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ABSTRACT

Efficient VLSI Yield Prediction with Consideration

of Partial Correlations. (December 2007)

Sridhar Varadan, B.E, Anna University

Chair of Advisory Committee: Dr. Jiang Hu

With the emergence of the deep submicron era, process variations have gained impor-

tance in issues related to chip design. The impact of process variations is measured

using manufacturing/parametric yield. In order to get an accurate estimate of yield,

the parameters considered need to be monitored at a large number of locations. Nowa-

days, intra-die variations are an integral part of the overall process fluctuations. This

leads to the difficult case where yield prediction has to be done while considering

independent and partially correlated variations. The presence of partial correlations

adds to the existing trouble caused by the volume of variables. This thesis proposes

two techniques for reducing the number of variables and hence the complexity of

the yield computation problem namely - Principal Component Analysis (PCA) and

Hierarchical Adaptive Quadrisection (HAQ). Systematic process variations are also

included in our yield model. The biggest plus in these two methods is reducing the

size of the yield prediction problem (thus making it less time complex) without af-

fecting the accuracy in yield. The efficiency of these two approaches is measured by

comparing with the results obtained from Monte Carlo simulations. Compared to

previous work, the PCA based method can reduce the error in yield estimation from

17.1% - 21.1% to 1.3% - 2.8% with 4.6× speedup. The HAQ technique can reduce

the error to 4.1% - 5.6% with 6× - 9.4× speedup.
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CHAPTER I

INTRODUCTION

Today’s chip designs are characterized by shrinking feature sizes. Almost all IC

manufacturing processes use complex physical and chemical interactions to get the

targeted parameters. Given the complexity of these interactions and constant decrease

in feature sizes, it is no longer possible to neglect process variations. The presence of

process variations makes it important to predict manufacturing and parametric yield

in circuit design stages. Manufacturing yield may be defined as the probability that

a manufacturing spec is satisfied. Parametric yield on the other hand is defined as

the probability that performance measures like power, timing etc. are met.

In the past, process variations were analyzed in the form of lot to lot, wafer

to wafer and die to die variations [1]. All these variations are independent of the

circuit’s design and the corresponding loss in yield was acceptable. These days, under

the deep submicron era era, with shrinking feature sizes and tighter pitches being the

order of the day, intra-die variations are becoming dominant and make significant

contributions to manufacturing yield [2].

In general, process variations can broadly be categorized into two types - system-

atic variations (depend on circuit design and layout patterns) and random variations

(depend on fluctuations). Random variations can be further sub-divided into inter-die

and intra-die variations. This thesis focuses on a specific yield model that can handle

manufacturing and parametric variations.

For a manufactured chip, the inter-die variations tend to be perfectly correlated

and hence approximated into a single random component. Intra-die variations, on

The journal model is IEEE Transactions on Automatic Control.
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the other hand, consist of both independent parts and partially correlated parts. In

case there exist intra-die variations completely independent of each other (absence

of partial correlations), the overall yield is the product of the individual probability

of each independent variable meeting its spec. The presence of partial correlations

between all intra-die variations makes the scenario complicated. The yield in such a

case is computed through numerical integration over a joint probability distribution

function [3].

The yield model discussed in this thesis can be used to find the probability that

n number of random variables lie within a specific range. In the case where these n

random variables represent metal thicknesses at different locations on a chip, we can

use this model to predict Chemical Mechanical Planarization (CMP) yield [1]. In case

of a CMP model, yield may be defined as the probability of interconnect thicknesses

at all locations on the chip to fall within the upper and lower thickness specifications.

CMP is a key enabling process for advanced interconnect technology and is used

for planarizing and patterning copper interconnects [3]. After depositing copper, the

metal surfaces are polished to leave copper only in the desired vias and trenches.

The resulting metal interconnect does not have an ideal flat surface across the entire

chip after removal of the copper. Such non-ideal effects are caused by over-polishing.

Non-idealities in metal interconnect thickness profiles are shown in Figure 1.

The term dishing indicates excess polishing of a copper interconnect. Dishing

could lead to loss in cross-sectional area of the interconnect and thus an increase in

resistance. Erosion may be defined as the loss of oxide or dielectric thickness across

an array of copper interconnects [4]. Both dishing and erosion depend on the layout

of the design. Dishing increases with width of the copper interconnects, while erosion

increases as the interconnects get narrow.

The copper thickness at any location (x, y) on the wafer is affected by - (1)
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Fig. 1. Variations in CMP Process for Cu Interconnects

different layout patterns in the design, and (2) a number of process parameters [5].

As a result of these factors, the thickness of interconnects usually fluctuate around

their nominal values. Depending on the range of variations, these thickness variations

due to process fluctuations can lead to potentially serious issues such as open or short

faults in interconnects.

The overall intra-die thickness at n locations on a chip may be described by the

following equation -

p(n) = µ(n) + ε(n) (1.1)

where p(n), µ(n) and ε(n) represent the overall thickness, systematic and random

components of intra-die variations respectively.

The yield (with respect to interconnect thickness) in case of partially correlated

variations is obtained via numerical integration over a joint probability distribution

function [6] as follows -
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Y ield =
∫ U

L

∫ U

L
...

∫ U

L
φ(−→p ) · dp1 · dp2 · ... · dpn (1.2)

where, φ(−→p ) - represents the joint distribution of thicknesses at n locations, U and

L - represent the upper and lower thickness limits respectively.

The joint distribution function may be re-written as -

φ(−→p ) =
e−0.5·(−→p −−→µ )T ·Σ−1·(−→p −−→µ )√

(2π)n|Σ|
(1.3)

where Σ is the covariance matrix representing correlations between the n different

locations monitored on a chip. Typically the number of locations monitored in com-

puting CMP yield is of the order of 105 or 106 [4], [3]. The presence of spatial

correlation between such a large number of locations further adds to the complexity

of the problem.

Although, the presence of partially correlated variations makes the scene a lot

more complicated, we could use some divide and conquer based clustering algorithms

to reduce the number of variables. One such method is discussed in [1] where the

authors make use of perfect correlation clusters to group and reduce the number

of variables used in computing yield from a very large number to a fewer number of

variables. Upon reduction, the number of variables we are left with equals the number

of perfect correlation clusters. Such methods ensure a reduction in the number of

variables used in predicting yield and hence speed up the yield prediction problem.

However, there lies one trouble with the clustering algorithm proposed in [1].

Often, the size of each perfect correlation cluster used in grouping and reduction

could affect the accuracy of yield. In order to eliminate such accuracy and time

complexity issues, this thesis proposes the use two techniques - Principal Component
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Analysis (PCA) and Hierarchical Adaptive Quadrisection (HAQ) in predicting yield.

These algorithms are designed with the view of computing yield at a faster pace with

minimal effect on accuracy.

The first method named Principal Component Analysis transforms a large set of

correlated variables to an uncorrelated and reduced set of variables through an or-

thogonal base. Once an orthogonal base is found, reductions is achieved by discarding

all redundant variables and others that are small in magnitude and thus make a less

contribution to the yield.

The second method named Hierarchical Adaptive Quadrisection reduces a large

number of variables in a given layout region to a reduced set of basic sub-regions.

Each sub-region is group containing a specific number of variables. The variable

with maximum or minimum thickness is used to characterize all variations within the

sub-region. The size of each sub-region is decided based on how sensitive the other

variables to the one with minimum or maximum thickness. Both these methods of

reduction are explained in the subsequent chapters.
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CHAPTER II

BACKGROUND WORK

Yield in general can be defined as the probability of a certain manufacturing param-

eter to stay within the specified boundaries. In [1], a novel method to reduce the

size of the yield prediction problem is presented. [1] discusses a cluster and divide

approach which decomposes the yield prediction equation 1.2 to -

Y ield = YU + YL − 1 (2.1)

where YU (or High Yield) represents the probability that the thickness values of all

variables are below the maximum thickness limit and YL (or Low Yield) represents

the probability that thickness values of all variables are above the minimum thickness

limit. The equations defining these two components are written below -

YU =
∫ U

−∞

∫ U

−∞
...

∫ U

−∞
Φ(~p)dp1dp2...dpn (2.2)

YL =
∫ ∞

L

∫ ∞
L

...
∫ ∞

L
Φ(~p)dp1dp2...dpn (2.3)

where U and L are the upper and lower thickness limits respectively.

The above written equations can be further reduced to a problem involving a

smaller set of variables. Computing these new set of reduced number of variables is

done using a clustering based divide and conquer approach [1]. This approach is

explained in the subsequent paragraphs.

To simplify analysis, the chip is broken down to a number of equally sized tiles.
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From now on, in this setup, each tile will indicate a separate variable. When the chip

is seen as a bunch of equally sized tiles, the setup will look something similar to what

is shown in Figure 2. In Figure 2 let us consider a chip with dimensions 100 µm×

90 µm. The chip is then divided into a number of tiles, each of size 10 µm× 10 µm.

In all, the entire chip is covered using 90 tiles. These tiles will now form the initial

set of variables. The distances between variables when accounting for correlation is

calculated keeping the centres of all tiles in mind. As stated above, all this is done

for simplicity sake.

Fig. 2. Initial Setup - A Chip Consisting of a Number of Equally Sized Tiles

In reality, the number of tiles covering any chip is a large number. With such a

setup, the size of the covariance will also be big, thus making yield prediction complex.

In order to reduce the size of the correlation matrix, [1] makes use of a clustering
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based divide and conquer appoach. Each cluster is defined using a Perfect Correlation

Circle (PCC) with a pre-fixed radius. The idea behind using perfect correlation circles

is something similar to this all tiles that fall within the area covered by a perfect

correlation circle are assumed to have a perfect correlation, so all tiles lying within

a PCC can be represented by the tile at the centre of the PCC. This idea is used to

bring about a reduction in the number of variables used in computing yield.

A. Computing High Yield

The nominal thickness values of n locations or tiles on a chip are given as input to the

algorithm. To start with, we find the tile of maximum interconnect thickness in the

chip, let the tile be labeled MAX1. Now a circle (let this circle be called CIRCLE1)

is drawn with the tile MAX1 as centre and a prefixed radius. All tiles that lie within

the perfect correlation circle of MAX1 are assumed to have a perfect correlation.

The next step is to find another tile MAX2 which is the point of highest thick-

ness interconnect thickness outside the perfect correlation circle CIRCLE1. All tiles

which come inside the perfect correlation circle CIRCLE2 (drawn with tile MAX2

as centre) are now assumed to have perfect correlation. Following this, a tile of max-

imum thickness (MAX3) and its corresponding PCC CIRCLE3 are formed and this

procedure is repeated until all regions in the chip are covered by perfect correlation

circles (let the total number of PCCs be m. After there are no regions left uncovered

on the chip, the centres of all PCCs (all the tiles, MAX1, MAX2, ....., MAXm) form

the new set of reduced variables. This reduction in problem size to a smaller number

of variables (tiles at the centre of the m PCCs) is a very big win compared to what

the original size of the problem (n tiles in the initial setup) .

After reduction, High Yield can be computed using the following equation -
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YU =
∫ U

−∞

∫ U

−∞
...

∫ U

−∞
Φ(−→p )dp1dp2...dpm (2.4)

where m indicates the total number of PCCs covering the chip.

A diagrammatic representation of the heuristic discussed in [1] is shown in Figure

3. The diagram shows a reduction from a large number of variables (90 tiles) to the

variables used as the centres of 14 clusters (circles labeled MAX1 through MAX14).

Fig. 3. Perfect Correlation Circles used to Reduce the Number of Variables in Yield

Computation

A flowchart describing the procedure for computing High Yield is shown in figure

4.
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START

Mesh the chip into small tiles and 
generate thickness values for all tiles.

PCC Counter i= 0

Locate tile MAX1 with maximum nominal thickness. 
Draw the PCC CIRCLE1 with tile MAX1 as its centre.

PCC Counter i = i + 1

Check if the union of all 
PCCs covers the entire 

chip?

Find tile MAXi+1 with maximum nominal 
thickness outside all PCCs. Form PCC
CIRCLEi+1 with MAXi+1 as its centre.

A

A

Form new Correlation and Covariance 
matrices of size i x i, with tiles MAX1, 
MAX2, ……., MAXi as the new set of 

variables.

STOP

Yes

No

Fig. 4. Flowchart Describing the Procedure for Computing High Yield using the PCC

Approach
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B. Computing Low Yield

The procedure used in computing Low Yield is similar to the one used in computing

High Yield with the one major difference being the use of tiles with lowest thickness to

identify perfect correlation clusters. To begin with, the nominal thickness values of n

tiles are fed as input to the algorithm. The tile with least thickness value if identified

(let this tile be called MIN1). With MIN1 as centre, the PCC CIRCLE1 is drawn

with a pre-fixed radius. Following this, the PCC CIRCLE2 is drawn with the tile

MIN2 (the tile with minimum thickness outside the PCC CIRCLE1) as centre. This

procedure is repeated until all regions on the chip are covered by PCCs. The tiles at

the centre of all PCCs form the new set of reduced variables.

After reduction, the equation for computing Low Yield would be -

YL =
∫ ∞

L

∫ ∞
L

...
∫ ∞

L
Φ(−→p )dp1dp2...dpm (2.5)

where m represents the number of reduced variables that indicate the tiles MIN1,

MIN2, ...., MINm at the centre of m PCCs.

C. Computing Overall Yield

As stated in equation 2.1, the overall yield of a chip is given by subtracting one from

the sum of the two integrals YU , YL. Though there is heavy reduction in the size of

the correlation matrix by making use of perfect correlation circles, the reduced matrix

could still be complex to compute using numerical integrations. The complexity of

the resulting calculations may still be taxing as we would needs lots of memory and

huge computation time. This situation is solved by making use of Genz algorithm [6],

[1]. Genz algorithm further simplifies the integration problem by transforming the
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existing covariance matrix using Cholesky decomposition. Cholesky decomposition re-

expresses the symmetric and positive-definite covariance matrix as a combination of

one upper and one lower triangular matrix. The upper and lower triangular matrices

also happen to be a transpose of each other. After performing Cholesky decomposition

and a sequence of other transformations, the yield equation is reduced to this form -

Y = (U − L)
∫ 1

0
(U − L)

∫ 1

0
........(U − L)

∫ 1

0
dw (2.6)

The equation 2.6 helps in reducing complexity by employing a priority ordering

in integration. Priority ordering means that the more dominant variables in integra-

tion (MAX1, then MAX2,.... etc.) are given importance in integration. Also, the

new limits of integration are changed to 1 and 0, thus making integration simple. In

equation 2.6, the new variable w is independent of the upper and lower thickness

limits U and L limits respectively. In general, the Genz algorithm helps in reducing

the complexity of numerical integration through techniques such as Cholesky decom-

position, priority ordering etc. The algorithm also changes the limits of integration

to much simpler values, thereby making the problem simpler as it is now reduced to

a sequence of easy multiplications.

The following is a brief recap on the PCC approach. This approach aims at

reducing the number of variables involved in yield prediction. Reduction in the num-

ber of variables is obtained by the use of perfect correlation circles (PCCs). PCCs

are used to cluster a group of tiles under the assumption that the entire set of tiles

are perfectly correlated and can from then on be represented by one single tile (the

tile with maximum or minimum thickness). After covering the entire chip with such

PCCs, the centres of all these PCCs are the new variables of interest. At this stage,

the new set of reduced variables help decrease the complexity of the yield computation
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problem when compared to the large number of thickness variations present initially.

Along with a reduction in the number of variables, the reduction also ensures reduced

time complexity.

Although this approach ensures heavy reduction in the number of variables and

the corresponding run time, there is one drawback in this approach.

In the case where the size of each PCC is big, we would end up having huge

reduction in the number of variables. Even though using less variables would ensure

a smaller run time it could also result in an over-estimation of yield. On the other

hand, when the size of each PCC is small, we would end up having too many variables

and not affect the accuracy by a great deal, however the problem will have slower

run time. The main reason for these two critical factors to get affected is the use of

homogeneously sized PCCs. This trade-off between accuracy in yield value and run

time of the problem is caused by the use of homogenously sized clusters.
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CHAPTER III

PROPOSED RESEARCH

The variation and yield model used in this work is based on the case of metal thickness

like in [1]. Let the metal thicknesses at n locations be represented by a vector

−→p = (p1, p2, ...., pm)T . The thickness at each location can be decomposed as follows -

pi = µi + δi (3.1)

µi = −→µ + ∆i (3.2)

where −→µ , ∆i and δi indicate the nominal value and systematic and random variations

respectively. All the components of our yield model are shown in Figure 5.

Fig. 5. Systematic and Random Variations in CMP Yield Model

In the figure, the nominal thickness is a constant value and is shown using a
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central horizontal line. The systematic variation (∆i) at any location is dependent on

the layout pattern around that location and is a deterministic value. Consequently,

the term µi maybe termed as the deterministic variation. The deterministic variations

are shown using black dots in Figure 5. The random variations (inter-die and intra-die

variations included) are represented by double sided arrows. The random variations

are assumed to follow a normal distribution with roughly equal variance (just the

same way as in [1]).

The thickness vector −→p can be represented by a multivariate normal distribution

N(−→µ ; Σ) where −→µ = (µ1, µ2, ...., µn)T and Σ is an n×n covariance matrix. The joint

distribution function may now be written as -

φ(−→p ) =
e−0.5·(−→p −−→µ )T ·Σ−1·(−→p −−→µ )√

(2π)n · |Σ|
(3.3)

According to Figure 5 CMP Yield may also be stated as the probability for

thickness variations at all locations to stay within the shaded region (region within

the upper and lower thickness limits). When monitoring thickness values on a chip,

the entire chip is tesselated into a large number of tiles. The thickness variation at a

tile Γi is characterized by a variable pi. In order to get an accurate estimate of yield,

a large number of locations need to be monitored.

The method of using perfect correlation circles to reduce the size of the yield

prediction problem was discussed in the previous chapter. The objective of this

approach is to reduce the complexity of the yield prediction problem (size and run

time of the problem) by reducing the number of variables used in calculating yield.

The accuracy in yield value depends on the size of the PCCs. Depending on the size

of each PCC, the accuracy in yield and run time for the algorithm were seen to be

inversely related.
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This thesis attempts at eliminating the problem of accuracy in the predicted yield

value by proposing two new techniques for reduction in the number of variables used

for computing yield namely - Principal Component Analysis (PCA) and Hierarchical

Adaptive Quadrisection (HAQ). In the PCA approach, the presence of partial correla-

tions between thickness variations at various locations is eliminated by transforming

the correlated variations to an orthogonal base. After achieving orthogonality, the

number of variables are reduced to ease the complexity of yield prediction. HAQ on

the other hand is similar to the PCC approach where a divide and conquer based

clustering approach is followed to bring about reduction. One difference between the

two approaches is the use of heterogeneously sized cluster in out HAQ approach in

order to reduce the number of variations with minimal compromise on the accuracy

in yield value.

A. Principal Component Analysis

Intra-die variations add a large number of correlations to the yield model. The goal

of PCA is to compute the most meaningful basis for re-expressing the correlated vari-

ables into an independent set of reduced number of variables through an orthogonal

base. Determining an orthogonal base gives users the flexibility of discerning any

number of variables with ease as all variables are now independent and no longer

correlated. This means that that a user may now remove any redundant variable or

other variables which are just noise [7].

1. Math behind PCA

In the CMP yield model, we consider n metal variations in thickness as n random

variables. Let these variations be represented by a thickness vector δn×1. So we have
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-

−−→
δ(n) = [δ1, δ2, ......., δn] (3.4)

where δ1, δ2, ......, δn - represent the thickness variations at n locations.

Let the correlations between these n locations be represented by a correlation

matrix Γ(
−→
δ ) of size n× n.

Γ(
−→
δ ) = Γijn×n (3.5)

Let the variance of each variable be σ2
i . The covariance matrix Σn×n can now be

obtained from the correlation matrix as follows -

Σ(
−→
δ ) = Γ(

−→
δ )n×n × σi · σj (3.6)

The covariance matrix is symmetric and contains positive entries. By definition,

the covariance is a measure of the linearity in relationship between two variables and

the variance is a measure of the deviation of any variable from the mean value. Hence

orthogonality in a given set of variables can be achieved by maximizing the main

impact of the variables measured using variance and minimizing the redundancy in

variables measured by covariance. This can be achieved by eigenvalue decomposition.

Eigenvalue decomposition allows us to express a symmetric covariance matrix as

follows -

Σ(
−→
δ ) = Q · Λ(

−→
δ ) ·QT (3.7)
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where Λ(
−→
δ ) is a diagonal matrix of size n×1 containing eigenvalues for the covariance

matrix and Q is a n× n matrix with column vectors representing the corresponding

eigenvectors. The diagonal matrix Λ(
−→
δ ) will look like -

Λ(
−→
δ ) =



λ1 0 · · · 0

0 λ2 · · · 0

0 0 · · · 0

0 0 · · · 0

0 0 · · · 0

0 0 · · · λn



(3.8)

where λ1 ≥ λ2 ≥ ........ ≥ λn. Using eigenvalue decomposition helps us in two ways.

Firstly, it gives us the dominant directions in the covariance relationship between the

original set of variables through a diagonal matrix Λ(
−→
δ ) and secondly, it gives us an

idea of how to map the original set of variables in a new uncorrelated set. Let the

new set of uncorrelated variables εn×1 be related to the original set of variations δn×1

through a n× n matrix B as follows -

−→
δ = B · −→ε (3.9)

where B is a n × n matrix. Without loss of generality, it can be assumed that the

transformed sources of variations follow a Gaussian distribution such that -

µ(−→ε ) = 0 (3.10)
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Λ(−→ε ) = I (3.11)

One can easily deduce the presence of matrix J with dimensions n×n such that

-

Λ(
−→
δ ) = J · Λ(−→ε ) · JT (3.12)

It can easily be seen that J is a diagonal matrix and looks as follows -

J =



√
λ1 0 · · 0

0
√
λ2 · · 0

0 0 · · 0

0 0 · · 0

0 0 · · 0

0 0 · ·
√
λn



(3.13)

J together with Q gives the map B = Q ·J that is used to transform the original

set of variables δ into the orthogonal vector ε.

−→
δ = B · −→ε = Q · J · −→ε (3.14)

Similarly, the covariance matrix Σn×n can be rewritten as follows -

Σ(
−→
δ ) = Q · Λ(

−→
δ ) ·QT = Q · J · Λ(−→ε ) · (Q · J)T (3.15)

Hence, from the above set of equations we see how to transform a set of correlated
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variables into a new set of uncorrelated variables through an orthogonal basis. Now

we shall see how to obtain a reduction in the number of variables.

2. Reduction in Number of Variables

In the previous sub-section we learnt to derive an independent set of orthogonal

vectors from a correlated set through eigenvalue decomposition. Through eigenvalue

decomposition we get a set of eigenvalues Λ(
−→
δ ) for the correlated set of variables

−→
δ = [λ1, λ2, ....., λn] such that λ1 ≥ λ2 ≥ .....λn. It is possible that many of the

eigenvalues might be very small or some may even be redundant values. By neglecting

such repeating or small eigenvalues, we can reduce the number of variables in the

problem. Suppose, after reduction we are left with k variables, then the matrix Λ(
−→
δ )

of size k × k will look like -

Λ(
−→
δ ) =



λ1 0 · · 0

0 λ2 · · 0

0 0 · · 0

0 0 · · 0

0 0 · · 0

0 0 · · λk



(3.16)

Correspondingly, because Λ(
−→
δ ) = J · JT , the matrix Jk×k becomes -
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J =



√
λ1 0 · · 0

0
√
λ2 · · 0

0 0 · · 0

0 0 · · 0

0 0 · · 0

0 0 · ·
√
λk



(3.17)

Since the size of matrix J is k × k, the corresponding sizes of matrices B and Q

through the equation B = Q · J become m× k. The matrix B of reduced size can be

used to map the initial thickness vector
−→
δ to a reduced set of uncorrelated variations

−→ε . Thus orthogonality is obtained by using eigenvalue decomposition.

In short, the PCA approach consists of the following four important steps to be

executed in the following sequence -

1. Form the vector composing of the correlated set of metal thickness variations

and the corresponding correlation and covariance matrices.

2. Perform eigenvalue decomposition.

3. Calculate the mapping matrix B for transforming the correlated variations into

a new set of uncorrelated variations.

4. Compute the new thickness vector after discerning unwanted eigenvalues.

B. Hierarchical Adaptive Quadrisection

In the previous chapter we read about the inaccuracy in yield value arising in the

PCC method due to the use of homogeneously sized clusters. This thesis proposes
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the use of a reduction technique called Hierarchical Adaptive Quadrisection HAQ that

helps in reducing inaccuracy through the use of a divide and conquer based clustering

approach where all clusters are heterogeneously sized. Heterogeneous clustering helps

in maintaining a sufficient amount of variables after reduction thus ensuring minimal

compromise over yield accuracy. In case of the PCC approach, the size of each cluster

was maintained at a pre-fixed value, in our approach, the size of each cluster is decided

based upon the systematic variations inside the cluster. The extent of clustering is

dependant upon the deviations in systematic variations of different tiles within a

cluster. A cluster if further internally grouped into smaller clusters if the deviations

in systematic variations inside the sub-groups are found sensitive with respect to a

certain pre-fixed threshold thickness variation.

The HAQ approach is explained in detail in the subsequent paragraphs. Similar

to the PCC approach, overall yield is computed from two separate functions, High

Yield (probability of thicknesses at all locations being lesser than the upper thickness

limit) and Low Yield (probability of thicknesses at all locations being greater than

the lower thickness limit). We shall see a working model explaining the reduction

process in computing High Yield. The same approach can be applied in computing

Low Yield as well. Computing Low Yield using the same algorithm is explained in

brief.

1. Hierarchical Adaptive Quadrisection for Computing High Yield

Clustering in our Hierarchical Adaptive Quadrisection approach is done using basic

sub-regions. Similar to the PCC approach, basic sub-regions are made up of a group

of tiles and each basic sub-region is represented by a single random variable. The

size of each sub-region is not homogeneous as in the case of [1]. The sub-regions

are heterogeneously sized and the size of each sub-region depends on the systematic
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variations within the cluster.

To begin with, the entire chip is divided into an array of relatively large sized sub-

regions (or) a coarse-grained array. We then perform the HAQ procedure separately

on each of these sub-regions. For any sub-region S, at first we find the tile Γi of

maximum deterministic thickness in that sub-region. So, in sub-region S we have -

µi = µmax (3.18)

Next, we temporarily quadrisect the sub-region S into four equally sized plates

P1, P2, P3, P4. One of these four plates will contain the tile Γi. Let this plate be called

the Critical Plate. So the sub-region S is composed of one critical plate and three

non-critical plates. In each non-critical plate, we identify one tile with maximum

deterministic thickness µj,max. We then compute a Difference Vector d which holds

the difference in thickness between the tile µi and the tiles µj,max. The vector d may

be computed as follows -

d = ∀j=1,2,3,4,j 6=i|µi − µj,max| (3.19)

Following this, the Critical Difference Value (the minimum value in the vector

d) is computed. Let the critical difference value be called dmin.

dmin = min(d) (3.20)

After computing dmin, the possibility of any further clustering within the sub-

region S is determined by the critical difference value dmin and a pre-fixed Threshold

Thickness Value θ using the following condition.
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The most important step in the algorithm is explained using equation 3.21.

This condition dictates the further course of action in this algorithm by deciding if a

sub-region needs further quadrisection or not. Both possibilities are evaluated based

on the sensitivity between the maximum thickness variations in the critical and non-

critical plates in a sub-region. The impact on sensitivity between thickness variations

is explained the next few paragraphs.

dmin ≤ θ (3.21)

If the above condition is satisfied, it means that the difference in thickness values

between the tile µi and tiles of maximum thickness in the three non-critical plates,

is less. This in turn indicates the possibility for other tiles in the sub-region S being

close to the upper thickness limit and hence the chance of other tiles in the sub-

region satisfying the upper thickness constraint. So, the tile Γi can no longer be used

to represent the thickness variations of all other tiles in the sub-region S. Following

such a result, we make the four temporarily quadrisected plates into four new sub-

regions and repeat the HAQ procedure in each of these sub-regions to investigate the

possibility of any further quadrisection.

On the other hand, in case the condition in equation 3.21 is not satisfied, the

difference between the thickness at tile Γi and other tiles of maximum thickness

µj,max is large. Such a large difference in thickness indicates the fact that none of

the other tiles in the sub-region S have a chance of satisfying the upper thickness

constraint. In other words, if the thickness of any tile µj,max < U, then we can safely

assume that the thickness of all tiles in the non-critical plates are no greater than

upper thickness limit. Therefore, the probability of satisfying the upper thickness

constraint is approximately decided by the tile Γi and further quadrisection on the
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sub-region S is unnecessary.

This procedure is repeated until we reach a stage where there is no possibility of

any further quadrisection. The set of sub-regions covering the chip form the reduced

set of variables and the maximum thickness variation inside each sub-region is used to

represent all variations inside the sub-region. This explains how the HAQ procedure

may be used to bring about reduction from a large number of tiles to a smaller number

of basic sub-regions.

As the algorithm progresses, we can clearly see a decrease in the size of every

newly formed sub-region (fine-grained clustering). Varying cluster size helps in main-

taining accuracy of the yield prediction. This fact is clearly illustrated in the next

sub-section. Using the HAQ approach for computing High Yield is illustrated using

the algorithm and flowchart shown in Figures 6 and 7.

2. Working Model for High Yield using HAQ

Let us consider a chip with dimensions 0.16µm × 0.16µm. The chip is broken into

small tiles, each of size 10µm × 10µm. This would leave us with a total of 256 tiles

(initial set of variables before reduction) covering the chip. Let the pre-fixed threshold

thickness value be 10. To begin with, let the entire chip be considered as a basic sub-

region S. Let us temporarily quadrisect the sub-region S into four plates P1, P2, P3,

P4. At this stage, the entire setup would appear as follows -

The sub-region S is shown in thick lines while the four temporarily quadrisected

plates P1, P2, P3 and P4 are shown in dotted black lines. Let the maximum thickness

values in the four plates be as shown in Figure 8. As written in Figure 8, let the

maximum thickness variations in the plates P1, P2, P3 and P4 be 93, 97, 95 and

94 respectively. Based on the variations in Figure 8, the plate labeled P2 is the

critical plate and the other plates P1, P3 and P4 are the non-critical plates. Given the
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Procedure: HierarchicalAdaptiveQuadrisection(S)

Input: A layout region S consisting of an array of tiles

Output: A set of sub-regions P covering S

1. Find tile τi ∈ S with maximum deterministic thickness µmax

2. Temporarily quadrisect S into plates {P1, P2, P3, P4}

3. Identify critical plate Pk containing the tile τi

4. Find the maximum deterministic tile thickness µj,max

for all plates except Pk

5. Compute Critical Difference dmin = min∀j∈{1,2,3,4}, j 6=k(µmax − µj,max)

6. If dmin > Threshold θ, P ← S

7. Else

8. P ← ∅

9. For j = 1 to 4

10. P ← P ∪HierarchicalAdaptiveQuadrisection(Pj)

11. Return P

Fig. 6. Algorithm of Hierarchical Adaptive Quadrisection.
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Fig. 7. HAQ for High Yield
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Fig. 8. Working Model to Compute High Yield using HAQ - Stage 1

thickness variations in all four plates, the critical difference value Cd in sub-region

S can easily be calculated 2 (97 − 95 = 2). As stated in the previous paragraph,

the threshold thickness value is 10. Since the critical difference value (2) is less

than the threshold (10), according to the HAQ algorithm, we make the quadrisection

permanent. This means the plates P1, P2, P3 and P4 from now on will become

permanent sub-regions and will be identified as S1, S2, S3 and S4 respectively.

Table I illustrates all the conditions that led to the formation of sub-regions S1,

S2, S3 and S4.

Table I. Working Model to Compute High Yield using HAQ - Stage 1
Sub-Region Max Thickness dmin dmin ≤ Next
Monitored Critical Non-Critical θ Action

S 97 93, 95, 94 2 Yes Quadrisect S

This completes Stage 1 of the HAQ algorithm. At the end of Stage 1, we have

a total of 4 sub-regions. Now we need to monitor the sub-regions S1, S2, S3 and S4

independently. Let the temporary plates in these sub-regions be (P11, P12, P13, P14),
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(P21, P22, P23, P24), (P31, P32, P33, P34) and (P41, P42, P43, P44) respectively. Our

next action is to find the maximum thickness variations in all these 16 plates. Let

these thickness values be (85, 78, 81, 93), (97, 83, 79, 86), (95, 76, 73, 80) and (94,

88, 84, 89). The newly formed sub-regions (S1, S2, S3, S4) and the corresponding

temporarily quadrisected plates (P11, P12, P13, P14), (P21, P22, P23, P24), (P31, P32,

P33, P34) and (P41, P42, P43, P44), along with their maximum thickness variations are

all shown in Figure 9.

Fig. 9. Working Model to Compute High Yield using HAQ - Stage 2, Step 1

Based on the thickness variations in each of the 16 temporarily quadrisected

plates, further course of action may be comprehended from Table II.

Table II. Working Model to Compute High Yield using HAQ - Stage 2
Sub-Region Max Thickness dmin dmin ≤ Next
Monitored Critical Non-Critical θ Action

S1 93 85, 78, 81 8 Yes Quadrisect S1

S2 97 83, 79, 86 11 No Retain S2

S3 95 76, 73, 80 15 No Retain S3

S4 94 88, 84, 89 5 Yes Quadrisect S4
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Based on the observations in Table III, we retain sub-regions S2 and S3, and

do further quadrisection on sub-regions S1 and S4. Both these sub-regions will now

be divided into sub-regions S11, S12, S13, S14 and S41, S42, S43, S44 respectively.

Further, let these newly formed sub-regions be temporarily divided into 32 plates.

These newly formed sub-regions, the temporary plates and the maximum thickness

values in each of the plates are all shown in Figure 10. This completes Stage 2 of

the HAQ algorithm.

Fig. 10. Working Model to Compute High Yield using HAQ - Stage 2, Step 2

At the end of Stage 2, we have a total of 10 sub-regions. Now we begin Stage 3 of

the HAQ algorithm. Based on the thickness values shown in Figure 10, the following

observations can be made -

Based on the values in Table III, we retain all sub-regions except for S11 and

S44. These two sub-regions need further quadrisection. This completes Stage 3 of the

HAQ algorithm. At the end of Stage 3, the setup will look as in Figure 11.

At the end of Stage 3, we have a total of 19 sub-regions. Whether we do further
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Table III. Working Model to Compute High Yield using HAQ - Stage 3
Sub-Region Max Thickness dmin dmin ≤ Next
Monitored Critical Non-Critical θ Action

S11 85 72, 74, 79 6 Yes Quadrisect S11

S12 78 63, 65, 60 15 No Retain S12

S13 81 70, 68, 66 11 No Retain S13

S14 93 79, 77, 75 14 No Retain S14

S41 94 82, 78, 87 12 No Retain S41

S42 88 75, 73, 67 13 No Retain S42

S43 84 71, 66, 69 13 No Retain S43

S44 89 86, 81, 78 3 Yes Quadrisect S44

quadrisection in sub-regions S11 and S44 or not depend on the maximum thickness

variations inside these two sub-regions. We will stop further illustration of the work-

ing model at this point. The HAQ algorithm will run until there is no need for

quadrisection. At this point, the total number of sub-regions indicate the reduced set

of variables and the maximum thickness variations in each of the sub-regions will be

the new set of variables.

3. Comparing the PCC and HAQ Approaches

We will use the working model discussed in the previous sub-section to compare the

PCC and HAQ approaches. In Figure 10 we see the HAQ procedure clustering the

chip into 19 clusters of different sizes. If the PCC approach had been applied at the

same stage of clustering, the result would have been 64 equally sized clusters.

The use of clusters with varying sizes gives the user the flexibility of doing both

fine and coarse grained clustering, and thus also helps in preserving accuracy of the

computed yield value.
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Fig. 11. Working Model to Compute High Yield using HAQ - Stage 3

4. Computing Low Yield using the HAQ Approach

The procedure to evaluate Low Yield using the HAQ approach is quite similar to the

one described in the preceding paragraphs. To begin with, the chip is divided into

an array of relatively large sized sub-regions and the HAQ procedure is performed

separately on each of these sub-regions. For any sub-region S, we find the tile Γi of

minimum deterministic thickness in that sub-region µmin. Then, the sub-region is

temporarily quadrisected into four plates (P1, P2, P3, P4). The minimum determinis-

tic thickness variations in each of these four plates is identified as µmin,j. One of these

four variations will coincide with the thickness variation in tile Γi. Let this plate be

labeled as a critical plate and the others as non-critical plates. The next step is to

compute the difference vector and the critical difference value. The difference vector

holds the difference in thickness between the minimum thickness variation in the crit-

ical plate and the minimum thickness variations in the three non-critical plates. The

critical difference value is the minimum value in the difference vector. Following this,
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we then check if the critical difference value is comparable to the pre-fixed threshold

value or not. The outcome of this step decides the succeeding sequence of actions.

In case, the critical difference value is greater than the threshold value, it means

that the thickness variations in the non-critical plates are greater than the minimum

thickness variation in the critical plate. This indirectly points to a scenario where no

tile in the non-critical plates is likely to satisfy the lower thickness bound. In such a

case, the minimum thickness variation in the critical plate (the variation µmin at tile Γi

is sufficient to represent all variations in the sub-region S when computing low yield.

So we retain the sub-region as it is and use the thickness at tile Γi to represent all

thickness variation in the sub-region. On the other hand if the critical difference value

is lesser than or equal to the threshold thickness value, it means that the minimum

thickness variation in one or more non-critical plates is comparable with the minimum

thickness variation in the critical plate. Comparable thickness variation in the four

plates imply a possibility for the tiles in the non-critical plates to also satisfy the

lower thickness constraint. In such a case, we do further quadrisection by converting

the four temporary plates into four permanent sub-regions and the same procedure

is repeated independently in all the four newly formed sub-regions.

The above mentioned procedure is repeated until there is no longer a need to

perform further quadrisection. After completing the HAQ procedure, the reduced

set of variables is the set of sub-regions covering the chip. The tile with minimum

thickness variation in each sub-region is used to represent the thickness variations in

the sub-region.

5. Working Model for Low Yield using HAQ

A chip with dimensions similar to the one used in the working model for High Yield

is used here to describe HAQ for Low Yield. Let the pre-fixed threshold value be
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10. To begin with, let the entire chip be considered as a basic sub-region S. Let the

temporarily quadrisected plates be (P1, P2, P3, P4). At this stage, the entire setup

would appear as follows -

Fig. 12. Working Model to Compute Low Yield using HAQ - Stage 1

The sub-region S is shown in thick lines while the four temporarily quadrisected

plates P1, P2, P3 and P4 are shown in dotted black lines. Let the minimum thickness

values in the four plates be as shown in Figure 12. Based on these values, we make

the temporary plates permanent and label the new sub-regions as S1, S2, S3 and S4.

Table IV and Figure 13 illustrate all the conditions that led to the formation of

sub-regions S1, S2, S3 and S4.

Table IV. Working Model to Compute Low Yield using HAQ - Stage 1
Sub-Region Min Thickness dmin dmin ≤ Next
Monitored Critical Non-Critical θ Action

S 23 38, 29, 32 2 Yes Quadrisect S

This completes Stage 1 of the HAQ algorithm. In the next stage, let the minimum

thickness variations inside the sub-regions look as shown in Figure 13.
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Fig. 13. Working Model to Compute Low Yield using HAQ - Stage 2, Step 1

Based on the values in Figure 13, the future course of action will be dictated by

the observations in Table V.

Table V. Working Model to Compute Low Yield using HAQ - Stage 2
Sub-Region Min Thickness dmin dmin ≤ Next
Monitored Critical Non-Critical θ Action

S1 38 49, 51, 53 11 Yes Retain S1

S2 29 33, 35, 41 4 No Quadrisect S2

S3 23 36, 27, 24 1 No Quadrisect S3

S4 32 44, 45, 47 12 Yes Retain S4

Based on the calculations in Table V, sub-regions S1 and S4 are retained while

sub-regions S2 and S3 are further analyzed. This completes Stage 2 of the HAQ

process. At the end of this stage we have 10 sub-regions. Based on the thickness

variations in each of the 16 temporarily quadrisected plates in the newly formed sub-

regions, the setup will look as follows -

The next action can be comprehended from Table MIN-Stage2.

Based on the observations made in Table VI, we end up with a total of 19 sub-
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Fig. 14. Working Model to Compute Low Yield using HAQ - Stage 2, Step 2

Fig. 15. Working Model to Compute Low Yield using HAQ - Stage 3
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Table VI. Working Model to Compute Low Yield using HAQ - Stage 3
Sub-Region Min Thickness dmin dmin ≤ Next
Monitored Critical Non-Critical θ Action

S21 29 40, 43, 41 1 1 Yes Retain S21

S22 33 39, 37, 34 1 No Quadrisect S22

S23 35 49, 50, 46 11 No Retain S23

S24 41 52, 47, 55 6 No Quadrisect S24

S31 23 34, 42, 37 11 No Retain S31

S32 36 49, 51, 47 11 No Retain S32

S33 27 39, 46, 41 12 No Retain S33

S34 24 36, 42, 33 9 Yes Quadrisect S34

regions. This completes Stage 3 of the HAQ algorithm. The setup after Stage 3 will

look as shown in Figure 15. We will stop further analysis of the working model for

Low Yield. The quadrisection will continue until we reach a point where there is no

further possibility for quadrisection. This is the final step in the reduction process.

The tiles with minimum thickness variations in all the sub-regions form the new set

of variables.
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CHAPTER IV

SIMULATION RESULTS

A. Experimental Setup

All algorithms discussed in previous chapters were carried out in MATLAB. As we

did not have exact chip details of interconnect thickness profiles, the inputs are the

same as given in [1]. The experimental setup consists of a chip with dimensions

4.8 mm × 7.5 mm. The chip is tesselated into a 480 × 750 array of tiles where each

tiles is of size 10 µm × 10 µm. This means the size of our input thickness vector

would be 360, 000× 1. For all experiments, the upper and lower thickness limits for

interconnects in each layer are 0.4580 µm and 0.2580 µm respectively. So in short,

the yield would be computed as the probability of thickness values in all tiles to lie

within the above specified upper and lower thickness limits.

The nominal thickness values for all tiles were generated generated based on

a normal distribution with a mean thickness value of 0.3580 µm and a standard

deviation of 0.02 µm. For all experiments, the variance value used in computing the

covariance matrix is 0.0009 µm2. The input thickness values for all simulations were

generated for specific seed values. Spatial correlation between different tiles was taken

into account. A linear reduction in correlation was assumed with increase in distance.

The distance between different tiles was calculated between their centers. Yield results

were obtained for all algorithms using different cases of correlation equations.

B. Monte Carlo Experiments

In addition to the algorithms discussed in previous chapters, the yield is also computed

using Monte Carlo (MC) methods (with and without spatial correlation). Monte
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Carlo simulations were performed in order to compare and validate the results ob-

tained using other methods. The random thickness values at each iteration are ob-

tained using the nominal thicknesses as mean value and a standard deviation of 0.03

µm. In the first case where there is no spatial correlation, the experiment checks

at each iteration whether thickness values of all tiles lie within the lower and upper

thickness limits. The ratio of successful iterations to the total number of iterations is

calculated as yield.

In case of Monte Carlo with spatial correlation, after getting the initial thickness

values of all tiles at each iteration, the thickness vector is reconstructed from its

principal components [8], [9]. No reduction was implemented after computing the

principal components. Following reconstruction of the thickness vector, it is checked

if the thickness vector falls within the upper and lower thickness limits. Again the

ratio of successful iterations to the total number of iterations is calculated as yield.

These simulations were performed for three different correlation equations, each with

three different seed values in order to monitor variations in yield with initial seed for

a given iteration count.

C. Experimental Results

Yield results were obtained for all algorithms using three different cases of correlation

equations namely, −3×10−5x+0.9958, −4×10−5x+0.9958 and −2×10−5x+0.9958.

These results for different correlation equations are presented in the subsequent sub-

sections in the following order - 1. MC method, 2. PCC method, 3. PCA method 4.

HAQ method and 5. a combination of the HAQ and PCA approaches. In order to

facilitate comparison of accuracy and time complexity of all algorithms discussed in

the previous chapters, interconnect thickness values are generated for each correlation
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case with the same initial seed.

1. Correlation Equation: −3× 10−5x+ 0.9958

Yield results obtained for this case of correlation are shown below. Table VII shows

yield values computed using Monte Carlo methods (with and without correlation).

In the case of Monte Carlo with correlation, the initial seed values used in generating

nominal thickness values were varied. Table VIII shows the the yield computed using

the PCC approach. Variations in yield value with radius of PCCs are shown. Table

IX shows yield values obtained using PCA. The different eigenvalues showing reduc-

tion and its corresponding yield values are also shown in Table IX. Table X shows

the results obtained using HAQ. The threshold thickness values were varied so that

we could have cases where the order of the reduction is varied. The same changes

in threshold value are made for other correlation equations as well. The accuracy of

yield using both HAQ and PCA algorithms is observed in Table XI. The reduction

in this case is done using the HAQ approach. Following reduction, the new set of

variables are transformed into an un-correlated set through PCA and yield is then

calculated using this new set orthogonal variables.

Genz algorithm was used in computing yield for all cases except Monte Carlo.

In tables with results obtained using the PCA, HAQ and PCC approaches, the terms

Ymax and Ymin refer to the sizes of covariance matrices keeping maximum and mini-

mum interconnect thickness profiles in mind.
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Table VII. Correlation = −3× 10−5x+ 0.9958. MC Simulations
Iterations Monte Carlo without PCA Monte Carlo with PCA

(Initial Seed = 5)
Yield CPU Run Time Seed Yield CPU Run Time

10,000 61.17% 1296.517 secs 5 78.17% 1439.247 secs
20 77.82% 1421.388 secs
50 78.35% 1447.736 secs

30,000 60.39% 3727.310 secs 5 76.61% 4182.968 secs
20 76.18% 4209.535 secs
50 75.96% 4193.036 secs

50,000 59.83% 6191.005 secs 5 74.39% 6541.266 secs
20 75.02% 6449.612 secs
50 74.47% 6518.389 secs

Table VIII. Correlation = −3× 10−5x+ 0.9958. PCC Approach. Initial Seed = 5
Radius of Size of Covariance Yield CPU Run

PCCs Matrix (Ymax/Ymin) Time
150 µm 432/427 87.58% 2237.944 secs
250 µm 305/310 88.37% 1619.172 secs
350 µm 194/197 89.18% 1193.237 secs
500 µm 93/98 89.73% 582.378 secs
600 µm 68/72 90.52% 366.241 secs
800 µm 43/41 91.06% 240.516 secs
1000 µm 29/30 91.82% 158.577 secs
2000 µm 10/9 92.75% 54.782 secs

2. Correlation Equation: −4× 10−5x+ 0.9958

Tables XII - XVI show the results obtained for the correlation equation shown above

in the same order as the preceding tables.

3. Correlation Equation: −2× 10−5x+ 0.9958

Tables XVII - XXI show the results obtained for the correlation equation shown

above in the same order as the preceding tables.
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Table IX. Correlation = −3× 10−5x+ 0.9958. PCA Approach. Initial Seed = 5
Reduced No. of Yield CPU Run

Eigenvalues Time
25 80.37% 441.186 secs
50 79.18% 447.253 secs
100 78.25% 456.640 secs
200 77.36% 468.839 secs
300 75.87% 481.927 secs

Table X. Correlation = −3× 10−5x+ 0.9958. HAQ Approach. Initial Seed = 5
Threshold Final Size of Yield CPU Run
Thickness Covariance Matrix Time

(Ymax/Ymin) Total Yield High Yield Low Yield
0.015 µm 27/24 85.57% 93.08% 92.49% 162.410 secs
0.03 µm 35/33 83.61% 92.25% 91.36% 180.372 secs
0.045 µm 41/37 81.37% 91.13% 90.24% 193.315 secs
0.06 µm 44/47 80.12% 90.25% 89.87% 205.934 secs
0.075 µm 61/61 78.91% 89.63% 89.28% 221.063 secs
0.09 µm 80/79 77.45% 88.81% 88.64% 239.388 secs

D. Comparison of Results

In case of Monte Carlo simulations without PCA, neglecting the presence of correla-

tions causes an under-estimation in yield value. Such under-estimation is avoided in

case of Monte Carlo simulations with PCA. These simulations are used as a baseline

to compare the accuracy of results obtained from the other algorithms.

Table XI. Correlation = −3× 10−5x+ 0.9958. HAQ and PCA Approaches. Initial Seed =

5
Threshold Final Size of Covariance Matrix Yield CPU
Thickness Before PCA After PCA Total High Low Run

Value (Ymax/Ymin) (Ymax/Ymin) Yield Yield Yield Time
0.015 µm 27/24 27/24 85.08% 92.63% 92.44% 189.137 secs
0.03 µm 35/33 35/33 83.11% 91.61% 91.50% 206.744 secs
0.045 µm 41/37 41/37 80.87% 91.05% 89.82% 224.039 secs
0.06 µm 44/47 44/47 79.68% 90.17% 89.51% 245.428 secs
0.075 µm 61/61 61/61 78.53% 89.43% 89.10% 271.811 secs
0.09 µm 80/79 80/79 77.39% 88.73% 88.66% 292.340 secs
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Table XII. Correlation = −4× 10−5x+ 0.9958. MC Simulations
Iterations Monte Carlo without PCA Monte Carlo with PCA

(Initial Seed = 15)
Yield CPU Run Time Seed Yield CPU Run Time

10,000 62.36% 1285.841 secs 15 75.85% 1429.947 secs
35 75.91% 1450.812 secs
75 76.07% 1437.263 secs

30,000 60.75% 3756.729 secs 15 73.72% 4185.825 secs
35 73.86% 4197.762 secs
75 73.98% 4209.311 secs

50,000 59.96% 6158.836 secs 15 71.59% 6517.837 secs
35 71.36% 6489.516 secs
75 70.85% 6472.372 secs

Table XIII. Correlation = −4× 10−5x+ 0.9958. PCC Approach. Initial Seed = 15
Radius of Size of Covariance Yield CPU Run

PCCs Matrix (Ymax/Ymin) Time
150 µ m 429/425 86.31% 2213.723 secs
250 µ m 307/308 87.16% 1649.256 secs
350 µ m 198/201 88.09% 1182.670 secs
500 µ m 95/94 88.87% 577.218 secs
600 µ m 63/66 89.53% 361.833 secs
800 µ m 43/41 90.26% 245.511 secs
1000 µ m 27/27 90.97% 161.452 secs
2000 µ m 11/12 91.62% 56.742 secs

In case of the PCA simulations, when variable reduction less, the yield value

tends to be closer to the results obtained from Monte Carlo simulations and hence

more accurate. Consequently, the run time for the algorithm is also more with lesser

variable reduction.

As stated in [1], yield values obtained using the PCC approach show a increasing

in trend with increase in size of each PCC. Greater, the size of each PCC, greater is

the reduction in variables and the yield is also overestimated. The run time for the

algorithm also decreases with an increase in size of PCCs. With smaller PCC sizes,

there is lesser reduction in the number of variables and the resulting yield value is

closer to the results obtained using Monte Carlo methods. This improved accuracy
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Table XIV. Correlation = −4× 10−5x+ 0.9958. PCA Approach. Initial Seed = 15
Reduced No. of Yield CPU Run

Eigenvalues Time
25 78.65% 445.362 secs
50 77.09% 449.728 secs
100 75.72% 455.107 secs
200 73.96% 463.175 secs
300 72.68% 475.623 secs

Table XV. Correlation = −4× 10−5x+ 0.9958. HAQ Approach. Initial Seed = 15
Threshold Final Size of Yield CPU Run
Thickness Covariance Matrix Time

(Ymax/Ymin) Total Yield High ield Low ield
0.015 µm 38/39 82.38% 91.53% 90.85% 171.113 secs
0.03 µm 69/72 80.63% 90.72% 89.91% 198.437 secs
0.045 µm 112/109 79.17% 89.83% 89.34% 231.725 secs
0.06 µm 127/125 77.81% 88.95% 88.86% 278.933 secs
0.075 µm 148/143 76.29% 88.13% 88.16% 315.548 secs
0.09 µm 172/170 74.62% 87.37% 87.25% 361.027 secs

is obtained at the expense of the algorithms run time.

In case of simulations for the HAQ approach, the threshold thickness value de-

cides the extent of reduction. Keeping a greater threshold value results in a more

refined covariance matrix or a fine-grained set of basic sub-regions and thus a more

accurate yield estimate. Using a smaller threshold value gives an yield value which is

Table XVI. Correlation = −4 × 10−5x + 0.9958. HAQ and PCA Approaches. Initial Seed

= 5
Threshold Final Size of Covariance Matrix Yield CPU
Thickness Before PCA After PCA Total High Low Run

Value (Ymax/Ymin) (Ymax/Ymin) Yield Yield Yield Time
0.015 µm 38/39 38/39 82.09% 91.37% 90.72% 189.529 secs
0.03 µm 69/72 69/72 80.12% 90.49% 89.63% 217.388 secs
0.045 µm 112/109 112/109 78.89% 89.41% 89.48% 255.947 secs
0.06 µm 127/125 127/125 77.41% 88.77% 88.64% 301.437 secs
0.075 µm 148/143 148/143 76.08% 88.36% 87.72% 384.822 secs
0.09 µm 172/170 172/170 74.56% 87.23% 87.33% 418.610 secs
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Table XVII. Correlation = −2× 10−5x+ 0.9958. MC Simulations
Iterations Monte Carlo without PCA Monte Carlo with PCA

(Initial Seed = 30)
Yield CPU Run Time Seed Yield CPU Run Time

10,000 61.68% 1278.647 secs 30 79.72% 1429.256 secs
60 79.59% 1433.372 secs
100 80.36% 1425.418 secs

30,000 60.92% 3741.239 secs 30 78.03% 4217.577 secs
60 77.86% 4205.813 secs
100 77.95% 4183.480 secs

50,000 59.77% 6165.471 secs 30 75.92% 6539.328 secs
60 76.11% 6496.672 secs
100 76.28% 6516.087 secs

Table XVIII. Correlation = −2× 10−5x+ 0.9958. PCC Approach. Initial Seed = 30
Radius of Size of Covariance Yield CPU Run

PCCs Matrix (Ymax/Ymin) Time
150 µ m 431/435 88.93% 2241.683 secs
250 µ m 305/310 89.86% 1635.835 secs
350 µ m 194/197 90.47% 1169.526 secs
500 µ m 93/98 91.05% 581.972 secs
600 µ m 68/72 91.71% 386.351 secs
800 µ m 43/41 92.48% 245.227 secs
1000 µ m 29/30 92.97% 159.539 secs
2000 µ m 10/9 93.56% 56.119 secs

much higher when compared with Monte Carlo simulations.

Based on the simulation results made in the previous section, comparisons in

yield accuracy and run times between the different algorithms are as follows -

The observations made in Table XXII indicate the improvement in accuracy and

increase in run time of the PCA and HAQ approaches discussed in this thesis.
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Table XIX. Correlation = −2× 10−5x+ 0.9958. PCA Approach. Initial Seed = 30
Reduced No. of Yield CPU Run

Eigenvalues Time
25 81.85% 446.174 secs
50 80.58% 452.726 secs
100 79.76% 459.603 secs
200 78.33% 470.418 secs
300 77.27% 481.347 secs

Table XX. Correlation = −2× 10−5x+ 0.9958. HAQ Approach. Initial Seed = 30
Threshold Final Size of Yield CPU Run
Thickness Covariance Matrix Time

(Ymax/Ymin) Total Yield High Yield Low Yield
0.015 µm 40/38 88.41% 94.63% 93.78% 166.729 secs
0.03 µm 71/70 86.69% 93.75% 92.94% 191.318 secs
0.045 µm 110/114 85.11% 92.81% 92.30% 235.528 secs
0.06 µm 133/131 83.37% 92.12% 91.25% 287.832 secs
0.075 µm 153/155 82.13% 91.70% 90.43% 311.618 secs
0.09 µm 175/178 80.42% 90.57% 89.85% 372.275 secs

Table XXI. Correlation = −2 × 10−5x + 0.9958. HAQ and PCA Approaches. Initial Seed

= 5
Threshold Final Size of Covariance Matrix Yield CPU
Thickness Before PCA After PCA Total High Low Run

Value (Ymax/Ymin) (Ymax/Ymin) Yield Yield Yield Time
0.015 µm 40/38 40/38 88.07% 94.46% 93.51% 187.318 secs
0.03 µm 71/70 71/70 86.49% 93.28% 93.21% 213.722 secs
0.045 µm 110/114 110/114 84.87% 92.39% 92.48% 259.635 secs
0.06 µm 133/131 133/131 83.08% 91.77% 91.31% 304.168 secs
0.075 µm 153/155 153/155 81.85% 91.03% 90.82% 388.492 secs
0.09 µm 175/178 175/178 79.93% 90.07% 89.86% 423.833 secs
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Table XXII. Comparison of Results

Correlation Method Yield Speed

Equation Error

−3× 10−5x+ 0.9958 PCC 18.9% 1×

PCA 2.7% 4.6×

HAQ 4.1% 9.4×

−4× 10−5x+ 0.9958 PCC 21.1% 1×

PCA 2.8% 4.7×

HAQ 5.6% 6.2×

−2× 10−5x+ 0.9958 PCC 17.1% 1×

PCA 1.3% 4.7×

HAQ 5.3% 6×
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CHAPTER V

CONCLUSION

Yield prediction involves monitoring the possibility of any electrical/manufacturing

spec to get satisfied at n locations on a chip. CMP yield concerns the probability of

interconnect thicknesses at n locations staying within the upper and lower thickness

limits. In order to get an accurate estimate of yield, the variations in interconnect

thickness at a large number of locations need to be monitored.

With shrinking feature sizes, the presence of intra-die variations can no longer

be ignored. Overall, the process variations may be divided into two components,

inter-die variations (layout dependent component) and intra-die variations (further

sub-divided into systematic and random variations). With a rise in dominance of

intra-die variations, the inter-die variations can be assumed as independent and rep-

resented using a single random variable. Intra-die random variations consist of both

independent and partially correlated components. The case of intra-die variations

is a lot more complicated due to the difficulty in handling a large number random

variables with partial correlations (all variables are spatially correlated). Such com-

plications add to the computational complexity of the yield prediction problem.

The demand of monitoring a large number of locations for thickness variations

when combined with the existence of partial correlations between different locations,

makes the yield prediction problem very complex. This thesis attempts to ease the

complexity by reducing the number of variables used in computing yield. The tech-

niques discussed in this thesis compute yield for a CMP model where meeting the

interconnect thickness specs decides yield. [1] predicts a mechanism to reduce the

number of variables through the use of perfect correlation clusters (PCC). Although,

the PCC approach reduces the number of variables by a significant margin, it suf-
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fers in the accuracy of the resulting yield. This thesis discusses the use of two new

reduction methods namely -

• Principal Component Analysis (PCA) - Re-express a set of large and correlated

variables into a new, reduced and uncorrelated set through an orthogonal base.

• Hierarchical Adaptive Quadrisection (HAQ) - Reduces a large number of vari-

ables to a reduced set of basic sub-regions.

The advantage of these two methods is the reduction in number of variables

without much compromise on accuracy in yield.
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CHAPTER VI

FUTURE COURSE OF RESEARCH

Since the advent of the deep submicron era, the dominance of local variations has

resulted in a large number of independent and partial correlations in metal thickness

values. Accounting for intra-die variations (systematic and random) in yield predic-

tion gives rise to a large number of random variables in the CMP model. However, not

all the random variables might have a significant contribution towards yield. Hence

the presence of so many random variations and their allied partial correlations makes

yield prediction very cumbersome.

Given this kind of a setup, this thesis aims at reducing the problem to a smaller

set of variables and then computing yield using numerical integration methods like

Genz algorithm [6]. This thesis aims at overcoming the shortcomings due to the trade-

off between computation accuracy and computation run time by using two different

reduction techniques in yield prediction namely Principal Component Analysis (PCA)

and Hierarchical Adaptive Quadrisection (HAQ). The main advantage in using these

reduction techniques lies in improvement of yield accuracy.

These techniques which are used to predict CMP yield can also be extended for

prediction of yield with respect to timing constraints. The same techniques discussed

in this thesis can be used to predict timing yield for sequential circuits [10].
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