

Knowledge transfer measurement
methodology for Software

Requirements, a case study
	

	
	
	
	

José Jairo Camacho Vargas
	
	
	
	
	

Universidad Nacional de Colombia

Faculty of Engineering, Systems and Computer Engineering

Bogotá D.C, Colombia

2015

Knowledge Transfer measurement
methodology for Software
Requirements, a Case study

	
	
	
	

José Jairo Camacho Vargas
	
	
	
	

Thesis submitted as a partial requirement to obtain the degree of:

Master in Computer and Systems Engineering

	
	
	

Assessor:

Ph.D. Marcela Sánchez-Torres

Research lane:

Knowledge management and software engineering

Research group:

Griego

Universidad Nacional de Colombia

Faculty of Engineering, Department of Industrial and Systems Engineering

Bogotá D.C, Colombia

2015

(Motto)

The energy of the mind is the essence of life.

Aristotle

Acknowledgments
I want to express my gratefulness to: my God, family and assessor, for their support and

patience.

	
	
	
	

Abstract and Resumen IX

Abstract
The purpose of this work is to present a proposal methodology for knowledge transfer

measurement in software requirements. To obtain results, a methodology composed of

four stages was defined: i) review of the knowledge transfer background in software

engineering, in order to identify existing efforts in knowledge transfer measurement, ii)

characterization of the software requirements process from the knowledge transfer point

of view, thus, finding common factors regarding variables and indicators suitable for

measuring purposes, iii) define a proposal methodology based on variables and

indicators found, data gathering methods, statistical tools and helping documentation, iv)

testing the proposal in order to provide feedback, using a case study.

Principal results are: seven groups of factors mapping software requirements process

stages against knowledge transfer steps, resulting in 115 indicators and 24 variables; 2

variables definition for knowledge transfer initialization stage and software requirements

elicitation step mapping, which didn’t had any variable or indicator. Likewise, it was

identified that exists a correlation between knowledge transfer and software

requirements, the better knowledge transfer the better software requirements.

Furthermore, the feed back gathered indicates that motivation variable defined is the

more influential variable in the software requirements process according 41.67% of

respondents, over other variables as: abstraction, methodology and time access

availability, each one with 16.67% of respondents, and understandability with 8.33% of

respondents.

Last, this work allows analyzing the influence of knowledge transfer indicators in software

requirements quality attributes.

Key words: Knowledge management, knowledge transfer, software engineering,

software requirements, software requirements metrics, knowledge transfer measurement.

X Knowledge Transfer measurement for software requirements

Resumen
El propósito de este trabajo es presentar una propuesta metodológica para la medición

de transferencia de conocimiento en los requisitos de software. Para obtener los

resultados, una metodología compuesta de cuatro pasos fue definida: i) revisión de las

bases teóricas de transferencia de conocimiento en ingeniería, para identificar esfuerzos

existentes en medición de transferencia de conocimiento, ii) caracterización del proceso

de requisitos de software desde el punto de vista de la transferencia de conocimiento, y

de esta manera, encontrar factores comunes con respecto a variables e indicadores

adecuados para los propósitos de medición, iii) definición de una propuesta metodológica

con las variables e indicadores encontrados, métodos de captura de datos, herramientas

estadísticas y documentación de ayuda, iv) prueba de la propuesta metodológica para

proveer una retroalimentación, usando un estudio de caso.

Los resultados principales son: siete grupos de factores mapeando las etapas del

proceso de requisitos de software contra los pasos de transferencia de conocimiento,

resultado en 115 indicadores y 24 variables; 2 variables definidas para el mapeo entre la

etapa de inicialización en transferencia de conocimiento y la etapa de elicitación de

requisitos de software, el cual no tenía ninguna variable o indicador definidos.

Igualmente, fue identificada una correlación entre transferencia de conocimiento y

requisitos de software, a mejor transferencia de conocimiento mejores requisitos de

software.

Además, la retroalimentación obtenida indica que la variable de motivación definida es la

más influyente en el proceso de requisitos de software según el 41.67% de los

encuestados, por encima de otras variables como: abstracción, metodología y

disponibilidad de tiempo, cada una con 16.67% de los encuestados, y comprensibilidad

con el 8.33% de los encuestados.

Por último, este trabajo permite analizar la influencia de los indicadores de transferencia

de conocimiento en los atributos de calidad de requisitos de software.

Content XI

Palabras clave: gestión de conocimiento, transferencia de conocimiento, ingeniería de

software, requisitos de software, métricas de requisitos de software, medición de

transferencia de conocimiento.

Content XIII

Content

PAG.	

ABSTRACT	 ..	 IX	

FIGURE	 LIST	 ..	 XVI	

TABLE	 LIST	 ..	 XVIII	

ABBREVIATION	 LIST	 ...	 XX	

INTRODUCTION	 ...	 1	

1.	 KNOWLEDGE	 TRANSFER	 IN	 SOFTWARE	 ENGINEERING.	 ...	 7	
1.1	 KNOWLEDGE	 TRANSFER	 ..	 7	
1.2	 KNOWLEDGE	 TRANSFER	 IN	 SOFTWARE	 ENGINEERING	 ...	 8	

1.2.1	 Knowledge	 transfer	 within	 software	 development	 multinationals	 	 10	
1.2.2	 Knowledge	 Transfer	 in	 Agile	 Models	 ...	 13	
1.2.3	 Knowledge	 transfer	 among	 the	 projects	 ...	 14	
1.2.4	 Knowledge	 transfer	 between	 people	 ..	 15	
1.2.5	 Factors	 helping	 knowledge	 transfer	 ...	 16	
1.2.6	 Knowledge	 transfer	 measurement	 ...	 18	
1.2.7	 Knowledge	 transferring	 measurement	 in	 SE	 ...	 21	

1.3	 CHAPTER	 CONCLUSIONS	 ..	 25	

2.	 SOFTWARE	 REQUIREMENTS	 AS	 A	 PROCESS	 OF	 KT.	 ...	 27	
2.1	 SOFTWARE	 REQUIREMENTS	 ...	 27	
2.2	 KT-‐SR	 MAPPING	 ..	 30	
2.3	 FACTORS	 AFFECTING	 EACH	 KT	 AND	 SR	 MAPPING	 ...	 32	
2.4	 KT-‐SR	 METRICS	 ..	 33	

2.4.1	 Studies	 selected	 for	 analysis	 ...	 34	
2.4.2	 KT-‐SR	 dimensions,	 aspects	 and	 metrics	 ..	 35	
2.4.3	 Discussion	 ...	 41	

2.5	 CHAPTER	 CONCLUSIONS	 ..	 42	

3.	 PROPOSAL	 METHODOLOGY	 FOR	 KT	 MEASUREMENT	 IN	 SR	 ...	 43	
3.1	 OVERVIEW	 OF	 THE	 PROPOSAL	 METHODOLOGY	 ..	 43	

3.1.1	 Purpose	 of	 study	 ...	 44	
3.1.2	 Scope	 of	 the	 proposal	 methodology	 ...	 44	

XIV Knowledge Transfer measurement for software requirements

3.1.3	 End	 users	 ..	 44	
3.1.4	 Replicability	 ...	 44	

3.2	 PROPOSAL	 METHODOLOGY	 ...	 44	
3.2.1	 Scope	 ...	 44	
3.2.2	 Initial	 framework	 ...	 45	
3.2.3	 Indicators	 refinement	 ..	 53	
3.2.4	 Data	 collection	 ...	 53	
3.2.5	 Data	 analysis	 ...	 58	
3.2.6	 Analysis	 of	 findings	 ..	 58	
3.2.7	 Proposal	 Methodology	 Feedback	 ..	 59	

3.3	 CHAPTER	 CONCLUSION	 ..	 59	

4.	 STUDY	 CASE	 ..	 61	
4.1	 CASE	 INTRODUCTION	 ...	 61	
4.2	 INDICATORS	 REFINEMENT	 THROUGH	 KICKOFF	 MEETING	 ...	 62	

4.2.1	 People	 involved	 in	 the	 kickoff	 meeting	 ..	 62	
4.2.2	 The	 organization’s	 software	 requirements	 process	 ...	 62	
4.2.3	 The	 KT	 aspects	 in	 the	 organization	 SR.	 ..	 63	
4.2.4	 The	 framework	 defined	 ...	 63	

4.3	 DATA	 COLLECTION	 ..	 63	
4.4	 DATA	 ANALYSIS	 ..	 63	

4.4.1	 Measures	 and	 Weights	 normalization	 ...	 64	
4.4.2	 Internal	 consistency	 ...	 64	

4.5	 RESUME	 OF	 FINDINGS.	 ...	 65	
4.5.1	 Indicator’s	 findings	 ..	 65	
4.5.2	 Group	 of	 indicator’s	 findings	 ...	 67	
4.5.2.1	 Analysis	 of	 findings	 ...	 68	
4.5.2.2	 Correlation	 between	 SR	 quality	 attributes	 ..	 69	
4.5.2.3	 Correlation	 between	 SR	 quality	 attributes	 and	 KT	 ..	 69	
4.5.2.4	 Requirements	 influence	 in	 time/quality	 lack	 of	 correlation	 	 69	

4.6	 PROPOSAL	 METHODOLOGY	 FEEDBACK	 ..	 69	
4.7	 CHAPTER	 CONCLUSION	 ..	 70	

5.	 CONCLUSIONS	 AND	 RECOMMENDATIONS	 ..	 72	
5.1	 RESEARCH	 DEFINITION	 AND	 RESEARCH	 OVERVIEW	 ...	 72	
5.2	 CONTRIBUTIONS	 TO	 THE	 BODY	 OF	 KNOWLEDGE	 ..	 73	
5.3	 EXPERIMENTATION,	 EVALUATION	 AND	 LIMITATIONS.	 ..	 73	
5.4	 FUTURE	 WORK	 AND	 RESEARCH	 ..	 74	

BIBLIOGRAPHY	 ...	 75	

APPENDIX	 A:	 RESPONSES	 GATHERED.	 ..	 88	

APPENDIX	 B:	 FULL	 QUESTIONNAIRE	 REPORT.	 ...	 95	
§	 People	 profile	 ...	 95	

Content XV

§	 SR	 quality	 attributes	 ..	 97	
§	 SR	 quality	 attributes	 re	 test	 ...	 101	
§	 SR	 link	 with	 delay	 and	 errors	 ...	 105	
§	 KT	 motivation	 ..	 107	

	
	
	
	
	
	

Content XVI

Figure list
PAG.	

Figure 1. Methodology process. ... 5	
Figure 2. Knowledge transfer basic model. .. 8	
Figure 3. Cascade model. ... 9	
Figure 4. Knowledge transfer factors in multinational environments (1) 11	
Figure 5. Knowledge transfer factors in multinational environments (2). 12	
Figure 6. Agile model generalization. ... 14	
Figure 7. Experts net with a knowledge base. .. 15	
Figure 8. Knowledge transfer between people model. ... 16	
Figure 9. Knowledge transfer mixed techniques. Experience base and people networks.18	
Figure 10. Implementation variables and indicators. .. 35	
Figure 11. Implementation variables and indicators per aspect 38	
Figure 12. Survey Structure. Source: Self-elaboration. .. 55	
Figure 13. The proposal methodology. ... 60	
Figure 14. SR Quality Indicators results. .. 66	
Figure 15. SR Error and KT indicators values. ... 67	
Figure 16. SR Re test indicators values. .. 67	
Figure 17. How many people work at your company? .. 95	
Figure 18. What’s your principal rol at your organization / team work? 96	
Figure 19. How many people work in software requirements at your company? 96	
Figure 20. How many year’s experience have the people working with requirements at
your organization? .. 97	
Figure 21. Complexity. .. 97	
Figure 22. Ambiguity. .. 98	
Figure 23. Atomicity. ... 98	
Figure 24. Precision. ... 99	
Figure 25. Completeness .. 99	
Figure 26. Traceability. ... 100	
Figure 27. Validability. .. 100	
Figure 28. Software fulfillment. ... 101	
Figure 29. Understandability. .. 101	
Figure 30. Abstraction. .. 102	
Figure 31. Correctness. .. 102	
Figure 32. Changeability. .. 103	
Figure 33. Changeability due to SRS. .. 103	

Content XVII

Figure 34. Changeability due to validation. ... 104	
Figure 35. SR and delay or failures in software projects. ... 105	
Figure 36. SR and software quality attributes. .. 106	
Figure 37. Intention to share happy experiences. ... 107	
Figure 38. Intention to share huge experience. .. 107	
Figure 39. Intention to share positive experiences. .. 108	
Figure 40. Willingness to share. .. 108	
Figure 41. Software process pleasing. .. 109	
Figure 42. Motivation to share successful experiences. ... 109	
Figure 43. Intention to be rewarded due to KS. .. 110	
Figure 44. Empathy. .. 110	

Content XVIII

Table list
PAG.	

Table 1. Effort summary on KT measurement. ... 20	
Table 2. KT measurement effort in SE. .. 24	
Table 3. KT in SR. Dimensions of KT vs. stages of SR. ... 32	
Table 4. SR referents. ... 34	
Table 5. KT-SR Aspects. .. 36	
Table 6. Implementation dimension, their referents and aspects. 39	
Table 7. Ramp-up dimension, their referents and aspects. .. 40	
Table 8. Integration dimension, their referents and aspects. .. 41	
Table 9. Abstraction indicators. .. 45	
Table 10. Ambiguity indicators. ... 45	
Table 11. Atomicity indicators. .. 46	
Table 12. Complexity indicators. ... 46	
Table 13. Precision indicators. .. 47	
Table 14. Time/Access source indicators. .. 47	
Table 15. Time/Access receipt indicators. .. 47	
Table 16. Understandability indicators. ... 48	
Table 17. Completeness indicators. ... 48	
Table 18. Correctness indicators. ... 49	
Table 19. Maintainability indicators. .. 49	
Table 20. Traceability indicators. .. 50	
Table 21. Validability indicators. ... 50	
Table 22. Effort indicators. .. 50	
Table 23. Verifiability indicators. ... 51	
Table 24. Volatility indicators. ... 51	
Table 25. Aspects proposed, Factor 1 Initialization and Elicitation. 52	
Table 26. Motivation indicators. .. 53	
Table 27. List of questions for groups 1 to 5. .. 56	
Table 28. Survey Measures and Weights. .. 64	
Table 29. Cronbach’s Alpha for groups 2 to 5. ... 65	
Table 30. Respondent answer’s mean values for each group of questions. 68	
Table 31. Pearson’s index between groups 2 to 5. ... 68	
Table 32. Respondents responsiveness about KT in SR. .. 70	
Table 33. Group 2 answers. ... 89	
Table 34. Group 3 answers. ... 91	
Table 35. Group 4 answers. ... 92	

Content XIX

Table 36. Group 5 answers. .. 93	

Content XX

Abbreviation list

Abbreviations
	
Abbreviation Term

KT Knowledge transfer

SE Software engineering

SR Software requirements

RE Requirements engineering

KM Knowledge management

Introduction

Software Engineering has been recognized as a knowledge intensive application

discipline (Rus & Lindvall, 2002), (Dingsøyr, Bjørnson, & Shull, 2009) and (Ward &

Aurum, 2004). For this reason, in the last decade there has been an increasing interest

about knowledge management in software engineering. In particular, the processes of

knowledge codification and knowledge sharing have received most attention and they

have been researched in diverse ways.

Other authors have argued about the relevance of knowledge transfer processes in

knowledge management (Albino, Garavelli, & Gorgoglione, 2004; Kumar & Ganesh,

2009) and the importance of knowledge transfer in software engineering (Argote &

Ingram, 2000; Inkpen & K. Tsang, 2005).

In this sense, there is a consensus about the importance of the knowledge transfer

process, however, there is still a debate among what the knowledge transfer process

really is, because knowledge is not only tangible and linked to cognitive processes inside

people’s brains but also is said to be particular for everyone (Krogh, Nonaka, & Aben,

2001; Nonaka & Toyama, 2003), therefore, is not easy to measure.

Measure the KT is a problem, because there not exist any clear model that allow a

quantitative and/or qualitative approximation to KT, specially due to the KT is not the only

way to create new knowledge (Awad, 2005; Kumar & Ganesh, 2009).

The phase of collection and specification of requirements play an important role because

is where the business needs are translated to technical language and is set the scope of

the software project (Hagge L., 2005; Pilat & Kaindl, 2011) . The problem of carries the

business concepts across all the software development steps has not been studied and

2 Introduc

represents and interesting percent of fail causes (23% StandishGroup) in the software

development projects.

Even if the software chaos report from the StandishGroup has been criticized (Jørgensen

& Moløkken-Østvold, 2006) (Holtsnider, Wheeler, Stragand, & Gee, 2010), and the 189%

overrun percentage in software projects has been reduced to 34% and 33%, the 68% of

projects that still fail are because of the poor requirements specifications.

The scope of this thesis is to get an insight in SR as a KT process, limited to a study case.

The sample used is not statistically representative, since the scope is to understand how

KT for SR happens and how it could be measured. The purpose of the present work is to

design a proposal methodology to measure the knowledge transferring process of

software requirements (SR) in a software development organization. Understanding a

proposal methodology as a collection of procedures, techniques, tools and help

documentation (Avison & Fitzgerald, 2006). Specifically, this research concentrates on:

1. Establish what we know about KT in software engineering and factors who affect

it. This work defines a general background about KT in software engineering.

2. Characterize the KT process in the SR process. This work maps the KT activities

with SR processes activities.

3. Design a methodology that involves metrics for the KT process in the SR process

based on their characterization. This work develops a series of indicators for KT

measure.

4. Test the proposed methodology in a software project. This work consists of apply

the methodology created using a study case, to validate it.

Introduc 3

The methodological process used in this research was organized in four stages as

follows:

Stage 1: Review of the knowledge transfer background in software engineering.

In this stage different approaches of KT in software engineering were identified. The goal

in here was to identify existing efforts in KT measurement, thus, recognizing enabler

factors for KT and get an insight in how KT measurement have been done until now. The

review was done using the systematic literature guidelines given by Kitchenham (2007),

there were no constraints on papers data, all papers until 2012 were consulted.

Stage 2: Characterization of the software requirements process from the

knowledge transfer point of view.

Since this thesis involves the measurement of KT, a post positivism point of view is used,

so, KT in SR is determined and reduced, finding common factors regarding variables and

indicators suitable for measuring purposes. Another review was done, since initial review

result in no suitable approach for KT measurement. In other words, nor variables or

indicators were found. The second review was focused in identify the stages of KT

process and how SR process steps match in such KT stages. So, a mapping strategy was

defined to compare KT process stages against SR process steps.

Due to this thesis is focused in KT, the second review doesn’t focus in SR, SWEBOK v3

was chosen as the guide to SR because it describes generally accepted knowledge about

software engineering. Its 15 knowledge areas summarize basic concepts and include a

reference list pointing to more detailed information. For SWEBOK Guide V3, SWEBOK

editors received and replied to comments from approximately 150 reviewers in 33

countries, it also gained international recognition as ISO Technical Report 19759.

Once the mapping was done, for each KT-SR matched stage a group of factors was

identified. And from those factors, variables and indicators was identified following a

dimension analysis and measurement aspects, all of this grouped by referents.

Stage 3: Proposal methodology definition based on variables and indicators found,

data gathering methods, statistical tools and helping documentation.

4 Introduc

From previous stage, an initial indicators framework was defined. Due to that KT in SR is

not widely studied in literature found, this research is also explorative in order to

understand how KT happens in SR, thus, an interview is proposed to validate if the full

initial framework.

Once validated, indicators are used in a questionnaire, which was used as a data

collection strategy to make an empiric observation and measurement. Because of the

questionnaire, it is need to provide validation for internal consistency, so Cronbach’s

alpha is proposed since its widely used in the literature review done in previous steps.

Likert question types were defined for the questionnaire, and also a numeric range

mapping is provided to quantify answers. Four responses levels are provided, each one

with a numeric value.

Then, statistical analysis is proposed, taking advantage of numeric answers. Pearson’s

index is proposed as a correlational tool.

Stage 4: Testing the proposal in order to provide feedback, using a case study.

First of all, a kickoff meeting was done for instrument refinement, then a case study is

conducted to get feedback from the proposal methodology, so, the instrument defined in

the previous stage is implemented. Data was gathered using an online questionnaire,

then data was analyzed as specified by the proposal methodology, and documentation

was made.

Figure 1 shows the methodology process followed in this work.

Introduc 5

Figure 1. Methodology process.

Source: Self-elaboration based on process methodology.

Achievements: 1) a systematic literature review done about KT and SE, 26 referents

were found about KT measurement, additionally 23 referents about KT in SE, but not one

specify a clear model or indicator for KT measurement, just 4 referents make any

emphasis in SR; 2) 4 KT stages was defined after a systematic literature review, then,

was mapped against the 4 SR steps taken from SWEBOK v3. Based on such mapping, 7

groups of factors who affect KT in SR. Those factors were built based on 14 referents and

after the mapping 115 indicators and 24 variables was found; 3) Proposal methodology

was depicted, 16 variables covering SR quality and KT were defined as the initial

framework questionnaire, since KT and SR can change depending the organizations, a

kickoff meeting was added to the proposal methodology in order to refine the initial

framework and adjust it to the organization reality. Questionnaire internal consistency and

correlation index was defined as the statistical tools to be applied, for data collection and

data analysis. Feedback for the proposal methodology was encouraged; 4) A study case

was conducted in a Brazilian company. Based on the kickoff meeting, it was decided to

use the full initial framework. Data was gathered using Google Forms, Cronbach’s Aplha

and Pearson’s Index was used for questionnaire internal consistency and for variables

correlation. It was found a strong correlation between KT and SR quality, likewise

motivation was the principal enabler for KT.

Proposal
Methodology

KT-SR
Mapping

SLR

Variables and indicators
characterization,
4 dimensions, 7 factors,
139 vars and indicators.

Two systematic literature reviews,
to obtain KT-SR factors, variables
and indicators.

Instrument
definition.
Data collection and
analysis defined.

6 Introduc

Chapter one depicts the background about KT in SE as the result of a systematic

literature review, answering objective 1. Next, chapter 2 focuses in KT for SR, there SR

process is view as a KT process, reaching objective 2. Then, chapter 3 shows the

proposal methodology for KT measurement in SR, fulfilling objective 3. Afterwards,

chapter 4 presents the case study, in order to test the methodology, meeting objective 4.

Later, in chapter 5 appears the conclusion of this work. At the end, Appendixes with the

full questionnaire answers and calculations are included.

1. Knowledge Transfer in Software
Engineering.

There is a review of different concepts about KT applied to software engineering. The

review was made based on a systematic literature review. We start with a background

about knowledge transfer in section (1.1). Next in section (1.2) what we know about

knowledge transfer in software engineering. And finally, in section (1.3) the conclusions of

this chapter are presented.

1.1 Knowledge Transfer
On the one hand, knowledge has been defined as the information and experience

grouped usefully in some context (Alavi & E. Leidner, 2001), and literature shows a

consensus about the taxonomy that represents knowledge as tacit and explicit (Krogh et

al., 2001)(Nonaka, 2007). On the other hand, transfer means to pass an element form

one side to other (Watson & Hewett, 2006; Borgatti & Cross, 2003). In other words, KT

means to pass useful information and experience from one context (project) to other place

(inside or outside of an organization).

Nevertheless, such transfer, according to some authors, cannot be done (Krogh, 2003)

due to the fact that knowledge is personal and unique. Every time knowledge passes from

tacit to explicit (Garavelli, Gorgoglione, & Scozzi, 2002), new knowledge is generated so it

is different from the previous one. In this way, the exactly transfer of knowledge cannot be

possible.

It should be noted that KT is different from knowledge sharing (Argote & Ingram, 2000;

Kumar & Ganesh, 2009) since the fact that one person shares knowledge does not mean

that he/she already did a transfer. Consequently, entity A (person, business unit or

company) transfers knowledge to entity B, just when B is able to apply it in a useful way in

8 Knowledge Transfer measurement for software requirements.

his own context. By the same token, it can be said that only sharing knowledge has

occurred.

Figure 2. Knowledge transfer basic model.

Adapted from Kumar & Ganesh (2009)

Knowledge sharing is important as a KT enabler, even sharing alone is not enough to

make the transfer occur. This is very important because, until now, the greatest advances

in knowledge management applied to software engineering have been done at this level –

share- such a process is known as knowledge codification (Farenhorst & Vliet, 2009;

Garavelli et al., 2002; Gosain, 2007).

KT is more than mere codification because it demands more than building “knowledge”

bases (data and information) (Kumar & Ganesh, 2009). Those bases ended being just

data repositories – and thus, them can only code the knowledge. Knowledge is related to

a human process and it could only be generated through cognitive process inside

people’s minds (Carayannis, 1999).

	

1.2 Knowledge Transfer in Software Engineering
Due to the intensity of the use of knowledge in software engineering (Tesch, Sobol, Klein,

& Jiang, 2009; Wilkesmann & Wilkesmann, 2011), the software engineering processes

are at an interesting place to the KT. A general view of a software development project

Transfer
process. A

Knowledge
source

B

Knowledge
receptor.

Individual

Team

Unit

Organization

Etc.

Individual

Team

Unit

Organization

Etc.

Chapter 1 Knowledge Transfer in software engineering 9

could have five phases (requirements, design, development and testing, integration and

maintenance) with the classic cascade model (Karlsen, Hagman, & Pedersen, 2011).

Figure 3. Cascade model.

Adapted from Karlsen et al. (2011)

Although the cascade model could look like obsolete nowadays, certain authors (Karlsen

et al., 2011) continue referencing it because other models have appeared based on this

model, those models include some improvements, for instance, iterations, recursion or

parallel steps, but in the end, the basic phases of the software developing cycle are the

same. Such phases could be executed in different order or with a different focus.

Along the requirements phase, there is an interaction between the technical team and the

costumers, which are the owners of the business knowledge. These costumers must

transfer the aforesaid business knowledge to the analysts, so that they can design models

that should help to transfer business knowledge to technical knowledge in models that

describe the software such as class diagrams, components, and so on (Havlice, Kunstar,

Adamuscinova, & Plocica, 2009; Ward & Aurum, 2004).

Likewise, within the technical team, KT occurs in software development (techniques and

programming procedures) and software testing (test cases, scenarios, etc.).

Requirements

Design

Development
and Testing

Integration

Maintenance

10 Knowledge Transfer measurement for software requirements.

1.2.1 Knowledge transfer within software development

multinationals
In the literature review some articles which treat the topic of KT in multinationals were

found out; they all claim that very few research has been done on the topic in

multinational environments, where, there is not only a distance issue, but also, cultural

facts (Ambos & Ambos, 2009; Duan, Nie, & Coakes, 2010; Niederman, 2005).

Those authors do a list of possible factors that affect transfer in such environments, being

the cultural factor the most troublesome. To avoid such difficulties, they define a

mechanism to code the knowledge, for instance, internationalization tools to mitigate the

idiomatic differences are made by coding and some others generate more sophisticated

mechanisms as ontologies to define a common language.

With those codification tools, it is possible to facilitate the KT, because the physical and

cultural gaps can be reduced.

In brief, the topic of KT in multinational environments addresses the issue of information

and experience transfer of successful projects from one organizational unit to other.

To carry out what was said before, authors state diverse factors and hypothesis that are

supposed to increase the transfer effectiveness. The principal role of technology in this

aspect is to serve as an information repository with relevant information about the work to

be done, as well as a collaboration tool to mitigate distance between people (Ambos &

Ambos, 2009; Aurum A., 2008; Y.-J. Chen, Chen, & Chu, 2008; Duan et al., 2010).

Figure 4 shows a set of common factors taken from the review. These factors expose

characteristics that should be considered for an effective KT. It just shows factors at

organizational levels, this means only elements that inside the organization administration

can affect the KT effectiveness. Promptly in the review, three groups of factors or

dimensions were found out: structural, relational and cognitive.

Then, the structural dimension deals with how the communication inside the organization

is done; this communication can be formal or informal, depending on the communication

channels that are used. For instance, one type of formal communication can be meetings

Chapter 1 Knowledge Transfer in software engineering 11

or memorandums, by contrast, an informal way could be a socialization during a coffee

break or the use of social networks.

The second dimension is relational dimension that deals with factors of people and their

culture inside the organization; such factors include the confidence between people,

bosses and subordinates, the organizational commitment of these people, the

remuneration capability of the organization, and the factor of the identity towards the

organization and the work done.

The last dimension, the cognitive dimension, references the capability of the organization

management to articulate strategies along all of the processes and people, together with

a factor of organizational culture to provide the dimension mentioned above.

Figure 4. Knowledge transfer factors in multinational environments (1)

Based on (J.-S. Chen & Lovvorn, 2011).

Meanwhile, Figure 5 shows the coordination elements that influence the KT. The objective

is to see that it is not only necessary to take into account the organizational factors

Structural dimension.

*Formal mechanisms.

*Informal mechanisms.

Relational dimension.

*Trustiness.

*Commitment.

*Reciprocation.

Cognitive dimension.

*Articulated goals.

*Organizational culture.

KT
effectiveness.

+

+

+

12 Knowledge Transfer measurement for software requirements.

mentioned above, but also the technology that supports the KT processes, especially, the

ones related to mitigating extenuating factors.

Such technology tools can be knowledge bases: repositories in relational or document

oriented databases, with useful information about the business processes; collaborative

tools: such as social networks and, in general, any technology that supports people

communication and the building of collective concepts, such as blogs or forums (Ambos &

Ambos, 2009; Eric Ras, Gabriela, Patrick, & Stephan, 2005).

Technology tools help to mitigate physical distance, because the internet/intranet does

not require that the work teams stay together in the same place. In addition, translation

tools and ontologies can mitigate ambiguity in the texts and idiomatic differences

(Kjærgaard, Nielsen, & Kautz, 2010). More importantly, there are face-to-face

coordination methodologies (face to face meetings, for instance at the same location),

which are traditional but are more sensitive to the effects of geographic and linguistic

distance (J.-S. Chen & Lovvorn, 2011).

Figure 5. Knowledge transfer factors in multinational environments (2).

Based on (Ambos & Ambos, 2009)

-

Cultural
distance

Geographic distance
Cultural distance
Linguistic distance

Technology
based
mechanisms

Personal
coordination
mechanisms

Knowledge
Transfer

Effectiveness

-

+

+

Chapter 1 Knowledge Transfer in software engineering 13

1.2.2 Knowledge Transfer in Agile Models
KT is evidenced by feedback between people. The agile models promise to decrease

documentation in favor of coding speed, leaving the knowledge inside the people’s head,

however, it favors the knowledge flows while making periodic meetings (Karlsen et al.,

2011). Basically, one might think that an agile environment is more adequate to the KT

than a traditional one (cascade, RUP), in which a series of pre-requisites are demanded

in order to advance to a posterior step.

Agile environments facilitate to share the knowledge because the teams work on

iterations that allow a continuous feedback, not only inside the technical team, but also

with clients and owners of business knowledge (Larman & Basili, 2003; Whitworth, 2006)

Regardless of the agile methodology, the goal is to favor the interactions between people

instead of processes and tools, the software work instead of detailed documentation, the

collaboration with clients instead of contract dealing and with this, to respond to the

variant requirements as it progresses.

There are various agile models, and an abstraction of them could be seen as an iterative

cascade model (due to the software development phases) iterative with multiple

interactions. Although there is an iterative software model, the difference with an agile

method is that iterations are done between little, very specific requirements/functionalities,

and the traditional documentation is minimal.

Figure 6 shows such interactions, in which KT is also performed, since it does not just

involve a relation among developers, software testers and analysts, but includes the

owner of the business and the expert in the process to be automated in the KT (Ambos &

Ambos, 2009; Koskinen, Pihlanto, & Vanharanta, 2003; Marshall & Brady, 2001).

14 Knowledge Transfer measurement for software requirements.

Figure 6. Agile model generalization.

Based on (Awad, 2005)

1.2.3 Knowledge transfer among the projects
An interesting point of view for the KT is that it can take place in an isolated environment

inside the organization, which is important because it facilitates the processes given that

the team is inside the same organization. In contrast, the transfer between organizations

could be difficult due to intellectual protection issues, which prevent the flow of knowledge

(Awad, 2005; S. M. . Jasimuddin, Connell, & Klein, 2012; S. M. Jasimuddin, 2007).

Inside the same non-multinational organization, the concern is to achieve a link between

culture, processes and their supporting technology to facilitate the KT (Lee & Shiva,

2009).

Figure 7 shows the current methods used for the KT. There are various groups of people

that represent the projects that could have or not experts. These experts form an expert

net, which could be managed in a formal way through directories, where experts could be

Requirements

Design

Development and
Tests

Integration

Maintenance

Need

Solution

Chapter 1 Knowledge Transfer in software engineering 15

contacted for a topic, or could be undocumented nets, as friend or colleague nets. Ideally,

such nets should be documented in a directory or software that leads to the experts.

Likewise in Figure 7 appears a knowledge base with an ontology that defines the

business process language. Such knowledge bases are useful to keep the history of the

management done in the projects, and their goal is to preserve the best practices or key

factors that have contributed to the success of the projects.

Figure 7. Experts net with a knowledge base.

Based on Schneider (2009)

The concern here is to reproduce the knowledge by taking advantage of the experts in an

organization or business unit, so the others could be benefited of their experience. It is not

just about repositories with knowledge bases or ontologies that represent the domain of

the problem, but the technology tools that must lead to the collaboration and access to the

experts so that they could be reached through their documents and face to face,

improving the KT (Havlice et al., 2009). This has not had a big development according to

the review done, so it could be a good topic to research.

1.2.4 Knowledge transfer between people

Finally, in a more atomic level, the KT between two people is studied. The SECI model

(Nonaka & Toyama, 2003), defines a series of steps that are followed in the learning

process of a person. Which are: a) socialization, where a person A socializes his/her

16 Knowledge Transfer measurement for software requirements.

experience and knowledge with other person B; b) exteriorization occurs in person B

when he/she can define concepts in their own context about the knowledge acquired; c)

person B does combination when applying his/her new knowledge and builds prototypes,

finally, d) the knowledge is internalized in person B through practice, so the knowledge

becomes a part of his/her mental models, believes, abilities, etc. Into the previous general

model of knowledge management, KT could be seen in the existence of two persons;

apprentice and master, where the apprentice in turn can be an expert in certain topics and

a master can be an apprentice in others (Wilkesmann & Wilkesmann, 2011). This shows

that in general any expert person may also have the need of learning and acquiring new

capabilities for different projects, in this case about software.

The goal of transfer between people is that they meet generally in an informal way, to

treat the issues of the organization and give each other pieces of advice on how to carry

out the work in the best way according to their experience. Like this, social methodologies

were born, as the coffee breaks, where people get involved to share their experience.

Figure 8 shows this kind of interaction, where the objective is not a plain transfer, because

of the personal nature of the knowledge, and instead of doing a transfer, what is done is

building new useful knowledge in one or more contexts(Krogh et al., 2001).

Figure 8. Knowledge transfer between people model.

Taken from Wilkesmann & Wilkesmann (2011).

1.2.5 Factors helping knowledge transfer

Majority of the research has been done using surveys trying to determinate the

effectiveness of the methodologies applied for the KT.

Chapter 1 Knowledge Transfer in software engineering 17

Surveys are used to be created from a proposed model and are validated sending it to

different companies. Ideally some authors propose consistence indexes to measure the

gathered responses and the integrity of the questions (Wilkesmann & Wilkesmann, 2011).

The factors to measure always come from hypothesis about people behavior, is used to

presume that for the KT occurs, a predisposition of the people to share knowledge should

exist (Karlsen et al., 2011).

Some authors claim that people interviewed usually are willing to share their knowledge

and emphasize the importance of knowledge sharing to carry out their activities (Y.-J.

Chen et al., 2008; Liebowitz & Suen, 2000).

It could be interesting to measure the previous purpose in the local industry because the

reviewed surveys recommend reapplying them in local environments to try to verify and

validate their questions and answers (Aurum A., 2008).

Typically, factors have two components, one organizational and one technologic. The

organizational is used to measure the people and business unit’s readiness towards

knowledge management, and especially towards KT. The technology is used to see how

far could exist collaboration tools and knowledge bases to support the KT process.

Figure 9 depicts the importance of organizational factors joined with a set of technology to

facilitate the KT. There it appears a social space (coffee) and socio technical nets,

because is natural that people relate between each other. Besides there are

communication tools and experience repositories where finally an agent appears on the

middle in order to help the articulation between the members.

18 Knowledge Transfer measurement for software requirements.

Figure 9. Knowledge transfer mixed techniques. Experience base and people networks.

Taken from (Schneider, 2009).

1.2.6 Knowledge transfer measurement

There are few proposed metrics to measure KT. It is argued that KT is something difficult

to measure, because it cannot be measured directly, and always is measured indirectly. If

it is tried to be measured by the knowledge created, it could be a mistake due to the KT is

not the only existing way to create new knowledge (Karlsen et al., 2011; Wilkesmann &

Wilkesmann, 2011). To deal with this, is used to ask for the KT perception in the

organizations and people.

Table 1 summarizes the efforts found out about KT measurement, unfortunately there

aren’t clear indicators or metrics, nor any mean of how to measure. The most common

metrics are those who deal more with final elements more than the mere KT. For

example, there are some authors who emphasize more in final products, innovation

quantity or new concepts generated, however, it is not only with the achievement of final

products or the generation of new concepts that it could be said that the KT is successful

(Abdullah, Selamat, Cob, & Sazaly, 2011; Chen C.-J.a Shih, 2009; Gardner, Fong, &

Huang, 2010; Liebowitz & Suen, 2000; Mei, Wang, & Cao, 2011).

Chapter 1 Knowledge Transfer in software engineering 19

Furthermore there may be more interesting metrics for the organization, for instance

oriented metrics to the gaining of money or value generated, such as earnings that come

after a project that had KT or even the return of investment over a knowledge active, e.g.

a patent (Crowne, 2009; Gardoni, Frank, & Vernadat, 2005; Gorschek & Davis, 2008; Li

J.a Moe, 2010; Liebowitz & Suen, 2000; Rezgui, Hopfe, & Vorakulpipat, 2010).

Either the commercial value could be taken into account, for instance the gain of a new

market, the client’s satisfaction, gained clients, increased sales by clients etc. Another

metric could be the value created by research and development activities and the return

of invest by each trained employee (KT) (Carayannis, 1999; Desmarais et al., 2009;

Formentini & Romano, 2011; Salger, Sauer, Engels, & Baumann, 2010; Szulanski, 1996).

Some metrics more oriented to KT, are focused on the quantity of knowledge (in

knowledge bases) frequently acceded or reused. And measure how many people have

shared their knowledge (Chakraborty, Sarker, & Sarker, 2010; Duan et al., 2010; Hagge

L., 2005; Ko, Kirsch, & King, 2005; Kyaw P., 2003; Poort E.R.a Pramono, 2009).

In short KT cannot be measured directly, but it is measured in a qualitative way using

organizational and technological factors, together with final products obtained from such

transfer (Chau, Maurer, & Melnik, 2003; Liebowitz & Suen, 2000).

It should be noted that the measurements are done by surveys from which the questions

are related to the factors to measure, for instance, if it is desired to know if the transfer

process X was effective, it is asked if the people consider that they could learn from

process X and in turn if it was useful to be applied to certain project Y. To this some

authors (Chen C.-J.a Shih, 2009; Karlsen et al., 2011; Liebowitz & Suen, 2000;

Wilkesmann & Wilkesmann, 2011) show examples of questions, but in general those kind

of articles do not show the full questionnaire used in the organizations.

20 Knowledge Transfer measurement for software requirements.

Table 1. Effort summary on KT measurement.

Author Knowledge Indicator Tool / Method

Karlsen et al. (2011),

Wilkesmann & Wilkesmann

(2011).

Creation,

sharing

Knowledge

created

Questionnaire

Abdullah et al. (2011),

Chen C.-J.a Shih (2009),

Gardner et al. (2010),

Liebowitz & Suen (2000)

and Mei et al. (2011).

Creation New products

and concepts

created

Not specific

Crowne (2009), Gardoni et

al. (2005), Gorschek &

Davis (2008), Li J.a Moe (

2010), Liebowitz & Suen (

2000) and Rezgui et al.

(2010).

Creation New patents,

return on

investment,

money, income

Questionnaire

Carayannis (1999),

Desmarais et al. (2009),

Formentini & Romano

(2011), Salger et al. (2010)

and Szulanski (1996).

Creation,

Share

Market share,

money, income,

ROI per trained

people

Questionnaire

Chakraborty et al. (2010),

Duan et al. (2010), Hagge

L. (2005), Ko et al. (2005),

Kyaw P. (2003) and Poort

E.R.a Pramono (2009).

Codification,

share

FAQ access

count,

Technology

usage,

Questionnaire

Chau et al. (2003) and

Liebowitz & Suen (2000).

Sharing Technology

usage

Questionnaire

Table made by authors based in the literature review.

Source: self-elaboration based in the literature review done.

Chapter 1 Knowledge Transfer in software engineering 21

1.2.7 Knowledge transferring measurement in SE

Even when the KT is difficult to measure, talking about KT measurement in SE is not new.

Maybe there are not clear ways or at less, a clear path to measure KT, some authors

have done an effort to make an approximation to SE measurement from the KT viewpoint.

Table 2 synthesizes authors found out works about KT measurement in SE in 3 groups.

First two are about what to measure, while the third group is about KT measure in SR.

Most of authors haven’t choice one specific software process but instead of that, try to

explain how KT happens in the software processes. Those efforts could be seen as

authors pursuing KT measure through social capital variables like Bjørnson F.O.a

Dingsøyr (2005); Boden, Avram, Bannon, & Wulf (2009); Wang & Yang (2008); Windiarti,

Ferris, & Berryman (2011); Zhang Q. (2011) who state that trustiness, communication,

respect and commitment are fundamental in the culture of an organization for people to

share their knowledge and feel comfortable in doing it.

However, culture per se is not enough for the KT to succeed so other variables come into

play, Baruch Y.a Lin, n.d.; Hongmei & Huidong (2008); Poort E.R.a Pramono (2009); Wah

C.Y. (2005) states that incentives are important for people to share their knowledge,

especially because people who have are highly competitive are the ones who have more

knowledge and often such kind of people behaves apathetic to the knowledge sharing, so

the coo-petition strategy is proposed.

In addition, S. M. Jasimuddin (2007) and Ren (2009) claim that communications style

(virtual or face to face) are fundamental for the correct knowledge flow from experts to

apprentices. Finally, among the first set is also the notion of intellectual capital as a mean

of KT measure (C.-J. . Chen, Shih, & Yang, 2009).

As a second group of indicators there are the authors who focused their efforts in

measure KT through technology tools and methods for KT, Conradi & Dybå (2001); Kuk

(2006); Shou & Sun (2010) explain how communication being supported for the

22 Knowledge Transfer measurement for software requirements.

technology can help knowledge flow, especially if there are an idiomatic or background

difference between people.

Also, there are some methodologies like the communities of practice (Mestad A.a Myrdal,

2007) who ease the KT because of the enhanced communication (Qu G.a Ji, 2011;

Zhang, Bao, Gao, & Guo, 2008) .

Finally, for the purpose of this study, in the third group appear six authors who are the

ones, at the time of the review done for this thesis, who have study KT in SR. Eric Ras et

al. (2005) see the KT transfer in SR as a matter of documentation, so proposes a weblog

to store requirements information thus making easy to access the them, also make an

addition for frequently asked questions over the requirements. This way, the metrics

defined are the quantity of access to the weblog and FAQ´s viewed, resolved and cited.

Salger & Engels (2010) propose requirements specification through KT, this is done doing

a double verification in a testing oriented software development, where there is an initial

verification done by the stakeholders and a second verification done by an external

development team, so the mean of measure is verification.

This could be sound quite strange, because according SWEBOOK client review of

requirements is called verification while development team reviews are called validation,

and those are two different processes. Xiaohong Shan, Jiang, & Huang (2010) made a

model of KT for SR, but it does not make an effort to state a sort of metric, instead of that

states that tacit knowledge is the most difficult to elicit and that physical and cultural

distance affect the KT, also classifies the kind of knowledge according the knowledge

holder.

Chau et al. (2003) addresses the issue of using agile methods as a KT enables, because

of agile methods favor the communication thus making easy the tacit knowledge flow,

intends to measure agility and quantity of communication.

Damian, Marczak, & Kwan (2007); Hagge L. (2005) state the importance of

communication and define a kind of patterns to ease the SR process and KT through it,

Chapter 1 Knowledge Transfer in software engineering 23

what intends to measure is the SR specification, in other words, knowledge codification

and their validation.

Finally, Pilat & Kaindl (2011) are the ones who bring a full view of SR from knowledge

management point of view, they propose a methods that is tested on a study case. The

method consist of identify knowledge holders and map the requirements versus the

knowledge holders thus making clear who are the experts, such experts are the

responsible for validate the requirements. From this model, some indicators could be

measured such as: the perceived pay off (an incentive given to experts as a retribution for

their knowledge) and efficacy (showing experts the importance of their knowledge and

contribution for the organization); common vision, it means the quantity of people who

agree that the project is important and have the willingness to participate in it, so, a

collaborative environment is set, and the group identity is defined as a factor affecting KT

for SR.

24 Knowledge Transfer measurement for software requirements.

Table 2. KT measurement effort in SE.

Authors Software process What intends to measure

Baruch Y.a Lin, n.d.;

Bjørnson F.O.a Dingsøyr,

(2005); Boden et al.

(2009); Chen C.-J.a Shih

(2009); Hongmei &

Huidong (2008); S. M.

Jasimuddin (2007); Poort

E.R.a Pramono (2009);

Ren (2009); Wah C.Y.

(2005); Wang & Yang

(2008); Windiarti et al.

(2011); Zhang Q. (2011).

Not specific, the

whole process is

treated but

without detail.

Social capital, trustiness,

communication style (virtual or

face to face), commitment,

sharing culture, idiom,

participation, connectivity,

incentives, respect, attitude,

learning skills, coo-petition.

Conradi & Dybå (2001);

Dan, Zhenqiang, Kaizhou,

& Lei (2008); Kuk (2006);

Mestad, Myrdal, Dingsoyr,

& Dyba (2007); Qu G.a Ji

(2011); Shou Y. (2010).

Not specific, the

whole process is

covered but

without detail.

Communications technologies,

networks size, quantity of

interactions. Conversation,

participation, connectivity. Written

rules, procedures and degree of

instruction. Communities of

practice. FAQ rate of access.

Chau et al. (2003);

Damian D. (2007); Hagge

L. (2005); Pilat & Kaindl

(2011); E Ras (2009); X

Shan, Jiang, & Huang

(2010).

Requirements Perceived pay off and efficacy,

common vision, group identity.

Collaboration. Quantity of sharing.

Cultural and physical distance.

Testability.

Table built based in the literature review.

Chapter 1 Knowledge Transfer in software engineering 25

1.3 Chapter conclusions

This chapter, in order to reach this thesis objective 1, establishes what we know about KT

in software engineering and factors who affect it. Also, defines a general background

about KT in software engineering.

From the review done, nowadays, it was found out that the knowledge management

studies have been focused on the creation and codification of knowledge, later in their

socialization or dissemination (“knowledge sharing”) without taking if a real KT occurs.

In the existent literature about KT in software engineering, the principal focus has been:

• KT among software development multinationals.

• KT inside development teams, using agile models.

• KT within projects in the organizations.

• KT between people within an organization.

It is found out that KT in the process of requirements elicitation has not been widely

studied in the literature, just four articles were found directly related to it Hagge L. (2005);

Pilat & Kaindl (2011); Salger F.a Engels (2010); Xiaohong Shan et al.(2010).

The authors mentioned above typify some factors that facilitate the KT. However they

leave out any means of metric or indicator that permit to measure in any way the KT rate.

Measure the KT is a problem, because there is no clear model that allow a quantitative

and/or qualitative approximation to KT, specially due to the KT is not the only way to

create new knowledge (Awad, 2005; Kumar & Ganesh, 2009).

The phase of collection and specification of requirements plays an important role because

is where the business needs are translated to technical language and allow setting the

scope of the software project (Hagge L., 2005).

26 Knowledge Transfer measurement for software requirements.

The problem of carrying the business concepts across all the software development steps

has not been studied and represents an interesting percent of fail causes (23% Standish

Group) in the software development projects.

Even if the software chaos report from the Standish Group has been criticized (Holtsnider

et al., 2010; Jørgensen & Moløkken-Østvold, 2006), and the 189% overrun percentage in

software projects has been reduced o 34% and 33%, the 68% of projects that still failing

are because of the poor requirements specifications.

2. Software requirements as a process of KT.

This chapter shows a general approach to software requirements and how software

requirements steps take place inside the knowledge transfer stages. Section 2.1 presents

a brief description about what is known as software requirements for the purpose of this

study, basically based on SWEBOOK reference. Next, section 2.2 introduces a mapping

for the KT stages and SR steps, giving as a result a series of measurable factors affecting

each KT-SR match. Then, in section 2.4 appears the metrics found and proposed for

each group of KT-SR match. At the end, in section 2.5 conclusions of this chapter are

established.

2.1 Software requirements
The requirements for a system are the descriptions of what the system should do, the

services that it provides and the constraints on its operation. The process of finding out,

analyzing, documenting and checking these services and constraints is called

requirements engineering –RE (Kedian, Zhi, & Didar, 2008; Khan, Ahmad, & Alnuem,

2012; McGee & Greer, 2012; Wiradanti & Govindaraju, 2011). Despite heterogeneous

terminology throughout the literature, RE must include four separate but related activities:

elicitation, modeling, validation, and verification according to SWEBOOK. In practice, they

will most likely vary in timing and intensity for different projects.

SWEBOOK states:

Elicitation is often treated as a simple matter of interviewing users or analyzing

documents, nonetheless several other elicitation methods are available. Some

emphasize group sessions in the form of focus groups or workshops; others are

employed primarily to elicit requirements for specific types of systems. For

example, developers frequently use repertory grids, sorts, and laddering methods

in specifying knowledge-based systems. Elicitation also includes those activities

28 Knowledge Transfer measurement for software requirements

that explore how software can meet organizational goals, what alternatives might

exist, and how they affect various stakeholders.

Modeling: Experts have proposed many modeling methods and specification

languages to make requirements precise and consistent. Traditionally these

methods have separated the data, functional, and behavioral aspects of

requirements and specified software by creating one or more distinct models.

Prototypes, for instance, attempt to create an operational model that stakeholders

can directly experience.

Validating: The purpose of validating requirements is to certify that they meet the

stakeholders’ intentions, try to answer if the software is being specifying the right

way. Validation examines a work product (for example, a specification) to

determine conformity with stakeholder needs.

Verification, on the other hand, determines whether a work product conforms to

the allocated requirements, so the software is specified correctly. That is, it checks

a specification for internal consistency through mathematical proofs or inspection

techniques. An important point in validating and verifying requirements is

prioritizing them. By addressing high-priority requirements before considering low-

priority ones, you can significantly reduce project costs and duration. Moreover,

throughout RE you should revisit the priorities assigned, for example, during

elicitation to ensure that they continue to adequately reflect the stakeholders’

needs. This highlights the recurrent nature of requirements validation and

verification.

Methods for validating and verifying requirements are relatively scarce. Peer

reviews, inspections, walkthroughs, and scenarios figure most prominently.

Moreover, the recording of decisions and their rationales is quite useful.

Best practices in RE involve: Successful requirements engineering teams have in depth

knowledge of the application domain, IT, and the requirements engineering process. In

other words, successful projects have the “right combination” of knowledge, resources,

Chapter 2. Software requirements as a process of KT 29

and process (Kedian et al., 2008; Khan et al., 2012; McGee & Greer, 2012; Wiradanti &

Govindaraju, 2011).

Pilat & Kaindl (2011) states that stakeholder feedback plays a decisive role from the

beginning to the end of successful requirements engineering projects. The most

successful teams always involve customers and users in the requirements engineering

process and maintain a good relationship with stakeholders.

Successful teams have an ongoing collaboration with stakeholders to make sure that

requirements are interpreted properly, to deal with fluctuating requirements, and to avoid

communication breakdowns. Chau et al. (2003) research supports this best practice:

according to one study, user participation is one of the most important factors contributing

to requirements engineering success. Successful requirements engineering teams identify

the boundaries of the application domain and of the major stakeholders.

Klendauer, Berkovich, Gelvin, Leimeister, & Krcmar (2012) claims that successful projects

allocate a significantly higher amount of resources to requirements engineering (28%)

than the average project in this or previous field studies, and they expend these resources

according to a well-defined process.

Since software requirements engineering deals with understanding of the business

knowledge, KT is essential for the process success (Hagge & Lappe, 2004, 2005; Pilat &

Kaindl, 2011). The result of the KT can be described as a software engineering

specification, which is an official statement of what the system developers should

implement. It should include a detailed specification of the system requirements.

Knowledge already acquired and codified by the requirements engineers can be given to

the stakeholders for reviewing purposes. Through feedback from such reviews, more

knowledge about the requirements can be transferred to the requirements engineers. This

reiterates the process, and the codified knowledge put into the form of a specification

improvement (Pilat & Kaindl, 2011; Xiaohong Shan et al., 2010).

During SR, two categories of knowledge are transferred and transformed. On one hand,

knowledge about the requirements is being manipulated, and on the other hand,

30 Knowledge Transfer measurement for software requirements

additional knowledge about the domain for which the software is being developed is

necessary (Damian et al., 2007). Stakeholders that hold knowledge about the

requirements, inherently also possess domain knowledge (Xiaohong Shan et al., 2010).

2.2 KT-SR mapping
KT process stages were mapped against SR process steps. On the one hand the

reference for the KT stages was taken from relevant authors according a literature review

about KT in SR and their measurement, on the other hand the SWEBOOK was taken into

account, for the SR process, because it is an effort from the computer society to

characterize what is known about software engineering process, and promote a

consistent view of SR. Finally, factors affecting KT were organized for each step mapped.

Starting with Szulanski (1996) who states that KT has four stages: Initiation,

implementation, “ramp-up” and integration, other authors start using the word KT process

adding or modifying steps like: information acquisition, documentation, transmission,

source and receiver perception (Verkasalo & Lappalainen, 1998), gather the knowledge

from a source, code it through a channel, and pass it to a receipt (Albino et al., 2004),

Idea creation, sharing, evaluation, dissemination and adoption (Levine & Gilbert, 1998).

SWEBOOK divide SR in seven topics: SR fundamentals, Requirements process,

elicitation, analysis, specification and validation, Practical considerations and SR tools.

However, only four are going to be considered which are the related to the strictly SR

process: elicitation, analysis, specification and validation.

In short, there are four dimensions for the knowledge transfer to occur according to

Szulanski (1996).

1). Initiation: where the decision to KT and information acquisition is done by gathering

the knowledge from a source, in a software context it is supposed that the source is

motivated enough to share their knowledge because the source is the client who need the

software, at this point the KT for software requirements differ from classical KT in

organizations, because the receiver of the knowledge (i.e. software analysts) does not

intend to apply such knowledge but to build a software specification. This first step match

with software elicitation stage for SR, because is where the first approach to business

Chapter 2. Software requirements as a process of KT 31

knowledge stakeholders is made, those stakeholders initiate the sharing of their

knowledge and KT starts.

2) Implementation: is about the formal flow of knowledge from the source to the receipt,

first software specification which could be seen as the source of knowledge codification

occurs, the elicitation step ends and start the analysis of such first requirements,

implementation cease or diminish with the software specification because is where the

receipt starts using the transferred knowledge (requirements). At this point

implementation step for KT differ from classical KT in organizations, because the receipt

isn’t going to use the knowledge in his behalf, but for a software specification analysis.

3) “Ramp-up”: in this step initial knowledge codification and knowledge dissemination

ends, software requirements are fully analyzed giving as a result the formal initiation of a

software specification document. Consistence and conjecture of requirements are being

evaluated. The software specification serve as a basis for agreement between customers

and contractors on what the software product is to do as well and what it is not expected

to do.

4) Integration: begins after the receipt achieves satisfactory results with the transferred

knowledge, the knowledge is adopted and the perception of source and receiver happens.

In the software requirements context is about the software specification end, the

awareness of needs and ambiguity are evaluated, starting and ending the validation stage

of software requirements, resulting in the final software specification.

Table 3. KT in SR shows the mapping, where KT steps (there called dimensions) appears

in the first column and SR stages take place in the first row, E for elicitation, A for

analysis, S for specification and V for validation. In each cell appear a group of factors,

named F1 to F7.

32 Knowledge Transfer measurement for software requirements

Table 3. KT in SR. Dimensions of KT vs. stages of SR.

 E A S V

Initialization.

*Information acquisition.

*Knowledge gathering.

*Knowledge sharing.

*Knowledge dissemination.

F1

Implementation.

*Documentation.

*Knowledge codification.

F2 F3

“Ramp-up”

*Receipt perception.

*Knowledge codification.

*Knowledge dissemination.

 F4 F5

Integration.

*Knowledge adoption.

 F6 F7

Table built based on Albino, Claudio Garavelli, & Schiuma (1998); Levine & Gilbert

(1998); Szulanski (2000); Verkasalo & Lappalainen (1998) and the SWEBOOK v3.

2.3 Factors affecting each KT and SR mapping
Based on Szulanski (2000); Schwartz (2007); Minbaeva (2007); Goh, Chua, Luyt, & Lee

(2008) and Simonin (2004) work, the next factors are defined for each mapping.

Factors F1, the Initialization and Elicitation are affected by the willingness to initiate

transfer and propensity to share which are related to: acknowledgement and attribution,

disseminative capacity, interpersonal connection and motivation of the source.

Factors F2, the Implementation and Elicitation are affected by the ease of transfer which

is related to stickiness at initiation, stickiness at implementation, motivation, the

awareness of need, the ability to transfer, the ambiguity of knowledge, the retentive

capacity and modifiability of requirements.

Chapter 2. Software requirements as a process of KT 33

Factors F3, the Implementation and Analysis are affected by the available time/access of

source and receipt, reliability of the source, motivation of the receipt, ambiguity of

knowledge, awareness of availability, absorptive capacity of receipt, understandability of

requirements and its verifiability.

Factors F4, the Ramp-up and Analysis are affected by the requirements degree of

conjecture.

Factors F5, the Ramp-up and Specification are affected by requirements internal

consistency.

Factors F6, the Integration and Specification are affected by the available time/access of

the receipt and source, while the awareness of need from the source and the ambiguity of

knowledge.

Factors F7, the Integration and Validation are affected by the correctness and

completeness of the specification.

2.4 KT-SR Metrics
This section explains an analysis over the existing metrics for software requirements seen

from the knowledge transfer point of view. In order to gathering software requirements

metrics a review was conducted following Kitchenham (2007) instructions using the

SCOPUS database, then metrics were categorized as variables and indicators related to

an aspect and dimension of analysis. Analysis dimensions were defined according to

knowledge transfer stages in section 2.2, then, aspects of analysis were defined based on

software requirements steps that were established in section 2.2, factors from section 2.3

and results of the literature review. Section 2.4.1 shows details of the review done and

referents obtained, then, in section 2.4.2 appears the analysis of the aspects found inside

each dimension of analysis and the metrics inside each aspect analysis, next, section

2.4.3 states the detailed metrics chosen for this thesis purposes, at the end section 2.5

depicts the chapter conclusions.

34 Knowledge Transfer measurement for software requirements

2.4.1 Studies selected for analysis

The literature review was performed using this terms: software requirements

measurement, software requirements metrics, software requirements indicators,

requirements engineering measurement; requirements engineering metrics and

requirements engineering indicators”.

The search equation result in 373 single papers, after reviewing their abstract,

introduction and conclusions, 49 papers were selected for full reading. The criteria used

for selecting those 49 papers were: the including of any mean for requirements

measurement such as a variable (characteristic or attribute from an analysis unit,

minimum study element, observable and measurable) or indicator (qualitative or

quantitative expression observable, permits to describe characteristics, behaviors, or

phenomena through some variable evolution)(Sánchez-torres, Carolina, & Torres, 2009).

After the full reading for each 49 papers, 14 papers last because were the only ones who

treat requirements measurement as their main issue and proposed and/or explain some

sort of variable or indicator. A total of 139 metrics were found, 115 were indicators and 24

variables. Table 4 resumes the referents and quantity of variables and indicators found,

and based on data from this table, Figure 10 depicts its information as percentage of

variables and indicators, making clear that there are more indicators than variables.

Table 4. SR referents.

Referent Indicator Variable Total
BIG EARS (Mavin & Wilkinson, 2010) 8

8

Completeness and Complexity of KAOS
models(Espada, Goulão, & Araújo, 2011) 10

10

Crosscutting concerns(Conejero, Figueiredo,
Garcia, Hernández, & Jurado, 2012) 2

2

Goal Oriented Quality Model(Cares & Franch,
2009) 9

9

Maintainability NFUR(Abran, Al-Sarayreh, &
Cuadrado-Gallego, 2010) 3

3

Measurement Framework for Maturity RE
Process(Niazi, Cox, & Verner, 2008)

14 14

Meeting Quality SR Acquisition
Phase(Hanakawa & Obana, 2012) 18

18

QRE BO approach(Banerjee, Sarkar, &
Debnath, 2013) 4

4

Quality of Textual Requirements(Génova,
Fuentes, Llorens, Hurtado, & Moreno, 2013) 27

27

Chapter 2. Software requirements as a process of KT 35

RE Initial Metrics(Costello & Liu, 1995) 7

7

Reliability NFUR(Al-Sarayreh, Abran, &
Santillo, 2010) 3

3

Requirements Modifiability
Management(Lam, Loomes, &
Shankararaman, 1999) 4

4

SRS Metrics(Iqbal & Naeem Ahmed Khan,
2012) 16

16

Use Case Complexity(Yavari, Afsharchi, &
Karami, 2011) 4 10 14
Total 115 24 139

Source: self-elaboration based in literature review done.

Figure 10. Implementation variables and indicators.
Source: self-elaboration based in literature review done.

2.4.2 KT-SR dimensions, aspects and metrics

Analysis dimensions are taken as KT stages defined in section 2.2. Each dimension has a

series of factors affecting them as stated in section 2.3. Even when there are four analysis

dimensions, in the literature review does not appear any mean of measurement for the

initiation stage, here called dimension of initiation. For the other dimensions

(implementation, integration and ramp-up) were found out some aspects in the review

done.

15%	

85%	

ImplementaLon	 vars	 and	 indicators	
Variables	 Indicators	

36 Knowledge Transfer measurement for software requirements

So, talking about SR there is no variable nor metric found in order to take care for Factor1

- the willingness to initiate transfer and propensity to share which are related to:

acknowledgement and attribution, disseminative capacity, interpersonal connection and

motivation of the source- Maybe it is because in software projects contexts, it is assumed

that there is a willingness to share the business knowledge, it is taken for grant that

stakeholders will share their knowledge and will be able to get involved actively in the SR

process, but as stated before, usually people need to get motivated in order to share their

knowledge and participate (Davenport, Prusak, & Webber, 1998; Kumar & Ganesh, 2009;

Szulanski, 2000).

Regarding analysis aspects, a set of elements were taken from the review and matched

with factors defined above. The matching method its really simple, because it is based in

the semantics of the words, for instance: it is said that ambiguity of knowledge affects the

KT at the Implementation stage(Szulanski, 2000), and it is said that Ambiguity of

requirements affects SR process (Mavin & Wilkinson, 2010), so we have a match. Table 5

shows the full match done.

Table 5. KT-SR Aspects.

Mapping Factor Aspect found in KT literature Aspect found in SR literature

F2 - Implementation and

Elicitation

Stickiness at initiation

Stickiness at implementation.

Motivation.

Awareness of need

Ability to transfer

Ambiguity of knowledge

Retentive capacity

Modifiability of requirements.

Abstraction

Ambiguity

Atomicity

Complexity

Precision

F3 – Implementation and

Analysis

Available time/access of source

and receipt.

Reliability of the source.

Motivation of the receipt.

Ambiguity of knowledge,

Ambiguity

Time/Access source

Time/Access receipt

Understandability

Chapter 2. Software requirements as a process of KT 37

Awareness of availability,

Absorptive capacity of receipt.

Understandability of requirements

and its verifiability

F4 – Ramp-up and

Analysis

Knowledge degree of conjecture Effort

Verifiability

Volatility

F5 – Ramp-up and

Specification

Knowledge consistency Verifiability

F6 – Integration and

Specification

Available time/access of the

receipt and source. Awareness of

need from the source.

Ambiguity of knowledge.

Maintainability

Traceability

Validability

F7 – Integration and

Validation

Correctness and completeness of

knowledge.

Completeness

Correctness

Source: self-elaboration based in literature review done.

As a result of the factors mapping done, 16 aspects of analysis were found. Table 6,

Table 7 and Table 8 shows the list of dimensions, aspects and their referents. It is

interesting that most of the indicators are focused in the SR specification document per

se, but as noticed by SWEBOOK, the software requirements process is more than build

the SR specification; it involves an elicitation phase where the motivation and the

willingness to share knowledge take place.

Another interesting result is the lack of traceability indicators. 11 authors Abran et al.

(2010); Al-Sarayreh et al. (2010); Banerjee et al. (2013); Cares & Franch (2009);

Conejero et al. (2012); Costello & Liu (1995); Espada et al. (2011); Génova et al. (2013);

Iqbal & Naeem Ahmed Khan (2012); Lam et al. (1999); Niazi et al. (2008) state that

traceability is very important, but just four of them Banerjee et al. (2013); Costello & Liu,

(1995); Génova et al. (2013); Iqbal & Naeem Ahmed Khan (2012); Niazi et al. (2008)

define any mean to measure the traceability. Traceability is important because traceability

enables to perform an effective control of the requirements, and due to requirements

38 Knowledge Transfer measurement for software requirements

changes constantly in every real word software project, traceability is important to keep

control over software scope.

In the next page (landscape), Table 6 will show the number of variables and indicators

found for implementation dimension. As there could be seen in Figure 11, most of

indicators are related with understandability, ambiguity and complexity, that tendency in

the referents are related with SR process difficulties found by authors (Espada et al.,

2011; Génova et al., 2013; Hanakawa & Obana, 2012). On the one hand, we could say

that the most important aspect related with KT implementation dimension is the

understandability, this makes sense because in this dimension, requirements elicitation is

finalized and requirements analysis begin, so requirements should be fully understood.

On the other hand, time and abstraction are not widely explored, but they are important

indicator for the requirements process.

Figure 11. Implementation variables and indicators per aspect

Source: self-elaboration based in literature review done.

AbstracTon	 Ambiguity	 Atomicity	 Complexity	 Precision	
Time/
Access	
source	

Time/
Access	
receipt	

Understand
ability	

Variables	 1	 1	 0	 6	 1	 0	 0	 3	

Indicators	 2	 19	 6	 12	 6	 2	 2	 20	

0	

5	

10	

15	

20	

25	

Q
ua

nL
ty
	

ImplementaLon	 variables	 and	 indicators	 per	
aspect	

Chapter 2. Software requirements as a process of KT 39

Table 6. Implementation dimension, their referents and aspects.

Referent Abstraction Ambiguity Atomicity Complexity Precision
Time/Access
source

Time/Access
receipt Understandability

 V I V I V I V I V I V I V I V I
Measurement Framework for
Maturity RE Process 1 1

1 3

Quality of Textual Requirements
 2 3 6

 5 7

BIG EARS
 2 1

 1 1

Goal Oriented Quality Model
 3

 1 1 2

Meeting Quality SR Acquisition
Phase 9

 9

QRE BO approach 1

SRS Metrics 1

 1

Completeness and Complexity
of KAOS models

 8

Maintainability NFUR
 1 1

Reliability NFUR
 1 1

Use Case Complexity 5 2
Total 1 2 1 19 0 6 6 12 1 6 0 2 0 2 3 20

Note: V:Variable I:Indicator
Source: self-elaboration based in literature review done.

40 Knowledge Transfer measurement for software requirements

Next, from Table 7 we can conclude that traceability and completeness take the most

important roles within integration dimension. Since integration dimension deals with

analysis and specification, traceability is very important as a key to do validation over the

requirements towards other development phases like design, code and testing, likewise

backwards from those phases to requirements.

Validability takes the last place based on their quantity of indicators; validation should be

taken seriously, because in integration dimension the validation of requirements is made.

Table 7. Ramp-up dimension, their referents and aspects.

Referent Completeness Correctness Maintainability Traceability Validability
 V I V I V I V I V I

BIG EARS
 1 1

Completeness and
Complexity of KAOS
models 2
Goal Oriented Quality
Model 2
Measurement Framework
for Maturity RE Process 1 1 2 2 1

QRE BO approach
 1 1 1

RE Initial Metrics 2

 2
SRS Metrics

 4 2 4 3

Crosscutting concerns

 2

Requirements Modifiability
Management

 3

Quality of Textual
Requirements

 2 1

Total 1 8 1 6 2 7 2 9 1 4
Note: V:Variable I:Indicator

Source: self-elaboration based in literature review done.

In the next page, Table 8 shows the last list of indicators found. The ram-up dimension,

different from traditional KT, in SR could not be said that is about to apply knowledge

learnt, but, to specify a document based on a plenty of knowledge about requirements,

because ramp-up is mapped with analysis and specification, volatility must be controlled

and verifiability is a must in order to do a good analysis. Also could be noticed, that effort

Chapter 2. Software requirements as a process of KT 41

aspect have more variables than indicators, it could be related with the lack or indicators

for software estimating.

Table 8. Integration dimension, their referents and aspects.

Referent Effort Verifiability Volatility
 V I V I V I

Maintainability NFUR 1

Reliability NFUR
 1

Use Case Complexity
5 2

BIG EARS

 1

Measurement Framework for
Maturity RE Process

1

Quality of Textual Requirements

 1
SRS Metrics

 1 2

RE Initial Metrics

 1

Requirements Modifiability
Management

 1

Total
5 4 1 3 0 4

Note: V:Variable; I:Indicator
Source: self-elaboration based in literature review done.

2.4.3 Discussion

KT for SR could not be seen as a typical KT process, because the receipt of the

knowledge does not intend to apply the knowledge gathered from the source rather than

understand and code it in a SR specification. For instance: in the context of a SR process

for a software about judicial collection, a receipt (software engineer or requirements

analyst) does not intend to apply or mimic the knowledge gathered from a source (lawyer

or accountant) about a judicial collection process, the receipt must to understand the

receipt knowledge and then translate it to a SR specification or two, one for developers

and other for stakeholders (maybe the same source of knowledge) validation.

42 Knowledge Transfer measurement for software requirements

Another difference, in the context of KT for SR, is in the source of knowledge

intentionality, because for a SR process, the source does not pretend to transfer his

knowledge used in his day to day work, but, the source intends to transfer needs about a

software that have to fit some business rules or logic the source is expert in.

2.5 Chapter Conclusions

This chapter was developed in the interest of this thesis objective 2, because characterize

the KT process in the requirements elicitation process. Furthermore, this chapter maps

the relations within KT and SR processes activities.

Knowledge transfer for software requirements is different from classical approach to KT,

because transfer of a full body of knowledge is not intended, instead of that, need who

relate with some business knowledge are transferred.

A mapping from KT and SR were made based on their sub process similarities, in order to

find out any mean of indicators. 139 variables and indicators were found out in the

literature.

One mapping last without indicators, the one regarding factor 1 Initialization and

Elicitation. So, some measurable aspects are needed for it.

3. Proposal Methodology for KT
measurement in SR

This chapter shows the stages series to build the measurement methodology. The

methodology will consider: dimensions and aspects of analysis, the identification of

indicators and variables from chapter 2, and, will include a stage to find out a set of

indicators who apply to a certain case, this is done because of organizations diversity,

due to such diversity, the full set of indicators from chapter 2 could not fit all organizations

reality, so a previous validation must be made. This chapter is organized in two parts, first

part (section 3.1) outlines the purpose, scope, end users and replicability of the proposal

methodology, and meanwhile, second part (section 3.2) details the proposal methodology

as well, whose sections include: the initial framework, the suggestion to make indicators

refinement, how to conduct the data collection and analysis, next, analysis o findings

appear and at the end the feedback appears.

3.1 Overview of the proposal methodology
The proposal methodology serves as a recommended mean to achieve the KT

measurement in SR. According Avison & Fitzgerald (2006), the recommended means

usually includes the identification of phases, procedures, tasks, rules, techniques,

guidelines, documentation and tools. They might also include recommendations

concerning the management and organization of the approach and the identification and

training of the participants.

Since there is no much knowledge about KT in SR, the proposal methodology is kind

exploratory, so based on the review done, indicators are going to be gathered and will be

refined inside an organization, furthermore data collected by questionnaires will be

analyzed for validity and reliability.

In next section, we will precede with proposal methodology general aspects, including the

purpose, scope, end user and the methodology replicability.

44 Knowledge Transfer measurement methodology for software requirements

3.1.1 Purpose of study
The purpose is to answer the research question How to measure KT in SR? To do this,

the previous KT-SR characterization will be used in order to validate which stages fit or

not in a real environment.

3.1.2 Scope of the proposal methodology
This is an exploratory methodology because of the lack of literature regarding KT

measurement. Likewise, we want to explore the current status of SR inside an enterprise

with real software projects, not only in terms of the literature indicators and stages, but

also inquire about the organization perceptions as well as their views on how the KT

affects the SR process.

3.1.3 End users
Software development organizations and any SR or KT enthusiasts.

3.1.4 Replicability
Taking into account that organizations and people use to change and evolve, replicability

could be affected, so rather than replicate the results, this proposal methodology could be

replicated though the application of methods for data collection and analysis.

3.2 Proposal methodology
Departing from (Avison & Fitzgerald, 2006) proposal methodology definition, this section

presents the procedures, techniques, tools and help documentation designed in order to

realize the KT measurement in SR.

3.2.1 Scope
This proposal methodology serves as guide in order to find out a way to measure the

knowledge transfer in the software requirements process inside an organization, so next

sections state the steps to pursue such goal.

Chapter 3. Proposal Methodology for KT measurement in SR 45

3.2.2 Initial framework
In the past chapter, a set of 139 indicators and variables were found out. Since it would

be nice to apply the full set of indicators, it would be too heavy to survey. So, from each

one of 16 analysis aspects, two indicators will be selected.

Next the 16 aspects appear. For abstraction aspect Table 9, there is only one referent so

it is used.

Table 9. Abstraction indicators.

	 	 Abstraction	 The	 requirements	 tell	 what	 the	 application	 must	 do	
without	 telling	 how	 it	 must	 do	 it,	 i.e.,	 excess	 of	 technical	
detail	 about	 the	 implementation	 must	 be	 avoided	 in	 the	
specification	 of	 the	 requirements.	

	 #	 Referent	 Indicator	
1	 Quality	 of	 Textual	 Requirements	 #	 Control	 flow	 terms:	 while,	 if	 then,	 when.	 Count	 one	

per	 requirement/user	 story.	
2	 Quality	 of	 Textual	 Requirements	 #	 Design	 Terms:	 (technology	 or	 design	 related)	 method,	

parameter,	 database.	 Count	 one	 per	 requirement/user	
story.	

3	 Quality	 of	 Textual	 Requirements	 At	 the	 end	 abstraction	 degree	 =	 #	 req	 abstract	 /	 #	 req	
Source: (Génova et al., 2013)

For the ambiguity aspect Table 10, there are 6 referents, but only Génova et al. (2013)

and Iqbal & Naeem Ahmed Khan (2012) are not tool or method dependent.

Table 10. Ambiguity indicators.

	 	 Ambiguity	 There	 exists	 only	 one	 interpretation	 for	 each	
requirement	 (unambiguity	 and	 understandability	 are	
interrelated,	 they	 could	 be	 even	 the	 same	 property;	
some	 authors	 have	 coined	 the	 term	 ‘‘uniguity”	

#	 	 Referent	 Indicator	
4	 Quality	 of	 Textual	 Requirements	 #	 Imprecise	 terms	
5	 Quality	 of	 Textual	 Requirements	 #	 Overlaping	 req	
6	 SRS	 Metrics	 Ri/Rt	 x	 100,	 	 <	 95%	 ambiguous	

Ri=	 requirements	 having	 the	 same	 interpretation	
Rt	 =	 total	 requirements	

Source: (Génova et al., 2013) and (Iqbal & Naeem Ahmed Khan, 2012)

46 Knowledge Transfer measurement methodology for software requirements

For the atomicity aspect Table 11, there is only one referent.

Table 11. Atomicity indicators.

	 	 Atomicity	 Each	 requirement	 is	 clearly	 determined	 and	 identified,	
without	 mixing	 it	 with	 other	 requirements.	

#	 	 Referent	 Indicator	
7	 Quality	 of	 Textual	 Requirements	 #	 Req	 size	 <=	 18	 words.	
8	 Quality	 of	 Textual	 Requirements	 #	 Req	 dependencies	 (other	 reqs,	 artifacts),	 max	 3	

dependencies	
Source: (Génova et al., 2013)

For the complexity aspect Table 12 (Yavari et al., 2011) is selected because others are
tool dependent or method dependent.

Table 12. Complexity indicators.

	 	 Complexity	 Degree	 of	 interrelationships	 of	 requirements	 and	 actors	
or	 goals/objects.	

	 #	 Referent	 Indicator	
9	 Use	 case	 complexity	 Level	 of	 actor	 complexity:	 Simple	 if	 An	 API	 or	 program	

interface,	 score	 1.	
Average	 if	 Network	 protocols	 such	 as	 TCP/IP,	 HTTP,	
score	 	 2.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Complex	 Graphical	 User	
Interface,	 score	 3.	

10	 Use	 case	 complexity	 Level	 of	 UseCase	 complexity:	 Simple	 if	 1	 to	 3	
transactions,	
score	 5	 .	
Average	 if	 4	 to	 7	 transactions,	 score	 10.	
Complex	 More	 than	 7	 transactions,	 score	 15.	

Source: (Yavari et al., 2011)

Chapter 3. Proposal Methodology for KT measurement in SR 47

For precision aspect Table 13, there are only two referents who has indicators.

Table 13. Precision indicators.

	 	 Precision	 All	 used	 terms	 are	 concrete	 and	 well	 defined.	
	 #	 Referent	 Indicator	
11	 Quality	 of	 Textual	 Requirements	 #	 anaphorical	 terms.	 They	 are	 typically	 personal	

pronouns	 (it),	 relative	 pronouns	 (that,	 which,	 where),	
demonstrative	 pronouns	 (this,	 those),	 etc.	 Max	 2	 per	
req/story.	

12	 Big	 Ears	 Vagueness,	 #req	 that	 are	 vague	 /	 #	 total	 req.	 A	
requirement	 is	 vague	 if	 require	 more	 dialog	 to	
understand?	

Source: (Génova et al., 2013; Mavin & Wilkinson, 2010)

Time indicators are mentioned here, Table 14 and Table 15, but discarded because

(Hanakawa & Obana, 2012) makes and extensive explanation about time as a transversal

enabler for SR quality. So, for the purpose of this thesis, the more time involved in SR the

better SR quality.

Table 14. Time/Access source indicators.

	 	 Time/Access	 source	 	 	 Quantity	 of	 time	 allocated	 for	 the	 knowledge	 receipt	 to	
interact	 with	 the	 knowledge	 source.	

	 #	 Referent	 Indicator	
13	 Goal	 oriented	 quality	 model	 Average	 over	 the	 total	 amount	 of	 time	 Velocity	 of	

agreement	 that	 the	 group	 has	 arrived	 to	 an	 As-‐Is	 on	
domain	 models	 model	 over	 the	 80%	 of	 agreement	 in	
past	 modeling	 activities.	

14	 Maintainability	 NFUR	 Schedule	 in	 Months	 =	 3.0	 *	 person-‐month^1/3	
Source: (Abran et al., 2010; Cares & Franch, 2009)

Table 15. Time/Access receipt indicators.

	 	 Time/Access	 receipt	 	 	 Quantity	 of	 time	 allocated	 for	 the	 knowledge	 source	 to	
interact	 with	 the	 knowledge	 receipt.	 	

	 #	 Referent	 Indicator	
15	 Maintainability	 NFUR	 Mean	 time	 to	 modify	 a	 requirement.	
13	 Goal	 oriented	 quality	 model	 Average	 over	 the	 total	 amount	 of	 time	 Velocity	 of	

agreement	 that	 the	 group	 has	 arrived	 to	 an	 As-‐Is	 on	
domain	 models	 model	 over	 the	 80%	 of	 agreement	 in	
past	 modeling	 activities.	

Source: (Al-Sarayreh et al., 2010; Cares & Franch, 2009)

48 Knowledge Transfer measurement methodology for software requirements

For the understandability aspect Table 16, there are 6 referents, but only (Génova et al.,

2013) and (Iqbal & Naeem Ahmed Khan, 2012) are not tool or method dependent.

Table 16. Understandability indicators.

	 	 Understandability	 The	 requirements	 are	 correctly	 understood	 without	
difficult	

	 #	 Referent	 Indicator	
16	 Quality	 of	 Textual	 Requirements	 Readability	 index:	 RFlesch	 =	 206.835	 -‐	 (1.015	 9	 WPS)	 -‐	

(84.6	 9	 SPW),	 where	 WPS	 and	 SPW	 stand	 respectively	
for	 average	 words	 per	 sentence	 and	 average	 syllables	
per	 word.	 RKinkaid	 =	 0.39	 9	 WPS	 ?	 11.8	 9	 SPW	 -‐	 15.59.	
This	 index	 yields	 a	 result	 between	 0	 and	 12.	

17	 	 SRS	 Metrics	 Number	 of	 req	 that	 are	 understandable	 to	 all	 the	 users	
and	 reviewers.	 	
Ru/Rt	 x	 100	
Ru	 =	 Req	 understood	 by	 users	
Rt	 =	 Tot	 req	

Source: (Génova et al., 2013) and (Iqbal & Naeem Ahmed Khan, 2012)

For completeness aspect Table 17, (Costello & Liu, 1995; Espada et al., 2011) referents

are selected, because others are tool or method dependent.

Table 17. Completeness indicators.

	 	 Completeness	 It	 is	 a	 quality	 factor,	 which	 means	 necessary	
requirements	 objects	 are	 not	 lacking	 specification.	

	 #	 Referent	 Indicator	
18	 RE	 Initial	 metrics	 Are	 all	 allocated	 higher-‐level	 requirements	 are	

addressed?	
19	 Completeness	 and	 Complexity	 of	

KAOS	 models	
Percentage	 of	 leaf	 goals/req	 that	 have	 an	 associated	
agent/actor.	

Source: (Costello & Liu, 1995; Espada et al., 2011)

Chapter 3. Proposal Methodology for KT measurement in SR 49

For correctness aspect Table 18, (Iqbal & Naeem Ahmed Khan, 2012; Mavin & Wilkinson,

2010) referents are selected, because others are business object dependent.

Table 18. Correctness indicators.

	 	 Correctness	 It	 is	 a	 quality	 factor	 which	 means	 how	 many	
requirements	 in	 requirement	 specification	 meet	
customer’s	 need	

	 #	 Referent	 Indicator	
20	 SRS	 Metrics	 Rc	 /Rt	 x	 100	

Rc	 =	 req	 having	 the	 same	 interpretation	
Rt	 =	 Tot	 req	 	
shoudl	 be	 >=	 80%	

21	 Big	 EARS	 Are	 all	 process	 consistent	 (knowledge	 holder-‐receipt)	
Source: (Iqbal & Naeem Ahmed Khan, 2012; Mavin & Wilkinson, 2010)

For maintainability aspect Table 19, there are 3 referent, but (Iqbal & Naeem Ahmed

Khan, 2012; Lam et al., 1999) referents are selected, because even when crosscutting

concerns (Conejero, Figueiredo, Garcia, Hernández, & Jurado, 2009) are an interesting

concept, there are no clear example about how to use it.

Table 19. Maintainability indicators.

	 	 Maintainability	 It	 is	 a	 quality	 factor	 witch	 means	 how	 requirements	
change	 and	 stabilize	 over	 the	 time.	

	 #	 Referent	 Indicator	
22	 Requirements	 modifiability	

management	
%	 Acceptance	 rate.	 The	 acceptance	 rate	 is	 the	 %	 of	
requirement	 changes	 accepted	 by	 the	 customer	 at	
delivery	 time	 within	 a	 given	 reporting	 period.	

23	 SRS	 Metrics	 %	 of	 the	 requirements	 changed	 during	 each	 phase	 of	
system	 development.	
Rch	 =	 total	 requirements	 to	 be	 changed	
Rc	 =	 total	 correct	 requirements	

Source: (Iqbal & Naeem Ahmed Khan, 2012; Lam et al., 1999)

For traceability aspect Table 20, there are 4 referents, but all of these just make
modifications reference to a initial source which is (Costello & Liu, 1995) RE Initial
metrics.

50 Knowledge Transfer measurement methodology for software requirements

Table 20. Traceability indicators.

	 	 Traceability	 Indicates	 degree	 to	 which	 development	 organization	
maintains	 accountability	 for	 meeting	 requirements	 at	
each	 stage	 of	 life	 cycle	 via	 a	 requirements	 traceability	
matrix	 (RTM).	 	 Provides	 quantitative	 means	 for	
determining	 whether	 all	 required	
relationships/dependencies	 are	 addressed.	

	 #	 Referent	 Indicator	
24	 RE	 Initial	 metrics	 	 #	 of	 req	 traced	 between	 spec,	 design	 and	 test	 /	 #	 of	 tot	

req	
25	 RE	 Initial	 metrics	 #	 of	 req	 in	 the	 RTM	 /	 #	 of	 req	

Source: (Costello & Liu, 1995)

For validability Table 21, there are only two referents.

Table 21. Validability indicators.

	 	 Validability	 The	 client	 must	 be	 able	 to	 confirm	 (validate)	 that	 the	
requirements	 effectively	 express	 the	 system	 that	
answers	 his	 or	 her	 needs.	

	 #	 Referent	 Indicator	
26	 Quality	 of	 textual	 requirements	 #	 of	 req	 versions	 (max	 2)	
27	 SRS	 Metrics	 #	 of	 req	 validated	 /	 #	 of	 req	

Source: (Génova et al., 2013; Iqbal & Naeem Ahmed Khan, 2012)

Effort aspect, Table 22, will not be considered because its more related with estimations
done over requirements than the SR process as well.

Table 22. Effort indicators.

	 	 Effort	 *	 	 	
	 #	 Referent	 Indicator	
28	 Maintainability	 NFUR	 Effort	 in	 Person	 Month	 =	 FP	 divided	 by	 no.	 of	 FP's	 per	

month.	
29	 Use	 Case	 complexity	 Number	 of	 Main	 and	 Alternative	 Scenario	

Source: (Al-Sarayreh et al., 2010; Yavari et al., 2011)

For the verifiability aspect Table 23, there are 4 referents, but only (Génova et al., 2013)
and (Iqbal & Naeem Ahmed Khan, 2012) are not tool or method dependent.

Chapter 3. Proposal Methodology for KT measurement in SR 51

Table 23. Verifiability indicators.

	 	 Verifiability	 The	 engineer	 must	 be	 able	 to	 check	 (verify)	 that	 the	
produced	 system	 meets	 the	 specified	 software.	

	 #	 Referent	 Indicator	
30	 Quality	 of	 textual	 requirements	 #	 req	 versions	 (max2)	 +	 #	 req	 dependencies	 (max	 9)	
31	 SRS	 Metrics	 #	 req	 verified	 ok	 /	 #	 req	 verified	

Source: (Génova et al., 2013) and (Iqbal & Naeem Ahmed Khan, 2012)

For volatility aspect Table 24, there are 3 referents, but (Costello & Liu, 1995; Lam et al.,
1999) is chosen because the other (Iqbal & Naeem Ahmed Khan, 2012) are based on the
first two.

Table 24. Volatility indicators.

	 	 Volatitlity	 Indicates	 changes	 (additions,	 deletions,	 modifications)	
and	 reasons	 for	 changes	 to	 requirements.	 	 Provides	
insight	 into	 system	 maturity	 and	 stability.	 	

	 #	 Referent	 Indicator	
32	 Requirements	 modifiability	

management	
#	 req	 modified,	 added	 and	 removed	 /	 #	 total	 req	

33	 RE	 Initial	 metrics	 #	 req	 defects,	 faults	 	 	 /	 #	 req	
Source: (Costello & Liu, 1995; Lam et al., 1999)

52 Knowledge Transfer measurement methodology for software requirements

Additionally we are going to define some others aspects to cover the first dimension of KT

(initiation), because there were no metrics found regarding with it.

The new aspects are related to factor F1 where the Initialization and Elicitation are

affected by the willingness to initiate transfer and propensity to share which are related to:

acknowledgement and attribution, disseminative capacity, interpersonal connection and

motivation of the source as shown in Table 25, likewise in Table 26 appears the proposed

questions to make the motivation measurement.

Table 25. Aspects proposed, Factor 1 Initialization and Elicitation.

Factor KT aspect SR proposed aspect

F1 Acknowledgement and

attribution.

Disseminative capacity.

Interpersonal connection.

Motivation of the source.

Propensity to share from

the knowledge holder.

Disseminative capacity from

the knowledge holder.

Requirements analyst

Interpersonal connection.

Acknowledgement and

attribution of the knowledge

holder.

Knowledge holder

motivation.

Proposal built based on (Schwartz, 2007; Szulanski, 1996, 2000) and the SWEBOOK v3.

Chapter 3. Proposal Methodology for KT measurement in SR 53

Table 26. Motivation indicators.

	 	 Motivation	 Incentive	 that	 encourage	 knowledge	 transfer.	 	
	 #	 Index	 Questions	
34	 Sharing	 motivation	 index	 I'm	 happy	 with	 my	 experience	 so	 I	 Want	 others	 to	

experience	 it?	 I	 want	 to	 share	 my	 great	 experience?	 I	
want	 to	 help	 with	 my	 positive	 experience?	 I	 want	 to	
save	 others	 from	 having	 same	 negative	 experience	 as	
me?	 I	 am	 unhappy	 with	 the	 current	 process	 the	
software	 is	 automating?	

35	 Propensity	 to	 share	 index	 I	 feel	 good	 when	 tell	 others	 about	 my	 success	 cases?	 I	
want	 to	 get	 rewarded	 for	 sharing	 my	 expertise?	 I	 like	
talking	 to	 people	 with	 similar	 interest?	

Questions based on (Roy, 2011)

3.2.3 Indicators refinement
Even when we already have an initial set of indicators, we still need to refine indicators in

spite of identify essential statements about organizations reality as follows: 1) which

software requirements phases are used in the organization? 2) Which KT aspects match

the SR process in the organization? And, 3) do the indicators fit the software

requirements process inside the organization? To do the refinement a kick off meeting

should be applied to a team involved in the software requirements process, within the

team people should be: software managers, team leaders, software requirements

analysts, developers and business knowledge holders if possible.

The kickoff meeting is suggested, because in such meetings team roles are discussed

and the model could be presented, so the three questions above can be debated too.

3.2.4 Data collection
On the one hand, the proposed method for data collection is a questionnaire, since is the

method used for most of the studies reviewed as state in Table 1. On the other hand,

even when this is an exploratory research to understand how KT happens in SR and this

way find how to measure it; a questionnaire is needed in order to get a quantitative insight

of KT measurement.

54 Knowledge Transfer measurement methodology for software requirements

Type of questionnaire: The questionnaire is type transversal (data will be collected in a

specific time).

Questionnaire elements: The questionnaire designed should have five components:

• The first a set of questions to characterize the respondents,

• A second about SR quality attributes,

• The third about SR relation with performance (process delay and software errors),

• A fourth to re test SR quality attributes,

• And the fifth is dedicated to knowledge transfer related questions.

Questionnaire items scale: The scale used in the first component is nominal (categorical

or discrete), in order to categorize respondents. The others components are Likert type,

because that way indicators defined in section 3.2.2 Initial Framework, and to favor

correlation analysis.

Target audience: People involved in software development, specially with SR. There is

no sampling, because generally, a software development teams are small, so all team

members will be considered.

The instrument: The instrument is built using answers taken from previous step, apply a

survey in order to gather indicators regarding people (e.g. people motivation) and apply

indicators over artifacts owners (e.g. SRS completeness). The survey should include

questions defined for each referent; as well as quantitative indicators should use

referent’s formulas defined in section 3.2.2 Initial Framework. The instrument analysis and

validity will be discussed in next sections.

Survey was build based on indicators above in section 3.2.2. Questions was grouped in

five groups as follows: 1) People who respond characteristics, in order to get the

perception among different roles in software development; 2) Basic Requirements quality

attributes: understandability related attributes (complexity, ambiguity, atomicity, precision),

completeness, traceability, correctness in order to get and insight in their influence over

the SRS compliance; 3) SR influence in project time delay and errors; 4) KT related

questions about motivation and willingness to knowledge sharing/transfer; and 5) Re test

Requirements quality attributes, focused in how changeability (due to understandability,

Chapter 3. Proposal Methodology for KT measurement in SR 55

abstraction) affects user validability (user acceptance). At the end, appears a question

about How could knowledge transfer in software requirements be improved? Just to figure

out respondent’s perception about KT in SR. Figure 12 depicts the survey structure.

The purpose is to search for correlation between each of the five groups, especially

against KT.

Figure 12. Survey Structure. Source: Self-elaboration.

Table 27 displays the questions and possible answers for each survey’s groups. For each

group of questions, Likert and numeric range answers were designed according section

3.2.4 an developed follows: for group 1 (people profile): numeric ranges; for group 2 (SR

Quality Attributes Test) and 5 (SR Quality attributes re Test), four level frequency options;

for group 3 (SR link with Delay and Errors) and 4 (Knowledge transfer), four level

agreement options.

4.	 KT	

2.	 SR	
Quality	

Aqributes	
Test	

3.	 SR	 link	
with	 Delay	
and	 Errors	 	

5.	 SR	
Quality	
Aqribues	
re	 Test	

1.	 People	
Profile	

56 Knowledge Transfer measurement methodology for software requirements

Table 27. List of questions for groups 1 to 5.

Group 1 (People
Profile)

Group 2 (SR Quality
Attributes Test)

Group 3 (SR link with
delay and Errors)

Group 4 (Knowledge
transfer)

Group 5 (SR Quality
attributes re Test)

Possible answers:
numeric ranges.

Possible answers: Four
level frequency options
(Always, Often, Some
Times, Never)

Possible answers: Four
level agreement options
(Totally Agree, Agree,
Partially Disagree, Totally
Disagree)

Possible answers: four
level agreement options
(Totally Agree, Agree,
Partially Disagree,
Totally Disagree)

Possible answers: Four
level frequency options
(Always, Often, Some
Times, Never)

What is your principal
rol at your organization
/ team work?

There is just one single
interpretation for each
requirement.

Requirements cause
delay or failures in
software projects.

I feel happy with my
experiences, so I want
others to know them.

Are correctly
understood, without
difficulty.

How many people
work in software
requirements at your
company?

Each requirement is
clearly determined and
identified, overlapping
among requirements.

Requirements may cause
a poor software quality
(stability, scalability,
completeness, etc.)

I want to share my huge
experience.

Are specified without
explain technical details
about implementation.

How many years
experience have the
people working with
requirements elicitation
at your organization?

Terms used in
requirements are
concrete and well
defined.

I want to help others
with my positives
experiences. Meets users needs.

How many actors,
extension points or
dependencies, does a
requirement have?

All requirements and
their dependencies are
specified.

I want to save others
from bad/negative
experiences I've had.

Stop changing over
time.

There are compliance
monitoring for
requirements, at every
stage in software life-
cycle.

I don't feel happy with
the software process,
which is currently done.

Change due to failures
or errors in their
specification.

Chapter 3. Proposal Methodology for KT measurement in SR 57

Users state that
requirements express
their needs effectively.

I feel good when talking
with others about my
successful experiences.

Change because of user
validations.

Software produced
fulfills requirements
specification.

I want to be rewarded
for sharing my
knowledge.

I like to talk with people
with common interests.

Source: Self-elaboration. Based on initial framework defined in 3.2.2.

58 Knowledge Transfer measurement methodology for software requirements

3.2.5 Data analysis
Reliability and validity tests over the data collection methods should be used.

Validity is concerned with the accuracy of our measurement, and it is often discussed in

the context of sample representativeness. However, validity is also affected by survey

design since it also depends on asking questions that measure what we are supposed to

be measuring (Mora, 2011; Walonick, 2012).

Reliability, on the other hand, is concerned with the consistency of our measurement,

that’s the degree to which the questions used in a survey elicit the same type of

information each time they are used under the same conditions.

Reliability is also related to internal consistency, which refers to the degree different

questions or statements measure the same characteristic. This can be tested by using

correlations, split sample comparisons or methods such as Cronbach's Alpha (Mora,

2011; Walonick, 2012).

According Walonick (2012) reliability is synonymous with repeatability. A measurement

that yields consistent results over time is said to be reliable. When a measurement is

prone to random error, it lacks reliability. The reliability of an instrument places an upper

limit on its validity. A measurement that lacks reliability will also lack validity. Three

methods to test reliability are suggested: test-retest, equivalent form, and internal

consistency.

3.2.6 Analysis of findings
Once survey analysis is done, its time to make a correlational analysis using linear

regression, it is supposed that the more the KT the best the SR. Additionally, make a

significance analysis using t-student distribution.

At the end ask team people involved in SR process, about the perception about the KT

SR methodology used.

Chapter 3. Proposal Methodology for KT measurement in SR 59

3.2.7 Proposal Methodology Feedback
The proposed methodology strengths and weaknesses should be detected by applying

the methodology to a case study, as well as the preliminary results for the indicators and

the general profile.

Results obtained for each proposed indicator, as well as the strengths and weaknesses

detected when applying the model, must became feedback to adjust the model. It’s

supposed that it would be iteratively applied until all the indicators and profiles were

refined (Sánchez-torres et al., 2009).

3.3 Chapter conclusion
This chapter was developed to achieve this thesis objective 3, design a proposal

methodology for KT measurement in SR.

Since there are a lot of indicators taken from the literature, only two indicators was

selected per analysis dimension in order to build the initial set of indicators. Those

indicators establish the initial framework that is going to be refined when conducting the

study case.

Some indicators were discarded because were more related with software requirements

specifications rather than software requirements process.

Survey’s data analysis was defined in order to grant certain measure of internal

consistency, and then correlational analysis was selected as the statistical tool for

indicators evaluation.

Figure 13 depicts the proposal methodology, where tree stages appears, the first one

comprises the instrument building, there appears the four elements defined (SRQ

software requirements quality attributes, SRE software requirements re test, KT

component and PP for people profiles), the second one is about the instrument indicators

refinement through a kickoff meeting, and the last one is the KT assessment through the

survey and the statistical tools.

60 Knowledge Transfer measurement methodology for software requirements

Figure 13. The proposal methodology.

Source: self-elaboration based on proposal methodology.

KickOf Meeting Survey + Feedback

IND REF

SRE
KT SRQ

PP

KT
assessment

Initial Framework
1. which software requirements phases are used in
the organization?; 2. Which KT aspects match the SR
process in the organization?; and 3. do the indicators
fit the software requirements process inside the
organization?

16 Indicators
4 dimensions

Likert
Mean Index
IC
Correlation

4. Study Case

This chapter presents how the study case was conducted and shows the obtained results

in addition to the proposal methodology feedback. Section 4.1 introduces the case,

afterward methodology was applied as defined in chapter 3; thereafter, the indicators

refinement is done in section 4.2, which was made using the initial framework defined in

section 3.2.2; then, the data collection was made in section 4.3 according to what was

defined in section 3.2.4; after that, data analysis was performed in section 4.4 following

the instructions given by section 3.2.5; next, the analysis of findings was achieved in

section 4.5.2.1 consistent with guidelines detailed in section 3.2.6; afterwards, the

proposal methodology feedback is presented in section 4.6 as said by section 3.2.7; and

finally section 4.7 shows this chapter conclusions.

Data collection and their respective analysis presented in this chapter serves as an

executive summary, data analysis was done using aggregated data, so, this chapter

doesn’t presents details about answers gathered and the full calculations used in the

analysis, the questionnaire details appears in Appendix A and B.

4.1 Case introduction
The case was developed at organization ABC (real name is reserved for privacy policies),

this organization is a holding which groups more than ten enterprises and have almost

fifty four million customers in Brazil, ABC organization is also present in nearly seventy

countries. ABC organization is dedicated to the humanitarian help, was founded in 1996

and currently has more than 1000 employees just in São Paulo.

The case will be focused at the fundraising process, which is done by the technology,

logistics and operations team who serves three ABC’s enterprises. The technology team

62 Knowledge Transfer measurement methodology for software requirements

is responsible for providing the software to run a fundraising of almost 40 million dollars

per year.

There are fifteen 15 people working at the tech team, but for this case are nine (9) people

the selected to participate, who are engineers and analysts, five (5) of them have more

than 10 years experience in software development.

4.2 Indicators refinement through Kickoff meeting
According to the methodology defined in chapter 3, an initial kickoff meeting was done, in

order to present the initial measurement indicators and discuss and answer the following

questions: 1. which software requirements phases are used in the organization?; 2. Which

KT aspects match the SR process in the organization?; and 3. do the indicators fit the

software requirements process inside the organization?

4.2.1 People involved in the kickoff meeting
They were 5 senior software engineers with more than 10 years experience, 3 of them are

responsible for core businesses requirements gathering, analysis and specification. The

remaining two are dedicated to software architecture and requirements validation. They

were also 4 full time dedicated analysts and developers.

4.2.2 The organization’s software requirements process
The question: which software requirements phases are used in the organization? was

discussed, and the whole agree that there exists an initial meeting with the knowledge

owner, were general goals are depicted, then functionalities are decanted and finally a

document is done. After the document is done, a verification phase exists to grant

technical viability, then, the specification is published in a collaboration site and assigned

to a developer.

So, it’s seen that classical 3 initial phases approach from SWEBOK v3 is followed, but

client/ business knowledge owner /stakeholder validation is not done.

Chapter 4. Study Case 63

Even when validation was done in somewhere between elicitation and specification, they

all agree that validation should be included as a final phase, and were noticed that lack of

validation already costs a five years failed project, after the five years the software did not

satisfy users/business real needs.

4.2.3 The KT aspects in the organization SR.
The four knowledge transfer stages defined in chapter 2 were presented. And they agree

that the 3 initial stages are done, but disagree about stage 4 integration, because they

argue that there is no need for knowledge receipt to apply the knowledge gathered, rather

than be able to explain and/or code it. Nevertheless was explained that KT integration, in

software requirements doesn’t mean apply the knowledge learnt, rather than specify and

verify it.

4.2.4 The framework defined
Since there does not exist any measurement for requirements, the team agree in apply

the full initial set of indicators, even when the validation stage does not exists as well in

the current SR process, but, it is embedded in the specification stage.

4.3 Data Collection
An online survey was designed and published using Google forms. The survey has 5

groups of questions as Figure 12 states. The instrument was applied as defined in section

3.2.4. The survey was applied to the same group of people interviewed at the kickoff

meeting. Responses gathered appears in appendix A.

4.4 Data analysis
First of all, for each measure a numeric weight was defined, then Cronbach’s alphas were

calculated, next an index for each group was defined and based on such indexes

correlation analysis was performed.

64 Knowledge Transfer measurement methodology for software requirements

4.4.1 Measures and Weights normalization
The normalization done was linear; each item in the survey receives the same weight.

Table 28 shows the measures normalization done for this survey.

Table 28. Survey Measures and Weights.

Numeric Range Measure Weight defined
Less than 3. 1
From 3 to 5. 2
From 6 to 10. 3
More than 10. 4
Frequency Measure Weight
Never 1
Some times 2
Often 3
Always 4
Agreement Meausure Weight
Totally disagree 1
Partially disagree 2
Agree 3
Totally agree 4

Source: self-elaborated.

4.4.2 Internal consistency
On the one hand, alphas gathered show that there is an acceptable internal consistency

for every group except the group 3. Even when the alpha is almost 0.8, the second

questions about software quality have a big deviation, so there is no clear consensus

about the implications of requirements per se in software quality, it seem that people

surveyed agree that is more about the process than requirements who affect software

quality. On the other hand there is a great consistency for KT related questions in the

survey, that’s very interesting and one could make an initial forecast saying that there is a

strong KT influence in SR.

In table Table 29 appears the Cronbach’s alpha for internal validation purposes, it’s

noticed that for group 1 there is no alpha calculations due to we expect high variability in

those answers. Annex 0 shows the full set of answers gathered.

Chapter 4. Study Case 65

Table 29. Cronbach’s Alpha for groups 2 to 5.

Group Cronbach’s Alpha
2. Requirements quality. 0.842975207
3. SR and time delay/errors. 0.786885246
4. KT elements 0.93407639
5. Requirements quality re test. 0.833333333

Source: Self-elaborated.

4.5 Resume of findings.
This section displays aggregated information in order to explain major implications found.

To do that, all responses have been summarized in their correspondent groups of

questions, according what was presented in section 3.2.4. Based on data from those

groups of questions, correlational analysis is performed. This results are organized as

follows, first the principal disaggregated findings appears in section 4.5.1, there, each

indicator findings is depicted, then, in section 4.5.2, aggregated findings are explained,

here, group of indicators findings are presented.

4.5.1 Indicator’s findings
From data gathered, next, appear fundamentals findings organized by group of questions.

The first one is SR Quality (questions 5 to 11), in Figure 14, appears interesting

correlations. On the one hand Its seen that complexity, ambiguity and atomicity reach

similar values, and that impacts completeness, and traceability, what makes sense, since

poor handled complexity, ambiguity and atomicity, leads to hardness completeness and

traceability for SR. On the other hand its see that precision indicator have similar values

with correctness, what could be related with the SRS compliance, but, due to lower values

in other indicators, its seen that SRS is accomplished but with overruns.

66 Knowledge Transfer measurement methodology for software requirements

Figure 14. SR Quality Indicators results.

Source: Self elaborated based on data gathered.

Continuing with second (questions 12-13, indicators about SR and time/delay errors aka

KT ERR and indicators about SR poor specification aka KT QOS) and third group of

indicators (questions 14 -21, indicators about KT) Figure 15 depicts results found out

about requirements influence in project errors and delays, along with KT. There appears

that requirements per se does not influence project errors or delays, overruns are more

correlated with the first group of indicators at Figure 14. But, an interesting finding, as can

be seen in figure below, is that the more KT the less SR errors and delays.

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

Complexity" Ambiguity" Atomicity" Precision" Completeness" Traceability" Correcteness" SRS"Compilance"
Overruns"

Av
er
ag
e'
va
lu
e'

Indicator'

SR'Quality'

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

KT"ERR" KT"QOS" KT"

Av
er
ag
e'v

alu
e'

Indicator'

SR'Error'and'KT'

Chapter 4. Study Case 67

Figure 15. SR Error and KT indicators values.
Source: Self elaborated based on data gathered.

Last group of indicators (questions 22 – 27, indicators about understandability,

abstraction, validability, maintainability as “changeability over time” and volatility, due to

errors and due to user validations) values are depicted by Figure 16, there can be

appreciated that no matters the good abstraction and validability requirements does not

stop changing over time, and if requirements change over time is due to user validations.

Figure 16. SR Re test indicators values.
Source: Self elaborated based on data gathered.

4.5.2 Group of indicator’s findings
Once all the answers were normalized according 4.4.1, it was possible to calculate the

average value (arithmetic mean) for all respondents’ answers, in each questions group.

The resulting value was rounded, so there are no decimal points. These results are

displayed in Table 30. The mean values for each group will be used to make correlational

analysis between the groups. Each value in Table 30 represents the arithmetic mean

value, for one respondent, in each group of questions.

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

Understandability" Abstrac6on" Validability" Changeability"over"6me" Changeability"due"to"errors" Changeability"due"to"user"
valida6ons"

Av
er
ag
e'
va
lu
e'

Indicator'

SR'Re'test'

68 Knowledge Transfer measurement methodology for software requirements

Table 30. Respondent answer’s mean values for each group of questions.

Group 2
Requirements

Quality

Group 3
Requirement
influence in
time/quality

Group 4
KT/KS

Group 5
Requirement quality

re test

2 2 3 3
3 2 3 2
2 3 3 2
2 2 3 2
4 4 4 4
2 2 3 3
3 1 4 3
2 1 3 2
3 3 3 3
4 1 3 3
4 4 4 4

Source: Self-elaborated based on data gathered.

Given the means above, Pearson’s correlation index was used to see relationships

between each groups, Table 31 depicts the index calculations.

Table 31. Pearson’s index between groups 2 to 5.

Correlation between groups Pearson’s correlation index
2 and 5 0.706699344
2 and 4 0.623609564
2 and 3 0.367597513

5 and 3 0.548556999
5 and 4 0.725866186
4 and 3 0.42320737

Source: Self-elaborated based on data gathered.

4.5.2.1 Analysis of findings
This section will be focused in correlational analysis between groups defined above, and

based on information from table Table 31. There is a general observation, due to there

are few levels for the answers the correlation index is too sensitive, generally a correlation

over 0.5 could be used with caution, meanwhile a correlation above 0.7 is said to be a

strong relationship evidence.

Chapter 4. Study Case 69

4.5.2.2 Correlation between SR quality attributes
The purpose of this calculation is to serve as a consistent index for answers about SR

quality attributes, since group 2 and 5 asks almost about the same. There was just a little

change on understandability and changeability SR properties.

4.5.2.3 Correlation between SR quality attributes and KT
Stronger relationships (above 0.7) are found between SR and KT, this can indicate that

the more KT intensive process, the better SR process done.

The mean for group 4 (KT) is about 3.27 it indicates that KT is performed in a quite good

level at organization ABC.

4.5.2.4 Requirements influence in time/quality lack of
correlation

According to data gathered it seems that requirements per se doesn’t influences the

software project time or software quality. Was found that SR is not totally related with

delay or errors in software projects. 8 of 10 of respondents disagree that SR per se at a

cause for software projects delays and errors. This is correlated with understandability

and validability, which occurs some times, giving room for new validation to be done

causing delay and failures until final requirement is refined and implemented. This detail

could be seen in Annex A, at section Req influence in time/quality.

4.6 Proposal Methodology feedback

Regarding the instrument respondents says: “Our process dictates a "knowledge transfer

project" that is managed. This ensures that new person is fully aware of the processes

involved, the tools involved and the standards involved. Items such as naming

convention, abbreviations en terminology is also addressed. On the other side such

transfers programs sometimes highlight shortfalls in a project that can be used to correct

the missing or erroneous steps”.

“Allow time for it (KT); often, in an agile environment, the sprint goals seem too high level,

so the user stories (which act as the requirements) are incomplete, or superficial”.

70 Knowledge Transfer measurement methodology for software requirements

Most respondents says that motivation from the source and receipt were fundamental

(41.67%) meanwhile other factors are divided as shown in Table 32. That was a surprise

since motivation could sound obvious, and the same way the usage of a methodology.

Table 32. Respondents responsiveness about KT in SR.

How KT improve SR Percentage of answers
Abstraction. 16.67%
Methodology. 16.67%
Motivation. 41.67%
Time access availability. 16.67%
Understandability. 8.33%

Source: Self-elaborated based on data gathered.

Regarding the process, respondents states that a method for requirements gathering

should be mentioned and encourage for user availability.

Regarding the dimensions and aspects there were no feedback, maybe because

SWEBOKv3 is extensive in mentioning SR stages.

Its encouraged that further correlational analysis should include ANOVA and t-test to

complement the Pearson’s index.

4.7 Chapter conclusion
This chapter attain this thesis objective 4, methodology testing, since application of the

methodology was done; survey was constructed and executed based on framework

defined and kickoff indicators refinement.

Internal consistency and correlational indicators were calculated. According to data

gathered KT is correlated with SR.

Chapter 4. Study Case 71

According to data gathered it seems that requirements per se does not influences the

software project time or software quality.

Motivation resulted as the most influence factor for SR performance, and curiously is

done at the beginning of the KT process, and is not mentioned in classic SR

methodologies.

5. Conclusions and recommendations

5.1 Research definition and research overview
A literature review was conducted in order to establish what is known about the process

of knowledge transfer inside the software requirements stages. The literature review

results in a lack of measurement tools and methodologies for software requirements and

almost none for knowledge transfer.

In the existent literature about KT in software engineering, the principal focus has been:

• KT among software development multinationals.

• KT within projects in the organizations.

• KT between people within an organization.

• KT inside development teams, using agile models

Indicators for KT-SR measurement where gathered, classified and analyzed from the KT

perspective. In order to do that, SR four stages (elicitation, specification, analysis and

validation) were mapped against KT four stages (initialization, implementation, ramp-up,

integration).

Even where there were more than 130 indicators defined, there was a KT stage who

remained without indicators, such stage was the first (initialization), so, indicators were

defined for it. Thus, the full indicators framework was completed.

A methodology for KT measurement was build based on framework defined, such

methodology includes a data gathering specification with a plan including statistical tools

for data analysis.

Chapter 5. Conclusions and recommendations 73

Motivation resulted as the most influence factor for SR performance, and curiously is

done at the beginning of the KT process, and is not mentioned in classic SR

methodologies.

KT for SR is quite different from classical approach to KT, because transfer of a full body

of knowledge is not intended, instead of that, needs who relate with some business

knowledge are transferred.

Since KT for SR is a special case, classical metrics used for knowledge transfer should

not be applied. For instance, metrics oriented to intellectual capital, number of people

trained does not make sense for any SR stage.

From the Study Case data, it could be inferred that KT is correlated with SR quality.

The mapping between SR and KT, serve as an approximation of KT measurement

because shows how SR take place in each KT dimension and which factors influence

each match.

Measure KT is a problem, because not exist any clear model that allow a quantitative

and/or qualitative approximation to KT, until now.

5.2 Contributions to the body of knowledge
Two publications were done at the time this thesis was written. The first comprehends the

state of the art (CAMACHO, SANCHEZ-TORRES, & GALVIS-LISTA, 2013) and the

second was about the KT-SR mapping done (CAMACHO, SANCHEZ-TORRES, &

GALVIS-LISTA, 2014).

5.3 Experimentation, Evaluation and Limitations.
A study case was performed in order to test the methodology proposed. A kickoff meeting

was performed in order to choose indicators which best fits organization process. Next, a

74 Knowledge Transfer measurement methodology for software requirements

survey was constructed based on indicators defined. Internal consistency was verified

using Cronbach’s alpha.

Data gathered was summarized in order to make correlational analysis using Pearson’s

coefficient.

Likert scale used could be a limitation due to we used just 4 level indicators, and maybe

using 6 levels would result in more precise estimations. Likewise, another limitation is

related with correlation, Spearman’s rank or Kendall tau rank could be used in order to

compare results.

	

5.4 Future work and research
Further work includes extending the survey to more people in order to compare results.

Next, include other software engineering process for KT consideration and measurement.

After that, a case tool in a wireframe like tool would be useful. Then, include other

software engineering process for KT consideration and measurement.

Finally, a case tool in a wireframe like tool would be useful.

Bibliography
Abdullah, S., Selamat, M. H., Cob, Z. C., & Sazaly, U. S. (2011). A measurement

framework for knowledge transfer in e-learning environment. Information Technology
Journal, 10(5), 927–943. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
79955923599&partnerID=40&md5=13c9b1714dd6ee7cf62ea42f7affa0e8

Abran, A. ., Al-Sarayreh, K. T. ., & Cuadrado-Gallego, J. J. . (2010). Measurement model
of software requirements derived from system maintainability requirements. In SEKE
2010 - Proceedings of the 22nd International Conference on Software Engineering
and Knowledge Engineering (pp. 153–158). Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
79952415890&partnerID=40&md5=d69497ee8001b0a4996030155c5bf220

Al-Sarayreh, K. T., Abran, A., & Santillo, L. (2010). Measurement of software
requirements derived from system reliability requirements. In 24th European
Conference on Object-Oriented Programming, ECOOP 2010 Workshop Proceedings
- Workshop 1: Workshop on Advances in Functional Size Measurement and Effort
Estimation, FSM’10. Retrieved from http://www.scopus.com/inward/record.url?eid=2-
s2.0-79952391273&partnerID=40&md5=cc1a29ecc934bd348092a2ff931630eb

Alavi, M., & E. Leidner, D. (2001). Review: Knowledge Management and Knowledge
Management Systems: Conceptual Foundations and Research Issues. MIS
Quarterly: Management Information Systems, 25(1), 107–136.

Albino, V. . b, Claudio Garavelli, A. . b c, & Schiuma, G. . c d e. (1998). Knowledge
transfer and inter-firm relationships in industrial districts: The role of the leader firm.
Technovation, 19(1), 53–63. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
0032786142&partnerID=40&md5=a9b6d6745539386e1cb7b9215015a3bd

Albino, V., Garavelli, A. C., & Gorgoglione, M. (2004). Organization and technology in
knowledge transfer. Benchmarking, 11(6), 584–600. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
23744512384&partnerID=40&md5=d222edacdb209fa33b53cefbff581e32

Ambos, T. C., & Ambos, B. (2009). The impact of distance on knowledge transfer
effectiveness in multinational corporations. Journal of International Management,
15(1), 1–14. doi:10.1016/j.intman.2008.02.002

76 Knowledge Transfer measurement methodology for software requirements

Argote, L., & Ingram, P. (2000). Knowledge Transfer: A Basis for Competitive Advantage

in Firms. Organizational Behavior and Human Decision Processes, 82(1), 150–169.
doi:10.1006/obhd.2000.2893

Aurum A., D. F. W. J. (2008). Investigating Knowledge Management practices in software
development organisations - An Australian experience. Information and Software
Technology, 50(6), 511–533. doi:10.1016/j.infsof.2007.05.005

Avison, D., & Fitzgerald, G. (2006). Information Systems Development. (MCGraw-Hill.,
Ed.) (4th ed.). Berkshire: MCGraw-Hill.

Awad, M. A. (2005). A comparison between agile and traditional software development
methodologies.

Banerjee, S. ., Sarkar, A. ., & Debnath, N. C. . (2013). Quality evaluation of requirement
engineering framework: Business object based approach. In 2013 International
Conference on Computing, Management and Telecommunications, ComManTel
2013 (pp. 374–379). Retrieved from http://www.scopus.com/inward/record.url?eid=2-
s2.0-84875935074&partnerID=40&md5=5b2f28170e36a72f322df2bddc69ba98

Baruch Y.a Lin, C.-P. . (n.d.). All for one, one for all: Coopetition and virtual team
performance. Technological Forecasting and Social Change.
doi:10.1016/j.techfore.2012.01.008

Bjørnson F.O.a Dingsøyr, T. . (2005). A study of a mentoring program for knowledge
transfer in a small software consultancy company. In K.-S. S. Bomarius F. (Ed.),
Lecture Notes in Computer Science (Vol. 3547, pp. 245–256). Oulu. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
26444432231&partnerID=40&md5=0f6d99abd885a4e5e53f67f2d62d46f7

Boden, A., Avram, G., Bannon, L., & Wulf, V. (2009). Knowledge Management in
Distributed Software Development Teams - Does Culture Matter? In Global Software
Engineering, 2009. ICGSE 2009. Fourth IEEE International Conference on (pp. 18–
27). doi:10.1109/ICGSE.2009.10

Borgatti, S. P., & Cross, R. (2003). A Relational View of Information Seeking and Learning
in Social Networks. Management Science, 49(4), 432–445.

CAMACHO, J. J., SANCHEZ-TORRES, J. M., & GALVIS-LISTA, E. (2013).
Understanding the Process of Knowledge Transfer in Software Engineering  : a
Systematic Literature Review. The International Journal of Soft Computing and
Software Engineering, 3(3), 219–229. doi:10.7321/jscse.v3.n3.33

CAMACHO, J. J., SANCHEZ-TORRES, J. M., & GALVIS-LISTA, E. (2014). TOWARDS A
KNOWLEDGE TRANSFER MEASUREMENT FOR SOFTWARE. In International
Conference on Information and Knowledge Engineering. Las Vegas, NV. Retrieved
from http://www.ucmss.com/cr/main/papersNew/papersAll/IKE3196.pdf

Carayannis, E. G. (1999). Knowledge transfer through technological hyperlearning in five
industries. Technovation, 19(3), 141–161.

Bibliography 77

Cares, C. ., & Franch, X. . (2009). Towards a framework for improving goal-oriented

requirement models quality. In Proceedings of the 12th Workshop on Requirements
Engineering, WER 2009 (pp. 3–14). Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84870402901&partnerID=40&md5=2ea6095d0cc579cff89a57d08dae9ebf

Chakraborty, S. ., Sarker, S. ., & Sarker, S. . (2010). An Exploration into the Process of
Requirements. Journal of the Association of Information Systems, 11(4), 212–249.
Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
77953090447&partnerID=40&md5=b5cf9913af4f28ed28a410b5eb088d07

Chau, T., Maurer, F., & Melnik, G. (2003). Knowledge sharing: agile methods vs.
Tayloristic methods. In Enabling Technologies: Infrastructure for Collaborative
Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE International
Workshops on (pp. 302–307). doi:10.1109/ENABL.2003.1231427

Chen, C.-J. ., Shih, H.-A. ., & Yang, S.-Y. . (2009). The role of intellectual capital in
knowledge transfer. IEEE Transactions on Engineering Management, 56(3), 402–
411. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
68249134122&partnerID=40&md5=cbd27dcc878d53c33281b70e06d82c99

Chen C.-J.a Shih, H.-A. . Y. S.-Y. . (2009). The role of intellectual capital in knowledge
transfer. IEEE Transactions on Engineering Management, 56(3), 402–411.
doi:10.1109/TEM.2009.2023086

Chen, J.-S., & Lovvorn, A. S. (2011). The speed of knowledge transfer within multinational
enterprises: the role of social capital. International Journal of Commerce and
Management, 21(1), 46–62. doi:10.1108/10569211111111694

Chen, Y.-J., Chen, Y.-M., & Chu, H.-C. (2008). Enabling collaborative product design
through distributed engineering knowledge management. Computers in Industry,
59(4), 395–409. doi:10.1016/j.compind.2007.10.001

Conejero, J. M. ., Figueiredo, E. ., Garcia, A. ., Hernández, J. ., & Jurado, E. . (2009).
Early crosscutting metrics as predictors of software instability. Lecture Notes in
Business Information Processing, 33 LNBIP, 136–156. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
68949092270&partnerID=40&md5=84ab1a4c676b75d1b64d6242507b01eb

Conejero, J. M. ., Figueiredo, E. ., Garcia, A. ., Hernández, J. ., & Jurado, E. . (2012). On
the relationship of concern metrics and requirements maintainability. Information and
Software Technology, 54(2), 212–238. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
81055140252&partnerID=40&md5=e93e4f19b29b4ca0b8d95616d915b154

Conradi, R. ., & Dybå, T. . (2001). An empirical study on the utility of formal routines to
transfer knowledge and experience. In Proceedings of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (pp. 268–276). Retrieved
from http://www.scopus.com/inward/record.url?eid=2-s2.0-
0035783712&partnerID=40&md5=bf52e51afcd637274470b62049763bf3

78 Knowledge Transfer measurement methodology for software requirements

Costello, R. J. ., & Liu, D.-B. . (1995). Metrics for requirements engineering. The Journal

of Systems and Software, 29(1), 39–63. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
0029292275&partnerID=40&md5=c1b9ebd7feb40e7ed8f7ab3d06c7f26a

Crowne, K. A. (2009). Enhancing knowledge transfer during and after international
assignments. Journal of Knowledge Management, 13(4), 134–147. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
70349671323&partnerID=40&md5=f5dc859b91cd44ccf5a12169f5744517

Damian D., M. S. K. I. (2007). Collaboration patterns and the impact of distance on
awareness in requirements-centred social networks. In Proceedings - 15th IEEE
International Requirements Engineering Conference, RE 2007 (pp. 59–68). New
Delhi. doi:10.1109/RE.2007.14

Damian, D., Marczak, S., & Kwan, I. (2007). Collaboration Patterns and the Impact of
Distance on Awareness in Requirements-Centred Social Networks. In Requirements
Engineering Conference, 2007. RE ’07. 15th IEEE International (pp. 59–68).
doi:10.1109/RE.2007.51

Dan, Z., Zhenqiang, B., Kaizhou, G., & Lei, G. (2008). Study on the Efficiency of
Knowledge Transfer Based on Knowledge Transfer Scenario. In Computer Science
and Software Engineering, 2008 International Conference on (Vol. 5, pp. 308–311).
doi:10.1109/CSSE.2008.199

Davenport, B. T. H., Prusak, L., & Webber, A. (1998). Working Knowledge  : How
Organizations Manage What They Know. Harvard Business School Press, 1–15.

Desmarais, L. ., Parent, R. ., Leclerc, L. ., Raymond, L. ., Mackinnon, S. ., & Vézina, N. .
(2009). Knowledge transfer between two geographically distant action research
teams. Journal of Workplace Learning, 21(3), 219–239. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
69949095114&partnerID=40&md5=7ce49a167753cd78d237e8f13c49f1d9

Dingsøyr, T., Bjørnson, F. O., & Shull, F. (2009). What Do We Know about Knowledge
Management? Practical Implications for Software Engineering. IEEE Software, 26(3),
100–103.

Duan, Y., Nie, W., & Coakes, E. (2010). Identifying key factors affecting transnational
knowledge transfer. Information & Management, 47(7-8), 356–363.
doi:10.1016/j.im.2010.08.003

Espada, P., Goulão, M., & Araújo, J. (2011). Measuring complexity and completeness of
KAOS goal models. In Proceedings - 1st International Workshop on Empirical
Requirements Engineering, EmpiRE 2011 (pp. 29–32). Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
80455150297&partnerID=40&md5=cb769d655d52fb6c6f460ba8f8c66854

Farenhorst, R., & Vliet, H. Van. (2009). Understanding How to Support Architects in
Sharing Knowledge. In SHARK’09 (pp. 17–24).

Bibliography 79

Formentini, M., & Romano, P. (2011). Using value analysis to support knowledge transfer

in the multi-project setting. International Journal of Production Economics, 131(2),
545–560. doi:10.1016/j.ijpe.2011.01.023

Garavelli, C., Gorgoglione, M., & Scozzi, B. (2002). Managing knowledge transfer by
knowledge technologies. Technovation, 22, 269–279.

Gardner, P. L. ., Fong, A. Y. ., & Huang, R. L. . (2010). Measuring the impact of
knowledge transfer from public research organisations: A comparison of metrics
used around the world. International Journal of Learning and Intellectual Capital, 7(3-
4), 318–327. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
77955183838&partnerID=40&md5=3ace06cf7f3cdc4c62d6243124739ca8

Gardoni, M., Frank, C., & Vernadat, F. (2005). Knowledge capitalisation based on textual
and graphical semi-structured and non-structured information: case study in an
industrial research centre at EADS. Computers in Industry, 56(1), 55–69.
doi:10.1016/j.compind.2004.09.001

Génova, G. ., Fuentes, J. M. ., Llorens, J. ., Hurtado, O. ., & Moreno, V. . (2013). A
framework to measure and improve the quality of textual requirements.
Requirements Engineering, 18(1), 25–41. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84874008264&partnerID=40&md5=05f27226b585872a2da73d060c8c59a8

Goh, D. H.-L., Chua, A. Y.-K., Luyt, B., & Lee, C. S. (2008). Knowledge access, creation
and transfer in e-government portals. Online Information Review, 32(3), 348–369.
Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
46249087586&partnerID=40&md5=6e4055f8071d4d2f7ddf55131d42d08e

Gorschek, T. ., & Davis, A. M. . (2008). Requirements engineering: In search of the
dependent variables. Information and Software Technology, 50(1-2), 67–75.
Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
36549080013&partnerID=40&md5=41e499461f677b895b241f1db31d7a10

Gosain, S. (2007). Mobilizing software expertise in personal knowledge exchanges☆.
The Journal of Strategic Information Systems, 16(3), 254–277.
doi:10.1016/j.jsis.2007.02.001

Hagge L., L. K. (2005). Sharing requirements engineering experience using patterns.
IEEE Software, 22(1), 24–31. doi:10.1109/MS.2005.17

Hagge, L., & Lappe, K. (2004). Patterns for the RE process. In Proceedings of the IEEE
International Conference on Requirements Engineering (pp. 90–99). Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
17044370455&partnerID=40&md5=9bb4caa634674af1a81e5b5eb40a7676

Hagge, L., & Lappe, K. (2005). Sharing requirements engineering experience using
patterns. Software, IEEE, 22(1), 24–31. doi:10.1109/MS.2005.17

80 Knowledge Transfer measurement methodology for software requirements

Hanakawa, N. ., & Obana, M. . (2012). A metrics for meeting quality on a software

requirement acquisition phase. Lecture Notes in Computer Science (including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 7343 LNCS, 260–274. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84862205400&partnerID=40&md5=335bc8ca1d65053e8119eb1db8a5f622

Havlice, Z., Kunstar, J., Adamuscinova, I., & Plocica, O. (2009). Knowledge in software
life cycle. 2009 7th International Symposium on Applied Machine Intelligence and
Informatics, 153–157. doi:10.1109/SAMI.2009.4956628

Holtsnider, B., Wheeler, T., Stragand, G., & Gee, J. (2010). Agile Development and
Business Goals. In Agile Development and Business Goal. (pp. 11–29). Elsevier.
doi:10.1016/B978-0-12-381520-0.00002-3

Hongmei, Q. ., & Huidong, W. . (2008). An empirical research on the influence of
knowledge customization degree to knowledge transfer performance. In 2008
International Conference on Wireless Communications, Networking and Mobile
Computing, WiCOM 2008. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
58049124024&partnerID=40&md5=2bd6f466aca4043620f0d3fa441ceb8c

Inkpen, A. C., & K. Tsang, E. W. (2005). SOCIAL CAPITAL , NETWORKS , AND
KNOWLEDGE TRANSFER. Academy of Management Review, 30(1), 146–165.

Iqbal, S., & Naeem Ahmed Khan, M. (2012). Yet another set of requirement metrics for
software projects. International Journal of Software Engineering and Its Applications,
6(1), 19–28. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
84859841094&partnerID=40&md5=57001fb5e4aeba4d3ec1a54266f04600

Jasimuddin, S. M. (2007). Exploring knowledge transfer mechanisms: The case of a UK-
based group within a high-tech global corporation. International Journal of
Information Management, 27(4), 294–300. doi:10.1016/j.ijinfomgt.2007.03.003

Jasimuddin, S. M. ., Connell, N. ., & Klein, J. H. . (2012). Knowledge transfer frameworks:
An extension incorporating knowledge repositories and knowledge administration.
Information Systems Journal, 22(3), 195–209. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84860227089&partnerID=40&md5=3809fb284d746c02e6dd876b334f6065

Jørgensen, M., & Moløkken-Østvold, K. (2006). How large are software cost overruns? A
review of the 1994 CHAOS report. Information and Software Technology, 48(4),
297–301. doi:10.1016/j.infsof.2005.07.002

Karlsen, J. T., Hagman, L., & Pedersen, T. (2011). Intra-project transfer of knowledge in
information systems development firms. Journal of Systems and Information
Technology, 13(1), 66–80. doi:10.1108/13287261111118359

Kedian, M. ., Zhi, J. ., & Didar, Z. . (2008). A Measurement-Driven process model for
managing inconsistent software requirements. Neonatal, Paediatric and Child Health

Bibliography 81

Nursing, 291–298. Retrieved from http://www.scopus.com/inward/record.url?eid=2-
s2.0-60849130711&partnerID=40&md5=e7c5d2804c80cbf8facd438a9169945b

Khan, H., Ahmad, A., & Alnuem, M. A. (2012). Knowledge Management  : A Solution to
Requirements Understanding in Global Software Engineering. Research Journal of
Applied Sciences, Engineering and Technology, 4(14), 2087–2099.

Kitchenham, B. A. (2007). Guidelines for performing Systematic Literature Reviews in
Software Engineering.

Kjærgaard, A., Nielsen, P. A., & Kautz, K. (2010). Making Sense of Software Project
Management A case of knowledge sharing in software development. Scandinavian
Journal of Information Systems, 22(1), 3–26.

Klendauer, R. ., Berkovich, M. ., Gelvin, R. ., Leimeister, J. M. ., & Krcmar, H. . (2012).
Towards a competency model for requirements analysts. Information Systems
Journal, 22(6), 475–503. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84867741373&partnerID=40&md5=8566c55b2eb285a82ed5468e406432df

Ko, D.-G. ., Kirsch, L. J. ., & King, W. R. . (2005). Antecedents of knowledge transfer from
consultants to clients in enterprise system implementations. MIS Quarterly:
Management Information Systems, 29(1), 59–85. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
33645514045&partnerID=40&md5=be2091196e98a50b0d1bf04f11c2cd9e

Koskinen, K. U., Pihlanto, P., & Vanharanta, H. (2003). Tacit knowledge acquisition and
sharing in a project work context. International Journal of Project Management,
21(4), 281–290. doi:10.1016/S0263-7863(02)00030-3

Krogh, G. Von. (2003). Understanding the problem of knowledge sharing. International
Journal of Information Technology and Management, 2(3), 173–183.

Krogh, G. Von, Nonaka, I., & Aben, M. (2001). Making the Most of Your Company ’ s
Knowledge  : A Strategic Framework. Long Range Planning, 34, 421–439.

Kuk, G. (2006). Strategic interaction and knowledge sharing in the KDE developer mailing
list. Management Science, 52(7), 1031–1042. doi:10.1287/mnsc.1060.0551

Kumar, J. A., & Ganesh, L. S. (2009). Research on knowledge transfer in organizations: a
morphology. Journal of Knowledge Management, 13(4), 161–174.
doi:10.1108/13673270910971905

Kyaw P., B. C. R. S. (2003). A design recording framework to facilitate knowledge sharing
in collaborative software engineering. In C. W. Chu W. (Ed.), Proceedings of the
IASTED International Conference on Information and Knowledge Sharing (pp. 24–
32). Scottdale, AZ. Retrieved from http://www.scopus.com/inward/record.url?eid=2-
s2.0-1542538740&partnerID=40&md5=db79651451a6ecbe0c7c71235cc026ba

82 Knowledge Transfer measurement methodology for software requirements

Lam, W., Loomes, M., & Shankararaman, V. (1999). Managing requirements change

using metrics and action planning. In Proceedings of the Euromicro Conference on
Software Maintenance and Reengineering, CSMR (pp. 122–128). Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
0032665479&partnerID=40&md5=8fdd8a9a630271c6a8dcf4a9629f875a

Larman, C., & Basili, V. R. (2003). Iterative and Incremental Development  : A brief
History. Computer, 36(6), 47–56.

Lee, S. B., & Shiva, S. G. (2009). A Novel Approach to Knowledge Sharing in Software
Systems Engineering. In Global Software Engineering, 2009. ICGSE 2009. Fourth
IEEE International Conference on (pp. 376–381). doi:10.1109/ICGSE.2009.59

Levine, D. I., & Gilbert, A. (1998). Knowledge Transfer: Managerial Practices Underlying
One Piece of the Learning Organization. Berkeley: Center for Organization and
Human Resource Effectiveness.

Li J.a Moe, N. B. . D. T. . (2010). Transition from a plan-driven process to Scrum - A
longitudinal case study on software quality. In ESEM 2010 - Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement. Bolzano-Bozen. doi:10.1145/1852786.1852804

Liebowitz, J., & Suen, C. Y. (2000). Developing knowledge management metrics for
measuring intellectual capital. Journal of Intellectual Capital, 1(1).

Marshall, N., & Brady, T. (2001). Knowledge management and the politics of knowledge:
illustrations from complex products and systems. European Journal of Information
Systems, 10(2), 99–112. doi:10.1057/palgrave.ejis.3000398

Mavin, A., & Wilkinson, P. (2010). BIG EARS (The return of “Easy Approach to
Requirements Syntax”). In Proceedings of the 2010 18th IEEE International
Requirements Engineering Conference, RE2010 (pp. 277–282). Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
78650371993&partnerID=40&md5=7bb08d508448f3bcd72022ee850377ee

McGee, S., & Greer, D. (2012). Towards an understanding of the causes and effects of
software requirements change: Two case studies. Requirements Engineering, 17(2),
133–155. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
84861702910&partnerID=40&md5=4e836a0dd3ea3a7b913299beb7fcc161

Mei, Y., Wang, Z., & Cao, Z. (2011). Performance evaluation model of knowledge
transfer. In 2011 2nd International Conference on Artificial Intelligence, Management
Science and Electronic Commerce, AIMSEC 2011 - Proceedings (pp. 5677–5681).
Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
80053232753&partnerID=40&md5=b12ea03396076c708e1cb86a6419c06d

Mestad, A., Myrdal, R., Dingsoyr, T., & Dyba, T. (2007). Building a Learning Organization:
Three Phases of Communities of Practice in a Software Consulting Company. In
System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference
on (p. 189a). doi:10.1109/HICSS.2007.115

Bibliography 83

Mestad A.a Myrdal, R. . D. T. . D. T. . (2007). Building a learning organization: Three

phases of communities of practice in a software consulting company. In Proceedings
of the Annual Hawaii International Conference on System Sciences. Big Island, HI.
doi:10.1109/HICSS.2007.115

Minbaeva, D. B. (2007). Knowledge transfer in multinational corporations. Management
International Review, 47(4), 567–593. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
34548201654&partnerID=40&md5=cd3b011dfd9b6b752aeb163d4a33e0d2

Mora, M. (2011). Validity and Reliability in Surveys. Retrieved April 04, 2014, from
http://www.relevantinsights.com/validity-and-reliability

Niazi, M. ., Cox, K. ., & Verner, J. . (2008). A measurement framework for assessing the
maturity of requirements engineering process. Software Quality Journal, 16(2), 213–
235. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
42149166093&partnerID=40&md5=59d798babdfb2cc37443881fb141ca6b

Niederman, F. (2005). International business and MIS approaches to multinational
organizational research: The cases of knowledge transfer and IT workforce
outsourcing. Journal of International Management, 11(2), 187–200.
doi:10.1016/j.intman.2005.03.004

Nonaka, I. (2007). The Knowledge-Creating Company. Harvard Business Review,
85(August), 162–194.

Nonaka, I., & Toyama, R. (2003). The knowledge-creating theory revisited: knowledge
creation as a synthesizing process. Knowledge Management Research & Practice,
1(1), 2–10. doi:10.1057/palgrave.kmrp.8500001

Pilat, L., & Kaindl, H. (2011). A knowledge management perspective of requirements
engineering. In Proceedings - International Conference on Research Challenges in
Information Science. Gosier. doi:10.1109/RCIS.2011.6006849

Poort E.R.a Pramono, A. . P. M. . C. V. . V. V. H. . (2009). Successful architectural
knowledge sharing: Beware of emotions. Lecture Notes in Computer Science
(including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 5581 LNCS, 130–145. doi:10.1007/978-3-642-02351-4_9

Qu G.a Ji, S. . N. A. . (2011). Project complexity and knowledge transfer in global
software outsourcing project teams: A transactive memory systems perspective. In
Proceedings of the Annual Hawaii International Conference on System Sciences (pp.
3776–3785). Maui, HI. doi:10.1109/HICSS.2012.488

Ras, E. (2009). Investigating wikis for software engineering - Results of two case studies.
In Proceedings - International Conference on Software Engineering (pp. 47–55).
Vancouver, BC. doi:10.1109/WIKIS4SE.2009.5069996

84 Knowledge Transfer measurement methodology for software requirements

Ras, E., Gabriela, A., Patrick, W., & Stephan, W. (2005). Using weblogs for knowledge

sharing and learning in information spaces. Journal of Universal Computer Science,
11(3), 394–409. Retrieved from http://www.scopus.com/inward/record.url?eid=2-
s2.0-23844525369&partnerID=40&md5=cdf909ce70ad49d5f9f4f580e01bd397

Ren, T. (2009). The evaluation model of knowledge worker’s knowledge-sharing
performance. In 2009 International Conference on Web Information Systems and
Mining, WISM 2009 (pp. 819–822). Shanghai. doi:10.1109/WISM.2009.170

Rezgui, Y., Hopfe, C. J., & Vorakulpipat, C. (2010). Generations of knowledge
management in the architecture, engineering and construction industry: An
evolutionary perspective. Advanced Engineering Informatics, 24(2), 219–228.
doi:10.1016/j.aei.2009.12.001

Roy, S. Sen. (2011). EXPLORING THE PROPENSITY TO SHARE PRODUCT
INFORMATION ON SOCIAL NETWORKS. UNIVERSITY OF MINNESOTA.

Rus, I., & Lindvall, M. (2002). Knowledge management in software engineering. IEEE
Software, 19(3), 26–38. doi:10.1109/MS.2002.1003450

Salger, F., & Engels, G. (2010). Knowledge transfer in global software development:
leveraging acceptance test case specifications. In Software Engineering, 2010
ACM/IEEE 32nd International Conference on (Vol. 2, pp. 211–214).
doi:10.1145/1810295.1810332

Salger, F., Sauer, S., Engels, G., & Baumann, A. (2010). Knowledge Transfer in Global
Software Development - Leveraging Ontologies, Tools and Assessments. In Global
Software Engineering (ICGSE), 2010 5th IEEE International Conference on (pp.
336–341). doi:10.1109/ICGSE.2010.46

Salger F.a Engels, G. . (2010). Knowledge transfer in global software development -
Leveraging acceptance test case specifications. In Proceedings - International
Conference on Software Engineering (Vol. 2, pp. 211–214). Cape Town.
doi:10.1145/1810295.1810332

Sánchez-torres, J. M., Carolina, S., & Torres, R. (2009). A model for measuring research
capacity using an intellectual capital-based approach in a colombian higher
education institution Do HEIs ’ contributions represent capacities in the Other
questions have risen in turn  : Innovar [online], 19(1), 179–197. Retrieved from
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-
50512009000400013&lng=en&nrm=iso

Schneider, K. (2009). Experience and Knowledge Management in Software Engineering
(pp. 165–202). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-
540-95880-2

Schwartz, D. G. (2007). Integrating knowledge transfer and computer-mediated
communication: Categorizing barriers and possible responses. Knowledge
Management Research and Practice, 5(4), 249–259. Retrieved from

Bibliography 85

http://www.scopus.com/inward/record.url?eid=2-s2.0-
36148975356&partnerID=40&md5=00d72036f5bdbce05602384a116875d1

Shan, X., Jiang, G., & Huang, T. (2010). The study on knowledge transfer of software
project requirements. In 2010 International Conference on Biomedical Engineering
and Computer Science, ICBECS 2010. Wuhan. doi:10.1109/ICBECS.2010.5462314

Shan, X., Jiang, G., & Huang, T. (2010). The study on knowledge transfer of software
project requirements. In 2010 International Conference on Biomedical Engineering
and Computer Science, ICBECS 2010. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
77953314490&partnerID=40&md5=3ab3f5064adf49083cdf18e4591297cd

Shou Y., S. Y. (2010). Modeling and simulation of knowledge transfer within an inter-firm
network. In Proceedings - 2010 International Conference of Information Science and
Management Engineering, ISME 2010 (Vol. 2, pp. 99–103). Xi’an.
doi:10.1109/ISME.2010.137

Shou, Y., & Sun, Y. (2010). Modeling and simulation of knowledge transfer within an inter-
firm network. In Proceedings - 2010 International Conference of Information Science
and Management Engineering, ISME 2010 (Vol. 2, pp. 99–103). Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
78049345965&partnerID=40&md5=db65ccbb87b80111569679836b89a06e

Simonin, B. L. . b c d e f g. (2004). An empirical investigation of the process of knowledge
transfer in international strategic alliances. Journal of International Business Studies,
35(5), 407–427. Retrieved from http://www.scopus.com/inward/record.url?eid=2-
s2.0-7444254131&partnerID=40&md5=092408754467ce9144d1bbc0b9e1f7da

Szulanski, G. (1996). Exploring internal stickiness: Impediments to the transfer of best
practice within the firm. Strategic Management Journal, 17(SUPPL. WINTER), 27–
43. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
0041751098&partnerID=40&md5=311433b07b40d218693f39a5fe3897dd

Szulanski, G. (2000). The Process of Knowledge Transfer: A Diachronic Analysis of
Stickiness. Organizational Behavior and Human Decision Processes, 82(1), 9–27.
Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
0001311775&partnerID=40&md5=f56a49022a9c01291b88a446d0f00c4a

Tesch, D., Sobol, M. G., Klein, G., & Jiang, J. J. (2009). User and developer common
knowledge: Effect on the success of information system development projects.
International Journal of Project Management, 27(7), 657–664.
doi:10.1016/j.ijproman.2009.01.002

Verkasalo, M. . c, & Lappalainen, P. . (1998). A method of measuring the efficiency of the
knowledge utilization process. IEEE Transactions on Engineering Management,
45(4), 414–423. Retrieved from http://www.scopus.com/inward/record.url?eid=2-
s2.0-0032204893&partnerID=40&md5=1616e85f412b0202ef9f51a8167a6673

86 Knowledge Transfer measurement methodology for software requirements

Wah C.Y., M. T. L. B. E. H.-D. (2005). Theorizing, measuring, and predicting knowledge

sharing behavior in organizations - A social capital approach. In J. R. H. Spraque
(Ed.), Proceedings of the Annual Hawaii International Conference on System
Sciences (p. 252). Big Island, HI. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
27544509659&partnerID=40&md5=29e9c3918e5cbd2ee1bb6735d0fb15be

Walonick, D. S. (2012). Survey Design Guidelines. Retrieved April 04, 2014, from
http://www.statpac.com/survey-design-guidelines.htm

Wang, J.-R., & Yang, J. (2008). Study on Knowledge Sharing Behavior in Software
Development Team. In Wireless Communications, Networking and Mobile
Computing, 2008. WiCOM ’08. 4th International Conference on (pp. 1–4).
doi:10.1109/WiCom.2008.2951

Ward, J., & Aurum, A. (2004). Knowledge management in software engineering -
describing the process. 2004 Australian Software Engineering Conference.
Proceedings., (c), 137–146. doi:10.1109/ASWEC.2004.1290466

Watson, S., & Hewett, K. (2006). A multi-theoretical model of knowledge transfer in
organizations: Determinants of knowledge contribution and knowledge reuse.
Journal of Management Studies, 43(2), 141–173. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-
33645135147&partnerID=40&md5=104a7def37f1ed263758ca09937d22b4

Whitworth, E. (2006). Introduction to agile software development .pdf.

Wilkesmann, M., & Wilkesmann, U. (2011). Knowledge transfer as interaction between
experts and novices supported by technology. Vine, 41(2), 96–112.
doi:10.1108/03055721111134763

Windiarti, I. S., Ferris, T. L. J., & Berryman, M. J. (2011). Technology and knowledge
sharing strategy in systems engineering practice performed by Indonesian expatriate
engineers. In Industrial Engineering and Engineering Management (IEEM), 2011
IEEE International Conference on (pp. 509–513). doi:10.1109/IEEM.2011.6117969

Wiradanti, B., & Govindaraju, R. (2011). Requirements engineering maturity
measurement and evaluation (A case study of Bank X in Indonesia). In 2011 IEEE
3rd International Conference on Communication Software and Networks, ICCSN
2011 (pp. 164–169). Retrieved from http://www.scopus.com/inward/record.url?eid=2-
s2.0-80053169068&partnerID=40&md5=4de09b363b5e5e4acb818e0e7f0ed62e

Yavari, Y. ., Afsharchi, M. ., & Karami, M. . (2011). Software complexity level
determination using software effort estimation use case points metrics. In 2011 5th
Malaysian Conference in Software Engineering, MySEC 2011 (pp. 257–262).
Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
84857261131&partnerID=40&md5=6c630f1db916e0dbb73d226d8effaafb

Zhang, D., Bao, Z., Gao, K., & Guo, L. (2008). Study on the efficiency of knowledge
transfer based on knowledge transfer scenario. In Proceedings - International

Bibliography 87

Conference on Computer Science and Software Engineering, CSSE 2008 (Vol. 5,
pp. 308–311). Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
79951483814&partnerID=40&md5=1245a5d98d8c5606a7bd218a6bc8006b

Zhang Q., D. R. (2011). Impacts of cultural difference on knowledge sharing, relationship
quality and performance in IT-based service outsourcing. In 2011 2nd International
Conference on Artificial Intelligence, Management Science and Electronic
Commerce, AIMSEC 2011 - Proceedings (pp. 6271–6274). Zhengzhou.
doi:10.1109/AIMSEC.2011.6011441

Appendix A: Responses gathered.

Series of questions used to measure each KT-SR mapping (scope) ordered by
analysis dimensions. Answers for groups 2 to 5 are displayed using Table 33, Table

34, Table 35 and

Table 36.

Appendix A 89

Table 33. Group 2 answers.

Requirements quality attributes

How many actors,
extension points or

dependencies,
does a

requirement have?

[There is just
one single

interpretation
for each

requirement.]

[Each
requirement

is clearly
determined

and
identified,

overlapping
among

requirement
s.]

[Terms used
in

requirement
s are

concrete
and well
defined.]

[All
requirements

and their
dependencie

s are
specified.]

[There are
compliance
monitoring

for
requirement
s, at every

stage in
software

life-cycle.]

[Users state
that

requireme
nts

express
their

needs
effectively.

]

[Software
produced

fulfills
requirements
specification.]

1 3 2 2 2 2 3 3
2 2 3 4 4 3 4 3
1 1 2 3 3 1 3 3
2 3 1 2 1 3 3 3
2 4 4 4 4 4 4 4
2 3 2 2 3 1 1 3
2 1 2 3 2 4 4 4
1 1 2 3 1 1 2 3
3 2 2 2 2 2 2 2
2 2 2 2 2 1 1 3
1 3 3 4 4 4 3 2

19 25 25 31 28 26 30 33
k 6

 sum Var 5.950413223
 var 20
 Cronbach’s alpha

Req Quality
Attributes 0.842975207

90 Appendix A

Source: self-elaboration.

Appendix A 91

Table 34. Group 3 answers.

Requirements influence in time/quality

[Requirements cause delay or
failures in software projects.]

[Requirements may cause a
poor software quality (stability,
scalability, completeness,
etc.)]

2 1
2 1
4 2
2 2
1 1
2 1
1 1
1 1
3 3
1 1
2 1

21 15
k 2
sum Var 1.223140496
var 2.016528926

conrbach alpha Req Quality
Attributes 0.786885246

Source: self-elaboration.

92 Knowledge Transfer measurement methodology for software requirements

Table 35. Group 4 answers.

Awareness / Itention / Motivation to share / transfer knowledge

[I feel happy with
my experiences,
so I want others
to know them.]

[I want to
share my
huge
experience.]

[I want to help
others with my
positives
experiences.]

[I want to
save others
from
bad/negative
experiences
I've had.]

[I don't feel
happy with
the software
process
which is
currently
done.]

[I feel good
when talking
with others
about my
successful
experiences.]

[I want to
be
rewarded
for sharing
my
knowledge.]

[I like to talk
with people
with common
interests.]

3 3 3 3 3 2 3 2
3 3 3 3 2 3 3 3
3 3 3 3 4 4 3 3
3 3 3 3 4 3 2 4
1 1 1 1 1 1 1 1
3 3 3 3 3 3 2 4
4 4 4 4 1 3 4 4
3 3 3 3 2 3 2 3
3 3 3 3 3 3 3 3
3 2 2 3 4 2 2 3
1 2 1 1 1 2 1 2

30 30 29 30 28 29 26 32
K 8
sum Var 6.347107438
Var 34.74380165
Cronbach’s alpha
Req Quality
Attributes 0.93407639

Source: self-elaborated.

Appendix A 93

Table 36. Group 5 answers.

Perception about requirements changeability related properties

[Are correctly understood,
without difficulty.]

[Are specified
without explain
technical details
about
implementation.]

[Meets
users
needs.]

[Stop
changing
over time.]

[Change due to
failures or errors
in their
specification.]

[Change because of
user validations.]

3 3 3 2 3 3
3 2 4 1 2 2
3 2 3 1 2 2
2 2 2 1 2 3
4 4 4 4 4 4
2 4 2 1 4 4
2 3 4 3 2 3
2 2 3 1 2 4
2 3 2 2 3 3
2 3 3 2 3 3
4 4 3 3 3 4

29 32 33 21 30 35

K 5
sum Var 3.289256198
Var 9.867768595
conrbach alpha Req Quality
Attributes 0.833333333

Source: self-elaborated

Appendix B: Full questionnaire report.

The next pages will show the results from the questionnaire applied. There are four
questions groups (people profile, SR Quality Attributes, SR link with delay and errors, KT
and SR quality attributes re test) as stated in sections 3.2.4 and 4.3 where data gathering
were defined and applied.

§ People profile

We can say that we have a mixed population since most of the respondents (63%) work
in high sized companies, the other 37% works in small and medium sized companies. So,
we expect a general view of SR and KT.

	
Figure 17. How many people work at your company?

Source: Self-elaborated.
	

	

	

	

less$than$
50$
21%$

50to100$
16%$

100to500$
37%$

1000or
more$
26%$

Other$
63%$

How$many$people$work$at$your$
company?$

96 Knowledge Transfer measurement methodology for software requirements

Developers, software architects/tech leads and software analysts are the principal roles
who characterize the respondents.

	
Figure 18. What’s your principal rol at your organization / team work?

Source: Self-elaborated.
	

From answers gathered it could be seen that most of the software requirements teams
are small, conformed whit less than 10 people.

	
Figure 19. How many people work in software requirements at your company?	

Source: self-elaborated.

5%#
11%#

11%#

21%#
26%#

26%#
52%#

What%is%your%principal%rol%at%your%
organiza2on%/%team%work?%

So)ware#projects#
management..#

So)ware#projects#
management.#

So)ware#Architect##/#
Technical#lead.#

So)ware#developer.#

So)ware#Architect#/#
Technical#lead.#

So)ware#Analyst.#

26%$

21%$
32%$

21%$
53%$

How$many$people$work$in$so0ware$
requirementsatyour$company?$

3to5.$

6to10.$

Less$than$3.$

More$than$10.$

Appendix B 97

74% of respondents have a significant experience from 4 to 7 or more year’s experience.
So we can expect answers coming from expert people.

	
Figure 20. How many year’s experience have the people working with requirements

at your organization?
Source: Self-elaborated.

§ SR quality attributes

According our complexity indicator defined in 3.2.2, 90% of requirements are low to mid
complex. So one could say that complexity is controlled according respondents.

Figure 21. Complexity.
Source: Self-elaborated.

5%#

21%# 26%#
48%#

74%#

How$many$years$experience$havethe
people$working$with$requirements$
elicita8onatyour$organiza8on?$

Less#than#one#year.#

Between#1#and#3#years.#

More#than#7#years.#

Between#4#and#7#years.#

10%$

37%$
53%$

How$many$actors,$extension$points$
or$dependencies,$doesarequirement$

have?$

More$than$5.$

Less$than$3.$

Between3and$5.$

98 Knowledge Transfer measurement methodology for software requirements

When concerning ambiguity, we found that there is a lot of ambiguity; most of
respondents affirm that ambiguity is rarely avoided.

	
Figure 22. Ambiguity.	 	

Source: Self-elaborated.

It was found that Atomicity equals than Ambiguity is rarely avoided.

	

Figure 23. Atomicity.	
Source: Self-elaborated.

4"

6"

6"

3"

Never"

Some",mes"

O/en"

Always"

There%is%just%one%single%interpreta1on%
for%each%requirement.%

1"

9"

6"

3"

Never"

Some"-mes"

O0en"

Always"

Each%requirement%is%clearly%determined%and%
iden2fied,%overlapping%among%requirements.%

Appendix B 99

It’s interesting that even when ambiguity and atomicity are rarely achieved, the precision
have better performance, it could be done since there are more preoccupation into build a
software specification, even when it is not too accurate. Something good is that
requirements are never without any mean of precision.

	
Figure 24. Precision.

Source: Self-elaborated.

	

About	 completeness,	 more	 than	 half	 respondents	 state	 that	 is	 never	 totally	 achieved,	 what	 is	

makes	 sense	 taking	 into	 account	 that	 previous	 indicators	 are	 rarely	 totally	 fulfilled.	

	
Figure 25. Completeness
Source: Self-elaborated.

	

0"

8"

5"

6"

Never"

Some"-mes"

O0en"

Always"

Terms&used&in&requirements&are&
concrete&and&well&defined.&

2"

6"

5"

6"

Never"

Some",mes"

O/en"

Always"

All#requirements#and#their#dependencies#are#
specified.#

100 Knowledge Transfer measurement methodology for software requirements

	

Regarding traceability, the perception is the same than complexity and again makes
sense since ambiguous, incomplete, low atomicity and low precision requirements are
very hard to trace.

	

Figure 26. Traceability.	
Source: Self-elaborated.

	

Considering validability, it’s seen that it behave a little better than traceability. Very often
requirements express what user really need, this shows that not always requirements
express what client needs what is correlated with the high ambiguity and low precision as
stated before.

	
Figure 27. Validability.
Source: Self-elaborated.

5"

2"

6"

6"

Never"

Some",mes"

O/en"

Always"

There%are%compliance%monitoring%for%requirements,%
at%every%stage%in%so7ware%life9cycle.%

2"

4"

7"

6"

Never"

Some"-mes"

O0en"

Always"

Users%state%that%requirements%
express%their%needs%effec3vely.%

Appendix B 101

The software produced often fulfills requirements specification, which is correlated with
low performance of atomicity and precision as stated before. And, correlates with
correctness indicator as stated in Figure 31.

	
Figure 28. Software fulfillment.

Source: Self-elaborated.

§ SR quality attributes re test

Understandability was found to be quite positive since never are totally not understood,
but stills being some times the major frequency for understandability, which is correlated
with low atomicity, low precision and ambiguity as stated before.

	
Figure 29. Understandability.

Source: self-elaborated.

0"

4"

10"

5"

Never"

Some"-mes"

O0en"

Always"

So#ware(produced(fulfills(
requirements(specifica6on.(

0"

10"

5"

4"

Never"

Some"-mes"

O0en"

Always"

Are$correctly$understood,$without$
difficulty.$

102 Knowledge Transfer measurement methodology for software requirements

Full Abstraction is never achieved, but more often it is done. It is correlated with atomicity
and precision, if atomicity, precision and abstraction are low, and requirements are just
some times understandable, technical details can be introduced, resulting in low
abstraction.

	
Figure 30. Abstraction.	
Source: self-elaborated.

	

Correctness is often achieved, what is correlated with the validability which is very often
achieved.

	
Figure 31. Correctness.
Source: self-elaborated.

	

0"

7"

6"

6"

Never"

Some",mes"

O/en"

Always"

Are$specified$without$explain$
technical$details$about$

implementa6on.$

0"

5"

9"

5"

Never"

Some",mes"

O/en"

Always"

Meets%users%needs.%

Appendix B 103

Its clear that requirements never stop changing, what is related with previous poor
indicators of ambiguity and precision.

	
Figure 32. Changeability.

Source: self-elaborated.

Some times requirements change due to errors in their specification, which correlate with
ambiguity, lack of precision and atomicity.

	
Figure 33. Changeability due to SRS.	

Source: self-elaborated.
	

	

7"

4"

5"

3"

Never"

Some"-mes"

O0en"

Always"

Stop%changing%over%/me%

0"

10"

6"

3"

Never"

Some"-mes"

O0en"

Always"

Change'due'to'failures'or'errors'in'
their'specifica4on.'

104 Knowledge Transfer measurement methodology for software requirements

Changeability due to user validations occur some times, but in less quantity than due to
errors in SRS, this make sense since good understandability happens some time as
stated before, giving a lot of room for requirements changes at validation stage.

	
Figure 34. Changeability due to validation.

Source: self-elaborated.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

0"

8"

6"

5"

Never"

Some"-mes"

O0en"

Always"

Change'because'of'user'valida3ons.'

Appendix B 105

§ SR link with delay and errors

It was found that the SR are not totally related with delay or errors in software projects.
Most of respondents disagree that SR per se at a cause for software projects delays and
errors. This is correlated with understandability and validability which occurs some times,
giving room for new validation to be done causing delay and failures until final
requirement is refined and implemented.

Figure 35. SR and delay or failures in software projects.

Source: self-elaborated.

7"

5"

3"

4"

Totally"disagree."

Par4ally"disagree."

Agree."

Totally"agree."

Requirements+cause+delay+or+failures+
in+so3ware+projects.+

106 Knowledge Transfer measurement methodology for software requirements

A weak influence SR influence in other software quality attributes was found. So not
possible correlation could be done with indicators gathered before.

	
Figure 36. SR and software quality attributes.

Source: self-elaborated.

11"

3"

4"

1"

Totally"disagree."

Par3ally"disagree."

Agree."

Totally"agree."

Requirements+may+cause+a+poor+
so1ware+quality+(stability,+scalability,+

completeness,+etc.)+

Appendix B 107

§ KT motivation

A big agreement was found concerning intention to share.

	
Figure 37. Intention to share happy experiences.

Source: self-elaborated.

Respondents agree about their intention to share their huge experiences.

	
Figure 38. Intention to share huge experience.

Source: self-elaborated.

3"

1"

13"

2"

Totally"disagree."

Disagree."

Agree."

Totally"agree."

I"feel"happy"with"my"experiences,"so"I"
want"others"to"know"them"

2"

2"

13"

2"

Totally"disagree."

Par3ally"disagree."

Agree."

Totally"agree."

I"want"to"share"my"huge"experience."

108 Knowledge Transfer measurement methodology for software requirements

There is a general agreement about share positive experiences.

	
Figure 39. Intention to share positive experiences.

Source: self-elaborated.

	

There is a big agreement about the willingness to share knowledge in order to save
others from pitfalls.

	
Figure 40. Willingness to share.

Source: self-elaborated.

3"

2"

9"

5"

Totally"disagree."

Par4ally"disagree."

Agree."

Totally"agree."

I"want"to"help"others"with"my"
posi1ves"experiences."

3"

0"

10"

6"

Totally"disagree."

Par4ally"disagree."

Agree."

Totally"agree."

I"want"to"save"others"from"bad/
nega3ve"experiences"I've"had."

Appendix B 109

There are mixed sentiments about current software done at organizations, respondents
are not agreeing about it. This can be seen as an opportunity to use their willingness to
share to improve KT process, and an opportunity to introduce KT as an SR success
enabler.

	
Figure 41. Software process pleasing.

Source: self-elaborated.

There was found a big agreement about share successful experiences.

	
Figure 42. Motivation to share successful experiences.

Source: self-elaborated.

6"

4"

5"

4"

Totally"disagree."

Par3ally"disagree."

Agree."

Totally"agree."

I"don't"feel"happy"with"the"so2ware"
process"which"is"currently"done."

2"

3"

10"

4"

Totally"disagree."

Par5ally"disagree."

Agree."

Totally"agree."

I"feel"good"when"talking"with"others"
about"my"successful"experiences."

110 Knowledge Transfer measurement methodology for software requirements

Something interesting is that not everyone has a strong desire to be rewarded for share
their knowledge.

	
Figure 43. Intention to be rewarded due to KS.	

Source: self-elaborated.
	

There is a strong agreement in responsiveness to share between people with similar
interests.

	
Figure 44. Empathy.

Source: self-elaborated.

3"

7"

6"

3"

Totally"disagree."

Par3ally"disagree."

Agree."

Totally"agree."

I"want"to"be"rewarded"for"sharing"my"
knowledge."

3"

2"

9"

5"

Totally"disagree."

Par4ally"disagree."

Agree."

Totally"agree."

I"like"to"talk"with"people"with"
common"interests."

