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Resumen and Abstract IX 
 

Resumen 
Para realizar la planificación de una mina de superficie es necesario partir de una 

evaluación inicial del recurso mineral. La evaluación del secuenciamiento de una mina a 

cielo abierto es un paso clave en el proceso de planeación de las actividades de extracción 

de una empresa minera. Los enfoques tradicionales aplicados para definir el límite máximo 

de la fosa consideran un único modelo estimado, que se desvía de una evaluación real del 

activo mineral. En los últimos años, se propusieron nuevos enfoques, de modo que los 

beneficios de apartarse de la visión del mundo determinística, donde cada variable es 

estática y modelada desde un promedio aritmético, hasta una evaluación estocástica que 

permite comprender el riesgo asociado a la planificación  minera a largo plazo. Los 

enfoques de optimización exacta se estudiaron debido a el rol crucial de la planificación 

minera en los analísis financieros, sin embargo se consideran las implicaciones asociadas 

con estos métodos y se propone un enfoque metaheurístico para resolver el caso de 

estudio. 

 

 

 

Palabras clave: Planeación minera a largo plazo, Secuenciamiento de minería de 
superficie,      Optimización estocástica.    
 
 
 
 
 
 
 
 
 
 



X Stochastic optimization of strategic mining planning of a hypothetical copper deposit 
through a parameterizable algorithm developed in python 

 
Abstract 
To perform a surface mine planning it is necessary to start from an initial evaluation of the 

mineral resource. The open pit schedule evaluation is a key step in the process of planning 

the extraction activities of a mining company. Traditional approaches applied to define the 

ultimate pit limit consider a single estimated model, which deviates from a real assessment 

of the mineral asset. Over the recent years, new approaches were proposed, so that the 

benefits of departing from deterministic world view, where every variable are static and 

modeled from an arithmetic average, to a stochastic evaluation which allows understanding 

the risk associated to the open pit long term mine planning. Exact optimization approaches 

were studied due the major roll of mine planning to financial analytics, however the 

implications associated with these methods are considered and a metaheuristic approach 

is proposed to solve the case of study. 

 

 

 

 

 

Keywords: Long term mine planning, Open pit scheduling,      Stochastic 
optimization.
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Introduction 
Mining is the process of extracting a naturally occurring material from the earth to derive a 

profit(Newman, Rubio, Caro, Weintraub, & Eurek, 2010). Companies require the minerals 

and metal products to have the capacity to operate on a regular basis. The high demand of 

this materials have created the obligation to develop extraction techniques. Surface mining 

accounts for a significant proportion of the current mineral production (Sattarvand, 2009). 

Surface mining have advantages like large production equipment size, short preproduction 

development period, high ore recovery and less labour requirements. In this thesis, the 

research is focus on open pit mining method. 

 

Developing an open pit mine is a hard and complex task that must be planned and 

strategically programmed to get highest possible profit, while accounting for the constraints 

that the mining company is subjected. There are procedures that are traditionally follow in 

the process of mine planning. Initially, the minerals domain have to be outlined, then it is 

discretized into mining blocks and its ore content is estimated. Mine planners must decide 

which blocks should be exploited, when and whether they should be processed or not. 

 

At this point, the traditional procedures would continue to calculate economic pit limits 

through Lerchs-Grossmann graphic algorithm (Lerchs & Grossmann, 1965), and then 

schedule the extraction based on mine and processing plant constraints, maximizing the 

net present value of the mine. However, the parameters (cutoff, block mineral content, 

CAPEX, OPEX, etc.), used at the first analysis are assumed or approximated, driving 

production targets that may not be met as planned, leading to suboptimal management of 

cash flows. This generates changes to short term plans that deviate from long term 

production plans and forecasts, all of which lead to unfulfilled expectations(F. R. Albor 

Consuegra & Dimitrakopoulos, 2009).  

 

Throughout the last 50 years the amount of research that has been devoted have 

accomplished substantial progress, mainly because high grade deposits are unusual, 
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market and operational conditions are becoming dynamic and uncertain, and environmental 

politics get tougher; bringing on that, as previously said, the mine plans may not be reached 

as expected. However the industry is still withdrawn to receive these developments. 

 

The past 2 decades have been dedicated to improve the method that traditionally have 

been used, applying new optimization techniques that are able to manage the risk and 

uncertainty from the input parameters. At this thesis it is studied and applied an already 

developed procedure to create mine plans under the consideration of geological 

uncertainty. 
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1. Literature Review 

 

The execution of tasks related to surface mining results in deformation of the topography 

so that a pit is dug for the purpose of extracting ore. Through the life of the mine the pit 

must get deeper and deeper until the economic boundaries are reach. An organized mining 

company must value their assets before compromising at investing and construction 

phases, and the mineral deposit is its most valuable resource. Therefore, after the deposit 

have been studied enough to be modeled and estimated the mine planners must decide 

how much of the ore can be processed to maximize how much money the company could 

produce based on the capacity of truck fleet and processing plant.  

 

Traditional methods have been applied since mid-sixties and many mines have been hit by 

the variability between the predicted amount of ore that should have been extracted and 

the reality after it have been processed. At this chapter some of these methods are going 

to be review and how they could be simplified applying mathematical programming.  

 

1.1 Ultimate pit limits for Open pit Design 
Calculating the ultimate pit limits is a task that should led to maximum extraction of ore 

without compromising economical interest of the mine company. This can be simplified as 

the determination of optimum contour that holds a volume of mineral while considering the 

maximum operational slope angle. The ultimate pit limit problem has been solved using the 

Lerchs-Grossmann graph theoretic algorithm(Lerchs & Grossmann, 1965), Picard’s 

network flow method(Picard, 1976) and Hochbaum’s Maximum flow method(Hochbaum, 

2008), minimizing the time consumption and computational capacities. However, nowadays 

we can solve the problem applying Mix integer linear programming with efficient 

optimization algorithms like branch and bound with heuristic methods and parallel 

computing within a commercial optimizer called GUROBI(Gurobi Optimization Inc., 2015). 
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1.1.1 Lerchs-Grossmann  
This wasn’t the first method used to solve the open pit mining problem, but it was a big 

accomplishment, thus, its understanding is a must-have for any mine planner. Lerchs-

Grossmann importance is such that it have been used by the mining industry over the last 

four decades. “They associate a directed node-weighted graph, called the mine graph, with 

the three-dimensional grid of blocks. They note that the maximum profit open-pit mine 

contour corresponds to a maximum closure in the graph. A closure in the graph is a subset 

of the nodes such that if a node belongs to this set then all its successors also belong to 

the set, and the closure is maximal if the sum of node-weights is maximum”(Amankwah, 

2011). 

 

To close the directed graph a set of vertices must be defined such that, if i is a member of 

this set and (i, j) is an arc of the graph, then j must also be a member of this set. The Lerchs-

Grossmann method defines some concepts that describes relationships between the 

blocks. First, a dummy block is added to the bottom and it is called root. When the directed 

graph is connected (there are no breaks in it) and there are no cycles (circular block 

dependencies), it is called a tree. A tree T with a connection to the root it is called a rooted 

tree. It is called as a branch Ti the set of arcs in a tree, which supports the rooted tree. The 

branches are characterized by the orientation of the arcs, so they can be called as plus 

(pointing towards Ti), and minus (pointing away Ti).  

 

Arcs can be considered as weak or strong, a plus arc is strong if it supports a weight (sum 

of net value) that is strictly positive; a minus arc is strong if it supports a weight that is equal 

to zero or negative; arcs that are not strong are weak. If exist at least one strong arc on the 

single path of the tree T that joins a node i to the root, it is said that it is a strong Node. 

Finally, a tree is normalized if the root is common to all strong arcs. The maximum closure 

of a normalized tree is the set of its strong nodes. 

1.1.2 Picard’s Maximum Flow Algorithm 
Picard (1976), solves the maximum flow problem adding to the mine graph a source node 

and a sink node, therefore finds the maximum closure. In a given directed graph G = (V, 

A), where V is the set of nodes and A the set of arcs, Picard’s formulates the maximum 

closure problem as a 0 - 1 mathematical programming, as shown in Equation 1 
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𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 = ∑ 𝑝𝑝𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖∈𝑉𝑉   

Subject to: 

𝑀𝑀𝑖𝑖 ≤ 𝑀𝑀𝑗𝑗       ∀ (𝑖𝑖, 𝑗𝑗) ∈  𝐴𝐴  

𝑀𝑀𝑖𝑖 ∈ {0,1}         𝑖𝑖 ∈ 𝑉𝑉  

Equation 1. Picard (1976) Linear Programming Formulation. 

 

Where pi is a weight associated to node i, known as the net profit of the block; and x is a 

binary variable, which could be equal to 1 if the block is in the closure or 0 if otherwise. The 

restriction xi <= xj is the one that determines the precedencies constrain. Picard studied the 

equivalency of that previous restriction to the relation aij xi (xj − 1) = 0, where aij is the 

element (i, j) of the incident matrix of the graph G, that is, aij = 1 if (i, j) ∈ A and aij = 0  if 

otherwise(Amankwah, 2011). Based on this, Picard reformulates the Equation 1 problem 

as shown in Equation 2, and then since aij xi (xj − 1) ≤ 0 for all xi ∈ {0, 1} and xj ∈ {0, 1}, 

Picard deduces that Equation 2  is equivalent to Equation 3 (Picard, 1976) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 = ∑ 𝑝𝑝𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖∈𝑉𝑉   

Subject to: 

∑ ∑ 𝑀𝑀𝑖𝑖𝑗𝑗𝑀𝑀𝑖𝑖�𝑀𝑀𝑗𝑗 − 1� = 0𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖 ∈ 𝑉𝑉   

𝑀𝑀𝑖𝑖 ∈ {0,1}         𝑖𝑖 ∈ 𝑉𝑉  

Equation 2. LP formulation with first constrain relaxation (Picard, 1976). 

 

 

 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 = ∑ 𝑝𝑝𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖∈𝑉𝑉 + 𝜆𝜆∑ ∑ 𝑀𝑀𝑖𝑖𝑗𝑗𝑀𝑀𝑖𝑖�𝑀𝑀𝑗𝑗 − 1�𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖 ∈ 𝑉𝑉   

Subject to: 

𝑀𝑀𝑖𝑖 ∈ {0,1}         𝑖𝑖 ∈ 𝑉𝑉  

Equation 3. LP formulation with Multiplier Relaxation (Picard, 1976). 

 

where λ is a positive number large enough to ensure that an optimal solution of Equation 3 

satisfies that ∑ ∑ 𝑀𝑀𝑖𝑖𝑗𝑗𝑀𝑀𝑖𝑖�𝑀𝑀𝑗𝑗 − 1�𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖 ∈ 𝑉𝑉 = 0. Then, Picard replaces the maximization problem 

by a minimization problem and it is equivalent to finding a minimum cut in a related network. 
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1.2 Open Pit Scheduling Problem 
Traditionally, it have been considered that the scheduling problem only must be solve after 

finding the economical pit limits or maximum closure, however this statement have changed 

since direct block scheduling techniques and efficient optimizers have been developed.  

The open-pit mine production scheduling problem can be defined as discovering the 

sequence in which rock blocks should be removed from the deposit as a certain material 

type in order to maximise the total discounted profit from the mine subject to a variety of 

physical and economic constraints(Sattarvand, 2009). The optimum schedule plays an 

important role in mine planning, and it should be at constant review at all stages of the life 

of an open-pit. 

The scheduling problem can be formulated as a mix integer linear programing problem 

(MILP).  However, in real applications this formulation is too large, in terms of both the 

number of variables and the number of constraints, to solve by any available commercial 

MILP software (Caccetta & Hill, 2003). When this problem is reach, a possible option is to 

solve the optimization problem sequentially period to period, or to develop special methods 

that are able to produce an acceptable sub optimal solution. Exact optimization methods 

(LP, MILP, etc.), can guarantee an optimal solution, however there are this kind of problems 

can not be solved in polynomial time, it grows exponentially with the size of the model. 

In consequence, alternative methods have been studied through the past 4 decades, as 

Caccetta & Hill (1999), resumes: “Several heuristic approaches have appeared in the 

literature including methods based on Lagrangian relaxation (Caccetta et al., 1998); 

parameterisation (Matheron, 1975; Francois-Bongarcon and Guibal, 1984; Dagdelen and 

Johnson, 1986); dynamic programming (Tolwinski and Underwood, 1996); MILP (Gershon, 

1983; Dagdelen and Johnson, 1986; Caccetta et al., 1998; Ramazan et al., 2005); 

simulated annealing and genetic algorithms (Denby and Schofield, 1995) and neural 

networks (Denby et al.,1991)”(Weintraub, Romeroes, Bjørndal, & Epstein, 2007)  
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1.2.1 Mix Integer Linear Programming formulation for Open Pit 
Scheduling 
Caccetta & Hill (1999), modeled the open pit scheduling problem as Mix Integer Linear 

Programming formulation that right now could be solve using the available optimization 

software as shown in Equation 4. However this could be troublesome or commonly not 

solvable for real size mine planning problems.  

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 = ∑ ∑ �𝐶𝐶𝑖𝑖𝑡𝑡−1 − 𝐶𝐶𝑖𝑖𝑡𝑡�𝑁𝑁
𝑖𝑖=1

𝑇𝑇
𝑡𝑡=2 𝑋𝑋𝑖𝑖𝑡𝑡−1 + ∑ 𝐶𝐶𝑖𝑖𝑇𝑇𝑋𝑋𝑖𝑖𝑇𝑇𝑁𝑁

𝑖𝑖=1   

Subject to: 

∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑋𝑋𝑖𝑖1𝑖𝑖∈𝑂𝑂 = 𝑚𝑚1                             (1) 

∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖�𝑋𝑋𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡−1� = 𝑚𝑚𝑡𝑡
𝑖𝑖∈𝑂𝑂 ,     𝑡𝑡 = 2,3, … ,𝑇𝑇        (2) 

∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑋𝑋𝑖𝑖1𝑖𝑖∈𝑊𝑊 = 𝑢𝑢𝑊𝑊1                     (3) 

∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖�𝑋𝑋𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡−1� = 𝑢𝑢𝑊𝑊𝑡𝑡𝑖𝑖∈𝑊𝑊 ,     𝑡𝑡 = 2,3, … ,𝑇𝑇       (4) 

𝑋𝑋𝑖𝑖𝑡𝑡−1 ≤ 𝑋𝑋𝑖𝑖𝑡𝑡 ,      𝑡𝑡 = 2,3, … ,𝑇𝑇      (5) 

𝑋𝑋𝑖𝑖𝑡𝑡 ≤ 𝑋𝑋𝑗𝑗𝑡𝑡 ,      𝑡𝑡 = 2,3, … ,𝑇𝑇;  ∀𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖; 𝑖𝑖 = 1,2, … ,𝑁𝑁       (6) 

ℓ𝑂𝑂𝑡𝑡 ≤ 𝑚𝑚𝑡𝑡 ≤ 𝑢𝑢𝑂𝑂𝑡𝑡 ,      𝑡𝑡 = 1,2, … ,𝑇𝑇      (7) 

𝑋𝑋𝑖𝑖𝑡𝑡 ∈ {0,1}  ; 𝑡𝑡 = 1,2, … ,𝑇𝑇       

Equation 4. MILP formulation for NPV maximization (Caccetta & Hill, 1999). 

 

Where T is the number of periods over which the mine is being scheduled; N is the total 

number of blocks in the orebody; Ci
t is the profit (in NPV sense) resulting from mining the 

block i in the period t; O is the set of ore blocks; W is the set of waste blocks; toni is the 

tonnage of block i;mt is the tonnage of ore milled in period t; Si is the set of blocks that must 

be removed prior the mining of block i; Xt
i is a binary variable that establish if the block i is 

mined in periods 1 to t; 𝓵𝓵𝑶𝑶𝒕𝒕  is the lower bound of the amount of ore that is milled in period t; 

ut
O is the upper bound of the amount of ore that is milled in period t; ut

W is the upper bound 

of the amount of waste that is milled in period t. The constraints 1, 2 and 8 ensure that the 
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milling capacities are hold. Constraints 3 and 4 ensure that the tonnage of waste removed 

does not exceed the prescribed upper bounds. Constraint 5 ensure that a block is removed 

in one period only. Constraint 6 is the precedence set of blocks that must be removed prior 

an ore block i. 

According to Kumral (2012), cited by (Sari, 2014), the production scheduling can be 

formulated as shown in Equation 5, as long as the cut-off value is previously defined.  

𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓(𝑀𝑀) = ∑ ∑ 𝑉𝑉𝑖𝑖𝑗𝑗(𝑚𝑚)𝑀𝑀𝑖𝑖𝑗𝑗𝑁𝑁
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1   

Subject to: 

𝑀𝑀𝐿𝐿𝑖𝑖 ≥ 𝑀𝑀𝑗𝑗𝑖𝑖 ,      𝑖𝑖 = 1,2, … ,𝑇𝑇;  𝑗𝑗 = 1,2, … ,𝑁𝑁 ;∀𝐿𝐿 ∈ 𝐿𝐿𝑗𝑗  (8) 

∑ �𝑟𝑟𝑗𝑗 + 𝑣𝑣𝑗𝑗�𝑀𝑀𝑖𝑖𝑗𝑗 − 𝐶𝐶 ≤ 0,    𝑖𝑖 = 1,2, … ,𝑇𝑇𝑁𝑁
𝑗𝑗=1   (9) 

∑ �𝑟𝑟𝑗𝑗 − 𝐴𝐴𝑖𝑖�𝑀𝑀𝑖𝑖𝑗𝑗 ≤ 0,    𝑖𝑖 = 1,2, … ,𝑇𝑇𝑁𝑁
𝑗𝑗=1   (10) 

𝐻𝐻𝐿𝐿 ∑ 𝑀𝑀𝑖𝑖𝑗𝑗𝑟𝑟𝑗𝑗 ≤𝑁𝑁
𝑗𝑗=1 ∑ 𝑐𝑐𝑗𝑗𝑀𝑀𝑖𝑖𝑗𝑗𝑟𝑟𝑗𝑗 ≤ 𝐻𝐻𝑢𝑢 ∑ 𝑀𝑀𝑖𝑖𝑗𝑗𝑟𝑟𝑗𝑗 ,    𝑖𝑖 = 1,2, … ,𝑇𝑇𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑗𝑗=1   (11) 

∑ 𝑀𝑀𝑖𝑖𝑗𝑗 ≤ 1,   𝑗𝑗 = 1,2, … ,𝑁𝑁𝑻𝑻
𝑖𝑖=1   (12) 

𝑀𝑀𝑖𝑖𝑗𝑗 ∈ {0,1},   𝑖𝑖 = 1,2, … ,𝑇𝑇; 𝑗𝑗 = 1,2, … ,𝑁𝑁 

Equation 5. Simplified MILP model for NPV maximization.(Kumral, 2012)  

 

Where N is the number of blocks considered for extraction; T is the number of periods of 

extraction; m is a binary parameter that defines if the block grade is greater than or equal 

to cut-off value; Vij is the net discounted (NPV sense) profit of the block; rj is the ore amount 

for block j; Ai is the mineral processing capacity for period i; vj is the waste amount in the 

block j; C is the mining capacity; Lj is the set of precedence blocks that must be removed 

before mining block j;  HL and HU are the lower and upper bounds for blending restrictions; 

Cj is the grade of the block j. Constrain 8 ensures that for every extracted block j, its 

precedence set of block Lj have been selected for extraction. Constrains 9 and 10 ensure 

that the mining and processing capacities are hold. Constrain 11 ensures that the blending 

quality for each period is between the upper and lower bounds. Constrain 12 ensures that 

any block is extracted only one time during LoM. 
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According to Johnson (1969) cited by Sattarvand (2009), proposed to solve this problem 

by decomposing of the large multi-period production planning model into a master problem 

and a set of sub-problems that are exactly similar to UPL problem. After solving all sub-

problems by well-known UPL algorithms such as Lerchs-Grossmann’s algorithm, solving 

the master problem would be relatively simple. Although this method produces optimum 

solutions for each period individually, however, it does not optimize the problem totally.  

D. Espinoza et al (2012) said that “researchers have used Lagrangian Relaxation, 

e.g.,Dagdelen & Johnson (1986), in order to maximize net present value subject to 

constraints on production and processing. Akaike & Dagdelen (1999) extend this work by 

iteratively altering the values of the Lagrangian multipliers until the solution to the relaxed 

problem meets the original side constraints, if possible. Kawahata (2006), includes a 

variable cutoff grade. This research has been successful at solving some instances, though 

authors also report difficulty in obtaining convergence, or even determining a feasible 

solution for the monolithic problem”. 

Espinoza et al (2012), studied the implementation of AMPL optimizer(Fourer, Gay, Hill, 

Kernighan, & T Bell Laboratories, 1990) to solve a formulation similar to Equation 5, as 

shown in Equation 6,  applied to different standard block models (Marvin, Newman, 

Maclaughlin, etc.), demonstrating that considerable size models could have a near optimal 

solution for multiple destination mine plan, however these block models are not real size 

problem. 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓(𝑀𝑀) = ∑ ∑ ∑ 𝑃𝑃𝑏𝑏𝑏𝑏𝑡𝑡𝑦𝑦𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡∈𝑇𝑇𝑏𝑏∈𝔇𝔇𝑏𝑏∈𝔅𝔅   

Subject to:  

∑ 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏≤𝑡𝑡 ≤ ∑ 𝑀𝑀𝑏𝑏′𝑏𝑏𝑏𝑏≤𝑡𝑡    ,   ∀𝑏𝑏 ∈ 𝔅𝔅;  𝑏𝑏′ ∈ 𝔅𝔅𝑏𝑏; 𝑡𝑡 ∈ 𝑇𝑇  (13) 

𝑀𝑀𝑏𝑏𝑡𝑡 = ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏∈𝔇𝔇  ,    ∀𝑏𝑏 ∈ 𝔅𝔅, 𝑡𝑡 ∈ 𝑇𝑇 (14) 

∑ 𝑀𝑀𝑏𝑏𝑡𝑡 ≤ 1,   ∀𝑏𝑏 ∈ 𝔅𝔅, 𝑡𝑡 ∈ 𝑇𝑇𝑡𝑡∈𝑇𝑇   (15) 

𝑅𝑅𝑏𝑏𝑡𝑡 ≤ ∑ ∑ 𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏∈𝔇𝔇 ≤ 𝑅𝑅𝑏𝑏𝑡𝑡𝑏𝑏∈𝔅𝔅  (16) 

𝑀𝑀 ≤ 𝐴𝐴𝑦𝑦 ≤ 𝑀𝑀 (17)  

𝑦𝑦𝑏𝑏𝑏𝑏𝑡𝑡 ∈ [0,1]    ∀𝑏𝑏 ∈ 𝔅𝔅;  𝑑𝑑 ∈ 𝔇𝔇; 𝑡𝑡 ∈ 𝑇𝑇    
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𝑀𝑀𝑏𝑏𝑡𝑡 ∈ {0,1},   ∀𝑏𝑏 ∈ 𝔅𝔅, 𝑡𝑡 ∈ 𝑇𝑇  

Equation 6. MILP model for multiple destinations. 

 

Where pbdt is the profit for a block b  in NPV sense, xbt is a binary variable which equals 1 

if block b is extracted in time period t, and 0 otherwise, a second variable, ybdt, which equals 

the amount of block b sent to destination d. Constraint 13  is the precedence requirements 

for all blocks and time periods. Constraint 14 ensures that the extraction and processing 

variable values are consistent. That is, if a block is not extracted, its contents cannot be 

sent to any destination, and if a block is extracted, the entirety of its contents must be sent 

somewhere. Constraints 15 restrict a block to be extracted at most once over the horizon. 

Constraints 16 require that no more operational resource than available is used for 

extraction purposes. Constraints 17 represent general side constraints, it can model cases 

in which mining operations are governed by more than simply “common sense”, 

sequencing, and operational resource constraints (Mineral content that is considered as a 

penalty, minimal operational width, etc.) in the form of knapsacks. Note that because x can 

be written as a function of y (see (14)), it is not included the former variable in this constraint. 

In Addition,  Kumral (2011) cited by Sari (2014) stated that a mineral processing operation 

is installed according to ore consistency in the sense of certain specifications of ore material 

(e.g. grade, impurities and grindability). Also, Kumral (2011) suggested, when the objective 

function of the formulation is established to maximize the NPV of LoM, the ore extraction 

will be set at a lower order of importance since high grade blocks are going to be selected 

at initial periods because they produce a greater NPV and then, extra cost is added to the 

process because the difficult to reproduce these early high grade periods of extraction is 

raised. Therefore, it is necessary to study a different approach that when it is solve the ore 

and waste production rates are hold stable.  

1.2.2 Metaheuristic Approach for Open Pit Mine Scheduling  

1.2.2.1 Why Metaheuristics? 
“The consequences of the computational complexity for a great many real world problems 

are fundamental. Exact method for scheduling problems “become computationally 

impracticable for problems of realistic size, either because the model grows too large, or 
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because the solution procedures are too lengthy, or both, and heuristics provide the only 

viable scheduling techniques for large projects” (Cooper, 1976)”(Collet & Rennard, 2006). 

Therefore, instead of the usually used exact methods, heuristics or metaheuristics (nature-

inspired algorithms) should be developed to solve this problems. According to Voß et al 

(2012), cited by Collet et al (2006)) “a metaheuristic is an iterative master process that 

guides and modifies the operations of subordinate heuristics to efficiently produce high-

quality solutions. It may manipulate a complete (or incomplete) single solution or a 

collection of solutions at each iteration. The subordinate heuristics may be high (or low) 

level procedures, or a simple local search, or just a construction method”.  

1.2.2.2 Simulated Annealing  
Initially Kirkpatrick et al (1983), developed this optimization technique based on an analogy 

in condensed matter physics, annealing is a thermal treatment technique in which a metallic 

or glass material is heated up sufficiently and then cooled gradually down to rearrange in a 

new configuration, where it is probable to reach a lower energy level (crystallization) at the 

internal structure of the solid. Metropolis et al (1953) proposed a simple algorithm to 

simulate the behavior of a collection of atoms at a given temperature. At each iteration, a 

small random move is applied to an atom and the difference of energy ΔE is computed. If 

ΔE ≤ 0 the new state is always accepted. If Δ > E 0 the new state is accepted according to 

a probability defined by Equation 7. 

 

𝑝𝑝(∆𝐸𝐸) = 𝑒𝑒−∆𝐸𝐸/𝑘𝑘𝐵𝐵𝑇𝑇  

Equation 7. Metropolis Criterion for Perturbation probability of acceptance. 

 

Simulated Annealing Algorithm steps could be described briefly as: 

1. Build a Seed or Initial Solution β 

2. Evaluate the Objective value of β 

3. Select a neighbor solution θ through a perturbation mechanism 

4. If Objective value of θ is greater(for maximization problem) that objective value of 

β, select θ as the new state solution 
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5. Else select β according to the probability function of Equation 7 where T is the 

current temperature of the system. 

6. Update the system temperature 

7. Repeat step 3 

8. Finish when stop condition is reached (system is frozen). 

 

According to Thomas (1996) cited by Sattarvand (2009), “initial temperature and the cooling 

rate are the critical factors in the success of SA process. Excessively low starting 

temperature makes the process to converge too quickly and a sub-optimal solution might 

be produced. In contrast, extremely high initial temperature would cause spending a long 

time on poor initial solutions. Similarly, rapidly cooling of the system potentially gets locked 

around a local-optimum solution and produces a sub-optimal consequence. On the other 

hand, disproportionately slow cooling rate unnecessarily rises the computation time”.  

1.2.2.3 Simulated Annealing Applied to Open pit Scheduling 
Kumral & Dowd (2005) proposed a methodology to develop a production schedule by using 

SA Algorithm to improve any suboptimal schedule, that fits better to the objective of an 

open pit mine company, but achieving sub-optimality. Kumral et al (2005) affirmed that 

“there is no universally admitted scheduling approach because all methods, more or less, 

suffer from some shortcomings such as assumptions, period by period scheduling and 

computer time. This shortcomings lead to sub-optimality”. 

 

The objective function was construct to solve a multi-objective minimization problem, 

divided in 3 main components, deviation from the required tonnage, penalty and opportunity 

cost for each content variable and content variability of each content variable 

  

The first component of the objective function ensures that the ore quantity extracted in each 

period satisfy mill or plant capacity, minimizing an implicit cost associated to deviation from 

the required tonnage. The second component is modeled to control the cost associated to 

the average content of the variable under consideration (metal grade or equivalent), if the 

extracted ore is not between the upper and lower tolerance limits that the company sets. 

The last component is meant to minimize the cost associated to the content variance of the 

variable through LoM. Finally, the objective function is equal to the sum of every single 
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objective/cost using a different weights for each component previously explain, Kumral et 

al (2005) emphasized that the selection of weights (or priorities) is critical and they depend 

on the ore body, sales contract, ore market structure and plant characteristics. Additionally, 

it is necessary to punctuate that the sum of all weights must be equal to one. Besides, two 

major constrains are set to ensure some common company issues. The first one ensures 

that the maximum number of periods of extraction is not exceeded, and another that 

guarantees a minimum operational area to the extraction of every ore block. 

 

1.3 Stochastic Optimization for Open pit scheduling  
The last section was emphasized in optimization techniques applied to find the best design 

to the open pit mine, so it must be recognized the major role for developing forecast, 

maximization and management of cash flows and the financial aspects that reign in the 

mining operation. The key input for all open pit schedule optimization methods is the 

orebody that have been modeled through estimation techniques. Independent of the 

estimation method applied, the resulted model is a representation that does not reproduce 

the in situ characteristics of ore content. Furthermore, the orebody is discretized to a finite 

number of blocks containing averaged values, propagating uncertainty to the different 

mining process. Mining design and production scheduling are nonlinear transfer functions 

in consequence, averaged grades may not provide an average profile of response 

uncertainty. 

1.3.1 Stochastic Block Model 
 

In general, as Dimitrakopoulos (2011) stated, the estimated orebody model is based on 

imperfect geological knowledge and lacks of inclusion or assessment of the related 

geological uncertainty. As Dimitrakopoulos (1998) and Albor (2010), highlighted, due to the 

smoothing effect(overestimate low-grade zones and underestimate high-grade values) 

present in any estimated type orebody model, as in the case of a kriged model, the 

histogram and variogram show lower variability than the actual data which leads to not 

meeting production targets and NPV forecasts.  
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To deal with the unknown deposit and its attributes of interest, one may generate several 

models (images) of the deposit based on and conditional to the same data and statistical 

properties (Dimitrakopoulos, 1998). This images are representations of the same orebody 

conditioning to include all data within the deposit, so they can be considered as equally 

probable, Figure 1 illustrate the idea. Sequential geostatistical simulation methods have 

been widely accepted for the simulation of in situ mineral properties, and are based on an 

application of the Bayes Theorem (Kumral et al, 2005)(Goovaerts, 1999). 

 
Figure 1. Conditional Geostatistic simulation scheme.(Dimitrakopoulos, 1998)  

 

The simulation algorithms take into account both the spatial variation of actual data at 

sampled locations and the variation of estimates at unsampled locations. It means that 

stochastic simulation reproduces the sample statistics (histogram and semi-variogram 

model) and honors sample data at their original locations(Soltani et al, 2013). Therefore, 

according to Goodfellow (2014), geostatistical simulation methods are tools used to 

generate equally probable scenarios of a mineral deposit, where each simulation accurately 

reproduces the spatial statistics of the original drillhole data. 

 

1.3.2 Integrating Uncertainty to Open Pit Scheduling 
Optimization 
As previously was studied, applying optimization techniques to improve or solve all the 

related open pit problems is a major refinement of the traditional approaches developed at 

early state of mining research, however, it must be understand that an optimal solution is 

only optimal for the data input to the model, thus, for real processes like mining means that 

an average type input does not generate an average LoM schedule and forecast. 

Ravenscroft (1992) cited by Albor & Dimitrakopoulos (2009) suggested using simulated 
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orebody models to probabilistically assess the performance of production targets as a 

function of the use of a given mine design and a Life of Mine production schedule. 

Dimitrakopoulos et al (2002), studied a typical, disseminated, low-grade, epithermal, quartz 

breccia-type gold deposit, hosted in intermediate– felsic volcanic rocks and sediments; and 

how geological uncertainty and risk in the design, planning and production expectations is 

accentuated by the generally low ore reserve grade and a variable. Subsequently, 50 

realizations of the deposit were developed to quantify geological risk for the given mine 

design and long-term mine plan. This was implemented by replacing the estimated orebody 

model with each one of the 50 simulations and rerunning the optimization while the other 

mining and economic parameters are kept the same. The NPV outcome for the traditional 

approach was shown to be higher than the ninety-fifth quantile of the distribution, i.e. there 

is a 95% probability of the project returning a lower NPV than predicted by the estimated 

orebody model.  Average in generates different average out, conventional optimization are 

misled and can not provide good forecast. Figures 2 and 3 shows the results of the 

(Dimitrakopoulos et al., 2002) case of study. 

 

 
Figure 2. NPV sensitivity analysis applied on simulated orebodies.(Dimitrakopoulos et al., 

2002) 

 

The previous example shows the importance and implications of managing properly the 

uncertainty, but it generates the question of how could a mine planner integrate it. Godoy 
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& Dimitrakopoulos (2004) proposed a four stage stochastic optimiser process based on SA 

that can joint multiple simulated orebody representations and showed a 28% improvement 

in cash flows generated from the stochastic LoM schedule versus the conventional one. 

Leite & Dimitrakopoulos (2007) developed a three stage framework generating a final 

schedule, which considers geological uncertainty so as to minimise the risk of deviations 

from production targets. Figure 4 summarize the process to generate a robust design 

capable of increasing value while minimizing risks.  

 
Figure 3. Probability distribution function for NPV analysis.(Dimitrakopoulos et al, 2002) 

 

 
Figure 4. Three stage formulation for stochastic open pit schedule optimization.(Leite & 

Dimitrakopoulos, 2007) 

 

Leite et al (2007) stated that the proposed approach steps follows as: 

• Definition, through a conventional optimization approach, of the ultimate pit limits 

and mining rates to be used in subsequent stages. 
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o Mining rates are either defined by a commonly used interactive procedure, 

or are preselected for mine operational reasons related to mill demand and 

geometric constraints. Any approach to defining mining rates can be 

accommodated in this stage. 

 

• Development of a set of schedules within the predetermined pit limits that meet the 

ore and waste production targets defined in the previous stage; this set of schedules 

is developed using any scheduler and simulated orebodies one at a time. 

o The mining sequences generated are used to compute the probability that a 

mining block belongs to a given period of the LoM schedule. The map of 

such probabilities is basic input for SA in Stage 3. 

 

• Generation of a single production schedule that minimises the risk of deviation from 

production targets using a SA formulation. 

o The perturbation method applied in this method was through the use of a 

connectivity test. A block is said to have connectivity, if at least one of the 

four surrounding blocks at the same level is scheduled in the same 

candidate period, the block just above it is scheduled in a previous or in the 

same period, and the block just below it is scheduled after or in the same 

period. If a block has connectivity it can be swapped to the candidate period. 
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2.  Case of study 

For the development of this research work, a hypothetical disseminated copper deposit was 

considered. The model consist of blocks of dimensions 20x20x10 meters, without subcells, 

with a total of 282800 blocks. For the stochastic analysis twenty orebody simulation are 

considered. The economic viability for each block was defined with copper price equal to 

4629.71 USD/Ton. The rock density is equal to 2.7 Ton/m3. In Table 1, it can be seen the 

economic parameters defined for the case study. The mining ore and waste mining rates 

were predefined. Table 2 shows the production targets for each mining period. 

Table 1. Economic Parameters defined to Case of study. 

Parameter Value 
Mining Cost 1 USD/Ton 

Processing Cost 6.5 USD/Ton 
Cost Augmentation 

rate 0.1 USD/level 

Discount rate 10% 
 

Table 2. Mining production Targets. 

Mining 
Period 

Ore 
(106 Ton) 

Waste 
(106 

Ton) 
1 7.5 20.5 
2 7.5 20.5 
3 7.5 20.5 
4 7.5 20.5 
5 7.5 20.5 
6 7.5 10 
7 7 2 
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Figure 5. Estimated Model and Some orebody simulation. 

2.1 Open pit Limits  
In section 1.1 the open pit limits problem was studied. The importance of this stage at the 

long term mine planning development could be avoid if the computational capabilities allow 

it, however for research propose this problem is going to be solved. Industry engineers 

generally consider this as a standard or must have practice, because it reduces the size of 

the optimization problem. Nevertheless, this process carries some drawbacks, due its 

nature to maximize ore while minimizing waste over undiscounted cash flow and its 

performance is sensitive to the input values. Applying the Picard’s formulation stated in 

section 1.1.2  and Equation 1, through GUROBI optimization software(Gurobi Optimization 

Inc., 2015) with Python API, Algorithm 1 shows how it was modeled for the deterministic 

case. 

#load Input Information: 
val = net_value_All_blocks_sim1 
edges = Precedencies_oreblocks 
lof = range(7) 
 
#Create Model: 
m = Model() 
n = len(val) # number of blocks 
 
# Decision variable for each block 
x={} 
for i in range(n): 
    x[i] = m.addVar(vtype=GRB.BINARY, name="x%d" %(i)) 



 

m.update() 
 
# Set objective 
obj = quicksum(val[i]*x[i] for i in range(n)) 
m.setObjective(obj,GRB.MAXIMIZE) 
 
#Load Precedence Constraints:  
for edge in edges: 
    u = edge[0] 
    v = edge[1] 
    m.addConstr(x[u]<=x[v]) 

  m.optimize() 
 

Algorithm 1. Picard’s formulation modeled through GUROBI Python API 

The net value for each block calculation was determined using Equation 7. To calculate the 

precedencies for each mineralized block a 45° cone was projected and all the blocks that 

were contained were paired with its corresponded ore block, i.e. Figure 6 shows a possible 

case of blocks that must be extracted prior the ore block is mined, so the resulting edge 

array will contain the sets [ore,1],[ore,2],…[ore,5]. The cut-off is the minimum copper grade 

which allows a extraction without differing on loss. 

𝑡𝑡𝑒𝑒𝑡𝑡𝑣𝑣𝑀𝑀𝑛𝑛𝑢𝑢𝑒𝑒𝑛𝑛𝑛𝑛𝑡𝑡𝑐𝑐𝑘𝑘𝑖𝑖 =

�
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑇𝑇𝑒𝑒 ∗ ((𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑒𝑒 ∗ 𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡𝑣𝑣𝑒𝑒𝑟𝑟𝑦𝑦 ∗ 𝐶𝐶𝑢𝑢𝑖𝑖) − �(𝑛𝑛𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛𝑖𝑖 ∗ 𝐴𝐴𝑢𝑢𝑇𝑇𝑚𝑚𝑒𝑒𝑡𝑡𝑡𝑡𝑀𝑀𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑅𝑅𝑀𝑀𝑡𝑡𝑒𝑒) + 𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑇𝑇𝐶𝐶𝑡𝑡𝑛𝑛𝑡𝑡� + 𝑃𝑃𝑟𝑟𝑡𝑡𝑐𝑐.𝐶𝐶𝑡𝑡𝑛𝑛𝑡𝑡))   𝒊𝒊𝒊𝒊  𝑪𝑪𝑪𝑪𝒊𝒊 > 𝑪𝑪𝑪𝑪𝒄𝒄𝑪𝑪𝒕𝒕−𝒐𝒐𝒊𝒊𝒊𝒊

−1 ∗ 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑇𝑇𝑒𝑒 ∗ �(𝑛𝑛𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛𝑖𝑖 ∗ 𝐴𝐴𝑢𝑢𝑇𝑇𝑚𝑚𝑒𝑒𝑡𝑡𝑡𝑡𝑀𝑀𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑅𝑅𝑀𝑀𝑡𝑡𝑒𝑒) + 𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑇𝑇𝐶𝐶𝑡𝑡𝑛𝑛𝑡𝑡�  𝒊𝒊𝒊𝒊 𝑪𝑪𝑪𝑪𝒊𝒊 < 𝑪𝑪𝑪𝑪𝒄𝒄𝑪𝑪𝒕𝒕−𝒐𝒐𝒊𝒊𝒊𝒊
  

Equation 7. Net value for ore and waste blocks. 

 

Figure 6. Precedencies possible case for ore block. 

 

The resulting open pit shell or maximum contour for orebody simulation 1 is shown in the 

Figure 7, and its value of 534.46 million dollars, 67.28 million tons of ore and 222.1 million 

tons of waste. 
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2 
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Ore 



36 Stochastic optimization of strategic mining planning of a hypothetical copper 
deposit through a parameterizable algorithm developed in python 

 
 

 
Figure 7. Ultimate pit limits for Simulation 1. 

 

2.2 Deterministic Open pit scheduling 
For comparison purpose, it was determined that a deterministic schedule should be 
developed with traditional or common industry practices. Miningmath SimSched was the 
selected software to schedule the E-type orebody, the same operational parameters were 
used, as Table 1 and 2 shows. Similarly, Figure 8 overviews the parameters on the 
software. 

 

Figure 8. Overview of used parameters for MiningMath SimSched Direct Block Schedule 
Algorithm. 

A cross section from the final deterministic schedule is shown in the Figure 9, which 
cumulative NPV reached a value of 158.34 Million dollars, the total production deviation 
was 11.7 million Tons of ore overall LoM, and it can be seen at Figure 11. 

 



 

 

Figure 9. Cross section for deterministic schedule. 

 

Figure 10. Cumulative NPV for deterministic schedule. 

 

Figure 11. Tonnage of ore produced and production targets overall LoM. 

 

Figure 12. Tonnage of waste produced and production targets overall LoM. 
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2.3 Stochastic Open pit scheduling optimization 
As stated earlier in section 1.3.2, (Leite & Dimitrakopoulos, 2007) approach is divide in a 

three stage process. This was the selected methodology for the current case of study, it is 

a simplified version of Godoy et al (2004) that has proved benefits. 

 

Stage 1: the mining rates that must be accomplished every period of the LoM are necessary 

input for the development of open pit schedules. Table 2 shows the predefined mining rates 

by the equipment capacity for this case of study.   

 

Stage 2: a set of schedules were generated according the twenty orebody simulations. The 

schedule optimization formulation proposed at this stage is a period to period  programming 

approach based on MILP formulation from Kumral’s NPV maximization formulation 

(Equation 5) using Gurobi python API(Gurobi Optimization Inc., 2015). The reason to use 

this formulation is because Equation 5 formulation memory consumption is over 16 

Gigabytes (maximum available RAM at GIPLAMIN laboratory). Milawa Algorithm (Whittle, 

1999) and MILP formulation have been used to develop initial schedules and the effects of 

this decision were not significant. In Addition, others researchers like Albor (2010) and Sari 

(2014), found out that the implications to the final stochastic Schedule were minimum. 

Algorithm 2 shows the proposed period to period formulation for NPV schedule 

maximization. 

 

 
#load Input Information: 
val = net_value_All_blocks_sim_i 
edges = Precedencies_oreblocks_i 
tonore = Tonnage_for_ore_blocks 
tonwaste = Tonnage_for_waste_blocks 
discrate = discount_rate_array_7periods 
lof = range(7) 
 
#Create Model: 
m = Model() 
n = len(val) # number of blocks 
 
# Decision variable for each block 
x={} 
for i in range(n): 
    x[i] = m.addVar(vtype=GRB.BINARY, name="x%d" %(i)) 
m.update() 



 

 
# Set objective 
obj = quicksum(val[i]*x[i]*discrate[0] for i in range(n)) 
m.setObjective(obj,GRB.MAXIMIZE) 
 
#Load Precedence Constraints:  
for edge in edges: 
    u = edge[0] 
    v = edge[1] 
    m.addConstr(x[u]<=x[v]) 

   
#Add ore and waste constraints for period 1: 
m.addConstr(quicksum(tonore[i]*x[i] for i in 
range(n))<=7500000,name="core") 
m.addConstr(quicksum(tonwaste[i]*x[i] for i in 
range(n))<=20500000,name="cwaste") 
 
m.optimize() 
 
#user must create a function for solution storage named print solution 
sol=print_solution() 
#store optimized period 1 in final schedule 
sch=[] 
sch.append(sol) 
 
#function to replace the value of every block extracted in period1 to zero, 
this avoid the influence of the blocks in next periods. 
def updatesch(): 
    for i in sol: 
        val[i]=0 
        tonore[i]=0 
        tonwaste[i]=0 
 
updatesch() 
#function to change discount rate according the period N=2,3,…,7 
def new_obj(N): 
    objt=quicksum(val[i]*x[i]*discrate[N] for i in range(n)) 
    m.setObjective(objt,GRB.MAXIMIZE) 
 
#calculte max NPV extraction for period 2 to 5 because they keep the same 
ore-waste constraints 
new_obj(1) 
m.optimize() 
sol=print_solution() 
sch.append(sol) 
updatesch() 
new_obj(2) 
m.optimize() 
sol=print_solution() 
sch.append(sol) 
updatesch() 
new_obj(3) 
m.optimize() 
sol=print_solution() 
sch.append(sol) 
updatesch() 
new_obj(4) 
m.optimize() 
sol=print_solution() 
sch.append(sol) 
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#Change waste constraint for period 6, ore constraint is the same  
m.addConstr(quicksum(tonwaste[i]*x[i] for i in range(n)) 
<=10000000,name="cwaste") 
updatesch() 
new_obj(5) 
m.optimize() 
sol=print_solution() 
sch.append(sol) 
 
#Change ore-waste contraints for period 7 
m.addConstr(quicksum(tonwaste[i]*x[i] for i in 
range(n))<=2000000,name="cwaste") 
m.addConstr(quicksum(tonore[i]*x[i] for i in 
range(n))<=7000000,name="core") 
 
updatesch() 
new_obj(6) 
m.optimize() 
sol=print_solution() 
sch.append(sol) 

 
Algorithm 2. Proposed period to period programing approach for open pit scheduling 

modeled through Gurobi’s Python API. 
 

In Appendix 1 is shown the resulting schedules for every simulated orebody. So, these 

result will be implemented to calculate the seed or initial input for the Stage 3. Figure 6 

shows how number of blocks change according the probability to belong to a given mining 

period. To calculate the seed for the SA algorithm, the blocks with probability of 100% were 

frozen, and this did not constrain the set of candidate blocks for swapping in the Stage 3. 

A total of 1524 mineralized blocks were frozen and initially 8429 for swapping. 



 

 
Figure 13. Frozen mineralized blocks according probability. 

 

 

Stage 3: The selection of the initial mining sequence or seed to start the stochastic 

optimization process has influence to the achieving time of the final stochastic schedule. 

Freezing blocks with low probability could led to local minimum. As section 1.2.2.2 

explained, to continue the SA algorithm, it is needed to define a perturbation strategy, so 

that the improvement for new solution is probable.  

 

The perturbation method:  In the transition mechanism, a solution is perturbed by swapping 

or adding blocks that do not belong the set of frozen blocks. The selection of a candidate 

block is random, so a block could be already in a previous perturbed state or not. This 

defines the type of transition mechanism, allowing a block to be added or moved to the next 

or previous period of extraction, if current block period is at the boundaries (Initial or final 

period), or moved to a randomly selected period. This stochasticity enable the algorithm to 

test a wider neighborhood of possible solution.  
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Simulated Annealing Algorithm: the objective function is used to measure the difference 

between a candidate perturbed schedule and the state schedule. The Equation 8 shows 

the applied objective function for this research, it is design to minimize the ore and waste 

deviation from production targets over all simulated orebodies. In addition, a geological 

discount rate factor is introduce to improve the schedule because early periods are more 

penalize for deviation of production targets. According to Godoy et al (2004), if a mining 

sequence achieves that objective for all the equally probable simulated orebody models, 

there is a 100% chance that the production targets will be met, given the knowledge of the 

orebody as represented in the simulations. Algorithm 3 the SA optimization was developed 

to perfectly understand how the decision of accept or reject a perturbation was taken. There 

were two major stop constraints, the freezing temperature of the system and the maximum 

numbers of perturbation without change. The Cooling schedule was design to only reduce 

the current temperature if a perturbation was accepted.  

 

𝑀𝑀𝑖𝑖𝑡𝑡 𝑍𝑍 = �� �|𝑂𝑂𝑡𝑡∗(𝑛𝑛) −𝑂𝑂𝑡𝑡(𝑛𝑛)|
𝑆𝑆

𝑠𝑠=1

+  �|𝑤𝑤𝑡𝑡∗(𝑛𝑛) −𝑤𝑤𝑡𝑡(𝑛𝑛)|
𝑆𝑆

𝑠𝑠=1

�
𝑇𝑇

𝑡𝑡=1

𝐺𝐺𝑡𝑡 

Equation 8. Objective function for stochastic optimization. 

 

 

 
#Function of Simulated Annealing 
def  simulatedannealing(seed): 
    counter 
    T=1 
    k=1 
    xi=seed 
    state=xi 
     
    while T>0: 
#Function “move” perturb the current state solution and delivers its 
objective value (vax) 
        xi,vax = move(state, T) 
#Objective Function was modeled in Function “OVTon” which inputs are a 
Schedule and the ore and was production target array 
        vastate=OVTon(state,target) 
        delta=vax-vastate    
        if(vax < vastate): 
            state = xi 
            vastate=vax 
            counter=0 



 

#Function “update_temperature” reduce the system temperature 
            T = update_temperature(T, k) 
        else: 
#Metropolis Criterion for perturbation acceptance 
            p=np.exp(-1*delta/T) 
            if np.random.random()<p: 
                state=xi 
                vastate=vax 
                counter=0 
                T = update_temperature(T, k) 
#if Metropolis Criterion rejects, a counter variable constraint the 
algorithm to break the process   
            else: 
                counter+=1 
#”k” variable is to understand how many perturbation were made before 
acceptance or the process is finished 
        k += 1 
        if counter==100: 
            break     
    return state 

 
Algorithm 3. Simulated annealing formulation programed in Python 

 

Many tries were made before determining the final schedule, thus the suboptimal nature of 

SA algorithm. Using the best so far schedules a risk analysis overall the equiprobable 

simulated orebodies was realized, so it can be selected the best option as LoM. Metal 

production and cumulative NPV were the variable analysed. Figure 14 shows a cross 

section of the sequence of extraction for both considered solutions. The first schedule 

presented an average deviation from production targets of 7.5 Million Tons of ore (overall 

LoM), an expected NPV of 267.6 Million Dollars. On the other hand. The second considered 

solution average deviation from production target is 12.34 Million Tons of ore (overall LoM) 

and an expected NPV 257.77  Million Dollars.  
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Figure 14. Sequence of extraction for first considered solutions. 

 

 
Figure 15. Cumulative NPV of proposed Solution 1 and 2. 

 



 

 
Figure 16. Ore and waste tonnage for solutions 1 and 2. 

 

 
Figure 17. Copper Production of considered solutions 1 and 2. 
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3. Conclusions and recommendations 

3.1 Conclusions 
The present study explores the impacts of open pit methods through mining research 

history. The Lerchs-Grossman Algorithm was overviewed, and the linear programing 

approaches were applied, understanding the impacts for mine planning between each 

other. Many schedule approaches were stated, however the deterministic nature of the 

problem could lead to unprecise solution. While a continuous series of assumptions are 

made and average values are established, the risk spectrum gets wider, therefore if a 

company is able to assess that risk, any phase at the mine design process would get added 

value for future procedures for financial analysis. Covering the impacts of traditional 

methods, through classical studies, a new field of research is open to improve the long term 

plans. The stochastic optimization is able to manage the in-sitv geology variabilities that 

affect directly the profitability of the mining company, in addition, the proposed method 

showed an increased NPV up to 69% in compared to the traditional schedule. By using this 

methodology one can evaluate any mine project so a conditional value at risk can be 

measure before investments and the possible losses are assessed based on a confidence 

level. 

 

Finally, it is concluded that due the sub optimality of SA algorithm solution depends on mine 

planner and stakeholders, who guide the best so far solutions according their particular 

interest. A wide field of modifications for objective value and constraints from SA algorithm 

is opened to test for improvement at the already found proposed solutions. 

3.2 Recommendations 
A particular methodology was studied to find a solution for the open pit schedule problem, 

however, a comparison between industry standard process and the proposed approach 

should be done to properly show the benefits of the research. The geostatistical estimation 

and simulation process is a must have for oncoming studies. 
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A. Appendix: Sequences of 
extraction for orebody simulations 

 

Figure A1. Dynamic programing Schedule for orebody 1 simulation. 

 

Figure A2. Dynamic programing Schedule for orebody 2 simulation. 

 

Figure A3. Dynamic programing Schedule for orebody 2 simulation. 

 

Figure A4. Dynamic programing Schedule for orebody 4 simulation. 

 



 

 

Figure A5. Dynamic programing Schedule for orebody 5 simulation. 

 

 

Figure A6. Dynamic programing Schedule for orebody 6 simulation. 

 

Figure A7. Dynamic programing Schedule for orebody 7 simulation. 

 

 

Figure A8. Dynamic programing Schedule for orebody 20 simulation. 
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Figure A9. Dynamic programing Schedule for orebody 9 simulation. 

 

 

Figure A10. Dynamic programing Schedule for orebody 10 simulation. 

 

 

Figure A11. Dynamic programing Schedule for orebody 11 simulation. 

 

 

Figure A12. Dynamic programing Schedule for orebody 12 simulation. 



 

 

 

Figure A13. Dynamic programing Schedule for orebody 13 simulation. 

 

 

Figure A14. Dynamic programing Schedule for orebody 14 simulation. 

 

Figure A15. Dynamic programing Schedule for orebody 15 simulation. 

 

 

Figure A16. Dynamic programing Schedule for orebody 16 simulation. 
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Figure A17. Dynamic programing Schedule for orebody 17 simulation. 

 

 

Figure A18. Dynamic programing Schedule for orebody 18 simulation. 

 

 

Figure A19. Dynamic programing Schedule for orebody 19 simulation. 

 

 

Figure A20. Dynamic programing Schedule for orebody 20 simulation. 


	1. Literature Review
	1.1 Ultimate pit limits for Open pit Design
	1.1.1 Lerchs-Grossmann
	1.1.2 Picard’s Maximum Flow Algorithm

	1.2 Open Pit Scheduling Problem
	1.2.1 Mix Integer Linear Programming formulation for Open Pit Scheduling
	1.2.2 Metaheuristic Approach for Open Pit Mine Scheduling
	1.2.2.1 Why Metaheuristics?
	1.2.2.2 Simulated Annealing
	1.2.2.3 Simulated Annealing Applied to Open pit Scheduling

	1.3 Stochastic Optimization for Open pit scheduling
	1.3.1 Stochastic Block Model
	1.3.2 Integrating Uncertainty to Open Pit Scheduling Optimization


	2.  Case of study
	2.1 Open pit Limits
	2.2 Deterministic Open pit scheduling
	2.3 Stochastic Open pit scheduling optimization

	3. Conclusions and recommendations
	3.1 Conclusions
	3.2 Recommendations


