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Abstract and Resumen IX 

 

Abstract 
The purpose of this work is to present a proposal methodology for knowledge transfer 

measurement in software requirements. To obtain results, a methodology composed of 

four stages was defined: i) review of the knowledge transfer background in software 

engineering, in order to identify existing efforts in knowledge transfer measurement, ii) 

characterization of the software requirements process from the knowledge transfer point 

of view, thus, finding common factors regarding variables and indicators suitable for 

measuring purposes, iii) define a proposal methodology based on variables and 

indicators found, data gathering methods, statistical tools and helping documentation, iv) 

testing the proposal in order to provide feedback, using a case study.  

Principal results are: seven groups of factors mapping software requirements process 

stages against knowledge transfer steps, resulting in 115 indicators and 24 variables; 2 

variables definition for knowledge transfer initialization stage and software requirements 

elicitation step mapping, which didn’t had any variable or indicator. Likewise, it was 

identified that exists a correlation between knowledge transfer and software 

requirements, the better knowledge transfer the better software requirements.  

 

Furthermore, the feed back gathered indicates that motivation variable defined is the 

more influential variable in the software requirements process according 41.67% of 

respondents, over other variables as: abstraction, methodology and time access 

availability, each one with 16.67% of respondents, and understandability with 8.33% of 

respondents.  

 

Last, this work allows analyzing the influence of knowledge transfer indicators in software 

requirements quality attributes. 

 

 

Key words: Knowledge management, knowledge transfer, software engineering, 

software requirements, software requirements metrics, knowledge transfer measurement. 
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Resumen 
El propósito de este trabajo es presentar una propuesta metodológica para la medición 

de transferencia de conocimiento en los requisitos de software. Para obtener los 

resultados, una metodología compuesta de cuatro pasos fue definida: i) revisión de las 

bases teóricas de transferencia de conocimiento en ingeniería, para identificar esfuerzos 

existentes en medición de transferencia de conocimiento, ii) caracterización del proceso 

de requisitos de software desde el punto de vista de la transferencia de conocimiento, y 

de esta manera, encontrar factores comunes  con respecto a variables e indicadores 

adecuados para los propósitos de medición, iii) definición de una propuesta metodológica 

con las variables e indicadores encontrados, métodos de captura de datos, herramientas 

estadísticas y documentación de ayuda, iv) prueba de la propuesta metodológica para 

proveer una retroalimentación, usando un estudio de caso.  

Los resultados principales son: siete grupos de factores mapeando las etapas del 

proceso de requisitos de software contra los pasos de transferencia de conocimiento, 

resultado en 115 indicadores y 24 variables; 2 variables definidas para el mapeo entre la 

etapa de inicialización en transferencia de conocimiento y la etapa de elicitación de 

requisitos de software, el cual no tenía ninguna variable o indicador definidos. 

Igualmente, fue identificada una correlación entre transferencia de conocimiento y 

requisitos de software, a mejor transferencia de conocimiento mejores requisitos de 

software.  

Además, la retroalimentación obtenida indica que la variable de motivación definida es la 

más influyente en el proceso de requisitos de software según el 41.67% de los 

encuestados, por encima de otras variables como: abstracción, metodología y 

disponibilidad de tiempo, cada una con 16.67% de los encuestados, y comprensibilidad 

con el 8.33% de los encuestados.  

 

Por último, este trabajo permite analizar la influencia de los indicadores de transferencia 

de conocimiento en los atributos de calidad de requisitos de software. 
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Introduction 
 

Software Engineering has been recognized as a knowledge intensive application 

discipline (Rus & Lindvall, 2002), (Dingsøyr, Bjørnson, & Shull, 2009) and (Ward & 

Aurum, 2004). For this reason, in the last decade there has been an increasing interest 

about knowledge management in software engineering. In particular, the processes of 

knowledge codification and knowledge sharing have received most attention and they 

have been researched in diverse ways.  

 

Other authors have argued about the relevance of knowledge transfer processes in 

knowledge management (Albino, Garavelli, & Gorgoglione, 2004; Kumar & Ganesh, 

2009) and the importance of knowledge transfer in software engineering (Argote & 

Ingram, 2000; Inkpen & K. Tsang, 2005).  

 

In this sense, there is a consensus about the importance of the knowledge transfer 

process, however, there is still a debate among what the knowledge transfer process 

really is, because knowledge is not only tangible and linked to cognitive processes inside 

people’s brains but also is said to be particular for everyone (Krogh, Nonaka, & Aben, 

2001; Nonaka & Toyama, 2003), therefore, is not easy to measure.  

 

Measure the KT is a problem, because there not exist any clear model that allow a 

quantitative and/or qualitative approximation to KT, specially due to the KT is not the only 

way to create new knowledge (Awad, 2005; Kumar & Ganesh, 2009). 

 

The phase of collection and specification of requirements play an important role because 

is where the business needs are translated to technical language and is set the scope of 

the software project (Hagge L., 2005; Pilat & Kaindl, 2011) . The problem of carries the 

business concepts across all the software development steps has not been studied and 
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represents and interesting percent of fail causes (23% StandishGroup) in the software 

development projects. 

 

Even if the software chaos report from the StandishGroup has been criticized (Jørgensen 

& Moløkken-Østvold, 2006) (Holtsnider, Wheeler, Stragand, & Gee, 2010), and the 189% 

overrun percentage in software projects has been reduced to 34% and 33%, the 68% of 

projects that still fail are because of the poor requirements specifications. 

 

The scope of this thesis is to get an insight in SR as a KT process, limited to a study case. 

The sample used is not statistically representative, since the scope is to understand how 

KT for SR happens and how it could be measured. The purpose of the present work is to 

design a proposal methodology to measure the knowledge transferring process of 

software requirements (SR) in a software development organization. Understanding a 

proposal methodology as a collection of procedures, techniques, tools and help 

documentation (Avison & Fitzgerald, 2006). Specifically, this research concentrates on: 

 

1. Establish what we know about KT in software engineering and factors who affect 

it. This work defines a general background about KT in software engineering. 

 

2. Characterize the KT process in the SR process. This work maps the KT activities 

with SR processes activities. 

 

3. Design a methodology that involves metrics for the KT process in the SR process 

based on their characterization. This work develops a series of indicators for KT 

measure. 

 

4. Test the proposed methodology in a software project. This work consists of apply 

the methodology created using a study case, to validate it. 
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The methodological process used in this research was organized in four stages as 

follows: 

 

Stage 1: Review of the knowledge transfer background in software engineering. 

In this stage different approaches of KT in software engineering were identified. The goal 

in here was to identify existing efforts in KT measurement, thus, recognizing enabler 

factors for KT and get an insight in how KT measurement have been done until now. The 

review was done using the systematic literature guidelines given by Kitchenham (2007), 

there were no constraints on papers data, all papers until 2012 were consulted. 

 

Stage 2: Characterization of the software requirements process from the 

knowledge transfer point of view. 

Since this thesis involves the measurement of KT, a post positivism point of view is used, 

so, KT in SR is determined and reduced, finding common factors regarding variables and 

indicators suitable for measuring purposes. Another review was done, since initial review 

result in no suitable approach for KT measurement. In other words, nor variables or 

indicators were found. The second review was focused in identify the stages of KT 

process and how SR process steps match in such KT stages. So, a mapping strategy was 

defined to compare KT process stages against SR process steps.  

 

Due to this thesis is focused in KT, the second review doesn’t focus in SR, SWEBOK v3 

was chosen as the guide to SR because it describes generally accepted knowledge about 

software engineering. Its 15 knowledge areas summarize basic concepts and include a 

reference list pointing to more detailed information. For SWEBOK Guide V3, SWEBOK 

editors received and replied to comments from approximately 150 reviewers in 33 

countries, it also gained international recognition as ISO Technical Report 19759. 

 

Once the mapping was done, for each KT-SR matched stage a group of factors was 

identified. And from those factors, variables and indicators was identified following a 

dimension analysis and measurement aspects, all of this grouped by referents. 

 

 

Stage 3: Proposal methodology definition based on variables and indicators found, 

data gathering methods, statistical tools and helping documentation. 
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From previous stage, an initial indicators framework was defined. Due to that KT in SR is 

not widely studied in literature found, this research is also explorative in order to 

understand how KT happens in SR, thus, an interview is proposed to validate if the full 

initial framework. 

 

Once validated, indicators are used in a questionnaire, which was used as a data 

collection strategy to make an empiric observation and measurement. Because of the 

questionnaire, it is need to provide validation for internal consistency, so Cronbach’s 

alpha is proposed since its widely used in the literature review done in previous steps.  

 

Likert question types were defined for the questionnaire, and also a numeric range 

mapping is provided to quantify answers. Four responses levels are provided, each one 

with a numeric value. 

 

Then, statistical analysis is proposed, taking advantage of numeric answers. Pearson’s 

index is proposed as a correlational tool. 

 

Stage 4: Testing the proposal in order to provide feedback, using a case study. 

 

First of all, a kickoff meeting was done for instrument refinement, then a case study is 

conducted to get feedback from the proposal methodology, so, the instrument defined in 

the previous stage is implemented. Data was gathered using an online questionnaire, 

then data was analyzed as specified by the proposal methodology, and documentation 

was made. 

 

 

 

 

 

 

Figure 1 shows the methodology process followed in this work. 
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Figure 1. Methodology process. 

Source: Self-elaboration based on process methodology. 
 

Achievements: 1) a systematic literature review done about KT and SE, 26 referents 

were found about KT measurement, additionally 23 referents about KT in SE, but not one 

specify a clear model or indicator for KT measurement, just 4 referents make any 

emphasis in SR; 2) 4 KT stages was defined after a systematic literature review, then, 

was mapped against the 4 SR steps taken from SWEBOK v3. Based on such mapping, 7 

groups of factors who affect KT in SR. Those factors were built based on 14 referents and 

after the mapping 115 indicators and 24 variables was found; 3) Proposal methodology 

was depicted, 16 variables covering SR quality and KT were defined as the initial 

framework questionnaire, since KT and SR can change depending the organizations, a 

kickoff meeting was added to the proposal methodology in order to refine the initial 

framework and adjust it to the organization reality. Questionnaire internal consistency and 

correlation index was defined as the statistical tools to be applied, for data collection and 

data analysis. Feedback for the proposal methodology was encouraged; 4) A study case 

was conducted in a Brazilian company. Based on the kickoff meeting, it was decided to 

use the full initial framework. Data was gathered using Google Forms, Cronbach’s Aplha 

and Pearson’s Index was used for questionnaire internal consistency and for variables 

correlation. It was found a strong correlation between KT and SR quality, likewise 

motivation was the principal enabler for KT. 

 

Proposal 
Methodology 

KT-SR 
Mapping 

SLR 

Variables and indicators 
characterization,  
4 dimensions, 7 factors, 
139 vars and indicators.  

Two systematic literature reviews, 
to obtain KT-SR factors, variables 
and indicators. 

Instrument 
definition. 
Data collection and 
analysis defined. 
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Chapter one depicts the background about KT in SE as the result of a systematic 

literature review, answering objective 1. Next, chapter 2 focuses in KT for SR, there SR 

process is view as a KT process, reaching objective 2. Then, chapter 3 shows the 

proposal methodology for KT measurement in SR, fulfilling objective 3. Afterwards, 

chapter 4 presents the case study, in order to test the methodology, meeting objective 4. 

Later, in chapter 5 appears the conclusion of this work. At the end, Appendixes with the 

full questionnaire answers and calculations are included. 

 

 



 

 
 

1.  Knowledge Transfer in Software 
Engineering. 

There is a review of different concepts about KT applied to software engineering. The 

review was made based on a systematic literature review. We start with a background 

about knowledge transfer in section (1.1). Next in section (1.2) what we know about 

knowledge transfer in software engineering. And finally, in section (1.3) the conclusions of 

this chapter are presented. 

1.1 Knowledge Transfer 
On the one hand, knowledge has been defined as the information and experience 

grouped usefully in some context (Alavi & E. Leidner, 2001), and literature shows a 

consensus about the taxonomy that represents knowledge as tacit and explicit (Krogh et 

al., 2001)(Nonaka, 2007). On the other hand, transfer means to pass an element form 

one side to other (Watson & Hewett, 2006; Borgatti & Cross, 2003). In other words, KT 

means to pass useful information and experience from one context (project) to other place 

(inside or outside of an organization). 

 

Nevertheless, such transfer, according to some authors, cannot be done (Krogh, 2003) 

due to the fact that knowledge is personal and unique. Every time knowledge passes from 

tacit to explicit (Garavelli, Gorgoglione, & Scozzi, 2002), new knowledge is generated so it 

is different from the previous one. In this way, the exactly transfer of knowledge cannot be 

possible. 

 

It should be noted that KT is different from knowledge sharing (Argote & Ingram, 2000; 

Kumar & Ganesh, 2009) since the fact that one person shares knowledge does not mean 

that he/she already did a transfer. Consequently, entity A (person, business unit or 

company) transfers knowledge to entity B, just when B is able to apply it in a useful way in 
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his own context. By the same token, it can be said that only sharing knowledge has 

occurred. 

 
Figure 2. Knowledge transfer basic model. 

Adapted from Kumar & Ganesh (2009) 

 

Knowledge sharing is important as a KT enabler, even sharing alone is not enough to 

make the transfer occur. This is very important because, until now, the greatest advances 

in knowledge management applied to software engineering have been done at this level –

share- such a process is known as knowledge codification (Farenhorst & Vliet, 2009; 

Garavelli et al., 2002; Gosain, 2007). 

 

KT is more than mere codification because it demands more than building “knowledge” 

bases (data and information) (Kumar & Ganesh, 2009). Those bases ended being just 

data repositories – and thus, them can only code the knowledge. Knowledge is related to 

a human process and it could only be generated through cognitive process inside 

people’s minds (Carayannis, 1999). 

	  

1.2 Knowledge Transfer in Software Engineering 
Due to the intensity of the use of knowledge in software engineering (Tesch, Sobol, Klein, 

& Jiang, 2009; Wilkesmann & Wilkesmann, 2011), the software engineering processes 

are at an interesting place to the KT. A general view of a software development project 
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could have five phases (requirements, design, development and testing, integration and 

maintenance) with the classic cascade model (Karlsen, Hagman, & Pedersen, 2011). 

 

 
Figure 3. Cascade model. 

Adapted from Karlsen et al. ( 2011) 

 

Although the cascade model could look like obsolete nowadays, certain authors (Karlsen 

et al., 2011) continue referencing it because other models have appeared based on this 

model, those models include some improvements, for instance, iterations, recursion or 

parallel steps, but in the end, the basic phases of the software developing cycle are the 

same. Such phases could be executed in different order or with a different focus. 

 

Along the requirements phase, there is an interaction between the technical team and the 

costumers, which are the owners of the business knowledge. These costumers must 

transfer the aforesaid business knowledge to the analysts, so that they can design models 

that should help to transfer business knowledge to technical knowledge in models that 

describe the software such as class diagrams, components, and so on (Havlice, Kunstar, 

Adamuscinova, & Plocica, 2009; Ward & Aurum, 2004). 

 

Likewise, within the technical team, KT occurs in software development (techniques and 

programming procedures) and software testing (test cases, scenarios, etc.). 
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1.2.1 Knowledge transfer within software development 

multinationals 
In the literature review some articles which treat the topic of KT in multinationals were 

found out; they all claim that very few research has been done on the topic in 

multinational environments, where, there is not only a distance issue, but also, cultural 

facts (Ambos & Ambos, 2009; Duan, Nie, & Coakes, 2010; Niederman, 2005). 

 

Those authors do a list of possible factors that affect transfer in such environments, being 

the cultural factor the most troublesome. To avoid such difficulties, they define a 

mechanism to code the knowledge, for instance, internationalization tools to mitigate the 

idiomatic differences are made by coding and some others generate more sophisticated 

mechanisms as ontologies to define a common language. 

 

With those codification tools, it is possible to facilitate the KT, because the physical and 

cultural gaps can be reduced. 

 

In brief, the topic of KT in multinational environments addresses the issue of information 

and experience transfer of successful projects from one organizational unit to other.  

 

To carry out what was said before, authors state diverse factors and hypothesis that are 

supposed to increase the transfer effectiveness. The principal role of technology in this 

aspect is to serve as an information repository with relevant information about the work to 

be done, as well as a collaboration tool to mitigate distance between people (Ambos & 

Ambos, 2009; Aurum A., 2008; Y.-J. Chen, Chen, & Chu, 2008; Duan et al., 2010). 

 

Figure 4 shows a set of common factors taken from the review. These factors expose 

characteristics that should be considered for an effective KT. It just shows factors at 

organizational levels, this means only elements that inside the organization administration 

can affect the KT effectiveness. Promptly in the review, three groups of factors or 

dimensions were found out: structural, relational and cognitive.  

 

Then, the structural dimension deals with how the communication inside the organization 

is done; this communication can be formal or informal, depending on the communication 

channels that are used. For instance, one type of formal communication can be meetings 
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or memorandums, by contrast, an informal way could be a socialization during a coffee 

break or the use of social networks.  

 

The second dimension is relational dimension that deals with factors of people and their 

culture inside the organization; such factors include the confidence between people, 

bosses and subordinates, the organizational commitment of these people, the 

remuneration capability of the organization, and the factor of the identity towards the 

organization and the work done.  

 

The last dimension, the cognitive dimension, references the capability of the organization 

management to articulate strategies along all of the processes and people, together with 

a factor of organizational culture to provide the dimension mentioned above. 

 

 
Figure 4. Knowledge transfer factors in multinational environments (1) 

Based on (J.-S. Chen & Lovvorn, 2011). 

 

Meanwhile, Figure 5 shows the coordination elements that influence the KT. The objective 

is to see that it is not only necessary to take into account the organizational factors 
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mentioned above, but also the technology that supports the KT processes, especially, the 

ones related to mitigating extenuating factors.  

 

Such technology tools can be knowledge bases: repositories in relational or document 

oriented databases, with useful information about the business processes; collaborative 

tools: such as social networks and, in general, any technology that supports people 

communication and the building of collective concepts, such as blogs or forums (Ambos & 

Ambos, 2009; Eric Ras, Gabriela, Patrick, & Stephan, 2005).  

 

Technology tools help to mitigate physical distance, because the internet/intranet does 

not require that the work teams stay together in the same place. In addition, translation 

tools and ontologies can mitigate ambiguity in the texts and idiomatic differences 

(Kjærgaard, Nielsen, & Kautz, 2010). More importantly, there are face-to-face 

coordination methodologies (face to face meetings, for instance at the same location), 

which are traditional but are more sensitive to the effects of geographic and linguistic 

distance (J.-S. Chen & Lovvorn, 2011). 

 

 
Figure 5. Knowledge transfer factors in multinational environments (2). 

Based on (Ambos & Ambos, 2009) 
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1.2.2 Knowledge Transfer in Agile Models 
KT is evidenced by feedback between people. The agile models promise to decrease 

documentation in favor of coding speed, leaving the knowledge inside the people’s head, 

however, it favors the knowledge flows while making periodic meetings (Karlsen et al., 

2011). Basically, one might think that an agile environment is more adequate to the KT 

than a traditional one (cascade, RUP), in which a series of pre-requisites are demanded 

in order to advance to a posterior step. 

 

Agile environments facilitate to share the knowledge because the teams work on 

iterations that allow a continuous feedback, not only inside the technical team, but also 

with clients and owners of business knowledge (Larman & Basili, 2003; Whitworth, 2006) 

 

Regardless of the agile methodology, the goal is to favor the interactions between people 

instead of processes and tools, the software work instead of detailed documentation, the 

collaboration with clients instead of contract dealing and with this, to respond to the 

variant requirements as it progresses. 

 

There are various agile models, and an abstraction of them could be seen as an iterative 

cascade model (due to the software development phases) iterative with multiple 

interactions. Although there is an iterative software model, the difference with an agile 

method is that iterations are done between little, very specific requirements/functionalities, 

and the traditional documentation is minimal.  

 

Figure 6 shows such interactions, in which KT is also performed, since it does not just 

involve a relation among developers, software testers and analysts, but includes the 

owner of the business and the expert in the process to be automated in the KT (Ambos & 

Ambos, 2009; Koskinen, Pihlanto, & Vanharanta, 2003; Marshall & Brady, 2001). 
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Figure 6. Agile model generalization. 

Based on (Awad, 2005) 

 

1.2.3 Knowledge transfer among the projects 
An interesting point of view for the KT is that it can take place in an isolated environment 

inside the organization, which is important because it facilitates the processes given that 

the team is inside the same organization. In contrast, the transfer between organizations 

could be difficult due to intellectual protection issues, which prevent the flow of knowledge 

(Awad, 2005; S. M. . Jasimuddin, Connell, & Klein, 2012; S. M. Jasimuddin, 2007). 

 

Inside the same non-multinational organization, the concern is to achieve a link between 

culture, processes and their supporting technology to facilitate the KT (Lee & Shiva, 

2009). 

 

Figure 7 shows the current methods used for the KT. There are various groups of people 

that represent the projects that could have or not experts. These experts form an expert 

net, which could be managed in a formal way through directories, where experts could be 
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contacted for a topic, or could be undocumented nets, as friend or colleague nets. Ideally, 

such nets should be documented in a directory or software that leads to the experts.  

 

Likewise in Figure 7 appears a knowledge base with an ontology that defines the 

business process language. Such knowledge bases are useful to keep the history of the 

management done in the projects, and their goal is to preserve the best practices or key 

factors that have contributed to the success of the projects. 

 

 
Figure 7. Experts net with a knowledge base. 

Based on Schneider (2009) 

 

The concern here is to reproduce the knowledge by taking advantage of the experts in an 

organization or business unit, so the others could be benefited of their experience. It is not 

just about repositories with knowledge bases or ontologies that represent the domain of 

the problem, but the technology tools that must lead to the collaboration and access to the 

experts so that they could be reached through their documents and face to face, 

improving the KT (Havlice et al., 2009). This has not had a big development according to 

the review done, so it could be a good topic to research. 

 

1.2.4 Knowledge transfer between people 
 

Finally, in a more atomic level, the KT between two people is studied. The SECI model 

(Nonaka & Toyama, 2003), defines a series of steps that are followed in the learning 

process of a person. Which are: a) socialization, where a person A socializes his/her 
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experience and knowledge with other person B; b) exteriorization occurs in person B 

when he/she can define concepts in their own context about the knowledge acquired; c) 

person B does combination when applying his/her new knowledge and builds prototypes, 

finally, d) the knowledge is internalized in person B through practice, so the knowledge 

becomes a part of his/her mental models, believes, abilities, etc. Into the previous general 

model of knowledge management, KT could be seen in the existence of two persons; 

apprentice and master, where the apprentice in turn can be an expert in certain topics and 

a master can be an apprentice in others (Wilkesmann & Wilkesmann, 2011). This shows 

that in general any expert person may also have the need of learning and acquiring new 

capabilities for different projects, in this case about software. 

 

The goal of transfer between people is that they meet generally in an informal way, to 

treat the issues of the organization and give each other pieces of advice on how to carry 

out the work in the best way according to their experience. Like this, social methodologies 

were born, as the coffee breaks, where people get involved to share their experience. 

 

Figure 8 shows this kind of interaction, where the objective is not a plain transfer, because 

of the personal nature of the knowledge, and instead of doing a transfer, what is done is 

building new useful knowledge in one or more contexts(Krogh et al., 2001). 

 

 

 
Figure 8. Knowledge transfer between people model. 

Taken from Wilkesmann & Wilkesmann (2011). 

 

1.2.5 Factors helping knowledge transfer 
 

Majority of the research has been done using surveys trying to determinate the 

effectiveness of the methodologies applied for the KT. 
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Surveys are used to be created from a proposed model and are validated sending it to 

different companies. Ideally some authors propose consistence indexes to measure the 

gathered responses and the integrity of the questions (Wilkesmann & Wilkesmann, 2011). 

 

The factors to measure always come from hypothesis about people behavior, is used to 

presume that for the KT occurs, a predisposition of the people to share knowledge should 

exist (Karlsen et al., 2011). 

 

Some authors claim that people interviewed usually are willing to share their knowledge 

and emphasize the importance of knowledge sharing to carry out their activities (Y.-J. 

Chen et al., 2008; Liebowitz & Suen, 2000). 

 

It could be interesting to measure the previous purpose in the local industry because the 

reviewed surveys recommend reapplying them in local environments to try to verify and 

validate their questions and answers (Aurum A., 2008). 

 

Typically, factors have two components, one organizational and one technologic. The 

organizational is used to measure the people and business unit’s readiness towards 

knowledge management, and especially towards KT. The technology is used to see how 

far could exist collaboration tools and knowledge bases to support the KT process. 

 

Figure 9 depicts the importance of organizational factors joined with a set of technology to 

facilitate the KT. There it appears a social space (coffee) and socio technical nets, 

because is natural that people relate between each other. Besides there are 

communication tools and experience repositories where finally an agent appears on the 

middle in order to help the articulation between the members. 

 

 



18 Knowledge Transfer measurement for software requirements. 

 

 
Figure 9. Knowledge transfer mixed techniques. Experience base and people networks. 

Taken from (Schneider, 2009). 

 

1.2.6 Knowledge transfer measurement 
 

There are few proposed metrics to measure KT. It is argued that KT is something difficult 

to measure, because it cannot be measured directly, and always is measured indirectly. If 

it is tried to be measured by the knowledge created, it could be a mistake due to the KT is 

not the only existing way to create new knowledge (Karlsen et al., 2011; Wilkesmann & 

Wilkesmann, 2011). To deal with this, is used to ask for the KT perception in the 

organizations and people. 

 

Table 1 summarizes the efforts found out about KT measurement, unfortunately there 

aren’t clear indicators or metrics, nor any mean of how to measure. The most common 

metrics are those who deal more with final elements more than the mere KT. For 

example, there are some authors who emphasize more in final products, innovation 

quantity or new concepts generated, however, it is not only with the achievement of final 

products or the generation of new concepts that it could be said that the KT is successful 

(Abdullah, Selamat, Cob, & Sazaly, 2011; Chen C.-J.a Shih, 2009; Gardner, Fong, & 

Huang, 2010; Liebowitz & Suen, 2000; Mei, Wang, & Cao, 2011). 
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Furthermore there may be more interesting metrics for the organization, for instance 

oriented metrics to the gaining of money or value generated, such as earnings that come 

after a project that had KT or even the return of investment over a knowledge active, e.g. 

a patent (Crowne, 2009; Gardoni, Frank, & Vernadat, 2005; Gorschek & Davis, 2008; Li 

J.a Moe, 2010; Liebowitz & Suen, 2000; Rezgui, Hopfe, & Vorakulpipat, 2010).  

 

Either the commercial value could be taken into account, for instance the gain of a new 

market, the client’s satisfaction, gained clients, increased sales by clients etc. Another 

metric could be the value created by research and development activities and the return 

of invest by each trained employee (KT) (Carayannis, 1999; Desmarais et al., 2009; 

Formentini & Romano, 2011; Salger, Sauer, Engels, & Baumann, 2010; Szulanski, 1996). 

 

Some metrics more oriented to KT, are focused on the quantity of knowledge (in 

knowledge bases) frequently acceded or reused. And measure how many people have 

shared their knowledge (Chakraborty, Sarker, & Sarker, 2010; Duan et al., 2010; Hagge 

L., 2005; Ko, Kirsch, & King, 2005; Kyaw P., 2003; Poort E.R.a Pramono, 2009).  

 

In short KT cannot be measured directly, but it is measured in a qualitative way using 

organizational and technological factors, together with final products obtained from such 

transfer (Chau, Maurer, & Melnik, 2003; Liebowitz & Suen, 2000). 

 

It should be noted that the measurements are done by surveys from which the questions 

are related to the factors to measure, for instance, if it is desired to know if the transfer 

process X was effective, it is asked if the people consider that they could learn from 

process X and in turn if it was useful to be applied to certain project Y. To this some 

authors (Chen C.-J.a Shih, 2009; Karlsen et al., 2011; Liebowitz & Suen, 2000; 

Wilkesmann & Wilkesmann, 2011) show examples of questions, but in general those kind 

of articles do not show the full questionnaire used in the organizations. 
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Table 1. Effort summary on KT measurement. 

Author Knowledge Indicator Tool / Method 

Karlsen et al. (2011), 

Wilkesmann & Wilkesmann 

(2011). 

Creation, 

sharing 

Knowledge 

created 

Questionnaire 

Abdullah et al. (2011), 

Chen C.-J.a Shih (2009), 

Gardner et al. (2010), 

Liebowitz & Suen (2000) 

and Mei et al. (2011). 

Creation New products 

and concepts 

created 

Not specific 

Crowne (2009), Gardoni et 

al. (2005), Gorschek & 

Davis (2008), Li J.a Moe ( 

2010), Liebowitz & Suen ( 

2000) and Rezgui et al. 

(2010). 

Creation New patents, 

return on 

investment, 

money, income 

Questionnaire 

Carayannis (1999), 

Desmarais et al. (2009), 

Formentini & Romano 

(2011), Salger et al. (2010) 

and Szulanski (1996). 

Creation, 

Share 

Market share, 

money, income, 

ROI per trained 

people 

Questionnaire 

Chakraborty et al. (2010), 

Duan et al. (2010), Hagge 

L. (2005), Ko et al. (2005), 

Kyaw P. (2003) and Poort 

E.R.a Pramono (2009). 

Codification, 

share 

FAQ access 

count, 

Technology 

usage,  

Questionnaire 

Chau et al. (2003) and  

Liebowitz & Suen (2000). 

Sharing Technology 

usage 

Questionnaire 

Table made by authors based in the literature review. 

Source: self-elaboration based in the literature review done. 
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1.2.7 Knowledge transferring measurement in SE 
 

Even when the KT is difficult to measure, talking about KT measurement in SE is not new. 

Maybe there are not clear ways or at less, a clear path to measure KT, some authors 

have done an effort to make an approximation to SE measurement from the KT viewpoint.  

 

Table 2 synthesizes authors found out works about KT measurement in SE in 3 groups. 

First two are about what to measure, while the third group is about KT measure in SR.   

 

Most of authors haven’t choice one specific software process but instead of that, try to 

explain how KT happens in the software processes. Those efforts could be seen as 

authors pursuing KT measure through social capital variables like Bjørnson F.O.a 

Dingsøyr (2005); Boden, Avram, Bannon, & Wulf (2009); Wang & Yang (2008); Windiarti, 

Ferris, & Berryman (2011); Zhang Q. (2011) who state that trustiness, communication, 

respect and commitment are fundamental in the culture of an organization for people to 

share their knowledge and feel comfortable in doing it.   

 

However, culture per se is not enough for the KT to succeed so other variables come into 

play, Baruch Y.a Lin, n.d.; Hongmei & Huidong (2008); Poort E.R.a Pramono (2009); Wah 

C.Y. (2005) states that incentives are important for people to share their knowledge, 

especially because people who have are highly competitive are the ones who have more 

knowledge and often such kind of people behaves apathetic to the knowledge sharing, so 

the coo-petition strategy is proposed.  

 

In addition, S. M. Jasimuddin (2007) and Ren (2009) claim that communications style 

(virtual or face to face) are fundamental for the correct knowledge flow from experts to 

apprentices. Finally, among the first set is also the notion of intellectual capital as a mean 

of KT measure (C.-J. . Chen, Shih, & Yang, 2009). 

 

As a second group of indicators there are the authors who focused their efforts in 

measure KT through technology tools and methods for KT, Conradi & Dybå (2001); Kuk 

(2006); Shou & Sun (2010) explain how communication being supported for the 
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technology can help knowledge flow, especially if there are an idiomatic or background 

difference between people.  

 

Also, there are some methodologies like the communities of practice (Mestad A.a Myrdal, 

2007) who ease the KT because of the enhanced communication (Qu G.a Ji, 2011; 

Zhang, Bao, Gao, & Guo, 2008) . 

 

Finally, for the purpose of this study, in the third group appear six authors who are the 

ones, at the time of the review done for this thesis, who have study KT in SR. Eric Ras et 

al. (2005) see the KT transfer in SR as a matter of documentation, so proposes a weblog 

to store requirements information thus making easy to access the them, also make an 

addition for frequently asked questions over the requirements. This way, the metrics 

defined are the quantity of access to the weblog and FAQ´s viewed, resolved and cited.  

 

Salger & Engels (2010) propose requirements specification through KT, this is done doing 

a double verification in a testing oriented software development, where there is an initial 

verification done by the stakeholders and a second verification done by an external 

development team, so the mean of measure is verification.  

 

This could be sound quite strange, because according SWEBOOK client review of 

requirements is called verification while development team reviews are called validation, 

and those are two different processes. Xiaohong Shan, Jiang, & Huang (2010) made a 

model of KT for SR, but it does not make an effort to state a sort of metric, instead of that 

states that tacit knowledge is the most difficult to elicit and that physical and cultural 

distance affect the KT, also classifies the kind of knowledge according the knowledge 

holder.  

 

Chau et al. (2003) addresses the issue of using agile methods as a KT enables, because 

of agile methods favor the communication thus making easy the tacit knowledge flow, 

intends to measure agility and quantity of communication.  

 

Damian, Marczak, & Kwan (2007); Hagge L. (2005) state the importance of 

communication and define a kind of patterns to ease the SR process and KT through it, 
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what intends to measure is the SR specification, in other words, knowledge codification 

and their validation.  

 

Finally, Pilat & Kaindl (2011) are the ones who bring a full view of SR from knowledge 

management point of view, they propose a methods that is tested on a study case. The 

method consist of identify knowledge holders and map the requirements versus the 

knowledge holders thus making clear who are the experts, such experts are the 

responsible for validate the requirements. From this model, some indicators could be 

measured such as: the perceived pay off (an incentive given to experts as a retribution for 

their knowledge) and efficacy (showing experts the importance of their knowledge and 

contribution for the organization); common vision, it means the quantity of people who 

agree that the project is important and have the willingness to participate in it, so, a 

collaborative environment is set, and the group identity is defined as a factor affecting KT 

for SR. 
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Table 2. KT measurement effort in SE. 

Authors Software process What intends to measure 

Baruch Y.a Lin, n.d.; 

Bjørnson F.O.a Dingsøyr, 

(2005); Boden et al. 

(2009); Chen C.-J.a Shih  

(2009); Hongmei & 

Huidong (2008); S. M. 

Jasimuddin (2007); Poort 

E.R.a Pramono (2009); 

Ren (2009); Wah C.Y.  

(2005); Wang & Yang 

(2008); Windiarti et al. 

(2011); Zhang Q. (2011). 

Not specific, the 

whole process is 

treated but 

without detail. 

Social capital, trustiness, 

communication style (virtual or 

face to face), commitment, 

sharing culture, idiom, 

participation, connectivity, 

incentives, respect, attitude, 

learning skills, coo-petition. 

Conradi & Dybå (2001); 

Dan, Zhenqiang, Kaizhou, 

& Lei (2008); Kuk (2006); 

Mestad, Myrdal, Dingsoyr, 

& Dyba (2007); Qu G.a Ji 

(2011); Shou Y. (2010). 

Not specific, the 

whole process is 

covered but 

without detail. 

Communications technologies, 

networks size, quantity of 

interactions. Conversation, 

participation, connectivity. Written 

rules, procedures and degree of 

instruction. Communities of 

practice. FAQ rate of access. 

Chau et al. (2003); 

Damian D. (2007); Hagge 

L. (2005); Pilat & Kaindl 

(2011); E Ras (2009); X 

Shan, Jiang, & Huang 

(2010). 

Requirements Perceived pay off and efficacy, 

common vision, group identity. 

Collaboration. Quantity of sharing. 

Cultural and physical distance. 

Testability. 

Table built based in the literature review. 
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1.3 Chapter conclusions 
 

This chapter, in order to reach this thesis objective 1, establishes what we know about KT 

in software engineering and factors who affect it. Also, defines a general background 

about KT in software engineering. 

 

From the review done, nowadays, it was found out that the knowledge management 

studies have been focused on the creation and codification of knowledge, later in their 

socialization or dissemination (“knowledge sharing”) without taking if a real KT occurs. 

 

In the existent literature about KT in software engineering, the principal focus has been: 

• KT among software development multinationals. 

• KT inside development teams, using agile models. 

• KT within projects in the organizations. 

• KT between people within an organization. 

 

It is found out that KT in the process of requirements elicitation has not been widely 

studied in the literature, just four articles were found directly related to it Hagge L. (2005); 

Pilat & Kaindl (2011); Salger F.a Engels (2010); Xiaohong Shan et al.(2010). 

 

The authors mentioned above typify some factors that facilitate the KT. However they 

leave out any means of metric or indicator that permit to measure in any way the KT rate. 

 

Measure the KT is a problem, because there is no clear model that allow a quantitative 

and/or qualitative approximation to KT, specially due to the KT is not the only way to 

create new knowledge (Awad, 2005; Kumar & Ganesh, 2009). 

 

The phase of collection and specification of requirements plays an important role because 

is where the business needs are translated to technical language and allow setting the 

scope of the software project (Hagge L., 2005).  
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The problem of carrying the business concepts across all the software development steps 

has not been studied and represents an interesting percent of fail causes (23% Standish 

Group) in the software development projects. 

 

Even if the software chaos report from the Standish Group has been criticized (Holtsnider 

et al., 2010; Jørgensen & Moløkken-Østvold, 2006), and the 189% overrun percentage in 

software projects has been reduced o 34% and 33%, the 68% of projects that still failing 

are because of the poor requirements specifications. 

 



 

 
 

2.  Software requirements as a process of KT. 

This chapter shows a general approach to software requirements and how software 

requirements steps take place inside the knowledge transfer stages. Section 2.1 presents 

a brief description about what is known as software requirements for the purpose of this 

study, basically based on SWEBOOK reference. Next, section 2.2 introduces a mapping 

for the KT stages and SR steps, giving as a result a series of measurable factors affecting 

each KT-SR match. Then, in section 2.4 appears the metrics found and proposed for 

each group of KT-SR match. At the end, in section 2.5 conclusions of this chapter are 

established. 

 

2.1 Software requirements 
The requirements for a system are the descriptions of what the system should do, the 

services that it provides and the constraints on its operation. The process of finding out, 

analyzing, documenting and checking these services and constraints is called 

requirements engineering –RE (Kedian, Zhi, & Didar, 2008; Khan, Ahmad, & Alnuem, 

2012; McGee & Greer, 2012; Wiradanti & Govindaraju, 2011).  Despite heterogeneous 

terminology throughout the literature, RE must include four separate but related activities: 

elicitation, modeling, validation, and verification according to SWEBOOK. In practice, they 

will most likely vary in timing and intensity for different projects. 

SWEBOOK states: 

 

Elicitation is often treated as a simple matter of interviewing users or analyzing 

documents, nonetheless several other elicitation methods are available. Some 

emphasize group sessions in the form of focus groups or workshops; others are 

employed primarily to elicit requirements for specific types of systems. For 

example, developers frequently use repertory grids, sorts, and laddering methods 

in specifying knowledge-based systems. Elicitation also includes those activities 
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that explore how software can meet organizational goals, what alternatives might 

exist, and how they affect various stakeholders. 

 

Modeling: Experts have proposed many modeling methods and specification 

languages to make requirements precise and consistent. Traditionally these 

methods have separated the data, functional, and behavioral aspects of 

requirements and specified software by creating one or more distinct models. 

Prototypes, for instance, attempt to create an operational model that stakeholders 

can directly experience.  

 

Validating: The purpose of validating requirements is to certify that they meet the 

stakeholders’ intentions, try to answer if the software is being specifying the right 

way. Validation examines a work product (for example, a specification) to 

determine conformity with stakeholder needs.  

 

Verification, on the other hand, determines whether a work product conforms to 

the allocated requirements, so the software is specified correctly. That is, it checks 

a specification for internal consistency through mathematical proofs or inspection 

techniques. An important point in validating and verifying requirements is 

prioritizing them. By addressing high-priority requirements before considering low-

priority ones, you can significantly reduce project costs and duration. Moreover, 

throughout RE you should revisit the priorities assigned, for example, during 

elicitation to ensure that they continue to adequately reflect the stakeholders’ 

needs. This highlights the recurrent nature of requirements validation and 

verification. 

 

Methods for validating and verifying requirements are relatively scarce. Peer 

reviews, inspections, walkthroughs, and scenarios figure most prominently. 

Moreover, the recording of decisions and their rationales is quite useful. 

 

Best practices in RE involve: Successful requirements engineering teams have in depth 

knowledge of the application domain, IT, and the requirements engineering process. In 

other words, successful projects have the “right combination” of knowledge, resources, 
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and process (Kedian et al., 2008; Khan et al., 2012; McGee & Greer, 2012; Wiradanti & 

Govindaraju, 2011).  

 

Pilat & Kaindl (2011) states that stakeholder feedback plays a decisive role from the 

beginning to the end of successful requirements engineering projects. The most 

successful teams always involve customers and users in the requirements engineering 

process and maintain a good relationship with stakeholders.  

 

Successful teams have an ongoing collaboration with stakeholders to make sure that 

requirements are interpreted properly, to deal with fluctuating requirements, and to avoid 

communication breakdowns. Chau et al. (2003) research supports this best practice: 

according to one study, user participation is one of the most important factors contributing 

to requirements engineering success. Successful requirements engineering teams identify 

the boundaries of the application domain and of the major stakeholders.  

 

Klendauer, Berkovich, Gelvin, Leimeister, & Krcmar (2012) claims that successful projects 

allocate a significantly higher amount of resources to requirements engineering (28%) 

than the average project in this or previous field studies, and they expend these resources 

according to a well-defined process. 

 

Since software requirements engineering deals with understanding of the business 

knowledge, KT is essential for the process success (Hagge & Lappe, 2004, 2005; Pilat & 

Kaindl, 2011). The result of the KT can be described as a software engineering 

specification, which is an official statement of what the system developers should 

implement. It should include a detailed specification of the system requirements. 

 

Knowledge already acquired and codified by the requirements engineers can be given to 

the stakeholders for reviewing purposes. Through feedback from such reviews, more 

knowledge about the requirements can be transferred to the requirements engineers. This 

reiterates the process, and the codified knowledge put into the form of a specification 

improvement (Pilat & Kaindl, 2011; Xiaohong Shan et al., 2010). 

 

During SR, two categories of knowledge are transferred and transformed. On one hand, 

knowledge about the requirements is being manipulated, and on the other hand, 
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additional knowledge about the domain for which the software is being developed is 

necessary (Damian et al., 2007). Stakeholders that hold knowledge about the 

requirements, inherently also possess domain knowledge (Xiaohong Shan et al., 2010). 

2.2 KT-SR mapping 
KT process stages were mapped against SR process steps. On the one hand the 

reference for the KT stages was taken from relevant authors according a literature review 

about KT in SR and their measurement, on the other hand the SWEBOOK was taken into 

account, for the SR process, because it is an effort from the computer society to 

characterize what is known about software engineering process, and promote a 

consistent view of SR. Finally, factors affecting KT were organized for each step mapped. 

 
Starting with Szulanski (1996) who states that KT has four stages: Initiation, 

implementation, “ramp-up” and integration, other authors start using the word KT process 

adding or modifying steps like: information acquisition, documentation, transmission, 

source and receiver perception (Verkasalo & Lappalainen, 1998), gather the knowledge 

from a source, code it through a channel, and pass it to a receipt (Albino et al., 2004), 

Idea creation, sharing, evaluation, dissemination and adoption (Levine & Gilbert, 1998). 

 

SWEBOOK divide SR in seven topics: SR fundamentals, Requirements process, 

elicitation, analysis, specification and validation, Practical considerations and SR tools. 

However, only four are going to be considered which are the related to the strictly SR 

process: elicitation, analysis, specification and validation. 

 

In short, there are four dimensions for the knowledge transfer to occur according to 

Szulanski (1996). 

 

1). Initiation: where the decision to KT and information acquisition is done by gathering 

the knowledge from a source, in a software context it is supposed that the source is 

motivated enough to share their knowledge because the source is the client who need the 

software, at this point the KT for software requirements differ from classical KT in 

organizations, because the receiver of the knowledge (i.e. software analysts) does not 

intend to apply such knowledge but to build a software specification. This first step match 

with software elicitation stage for SR, because is where the first approach to business 
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knowledge stakeholders is made, those stakeholders initiate the sharing of their 

knowledge and KT starts.  

 

2) Implementation: is about the formal flow of knowledge from the source to the receipt, 

first software specification which could be seen as the source of knowledge codification 

occurs, the elicitation step ends and start the analysis of such first requirements, 

implementation cease or diminish with the software specification because is where the 

receipt starts using the transferred knowledge (requirements). At this point 

implementation step for KT differ from classical KT in organizations, because the receipt 

isn’t going to use the knowledge in his behalf, but for a software specification analysis. 

 

3) “Ramp-up”:  in this step initial knowledge codification and knowledge dissemination 

ends, software requirements are fully analyzed giving as a result the formal initiation of a 

software specification document. Consistence and conjecture of requirements are being 

evaluated. The software specification serve as a basis for agreement between customers 

and contractors on what the software product is to do as well and what it is not expected 

to do.  

 

4) Integration: begins after the receipt achieves satisfactory results with the transferred 

knowledge, the knowledge is adopted and the perception of source and receiver happens. 

In the software requirements context is about the software specification end, the 

awareness of needs and ambiguity are evaluated, starting and ending the validation stage 

of software requirements, resulting in the final software specification. 

 

Table 3. KT in SR shows the mapping, where KT steps (there called dimensions) appears 

in the first column and SR stages take place in the first row, E for elicitation, A for 

analysis, S for specification and V for validation. In each cell appear a group of factors, 

named F1 to F7. 
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Table 3. KT in SR. Dimensions of KT vs. stages of SR. 

 E A S V 

Initialization. 

*Information acquisition.  

*Knowledge gathering.  

*Knowledge sharing.  

*Knowledge dissemination. 

F1    

Implementation. 

*Documentation.  

*Knowledge codification. 

F2 F3   

“Ramp-up” 

*Receipt perception.  

*Knowledge codification.  

*Knowledge dissemination. 

 F4 F5  

Integration. 

*Knowledge adoption. 

  F6 F7 

Table built based on Albino, Claudio Garavelli, & Schiuma (1998); Levine & Gilbert 

(1998); Szulanski (2000); Verkasalo & Lappalainen (1998) and the SWEBOOK v3. 

2.3 Factors affecting each KT and SR mapping 
Based on Szulanski (2000); Schwartz (2007); Minbaeva (2007); Goh, Chua, Luyt, & Lee 

(2008) and Simonin (2004) work, the next factors are defined for each mapping. 

 

Factors F1, the Initialization and Elicitation are affected by the willingness to initiate 

transfer and propensity to share which are related to: acknowledgement and attribution, 

disseminative capacity, interpersonal connection and motivation of the source. 

 

Factors F2, the Implementation and Elicitation are affected by the ease of transfer which 

is related to stickiness at initiation, stickiness at implementation, motivation, the 

awareness of need, the ability to transfer, the ambiguity of knowledge, the retentive 

capacity and modifiability of requirements. 
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Factors F3, the Implementation and Analysis are affected by the available time/access of 

source and receipt, reliability of the source, motivation of the receipt, ambiguity of 

knowledge, awareness of availability, absorptive capacity of receipt, understandability of 

requirements and its verifiability. 

 

Factors F4, the Ramp-up and Analysis are affected by the requirements degree of 

conjecture. 

 

Factors F5, the Ramp-up and Specification are affected by requirements internal 

consistency. 

 

Factors F6, the Integration and Specification are affected by the available time/access of 

the receipt and source, while the awareness of need from the source and the ambiguity of 

knowledge. 

 

Factors F7, the Integration and Validation are affected by the correctness and 

completeness of the specification. 

2.4 KT-SR Metrics 
This section explains an analysis over the existing metrics for software requirements seen 

from the knowledge transfer point of view. In order to gathering software requirements 

metrics a review was conducted following Kitchenham (2007) instructions using the 

SCOPUS database, then metrics were categorized as variables and indicators related to 

an aspect and dimension of analysis. Analysis dimensions were defined according to 

knowledge transfer stages in section 2.2, then, aspects of analysis were defined based on 

software requirements steps that were established in section 2.2, factors from section 2.3 

and results of the literature review. Section 2.4.1 shows details of the review done and 

referents obtained, then, in section 2.4.2 appears the analysis of the aspects found inside 

each dimension of analysis and the metrics inside each aspect analysis, next, section 

2.4.3 states the detailed metrics chosen for this thesis purposes, at the end section 2.5 

depicts the chapter conclusions. 
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2.4.1 Studies selected for analysis 

The literature review was performed using this terms: software requirements 

measurement, software requirements metrics, software requirements indicators, 

requirements engineering measurement; requirements engineering metrics and 

requirements engineering indicators”. 

 

The search equation result in 373 single papers, after reviewing their abstract, 

introduction and conclusions, 49 papers were selected for full reading. The criteria used 

for selecting those 49 papers were: the including of any mean for requirements 

measurement such as a variable (characteristic or attribute from an analysis unit, 

minimum study element, observable and measurable) or indicator (qualitative or 

quantitative expression observable, permits to describe characteristics, behaviors, or 

phenomena through some variable evolution)(Sánchez-torres, Carolina, & Torres, 2009). 

After the full reading for each 49 papers, 14 papers last because were the only ones who 

treat requirements measurement as their main issue and proposed and/or explain some 

sort of variable or indicator. A total of 139 metrics were found, 115 were indicators and 24 

variables. Table 4 resumes the referents and quantity of variables and indicators found, 

and based on data from this table, Figure 10 depicts its information as percentage of 

variables and indicators, making clear that there are more indicators than variables. 

 

Table 4. SR referents. 

Referent Indicator Variable Total  
BIG EARS (Mavin & Wilkinson, 2010) 8 

 
8 

Completeness and Complexity of KAOS 
models(Espada, Goulão, & Araújo, 2011) 10 

 
10 

Crosscutting concerns(Conejero, Figueiredo, 
Garcia, Hernández, & Jurado, 2012) 2 

 
2 

Goal Oriented Quality Model(Cares & Franch, 
2009) 9 

 
9 

Maintainability NFUR(Abran, Al-Sarayreh, & 
Cuadrado-Gallego, 2010) 3 

 
3 

Measurement Framework for Maturity RE 
Process(Niazi, Cox, & Verner, 2008) 

 
14 14 

Meeting Quality SR Acquisition 
Phase(Hanakawa & Obana, 2012) 18 

 
18 

QRE BO approach(Banerjee, Sarkar, & 
Debnath, 2013) 4 

 
4 

Quality of Textual Requirements(Génova, 
Fuentes, Llorens, Hurtado, & Moreno, 2013) 27 

 
27 
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RE Initial Metrics(Costello & Liu, 1995) 7 

 
7 

Reliability NFUR(Al-Sarayreh, Abran, & 
Santillo, 2010) 3 

 
3 

Requirements Modifiability 
Management(Lam, Loomes, & 
Shankararaman, 1999) 4 

 
4 

SRS Metrics(Iqbal & Naeem Ahmed Khan, 
2012) 16 

 
16 

Use Case Complexity(Yavari, Afsharchi, & 
Karami, 2011) 4 10 14 
Total  115 24 139 

Source: self-elaboration based in literature review done. 

 

 

Figure 10. Implementation variables and indicators. 
Source: self-elaboration based in literature review done. 

 

2.4.2 KT-SR dimensions, aspects and metrics 

Analysis dimensions are taken as KT stages defined in section 2.2. Each dimension has a 

series of factors affecting them as stated in section 2.3. Even when there are four analysis 

dimensions, in the literature review does not appear any mean of measurement for the 

initiation stage, here called dimension of initiation. For the other dimensions 

(implementation, integration and ramp-up) were found out some aspects in the review 

done. 

 

15%	  

85%	  

ImplementaLon	  vars	  and	  indicators	  
Variables	   Indicators	  
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So, talking about SR there is no variable nor metric found in order to take care for Factor1 

- the willingness to initiate transfer and propensity to share which are related to: 

acknowledgement and attribution, disseminative capacity, interpersonal connection and 

motivation of the source- Maybe it is because in software projects contexts, it is assumed 

that there is a willingness to share the business knowledge, it is taken for grant that 

stakeholders will share their knowledge and will be able to get involved actively in the SR 

process, but as stated before, usually people need to get motivated in order to share their 

knowledge and participate (Davenport, Prusak, & Webber, 1998; Kumar & Ganesh, 2009; 

Szulanski, 2000).  

 

Regarding analysis aspects, a set of elements were taken from the review and matched 

with factors defined above. The matching method its really simple, because it is based in 

the semantics of the words, for instance: it is said that ambiguity of knowledge affects the 

KT at the Implementation stage(Szulanski, 2000), and it is said that Ambiguity of 

requirements affects SR process (Mavin & Wilkinson, 2010), so we have a match. Table 5 

shows the full match done. 

 

 

Table 5. KT-SR Aspects. 

Mapping Factor Aspect found in KT literature Aspect found in SR literature 

F2 - Implementation and 

Elicitation 

 

Stickiness at initiation 

Stickiness at implementation. 

Motivation. 

Awareness of need 

Ability to transfer 

Ambiguity of knowledge 

Retentive capacity 

Modifiability of requirements. 

Abstraction 

Ambiguity 

Atomicity 

Complexity 

Precision 

 

F3 – Implementation and 

Analysis 

Available time/access of source 

and receipt.  

Reliability of the source. 

Motivation of the receipt. 

Ambiguity of knowledge, 

Ambiguity 

Time/Access source 

Time/Access receipt 

Understandability 
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Awareness of availability, 

Absorptive capacity of receipt. 

Understandability of requirements 

and its verifiability 

F4 – Ramp-up and 

Analysis 

Knowledge degree of conjecture Effort 

Verifiability 

Volatility 

F5 – Ramp-up and 

Specification 

Knowledge consistency Verifiability 

F6 – Integration and 

Specification 

Available time/access of the 

receipt and source. Awareness of 

need from the source. 

Ambiguity of knowledge. 

Maintainability 

Traceability 

Validability 

F7 – Integration and 

Validation 

Correctness and completeness of 

knowledge. 

Completeness 

Correctness 

Source: self-elaboration based in literature review done. 

 

As a result of the factors mapping done, 16 aspects of analysis were found. Table 6, 

Table 7 and Table 8 shows the list of dimensions, aspects and their referents. It is 

interesting that most of the indicators are focused in the SR specification document per 

se, but as noticed by SWEBOOK, the software requirements process is more than build 

the SR specification; it involves an elicitation phase where the motivation and the 

willingness to share knowledge take place. 

 

Another interesting result is the lack of traceability indicators. 11 authors Abran et al. 

(2010); Al-Sarayreh et al. (2010); Banerjee et al. (2013); Cares & Franch (2009); 

Conejero et al. (2012); Costello & Liu (1995); Espada et al. (2011); Génova et al. (2013); 

Iqbal & Naeem Ahmed Khan (2012); Lam et al. (1999); Niazi et al. (2008) state that 

traceability is very important, but just four of them Banerjee et al. (2013); Costello & Liu, 

(1995); Génova et al. (2013); Iqbal & Naeem Ahmed Khan (2012); Niazi et al. (2008) 

define any mean to measure the traceability. Traceability is important because traceability 

enables to perform an effective control of the requirements, and due to requirements 
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changes constantly in every real word software project, traceability is important to keep 

control over software scope. 

 

In the next page (landscape), Table 6 will show the number of variables and indicators 

found for implementation dimension. As there could be seen in Figure 11, most of 

indicators are related with understandability, ambiguity and complexity, that tendency in 

the referents are related with SR process difficulties found by authors (Espada et al., 

2011; Génova et al., 2013; Hanakawa & Obana, 2012). On the one hand, we could say 

that the most important aspect related with KT implementation dimension is the 

understandability, this makes sense because in this dimension, requirements elicitation is 

finalized and requirements analysis begin, so requirements should be fully understood. 

On the other hand, time and abstraction are not widely explored, but they are important 

indicator for the requirements process. 

 

 
Figure 11. Implementation variables and indicators per aspect 

Source: self-elaboration based in literature review done. 
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Table 6. Implementation dimension, their referents and aspects. 

Referent Abstraction Ambiguity Atomicity Complexity Precision 
Time/Access 
source 

Time/Access  
receipt Understandability 

  V I V I V I V I V I V I V I V I 
Measurement Framework for 
Maturity RE Process 1   1         

 
1           3   

Quality of Textual Requirements 
  2   3   6   

 
  5           7 

BIG EARS 
      2     1 

 
  1           1 

Goal Oriented Quality Model 
      3       

 
      1   1   2 

Meeting Quality SR Acquisition 
Phase       9       

 
              9 

QRE BO approach       1       
 

                
SRS Metrics       1       

 
              1 

Completeness and Complexity 
of KAOS models       

 
      8                 

Maintainability NFUR 
              1       1         

Reliability NFUR 
              1           1     

Use Case Complexity             5 2                 
Total 1 2 1 19 0 6 6 12 1 6 0 2 0 2 3 20 

Note: V:Variable I:Indicator 
Source: self-elaboration based in literature review done. 
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Next, from Table 7 we can conclude that traceability and completeness take the most 

important roles within integration dimension. Since integration dimension deals with 

analysis and specification, traceability is very important as a key to do validation over the 

requirements towards other development phases like design, code and testing, likewise 

backwards from those phases to requirements. 

Validability takes the last place based on their quantity of indicators; validation should be 

taken seriously, because in integration dimension the validation of requirements is made. 

 

Table 7. Ramp-up dimension, their referents and aspects. 

Referent Completeness Correctness Maintainability Traceability Validability 
  V I V I V I V I V I 

BIG EARS 
  1   1             

Completeness and 
Complexity of KAOS 
models   2                 
Goal Oriented Quality 
Model   2                 
Measurement Framework 
for Maturity RE Process 1   1   2   2   1   

QRE BO approach 
  1   1       1     

RE Initial Metrics   2   
 

  
 

  2     
SRS Metrics   

 
  4   2   4   3 

Crosscutting concerns 
  

 
  

 
  2   

 
    

Requirements Modifiability 
Management   

 
  

 
  3   

 
    

Quality of Textual 
Requirements   

 
  

 
  

 
  2   1 

Total 1 8 1 6 2 7 2 9 1 4 
Note: V:Variable I:Indicator 

Source: self-elaboration based in literature review done. 
 

In the next page, Table 8 shows the last list of indicators found. The ram-up dimension, 

different from traditional KT, in SR could not be said that is about to apply knowledge 

learnt, but, to specify a document based on a plenty of knowledge about requirements, 

because ramp-up is mapped with analysis and specification, volatility must be controlled 

and verifiability is a must in order to do a good analysis. Also could be noticed, that effort 



Chapter 2. Software requirements as a process of KT 41 

 
aspect have more variables than indicators, it could be related with the lack or indicators 

for software estimating. 

 

Table 8. Integration dimension, their referents and aspects. 

Referent Effort Verifiability Volatility 
  V I V I V I 

Maintainability NFUR   1   
 

    

Reliability NFUR 
  1   

 
    

Use Case Complexity 
5 2   

 
    

BIG EARS 
  

 
  1     

Measurement Framework for 
Maturity RE Process   

 
1 

 
    

Quality of Textual Requirements   
 

  1     
SRS Metrics   

 
  1   2 

RE Initial Metrics 
  

 
  

 
  1 

Requirements Modifiability 
Management   

 
  

 
  1 

Total 
5 4 1 3 0 4 

Note: V:Variable; I:Indicator 
Source: self-elaboration based in literature review done. 

2.4.3 Discussion 

KT for SR could not be seen as a typical KT process, because the receipt of the 

knowledge does not intend to apply the knowledge gathered from the source rather than 

understand and code it in a SR specification. For instance: in the context of a SR process 

for a software about judicial collection, a receipt (software engineer or requirements 

analyst) does not intend to apply or mimic the knowledge gathered from a source (lawyer 

or accountant) about a judicial collection process, the receipt must to understand the 

receipt knowledge and then translate it to a SR specification or two, one for developers 

and other for stakeholders (maybe the same source of knowledge) validation.  
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Another difference, in the context of KT for SR, is in the source of knowledge 

intentionality, because for a SR process, the source does not pretend to transfer his 

knowledge used in his day to day work, but, the source intends to transfer needs about a 

software that have to fit some business rules or logic the source is expert in. 

2.5 Chapter Conclusions 
 

This chapter was developed in the interest of this thesis objective 2, because characterize 

the KT process in the requirements elicitation process. Furthermore, this chapter maps 

the relations within KT and SR processes activities. 

 

Knowledge transfer for software requirements is different from classical approach to KT, 

because transfer of a full body of knowledge is not intended, instead of that, need who 

relate with some business knowledge are transferred. 

 

A mapping from KT and SR were made based on their sub process similarities, in order to 

find out any mean of indicators. 139 variables and indicators were found out in the 

literature. 

 

One mapping last without indicators, the one regarding factor 1 Initialization and 

Elicitation. So, some measurable aspects are needed for it. 

 

 

 



 

 
 

3.  Proposal Methodology for KT 
measurement in SR 

This chapter shows the stages series to build the measurement methodology. The 

methodology will consider: dimensions and aspects of analysis, the identification of 

indicators and variables from chapter 2, and, will include a stage to find out a set of 

indicators who apply to a certain case, this is done because of organizations diversity, 

due to such diversity, the full set of indicators from chapter 2 could not fit all organizations 

reality, so a previous validation must be made. This chapter is organized in two parts, first 

part (section 3.1) outlines the purpose, scope, end users and replicability of the proposal 

methodology, and meanwhile, second part (section 3.2) details the proposal methodology 

as well, whose sections include: the initial framework, the suggestion to make indicators 

refinement, how to conduct the data collection and analysis, next, analysis o findings 

appear and at the end the feedback appears.  

3.1 Overview of the proposal methodology 
The proposal methodology serves as a recommended mean to achieve the KT 

measurement in SR. According Avison & Fitzgerald (2006), the recommended means 

usually includes the identification of phases, procedures, tasks, rules, techniques, 

guidelines, documentation and tools. They might also include recommendations 

concerning the management and organization of the approach and the identification and 

training of the participants. 

Since there is no much knowledge about KT in SR, the proposal methodology is kind 

exploratory, so based on the review done, indicators are going to be gathered and will be 

refined inside an organization, furthermore data collected by questionnaires will be 

analyzed for validity and reliability.  

In next section, we will precede with proposal methodology general aspects, including the 

purpose, scope, end user and the methodology replicability. 
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3.1.1 Purpose of study 
The purpose is to answer the research question How to measure KT in SR? To do this, 

the previous KT-SR characterization will be used in order to validate which stages fit or 

not in a real environment. 

3.1.2 Scope of the proposal methodology 
This is an exploratory methodology because of the lack of literature regarding KT 

measurement. Likewise, we want to explore the current status of SR inside an enterprise 

with real software projects, not only in terms of the literature indicators and stages, but 

also inquire about the organization perceptions as well as their views on how the KT 

affects the SR process.  

3.1.3 End users 
Software development organizations and any SR or KT enthusiasts. 

3.1.4 Replicability 
Taking into account that organizations and people use to change and evolve, replicability 

could be affected, so rather than replicate the results, this proposal methodology could be 

replicated though the application of methods for data collection and analysis. 

3.2 Proposal methodology 
Departing from (Avison & Fitzgerald, 2006) proposal methodology definition, this section 

presents the procedures, techniques, tools and help documentation designed in order to 

realize the KT measurement in SR. 

3.2.1 Scope 
This proposal methodology serves as guide in order to find out a way to measure the 

knowledge transfer in the software requirements process inside an organization, so next 

sections state the steps to pursue such goal. 
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3.2.2 Initial framework 
In the past chapter, a set of 139 indicators and variables were found out. Since it would 

be nice to apply the full set of indicators, it would be too heavy to survey. So, from each 

one of 16 analysis aspects, two indicators will be selected. 

Next the 16 aspects appear. For abstraction aspect Table 9, there is only one referent so 

it is used. 

Table 9. Abstraction indicators. 

	  	   Abstraction	   The	  requirements	  tell	  what	  the	  application	  must	  do	  
without	  telling	  how	  it	  must	  do	  it,	  i.e.,	  excess	  of	  technical	  
detail	  about	  the	  implementation	  must	  be	  avoided	  in	  the	  
specification	  of	  the	  requirements.	  

	  #	   Referent	   Indicator	  
1	   Quality	  of	  Textual	  Requirements	   #	  Control	  flow	  terms:	  while,	  if	  then,	  when.	  Count	  one	  

per	  requirement/user	  story.	  
2	   Quality	  of	  Textual	  Requirements	   #	  Design	  Terms:	  (technology	  or	  design	  related)	  method,	  

parameter,	  database.	  Count	  one	  per	  requirement/user	  
story.	  

3	   Quality	  of	  Textual	  Requirements	   At	  the	  end	  abstraction	  degree	  =	  #	  req	  abstract	  /	  #	  req	  
Source: (Génova et al., 2013) 

For the ambiguity aspect Table 10, there are 6 referents, but only Génova et al. (2013) 

and Iqbal & Naeem Ahmed Khan (2012) are not tool or method dependent. 

 

Table 10. Ambiguity indicators. 

	  	   Ambiguity	   There	  exists	  only	  one	  interpretation	  for	  each	  
requirement	  (unambiguity	  and	  understandability	  are	  
interrelated,	  they	  could	  be	  even	  the	  same	  property;	  
some	  authors	  have	  coined	  the	  term	  ‘‘uniguity”	  

#	  	   Referent	   Indicator	  
4	   Quality	  of	  Textual	  Requirements	   #	  Imprecise	  terms	  
5	   Quality	  of	  Textual	  Requirements	   #	  Overlaping	  req	  
6	   SRS	  Metrics	   Ri/Rt	  x	  100,	  	  <	  95%	  ambiguous	  

Ri=	  requirements	  having	  the	  same	  interpretation	  
Rt	  =	  total	  requirements	  

Source: (Génova et al., 2013) and (Iqbal & Naeem Ahmed Khan, 2012) 
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For the atomicity aspect Table 11, there is only one referent. 

Table 11. Atomicity indicators. 

	  	   Atomicity	   Each	  requirement	  is	  clearly	  determined	  and	  identified,	  
without	  mixing	  it	  with	  other	  requirements.	  

#	  	   Referent	   Indicator	  
7	   Quality	  of	  Textual	  Requirements	   #	  Req	  size	  <=	  18	  words.	  
8	   Quality	  of	  Textual	  Requirements	   #	  Req	  dependencies	  (other	  reqs,	  artifacts),	  max	  3	  

dependencies	  
Source: (Génova et al., 2013) 

For the complexity aspect Table 12 (Yavari et al., 2011) is selected because others are 
tool dependent or method dependent. 

Table 12. Complexity indicators. 

	  	   Complexity	   Degree	  of	  interrelationships	  of	  requirements	  and	  actors	  
or	  goals/objects.	  

	  #	   Referent	   Indicator	  
9	   Use	  case	  complexity	   Level	  of	  actor	  complexity:	  Simple	  if	  An	  API	  or	  program	  

interface,	  score	  1.	  
Average	  if	  Network	  protocols	  such	  as	  TCP/IP,	  HTTP,	  
score	  	  2.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Complex	  Graphical	  User	  
Interface,	  score	  3.	  

10	   Use	  case	  complexity	   Level	  of	  UseCase	  complexity:	  Simple	  if	  1	  to	  3	  
transactions,	  
score	  5	  .	  
Average	  if	  4	  to	  7	  transactions,	  score	  10.	  
Complex	  More	  than	  7	  transactions,	  score	  15.	  

Source: (Yavari et al., 2011) 
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For precision aspect Table 13, there are only two referents who has indicators. 

Table 13. Precision indicators. 

	  	   Precision	   All	  used	  terms	  are	  concrete	  and	  well	  defined.	  
	  #	   Referent	   Indicator	  
11	   Quality	  of	  Textual	  Requirements	   #	  anaphorical	  terms.	  They	  are	  typically	  personal	  

pronouns	  (it),	  relative	  pronouns	  (that,	  which,	  where),	  
demonstrative	  pronouns	  (this,	  those),	  etc.	  Max	  2	  per	  
req/story.	  

12	   Big	  Ears	   Vagueness,	  #req	  that	  are	  vague	  /	  #	  total	  req.	  A	  
requirement	  is	  vague	  if	  require	  more	  dialog	  to	  
understand?	  

Source: (Génova et al., 2013; Mavin & Wilkinson, 2010) 

 

Time indicators are mentioned here, Table 14 and Table 15, but discarded because 

(Hanakawa & Obana, 2012) makes and extensive explanation about time as a transversal 

enabler for SR quality. So, for the purpose of this thesis, the more time involved in SR the 

better SR quality. 

 

Table 14. Time/Access source indicators. 

	  	   Time/Access	  source	  	   	  Quantity	  of	  time	  allocated	  for	  the	  knowledge	  receipt	  to	  
interact	  with	  the	  knowledge	  source.	  

	  #	   Referent	   Indicator	  
13	   Goal	  oriented	  quality	  model	   Average	  over	  the	  total	  amount	  of	  time	  Velocity	  of	  

agreement	  that	  the	  group	  has	  arrived	  to	  an	  As-‐Is	  on	  
domain	  models	  model	  over	  the	  80%	  of	  agreement	  in	  
past	  modeling	  activities.	  

14	   Maintainability	  NFUR	   Schedule	  in	  Months	  =	  3.0	  *	  person-‐month^1/3	  
Source: (Abran et al., 2010; Cares & Franch, 2009) 

Table 15. Time/Access receipt indicators. 

	  	   Time/Access	  receipt	  	   	  Quantity	  of	  time	  allocated	  for	  the	  knowledge	  source	  to	  
interact	  with	  the	  knowledge	  receipt.	  	  

	  #	   Referent	   Indicator	  
15	   Maintainability	  NFUR	   Mean	  time	  to	  modify	  a	  requirement.	  
13	   Goal	  oriented	  quality	  model	   Average	  over	  the	  total	  amount	  of	  time	  Velocity	  of	  

agreement	  that	  the	  group	  has	  arrived	  to	  an	  As-‐Is	  on	  
domain	  models	  model	  over	  the	  80%	  of	  agreement	  in	  
past	  modeling	  activities.	  

Source: (Al-Sarayreh et al., 2010; Cares & Franch, 2009) 
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For the understandability aspect Table 16, there are 6 referents, but only (Génova et al., 

2013) and (Iqbal & Naeem Ahmed Khan, 2012) are not tool or method dependent. 

 

Table 16. Understandability indicators. 

	  	   Understandability	   The	  requirements	  are	  correctly	  understood	  without	  
difficult	  

	  #	   Referent	   Indicator	  
16	   Quality	  of	  Textual	  Requirements	   Readability	  index:	  RFlesch	  =	  206.835	  -‐	  (1.015	  9	  WPS)	  -‐	  

(84.6	  9	  SPW),	  where	  WPS	  and	  SPW	  stand	  respectively	  
for	  average	  words	  per	  sentence	  and	  average	  syllables	  
per	  word.	  RKinkaid	  =	  0.39	  9	  WPS	  ?	  11.8	  9	  SPW	  -‐	  15.59.	  
This	  index	  yields	  a	  result	  between	  0	  and	  12.	  

17	   	  SRS	  Metrics	   Number	  of	  req	  that	  are	  understandable	  to	  all	  the	  users	  
and	  reviewers.	  	  
Ru/Rt	  x	  100	  
Ru	  =	  Req	  understood	  by	  users	  
Rt	  =	  Tot	  req	  

Source: (Génova et al., 2013) and (Iqbal & Naeem Ahmed Khan, 2012) 

For completeness aspect Table 17, (Costello & Liu, 1995; Espada et al., 2011) referents 

are selected, because others are tool or method dependent. 

 

Table 17. Completeness indicators. 

	  	   Completeness	   It	  is	  a	  quality	  factor,	  which	  means	  necessary	  
requirements	  objects	  are	  not	  lacking	  specification.	  

	  #	   Referent	   Indicator	  
18	   RE	  Initial	  metrics	   Are	  all	  allocated	  higher-‐level	  requirements	  are	  

addressed?	  
19	   Completeness	  and	  Complexity	  of	  

KAOS	  models	  
Percentage	  of	  leaf	  goals/req	  that	  have	  an	  associated	  
agent/actor.	  

Source: (Costello & Liu, 1995; Espada et al., 2011) 
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For correctness aspect Table 18, (Iqbal & Naeem Ahmed Khan, 2012; Mavin & Wilkinson, 

2010) referents are selected, because others are business object dependent. 

 

Table 18. Correctness indicators. 

	  	   Correctness	   It	  is	  a	  quality	  factor	  which	  means	  how	  many	  
requirements	  in	  requirement	  specification	  meet	  
customer’s	  need	  

	  #	   Referent	   Indicator	  
20	   SRS	  Metrics	   Rc	  /Rt	  x	  100	  

Rc	  =	  req	  having	  the	  same	  interpretation	  
Rt	  =	  Tot	  req	  	  
shoudl	  be	  >=	  80%	  

21	   Big	  EARS	   Are	  all	  process	  consistent	  (knowledge	  holder-‐receipt)	  
Source: (Iqbal & Naeem Ahmed Khan, 2012; Mavin & Wilkinson, 2010) 

 

For maintainability aspect Table 19, there are 3 referent, but (Iqbal & Naeem Ahmed 

Khan, 2012; Lam et al., 1999) referents are selected, because even when crosscutting 

concerns (Conejero, Figueiredo, Garcia, Hernández, & Jurado, 2009) are an interesting 

concept, there are no clear example about how to use it.  

 

Table 19. Maintainability indicators. 

	  	   Maintainability	   It	  is	  a	  quality	  factor	  witch	  means	  how	  requirements	  
change	  and	  stabilize	  over	  the	  time.	  

	  #	   Referent	   Indicator	  
22	   Requirements	  modifiability	  

management	  
%	  Acceptance	  rate.	  The	  acceptance	  rate	  is	  the	  %	  of	  
requirement	  changes	  accepted	  by	  the	  customer	  at	  
delivery	  time	  within	  a	  given	  reporting	  period.	  

23	   SRS	  Metrics	   %	  of	  the	  requirements	  changed	  during	  each	  phase	  of	  
system	  development.	  
Rch	  =	  total	  requirements	  to	  be	  changed	  
Rc	  =	  total	  correct	  requirements	  

Source: (Iqbal & Naeem Ahmed Khan, 2012; Lam et al., 1999) 

 

For traceability aspect Table 20, there are 4 referents, but all of these just make 
modifications reference to a initial source which is (Costello & Liu, 1995) RE Initial 
metrics. 
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Table 20. Traceability indicators. 

	  	   Traceability	   Indicates	  degree	  to	  which	  development	  organization	  
maintains	  accountability	  for	  meeting	  requirements	  at	  
each	  stage	  of	  life	  cycle	  via	  a	  requirements	  traceability	  
matrix	  (RTM).	  	  Provides	  quantitative	  means	  for	  
determining	  whether	  all	  required	  
relationships/dependencies	  are	  addressed.	  

	  #	   Referent	   Indicator	  
24	   RE	  Initial	  metrics	   	  #	  of	  req	  traced	  between	  spec,	  design	  and	  test	  /	  #	  of	  tot	  

req	  
25	   RE	  Initial	  metrics	   #	  of	  req	  in	  the	  RTM	  /	  #	  of	  req	  

Source: (Costello & Liu, 1995) 

For validability Table 21, there are only two referents. 

Table 21. Validability indicators. 

	  	   Validability	   The	  client	  must	  be	  able	  to	  confirm	  (validate)	  that	  the	  
requirements	  effectively	  express	  the	  system	  that	  
answers	  his	  or	  her	  needs.	  

	  #	   Referent	   Indicator	  
26	   Quality	  of	  textual	  requirements	   #	  of	  req	  versions	  (max	  2)	  
27	   SRS	  Metrics	   #	  of	  req	  validated	  /	  #	  of	  req	  

Source: (Génova et al., 2013; Iqbal & Naeem Ahmed Khan, 2012) 

 

Effort aspect, Table 22, will not be considered because its more related with estimations 
done over requirements than the SR process as well. 

Table 22. Effort indicators. 

	  	   Effort	  *	   	  	  
	  #	   Referent	   Indicator	  
28	   Maintainability	  NFUR	   Effort	  in	  Person	  Month	  =	  FP	  divided	  by	  no.	  of	  FP's	  per	  

month.	  
29	   Use	  Case	  complexity	   Number	  of	  Main	  and	  Alternative	  Scenario	  

Source: (Al-Sarayreh et al., 2010; Yavari et al., 2011) 

For the verifiability aspect Table 23, there are 4 referents, but only (Génova et al., 2013) 
and (Iqbal & Naeem Ahmed Khan, 2012) are not tool or method dependent. 
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Table 23. Verifiability indicators. 

	  	   Verifiability	   The	  engineer	  must	  be	  able	  to	  check	  (verify)	  that	  the	  
produced	  system	  meets	  the	  specified	  software.	  

	  #	   Referent	   Indicator	  
30	   Quality	  of	  textual	  requirements	   #	  req	  versions	  (max2)	  +	  #	  req	  dependencies	  (max	  9)	  
31	   SRS	  Metrics	   #	  req	  verified	  ok	  /	  #	  req	  verified	  

Source: (Génova et al., 2013) and (Iqbal & Naeem Ahmed Khan, 2012) 

For volatility aspect Table 24, there are 3 referents, but (Costello & Liu, 1995; Lam et al., 
1999) is chosen because the other (Iqbal & Naeem Ahmed Khan, 2012) are based on the 
first two. 

Table 24. Volatility indicators. 

	  	   Volatitlity	   Indicates	  changes	  (additions,	  deletions,	  modifications)	  
and	  reasons	  for	  changes	  to	  requirements.	  	  Provides	  
insight	  into	  system	  maturity	  and	  stability.	  	  

	  #	   Referent	   Indicator	  
32	   Requirements	  modifiability	  

management	  
#	  req	  modified,	  added	  and	  removed	  /	  #	  total	  req	  

33	   RE	  Initial	  metrics	   #	  req	  defects,	  faults	  	  	  /	  #	  req	  
Source: (Costello & Liu, 1995; Lam et al., 1999) 
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Additionally we are going to define some others aspects to cover the first dimension of KT 

(initiation), because there were no metrics found regarding with it.  

 

The new aspects are related to factor F1 where the Initialization and Elicitation are 

affected by the willingness to initiate transfer and propensity to share which are related to: 

acknowledgement and attribution, disseminative capacity, interpersonal connection and 

motivation of the source as shown in Table 25, likewise in Table 26 appears the proposed 

questions to make the motivation measurement. 

 

Table 25. Aspects proposed, Factor 1 Initialization and Elicitation. 

Factor KT aspect SR proposed aspect 

F1 Acknowledgement and 

attribution. 

Disseminative capacity. 

Interpersonal connection. 

Motivation of the source. 

Propensity to share from 

the knowledge holder. 

Disseminative capacity from 

the knowledge holder. 

Requirements analyst 

Interpersonal connection. 

Acknowledgement and 

attribution of the knowledge 

holder. 

Knowledge holder 

motivation. 

 

Proposal built based on (Schwartz, 2007; Szulanski, 1996, 2000) and the SWEBOOK v3. 
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Table 26. Motivation indicators. 

	  	   Motivation	   Incentive	  that	  encourage	  knowledge	  transfer.	  	  
	  #	   Index	   Questions	  
34	   Sharing	  motivation	  index	   I'm	  happy	  with	  my	  experience	  so	  I	  Want	  others	  to	  

experience	  it?	  I	  want	  to	  share	  my	  great	  experience?	  I	  
want	  to	  help	  with	  my	  positive	  experience?	  I	  want	  to	  
save	  others	  from	  having	  same	  negative	  experience	  as	  
me?	  I	  am	  unhappy	  with	  the	  current	  process	  the	  
software	  is	  automating?	  

35	   Propensity	  to	  share	  index	   I	  feel	  good	  when	  tell	  others	  about	  my	  success	  cases?	  I	  
want	  to	  get	  rewarded	  for	  sharing	  my	  expertise?	  I	  like	  
talking	  to	  people	  with	  similar	  interest?	  

Questions based on (Roy, 2011) 

3.2.3 Indicators refinement 
Even when we already have an initial set of indicators, we still need to refine indicators in 

spite of identify essential statements about organizations reality as follows: 1) which 

software requirements phases are used in the organization? 2) Which KT aspects match 

the SR process in the organization? And, 3) do the indicators fit the software 

requirements process inside the organization? To do the refinement a kick off meeting 

should be applied to a team involved in the software requirements process, within the 

team people should be: software managers, team leaders, software requirements 

analysts, developers and business knowledge holders if possible. 

The kickoff meeting is suggested, because in such meetings team roles are discussed 

and the model could be presented, so the three questions above can be debated too. 

3.2.4 Data collection 
On the one hand, the proposed method for data collection is a questionnaire, since is the 

method used for most of the studies reviewed as state in Table 1. On the other hand, 

even when this is an exploratory research to understand how KT happens in SR and this 

way find how to measure it; a questionnaire is needed in order to get a quantitative insight 

of KT measurement.  
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Type of questionnaire: The questionnaire is type transversal (data will be collected in a 

specific time).  

Questionnaire elements: The questionnaire designed should have five components: 

• The first a set of questions to characterize the respondents, 

• A second about SR quality attributes,  

• The third about SR relation with performance (process delay and software errors),  

• A fourth to re test SR quality attributes, 

• And the fifth is dedicated to knowledge transfer related questions. 

 

Questionnaire items scale: The scale used in the first component is nominal (categorical 

or discrete), in order to categorize respondents. The others components are Likert type, 

because that way indicators defined in section 3.2.2 Initial Framework, and to favor 

correlation analysis. 

 

Target audience: People involved in software development, specially with SR. There is 

no sampling, because generally, a software development teams are small, so all team 

members will be considered. 

 

The instrument: The instrument is built using answers taken from previous step, apply a 

survey in order to gather indicators regarding people (e.g. people motivation) and apply 

indicators over artifacts owners (e.g. SRS completeness). The survey should include 

questions defined for each referent; as well as quantitative indicators should use 

referent’s formulas defined in section 3.2.2 Initial Framework. The instrument analysis and 

validity will be discussed in next sections. 

 

Survey was build based on indicators above in section 3.2.2. Questions was grouped in 

five groups as follows:  1) People who respond characteristics, in order to get the 

perception among different roles in software development; 2) Basic Requirements quality 

attributes: understandability related attributes (complexity, ambiguity, atomicity, precision), 

completeness, traceability, correctness in order to get and insight in their influence over 

the SRS compliance; 3) SR influence in project time delay and errors; 4) KT related 

questions about motivation and willingness to knowledge sharing/transfer; and 5) Re test 

Requirements quality attributes, focused in how changeability (due to understandability, 
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abstraction) affects user validability (user acceptance). At the end, appears a question 

about How could knowledge transfer in software requirements be improved? Just to figure 

out respondent’s perception about KT in SR. Figure 12 depicts the survey structure. 

 

The purpose is to search for correlation between each of the five groups, especially 

against KT. 

 
Figure 12. Survey Structure. Source: Self-elaboration. 

 

Table 27 displays the questions and possible answers for each survey’s groups. For each 

group of questions, Likert and numeric range answers were designed according section 

3.2.4 an developed follows: for group 1 (people profile): numeric ranges; for group 2 (SR 

Quality Attributes Test) and 5 (SR Quality attributes re Test), four level frequency options; 

for group 3 (SR link with Delay and Errors) and 4 (Knowledge transfer), four level 

agreement options.  

4.	  KT	  

2.	  SR	  
Quality	  

Aqributes	  
Test	  

3.	  SR	  link	  
with	  Delay	  
and	  Errors	  	  

5.	  SR	  
Quality	  
Aqribues	  
re	  Test	  

1.	  People	  
Profile	  
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Table 27. List of questions for groups 1 to 5. 

Group 1 (People 
Profile)  

Group 2 (SR Quality 
Attributes Test) 

Group 3 (SR link with 
delay and Errors) 

Group 4 (Knowledge 
transfer) 

Group 5 (SR Quality 
attributes re Test) 

Possible answers: 
numeric ranges. 

Possible answers: Four 
level frequency options 
(Always, Often, Some 
Times, Never) 

Possible answers: Four 
level agreement options 
(Totally Agree, Agree, 
Partially Disagree, Totally 
Disagree) 

Possible answers: four 
level agreement options 
(Totally Agree, Agree, 
Partially Disagree, 
Totally Disagree) 

Possible answers: Four 
level frequency options 
(Always, Often, Some 
Times, Never) 

What is your principal 
rol at your organization 
/ team work? 

There is just one single 
interpretation for each 
requirement. 

Requirements cause 
delay or failures in 
software projects. 

I feel happy with my 
experiences, so I want 
others to know them. 

Are correctly 
understood, without 
difficulty. 

How many people 
work in software 
requirements at your 
company? 

Each requirement is 
clearly determined and 
identified, overlapping 
among requirements. 

Requirements may cause 
a poor software quality 
(stability, scalability, 
completeness, etc.) 

I want to share my huge 
experience. 

Are specified without 
explain technical details 
about implementation. 

How many years 
experience have the 
people working with 
requirements elicitation 
at your organization? 

Terms used in 
requirements are 
concrete and well 
defined.   

I want to help others 
with my positives 
experiences. Meets users needs. 

How many actors, 
extension points or 
dependencies, does a 
requirement have? 

All requirements and 
their dependencies are 
specified.   

I want to save others 
from bad/negative 
experiences I've had. 

Stop changing over 
time. 

  

There are compliance 
monitoring for 
requirements, at every 
stage in software life-
cycle.   

I don't feel happy with 
the software process, 
which is currently done. 

Change due to failures 
or errors in their 
specification. 
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Users state that 
requirements express 
their needs effectively.   

I feel good when talking 
with others about my 
successful experiences. 

Change because of user 
validations. 

  

Software produced 
fulfills requirements 
specification.   

I want to be rewarded 
for sharing my 
knowledge.   

   
I like to talk with people 
with common interests.   

Source: Self-elaboration. Based on initial framework defined in 3.2.2.
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3.2.5 Data analysis 
Reliability and validity tests over the data collection methods should be used. 

 

Validity is concerned with the accuracy of our measurement, and it is often discussed in 

the context of sample representativeness. However, validity is also affected by survey 

design since it also depends on asking questions that measure what we are supposed to 

be measuring (Mora, 2011; Walonick, 2012). 

 

Reliability, on the other hand, is concerned with the consistency of our measurement, 

that’s the degree to which the questions used in a survey elicit the same type of 

information each time they are used under the same conditions. 

 

Reliability is also related to internal consistency, which refers to the degree different 

questions or statements measure the same characteristic. This can be tested by using 

correlations, split sample comparisons or methods such as Cronbach's Alpha (Mora, 

2011; Walonick, 2012). 

 

According Walonick (2012) reliability is synonymous with repeatability. A measurement 

that yields consistent results over time is said to be reliable. When a measurement is 

prone to random error, it lacks reliability. The reliability of an instrument places an upper 

limit on its validity. A measurement that lacks reliability will also lack validity. Three 

methods to test reliability are suggested: test-retest, equivalent form, and internal 

consistency. 

3.2.6 Analysis of findings 
Once survey analysis is done, its time to make a correlational analysis using linear 

regression, it is supposed that the more the KT the best the SR. Additionally, make a 

significance analysis using t-student distribution. 

 

At the end ask team people involved in SR process, about the perception about the KT 

SR methodology used. 
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3.2.7 Proposal Methodology Feedback 
The proposed methodology strengths and weaknesses should be detected by applying 

the methodology to a case study, as well as the preliminary results for the indicators and 

the general profile.  

 

Results obtained for each proposed indicator, as well as the strengths and weaknesses 

detected when applying the model, must became feedback to adjust the model. It’s 

supposed that it would be iteratively applied until all the indicators and profiles were 

refined (Sánchez-torres et al., 2009). 

 

3.3 Chapter conclusion 
This chapter was developed to achieve this thesis objective 3, design a proposal 

methodology for KT measurement in SR.  

 

Since there are a lot of indicators taken from the literature, only two indicators was 

selected per analysis dimension in order to build the initial set of indicators. Those 

indicators establish the initial framework that is going to be refined when conducting the 

study case.  

 

Some indicators were discarded because were more related with software requirements 

specifications rather than software requirements process.  

 

Survey’s data analysis was defined in order to grant certain measure of internal 

consistency, and then correlational analysis was selected as the statistical tool for 

indicators evaluation. 

 

Figure 13 depicts the proposal methodology, where tree stages appears, the first one 

comprises the instrument building, there appears the four elements defined (SRQ 

software requirements quality attributes, SRE software requirements re test, KT 

component and PP for people profiles), the second one is about the instrument indicators 

refinement through a kickoff meeting, and the last one is the KT assessment through the 

survey and the statistical tools. 
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Figure 13. The proposal methodology. 

Source: self-elaboration based on proposal methodology. 
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4.  Study Case 

This chapter presents how the study case was conducted and shows the obtained results 

in addition to the proposal methodology feedback. Section 4.1 introduces the case, 

afterward methodology was applied as defined in chapter 3; thereafter, the indicators 

refinement is done in section 4.2, which was made using the initial framework defined in 

section 3.2.2; then, the data collection was made in section 4.3 according to what was 

defined in section 3.2.4; after that, data analysis was performed in section 4.4 following 

the instructions given by section 3.2.5; next, the analysis of findings was achieved in 

section 4.5.2.1 consistent with guidelines detailed in section 3.2.6; afterwards, the 

proposal methodology feedback is presented in section 4.6 as said by section 3.2.7; and 

finally section 4.7 shows this chapter conclusions. 

 

Data collection and their respective analysis presented in this chapter serves as an 

executive summary, data analysis was done using aggregated data, so, this chapter 

doesn’t presents details about answers gathered and the full calculations used in the 

analysis, the questionnaire details appears in Appendix A and B. 

 

4.1 Case introduction 
The case was developed at organization ABC (real name is reserved for privacy policies), 

this organization is a holding which groups more than ten enterprises and have almost 

fifty four million customers in Brazil, ABC organization is also present in nearly seventy 

countries. ABC organization is dedicated to the humanitarian help, was founded in 1996 

and currently has more than 1000 employees just in São Paulo. 

 

The case will be focused at the fundraising process, which is done by the technology, 

logistics and operations team who serves three ABC’s enterprises. The technology team 
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is responsible for providing the software to run a fundraising of almost 40 million dollars 

per year. 

 

There are fifteen 15 people working at the tech team, but for this case are nine (9) people 

the selected to participate, who are engineers and analysts, five (5) of them have more 

than 10 years experience in software development.  

 

4.2 Indicators refinement through Kickoff meeting 
According to the methodology defined in chapter 3, an initial kickoff meeting was done, in 

order to present the initial measurement indicators and discuss and answer the following 

questions: 1. which software requirements phases are used in the organization?; 2. Which 

KT aspects match the SR process in the organization?; and 3. do the indicators fit the 

software requirements process inside the organization? 

 

4.2.1 People involved in the kickoff meeting 
They were 5 senior software engineers with more than 10 years experience, 3 of them are 

responsible for core businesses requirements gathering, analysis and specification. The 

remaining two are dedicated to software architecture and requirements validation. They 

were also 4 full time dedicated analysts and developers.  

4.2.2 The organization’s software requirements process 
The question: which software requirements phases are used in the organization? was 

discussed, and the whole agree that there exists an initial meeting with the knowledge 

owner, were general goals are depicted, then functionalities are decanted and finally a 

document is done. After the document is done, a verification phase exists to grant 

technical viability, then, the specification is published in a collaboration site and assigned 

to a developer.  

 

So, it’s seen that classical 3 initial phases approach from SWEBOK v3 is followed, but 

client/ business knowledge owner /stakeholder validation is not done. 
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Even when validation was done in somewhere between elicitation and specification, they 

all agree that validation should be included as a final phase, and were noticed that lack of 

validation already costs a five years failed project, after the five years the software did not 

satisfy users/business real needs. 

 

4.2.3 The KT aspects in the organization SR. 
The four knowledge transfer stages defined in chapter 2 were presented. And they agree 

that the 3 initial stages are done, but disagree about stage 4 integration, because they 

argue that there is no need for knowledge receipt to apply the knowledge gathered, rather 

than be able to explain and/or code it. Nevertheless was explained that KT integration, in 

software requirements doesn’t mean apply the knowledge learnt, rather than specify and 

verify it. 

4.2.4 The framework defined 
Since there does not exist any measurement for requirements, the team agree in apply 

the full initial set of indicators, even when the validation stage does not exists as well in 

the current SR process, but, it is embedded in the specification stage. 

4.3 Data Collection 
An online survey was designed and published using Google forms. The survey has 5 

groups of questions as Figure 12 states. The instrument was applied as defined in section 

3.2.4. The survey was applied to the same group of people interviewed at the kickoff 

meeting. Responses gathered appears in appendix A. 

 

4.4 Data analysis 
First of all, for each measure a numeric weight was defined, then Cronbach’s alphas were 

calculated, next an index for each group was defined and based on such indexes 

correlation analysis was performed. 
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4.4.1 Measures and Weights normalization 
The normalization done was linear; each item in the survey receives the same weight. 

Table 28 shows the measures normalization done for this survey.  

 

Table 28. Survey Measures and Weights. 

Numeric Range Measure Weight defined 
Less than 3. 1 
From 3 to 5. 2 
From 6 to 10. 3 
More than 10. 4 
Frequency Measure Weight 
Never 1 
Some times 2 
Often 3 
Always 4 
Agreement Meausure Weight 
Totally disagree 1 
Partially disagree 2 
Agree 3 
Totally agree 4 

Source: self-elaborated. 

4.4.2 Internal consistency 
On the one hand, alphas gathered show that there is an acceptable internal consistency 

for every group except the group 3. Even when the alpha is almost 0.8, the second 

questions about software quality have a big deviation, so there is no clear consensus 

about the implications of requirements per se in software quality, it seem that people 

surveyed agree that is more about the process than requirements who affect software 

quality. On the other hand there is a great consistency for KT related questions in the 

survey, that’s very interesting and one could make an initial forecast saying that there is a 

strong KT influence in SR.  

 

In table Table 29 appears the Cronbach’s alpha for internal validation purposes, it’s 

noticed that for group 1 there is no alpha calculations due to we expect high variability in 

those answers. Annex 0 shows the full set of answers gathered. 
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Table 29. Cronbach’s Alpha for groups 2 to 5. 

Group Cronbach’s Alpha 
2. Requirements quality. 0.842975207 
3. SR and time delay/errors. 0.786885246 
4. KT elements 0.93407639 
5. Requirements quality re test. 0.833333333 

Source: Self-elaborated. 

4.5 Resume of findings. 
This section displays aggregated information in order to explain major implications found. 

To do that, all responses have been summarized in their correspondent groups of 

questions, according what was presented in section 3.2.4. Based on data from those 

groups of questions, correlational analysis is performed. This results are organized as 

follows, first the principal disaggregated findings appears in section 4.5.1, there, each 

indicator findings is depicted, then, in section 4.5.2, aggregated findings are explained, 

here, group of indicators findings are presented.  

 

4.5.1 Indicator’s findings 
From data gathered, next, appear fundamentals findings organized by group of questions. 

The first one is SR Quality (questions 5 to 11), in Figure 14, appears interesting 

correlations. On the one hand Its seen that complexity, ambiguity and atomicity reach 

similar values, and that impacts completeness, and traceability, what makes sense, since 

poor handled complexity, ambiguity and atomicity, leads to hardness completeness and 

traceability for SR. On the other hand its see that precision indicator have similar values 

with correctness, what could be related with the SRS compliance, but, due to lower values 

in other indicators, its seen that SRS is accomplished but with overruns.  
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Figure 14. SR Quality Indicators results. 

Source: Self elaborated based on data gathered. 
 

Continuing with second (questions 12-13, indicators about SR and time/delay errors aka 

KT ERR and indicators about SR poor specification aka KT QOS) and third group of 

indicators (questions 14 -21, indicators about KT) Figure 15 depicts results found out 

about requirements influence in project errors and delays, along with KT. There appears 

that requirements per se does not influence project errors or delays, overruns are more 

correlated with the first group of indicators at Figure 14. But, an interesting finding, as can 

be seen in figure below, is that the more KT the less SR errors and delays. 
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Figure 15. SR Error and KT indicators values. 
Source: Self elaborated based on data gathered. 

 

Last group of indicators (questions 22 – 27, indicators about understandability, 

abstraction, validability,  maintainability as “changeability over time” and volatility, due to 

errors and due to user validations) values are depicted by Figure 16, there can be 

appreciated that no matters the good abstraction and validability requirements does not 

stop changing over time, and if requirements change over time is due to user validations. 

 

Figure 16. SR Re test indicators values.  
Source: Self elaborated based on data gathered. 

 

 

4.5.2 Group of indicator’s findings 
Once all the answers were normalized according 4.4.1, it was possible to calculate the 

average value  (arithmetic mean) for all respondents’ answers, in each questions group. 

The resulting value was rounded, so there are no decimal points. These results are 

displayed in Table 30. The mean values for each group will be used to make correlational 

analysis between the groups. Each value in Table 30 represents the arithmetic mean 

value, for one respondent, in each group of questions.  
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Table 30. Respondent answer’s mean values for each group of questions. 

Group 2 
Requirements 

Quality  

Group 3  
Requirement 
influence in 
time/quality  

Group 4  
KT/KS  

Group 5 
Requirement quality 

re test 

2 2 3 3 
3 2 3 2 
2 3 3 2 
2 2 3 2 
4 4 4 4 
2 2 3 3 
3 1 4 3 
2 1 3 2 
3 3 3 3 
4 1 3 3 
4 4 4 4 

Source: Self-elaborated based on data gathered. 

Given the means above, Pearson’s correlation index was used to see relationships 

between each groups, Table 31 depicts the index calculations.  

 

Table 31. Pearson’s index between groups 2 to 5. 

Correlation between groups Pearson’s correlation index 
2 and 5 0.706699344 
2 and 4 0.623609564 
2 and 3 0.367597513 

5 and 3 0.548556999 
5 and 4 0.725866186 
4 and 3 0.42320737 

Source: Self-elaborated based on data gathered. 

 

4.5.2.1  Analysis of findings 
This section will be focused in correlational analysis between groups defined above, and 

based on information from table Table 31. There is a general observation, due to there 

are few levels for the answers the correlation index is too sensitive, generally a correlation 

over 0.5 could be used with caution, meanwhile a correlation above 0.7 is said to be a 

strong relationship evidence. 
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4.5.2.2  Correlation between SR quality attributes 
The purpose of this calculation is to serve as a consistent index for answers about SR 

quality attributes, since group 2 and 5 asks almost about the same. There was just a little 

change on understandability and changeability SR properties. 

4.5.2.3  Correlation between SR quality attributes and KT 
Stronger relationships (above 0.7) are found between SR and KT, this can indicate that 

the more KT intensive process, the better SR process done.  

The mean for group 4 (KT) is about 3.27 it indicates that KT is performed in a quite good 

level at organization ABC. 

4.5.2.4  Requirements influence in time/quality lack of 
correlation 

According to data gathered it seems that requirements per se doesn’t influences the 

software project time or software quality. Was found that SR is not totally related with 

delay or errors in software projects.  8 of 10 of respondents disagree that SR per se at a 

cause for software projects delays and errors. This is correlated with understandability 

and validability, which occurs some times, giving room for new validation to be done 

causing delay and failures until final requirement is refined and implemented. This detail 

could be seen in Annex A, at section Req influence in time/quality. 

4.6 Proposal Methodology feedback 
 

Regarding the instrument respondents says: “Our process dictates a "knowledge transfer 

project" that is managed. This ensures that new person is fully aware of the processes 

involved, the tools involved and the standards involved. Items such as naming 

convention, abbreviations en terminology is also addressed. On the other side such 

transfers programs sometimes highlight shortfalls in a project that can be used to correct 

the missing or erroneous steps”. 

 

“Allow time for it (KT); often, in an agile environment, the sprint goals seem too high level, 

so the user stories (which act as the requirements) are incomplete, or superficial”. 
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Most respondents says that motivation from the source and receipt were fundamental 

(41.67%) meanwhile other factors are divided as shown in Table 32. That was a surprise 

since motivation could sound obvious, and the same way the usage of a methodology. 

 

 

 

Table 32. Respondents responsiveness about KT in SR. 

How KT improve SR Percentage of answers 
Abstraction. 16.67% 
Methodology. 16.67% 
Motivation. 41.67% 
Time access availability. 16.67% 
Understandability. 8.33% 

Source: Self-elaborated based on data gathered. 

 

Regarding the process, respondents states that a method for requirements gathering 

should be mentioned and encourage for user availability.  

 

Regarding the dimensions and aspects there were no feedback, maybe because 

SWEBOKv3 is extensive in mentioning SR stages. 

 

Its encouraged that further correlational analysis should include ANOVA and t-test to 

complement the Pearson’s index. 

 

4.7 Chapter conclusion 
This chapter attain this thesis objective 4, methodology testing, since application of the 

methodology was done; survey was constructed and executed based on framework 

defined and kickoff indicators refinement. 

 

Internal consistency and correlational indicators were calculated. According to data 

gathered KT is correlated with SR. 
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According to data gathered it seems that requirements per se does not influences the 

software project time or software quality. 

 

Motivation resulted as the most influence factor for SR performance, and curiously is 

done at the beginning of the KT process, and is not mentioned in classic SR 

methodologies. 

 

 



 

 
 

5. Conclusions and recommendations 

5.1 Research definition and research overview 
A literature review was conducted in order to establish what is known about the process 

of knowledge transfer inside the software requirements stages. The literature review 

results in a lack of measurement tools and methodologies for software requirements and 

almost none for knowledge transfer. 

 

In the existent literature about KT in software engineering, the principal focus has been: 

•  KT among software development multinationals. 

•  KT within projects in the organizations. 

•  KT between people within an organization. 

•  KT inside development teams, using agile models 

  

 

Indicators for KT-SR measurement where gathered, classified and analyzed from the KT 

perspective. In order to do that, SR four stages (elicitation, specification, analysis and 

validation) were mapped against KT four stages (initialization, implementation, ramp-up, 

integration). 

 

Even where there were more than 130 indicators defined, there was a KT stage who 

remained without indicators, such stage was the first (initialization), so, indicators were 

defined for it. Thus, the full indicators framework was completed. 

 

A methodology for KT measurement was build based on framework defined, such 

methodology includes a data gathering specification with a plan including statistical tools 

for data analysis.  
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Motivation resulted as the most influence factor for SR performance, and curiously is 

done at the beginning of the KT process, and is not mentioned in classic SR 

methodologies.  

  

KT for SR is quite different from classical approach to KT, because transfer of a full body 

of knowledge is not intended, instead of that, needs who relate with some business 

knowledge are transferred.  

  

Since KT for SR is a special case, classical metrics used for knowledge transfer should 

not be applied. For instance, metrics oriented to intellectual capital, number of people 

trained does not make sense for any SR stage. 

  

From the Study Case data, it could be inferred that KT is correlated with SR quality. 

 

The mapping between SR and KT, serve as an approximation of KT measurement 

because shows how SR take place in each KT dimension and which factors influence 

each match. 

 

Measure KT is a problem, because not exist any clear model that allow a quantitative 

and/or qualitative approximation to KT, until now. 

  

 

5.2 Contributions to the body of knowledge 
Two publications were done at the time this thesis was written. The first comprehends the 

state of the art (CAMACHO, SANCHEZ-TORRES, & GALVIS-LISTA, 2013) and the 

second was about the KT-SR mapping done (CAMACHO, SANCHEZ-TORRES, & 

GALVIS-LISTA, 2014). 

5.3 Experimentation, Evaluation and Limitations. 
A study case was performed in order to test the methodology proposed. A kickoff meeting 

was performed in order to choose indicators which best fits organization process. Next, a 
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survey was constructed based on indicators defined. Internal consistency was verified 

using Cronbach’s alpha.  

 

Data gathered was summarized in order to make correlational analysis using Pearson’s 

coefficient.  

 

Likert scale used could be a limitation due to we used just 4 level indicators, and maybe 

using 6 levels would result in more precise estimations. Likewise, another limitation is 

related with correlation, Spearman’s rank or Kendall tau rank could be used in order to 

compare results. 

	  

5.4 Future work and research 
Further work includes extending the survey to more people in order to compare results.  

 

Next, include other software engineering process for KT consideration and measurement.  

 

After that, a case tool in a wireframe like tool would be useful. Then, include other 

software engineering process for KT consideration and measurement.  

 

Finally, a case tool in a wireframe like tool would be useful. 
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Appendix A: Responses gathered. 

Series of questions used to measure each KT-SR mapping (scope) ordered by 
analysis dimensions. Answers for groups 2 to 5 are displayed using Table 33, Table 

34, Table 35 and  

Table 36. 
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Table 33. Group 2 answers. 

Requirements quality attributes 

How many actors, 
extension points or 

dependencies, 
does a 

requirement have? 

[There is just 
one single 

interpretation 
for each 

requirement.] 

[Each 
requirement 

is clearly 
determined 

and 
identified, 

overlapping 
among 

requirement
s.] 

[Terms used 
in 

requirement
s are 

concrete 
and well 
defined.] 

[All 
requirements 

and their 
dependencie

s are 
specified.] 

[There are 
compliance 
monitoring 

for 
requirement
s, at every 

stage in 
software 

life-cycle.] 

[Users state 
that 

requireme
nts 

express 
their 

needs 
effectively.

] 

[Software 
produced 

fulfills 
requirements 
specification.] 

1 3 2 2 2 2 3 3 
2 2 3 4 4 3 4 3 
1 1 2 3 3 1 3 3 
2 3 1 2 1 3 3 3 
2 4 4 4 4 4 4 4 
2 3 2 2 3 1 1 3 
2 1 2 3 2 4 4 4 
1 1 2 3 1 1 2 3 
3 2 2 2 2 2 2 2 
2 2 2 2 2 1 1 3 
1 3 3 4 4 4 3 2 

19 25 25 31 28 26 30 33 
k 6 

      sum Var 5.950413223 
      var 20 
      Cronbach’s alpha 

Req Quality 
Attributes 0.842975207 
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Source: self-elaboration.
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Table 34. Group 3 answers. 

Requirements influence in time/quality 

[Requirements cause delay or 
failures in software projects.] 

[Requirements may cause a 
poor software quality (stability, 
scalability, completeness, 
etc.)] 

2 1 
2 1 
4 2 
2 2 
1 1 
2 1 
1 1 
1 1 
3 3 
1 1 
2 1 

21 15 
k 2 
sum Var 1.223140496 
var 2.016528926 

conrbach alpha Req Quality 
Attributes 0.786885246 

Source: self-elaboration.
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Table 35. Group 4 answers. 

Awareness / Itention / Motivation  to share / transfer knowledge 

[I feel happy with 
my experiences, 
so I want others 
to know them.] 

[I want to 
share my 
huge 
experience.] 

[I want to help 
others with my 
positives 
experiences.] 

[I want to 
save others 
from 
bad/negative 
experiences 
I've had.] 

[I don't feel 
happy with 
the software 
process 
which is 
currently 
done.] 

[I feel good 
when talking 
with others 
about my 
successful 
experiences.] 

[I want to 
be 
rewarded 
for sharing 
my 
knowledge.] 

[I like to talk 
with people 
with common 
interests.] 

3 3 3 3 3 2 3 2 
3 3 3 3 2 3 3 3 
3 3 3 3 4 4 3 3 
3 3 3 3 4 3 2 4 
1 1 1 1 1 1 1 1 
3 3 3 3 3 3 2 4 
4 4 4 4 1 3 4 4 
3 3 3 3 2 3 2 3 
3 3 3 3 3 3 3 3 
3 2 2 3 4 2 2 3 
1 2 1 1 1 2 1 2 

30 30 29 30 28 29 26 32 
K 8             
sum Var 6.347107438             
Var 34.74380165             
Cronbach’s alpha 
Req Quality 
Attributes 0.93407639             

Source: self-elaborated. 
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Table 36. Group 5 answers. 

Perception about requirements changeability related properties 

[Are correctly understood, 
without difficulty.] 

[Are specified 
without explain 
technical details 
about 
implementation.] 

[Meets 
users 
needs.] 

[Stop 
changing 
over time.] 

[Change due to 
failures or errors 
in their 
specification.] 

[Change because of 
user validations.] 

3 3 3 2 3 3 
3 2 4 1 2 2 
3 2 3 1 2 2 
2 2 2 1 2 3 
4 4 4 4 4 4 
2 4 2 1 4 4 
2 3 4 3 2 3 
2 2 3 1 2 4 
2 3 2 2 3 3 
2 3 3 2 3 3 
4 4 3 3 3 4 

29 32 33 21 30 35 
            
K 5         
sum Var 3.289256198         
Var 9.867768595         
conrbach alpha Req Quality 
Attributes 0.833333333         

Source: self-elaborated





 

 
 

Appendix B: Full questionnaire report.  

The next pages will show the results from the questionnaire applied. There are four 
questions groups (people profile, SR Quality Attributes, SR link with delay and errors, KT 
and SR quality attributes re test) as stated in sections 3.2.4 and 4.3 where data gathering 
were defined and applied. 

§ People profile 

We can say that we have a mixed population since most of the respondents (63%) work 
in high sized companies, the other 37% works in small and medium sized companies. So, 
we expect a general view of SR and KT. 

	  
Figure 17. How many people work at your company? 

Source: Self-elaborated. 
	  

	  

	  

	  

less$than$
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16%$

100$to$500$
37%$

1000$or$
more$
26%$

Other$
63%$

How$many$people$work$at$your$
company?$
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Developers, software architects/tech leads and software analysts are the principal roles 
who characterize the respondents.  

	  
Figure 18. What’s your principal rol at your organization / team work? 

Source: Self-elaborated. 
	  

From answers gathered it could be seen that most of the software requirements teams 
are small, conformed whit less than 10 people. 

	  
Figure 19. How many people work in software requirements at your company?	  

Source: self-elaborated. 
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74% of respondents have a significant experience from 4 to 7 or more year’s experience. 
So we can expect answers coming from expert people. 

	  
Figure 20. How many year’s experience have the people working with requirements 

at your organization? 
Source: Self-elaborated. 

§ SR quality attributes 

According our complexity indicator defined in 3.2.2, 90% of requirements are low to mid 
complex. So one could say that complexity is controlled according respondents.  

 
Figure 21. Complexity. 
Source: Self-elaborated. 

5%#

21%# 26%#
48%#

74%#

How$many$years$experience$have$the$
people$working$with$requirements$
elicita8on$at$your$organiza8on?$

Less#than#one#year.#

Between#1#and#3#years.#

More#than#7#years.#

Between#4#and#7#years.#

10%$

37%$
53%$

How$many$actors,$extension$points$
or$dependencies,$does$a$requirement$

have?$

More$than$5.$

Less$than$3.$

Between$3$and$5.$



98 Knowledge Transfer measurement methodology for software requirements 

 
 

When concerning ambiguity, we found that there is a lot of ambiguity; most of 
respondents affirm that ambiguity is rarely avoided.  

	  
Figure 22. Ambiguity.	  	  

Source: Self-elaborated. 
 

It was found that Atomicity equals than Ambiguity is rarely avoided. 

	  

Figure 23. Atomicity.	  
Source: Self-elaborated. 
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It’s interesting that even when ambiguity and atomicity are rarely achieved, the precision 
have better performance, it could be done since there are more preoccupation into build a 
software specification, even when it is not too accurate. Something good is that 
requirements are never without any mean of precision. 

	  
Figure 24. Precision. 

Source: Self-elaborated. 
 

	  

About	  completeness,	  more	  than	  half	  respondents	  state	  that	  is	  never	  totally	  achieved,	  what	  is	  

makes	  sense	  taking	  into	  account	  that	  previous	  indicators	  are	  rarely	  totally	  fulfilled.	  

	  
Figure 25. Completeness 
Source: Self-elaborated. 
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Regarding traceability, the perception is the same than complexity and again makes 
sense since ambiguous, incomplete, low atomicity and low precision requirements are 
very hard to trace. 

	  

Figure 26. Traceability.	  
Source: Self-elaborated. 

	  

Considering validability, it’s seen that it behave a little better than traceability. Very often 
requirements express what user really need, this shows that not always requirements 
express what client needs what is correlated with the high ambiguity and low precision as 
stated before.  

	  
Figure 27. Validability. 
Source: Self-elaborated. 
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The software produced often fulfills requirements specification, which is correlated with 
low performance of atomicity and precision as stated before. And, correlates with 
correctness indicator as stated in Figure 31. 

	  
Figure 28. Software fulfillment. 

Source: Self-elaborated. 

§ SR quality attributes re test 

 

Understandability was found to be quite positive since never are totally not understood, 
but stills being some times the major frequency for understandability, which is correlated 
with low atomicity, low precision and ambiguity as stated before. 

	  
Figure 29. Understandability. 

Source: self-elaborated. 
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Full Abstraction is never achieved, but more often it is done. It is correlated with atomicity 
and precision, if atomicity, precision and abstraction are low, and requirements are just 
some times understandable, technical details can be introduced, resulting in low 
abstraction. 

	  
Figure 30. Abstraction.	  
Source: self-elaborated. 

 

	  

Correctness is often achieved, what is correlated with the validability which is very often 
achieved.  

	  
Figure 31. Correctness. 
Source: self-elaborated. 
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Its clear that requirements never stop changing, what is related with previous poor 
indicators of ambiguity and precision. 

	  
Figure 32. Changeability. 

Source: self-elaborated. 
 

Some times requirements change due to errors in their specification, which correlate with 
ambiguity, lack of precision and atomicity. 

	  
Figure 33. Changeability due to SRS.	  

Source: self-elaborated. 
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Changeability due to user validations occur some times, but in less quantity than due to 
errors in SRS, this make sense since good understandability happens some time as 
stated before, giving a lot of room for requirements changes at validation stage. 

	  
Figure 34. Changeability due to validation. 

Source: self-elaborated. 
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§ SR link with delay and errors 

 

It was found that the SR are not totally related with delay or errors in software projects.  
Most of respondents disagree that SR per se at a cause for software projects delays and 
errors. This is correlated with understandability and validability which occurs some times, 
giving room for new validation to be done causing delay and failures until final 
requirement is refined and implemented. 

 
Figure 35. SR and delay or failures in software projects. 

Source: self-elaborated. 
 

 

 

 

 

 

 

 

7"

5"

3"

4"

Totally"disagree."

Par4ally"disagree."

Agree."

Totally"agree."

Requirements+cause+delay+or+failures+
in+so3ware+projects.+



106 Knowledge Transfer measurement methodology for software requirements 

 
 

A weak influence SR influence in other software quality attributes was found. So not 
possible correlation could be done with indicators gathered before. 

	  
Figure 36. SR and software quality attributes. 

Source: self-elaborated. 
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§ KT motivation  

A big agreement was found concerning intention to share.   

	  
Figure 37. Intention to share happy experiences. 

Source: self-elaborated. 
 

Respondents agree about their intention to share their huge experiences. 

	  
Figure 38. Intention to share huge experience. 

Source: self-elaborated. 
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There is a general agreement about share positive experiences. 

	  
Figure 39. Intention to share positive experiences. 

Source: self-elaborated. 
 

	  

There is a big agreement about the willingness to share knowledge in order to save 
others from pitfalls.  

	  
Figure 40. Willingness to share. 

Source: self-elaborated. 
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There are mixed sentiments about current software done at organizations, respondents 
are not agreeing about it. This can be seen as an opportunity to use their willingness to 
share to improve KT process, and an opportunity to introduce KT as an SR success 
enabler. 

	  
Figure 41. Software process pleasing. 

Source: self-elaborated. 
 

There was found a big agreement about share successful experiences. 

	  
Figure 42. Motivation to share successful experiences. 

Source: self-elaborated. 
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Something interesting is that not everyone has a strong desire to be rewarded for share 
their knowledge. 

	  
Figure 43. Intention to be rewarded due to KS.	  

Source: self-elaborated. 
	  

There is a strong agreement in responsiveness to share between people with similar 
interests. 

	  
Figure 44. Empathy. 

Source: self-elaborated. 
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