.

Proof. Suppose that the synchronizer has a winning strategy for the game

(M, Sc, Sp, {p, q}),

and suppose that he plays optimally. Let A = C1, ..., CM be the sequence of

unordered pairs (configurations) that are visited along the game, and suppose

that M > 2 ·

 n

2

. Then, there exists two odd integers i < j such that

Ci = Cj and |Ci| = 2. If the synchronizer is playing optimally, and in despite of

this he produces a loop, then the spoiler is forcing this loop. The spoiler can force

this loop infinite many times, and the synchronizer has not a winning strategy

(contradiction). The latter contradiction indicates that the synchronizer wins the

game in less than 2 ·

 n

2

+ 1 steps provided he plays optimally.

It is natural to ask if the quadratic bound 2 ·

 n

2

 is optimal. We prove that it

is the case, we construct a sequence of pair synchronization games such that the

synchronizer has a winning strategy for those games, and such that the length
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of an optimal playing strategy for the n-th game in the sequence is equal to

2 ·

 n

2

− 1.

Theorem 16. The upperbound 2 ·

 n

2

 is optimal.

Proof. We construct a sequence {(Dn, SDn , Spn, {pn, qn})}n≥2 of pair-synchronization

games. The synchronizer has a winning strategy for all the games in the sequence,

but he requires time 2·

 n

2

−1 to win the game (Dn, SDn, Spn, {pn, qn}) . First,

we define the automata in the set {Dn : n ≥ 2} . Let n be a fixed positive integer.

• Automaton Dn = (Qn, {a, b, c} , δn) .

• Qn = {0, 1, ..., n− 1} .

• The transition function δn is defined by:

Letter a labels a directed cycle 0 → 1 → · · · → n − 1 → 0. Letter b labels

the set of edges

{(i, i) : i 6= 0} ∪ {(0, 1)} ,

while letter c labels the set of loops

{(i, i) : i = 0, 1, ..., n− 1} .

The graphic below corresponds to the transition digraph of automaton Cn.

We observe that if we restrict the alphabet to the set {a, b}, automaton Cn be-

comes equal to the n-th Černy automaton. Recall that all the Černy automata

are synchronizing, and recall that all those automata are not winnable. The lat-

ter facts indicate that we cannot choose Sc = Sp = Σ. We want to make the
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Figure 6-1: Automaton Cn

work of the synchronizer becomes as easy as possible, hence we set Sp = {c} ,

and Sc = {a, b} . Thus, the spoiler is restricted to play the neutral character c,

and it means that he cannot disturb the synchronizing work that is being done

by the synchronizer.

We set pn = 1 and qn = dn
2
e. If the Synchronizer wants to play optimally he must

choose a minimal synchronizing string for the pair
{

1, dn
2
e
}

and play according to

it. Let w1...wm be a minimal synchronizing string, it is known that m =

 n

2


(see [37]). Then, an optimal play has the form

w1cw2c...wn−1cwn−2,

and its length is equal to 2 ·

 n

2

− 1.

It is important to remark that the sequence constructed in the above proof is

planar, it means that all those games are being played on planar automata (au-

tomata whose transition digraph is planar, see [36]). We ask: what is the role
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played by planar automata? Are those automata representative of the intricacies

of synchronization games?

6.3 Synchronization games and non-synchronizing

planar automata

We have constructed a sequence of games that exhibits a certain type of extremal

behavior: winning those games is as hard as possible. It is interesting to ob-

serve that the constructed sequence is a sequence of planar games. It is not a

surprise, given our previous investigations on the synchronization of planar au-

tomata, from which we could conclude that planar automata are representative

of the intricacies of synchronization. The aforementioned construction suggests

that planar automata are also representative of the complex behavior of synchro-

nization games (the hardest games are planar games).

We study in this section some facts that are related to subset synchronization

games. On one hand, we restrict the scope of our investigations by focussing

on planar automata. On the other hand, we expand this scope by considering

non-synchronizing automata.

Subset synchronization games played on non-synchronizing automata exhibit

some features that are not present in Černy’s scenario. First at all, it can be

showed that reduction to pairs is not longer valid. To this end, it is sufficient to

exhibit an automaton M = (Q,Σ, δ) , and a set A ⊂ Q, such that the synchro-

nizer has a wining strategy for all the pairs included in A, but such that he does

not have a winning strategy for the set A. Consider the automatonM = (Q,Σ, δ)

that is defined by:

1. Q = {1, 2, 3, 4, 5} .

2. Σ = {a, b, c} .
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Figure 6-2: Automaton M

3. The transition function δ is defined by the following equations:

δ (i, x) = i, if i = 4, 5 and x = a, b, c,

δ (1, a) = δ (2, a) = 4 and δ (3, a) = 5,

δ (1, b) = δ (3, b) = 5 and δ (2, b) = 4,

δ (2, c) = δ (3, c) = 5 and δ (1, c) = 4.

The graphic above is the transition digraph of automaton M.

Notice that the set {1, 2, 3} cannot be synchronized, but notice also that the syn-

chronizer counts with a winning strategy for the standard games encoded by the

pairs {1, 2} , {1, 3} and {2, 3}: He plays a in the game (M, {a, b, c} , {a, b, c} , {1, 2}) ,

he plays b in the game (M, {a, b, c} , {a, b, c} , {1, 3}), and he plays c in the game

(M, {a, b, c} , {a, b, c} , {2, 3}) .

Now, that reduction to pairs is lost, it is not clear if there exists a polynomial

time algorithm for the recognition of the set

S = {(M,Σ,Σ, A)}: the synchronizer wins the game (M,Σ,Σ, A)}
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Theorem 17. The set S is co-NP hard.

Proof. We prove that TAUT is ptime reducible to S. Recall that TAUT is the

problem:

• Input: α, where α is a formula in conjunctive normal form.

• Problem: Decide if α is a tautology.

Our reduction is similar to Eppstein’s reduction (see reference [18]). Let α =∧
i≤m

Ci (X2, X4,..., X2n) be a boolean formula over the variables X2, ..., X2n. We

can write the clause Ci (X2, ..., X2n) as Y i
2 ∨ · · · ∨ Y i

2n, where for all i ≤ m and

for all j ≤ 2n it happens that Y i
j ∈ {Xj,∼ Xj, o (Xj)} . The symbol o (Xj) is

interpreted as: variable Xj does not occur in the given clause. Notice that we

have chosen to write the formula in such a way that for all i ≤ m and for all

j ≤ n the equality Y i
2j−1 = o (X2j−1) holds.

Given α, we construct an automatonMα. The input alphabet ofMα is equal to

{0, 1} . The set of nodes of G (Mα) is equal to A1 t · · · tAm t{c} (the symbol t

denotes disjoint union), where Ai = {i1, ..., i2n, i2n+1} . The transitions are defined

in the following way: if k ≤ 2n the state δ (ik, a) is defined as follows.

δ (ik, a) =



ik+1, if a = 1 and Y i
k =∼ Xk, o (Xk) ,

c, if a = 1 and Y i
k = Xk,

ik+1, if a = 0 and Y i
k = Xk, o (Xk) ,

c, if a = 0 and Y i
k =∼ Xk.

If k = 2n+1 we have that δ (i2n+1, a) = i2n+1. Moreover, we have that δ (c, a) = c.

Set Aα = {11, ...,m1} .We observe that α is a tautology, if and only if, the set Aα is

synchronized by all the strings u ∈ {0, 1}2n. Then, if α is a tautology the synchro-

nizer has a very simple winning strategy for the game (Mα, {0, 1} , {0, 1} , Aα):

he plays at random.

Now suppose that α is not a tautology, there exists v2v4 · · · v2n ∈ {0, 1}n such that
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for all x1x3 · · ·x2n−1 ∈ {0, 1}n it happens that x1v2x3 · · ·x2n−1v2n does not satisfy

the formula α. Notice that the spoiler chooses the values of X2, ..., X2n. Then,

if the spoiler chooses to play according to the string v2v4 · · · v2n he wins: string

v2v4 · · · v2n sends one of the tokens, say the k-th token, to the state k2n+1. Notice

that if the k-th token visits the node k2n+1, synchronization becomes impossible.

Thus, we have that α is a tautology, if and only if, the synchronizer has a winning

strategy for the game (Mα, {0, 1} , {0, 1} , Aα) .

It is important to remark that for all boolean formula α the corresponding au-

tomatonMα is planar. Thus, we have that the restriction of S to planar automata

is also co-NP hard. This latter fact amounts to show that planar automata are

the hardness core of synchronization problems (see reference [36]). If one does not

fix an upperbound on the size of the sets to be synchronized, the corresponding

algorithmic problem becomes hard. It is natural to ask: what could it happens

if we fix such an upperbound? Let k ≥ 1 and let Sk be the set

{(M,Σ,Σ, A) ∈ S : |A| ≤ k} .

Theorem 18. For all k ≥ 1, the set Sk can be recognized in polynomial time.

Proof. Let (M,Σ,Σ, A) be an instance of Sk. Given M, we can construct in

polynomial time the k-tuple automatonM(k) = (Qk,Σ, δk) . Let G be the transi-

tion digraph of M(k) and let s
(
M(k)

)
be equal to the set {A ∈ Q : |A| = 1}, we

have that (M,Σ,Σ, A) ∈ Sk, if and only if, the triple
(
G,A, s

(
M(k)

))
belongs

to the set

{(G, v,D) : Alice wins the game (G, v,D)} .

The above set can be easily recognized in polynomial time (see [27]). Thus,

we have a ptime reduction of Sk into a problem that belongs to the class P

(polynomial time), and it implies that Sk can also be recognized in polynomial

time.
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We have proven that Sk can be recognized in polynomial time, we can also prove

that a polynomial upperbound O
(
nk
)

holds for the length of the optimal winning

strategies of k-subset synchronization games. The proof of this latter fact is very

similar to the proof of theorem 15.

Theorem 19. Suppose that the synchronizer has a winning strategy for the game

(M, Sc, Sp,A) ∈ Sk, and suppose that |A| = k. Then, the synchronizer can win

in at most O
(
nk
)

steps.

It is natural to ask: is the above upperbound optimal?

Theorem 20. There exists a sequence {(Mi, Sci, Spi, Ai)}i≥ 1 of winnable k-

subset synchronization games such that the synchronizer requires time Ω
(
nk
)

to

win the game (Mn, Scn, Spn, An) .

Proof. Let n be a large integer, and let p1, ..., pk be prime numbers such that

n
2k
≤ p1 < ... < pk ≤ n. We set Mn = (Qn,Σn, δn), where:

1. Qn is the disjoint union of the sets B1 ∪B2 ∪ · · · ∪Bk ∪ {x} . Moreover we

have that for all i ≤ k, the set Bi is equal to
{
q1
i , ..., q

pi
i , k

1
i , ..., k

pi−1
i

}
.

2. Σn = {a, b} .

3. The function δn is defined by the following equations:

δ (qri , a) = qr+1modpi
i , for all i ≤ k and r ≤ pi,

δ (qri , b) = kri , for all i ≤ k and for all r 6= pi,

δ (qpii , b) = x, for all i ≤ k,

δ (kri , c) = kri , for all i ≤ k, and for c = a, b,

δ (x, c) = x, for c = 0, 1.

We set An = {q1
1, ...., q

1
k}, Scn = {0, 1} and Spn = {0} . Notice that if the

synchronizer wants to win this game, he must place simultaneously the k tokens
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Figure 6-3: Automaton Mn for the case k = 2

on nodes qp1−1
1 , ...., qpk−1

k . The latter task can be accomplished no matter the way

the spoiler plays (the spoiler is constrained to choose 0 all the time), but the time

required to achieve this goal is Ω (p1 · · · · · pk) = Ω
(
nk
)
.

We observe, once again, that the sequence {(Mi)}i≥1 is planar. Thus, we have,

once again, that extremal behavior is achieved by sequences of planar automata.

The results consigned in this section amount to show that planar automata are

representative of the intricacies of subset synchronization and subset synchroniza-

tion games. We believe that we have provided further evidence concerning the

conjectured universality of planar automata (see [36]).



7 Concluding remarks and open

problems

We would like to finish this dissertation formulating some few questions for future

work.

1. The algorithmic complexity of synchronization problems is well understood.

The complexity of computing minimal synchronizing strings has been fully char-

acterized [42], and it is known which are the approximation ratios that can be

achieved in polynomial time. We proved, in this work, that the parameterized

version of the same problem is NWL complete (see Theorem 14). We think that

the remaining question is the question about the parameterized approximability

of computing minimal synchronizing strings.

2. The weak Černy’s conjecture states that the synchronizing time of a n-state

synchronizing automaton is O (n2). Proving this weaker conjecture would be a

major step towards the solution of Černy’s problem, as well as a major step to-

wards a complete understanding of synchronizing automata. We studied, in this

work, the quadratic sequences that have been registered in the literature, and it is

interesting to observe that all those sequences are constituted by planar automata

(automata whose transition digraph is planar). It suggests that the largest reset

tresholds are achieved by planar automata. We conjecture that the existence of
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superquadratic sequences of automata implies the existence of superquadratic se-

quences of planar automata. It means that if the weak Černy’s conjecture holds

true for planar automata, then it must hold true for all the synchronizing au-

tomata. Our conjecture estates that planar automata are universal with respect

to the weak Černy’s conjecture, in the same sense that strongly connected au-

tomata are universal with respect to Černy’s conjecture and the 2
3
-conjecture.

Our second problem concerns this latter conjecture about the representativity of

synchronizing planar automata.

3. We provided strong evidence suggesting that planar automata are the hardest

to synchronize automata [37]. Moreover, we conjecture that Černý conjecture

holds true for planar automata, if and only if, it holds true for general automata.

We call planar universality conjecture to the latter conjecture. It is natural to

ask: which is the contribution of our planar universality conjecture to the inves-

tigations on Černý problem?

We think that the planar universality conjecture is pointing out a possible attack

to Černý problem:

1. Prove the conjecture for planar automata.

2. Prove the planar universality conjecture.

We are strongly convinced that the planarity constraint makes the problem be-

come more tractable. One has to take into account that the class of planar

digraphs is one of the most studied and best understood classes of digraphs (the

class of planar digraphs is a very much more docile class than the class of strongly

connected digraphs). We think that there are specific ways of proving Černý con-

jecture for planar automata (supposing it is true) that does not work for general

automata. We would have liked to illustrate the latter point by proving the 2
3
-

Černý conjecture for planar automata. Unfortunately, we could not prove this
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result. There is a way of illustrating our point in a very much weaker way: we

conjecture that RT E (3) ≤ 2
3
. A possible attack to the latter conjecture is given

by:

1. Prove that the inequality RT P (E) (3) ≤ 2
3

implies the inequality RT E (3) ≤
2
3
, where P (E) is the class of planar Eulerian synchronizing automata.

2. Prove the inequality RT P (E) (3) ≤ 2
3
.

We would like to observe that, in this special case, the planarity hypothesis makes

the problem more tractable. The class of planar Eulerian digraphs (also called

planar Eulerian maps) is a docile class. Thus it would be interesting to prove

that RT P (E) (3) ≤ 2
3
, using an argument strongly based on the planarity of the

automata to be analyzed.
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