
A model-driven deployment approach for
applying the performance and scalability

perspective from a set of software
architecture styles

Jeisson Andrés Vergara Vargas

Universidad Nacional de Colombia
Facultad de Ingeniería, Departamento de Ingeniería de Sistemas e Industrial

Bogotá, D. C., Colombia
2017

A model-driven deployment approach for
applying the performance and scalability

perspective from a set of software
architecture styles

Jeisson Andrés Vergara Vargas

Thesis presented as a partial requirement for the degree of:
Master in Systems Engineering and Computer Science
«Magíster en Ingeniería - Ingeniería de Sistemas y Computación»

Advised by:
M.Sc., Henry Roberto Umaña Acosta

Research Field:
Software Engineering

Research Group:
Colectivo de Investigación en Ingeniería de Software (ColSWE)

Universidad Nacional de Colombia
Facultad de Ingeniería, Departamento de Ingeniería de Sistemas e Industrial

Bogotá, D. C., Colombia
2017

Dedicated to my grandma.

“There is no certainty in sciences where one of the
mathematical sciences cannot be applied, or which are not
in relation with these mathematics.”

- Leonardo da Vinci

Acknowledgments

First of all, I want to express my deepest thanks to my dear university, the Universidad Nacional
de Colombia. I am very proud to belong to this university and much more to contribute to the
development of the software engineering, even if it is a minimal contribution. Likewise, my
most sincere thanks to all the professors who were part of my life at the university, providing
me an excellent education. Special thanks to my academic father and advisor, professor Henry
Roberto Umaña Acosta, for his teaching, support and guidance during the last years.

Thanks to my girlfriend Daniela for her huge love and for being my motivation to finish this
research work. In the same way, I want to thank my mom for her guidance in my life and for
her motivation to develop my master program. Likewise, thanks to my uncle, my aunt and my
grandpa for their support and understanding. Special thanks to Saray for her accompaniment
and for transmitting me her happiness. In addition, thanks to Ana, Eder and Daniel for their
invaluable friendship and motivation.

Thanks to all the authors cited in this document, without their work, it would have been really
hard to develop this research work. Finally, I want to thank the juries, professors Felipe Re-
strepo Calle and Kelly Garcés Pernett, for sharing their knowledge and some of their time in the
evaluation of this research work.

ix

Title in English

A model-driven deployment approach for applying the performance and scalability perspective
from a set of software architecture styles.

Título en español

Un enfoque de despliegue dirigido por modelos para aplicar la perspectiva de rendimiento y
escalabilidad a partir de un conjunto de estilos arquitectónicos de software.

x

Abstract

Software architecture aims to satisfy software requirements from different points of view. This
is represented by models, which are the reference to understand the structure and behavior
of the software. Nevertheless, one of the great challenges of software engineering is to ensure
that design, implementation and deployment of the software are consistent. In the same way,
another challenge is to ensure that a system improves its performance when it is in a scenario
of receiving many requests per unit of time. In this manner, this research work presents a pro-
posed model-driven deployment approach which from software architecture models, automates
the deployment of software systems on a cloud computing platform by means of the application
of scalability tactic, specifically horizontal scaling. In addition, this work includes a traditional
model-driven development processwhich automates the implementation of the software system
to be deployed. Likewise, Sarch is designed and proposed, a domain-specific language based on
the specification of a set of architectural styles and their representation as architectural views.
Finally, a tool called Sarch-Studio is built, which allows writing in Sarch language and performs
automatic development and deployment processes.

Keywords: SoftwareArchitecture, Performance, Scalability, Horizontal Scaling, CloudComputing,Model-
DrivenDeployment,Model-DrivenDevelopment, Domain-Specific Language, Architectural Style, Archi-
tectural View.

xi

Resumen

La arquitectura de software pretende satisfacer los requisitos de software a partir de diferentes
puntos de vista. Esta es representada por medio de modelos, los cuales son la referencia para
comprender la estructura y comportamiento de el software. Sin embargo, uno de los grandes
retos de la ingeniería de software es asegurar que el diseño, la implementación y el despliegue
del software sean consistentes. De la misma forma, otro reto es lograr que un sistema de soft-
ware mejore su rendimiento cuando este se encuentra en un escenario de recepción de muchas
solicitudes por unidad de tiempo. De esta manera, este trabajo de investigación presenta un
enfoque de despliegue dirigido por modelos, que a partir de modelos de arquitectura de soft-
ware, automatiza el despliegue de sistemas de software en una plataforma de computación en
la nube, por medio de la aplicación de tácticas de escalabilidad, específicamente de la táctica
de escalamiento horizontal. Además, este trabajo incluye un proceso tradicional de desarrollo
dirigido por modelos, el cual automatiza la implementación de los sistemas de software a ser de-
splegados. Así mismo, se diseña y se propone Sarch, un lenguaje de dominio específico basado
en la especificación de un conjunto de estilos arquitectónicos y su representación como vistas
arquitectónicas. Finalmente, se implementa una herramienta llamada Sarch-Studio, que permite
escribir en lenguaje Sarch y es la encargada de realizar los procesos automáticos de desarrollo y
despliegue.

Palabras clave: Arquitectura de Software, Rendimiento, Escalabilidad, Escalamiento Horizontal, Com-
putación en la Nube, Despliegue Dirigido por Modelos, Desarrollo Dirigido por Modelos, Lenguaje de
Dominio Específico, Estilo Arquitectónico, Vista Arquitectónica.

Contents

Acknowledgments vii

Abstract x

List of Figures xiv

List of Tables 1

1. Introduction 2
1.1. Problem Statement . 3
1.2. Objectives . 3

1.2.1. General Objective . 3
1.2.2. Specific Objectives . 3

1.3. Contribution . 4
1.4. Outline of the Thesis . 4

2. Background 6
2.1. Software Architecture . 6

2.1.1. Architectural Styles . 7
2.1.2. Architectural Views . 7
2.1.3. Performance and Scalability Perspective 9
2.1.4. Distributed Architectures . 10

2.2. Domain-Specific Languages . 10
2.3. Model-Driven Engineering . 11
2.4. Cloud Computing . 14

3. Related Work 15
3.1. Architecture Description Languages . 15
3.2. DSLs for Documenting Software Architectures 16
3.3. Support the Software Development Process . 17
3.4. Support the Software Deployment Process . 17
3.5. Deployment in a Cloud Computing Platform . 18

4. Model-Driven Deployment 19
4.1. Definition . 19

Contents xiii

4.2. Methodology . 20

5. Sarch Language 22
5.1. Architectural Schema . 23
5.2. Data Model View . 23
5.3. Layered View . 25
5.4. Component-and-Connector (C&C) View . 27
5.5. Deployment View . 28

6. Sarch-Studio Tool 32
6.1. Sarch-Studio Architecture . 32

6.1.1. Associated Technologies . 33
6.1.2. Components . 33

6.2. Target Software Architecture . 35
6.2.1. Associated Technologies . 35
6.2.2. Software Architecture Description . 37

6.3. Model-Driven * Processes . 38
6.3.1. Automation of Development . 38
6.3.2. Automation of Deployment . 39

7. Evaluation 42
7.1. Conceptual Analysis . 42
7.2. Practical Analysis . 43

8. Conclusions and Future Work 46
8.1. Conclusions . 46
8.2. Future Work . 46

A. Appendix: Sarch Language Metamodel 47

B. Appendix: Views of the Case Study 48

C. Appendix: Case Study designed in Sarch Language 50

D. Appendix: Implementation and Generation of Case Study 52

Bibliography 56

List of Figures

1-1. Graphical representation of thesis proposal. 5

2-1. Software Architecture context. 6
2-2. Relationship between styles and views. 7
2-3. 4+1 View Model. 8
2-4. Classification of styles/views in the Views & Beyond (V&B) Catalog. 9
2-5. Microservices Architecture (MSA). 11
2-6. Domain-Specific Languages (DSLs) context. 11
2-7. MDE process: relationship between metamodels, models, modeling languages

and transformations. 12
2-8. Model-Driven Engineering (MDE) context. 13
2-9. Cloud Delivery and Cloud Deployment models. 14

3-1. Architecture Description Languages context. 15
3-2. Documenting software architectures. 16
3-3. Supporting the software development process. 17
3-4. Supporting the software deployment process. 18
3-5. Deploying software systems in the cloud. 18

4-1. MDDep in the context of MDE. 19
4-2. MDDep methodology. 20

5-1. Sarch language. 22
5-2. CST for the architectural schema in Sarch language. 23
5-3. CST for the Data Model view in Sarch language. 25
5-4. CST for the Layered view in Sarch language. 26
5-5. CST for the Component-and-Connector (C&C) view in Sarch language. 28
5-6. CST for the Deployment view in Sarch language (part A). 30
5-7. CST for the Deployment view in Sarch language (part B). 31

6-1. Layered architecture of Sarch-Studio. 32
6-2. Xtext, Eclipse Modeling Framework (EMF), and Xtend. 33
6-3. Definition of Sarch grammar in the Xtext environment. 34
6-4. Definition of Sarch transformations in the Xtend environment. 34

LIST OF FIGURES xv

6-5. Editor component of Sarch-Studio. 35
6-6. MySQL, Java, Maven, GlassFish, Docker, Rancher, HAProxy, Amazon Web Ser-

vices (AWS), and JMeter. 36
6-7. Target architecture from the point of view of the C&C view in a semiformal rep-

resentation . 38
6-8. Final interaction between Sarch-Studio and the Cloud Platform. 41

7-1. Rancher server environment with 4-nodes infrastructure on the cloud. 43
7-2. Performance curves with knee for each scenario (requests vs. response time). . 45
7-3. Performance curves for each scenario (requests vs. throughput). 45

A-1. Sarch Language Metamodel. 47

B-1. Graphic representation of the Data Model view. 48
B-2. Graphic representation of the Layered view. 48
B-3. Graphic representation of the C&C view. 49
B-4. Graphic representation of the Deployment view. 49

C-1. Software architecture wrote in Sarch (i). 50
C-2. Software architecture wrote in Sarch (ii). 51

D-1. Code structure of the project. 52
D-2. Docker structure for database, microservice, web application and load balancer. 53
D-3. Model and Resource classes of microservice. 54
D-4. Web application visualization (Index and Create Post). 55

List of Tables

7-1. Conceptual analysis of Sarch: approaches vs. main aspects. 42
7-2. Stress test results. 44

1. Introduction

Taylor et al. in [53] describe the Software Architecture (SA) as the set of principal design decisions
made about a software system. In general, software architecture is the design of the highest ab-
stract level of the structure of a software system. An architecture is selected and designed based
on functional and nonfunctional requirements, and many challenges of designing an architec-
ture are related to the ever increasing complexity of the software. However, the way of building
software architectures is not unique, all of design decisions possibilities establish a common
objective that allows to define a specialization of elements, relations and properties at a high
level. These specializations are called Architectural Styles.

On the other hand, one of the most important quality attributes that must be guaranteed by
the software architecture is the Scalability, i.e., the ability of a software system to handle the
increased workload, which may be due to an increase in the number of requests or transactions
[49]. In this way, improving the performance of the system. Thereby, the key premise in this
research work is that a set of styles can be considered as the basis of a language adjusted to a
particular domain , i.e., a Domain-Specific Language (DSL) focused on software architecture model-
ing. In this context, we propose Sarch, a DSL aimed to the design of software architectures from
the definition of the DataModel, Component-and-Connector (C&C), Layered and Deployment Architectural
Views, representations of a set of architectural styles presented by Clements et al. in the Views
and Beyond (V&B) catalog [19].

Sarch is proposed from two approaches: support the software development and the software
deployment. The first approach is done through a Model-Driven Development (MDD) paradigm,
which improve the software implementation process based on models supported by powerful
tools and processes [15]. In the same way, the second approach is done through a Model-Driven
Deployment (MDDep) approach, which is a proposed paradigm that uses models, as in MDD, but
using them to automate the software deployment. Hence, Sarch is used as the metamodel of
MDDep and MDD processes, where a Sarch instance represents a software architecture model.
This model allows to generate the source code of a Java web-based software system with a
distributed software architecture, an architecture composes of a set of autonomous components
that work together. Likewise, the model allows to deploy the system on a cloud computing
platform from the definition of a Horizontal Scaling schema for each one of the components that
are part of the architecture. This method allows to improve the performance of the system and
support an increase in the number of concurrent users supported [49].

1.1 Problem Statement 3

1.1. Problem Statement

This work focuses its research question on two important aspects. First, the way as a software
engineering process can be more consistent is exist an harmonic relationship between software
design, implementation and deployment. And second, the way as a software system can improve
its performance and scalability when it is in a scenario of receiving many requests per unit of
time. In the two cases, software architecture plays a main role because it defines the most im-
portant design decision at a high level: supporting good design practices, basis for an adequate
software implementation, providing the way how a software system should be deployed after
satisfying the functional requirements, and finally, applying architectural tactics to guarantees
the fulfillment of some nonfunctional requirements. In this way, there are two related research
questions that are proposed to solve the problems described: 1) How can consistency be en-
sured between designing, implementing and deploying a software when there are nonfunctional
requirements as performance and scalability that may affect the quality of the software?, 2) How
can automatic deployments be generated from the formal definition of a software architecture
design?

1.2. Objectives

1.2.1. General Objective

Propose a model-driven deployment approach for applying the performance and scalability per-
spective from a software architecture designed with the data model, component-and-connector,
layered and deployment styles.

1.2.2. Specific Objectives

• Design a set of domain-specific languages and meta-models for the architectural styles of
data model, component-and-connector, layered and deployment.

• Implement a tool that supports the design of software architectures for web applications
from the data model, component-and-connector, layered and deployment styles.

• Generate the functional architecture of a web application, in a defined programming lan-
guage, from an architectural design in the datamodel and component-and-connector styles,
and a predefined architectural design in the layered style.

• Generate the deployment architecture for a cloud computing platform from an architec-
tural design in the deployment style.

4 1 Introduction

• Perform stress tests on a set of generated deployment architectures, in order to demon-
strate the benefits of using the scaling architectural tactic to optimize the performance
and scalability of a web application.

1.3. Contribution

The contributions of this thesis can be defined as follows:

• A newModel-Driven Engineering (MDE) approach: we recognize the advantages of MDE for auto-
mate important aspects into the software engineering field, specially, the code generation
with the model-driven development approach. In this way, aModel-Driven Deployment (MD-
Dep) approach is proposed. It automates software deployments from a formal software
architecture specification.

• A domain-specific language focused on the software architecture modeling: in order to allow the de-
sign of software architecture models, Sarch is proposed, a domain-specific language that
allows the design of distributed software architectures. Its design is based on a set of
architectural styles and its representation as architectural views. Given its domain, Sarch
can be considered as a new Architecture Description Language (ADL).

• A tool for modeling software architectures: a tool called Sarch-Studio is proposed. It supports
writing code in Sarch language, automatic code generation and automatic deployment of
the software systems designed.

An overview of the thesis proposal is shown in Figure 1-1. It includes the general process of
definition, transformation and automation.

1.4. Outline of the Thesis

This thesis is organized as follows: Chapter 1 introduces the research work developed in the
thesis. Chapter 2 provides background information, mainly for software architecture andmodel-
driven engineering. Chapter 3 gives the related work. Chapter 4 introduces the model-driven de-
ployment approach. In Chapter 5, Sarch language is presented and described. Chapter 6 presents
the Sarch-Studio tool that we have developed for modeling software architectures through Sarch
language. In Chapter 7, an evaluation of Sarch language and Sarch-Studio is explained. Chapter
8 presents the conclusions and future work.

1.4 Outline of the Thesis 5

Software
Architecture

Model

Architectural Styles

Data Model Style

Layered Style

C&C Style

Deployment Style

Architectural Views

Data Model View

Layered View

C&C View

Deployment View

DSL

MDD

Process

MDDep

Process

Deployment
Schema

Web-Based
Software
System

Cloud
ComputingStress Testing

Figure 1-1.: Graphical representation of thesis proposal.

2. Background

The main goal of this chapter is to give a general overview around the most important topics
that motivate this research work. This chapter is organized as follows: Software Architecture,
Domain-Specific Languages (DSLs), Model-Driven Engineering (MDE), and Cloud Computing.

2.1. Software Architecture

Software Engineering defines a set of tasks that allows the application of common engineering ac-
tivities on the process of software creation. Thus, we can describe six activities as the most
important tasks in the software engineering field: software requirements, software design, soft-
ware development, software deployment, software testing and software maintenance [52].

In this way, Software Design is the activity of specifying programs and sub-systems, as well as their
constituent parts and their operation in order to meet software product specifications [30]. The
software design includes two important parts: the architectural design, which defines the functional
and nonfunctional aspects of a specific software system, and the detailed design that specifies the
aspects of each one of the elements defined in the architectural design. This research work
considers only the architectural design, in order to show the importance of this design as the
highest abstraction level of a software. As well as its representation as models to assure its un-
derstanding by the different stakeholders of whole software lifecycle.

Software
Requirements

Software
Development

Software
Design

Software
Testing

Software
Deployment

Software
Maintenance

Software
Architecture

Figure 2-1.: Software Architecture context.

2.1 Software Architecture 7

The discipline that is responsible of the architectural design, is the Software Architecture (SA). Taylor
et al. in [53] describe the software architecture as the set of principal design decisions made
about a software system. Likewise, Rozanski et al. in [49] describe the software architecture as
the structure of structures of the system, which comprise software elements, relations among
them, and properties of both. In general, software architecture is the design of the highest
abstract level of the structure of a software system.

2.1.1. Architectural Styles

A software architecture is selected and designed based on functional and nonfunctional require-
ments, and many challenges of designing a software architecture are related to the ever increas-
ing complexity of the software. However, the way of building software architectures is not
unique, all design decisions possibilities establish a common objective that allows to define a
specialization of elements, relations and properties of software systems. Each one of these spe-
cializations is known as an Architectural Style [19]. Hence, these styles abstract design solutions
at a high level.

Thus, an architectural style can be defined as a named collection of architectural design decisions
with a set of configuration rules, a vocabulary of design elements, and a semantic interpreta-
tion [53]. Among the most popular architectural styles, we can find: Client-Server, Peer-to-Peer
(P2P), Layered, Pipe and Filter, Publish-Subscribe (Pub/Sub), Event-Based Architecture, Object-
Oriented Architecture, Component-Based Architecture, Service-Oriented Architecture (SOA),
Agent-Oriented Architecture, REpresentational State Transfer (REST), and Microservices Archi-
tecture (MSA).

2.1.2. Architectural Views

An architectural view (software architecture view) is a representation of a set of system elements
and the relationships associated with them [19]. Thus, when an architectural style is applied to
a software system, an architectural view is obtained.

Architectural
Style

Architectural
View

Software
System

Figure 2-2.: Relationship between styles and views.

8 2 Background

There are many proposal about how a software system is represented through a set of views and
these views are commonly represented through diagrams. Among the most popular catalogs of
architectural views, we can find:

• 4+1 View Model (Kruchten’s 4+1): this model was proposed in 1995 by Kruchten [39]. It
consists of four main views: Logical, Process, Development and Physical view, and an
complementary view: Scenarios. Each view describes the concerns of the various stake-
holders of the architecture: end-user, developers, systems engineers, project managers,
etc.

Logical
View

Development
View

Process
View

Physical
View

Scenarios

Figure 2-3.: 4+1 View Model.

• ISO/IEC/IEEE 42010 (Systems and Software Engineering - Architecture Description): this Interna-
tional Standard specifies the manner in which architecture descriptions of systems are or-
ganized and expressed [36]. It specifies architecture viewpoints, architecture frameworks
and architecture description languages.

• The Viewpoint Catalog: this catalog was proposed by Rozanski & Woods in [49], and it de-
scribes six different viewpoints: Functional, Information, Concurrency, Development, De-
ployment, and Operational. This propose focuses on the description of stakeholders, con-
cerns and models related to each viewpoint.

• Views & Beyond (V&B) Catalog: this catalog was proposed by Clements et al. in [19], and
it is designed from the concept of architectural style, specifically, from its definition as a
package of design decisions. The V&B Catalog describes three categories of styles. The
Module Styles that introduce a set of modules (implementation unit) of a software system,
and a set of rules that allow the way how the modules can be combined. The Component-
and-Connector (C&C) Styles which expresses the runtime behavior of a software system. And
finally, the Allocation Styles that describe the way how a set of software elements (presented
in the C&C) can be allocated on a hardware environment. In this way, the V&B Catalog
uses the concept of architectural view, i.e., the result of apply an architectural style on
a software system. Thus, this catalog offers a set of architectural views: Module Views,
Component-and-Connector (C&C) Views, and Allocation Views. In addition, for each set of views,

2.1 Software Architecture 9

V&B Catalog

Module Views C&C Views Allocation Views

Decomposition View

Uses View

Generalization View

Layered View

Aspects View

Data Model View

Data-Flow Views

Call-Return Views

Event-Based Views

Repository Views

Deployment View

Install View

Work Assignment View

Figure 2-4.: Classification of styles/views in the Views & Beyond (V&B) Catalog.

a set of elements, relations and properties are described in detail. The classification of
styles/views in the V&B Catalog is shown in Figure 2-4.

2.1.3. Performance and Scalability Perspective

The most representative nonfunctional software requirements are the Software Quality Properties
(Attributes), i.e., a set of factors which can be affect the software design and the runtime behav-
ior of a software system. Hence, an Architectural Perspective defines a collection of activities and
tactics that are used to ensure that a software system exhibits a set of related quality properties
[49]. Among the most important quality properties we can mention: Performance, Scalability,
Availability, Resilience, Interoperability, Security, and Usability.

The Performance and Scalability Perspective defines a set of architectural tactics related to the treat-
ment of two important concepts:

• Response Time: the time it takes to complete an interaction with a software system [49].

• Throughput: the amount of workload that a software system is capable of handling in a unit
time period [49].

Thus, the main objective of this perspective is to handle the environment of a software system
in order to increase its Performance: decrease response times and increase throughput. This is
done through the Scalability, the ability of a software system to handle this increased workload

10 2 Background

[49], and there are two common architectural tactics that can be applied: Vertical Scaling, i.e.,
increase the power of existing system by adding more powerful hardware, and Horizontal Scaling,
i.e., add more nodes to server of the software system.

2.1.4. Distributed Architectures

From the definition of architectural styles, these present a set elements that allows the concep-
tion of a software system to be built. However, the way as this build is done depends of the
functional and nonfunctional requirements.

One of the most common nonfunctional requirements is to handle aspects related to quality
attributes, mainly related to the perspectives of scalability and high availability, where it is nec-
essary to reduce the size of software elements in order to handle each one in a more complete
way, i.e., guaranteeing its functionality, performance and availability separately. This helps to re-
duce possible points of failure but increase the complexity of the interaction between elements.
In this way, software architectures are composed of a set of elements that work collaboratively
with each other and make the architecture have a distributed focus.

Two important architectural styles that have a distributed approach are described below:

• REpresentational State Transfer (REST): it is a client-server-based architectural style that is
structured around a small set of create, read, update, delete operations which are known
in REST as POST, GET, PUT, DELETE respectively [14] [54]. In addition, REST is based on
a single addressing scheme (Uniform Resource Identifier (URI)), an schema that allows to
identify resources in the web. It is important to highlight that REST uses HTTP (Hypertext
Transfer Protocol) as its communication protocol. Thus, RES is considered as the archi-
tectural style of the web and it has a distributed focus because the web is distributed by
definition: a set of resources distributed around the world.

• Microservices Architecture (MSA): it is a service-based architecture, an architecture composed
of a set of elements, calledmicroservices. A microservice is a loosely coupled services, which
implement business capabilities. On the other hand, microservices are connected through
REST and a a system composed of multiple, collaborating services, it is possible to use
different technologies inside each one [45]. In addition, it is a good practice that each
microservice has its own database. this makes the data models quite small.

2.2. Domain-Specific Languages

In the context of computer languages, there are two types of languages: the General-Purpose Lan-
guages (GPLs) and the Domain-Specific Languages (DSLs). The first that can be applied to any domain

2.3 Model-Driven Engineering 11

microservice_1 microservice_2 microservice_3

database_1 database_2 database_3

microservice_4

database_4

Figure 2-5.: Microservices Architecture (MSA).

for programming purposes, and the second, that are defined for a specific context or domain.
In this manner, a Domain-Specific Language (DSL) is a computer language of limited expressive-
ness where it is adjusted to a particular domain and provide notations and abstractions close
to it [29], [20], [25]. Both GPLs and DSLs can be of different type, mainly Programming Languages
and Modeling Languages. A general classification of computer languages as the context of DSLs is
shown in Figure 2-6.

Computer Languages

General-Purpose
Languages

(GPLs)

Domain-Specific
Languages

(DSLs)

Programming
Languages

Modeling
Languages …

Figure 2-6.: Domain-Specific Languages (DSLs) context.

C, C++, Java, Python, Ruby and Go (programming languages), and UML (Unified Modeling Lan-
guage) are some examples of GPLs. On the other hand, R for statistical operations and processes,
SQL for relational databases operations, XML for data transport, MatLab for mathematics, and
HTML for the development of web pages, are examples of DSLs.

2.3. Model-Driven Engineering

Model-Driven Software Engineering (MDSE) or simply Model-Driven Engineering (MDE) is defined as a
methodology for applying the advantages of modeling to software engineering activities [15].
Thus, MDE comprises concepts, notations, process, rules and tools, important features that al-
low the modeling process. Nevertheless, the most important concepts related toMDE areModels

12 2 Background

and Transformations, and the key promise of both concepts is that with a set of models and a set
of transformations applied on them, it is possible to create software in an automatic or semiau-
tomatic way [15].

Models provide abstractions of a physical system that help software engineers to reason about a
software system by ignoring extraneous details while focusing on the relevant ones. All forms
of engineering rely on models as essential to understanding complex real-world systems. Like-
wise, a related concept is Metamodel which describes concepts that can be used for modeling
the models, i.e., models can be defines as instances of metamodels [50]. On the other hand,
transformations define the MDE aspect that allow the definition of mappings between different
models and they are defined at the metamodel level, and then applied at the model level [15].
A model transformation is performed between a source and a target model [50]. There are two
types of models transformations: Model-to-Model (M2M) andModel-to-Text (M2T) transforma-
tions [15], in the M2M transformations both input and output parameters are models, while in
the M2T transformations the input is a model and the output is a text string. These transforma-
tions techniques are based on two phases [15]: defining a mapping between elements of a model
to elements to another one; and automating the generation of the actual transformation rules
through a system that receives as input the two model definitions and the mapping between
them and produces the transformations.

Finally, a third concept that is important highlight is the Domain, because it is the starting point
of a MDE process and it describes a bounded field of interest or knowledge [50], generally, the
domain specify the space of the problem where a MDE process is applied. Hence, in a MDE
process, the domain y specified through a DSL. In this case a Domain-Specific Modeling Language
(DSML) which defines the basis of the metamodels, and the language instances are considered
as the models. Figure 2 shows an overall vision of a MDE process and the relationship between
the models, metamodels, modeling languages and transformations.

Metamodel
Modeling
Language
(DSL)

Model

TransformationsAutomation

Figure 2-7.: MDE process: relationship between metamodels, models, modeling languages and
transformations.

A MDE process can be considered as a part of Model-Based Engineering (MBE) that is a process in
which software models play an important role although they are not necessarily the key artifacts
of the development [15]. This is the main difference between the word ”driven” and ”based”.

2.3 Model-Driven Engineering 13

In addition, MDE defines three main approaches [15]:

• Model-Driven Development (MDD):Model-Driven Software Development (MDSD), or simply
Model-Driven Development (MDD) is a development paradigm that uses models as the
primary artifact of the development process. MDD promises to improve the software
construction process based on a software-driven models supported by powerful tools and
process. In addition, Model-driven Architecture (MDA) is a particular MDD proposal of the
Object Management Group (OMG) ¹.

• Model-Driven Interoperability (MDI): it aim at defining bridges to achieve interoperability be-
tween two or more software systems by applying model-driven techniques. It is important
to mention that interoperability is a quality property defined as the ability of two or more
systems (or software components) to exchange information [14].

• Model-Driven Reverse Engineering (MDRE): process of obtaining useful higher-level represen-
tations of software systems already built.

TheMDE context is shown in Figure 2-8. The representation presents the relationships between
the different approaches described above: MBE, MDE, MDD, MDA, MDI, and MDRE.

MBE

MDE

MDI

MDD

MDA

MDRE

Figure 2-8.: Model-Driven Engineering (MDE) context.

¹See: http://www.omg.org/

14 2 Background

2.4. Cloud Computing

Cloud Computing is defined by Gartner as a style of computing in which scalable and elastic IT-
enabled capabilities are delivered as a service using Internet technologies ². Thus, cloud com-
puting has two important roles: cloud providerwhich provides cloud-based IT resources, and cloud
consumer which has a formal contract or arrangement with a cloud provider to use IT resources
made available by the cloud provider [27].

Likewise, cloud computing has two important models [27] that define the main characteristics
of cloud services (show 2-9).

Delivery Models

Cloud

Deployment Models

IaaS PaaS SaaS Public

Private

Community

Hybrid

Figure 2-9.: Cloud Delivery and Cloud Deployment models.

• Cloud Delivery Models: it represents a specific, pre-packaged combination of IT resources
offered by a cloud provider. There are three common delivery models which are described
as follows [27]. Infrastructure-as-a-Service (IaaS) that represents an environment comprised of
infrastructure resources. Platform-as-a-Service (PaaS) that represents an environment com-
prised of already deployed and configured resources to software creation. And Software-as-
a-Service (SaaS) that represents a set of reusable software services which have a determined
functionalities.

• Cloud Deployment Models: it represents a specific type of cloud environment, primarily dis-
tinguished by ownership, size, and access [27]. Thus, there are four common deployment
models: public, private, community and hybrid clouds.

²See: http://www.gartner.com/

3. Related Work

This chapter provides a brief but comprehensive state of the art of the approximations related
with the proposal of this research work. Hence, a set of five different approaches has been
identified an they are described below. In general terms, these approaches have been classified
from the scope of previous research works related with DSLs for software architecture and the
automation of software development and deployment processes from a software architecture
design.

3.1. Architecture Description Languages

The first approximation is the definition of an Architecture Description Language (ADL). An ADL is a
domain-specific language designed to model a software system [44]. The ADLs are formal lan-
guages that can be used to represent the architecture of a software-intensive system [18]. The
main advantage is that an ADL describes the software and the hardware of a software system,
covering different types of features, components, and processes such as threads, data, sub-
programs, processors, devices and memory. There are different specifications of ADLs bun in
general terms, the ADLs born with the objective of describe software systems from the con-
ception of components and connectors. Independently of the ADL, it will described the way as the
components behave and the way they communicate with each other through connectors.

Software Architecture

Software
System

ModelADL

Figure 3-1.: Architecture Description Languages context.

Among the most relevant contributions related with ADLs, it is important to mention: ACME
[31] and ACME++ [24], ADLs focused on the evaluation of nonfunctional attributes in traditional
architectural styles like Client-Server and Peer-to-Peer. On the other hand, there are some ap-
proximations related with software systems based on distributed architectures like Component-

16 3 Related Work

Based Architecture [57], [48] and Service-Oriented Architecture (SOA) [37], these ADLs are fo-
cused on the description of systems that have a collection of components/services and how they
satisfy the functional and nonfunctional requirements by means of their constant interaction.
It is worth mentioning AADL, an ADL that provides a means for the formal specification of the
hardware and software architecture of embedded computer systems and system of systems [28].

Finally, there are some works focused on the design of software architectures from proposed
DSLs, however these DSLs can be considered as ADLs due to its domain. E.g., Zdun with a DSL
toolkit for taking decisions around a set of candidate architectures [56]. And Gilson et al. who
propose a DSL for designing architectures from the conception of requirement interactions [33].

3.2. DSLs for Documenting Software Architectures

A second approximation is the definition of some architectural styles as Domain-Specific Lan-
guages, specifically the styles defined by Clements et al. in the Views and Beyond catalog [19].
This approach is used to generate automatic software architecture documentation. The work
includes two relevant parts: the definition of the Domain-Specific Languages [23] and the build
of tools that allows modeling Architectural Views [22] to define the functionality of automatic
architecture document generation. Moreover, as a remarkable work, Demirli in [21] presents
each one of the Module, Allocation and Component-and-Connector styles [19], [23] as a meta-
model, which shows a MDD approach with the implementation of a tool called SAVE-Bench [22].

On the other hand, another work is related to the relationship that exists between the soft-
ware architecture and the developers and others stakeholders with respect to the development
process. In this way, Yazdanshenas et al. propose a DSL to allow developers to communicate
properly through the abstraction of the development viewpoint of the Viewpoint Catalog [55]
[49]. Its purpose is the communication between different stakeholders as engineers, testers,
architects and developers.

Software
System

Software
Architecture
Description

Figure 3-2.: Documenting software architectures.

3.3 Support the Software Development Process 17

3.3. Support the Software Development Process

Many works have been proposed in this field aimed at generating source code automatically; a
remarkable one is WebDSL, a DSL designed to support the implementation of dynamic web ap-
plications from some features as a rich Data Model [10], the definition of user interface elements
and actions that defines the behavior of the application. On the other hand, there are few works
that use a DSL based on the specification of software architecture styles. One of these works
is proposed by Cavalcante et al. [17], who introduce the implementation of a MDD process in
which, from the π-ADL [47] architectural description, it is possible the semiautomatic source
code generation in Go programming language. Likewise, Aldrich et al. [13] propose ArchJava,
a Java extension that unifies Software Architecture with implementation, ensuring that the im-
plementation conforms to architectural constraints; in this case, it is important to note that the
extension is made based on the Component-and-Connector style [19].

Software System

</>

Figure 3-3.: Supporting the software development process.

3.4. Support the Software Deployment Process

It is very important to highlight some works to support the deployment process take into ac-
count the basis of model-driven engineering, i.e., automate the processes. As a remarkable
work, Lascu et al. present an automatic deployment approach of component-based applications
[41]. Specifically, connecting a large number of heterogeneous software components through
the use of complex algorithms designed and formal model of components with the objective
of computing the sequence of actions that permits the deployment of software system with a
desired configurations [42]. In addition, Khalgui et al. present a similar approach but from an
heuristic based method [38]. Likewise, Lan et al. propose an important work to automate the
deployment process of large-scale systems [40]. In the first step, a tool visualizes the target soft-
ware architecture in order to help deployers to understand the structure of the software system.
In the second step, the tool can automatically generate the deployment information from the
architecture description. And as the third step, the tool can monitor the hardware resource con-
sumptions and deploy the subsystems onto multiple machines simultaneously.

18 3 Related Work

Hardware
Software
System

Figure 3-4.: Supporting the software deployment process.

On the other hand, Nicolas et al. propose and approach to the automatic deployment of embed-
ded systems from an UML specification [46]. Hoenisch et al. and Lee et al. present an approach
for the software auto-scaling using containers [35], [43], a way to package software in order to
run isolated. More details of this technology is presented in the next chapters. In addition, Gas-
sara et al. propose a formal method based on a formal language called BRS (Bigraphical Reactive
System) in order to guarantee the correctness of the deployment architecture, also with an auto-
scaling focus and component-based software systems [32]. Finally, Gonzalez-Herrera et al. [34]
present a work that proposes a framework called Kevoree. This framework is an open-source com-
ponent platform that allows the design of distributed software systems from the definition of
their components, in order to have a dynamic adaption in a set of nodes with multiple execution
platforms.

3.5. Deployment in a Cloud Computing Platform

Finally, there are some works related with the automatic deployment but in a cloud platform,
e.g., a set of frameworks for the automatic deployment of component-based applications in
different kind of cloud providers [16], [26]. The main objective of these works is to automate the
way as a software system can make use of different resources of the cloud, specially, resource
associated with the delivery models. Likewise, this seeks to integrate compute resources for
higher efficiency on the software systems execution.

Cloud

Software
System

Figure 3-5.: Deploying software systems in the cloud.

4. Model-Driven Deployment

4.1. Definition

Taking into account the advantages of Model-Driven Engineering (MDE), a new approach is pro-
posed in this research work: the concept of Model-Driven Deployment (MDDep). MDDep in the
context of MDE is shown in Figure 4-1.

MBE

MDE

MDI

MDD

MDA

MDRE

MDDep

Figure 4-1.: MDDep in the context of MDE.

In this manner, Model-Driven Deployment (MDDep) is defined as a way of software deploy-
ment automation. It consists of abstracting at a high level, a model containing all the elements
necessary to carry out the deployment of a software system in particular. From this model, we
perform a set of transformations associated with a valid deploy scheme and after the last trans-
formation, the software system is deployed according to the initial nonfunctional requirements.

The model that abstracts the process must be based on high-level architectural specifications
that allow to differentiate and to relate aspects of both software and hardware. It is important
to emphasize that this approach allows a more specific treatment of quality attributes of the
software that recurrently depend on the harmony between the software and the elements of

20 4 Model-Driven Deployment

the environment in which it is executed. Therefore, MDDep can be applied to architectural
perspectives such as performance, scalability and high availability.

4.2. Methodology

In order to apply this approach, it is necessary to define some steps that allow the automatic de-
ployment of software systems from a specified model. However, given the scope of this research
work, the methodology below presents an approach applied to the Performance and Scalability Per-
spective.

A. Analysis

B. Reference Implementation

D. Metamodeling and DSL Design

C. Stress Testing

G. Tool Validation

F. Tool Construction

E. Design of Transformations

Figure 4-2.: MDDep methodology.

A. Analysis: it consists of identifying the first software requirements associated with the pat-
terns, styles and technologies used in the deployment of a particular software system in a
particular infrastructure. It is important the identification of the elements, relations and
properties exposed in a specific domain. For this research work, the domain is the set of
architectural styles and architectural views.

B. Reference Implementation: based on the results of the previous phase, a reference implemen-
tation of a software system deployed on a defined platform is performed manually. The
reference implementation must be completely in line with a set of defined requirements.

C. Stress Testing: stress tests are performed on a defined infrastructure, with the objective
of obtaining the response times for each of the functional modules that are part of the
software system. Subsequently, the same procedure is performed, but making changes in
the deployment architecture, by means of the architectural tactic of horizontal scaling.

4.2 Methodology 21

D. Metamodeling and DSL Design: based on the above phases, this phase consists of the design
of a set of DSLs andmetamodels. Both the set of DSLs designed and the set of metamodels
designed will be in charge of defining the MDDep process. In this research work, a DSL
and a metamodel are built, based on the software architecture specifications.

E. Design of Transformations: this phase is in charge of mapping elements between the selected
platforms and the formal definition of the selected model, in order to allow the automatic
generation of a deployment scheme in the respective platform. This is done from models
built thanks to the specification of the DSLs and metamodels of the previous phase.

F. Tool Construction: defining the DSLs, the metamodels and the respective transformations,
a tool is built to support the creation of instances of the implemented DSLs, through a
graphic editor that has validation, suggestion and autocomplete characteristics of code
fragments. For this research work, the tool is the medium in which software architectures
are created, using models that represent architectural views in the defined styles.

G. Tool Validation: in this phase and by means of the built tool, an instance of the defined
model is designed, in order to automatically generate the deploying schemes. For this
research work, the software architecture is designed for the software system associated
with the reference implementation phase (phase B). Designed the architecture, validates
the tool, from the automatic generation of the deployment scheme for the defined plat-
form. The main objective is to ensure that both the deployment schema made in the
reference implementation and the automatically generated deployment schema are the
same. Finally, stress tests are performed again in order to validate the behavior of the
software system in the infrastructure used by the tool.

5. Sarch Language

Sarch is a DSL proposed as part of this research, whose objective is to allow the design of soft-
ware architectures. This design was based on a set of architectural styles proposed by Clements
et al. in the (V&B) Catalog [19]. This styles cover the necessary elements to support the imple-
mentation and deployment of a software system based on distributed architectures.

Figure 5-1.: Sarch language.

The selected styles: Data Model, Layered, Component-and-Connector (C&C), and Deployment
styles, are the basis for the definition of the Sarch structure and its design reflects the respective
views.

On the other hand, in order to describe the design of Sarch language, it is important to highlight
three relevant concepts related to the grammar design and the syntactic analysis of computer
languages.

• Grammar: description of the structure of the elements presented in a language through
the use of defined rules. This rules are the object of study of the Syntax.

• Extended Backus–Naur Form (EBNF): it is used to describe the syntax of computer lan-
guages. In particular, it is a notation for describing context-free grammars, i.e., grammars
where some production rule is of the form A → α, where A is a nonterminal symbol and
α is a string composed by a set of terminals and/or nonterminals.

• Concrete Syntax Tree (CST): also called Parse Tree, it is a tree data structure that represents
the grammar (syntactic structure) of a computer language.

Thus, the complete Sarch design is presented in the following subsections as EBNF and CST
representations.

5.1 Architectural Schema 23

5.1. Architectural Schema

This section of the grammar defines the general schema of a software architecture designed in
Sarch. In this way, Sarch allows to start the architectural design with a terminal called architec-
ture, followed by the name of the respective software system, and finally, with the definition of
the four related architectural views. The general schema of the Sarch grammar is shown below
(as EBNF representation) and in Figure 5-2 (as a CST).

⟨Architecture⟩ ::= ’architecture’ ⟨Identifier⟩ ’{’ ⟨Views⟩ ’}’

⟨Views⟩ ::= ⟨DataModelView⟩ ⟨LayeredView⟩ ⟨ComponentAndConnectorView⟩ ⟨DeploymentView⟩

⟨Identifier⟩ ::= {a-zA-Z0-9, _}

Architecture

architecture Identifier { }

DataModelView LayeredView ComponentAndConnectorView DeploymentView

Views

…

…

………

Figure 5-2.: CST for the architectural schema in Sarch language.

5.2. Data Model View

This view describes the static information structure of a software system. From the definition
of architectural style, elements and relations of this view are described below:

• Elements: data entity, which is an object that holds the information that needs to be stored
or somehow represented in a software system [19]. Its properties includemainly, name and
data attributes.

• Relations: the data model view has a set of relations that allows the communication be-
tween data entities. Among the best known are one-to-one, one-to-many and many-to-
many relations.

24 5 Sarch Language

Based on the above, Sarch defines the Data Model view as one of its views. The grammar of this
view represents the ability of define a set of data models, each one with a set of data entities,
and a set of relations between them.

This view has a set of features related to the common data model specifications. For each data
model defined, it is possible to define a set of attributes. Each attribute is represented by an
associated name and a defined type (String, int, float, double, and date). On the other hand, this view
allows the definition of a set of operations which are based on the traditional CRUD operations:
create, read (getAll and getById), update and delete. The definition of these operations indicate that it
can be applied over the attributes defined previously. The details of the view are shown below
(as EBNF representation) and in Figure 5-3 (as a CST).

⟨DataModelView⟩ ::= ’data-model-view’ ’::’ ⟨DataModel⟩+ ’::’

⟨DataModel⟩ ::= ’data-model’ ⟨Identifier⟩ ’{’ ⟨DataModelElements⟩ ⟨DataModelRelations⟩ ’}’

⟨DataModelElements⟩ ::= ’elements’ ’{’ ⟨DataModelElement⟩+ ’}’

⟨DataModelElement⟩ ::= ⟨DataEntity⟩

⟨DataEntity⟩ ::= ’data-entity’ ⟨Identifier⟩ ’{’ ⟨Attributes⟩ ⟨Operations⟩ ’}’

⟨Attributes⟩ ::= ’attributes’ ’{’ ⟨Attribute⟩+ ’}’

⟨Attribute⟩ ::= ⟨DataType⟩ ⟨Identifier⟩ ’;

⟨DataType⟩ ::= ’String’ | ’int’ | ’float’ | ’double’ | ’date’

⟨Operations⟩ ::= ’operations’ ’{’ ⟨Operation⟩+ ’}’

⟨Operation⟩ ::= ⟨OperationType⟩ ⟨Identifier⟩ ’;

⟨OperationType⟩ ::= ⟨GetAll⟩ | ⟨GetById⟩ | ⟨Create⟩ | ⟨Update⟩ | ⟨Delete⟩

⟨GetAll⟩ ::= ’getAll’

⟨GetById⟩ ::= ’getById’

⟨Create⟩ ::= ’create’

⟨Update⟩ ::= ’update’

⟨Delete⟩ ::= ’delete’

⟨DataModelRelations⟩ ::= ’relations’ ’{’ ⟨DataModelRelation⟩* ’}’

5.3 Layered View 25

⟨DataModelRelation⟩ ::= ⟨RelationType⟩ ’(’ [DataEntity] ’,’ [DataEntity] ’)’ ’;’

⟨RelationType⟩ ::= ⟨OneToOne⟩ | ⟨OneToMany⟩

⟨OneToOne⟩ ::= ’one-to-one’

⟨OneToMany⟩ ::= ’one-to-many’

DataModelView

data-model-view ::DataModel+::

data-model { DataModelElements DataModelRelations }

elements { DataModelElement+ }

DataEntity

relations { DataModelRelation* }

Identifier

data-entity { Attributes Operations }Identifier

attributes { Attribute+ } operations { Operation+ }

DataType ;Identifier OperationType ;Identifier

GetAll

‘getAll’

GetById

‘getById’

Create

‘create’

Update

‘update’

Delete

‘delete’

String’

‘int’

‘float’

‘date’

‘double’

RelationType ([DataEntity])[DataEntity],

OneToOne OneToMany

‘one-to-one’ ‘one-to-many’

;

Figure 5-3.: CST for the Data Model view in Sarch language.

5.3. Layered View

This view describes a division of the software into units and each unit represents a group of
modules that offers a cohesive set of services [19]. Elements and relations of this view are
described below:

• Elements: layer, which is a fundamental object that holds a set of services to other layers.

• Relations: the layered view has a relationship that allows the communication between dif-
ferent layers: allowed-to-use. It indicates the way as a layer can use other or others layers.

Based on the above, Sarch defines the Layered view as one of its views. The grammar of this
view represents the ability of define a set of layers, and a set of relations between them.

26 5 Sarch Language

This view has a classification of its layers: back-end and front-end layers. These are defined by
Sarch in order to separate the concerns related to the detailed design of special components of
the C&C view. Nevertheless, this condition will be completely described in the next chapter.
The details of the view are shown below (as EBNF representation) and in Figure 5-4 (as a CST).

⟨LayeredView⟩ ::= ’layered-view’ ’::’ ⟨LayeredElements⟩ ⟨LayeredRelations⟩ ’::’

⟨LayeredElements⟩ ::= ’elements’ ’{’ ⟨LayeredElement⟩+ ’}’

⟨LayeredElement⟩ ::= ⟨Layer⟩

⟨Layer⟩ ::= ’layer’ ’(’ ⟨LayerType⟩ ’)’ ⟨Identifier⟩ ’;’

⟨LayerType⟩ ::= ⟨BackEndLayer⟩ | ⟨FrontEndLayer⟩

⟨BackEndLayer⟩ ::= ’back-end’

⟨FrontEndLayer⟩ ::= ’front-end’

⟨LayeredRelations⟩ ::= ’relations’ ’{’ ⟨LayeredRelation⟩* ’}’

⟨LayeredRelation⟩ ::= ⟨AllowedToUse⟩

⟨AllowedToUse⟩ ::= [Layer] ’allowed-to-use’ [Layer] ’;’

LayeredView

layered-view :::: LayeredElements LayeredRelations

elements { LayeredElement+ }

Layer

relations { LayeredRelation* }

layer ;Identifier

AllowedToUse

(LayerType)

BackEndLayer FrontEndLayer

‘back-end’ ‘front-end’

[Layer] allowed-to-use [Layer] ;

Figure 5-4.: CST for the Layered view in Sarch language.

5.4 Component-and-Connector (C&C) View 27

5.4. Component-and-Connector (C&C) View

This view describes elements that have some runtime presence [19]. Elements and relations of
this view are described below:

• Elements: component, which represents the principal computational element or data store
that is present at runtime. And connector, which is a runtime pathway of interaction
between two or more components.

• Relations: the C&C view has a relationship that allows to attach components and connec-
tors: attachment. It indicates the way as a connector is associated with two components.

Based on the above, Sarch defines the C&C view as one of its views. The grammar of this view
represents the ability of define a set of components and connectors, and a set of relations be-
tween them.

This view presents a set of predefined components and connectors. Components can be of type
database, back-end, front-end and load-balancer. On the other hand, connectors can be of type jdbc,
rest, and http. Whenever a component is of type database, Sarch allows the possibility of relating
a data model designed in the Data Model view. In addition, the attachment relation is defined
by a connector and two components. However, these concepts will be completely described
in the next chapter. The details of the view are shown below (as EBNF representation) and in
Figure 5-5 (as a CST).

⟨ComponentAndConnectorView⟩ ::= ’component-and-connector-view’ ’::’ ⟨ComponentAndConnectorElements⟩
⟨ComponentAndConnectorRelations⟩ ’::’

⟨ComponentAndConnectorElements⟩ ::= ’elements’ ’{’ ⟨ComponentAndConnectorElement⟩+ ’}’

⟨ComponentAndConnectorElement⟩ ::= ⟨ComponentElement⟩ | ⟨ConnectorElement⟩

⟨ComponentElement⟩ ::= ’component’ ⟨ComponentType⟩ ⟨Identifier⟩ [DataModel]? ’;’

⟨ComponentType⟩ ::= ⟨Database⟩ | ⟨BackEnd⟩ | ⟨FrontEnd⟩ | ⟨LoadBalancer⟩

⟨Database⟩ ::= ’database’

⟨BackEnd⟩ ::= ’back-end’

⟨FrontEnd⟩ ::= ’front-end’

⟨LoadBalancer⟩ ::= ’load-balancer’

28 5 Sarch Language

⟨ConnectorElement⟩ ::= ’connector’ ⟨ConnectorType⟩ ⟨Identifier⟩ ’;’

⟨ConnectorType⟩ ::= ⟨JDBC⟩ | ⟨REST⟩ | ⟨HTTP⟩

⟨JDBC⟩ ::= ’jdbc’

⟨REST⟩ ::= ’rest’

⟨HTTP⟩ ::= ’http’

⟨ComponentAndConnectorRelations⟩ ::= ’relations’ ’{’ ⟨ComponentAndConnectorRelation⟩* ’}’

⟨ComponentAndConnectorRelation⟩ ::= ⟨Attachment⟩

⟨Attachment⟩ ::= ’attachment’ ’(’ [ConnectorElement] ’:’ [ComponentElement] ’,’ [ComponentEle-
ment] ’)’ ’;’

ComponentAndConnectorView

component-and-connector-view :::: ComponentAndConnectorElements ComponentAndConnectorRelations

elements { ComponentAndConnectorElement+ }

ConnectorElement

relations { ComponentAndConnectorRelation* }

component ;Identifier

Attachment

ComponentType

Database BackEnd

‘back-end’

‘front-end’

attachment

[ConnectorElement]

)

ComponentElement

FrontEnd LoadBalancer

‘database’

‘load-balancer’

(:

[ComponentElement] [ComponentElement]

, ;

connector ;IdentifierConnectorType

REST

‘rest’ ‘http’

HTTP

‘jdbc’

JDBC

[DataModel]?

Figure 5-5.: CST for the Component-and-Connector (C&C) view in Sarch language.

5.5. Deployment View

This view describes the way as software elements are allocated to a hardware infrastructure [19].

• Elements: software elementwhich is a components of the C&C view[19]. And environmen-
tal element which is a hardware of a computing platform.

5.5 Deployment View 29

• Relations: the deployment view has a relationship that allows the mapping between soft-
ware elements and environmental elements: allocated-to (also called deployed-in).

Thus, Sarch defines the Deployment view as one of its views. The grammar of this view repre-
sents the ability of define a set of software and environmental elements, and a set of relations
between them.

This view allows to associate the components defined in the C&C view as software elements. On
the other hand, Sarch proposes two types of environmental elements: server-node and container.
A server-node has the information associated with a server that will act as the infrastructure
manager in a deployment scenario. A container expresses the specification of how a software
element is deployed. Information like execution environments, ports and scaling values is re-
quired, but it will be completely described in the next chapter because this view is the basis of
the Model-Driven Deployment (MDDep) process. The details of the view are shown below (as
EBNF representation) and in Figures 5-6 (part A) and 5-7 (part B) (as a CST). It is important to
mention that the parts A and B conform the same tree, this division is made due to the size of
the tree and the difficulty of showing it in a single figure. The element that connects the two
parts of the tree is the nonterminal Container.

⟨DeploymentView⟩ ::= ’deployment-view’ ’::’ ⟨DeploymentElements⟩ ⟨DeploymentRelations⟩ ⟨PerformanceTests⟩?
’::’

⟨DeploymentElements⟩ ::= ⟨SoftwareElements⟩ | ⟨EnvironmentalElements⟩

⟨SoftwareElements⟩ ::= ’software-elements’ ’{’ ⟨SoftwareElement⟩+ ’}’

⟨SoftwareElement⟩ ::= ⟨Identifier⟩ ’(’ ’component’ [ComponentElement] ’)’ ’;’

⟨EnvironmentalElements⟩ ::= ’environmental-elements’ ’{’ ⟨EnvironmentalElement⟩+ ’}’

⟨EnvironmentalElement⟩ ::= ⟨ServerNode⟩ | ⟨Container⟩

⟨ServerNode⟩ ::= ’server-node’ ⟨Identifier⟩ ’{’ ⟨ServerNodeDetails⟩ ’}’

⟨ServerNodeDetails⟩ ::= ’ip’ ’:’ ⟨Identifier⟩ ’;’ ’port’ ’:’ ⟨Identifier⟩ ’;’ ’access-key’ ’:’ ⟨Identifier⟩ ’;’
’secret-key’ ’:’ ⟨Identifier⟩ ’;’

⟨Container⟩ ::= ’container’ ⟨Identifier⟩ ’{’ ⟨ContainerDetails⟩ ’}’

⟨ContainerDetails⟩ ::= ’associated-stack’ ’:’ ⟨Identifier⟩ ’;’ ’execution-environment’ ’:’ ⟨ExecutionEnvironment⟩
’;’ ’host-label’ ’:’ ⟨Identifier⟩ ’;’ ’port’ ’:’ ⟨Identifier⟩ ’;’ ’scale’ ’:’ ⟨Identifier⟩ ’;’

⟨ExecutionEnvironment⟩ ::= ⟨DatabaseEnvironment⟩ | ⟨ApplicationEnvironment⟩ | ⟨LoadBalancingEnvironment⟩

30 5 Sarch Language

⟨DatabaseEnvironment⟩ ::= ⟨MySQL⟩

⟨MySQL⟩ ::= ’mysql’

⟨ApplicationEnvironment⟩ ::= ⟨GlassFish⟩

⟨GlassFish⟩ ::= ’glassfish’

⟨LoadBalancingEnvironment⟩ ::= ⟨HAProxy⟩

⟨HAProxy⟩ ::= ’haproxy’

⟨DeploymentRelations⟩ ::= ’relations’ ’{’ ⟨DeploymentRelation⟩+ ’}’

⟨DeploymentRelation⟩ ::= [SoftwareElement] ⟨AllocatedTo⟩ [Container] ’;’

⟨AllocatedTo⟩ ::= ’allocated-to’ | ’deployed-in’

⟨PerformanceTests⟩ ::= ’performance-tests’ ’(’ ’target-node-ip’ ’:’ ⟨Identifier⟩ ’)’ ’;’

DeploymentView

deployment-view :::: DeploymentElements DeploymentRelations

software-elements { SoftwareElement+ }

Container

relations { DeploymentRelation+ }

component ;Identifier ([ComponentElement])

[SoftwareElement] [Container] ;

SoftwareElements EnvironmentalElements

ServerNode

server-node Identifier { }

AllocatedTo

‘allocated-to’ ‘deployed-in’

ServerNodeDetails

ip

Identifier

;

:

;

:

port

;

:

access-key

Identifier Identifier

;

:

secret-key

Identifier

…

environmental-elements { EnvironmentalElement+ }

PerformanceTests?

…

Figure 5-6.: CST for the Deployment view in Sarch language (part A).

5.5 Deployment View 31

Container

container Identifier { }ContainerDetails

associated-stack

Identifier

;

:

execution-environment

ExecutionEnvironment

:

host-label

DatabaseEnvironment

;

Identifier

;

:

port

Identifier

;

:

scale

Identifier

;

:

ApplicationEnvironment LoadBalancingEnvironment

MySQL

‘mysql’

GlassFish

‘glassfish’

HAProxy

‘haproxy’

…

Figure 5-7.: CST for the Deployment view in Sarch language (part B).

6. Sarch-Studio Tool

Sarch-Studio is a tool developed as part of this research work, whose objective is to define a
model-driven environment to automate the implementation and deployment of software sys-
tems designed from a software architecture in Sarch language.

6.1. Sarch-Studio Architecture

The architecture of Sarch-Studio is composed of two components: the Core and the Editor. These
components was built using a set of tools of the Eclipse Modeling Project ¹. Thus, a representa-
tion of the layered architecture of the tool is shown in Figure 6-1.

Grammar

Sarch.xtext

Generator

SarchGenerator.xtend

Core

EclipseApplication

Metamodel

Sarch.ecore

Sarch.aird

Sarch.genmodel

Editor

Sarch-Studio

allowed-to-useallowed-to-useallowed-to-use

allowed-to-use

allowed-to-use

Figure 6-1.: Layered architecture of Sarch-Studio.

¹See: http://www.eclipse.org/modeling/

6.1 Sarch-Studio Architecture 33

6.1.1. Associated Technologies

The following is a brief description of the tools used in the tool construction.

• Xtext: it is an open-source framework for the development of programming languages
and DSLs. Xtext has its own infrastructure which comprises an EBNF grammar language,
a parser, a linker, a typechecker, a compiler and a textual editor for Eclipse [12].

• Eclipse Modeling Framework (EMF): it is a modeling framework and code generation fa-
cility for building tools and other applications based on a structured data model [51].

• Xtend: it is a dialect of Java programming language that has as one of its main features the
support for code generation [11].

Figure 6-2.: Xtext, Eclipse Modeling Framework (EMF), and Xtend.

6.1.2. Components

The following is the description of the two components presented in Sarch-Studio.

6.1.2.1. Core Component

The Core component integrates the basis of the Sarch design with its grammar, the way as will
be done the model transformations from Sarch, and the structure of the metamodel that ab-
stracts Sarch in terms of a model-driven context. In this way, the mentioned characteristics are
described below as tree different modules:

• Grammar Module: this module defines the specifications of the Sarch grammar through
the use of Xtext. It allows to define all the syntax rules presented in Sarch, taking into
account the set of terminals an nonterminals. Grammar module specification is shown in
Figure 6-3.

• Generator Module: this module specifies a set of transformation rules through the use of
Xtend, i.e., it defines the transformations used by the model-driven processes which will
be described in the next subsections. Generator module specification is shown in Figure
6-4.

34 6 Sarch-Studio Tool

Figure 6-3.: Definition of Sarch grammar in the Xtext environment.

Figure 6-4.: Definition of Sarch transformations in the Xtend environment.

• Metamodel Module: this module includes the definition of the Sarch grammar as a meta-
model, specifically, the metamodel used by the model-driven processes. This metamodel
is designed through the use of EMF. It is important to highlight that the metamodel de-
fines the structure of the elements that allows to carry out the model-driven phases and
fully guarantees the syntax defined for Sarch. Sarch language metamodel is presented in
Appendix A.

6.1.2.2. Editor Component

The Editor component is an Eclipse application that allows to write in Sarch language with the
aim of designing a software architecture for a particular software system. The editor has a set
of features like syntax coloring and validation of grammar elements. A view of the editor com-
ponent is shown in Figure 6-5.

6.2 Target Software Architecture 35

Figure 6-5.: Editor component of Sarch-Studio.

6.2. Target Software Architecture

Sarch-Studio defines target software architecture that supports the model-driven processes. In
this way, this architecture includes all the possible elements of a software system that has been
designed through Sarch language, specifically, elements related to code generation (implemen-
tation) and deployment.

Based on the above, in order to define an adequate software architecture, a Microservices Architec-
ture (MSA)was selected. Themain reasons for which this architecture was selected is because the
microservices architecture offers a complete specifications of the scope of each one of the com-
ponents in the architecture. This benefits the interaction of the elements presented by Sarch,
i.e., the elements associated with each one of the architectural view. In addition, the above
also offers great advantages in terms of the application of the architectural tactic of scalability.
This is because as a fully distributed architecture, each component can be scaled independently
without affecting others, thus increasing the performance of the respective software system
functionalities.

6.2.1. Associated Technologies

A set of technologies was selected in order to support the implementation and deployment of
a software system based on the target architecture. The following is a brief description of the
technologies used for create software systems based on the target architecture.

• MySQL: it is a relational Database-Management System (DBMS). MySQL is considered as
the most popular open source relational database in the world [8].

36 6 Sarch-Studio Tool

• Java: it is a general-purpose (GPL), concurrent, and object-oriented programming language
that was specifically designed to allow developers to write a program once and run it on
any device. [7].

• Apache Maven: it is a tool used primarily for the automation build of Java projects. It
describes how software is built and how are its dependencies. [3].

• GlassFish: it is an open-source application server project focused on the Java EE platform.
[5].

• Docker: it is a software platform that allows the deployment of different kind of software
artifacts in elements called Containers. A container wraps a piece of software in a complete
file system that contains everything needed to run. [4].

Figure 6-6.: MySQL, Java, Maven, GlassFish, Docker, Rancher, HAProxy, Amazon Web Services
(AWS), and JMeter.

• Rancher: it is a container management platform that allows to deploy and run containers
in production on any infrastructure. [9].

• HAProxy: it is a software solution that offers services as high availability, load balancing,
and proxying for TCP and HTTP-based applications. [6].

• Amazon Web Services (AWS): it is a platform that provides on-demand cloud computing
platforms to different kind of consumers. AWS can be considered as one of the most
popular cloud providers in the world [1].

6.2 Target Software Architecture 37

• Apache JMeter: it is a tool that allows the execution of different types of software testing,
specially load tests. Its objective is analyzing andmeasuring the performance of web-based
software systems [2].

6.2.2. Software Architecture Description

The target architecture is shown in Figure 6-7 and described as follows.

• A set of components which can be of type: database (DB), microservice (MS), web application
(WA), and load balancer (LB).

• Databases to handle the software system information.

• Microservices to handle the business logic of the software system.

• Web applications to handle the user interaction with the software system.

• Load balancer to redirect requests to web applications

• A set of connectors that can be JDBC (Java Database Connectivity) type for connecting
microservices and databases, REST (REpresentational State Transfer) type for connecting
web applications and microservices, or HTTP (HyperText Transfer Protocol) type for con-
necting load balancers and web applications.

• A set of data models in which each one has at least one data entity and a set of relations
between the entities presented.

• Each datamodel is associatedwith a database. A database has nomore than one associated
data model.

• A set of layers for representing the division of microservices and web applications into
units.

• A set of software elements, defined from the specified components.

• A set of environmental elements to allows the software elements deployment.

• Each software element is deployed in an individual container.

• A set of execution environments that can be GlassFish as application server for microser-
vices and web applications, MySQL as database server for databases, or HAProxy as server
for load balancers.

• Each container has an execution environment and a specific port.

• Each component can have more than one instance, i.e., it can be scaled horizontally.

38 6 Sarch-Studio Tool

LB_1:1

WA_1:1 WA_1:2

MS_1:1 MS_1:2 MS_2:1 MS_2:2

DB_1:1

REST

HTTP

JDBC

Figure 6-7.: Target architecture from the point of view of the C&C view in a semiformal repre-
sentation

Notation: {DB, MS, WA, LB}_{identifier}:{instance}. In this case, there is a load balancer (LB) with
one instance, there is a web application (WA) with two instances, there are two microservices
(MS) with two instances each one, and there is a database (DB) with one instance.

6.3. Model-Driven * Processes

The main approach of Sarch-Studio is to take the advantages of Sarch language in order to au-
tomate two important aspects of the software engineering field: development and deployment. The
first, which is automated bymeans ofModel-Driven Development (MDD), and the second, which
is automated by means of Model-Driven Deployment (MDDep).

6.3.1. Automation of Development

The transformations of the MDD process are defined using Xtend. Thus, the mapping between
a software architecture designed in Sarch and a web-based software system with the target ar-
chitecture is:

• For each component of type: microservice or web application, a Java project is created.

• The source code of a microservice Java project is organized (through packages) according
to the layers defined as back-end type.

• The source code of a web application Java project is organized (through packages) accord-
ing to the layers defined as front-end.

6.3 Model-Driven * Processes 39

• For each component of type database, a database schema is created based on the associ-
ated Data Model.

• Each data model defines the Java entity classes of the model layer (model packages) of the
associated microservice and the web application.

• For each JDBC connector, the database connection between the microservice and the cre-
ated database is defined.

• For each REST connector, in the associated microservice, a set of Java classes (service
layer: service package) are created, according to the respective data entities, for defining
the business logic based on the declared CRUD operations. Additionally, a set of Java
classes (resource layer: resource package) are created, according to the respective data
entities, for defining the available endpoints which allow the consumption of services.

• For each REST connector, in the associated web application, a set of Java classes (service
layer: service package) are created, according to the respective data entities, for defining
the business logic to consume the services exposed by the microservice. Additionally, a
set of HTML and CSS files (web layer: web package) are created, for defining the web pages
that allows the user interaction with the different available operations; and finally, a set of
Java classes (bean layer: bean package) are created, for defining the connection between
web pages and services.

6.3.2. Automation of Deployment

This process is manly based on the deployment view defined in Sarch. The main characteristic
of this view is the capacity to define important information about the way of how the software
will be deployed. Sarch requires three kind of information: information about the software el-
ements to be deployed (C&C elements), information about the environmental elements where
the software elements will be deployed, and information about the way in which software ele-
ments and environmental elements are related.

It is necessary to emphasize in the environmental elements because they are the basis for the
MDDep approach. Sarch defines two types of environmental elements: server-node and containers.
The server node must be unique and it describes the information of a server allocated on the
cloud which have control over all nodes where the software system can be deployed. This server
must be configured previously, using Rancher. Basically, Rancher permits to add a set of nodes
(virtual servers) from different cloud providers. For this case, we use an Amazon Web Services
(AWS) infrastructure, specifically, using the delivery model of Infrastructure as a Services (Iaas).
Once the server node is ready (with nodes added), Sarch can generate the deployment schema
defined in the architecture created:

40 6 Sarch-Studio Tool

• Sarch uses Apache Maven to build previously created Java projects.

• Sarch uses Docker to generate a schema for DB, MS, WA and LB, by means of three gener-
ated files: a ”Dockerfile” that defines the information about the execution environment to
be created, a ”docker-compose” that allows the creation of the environment in the Dock-
erfile (container name and port where it must be deployed), a ”rancher-compose” that
defines the scaling value, i.e., the number of times the component will be scaled in its
deployment (number of instances to be created), and a ”deploy-cloud” that defines the
server node information, in order to deploy the respective component on the cloud (url,
access key and secret key: information provided by the Rancher API in the server node).

• For each component, Sarch deploy it in a set of containers, depending of the scale value
in Sarch.

• For each container, Sarch automates the necessary configurations for its execution envi-
ronment, depending of the respective component type: MySQL for the databases, Glass-
Fish for the microservices and web applications, and HAProxy for the load balancers.

• Sarch uses the Apache JMeter specifications to generate a set of stress test plans for the
POST (Create) operations of themicroservices. These plans allows the automatic execution
of a set of load tests in order to know the maximum performance of the system in different
scenarios of concurrent users.

• Finally, it is important to highlight that for this first work using Sarch language, the scale
value for DB and LB is restricted to 1, while the scale value for MS and WA is restricted
to n - 1, where n is the maximum number of nodes added on the server node. The main
reasons of this restriction are: 1) Scaling databases involves the application of architectural
tactics for the high availability quality attribute, especially tomaintain a synchronization of
the information of all instances of the same database. However, the scope of this research
work is focused only on performance and scalability; and 2) Scaling load balancers involves
having different access points to the deployed software system, i.e., for the scope of this
research work, stress tests could be run by any of these points (ports associated with load
balancers).

However, in Figure 6-8 is represented the final interaction between Sarch-Studio and the cloud
platform (AWS), starting from the definition of the architectural model in Sarch language, until
the deployment in a cloud infrastructure previously configured.

6.3 Model-Driven * Processes 41

localhost

Operating System

Sarch
model

deployed_in

Eclipse

Sarch-Studio

Cloud Platform (AWS)

rancher_server

rancher_server

Rancher:80

node1

node2

node3

…

Software
system

«generate» «deploy»

«entry»

Figure 6-8.: Final interaction between Sarch-Studio and the Cloud Platform.

7. Evaluation

7.1. Conceptual Analysis

It is important to highlight some important aspects about the five approaches presented in the
related work and the approach presented with Sarch, in order to compare its scope and its advan-
tages with respect to others. Due to the characteristics of software architecture, it is necessary
to check how the main aspects abstracted of the five approaches are covered by Sarch (show
Table 7-1). The approaches analyzed are: 1st: ADLs [44], [31], [24], [57], [48], [37], [28], [56],
[33]; 2nd: DSLs for documenting SA [23], [22], [21], [55]; 3rd: support the software development
process [10], [17], [13]; 4th: support the software deployment process [41], [42], [38], [40], [46],
[35], [32], and 5th: deployment in a cloud platform [16], [26].

In the same way, the characteristics analyzed are: A: use of styles/views, B: SA description,
C: use of DSLs, D: use of Model-Driven *, E: automatic source code generation, F: automatic
deployment, and G: cloud support. In this way, Sarch uses a notation defined from a set of ar-
chitectural styles/views to describe and model the relevant elements of an architectural design.
In addition, the Sarch grammar and its textual representation allow an automatic software archi-
tecture documentation. Moreover, Sarch addresses the software development process with the
automatic code generation from a set of defined functionalities and a MDD process. In addition,
it is important to mention that the main advantages of the Sarch approach is its support for the
automatic software deployment in a cloud platform. This allows the ability to take architec-
tural decisions from the model in order to applying the performance and scalability perspective
through a dynamic scaling of components.

Table 7-1.: Conceptual analysis of Sarch: approaches vs. main aspects.
A B C D E F G

Architecture Description Languages X X X
DSLs for Documenting Software Architectures X X X X
Support the Software Development Process X X X X
Support the Software Deployment Process X

Deployment in a Cloud Platform X X
Sarch Approach X X X X X X X

7.2 Practical Analysis 43

7.2. Practical Analysis

A case study is presented as part of the approach evaluation. In this way, an architecture has
been designed in Sarch, in order to analyze the results of the software system implementation
and deployment. The case study consists on a web application, called PostsApplication, to handle
posts. In particular, the application allows to perform the four CRUD operations for posts, which
have two attributes: title and content. It is important to highlight that this case study is based
on the reference implementation performed as part of the methodology defined to develop the
research work, i.e., PostsApplication was first developed manually. The graphic representation of
the views of this case study are shown in Appendix B. Likewise, its representation in Sarch lan-
guage is shown in Appendix C. In addition, some fragments of the software system implemented
(reference implementation) and generated (Sarch-Studio processes) are shown in Appendix D.

Emphasis is placed on Deployment and C&C styles because they are the basis for the MDDep
approach. However, Data Model and Layered styles are the basis for the implementation of the
components designed for the case study. The server node was previously configured in an AWS
server. Likewise, a set of four nodes with the same hardware specifications was configured:
Amazon EC2, t2.large, Ubuntu 16.04.1 as OS, 2x2.4 GHz, memory: 8 GiB, storage: 16 GiB. In
the same way, Figure 7-1 shows the architecture visualization from Rancher server for the case
study after the transformations. In this figure it is possible to see the number of containers
created in each node, corresponds to the one specified in the respective deployment view: one
web application instance and three microservice instances.

Figure 7-1.: Rancher server environment with 4-nodes infrastructure on the cloud.

For the analysis, a set of test cases was selected to analyze the performance of the system when
changes are made to the scale value in Sarch (for microservices and web applications), i.e., when
there are different scenarios for the horizontal scaling tactic. In the same way, each scenario

44 7 Evaluation

Table 7-2.: Stress test results.
Scenario 1 Scenario 2 Scenario 3
MS: 1, WA: 1 MS: 2, WA: 1 MS: 3, WA: 1Users
RT T RT T RT T

0 0 0.0 0 0.0 0 0.0
1 210 49.6 199 50.0 194 50.3
5 218 246.3 203 249.4 200 250.0
50 310 2290.1 223 2453.0 235 2429.1
100 503 3992.0 491 4024.1 484 4043.1
200 1185 5492.0 1067 5805.5 1061 5822.4
250 1599 5771.5 1319 6468.3 1228 6732.5
300 - - 1794 6442.4 1603 6915.1
310 - - 2010 7948.7 1682 6935.1
360 - - - - 2404 8299.2
400 - - - - - -

was tested from the generated stress test plan for the ”create posts” functionality in the sys-
tem, and with different number of concurrent users (requests). The results of this analysis is
shown in Table 7-2, where the numeric values represent the average Response Time (RT), i.e.,
the length of time the system takes to give an answer to a request (time in milliseconds) [49],
and the Throughput (T), i.e., the amount of workload the system is capable of handling in a unit
time period (transactions/minute) [49]. In addition, a graphical representation of the system
performance in each of the scenarios is shown in Figures 7-2 and 7-3, where in the first repre-
sentation it is also possible to see the knees for each of the curves, that is, the point at which
the system reaches its maximum responsiveness (peak load behavior) [49]. For conducting the
tests was used JMeter, it allowed the execution of each scenario with the different alternatives
in the number of concurrent users, from the stress test plans generated by Sarch.

It is important to mention that the ramp-up period (in seconds) used in the tests is 1. This pa-
rameter describes the period in which a certain number of users make requests to the system;
for example, for a test with 1 user, this represents that a user accesses the system every sec-
ond, and for a test with 100 users, this represents that 100 users access the system every second.

Based on the above, it can be evidenced that when horizontal scaling is applying, the response
times decrease and the throughput increases. This implied that the scalability objective is satis-
fied correctly and the design initially done with Sarch is validated.

7.2 Practical Analysis 45

Figure 7-2.: Performance curves with knee for each scenario (requests vs. response time).

Figure 7-3.: Performance curves for each scenario (requests vs. throughput).

8. Conclusions and Future Work

8.1. Conclusions

Based on the related work with software architecture and software automation, new approaches
in the software architecture modeling have been proposed. In the first place, Sarch offers a set
of complete options to model software architectures, which helps to have a greater consistency
between the design, implementation and deployment of distributed software systems. Sarch
can be seen as a first approximation to a new ADL, considering that it covers a wider scope than
traditional ADLs that are primarily focused on architectural documentation and a few to the
automatic code generation. On the other hand, MDDep is proposed as a new approach which
can be considered as a variant of MDD. However, we emphasize that the approach is based
entirely on an architectural design based on the conception of quality attributes of the software
and how they can be solved from its modeling, e.g., with the approach proposed in this work to
take architectural decisions focused on the performance and scalability.

8.2. Future Work

As a futurework, wewill define a greater scope for Sarch, in which there is a greater collaboration
of architectural styles and their views, in order to allow the modeling of other types of software
systems, of high and low complexity. In the same way, strengthen the theoretical bases of
MDDep to introduce new ways of dealing with other software quality attributes such as high
availability and resilience. Finally, to integrate a set of improvements for Sarch-Studio that
allow to design the architectures based on Sarch through graphical representations, as well as to
add more validations in order to guarantee conditions of good software design practices from
its architecture.

A. Appendix: Sarch Language Metamodel

Figure A-1.: Sarch Language Metamodel.

B. Appendix: Views of the Case Study

• title
• content

posts

• content
• posts_id

comments

Figure B-1.: Graphic representation of the Data Model view.

web

front-end

allowed-to-use

bean

service

route

allowed-to-use

allowed-to-use

model

allowed-to-use

back-end

resource

service

model

allowed-to-use

allowed-to-use

allowed-to-use

Figure B-2.: Graphic representation of the Layered view.

49

posts_lb posts_wa posts_dbposts_ms
HTTP JDBC

REST

Figure B-3.: Graphic representation of the C&C view.

node1 node2

rancher_server
34.209.97.184:8080

posts_db-1

posts_lb
«container»

node3

posts_lb-1

posts_ms-1

deployed_in

deployed_in

deployed_in
HAProxy:80

posts_db
«container»

MySQL:3306

posts_ms
«container»

GlassFish:4000

node4

posts_ms-3

posts_wa
«container»

posts_wa-1 GlassFish:8080

posts_ms
«container»

GlassFish:4000
deployed_in

deployed_in

posts_ms-2

posts_ms
«container»

GlassFish:4000

deployed_in

Figure B-4.: Graphic representation of the Deployment view.

C. Appendix: Case Study designed in Sarch
Language

Figure C-1.: Software architecture wrote in Sarch (i).

51

Figure C-2.: Software architecture wrote in Sarch (ii).

D. Appendix: Implementation and
Generation of Case Study

Figure D-1.: Code structure of the project.

53

Figure D-2.: Docker structure for database, microservice, web application and load balancer.

54 D Appendix: Implementation and Generation of Case Study

Figure D-3.: Model and Resource classes of microservice.

55

Figure D-4.: Web application visualization (Index and Create Post).

Bibliography

[1] Amazon Web Services (AWS). https://aws.amazon.com/

[2] Apache JMeter. http://jmeter.apache.org/

[3] Apache Maven. https://maven.apache.org/

[4] Docker. https://www.docker.com/

[5] GlassFish. https://javaee.github.io/glassfish/

[6] HAProxy. http://www.haproxy.org/

[7] Java. https://www.java.com/

[8] MySQL. https://www.mysql.com/

[9] Rancher. http://rancher.com/

[10] WebDSL. http://webdsl.org/

[11] Xtend. https://www.eclipse.org/xtend/

[12] Xtext. https://eclipse.org/Xtext/

[13] ALDRICH, Jonathan ; CHAMBERS, Craig ; NOTKIN, David: ArchJava: Connecting Software
Architecture to Implementation. In: Proceedings of the 24th international conference on Software
engineering - ICSE ’02 (2002), 187. http://dx.doi.org/10.1145/581339.581365. – DOI
10.1145/581339.581365. – ISBN 158113472X

[14] BASS, Len ; CLEMENTS, Paul ; KAZMAN, Rick: Software Architecture in Practice. 3rd. 2013

[15] BRAMBILLA, Marco ; CABOT, Jordi ; WIMMER, Manuel: Model-Driven Soft-
ware Engineering in Practice. Bd. 1. 1st. 2012. – 1–182 S. http://dx.doi.
org/10.2200/S00441ED1V01Y201208SWE001. http://dx.doi.org/10.2200/
S00441ED1V01Y201208SWE001. – ISBN 9781608458820

[16] CALA, Jacek ; WATSON, Paul: Automatic Software Deployment in the Azure Cloud. In:
Computing (2010), Nr. June, S. 155–168

https://aws.amazon.com/
http://jmeter.apache.org/
https://maven.apache.org/
https://www.docker.com/
https://javaee.github.io/glassfish/
http://www.haproxy.org/
https://www.java.com/
https://www.mysql.com/
http://rancher.com/
http://webdsl.org/
https://www.eclipse.org/xtend/
https://eclipse.org/Xtext/
http://dx.doi.org/10.1145/581339.581365
http://dx.doi.org/10.2200/S00441ED1V01Y201208SWE001
http://dx.doi.org/10.2200/S00441ED1V01Y201208SWE001
http://dx.doi.org/10.2200/S00441ED1V01Y201208SWE001
http://dx.doi.org/10.2200/S00441ED1V01Y201208SWE001

57

[17] CAVALCANTE, Everton ; OQUENDO, Flavio ; BATISTA, Thais: Architecture-Based Code Gener-
ation: From π-ADL Architecture Descriptions to Implementations in the Go language. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) 8627 LNCS (2014), S. 130–145. http://dx.doi.org/10.1007/
978-3-319-09970-5_13. – DOI 10.1007/978–3–319–09970–5_13. – ISBN 9783319099699

[18] CLEMENTS, Paul: A Survey of Architecture Description Languages. In: Eighth International
Workshop on Software Specification and Design (1996), Nr. March

[19] CLEMENTS, Paul ; BACHMANN, Felix ; BASS, Len ; GARLAN, David ; IVERS, James ; LITTLE, Reed
; MERSON, Paulo ; NORD, Robert ; STAFFORD, Judith: Documenting Software Architectures: Views
and Beyond. 2011. – 582 S. – ISBN 0132366258

[20] DAMYANOV, Ivo ; SUKALINSKA, Mila: Domain Specific Languages in Practice. In: International
Journal of Computer Applications 115 (2015), Nr. 2, 42–45. http://dx.doi.org/10.5120/
20126-2205. – DOI 10.5120/20126–2205. – ISSN 09758887

[21] DEMIRLI, Elif: Model-Driven Engineering of Software Architecture Viewpoints, Diss., 2012

[22] DEMIRLI, Elif ; TEKINERDOGAN, Bedir: SAVE: Software Architecture Environment for Mod-
eling Views. In: 2011 NinthWorking IEEE/IFIP Conference on Software Architecture (2011), S. 355–
358. http://dx.doi.org/10.1109/WICSA.2011.57. – DOI 10.1109/WICSA.2011.57.
ISBN 978–0–7695–4351–2

[23] DEMIRLI, Elif ; TEKINERDOGAN, Bedir: Software Language Engineering of Architectural
Viewpoints. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics) 6903 LNCS (2011), S. 336–343. http:
//dx.doi.org/10.1007/978-3-642-23798-0_36. – DOI 10.1007/978–3–642–23798–0_-
36. – ISBN 9783642237973

[24] DERBEL, Imen ; JILANI, Lamia L. ; MILI, Ali: ACME+: An ADL for Quantitative Analy-
sis of Quality Attributes. In: ENASE 2013 Communications in Computer and Information Sci-
ence 417 CCIS (2013), 16. http://www.scopus.com/inward/record.url?eid=2-s2.
0-84904749759{&}partnerID=40{&}md5=b61c7f962ff2a22c9f9bc183ba7e4028

[25] DEURSEN, Arie V. ; KLINT, Paul ; VISSER, Joost: Domain-Specific Languages: An Annotated
Bibliography. In: ACM Sigplan Notices 35 (2000), Nr. 6, 26–36. http://dx.doi.org/10.
1145/352029.352035. – DOI 10.1145/352029.352035. – ISBN 0362–1340

[26] DI COSMO, Roberto ; MAURO, Jacopo ; ZACCHIROLI, Stefano: Automatic Deployment of
Services in the Cloud with Aeolus Blender. (2015), S. 397–411. http://dx.doi.org/10.
1007/978-3-662-48616-0. – DOI 10.1007/978–3–662–48616–0. – ISBN 9783662486153

[27] ERL, Thomas: Cloud Computing - Concepts, Technology & Architecture. 2013

http://dx.doi.org/10.1007/978-3-319-09970-5_13
http://dx.doi.org/10.1007/978-3-319-09970-5_13
http://dx.doi.org/10.5120/20126-2205
http://dx.doi.org/10.5120/20126-2205
http://dx.doi.org/10.1109/WICSA.2011.57
http://dx.doi.org/10.1007/978-3-642-23798-0_36
http://dx.doi.org/10.1007/978-3-642-23798-0_36
http://www.scopus.com/inward/record.url?eid=2-s2.0-84904749759{&}partnerID=40{&}md5=b61c7f962ff2a22c9f9bc183ba7e4028
http://www.scopus.com/inward/record.url?eid=2-s2.0-84904749759{&}partnerID=40{&}md5=b61c7f962ff2a22c9f9bc183ba7e4028
http://dx.doi.org/10.1145/352029.352035
http://dx.doi.org/10.1145/352029.352035
http://dx.doi.org/10.1007/978-3-662-48616-0
http://dx.doi.org/10.1007/978-3-662-48616-0

58 D Bibliography

[28] FEILER, Peter H. ; LEWIS, Bruce A. ; VESTAL, Steve: The SAE Architecture Analysis & Design
Language (AADL) - A Standard for Engineering Performance Critical Systems. In: Com-
puter Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006
IEEE International Symposium on Intelligent Control, 2006 IEEE (2006), S. 1206–1211. http:
//dx.doi.org/10.1109/CACSD.2006.285483. – DOI 10.1109/CACSD.2006.285483. ISBN
0780397975

[29] FOWLER, Martin ; PARSONS, Rebecca: Domain-Specific Languages. 2011

[30] FOX, Christopher: Introduction to Software Engineering Design: Processes, Principles, and Patterns
with UML2. 2006. – 748 S. – ISBN 0321410130

[31] GARLAN, David ; MONROE, Robert T. ; WILE, David: Acme: Architectural Description of
Component-Based Systems. In: Foundations of Component-Based Systems (2000), S. 47–68. ISBN
0521771641

[32] GASSARA, Amal ; RODRIGUEZ, Ismael B. ; JMAIEL, Mohamed: A multi-scale modeling ap-
proach for software architecture deployment. In: Proceedings of the ACM Symposium on Ap-
plied Computing 13-17-Apri (2015), Nr. April, 1405–1410. http://dx.doi.org/10.1145/
2695664.2695721. – DOI 10.1145/2695664.2695721. ISBN 9781450331968

[33] GILSON, Fabian ; ENGLEBERT, Vincent: A Domain Specific Language for Stepwise Design of
Software Architectures. In: MODELSWARD 2014 - Proceedings of the 2nd International Conference
on Model-Driven Engineering and Software Development (2014), S. 67–78. ISBN 9789897580079

[34] GONZALEZ-HERRERA, Inti ; BOURCIER, Johann ; DAUBERT, Erwan ; RUDAMETKIN, Walter ;
BARAIS, Olivier ; FOUQUET, François ; JÉZÉQUEL, JeanM.: Scapegoat: an adaptive monitoring
framework for component-based systems. In: Proceedings - Working IEEE/IFIP Conference on
Software Architecture 2014, WICSA 2014, 2014. – ISBN 9781479934126, S. 67–76

[35] HOENISCH, Philipp ; WEBER, Ingo ; SCHULTE, Stefan ; ZHU, Liming ; FEKETE, Alan: Four-
Fold Auto-Scaling on a Contemporary Deployment Platform Using Docker Containers.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 9435 (2015), S. 316–323. http://dx.doi.org/10.1007/
978-3-662-48616-0. – DOI 10.1007/978–3–662–48616–0. – ISBN 9783662486153

[36] IEEE: ISO/IEC/IEEE: Systems and Software Engineering - Architecture Description. 2011

[37] JIA, Xiangyang ; YING, Shi ; ZHANG, Tao ; CAO, Honghua ; XIE, Dan: A New Architecture
Description Language for Service-Oriented Architecture. In: Sixth International Conference on
Grid and Cooperative Computing (GCC 2007) (2007), Nr. Gcc, 96–103. http://dx.doi.org/10.
1109/GCC.2007.18. – DOI 10.1109/GCC.2007.18. ISBN 0–7695–2871–6

http://dx.doi.org/10.1109/CACSD.2006.285483
http://dx.doi.org/10.1109/CACSD.2006.285483
http://dx.doi.org/10.1145/2695664.2695721
http://dx.doi.org/10.1145/2695664.2695721
http://dx.doi.org/10.1007/978-3-662-48616-0
http://dx.doi.org/10.1007/978-3-662-48616-0
http://dx.doi.org/10.1109/GCC.2007.18
http://dx.doi.org/10.1109/GCC.2007.18

59

[38] KHALGUI, Mohamed ; REBEUF, Xavier: A heuristic based method for automatic de-
ployment of distributed component based applications. In: Industrial Embedded Sys-
tems - IES’2006 (2006). http://dx.doi.org/10.1109/IES.2006.357471. – DOI
10.1109/IES.2006.357471. ISBN 142440777X

[39] KRUCHTEN, Philippe: Architectural Blueprints - The ”4+1” View Model of Software Archi-
tecture. In: IEEE Software 12 (1995), Nr. November, 42–50. http://dx.doi.org/10.1145/
216591.216611. – DOI 10.1145/216591.216611. – ISBN 0897917057

[40] LAN, Ling ; HUANG, Gang ; MA, Liya ; WANG, Meng ; MEI, Hong ; ZHANG, Long ; CHEN,
Ying: Architecture Based Deployment of Large-Scale Component Based Systems: The
Tool and Principles. (2005), 123–138. http://dx.doi.org/10.1007/11424529_9. – DOI
10.1007/11424529_9. – ISSN 03029743

[41] LASCU, Tudor A. ; MAURO, Jacopo ; ZAVATTARO, Gianluigi: Automatic Component De-
ployment in the Presence of Circular Dependencies Tudor. (2013), S. 254–272. http:
//dx.doi.org/10.1016/j.scico.2015.11.001. – DOI 10.1016/j.scico.2015.11.001. –
ISBN 978–3–319–57665–7

[42] LASCU, Tudor A. ; MAURO, Jacopo ; ZAVATTARO, Gianluigi: Automatic deploy-
ment of component-based applications. In: Science of Computer Programming 113
(2015), 261–284. http://dx.doi.org/10.1016/j.scico.2015.07.006. – DOI
10.1016/j.scico.2015.07.006. – ISSN 01676423

[43] LEE, Jaemyoun ; JEONG, Haegeon ; LEE, Won J. ; SUH, Hyo J. ; LEE, Dongeun ; KANG,
Kyungtae: Advanced Primary–Backup Platform with Container-Based Automatic Deploy-
ment for Fault-Tolerant Systems. In: Wireless Personal Communications (2017), S. 1–18.
http://dx.doi.org/10.1007/s11277-017-4282-4. – DOI 10.1007/s11277–017–4282–
4. – ISSN 1572834X

[44] MEDVIDOVIC, Nenad ; TAYLOR, Richard N.: A Classification and Comparison Framework
for Software Architecture Description Languages. In: Software Engineering, IEEE Transac-
tions on 26 (2000), Nr. 1, 70–93. http://dx.doi.org/10.1109/32.825767. – DOI
10.1109/32.825767. – ISBN 0098–5589

[45] NEWMAN, Sam: BuildingMicroservices: Designing Fine-Grained Systems. 2015. – ISBN 1491950331

[46] NICOLAS, Alejandro ; POSADAS, Hector ; PENIL, Pablo ; VILLAR, Eugenio: Automatic deploy-
ment of component-based embedded systems from UML/MARTE models using MCAPI. In:
Proceedings of the 2014 29th Conference on Design of Circuits and Integrated Systems, DCIS 2014 (2014).
http://dx.doi.org/10.1109/DCIS.2014.7035575. – DOI 10.1109/DCIS.2014.7035575.
ISBN 9781479957439

http://dx.doi.org/10.1109/IES.2006.357471
http://dx.doi.org/10.1145/216591.216611
http://dx.doi.org/10.1145/216591.216611
http://dx.doi.org/10.1007/11424529_9
http://dx.doi.org/10.1016/j.scico.2015.11.001
http://dx.doi.org/10.1016/j.scico.2015.11.001
http://dx.doi.org/10.1016/j.scico.2015.07.006
http://dx.doi.org/10.1007/s11277-017-4282-4
http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.1109/DCIS.2014.7035575

60 D Bibliography

[47] OQUENDO, Flavio: π-ADL: An Architecture Description Language based on the Higher-
Order typed π-Calculus for Specifying Dynamic and Mobile Software Architectures. In:
ACM SIGSOFT Software Engineering Notes 29 (2004), Nr. 3, 1–14. http://dx.doi.org/10.
1145/986710.986728. – DOI 10.1145/986710.986728. – ISBN 0163–5948

[48] QIN, Wei ; MALIK, Sharad: A Study of Architecture Description Languages from a Model-
Based Perspective. In: Proceedings - International Workshop on Microprocessor Test and Verification
(2006), S. 3–11. http://dx.doi.org/10.1109/MTV.2005.2. – DOI 10.1109/MTV.2005.2.
– ISBN 0769526276

[49] ROZANSKI, Nick ; WOODS, Eoin: Software Systems Architecture. 2nd. 2011

[50] STAHL, Thomas ; VÖLTER, Markus: Model-Driven Software Development - Technology, Engineering,
Management. 2006. – ISBN 9780470025703

[51] STEINBERG, Dave ; BUDINSKY, Frank ; PATERNOSTRO, Marcelo ; MERKS, Ed: EMF - Eclipse
Modeling Framework. 2nd. 2009. – ISBN 9780321331885

[52] STEPHENS, Rod: Beginning Software Engineering. 2015. – ISBN 9781118969144

[53] TAYLOR, Richard N. ; MEDVIDOVIC, Nenad ; DASHOFY, Eric M.: Software Architecture - Founda-
tions, Theory, and Practice. 2010

[54] WEBBER, Jim ; PARASTATIDIS, Savas ; ROBINSON, Ian: REST in Practice. 2010. – ISBN
9780596805821

[55] YAZDANSHENAS, Amir R. ; KHOSRAVI, Ramtin: Using domain-specific languages to describe
the development viewpoint of software architectures. In: 2009 14th International CSI Com-
puter Conference, CSICC 2009 (2009), S. 146–151. http://dx.doi.org/10.1109/CSICC.
2009.5349322. – DOI 10.1109/CSICC.2009.5349322. ISBN 9781424442621

[56] ZDUN, Uwe: A DSL toolkit for deferring architectural decisions in DSL-based software
design. In: Information and Software Technology 52 (2010), Nr. 7, 733–748. http://dx.doi.
org/10.1016/j.infsof.2010.03.004. – DOI 10.1016/j.infsof.2010.03.004. – ISBN 0950–
5849

[57] ZHANG, Shifeng ; GODDARD, Steve: xSADL: An architecture description language to specify
component-based systems. In: International Conference on Information Technology: Coding and
Computing, ITCC 2 (2005), 443–448. http://dx.doi.org/10.1109/ITCC.2005.303. – DOI
10.1109/ITCC.2005.303. ISBN 0–7695–2315–3

http://dx.doi.org/10.1145/986710.986728
http://dx.doi.org/10.1145/986710.986728
http://dx.doi.org/10.1109/MTV.2005.2
http://dx.doi.org/10.1109/CSICC.2009.5349322
http://dx.doi.org/10.1109/CSICC.2009.5349322
http://dx.doi.org/10.1016/j.infsof.2010.03.004
http://dx.doi.org/10.1016/j.infsof.2010.03.004
http://dx.doi.org/10.1109/ITCC.2005.303

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Objectives
	General Objective
	Specific Objectives

	Contribution
	Outline of the Thesis

	Background
	Software Architecture
	Architectural Styles
	Architectural Views
	Performance and Scalability Perspective
	Distributed Architectures

	Domain-Specific Languages
	Model-Driven Engineering
	Cloud Computing

	Related Work
	Architecture Description Languages
	DSLs for Documenting Software Architectures
	Support the Software Development Process
	Support the Software Deployment Process
	Deployment in a Cloud Computing Platform

	Model-Driven Deployment
	Definition
	Methodology

	Sarch Language
	Architectural Schema
	Data Model View
	Layered View
	Component-and-Connector (C&C) View
	Deployment View

	Sarch-Studio Tool
	Sarch-Studio Architecture
	Associated Technologies
	Components

	Target Software Architecture
	Associated Technologies
	Software Architecture Description

	Model-Driven * Processes
	Automation of Development
	Automation of Deployment

	Evaluation
	Conceptual Analysis
	Practical Analysis

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix: Sarch Language Metamodel
	Appendix: Views of the Case Study
	Appendix: Case Study designed in Sarch Language
	Appendix: Implementation and Generation of Case Study
	Bibliography

