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Resumen 
El tamaño corto de las series de tiempo registrados en una 
estación, las altas incertidumbres involucradas en la estimación 
de parámetros y sus cuantiles, son algunas de las desventajas 
que se encuentran en el análisis de frecuencia in-situ de los 
máximos anuales hidrológicos. Otra desventaja es la subjetividad 
presente en la selección arbitraria de una distribución de 
probabilidad candidata para modelar la muestra de datos 
hidrológicos máximos anuales. Las pruebas convencionales de 
ajustes  no están diseñadas para seleccionar entre varios modelos 
y no son lo suficientemente poderosas para proveer los criterios 
que respalden un proceso de toma de decisiones de tal manera 
que pueden guiar al hidrólogo novato a escoger opciones no 
adecuadas. En este artículo describimos la experiencia de los 
autores en emplear la tecnología de la inteligencia artificial y la 
teoría de la lógica difusa para construir un sistema experto ()en 
computador) que simule los principios de razonamiento usados 
por un experto para escoger uno o varios modelos candidatos 
de distribución probabilística para estudios in-situ de análisis 
de frecuencia en hidrología. El sistema experto se aplicó a 20 
muestras hidrológicas relativamente largas de máximos anuales 
de lluvia y caudales diarios registrados en estaciones de 
monitoreo en el Sureste de Brasi l.  Para chequear el 
comportamiento del sistema experto, las mismas muestras 
fueron entregadas a un panel de expertos en el tema de análisis 
de frecuencias. La comparación de los resultados mostró que 
el sistema diseñado se comporta al mismo nivel que el panel de 
expertos y que se puede utilizar para ayudar a una persona con 
poca experiencia a escoger una o varias distribuciones de 
probabilidad candidatas apropiadas en un análisis de frecuencia 
de datos hidrológicos in-situ. 

Palabras clave: análisis local de frecuencias, sistemas expertos, 
lógica difusa, distribución de probabilidades. 

Abstract 
The usually short-sized samples of data recorded at a site and 
the large uncertainties involved in parameter and quantile 
estimation are some of the shortcomings encountered in at-site 
frequency analysis of hydrologic annual maxima. Another 
drawback is the subjectivity entailed by the arbitrary selection 
of a candidate probability distribution to model the sample of 
hydrological annual maxima. Conventional goodness-of-fit tests 
are not designed to discriminate among candidate models and 
are not powerful enough to provide the necessary objective 
backing to such a decision-making process and may possibly 
lead a novice hydrologist to inadequate choices. In this paper, 
we describe the authors  experience in employing the 
technology of artificial intelligence and fuzzy-logic theory to build 
a computer expert system that emulates the reasoning principles 
used by a human expert to select one or more candidate 
probability distribution models for at-site hydrologic frequency 
analysis. The expert system has been applied to 20 relatively 
large samples of annual maxima of daily rainfall and daily streamflow 
recorded at gauging stations in the Brazilian southeast. In order to 
check the system performance, the same samples have been 
submitted to a panel of actual experts in frequency analysis. The 
comparison of the results provides evidence that the computer 
system performs at an expert level and may be utilized to help an 
inexpert to select one or more appropriate candidate distributions 
for at-site hydrologic frequency analysis. 

Key Words: At-site hydrologic frequency analysis, Expert 
system, Fuzzy logic, Probability distribution.
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1. Introduction 

Analysis and estimation of flood flows are current problems in 
the domain of water resources engineering.  Along history, it is 
almost natural to perceive the attraction that floodplains and 
river valleys have exerted on human societies. In fact, river 
valleys offer very favorable conditions to develop and maintain 
activities connected to human settlements, such as agriculture, 
fishing, transportation, and convenient access to local water 
resources (ASCE, 1996). However, the economic and social 
benefits resulting from the occupation and use of river valleys 
and floodplains are frequently offset by the negative effects of 
flood-induced disasters, such as the loss of lives and the material 
damage to riverine communities and properties. From a 
geomorphological standpoint, there is no surprise coming from 
the fact that rivers occasionally reclaim their own dynamic 
constructions which are their valleys and plains (Knighton, 
1998). However, it is indeed a surprise to acknowledge that 
human societies occasionally disregard the fact that occupying 
the floodplains means to coexist with risk. 

Flood-risk reduction and mitigation of flood-induced damages 
can be provided by human actions on the fluvial system, such 
as the construction of reservoirs and levees, the definition of 
strategies for regulating land use in flood hazard areas, and the 
implementation of alert systems and protection measures for 
riverine structures and properties. Estimation of flood flows is 
essential not only for planning these interventions, but also for 
designing and operating the engineering structures to control 
and manage water, since their structural safety depends much 
on reliable estimates of flood characteristics. Engineers and 
hydrologists are often asked to estimate relevant characteristics 
of flood flows, such as the associated precipitation depths, the 
peak discharges, the volume and duration of flood hydrographs, 
the flooded areas, as well as their corresponding critical values 
for design and/or operation purposes (ASCE, 1996). There are 
different methods for estimating flood flow characteristics: a 
few are conceived on a purely deterministic basis, whereas 
others seek to associate the variable magnitude to an 
exceedance probability. The latter are current applications of 
probability theory and mathematical statistics to the field of 
water resources engineering. 

Frequency analysis of hydrologic variables, broadly defined here 
as the quantification of the expected number of occurrences 
of an event of a given magnitude, is perhaps the earliest and 
most frequent application of probability and statistics in the 
field of water resources engineering (Haan, 2002).  In brief, 
the methods of frequency analysis aim to estimate the 
probability with which a random variable will be equal or 
greater than a given value, or quantile, from a sample of 
observations of the variable in focus (Kidson & Richards, 2005). 
If these observations are recorded only at a single streamflow 
(or rainfall) gauging station, the so-called at-site frequency 
analysis is being carried out. Otherwise, if other observations 
of the variable, as recorded at distinct gauging stations within 
a specified region, are jointly employed for statistical inference, 
then the frequency analysis is said to be regional (ASCE, 1996). 

At-site frequency analysis of hydrologic random variables has 
received much attention from hydrologists over the years. New 
probability distribution models and improved techniques of 
statistical inference have been proposed, in the pursuit of more 
reliable estimates of rare quantiles. However, the relatively 
short samples of hydrologic maxima seem to impose a limit to 
the degree of statistical sophistication to be employed in at- 
site frequency analysis. Along these lines, the regional frequency 
analysis is certainly an alternative that seeks to balance the 
limited temporal distribution of hydrologic data, as recorded 
at a single site, with a more detailed characterization of the 
variable over space.  Potter (1987), Bobée and Rasmussen (1995), 
and Hosking and Wallis (1997) are among those who presented 
the many advantages and arguments in favor of regional methods, 
as compared to at-site frequency analysis. Despite these 
arguments, it is plausible to expect that a number of decisions 
on the occurrence of rare hydrologic events will be made still 
on the basis of a single sample of hydrologic data. This expectation 
may be justified either by (i) the scarcity or even the absence of 
hydrologic data within a given region; or (ii) the engineers  lack 
of experience and/or knowledge of using contemporary methods 
for regional frequency analysis; or (iii) the expedite way with 
which engineering solutions are occasionally proposed to 
problems involving hydrologic rare events. It appears then that 
at-site frequency analysis will stay as a current engineering 
method for some appreciable time. This impression is, in fact, 
the chief motivation for the research described in here.



39 

Avances en Recursos Hidraúlicos - Número 18, Octubre de 2008, Medellín - Colombia - ISSN 0121-5701 

This paper focuses first on the difficulties inherent to at-site 
frequency analysis of hydrologic annual maxima, particularly 
those related to picking the suitable probability distribution 
model (or models) among a number of possible candidates. 
Next, we describe our experience in employing the technology 
of artificial intelligence and fuzzy-logic theory to build a 
computer expert system that emulates the reasoning principles 
used by a human expert to select one or more candidate 
probability distribution models for at-site hydrologic frequency 
analysis.  In the sequence, we provide a description of the 
experiment devised to evaluate the performance of the computer 
expert system, along with a summary of the results obtained. 
The last item contains the main conclusions of this paper. 

2. Some problems with at­site frequency 
analysis of hydrologic maxima 
According to Kidson and Richards (2005), at-site frequency 
analysis of hydrologic maxima involves three steps: data choice, 
model choice and a parameter estimation procedure. Usually, 
a sample of annual maximum records of the variable is employed 
for frequency analysis. In principle, the sample records are 
assumed to be random, independent, and homogeneous 
occurrences of the hydrologic variable. Frequency analysis of 
the so-called  partial duration series , far from being an 
uncommon practice among water resources engineers, is 
however not so often utilized than the analysis of annual maxima 
series and will not be focused herein. 

Once the probability distribution function has been selected, 
among a number of candidate models that are potentially 
adequate to fit hydrologic annual maxima, its parameters and 
variable quantiles should be estimated by conventional methods 
of statistics, such as the method of moments, the method of 
the maximum likelihood or the method of L-moments. In the 
context of at-site frequency analysis of hydrologic annual 
maxima, the commonly-used probability distribution functions 
may be grouped in (i) two-parameter models, as exemplified 
by Gumbel (or Extreme Value Type I), Log-Normal 2P, Gamma, 
and Exponential distributions; and (ii) models described by more 
than two parameters, such as the Generalized Extreme Value 

(GEV), Pearson III, Log-Pearson III, and Wakeby distributions. 
The reader is referred to Kidson and Richards (2005), ASCE 
(1996) and Stedinger et al. (1993) for more details on frequency 
analysis of hydrologic data. 

Despite the relatively large set of potentially usable models, there 
is no consensus, among hydrologists and statisticians, regarding 
the prescription of a specific parametric form that is universally 
accepted to model the frequency distribution of hydrologic 
annual maxima. As opposed to some deductions that can be 
made in other applications of statistics, such as the ones related 
to the central limit theorem, the statistical theory of extreme 
values does not provide the mathematical deductive laws for 
selecting such a universal model. In fact, in order to deduce the 
limiting distribution of the maximum value of a large number of 
variables, the classical theory of extremes departs from the 
critical assumption that the original variables are independent 
and identically-distributed (Gumbel, 1958). As pointed out by 
Perichi and Rodríguez-Iturbe (1985), this assumption is often in 
direct disagreement with the hydrologic reality, which is 
composed mainly by complex interactions of seasonal changes 
and statistical dependence among the original variables. As a 
result, the task of selecting a suitable probability distribution 
function for at-site frequency analysis of hydrologic maxima is 
effectively an ad-hoc procedure, with a few clues coming from 
the perception of how good is the assumed model s fit to the 
data set of hydrologic annual maxima. 

In practice, the short-sized samples of annual maximum records 
of hydrologic variables bring about subjectivity into the task of 
selecting a suitable probability distribution model, solely on 
the basis of goodness-of-fit measures. With samples of sizes 
typically ranging from 20 to 70, it is impossible to categorically 
assert that a given probability distribution function, which is 
considered well fitted to a sample, will represent the true 
population behavior of the variable. In fact, customary 
goodness-of-fit tests, such as the  2 χ and Kolmogorov-Smirnov 
tests, are not powerful enough and, in fact, are incapable of 
discriminating among different probabilistic models (Kidson and 
Richards, 2005). Additionally, the methods of statistical 
inference may yield possibly unreliable estimates of parameters 
(and of rare quantiles) due mainly to the large uncertainties 
imposed by short-sized samples.
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These difficulties end up in making the judicious selection of a 
probabilistic model a task for experts, who generally carry it 
out under the light of a set of heuristic guidelines which are 
conceived in accord with the knowledge they have acquired 
along many years of experience and study.  Broadly defined, 
the heuristic approach is an inventive process known to yield 
incorrect or inexact results at times but likely to yield correct 
or sufficiently exact results when applied in commonly occurring 
conditions. The heuristic approach narrows the logical pathways 
to follow, thus selecting the more convenient ones and reducing 
a complex task to a smaller group of judgment operations 
(Chow, 1988).  For instance, some expert may suggest using a 
specified set of candidate probability distributions simply based 
on the numerical proximity of the population and sample 
coefficients of skewness. Then, he (or she) may proceed by 
selecting, from the previously suggested probabilistic models, 
the one that visually best fits the data records, as plotted on 
probability paper. 

In general, the set of heuristic guidelines can provide some 
backing for an expert but, when they are used in an 
indiscriminate way, they may also lead to biased decisions. As 
an example, admit that the inclusion of a single extraordinary 
occurrence into the sample, knowingly very rare when 
compared to the frequencies of other records, has the effect 
of substantially increase the sample coefficient of skewness. In 
such a hypothetical case, if the selection of a  suitable  
probabilistic model is based solely on how close are the 
population and sample coefficients of skewness, then the 
decision would be to prescribe models that are adequately 
asymmetric but wrongly chosen because the presence of a 
flagrant outlier was too determinant to the choice. This example 
shows that, far from being a decision guided by a systematic 
set of objective rules, the judicious selection of a probability 
distribution function to model hydrologic maxima is essentially 
multi-criteria and heuristic, and susceptible to be made by 
experts. 

Despite the increasing number of existing computer programs 
that have been developed for at-site frequency analysis of 
hydrologic records, they are not capable of guiding the choice 
of the most adequate group of probability distribution functions 
that fit the sample data.  Their results consist mostly of 

numerical and/or graphical displays of quantile estimates, which 
may eventually lead an inexperienced hydrologist to face difficult 
choices regarding which distribution should be adopted, given 
that two or more distributions can easily pass conventional 
goodness-of-fit hypothesis tests. 

An inadequate choice for the probability distribution function 
may result in quantile estimates of the characteristic (or 
decision) variable that may either compromise the economic 
feasibility of a water resources project or to expose it to an 
intolerable risk of failure. In this scenario, the judicious selection 
of a probability distribution for modeling a sample of hydrologic 
maxima is imperative and cannot be achieved by a single simple 
algorithm. With effect, such a selection requires the aggregation 
of pieces of objective and subjective analysis, which may lead 
to different results as depending upon the reasoning pattern 
adopted by each expert. 

In general, every time a solution to a problem requires the 
combination of subjective criteria, the utilization of expert 
systems may be a useful alternative in order to achieve some 
standardization and agility to the processes of analysis and 
decision-making. An expert system is referred to as a computer 
program that was designed and developed to carry out certain 
tasks that are human in nature or are derived from human 
knowledge (Jackson, 1998). It should be capable of assisting 
the decision-making process, on the grounds of knowledge that 
is substantiated from an information base, thus emulating the 
reasoning behavior of a human expert. 

As for the expert system here described, the information base 
may be constructed by collecting pieces of specific knowledge 
and actual decisions taken by qualified professionals with a vast 
experience in hydrologic frequency analysis. Then, these pieces 
of information are intertwined to build the logic of decision- 
making under subjective conditions. The items to follow 
summarize our experience in conceiving, implementing, and 
testing the SEAF expert system to assist the judicious selection 
of a probability model for at-site frequency analysis of hydrologic 
maxima, having as information base a specified collection of 
heuristic rules extracted from trends and results of recent 
research in the area.
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3. The SEAF Expert System for At­ 
Site Hydrologic Frequency Analysis 
The SEAF expert system (SEAF is the acronym for the 
Portuguese words Sistema Especialista de Análise de Freqüência) 
aims to implement a set of criteria for selecting one or more 
suitable probability distribution functions to model hydrologic 
annual maxima recorded at a single site, with the joint use of 
elements from fuzzy logic theory and statistical estimation based 
on L-moments. It is worth it to note that SEAF has not been 
designed to identify the true probability distribution of the data 
population. Instead, its objective is to select, among a number 
of candidate models, the probability distribution functions that 
appear to be the most appropriate to fit the sample under 
analysis. 

The set of candidate distributions, from which SEAF extracts 
its possible choices, is formed by the following models: Normal 
(NOR), 2-parameter Log-Normal (LNR), Extreme Value Type 
I or Gumbel (GUM), Generalized Extreme Value (GEV), 
Exponential (EXP), Generalized Pareto (GPA), Pearson Type 
III (PE3), and Log-Pearson III (LP3). With the exception of the 
Normal distribution, which is used in SEAF only as a paradigm 
for making some auxiliary decisions, the set of candidate models 
encompasses the ones that are most employed in frequency 
analysis of hydrologic maxima. 

SEAF has been developed to work under Microsoft Windows 
98 and above. The system architecture is composed of two 
parts: the first was developed in Borland Delphi Professional 
and refers to the user graphical interface and to the necessary 
numerical calculations. The second was developed in the 
FuzzyCLIPS language and refers to the tasks of storing, 
interpreting, and analyzing the so-called system knowledge 
base. FuzzyCLIPS is a fuzzy logic extension of the CLIPS expert 
system shell from NASA and was developed by the Integrated 
Reasoning Group of the Institute for Information Technology 
of the National Research Council of Canada (http:// 
w w w . i i t . n r c . c a / I R _ p u b l i c / f u z z y / f u z z y C l i p s / 
fuzzyCLIPSIndex2.html). 

In brief, SEAF first reads a text file containing the sample of 
hydrologic maxima and extracts from it the numerical 

information to be used in the next steps. Then, SEAF analyses 
the extracted information, under the light of a knowledge-based 
internal set of heuristic rules, and transforms it into a number 
of decision statements. In this context, by interfacing with the 
FuzzyCLIPS shell, SEAF employs the technology of artificial 
intelligence and fuzzy logic to deal with the inherent 
uncertainties and to emulate the reasoning principles of a human 
expert. In order to evaluate the plausibility of each candidate 
distribution function, the system makes its decision statements 
on the grounds of a set of rules based on contemporary 
knowledge. These rules are reasonably similar to those a human 
expert would utilize to select a probability distribution function 
to model a sample of hydrologic annual maxima. 

As opposed to dichotomical facts, such as  true  and  false  or 
 positive  and  negative , a human expert often faces the situation 
where uncertainty is inherent and must be represented in the 
form of a vague concept or statement.  This is the rationale of 
fuzzy logic, where a hypothetical set A, as defined in the universe 
of X, is characterized by a membership function ì A which 
associates the x elements to real numbers within the interval 
[0,1]. Therefore, the membership function ì A (X) is a quantitative 
expression of how likely a given x belongs to A. For the sake of 
clarity, consider the following fuzzy pattern  the sample 
coefficient of skewness g tends to zero . Objectively, no one 
would be able to define a threshold below which the sample 
coefficient of skewness can be considered as equal to zero. If 
the sample coefficient of skewness is equal to 0.001, for 
instance, then one would intuitively be able to state with a 
high degree of confidence that the skewness tends to zero, 
which translates into ì A =1. However, if the sample skewness is 
equal to 0.3, then ì A is less than 1 and will decrease according 
to a specified function, as the sample estimate departs from 
zero. By interfacing with FuzzyCLIPS, SEAF makes use of bell- 
shaped and cumulative (or S-type) membership functions to 
assign confidence levels to each candidate distribution function. 
The reader is referred to Jackson (1998) for more information 
on combining expert systems and fuzzy logic theory and to 
Cândido (2003) for specific details on coupling SEAF and 
FuzzyCLIPS. 

In order to describe the sample data variability and to infer the 
parameter estimates and distributional shape, SEAF utilizes the
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L-moment statistics as introduced by Hosking (1989).  The L- 
moments of order r, denoted by λ r , can be written as linear 
combinations of the corresponding probability weighted 
moments (PWM), these denoted by β r and defined by the 

following mathematical expectation 

( ) [ ] { } r 
r  X F X E = β (1) 

The estimators for the first four L-moments can be calculated 
in terms of the PWM estimators from 
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As compared to conventional moments, L-moments generally 
yield more robust and accurate estimates of distribution 
parameters and quantiles of a random variable. L-moments 
and L-moment ratios are also practical and convenient measures 
of distributional shape. For instance, λ 1 is a measure of location, 

λ 2 a measure of scale, the ratio  1 2 λ λ = τ is analogous to 
the conventional coefficient of variation, the ratios τ 3 = λ 3 / λ 2 

and τ 4 = λ 4 / λ 2 represent measures of skewness and kurtosis, 
respectively. These quantities can be estimated from a sample 
by using the L-moment estimators given by equations 2 and 3. 
The reader is referred to Vogel and Fennessey (1993), Zvi and 
Azmon (1997), and Hosking and Wallis (1997) for further details 
on the relative superiority of L-moments, as compared to 
conventional moments. 

The following sequential steps outline the necessary numerical 
calculations and the set of heuristic rules forming the knowledge 
base of SEAF reasoning procedures: 

1. SEAF checks the sample of annual maxima for serial 
independence, homogeneity, and presence of outliers by 
applying the following significance tests: Kendall, Mann- 

Kendall, and Grubbs and Beck, respectively. The results of 
these tests are only informative and do not affect the process 
of selecting and classifying the candidate probability 
distributions. SEAF informs user on the eventual presence 
of serial correlation, heterogeneity, and outliers, and asks 
user whether or not to proceed with the analysis and 
whether or not to remove low and/or high outliers. It is 
worth it to emphasize that SEAF does not take any action 
concerning the outliers, since it is a rather controversial 
issue to remove them from the analysis unless there is 
absolute certainty they refer to measurement errors and 
other data inconsistencies; 

2. SEAF calculates sample L-Moments and L-Moment ratios: 

( ) ( ) 2 2 1 1 
ˆ l , ˆ λ λ l  , t 2 ( τ ˆ ), t 3 (  3 

ˆ τ ), and t 4 (  4 
ˆ τ ), for the sample 

of size n, according to formulation described by Hosking 
and Wallis (1997); 

3.  SEAF estimates parameters for the following 2-parameter 
distributions: dist=Normal, Log-Normal, Exponential, and 
Gumbel, as well as their respective Monte Carlo-simulated 
finite-sample variances ( ) 3 τ 

dist Var  ; 

4.  SEAF estimates parameters for the following 3-parameter 
distributions: dist=Pearson III, Log-Pearson III, Generalized 
Extreme Value (GEV), and Generalized Pareto (GPA), as 
well as their respective Monte Carlo-simulated finite-sample 
variances ( ) 4 τ 

dist Var  ; 

5.  By assuming t 3 as Normally distributed according to 
N[  dist 

3 τ , ( ) 3 τ 
dist Var  ], SEAF defines the confidence interval 

[ ] 975 . 0 
3 

025 . 0 
3  , τ τ for each 2p distribution; 

6.  On the basis of the interval [ ] 975 . 0 
3 

025 . 0 
3  , τ τ and on the sample 

L-skewness t 3 , SEAF selects all plausible 2p distributions 
and associates to each one a preliminary confidence level, 
which is calculated according to a membership function of 
the bell-shaped type with the 0.5-level threshold; 

7. By assuming t 4 as Normally distributed according to 
N[  dist 

4 τ , ( ) 4 τ 
dist Var  ], SEAF defines the confidence interval 

[ ] 975 . 0 
4 

025 . 0 
4  , τ τ for each 3p distribution; 

8.  On the basis of the interval [ ] 975 . 0 
4 

025 . 0 
4  , τ τ and on the sample 

L-kurtosis t 4 , SEAF selects all plausible 3p distributions in a 
manner similar to that described in item 6;
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9.  SEAF applies the probability correlation coefficient goodness- 
of-fit test (also known as Filliben s test), as described in 
Stedinger et al. (1993), for the 2-parameter and 3-parameter 
plausible distributions and defines the confidence interval 
[ ] 1 , 05 . 0 

dist ρ , on the basis of Monte Carlo-simulated finite-sample 
variances of the correlation coefficient ñ between estimated 
and empirical quantiles; 

10. On the basis of the interval [ ] 1 , 05 . 0 
dist ρ and on the test statistic 

dist r  , SEAF selects all plausible distributions and assigns to 
each one a secondary confidence level, which is calculated 
according to a membership function of  the cumulative type 
(or S type) with the 0.5-level threshold; 

11. If skewness g x <0 (or g ln x <0), SEAF will remove Pearson III 
(or Log-Pearson III) from the analysis; 

12. SEAF checks the sign of GPA (and GEV) shape parameter 
k; if k>0 SEAF will remove GPA (and GEV) distribution 
from the analysis; 

13. SEAF checks whether or not the presence of low outliers 
significantly modify parameter and upper-tail estimation. 
Remove from the analysis those distributions for which the 
sample minimum is inferior to an arbitrarily chosen level of 

90% of their respective location parameter estimates; 

14.SEAF applies the following parsimony 
criterion: ( )  ) ( 1 ) 1 ( 1  p n n CI CI  average adjusted − − − − = , where 
CI denotes the confidence level and p the number of 
estimated parameters, in order to discriminate among 
distributions of the same family, such as GPA versus EXP, 
GEV versus GUM, and LP3 versus LNR; and 

15. SEAF ranks distributions according to their average 
confidence levels and provide general decision statements. 

A .z ip fi le containing the SEAF installation package is 
downloadable from the URL http://www.ehr.ufmg.br/ 
downloads.php. The package also includes the file  example.dat  
which is a text file, with a total of 52 lines as corresponding to 
52 records of annual maxima, to serve as an application example 
of SEAF. Once SEAF is installed and running, it will first open a 
welcome screen as illustrated in Figure 1. The second step in 
running SEAF is to open a new project, by providing its name, a 
brief description of it, as well as the name and location of the 
.dat file (e.g.  example.dat ) containing the maxima records. SEAF 
will then create a project file (e.g.  example.prj ) which may be 
directly opened in later runs of the computer program. 

Figure 1 SEAF welcome screen.
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After reading the data file, SEAF shows a histogram of the 
variable and provides a summary of the main descriptive 

statistics, in both arithmetic and log spaces, as depicted in Figure 
2. 

Figure 2 Histogram and descriptive statistics for data in  example.dat . 

By clicking on the arrow key shown in SEAF screen, the program 
will proceed by testing the hipothesis of data independence 

and homogeneity, and checking for the presence of low and 
high outliers in the sample. This is shown in Figure 3. 

Figure 3 SEAF hypothesis testing.
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By clicking the right-arrow key shown in its screen, SEAF will 
display, on the left side, the parameter estimates for all candidate 
probability distributions, as calculated by the method of L- 
moments which was outlined in the previous section. In 
addition, as depicted in Figure 4, SEAF will show a probability 
plot diagram, with the log-transformed return period (in years) 
on the abscissa axis and the variate quantiles on the ordinate 
axis; note that, in the context of maxima and for a given quantile, 
the return period corresponds to the inverse of the exceedance 
probability. The probability plot, as illustrated in Figure 4, shows 
both the empirical and the theoretical quantiles. The former 

are plotted by associating the sample records, as classified in 
descending order, to their respective empirical return periods 
which are calculated by the ratio ( ) m N  1 + ,  where N is the 
sample size and m denotes the order of classification. The 
theoretical quantiles correspond to the inverse of the cumulative 
distribution function in focus, among the eight candidate models. 
For instance, in Figure 4, the GEV theoretical quantiles are 
shown; with the cursor on the chart and by clicking the mouse 
right button, SEAF will open a list of all available candidate 
models to choose from (see Figure 4). 

Figure 4 SEAF screen with parameter and quantile estimates. 

Following a mouse click on the right arrow, the next screen 
will display all numerical calculations done by SEAF, prompting 
the user with the option of saving the summarized information 
to a user-specified text file. Another mouse click on the right 
arrow will cause SEAF to automatically call the FuzzyCLIPS 
shell and start the built-in reasoning procedures (see Figures 5 
and 6). These are: 

· Selecting distribution on the basis of L-moments variance test: 
this procedure corresponds to steps 3 to 8, as described in 
the previous section; 

· Selecting distribution on the basis of Filliben s test: this 

procedure corresponds to steps 9 and 10, as described in 
the previous section; 

· Looking for reasons to reject any of previously selected 
probability distributions: this procedure corresponds to steps 
11 to 13, as described in the previous section; 

· Verifying parsimony of selected distributions: this procedure 
corresponds to step 14, as described in the previous section; 
and 

· Recommended distributions: this corresponds to step 15, as 
previously described.
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Figure 5 SEAF calls FuzzyCLIPS shell. 

Figure 6 SEAF displays recommended distributions with their respective confidence levels.
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4. Analysis of SEAF performance 

In order to evaluate the performance of SEAF, 10 samples of 
annual maximum daily rainfall depths together with 10 samples 
of annual maximum daily stramflows have been submitted to 
analysis by the system. These samples correspond to data 
recorded at 20 gauging stations located in southeastern Brazil, 
within and near the borders of the Brazilian state of Minas 
Gerais, which are illustrated in Figure 7. The main criterion to 
select these gauging stations was to have available at least 35 

years of continuous records of consistent and good quality daily 
observations.  In fact, too-short samples could yield larger 
estimation errors on parameter and quantiles, and would 
eventually induce SEAF to make a wrong choice. In the case of 
streamflow data, an additional criterion was to consider only 
the gauging stations with insignificant diverted and/or regulated 
upstream flows. Also, it is worth it to note that the streamflow 
gauging stations are not located in nested river basins to avoid 
eventual inconsistencies among quantiles estimated by different 
probability distributions along the same river. 

Figure 7 Borders of Brazil and the state of Minas Gerais. 

All 20 samples have passed the hipothesis tests of data 
independence and homogeneity. As for the presence of outliers, 
the test of Grubbs and Beck has identified atypical data points 
in 8 of the 20 samples. After checking for eventual data 
inconsistencies and visually inspecting the corresponding 
probability plots for these 8 samples, the action taken has been 

that of maintaining the outliers in the samples because no 
objective reasons were found to discard them. Then, all samples 
have been submitted to SEAF built-in statistical tests, as 
described in steps 6, 8, and 10 of the previous section. The 
distributions that have passed these tests, for each one of the 
20 samples, are marked with the     symbol in Table 1.
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Table 1. SEAF approved distributions for each of the 20 samples 

Table 1 shows that, on the basis of SEAF statistical tests only, 5 
of the 8 candidate models are capable of fitting three quarters 
of the samples. In addition to that and excluding the Normal 
distribution, all candidate models are capable of fitting at least 
12 of the 20 samples and no less than three different models 
can fit  90% of the samples.  The GEV model is capable of 
fitting all samples.  The 3-parameter probability distributions 
have been approved more often than the 2-parameter models 
because their third parameter actually confers more flexibility 
to fitting sample data. However, it is important to note that 
adding a third parameter means adding more estimation 
uncertainty to a fitted model. All these are arguments in favor 

of using other criteria, in addition to SEAF goodness-of-fit tests, 
to select and classify probability distribution models for 
hydrologic annual maxima. 

Table 2 lists, for each sample, the distributions that have been 
rejected by SEAF either by applying (i) the criterion of occasional 
upper bounds and/or lower sample bounds, as corresponding 
to steps 11, 12 , and 13 (see description in the preceding section) 
or (ii) the criterion of parsimony, or step 14, as previously 
described. The first criterion was the single cause of 84% of 
the rejection cases. Note also that the distributions EXP and 
GPA altogether correspond to 57.8% of all rejection cases. 

Sample 

(station code) 

Normal 

(NOR) 

Log­ 

Normal 

(LNR) 

Gumbel 

(GUM) 

Exponential 

(EXP) 

Pearson 

III 

(PE3) 

Log­Pearson 

III 

(LP3) 

Gen. 

Extreme 

(GEV) 

Gen. 

Pareto 

(GPA) 

01544012  √  √  √  √  √  √ 

01645000  √  √  √  √  √  √  √ 

01943000  √  √  √  √  √  √  √ 

01944004  √  √  √  √  √  √ 

01944007  √  √  √  √  √ 

02044012  √  √  √  √  √  √  √ 

02045005  √  √  √  √  √  √  √ 

02244038  √  √  √  √  √  √ 

01943009  √  √  √  √  √ 

02243004  √  √  √  √  √  √  √ 

40025000  √  √  √  √  √ 

40050000  √  √  √  √  √  √  √ 

40100000  √  √  √ 

40680000  √  √ 

41250000  √  √  √  √  √  √  √ 

40800001  √  √  √  √  √  √  √ 

56028000  √  √  √  √  √  √ 

56075000  √  √  √  √  √ 

56415000  √  √  √  √  √  √  √ 

56500000  √  √  √ 

Number  of 

approvals 

1  15  12  17  17  18  20  14
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Table 2. SEAF rejected distributions 

Sample 

(station code) 

Cr iter ion 

Upper /Lower Bounds  Parsimony 

01544012  EXP 

01645000  EXP  GPA  GEV  LP3 

01943000  GPA  GEV  LP3 

01944004  GEV  LP3 

01944007  GPA 

02044012  GPA  PE3  EXP 

02045005  GPA  EXP  GEV 

02244038  GPA 

01943009  PE3  EXP 

02243004  GPA  EXP 

40025000  GPA  EXP  PE3 

40050000  EXP  LP3  PE3  GEV 

40100000  EXP 

40680000  GPA 

41250000  GPA  LP3  PE3  EXP 

40800001  EXP  GPA  GEV  LP3 

56028000  PE3 

56075000  GPA 

56415000  GPA  EXP  LP3 

56500000  EXP 

The distributions that have not been previously rejected are 
then ranked with respect to their corresponding average 
confidence levels, as described in step 15 of the preceding 
section. Table 3 presents, for each sample, the system first to 

fifth choices, as ranked according to the decreasing confidence 
levels that have been assigned by SEAF. Note in Table 3 that, at 
the end of SEAF reasoning procedures, some samples can be 
fitted only by no more than two or three candidate models.
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Table 3. SEAF first to fifth choices 

Sample 

(station code) 

Selected Distr ibution 

1st  2nd  3rd  4th  5th 

01544012  GEV  LP3  GUM  PE3  LNR 

01645000  GUM  PE3  LNR 

01943000  LNR  GUM  PE3  NOR 

01944004  GUM  LNR  PE3 

01944007  GEV  EXP  LP3  PE3 

02044012  GEV  LP3  GUM  LNR 

02045005  PE3  GUM  LP3  LNR 

02244038  EXP  PE3  GEV  LP3  GUM 

01943009  GEV  LP3  LNR 

02243004  GEV  LP3  PE3  GUM  LNR 

40025000  GEV  LP3 

40050000  GUM  LNR 

40100000  GEV  LNR 

40680000  GEV  LP3 

41250000  GEV  LNR  GUM 

40800001  GUM  LNR  PE3 

56028000  GPA  EXP  GEV  LP3  LNR 

56075000  GEV  LP3  EXP  PE3 

56415000  GEV  LNR  GUM  PE3 

56500000  LNR  GEV
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In order to evaluate the SEAF performance, two experiments 
have been conducted. The first consisted of submitting the 
same 20 samples that have been examined by SEAF to frequency 
analysis by a panel of human experts; the results were then 
compared to SEAF s choices. The second experiment consisted 
of submitting synthetic samples of typical sizes to frequency 
analysis by SEAF. These samples have been drawn from 
hypothetically-constructed populations of a random variable 
with an assumed known probability density function. The main 
objective of the second experiment was to test the SEAF 
robustness to sampling errors. 

The panel of human experts was formed by four members of 
recognized knowledge and experience in frequency analysis of 
hydrologic data: two statisticians, a professional hydrologist 
and a university professor of water resources engineering.  As 
previously consented, the panel members have agreed not to 
be nominally identified at any phase of this experiment.  We 
have sent to each panel member an e-mail containing the 20 
samples of hydrologic data, along with their respective 
probability plots (observed quantiles versus empirical 
probabilities) and the main sample statistics, as calculated by 
conventional moments and by L-moments. A brief descrition 
of the experiment and of the set of heuristic rules used by 
SEAF has been attached to each e-mail. 

The panel member was asked to analyze each one of the 20 
samples and to select the distribution candidate that best fitted 
the data, according to his/her own set of heuristics rules, along 
with a brief justification of his/her decision. The results are 
summarized in Table 4. These show that, for any of the 20 
samples, no consensual selection has been exercised by the 
experts. In fact, this was an expected outcome since the lack 
of consensus, as mentioned earlier in this paper, is inherent to 
hydrologic frequency analysis. 

Expert 1 has performed his/her analysis with the help of 
Genstat, a commercial software described in <http:// 
www.vsni.co.uk/software/genstat/>, in which the model s lack- 
of-fit is measured by the deviance statistic D for that model; 
this statistic is proportional to -2lnL, where L denotes the 
likelihood function of the model fitted to the sample data. In 
general, the larger the deviance the poorer the model s fit; this 
property can be used to compare different models. In his/her 

words, expert 1 has combined the objective criterion of 
Genstat s deviance statistic with a visual appraisal of the 
probability plot of the sample data.  He/she pointed out that 
the universe of Genstat s candidate models was slightly different 
than that of SEAF. Because of that, he/she has considered only 
the distributions that were common to both universes. 

Expert 2 has expressed his/her opinion that it is unfeasible to 
identify a single model as the true probability distribution of 
the population, on the basis of sample sizes of the order of 50. 
As a result, he/she advocates using regional information to select 
the probability distribution that is appropriate to a particular 
data sample.  In what concerns the 20 samples under analysis, 
he/she assumed not to exist climatic or geomorphic differences 
among the gauging stations that could cause significant 
heterogeneity from the viewpoint of the frequency of annual 
maxima. As a result, his/her results have been obtained by 
means of separate regional analysis of streamflow and rainfall 
data, both under the premise that the respective sites were all 
located within a single homogeneous region. The method of 
regional L-moments, as described by Hosking and Wallis (1997), 
has been used to regionalize the frequency distribution of data.
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Table 4. First-choice distribution models as selected by the panel of human experts. 

Sample 

Exper t #  Number  of coincidental choices 

among exper ts’ 

1  2  3  4  ≥ 2  ≥ 3 

01544012  LNR  GEV  GEV  EXP  GEV 

01645000  LNR  GEV  GUM  GUM  GUM 

01943000  LNR  GEV  GUM  LNR  LNR 

01944004  LNR  GEV  GUM  EXP 

01944007  LNR  GEV  GEV  EXP  GEV 

02044012  LP3  GEV  GEV  EXP  GEV 

02045005  LP3  GEV  GUM  LP3  LP3 

02244038  LP3  GEV  GEV  LP3 

01943009  LNR  GEV  GEV  GEV  GEV  GEV 

02243004  LNR  GEV  GEV  EXP  GEV 

40025000  LP3  GEV  GPA  GEV  GEV 

40050000  LNR  GEV  GEV  EXP  GEV 

40100000  LNR  GEV  GEV  LP3  GEV 

40680000  LP3  GEV  GEV  LP3 

41250000  LP3  GEV  GEV  GEV  GEV  GEV 

40800001  LNR  GEV  GUM  GUM  GUM 

56028000  LP3  GEV  GPA  LP3  LP3 

56075000  LNR  GEV  GEV  GEV  GEV  GEV 

56415000  LNR  GEV  GEV  LP3  GEV 

56500000  LNR  GEV  GEV  GEV  GEV  GEV
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Expert 3 has employed a collection of subjective criteria that is 
rather similar to the one embedded in SEAF.  His/her results 
were justified mainly on the basis of the visual appraisal of 
probability plots and on the graphical comparison of sample 
and theoretical L-moment ratios, as plotted on L-moment 
diagrams (see Hosking and Wallis (1997) and Vogel and 
Fennessey (1993) for details on L-moment diagrams). In 
addition, he/she used Filliben and Kolmogorov-Smirnov 
significance tests to check how good the model fits the sample 
data. Expert 4 has conducted his/her analysis in a way which is 
similar to that used by expert 3. However, he/she paid more 
attention to the upper-tails of the fitted probability distributions. 

The results from the experts have been assembled into two 
groups for evaluating SEAF s performance. The first group 

corresponds to the samples with more than one coincidental 
choices among the models selected by experts, as shown in 
Table 4 under the column headed by   2".   By comparing the 
results of the first group with those obtained by SEAF, one can 
verify that 76.5% of experts  choices are coincidental with the 
system first choices. If SEAF s first two choices are considered, 
this percentage increases to 82.4%. If all distributions approved 
(or selected) by SEAF are considered, the percentage goes up 
to 94.1%. The second group corresponds to the samples with 
three coincidental choices among the models selected by experts, 
as shown in Table 4 under the column headed by   3 .  By 
performing the same comparisons as in group 1, the percentages 
change to 75%, 100%, and 100%, respectively. These are 
summarized in Table 5. 

Table 5. Comparisons among SEAF s and experts  choices 

SEAF Choice 

Per centage of coincidental choices with 

Exper t # 

Percentage of coincidental 

choices 

1  2  3  4  ≥ 2  ≥ 3 

1 st  10.0  55.0  70.0  35.0  76.5  75.0 

1 st or 2 nd  50.0  60.0  85.0  50.0  82.4  100.0 

All selected  85.0  70.0  90.0  65.0  94.1  100.0 

In the second experiment, the Monte Carlo method has been 
used to generate synthetic samples with the same numerical 
values of L-moments and L-moment ratios of the observed 
samples. For each sample of supposedly known L-moments 
and L-moment ratios, eight synthetic series of typical size have 
been generated as corresponding to every candidate 
distribution under analysis. In total, 160 synthetic series have 

been drawn from hypothetically-constructed populations of a 
random variable with an assumed known probability density 
function. Then, they have been submitted to analysis by the 
system with the purpose of evaluating both the number of 
correct decisions and the robustness of SEAF s selections. The 
results of this experiment are summarized in Table 6.



Avances en Recursos Hidraúlicos - Número 18, Octubre de 2008, Medellín - Colombia - ISSN 0121-5701 

54 

Table 6. Evaluation of SEAF performance from synthetic samples 

Synthetic 

Samples 

Percentage of corr ect decisions by SEAF 

Distr ibution Model  Distr ibution Family 

1 st Choice  2 nd Choice  All Selected 

Distr ibutions 

1 st Choice  2 nd Choice 

NOR  50.0  70.0  95.0  90.0  100.0 

LNR  25.0  65.0  95.0  30.0  75.0 

GUM  40.0  55.0  95.0  70.0  80.0 

EXP  20.0  30.0  95.0  35.0  60.0 

PE3  15.0  45.0  90.0  20.0  50.0 

LP3  6.3  31.3  81.3  25.0  50.0 

GEV  56.3  75.0  81.3  62.5  93.8 

GPA  0.0  57.1  57.1  28.6  85.7 

TOTAL  28.8  53.2  89.2  46.8  73.4 

By examining SEAF s results for synthetic samples, one can verify 
that in 53.2% of the cases the system identifies, in its first or 
second choices, the probability distribution from which the 
sample has been drawn. If all distributions selected by SEAF 
are considered, this percentage increases to 89.2% of the cases. 
It is worth it to note that in 73.4% of the cases, the probability 
distribution that generates the sample and/or its close relative 
from the same family of distributions are classified by SEAF as 
a first or a second choice. 

It is also worth it to note that most of the samples that have 
been drawn from the GPA distribution exhibit positive shape 
parameters or, in other words, are drawn from upper-bounded 
distributions. This explains the very poor performance of the 
system in what regards this distribution, particularly in its first 

choice, since SEAF has been built to reject upper-bounded 
probability distributions. However, with the exception of the 
GPA distribution, in almost 90% of the cases, the population 
model from which the samples are drawn is among the 
distributions that have been selected by SEAF. 

Regarding SEAF s first choices only, one can verify that its 
percentage of correct decisions is below 50%. An exception is 
made for the samples drawn from NOR and GEV distributions 
which accounted respectively for 50% and 56.3% of correct 
decisions. Table 7 summarizes the first-choice analysis for all 
candidate models. The results in Table7 do not show a clear 
evidence of a possible SEAF tendency or preference for any 
particular model.
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Table 7. SEAF s first choices for the synthetic samples 

Distr ibution 

fr om which 

the samples 

are drawn 

SEAF First Choice 

NOR  LNR  GUM  EXP  PE3  LP3  GEV  GPA 

NOR  50.0  5.0  5.0  0.0  40.0  0.0  0.0  0.0 

LNR  5.0  25.0  10.0  0.0  40.0  5.0  15.0  0.0 

GUM  0.0  25.0  40.0  0.0  5.0  0.0  30.0  0.0 

EXP  0.0  0.0  5.0  20.0  35.0  5.0  20.0  15.0 

PE3  5.0  5.0  30.0  15.0  15.0  0.0  20.0  10.0 

LP3  0.0  18.8  12.5  6.3  12.5  6.3  37.5  6.3 

GEV  0.0  12.5  6.3  0.0  12.5  12.5  56.3  0.0 

GPA  0.0  0.0  14.3  28.6  0.0  14.3  42.9  0.0 

TOTAL  8.6  12.2  15.8  7.2  22.3  4.3  25.2  4.3 

5. Conclusions 
In this paper, we described the structure of a prototype expert 
system, namely SEAF, built to select one or more appropriate 
candidate distributions for at-site frequency analysis of annual 
maxima. We also described two experiments to verify whether 
the SEAF prototype system performs at an expert level. 
According to the results of these experiments, SEAF performs 
satisfactorily. Despite the lack of consensus among experts and 
the intrinsic complexities of hydrologic frequency analysis, we 
conclude that, when SEAF is utilized with samples of sizes not 
too much smaller than 30, the system is able to give helpful 
directions for novice hydrologists on selecting one or more 
appropriate probability distributions among a number of 
candidate models. However, it is worth it to remind that the 
heuristic rules, as built in SEAF, are just approximations of a 
certain reasoning pattern that reflects some of our particular 

convictions and preferences. Given the subjectivity that is 
invariably present in these rules, other convictions and 
preferences can equally be built into other similar systems and 
lead to different decisions from those made by SEAF. 

In spite of the helpful directions SEAF is able to give for the 
novice hydrologists and also for the practitioner engineers, 
caution is always necessary in the decision making process 
derived from at-site frequency analysis of hydrologic data. First, 
it is worth it to remind that the true distributions describing the 
probabilistic behavior of the phenomenon in question are not 
known and even if they were, their analytical forms would 
probably be too complex, or would have too many parameters, 
to be of practical use. In this context, the steps involved in 
conventional hydrologic frequency analysis, particularly the 
selection of a reasonable and simple probabilistic model, is in 
fact a practical issue to ultimately obtain risk estimates of 
satisfactory accuracy for the problem in question. However,
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the short samples of hydrologic annual maxima usually do not 
offer solid grounds for extrapolating a fitted model to return 
periods much larger than two or three times the number of 
years of record. If  estimates for larger return periods are 
required, other methods, such as regional frequency analysis, 
are required. 
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