
Revista Avances en Sistemas e Informática, Vol.8 No.1, marzo de 2011 - Medellín. ISSN 1657-7663

Una comparación del desempeño para acceder
programáticamente recursos del sistema en Linux

A comparison of performance to access programatically system
resources in Linux

Recibido para revisión 10 de agosto de 2010, aceptado 03 de enero de 2011, versión  nal 02 de febrero de 2011

Resumen— Este artículo presenta un análisis comparativo de
tres aproximaciones que se pueden emplear para acceder a recursos
del sistema bajo el sistema operativo Linux. Luego de una revisión
de las principales características de cada aproximación, se realiza
un experimento donde el comportamiento de estos es evaluado.
Finalmente, los resultados son comparados y analizados.

Palabras Clave— Desempeño de llamadas al Sistema, Linux,
Java, JNI, Python.

Abstract— This paper presents a comparative Analysis of three
approaches which can be used to access computer system resources.
After a review of the main features of both of the approaches, an
experiment is performed where behavior of them is evaluated.
Finally, results are compared an analyzed.

Keywords— System call performance, Linux, JNI, Python.

I. INTRODUCTION

In monitoring of system resources, the performance of the
monitor component is quite important as under particular

circumstances, if monitoring is not properly performed, it might
cause degradation or lead to incorrect data.

Oftenly, monitoring tasks is performed without taking good
care of their performance or their impact on the system.

This paper presents the analysis of three methods to access
information about  lesystems on a Linux system, from the
perspective of the time they take to be executed, and the impact
of them on the system related to System Calls they invoke when
executed.

John Willian Branch. Ph.D. & Sergio Armando Gutiérrez. I.S.
Escuela de Sistemas, Facultad de Minas, Universidad Nacional de Colombia

jwbranch@unal.edu.co, saguti@unal.edu.co

For the analysis herein explained, concepts and tools presented
in Dienelt [1] are applied, by using Tools which are available in
the standard operating system.

This paper is organized as follows: Section 1 will introduce
the approaches to access the resource in the system. Section 2
will describe the experiment which was performed to analyze the
behavior of method, and the scenario where it was performed.
Section 3 will present the conclusions of the analysis and future
work to be performed on this matter.

II. THEORETICAL FRAMEWORK

This section will introduce the approaches which were used
to access information of an Operating System Resource.

Basically, the three approaches employ API (Application
Programming Interfaces) which allow to request information
about the space in a  lesystem of a computer running Linux
operating system.

2.1 Pure JAVA Approach.
JAVA programming language was developed on 1995 by

James Gosling and nowadays has become the second most
important programming language in industry [2].

JAVA has  ve main design principles [3]:

• It should be "simple, object oriented, and familiar": JAVA
requires that programming style be object oriented, although
it also allows some features of procedural programming in the
code. It is familiar as its syntax is very similar to C and C++
programming languages, and it is in a certain way easy to use.

Revista Avances en Sistemas e Informática, Vol.8 No.1, marzo de 2011 - Medellín. ISSN 1657-7663
40

• It should be "robust and secure": JAVA has several features
which increase robustness, stability and security. Virtual
Machine, the virtual processor where JAVA code runs is an
abstraction layer which isolates in certain way the applications
from the host hardware, increasing security by imposing
restrictions regarding system resources access. Also, the way
JAVA handles memory, and the way memory is referenced from
code avoids stability issues which are typical in languages as
C or C++.

• It should be "architecture neutral and portable": This
is one of the features which has contributed to make JAVA
a very important tool in application development. Code is
written to run on Virtual Machine, and Virtual Machine is
the same, despite of the hardware platform where it runs. It is
an abstraction layer which isolates the hardware details from
application code.

• It should execute with "high performance": Concepts like
bytecodes, and Garbage Collection allow JAVA applications
to perform in a very acceptable way. Multithreading and
mechanisms for interprocess communicaction allow to
applications take advantage of multiple processors, boosting
the performance for every kind of application.

• It should be "interpreted, threaded, and dynamic": JAVA
can be thought as an intermediate step between interpreted
and compiled language. The compiler generates bytecodes to
be run on Virtual Machine, in an interpreted way. The virtual
machine is implemented in such a way that components within
it can run in paralallel, because of their nature of independent
threads. In certain way, entities within JAVA applications can
be thought as really live entities, which born, reproduce and
die during application life.

For the purpose of the feature under study on this paper, pure
JAVA can be consideres as limited in certain way. Because of
the principles above exposed, JAVA does not provide extensive
APIs to access system resources at low level. Traditionally
standard releases of JAVA Development Kit (JDK) -latest is
1.6.X-, have limited interfaces to access properties of system
components as devices or  lesystems. New releases as JDK
1.7.X [4] include a wider set of API's to access system at lower
level.

2.2 JAVA Native Interface
JAVA Native Interface (JNI) is a framework which allows to

JAVA programms interact with native applications, that is to
say, code written in C, C++ or Assembler which is speci c to
hardware platform where JAVA Virtual Machine is running [5].
This can be considered as a good mechanism which extends
JAVA applications, so that the be able to access using lower
level interfaces the elements of the platform where it runs.

Although, it might seem a transgresion of the design
principles of JAVA, it is worth to mention that JNI requires a
very strict protocol to allow the interaction of JAVA code with
Native Code, although, under certain conditions, and if it is not
well programed, might destabilize the entire JVM.

There are two main implications related to the use of JNI:

• Applications depending on JNI are no longer fully portable.
Although JAVA part of the code is still portable, the native
code will need to be at least recompiled, or even ported when
application is being migrated.

• The native code in general is not type safe neither
has mechanism to protect memory access and memory
referentiation. Mechanisms as pointers in C and C++, despite
of their utility, are the main cause of unstability of applications.
So, additional care has to be taken when integrating native code
with JAVA through JNI as the errors in native code affect and
impact the behavior of Virtual Machine.

Because of these issues above mentioned, there are some
recommendations regarding when to use JNI, and how to use
it to take advantage of its features:

• In situations where it is required JAVA perform tasks which
are host dependent, and is not desirable to delegate these tasks
to another process.

• Whether a native library is required, and it is not desirable
to have the overhead of copying library, JNI can be used to
access the library.

• To reduce the need to span multiple process to execute tasks.

• In cases where is desirable to get higher performance, by
implementing a smal part of the code in native language, for
example, to take advantage of specialized hardware (Encryption
processors, Accelerator Video Cards).

It is a design recomendation when using JNI, separate the
classes which execute native code, from the classes which are
pure JAVA; use it in as few classes as possible, and in the most
speci c possible way.

2.3 Python
Python is a general purpose language, implemented on 1991

by Guido van Rossum [6]. It is a generic language, extremely
portable and ef cient enough for multiple applications. It
has the flexibility of Perl, associated with the numerical
power and ease to use of MATLAB, but available as an open
source environment. The source code is generally small when
compared to compiled languages by several reasons: high-level
data types and operations, dynamic typing, automatic memory
management, and command blocks delimited by identation
[7, 8].

Una comparación del desempeño para acceder programáticamente recursos del sistema en Linux – Branch & Gutiérrez
41

Many different institutions and technology vendors make
extensive use of Python for a wide variety of applications
ranging from hardware testing, web searching, peer to peer
networking, cryptography, mobile applications, and others.

Python is usually applied for Systems Programming, given its
wide support for usual Operating Systems, and the easeness to
access system resources. Also for programming GUI interfaces,
Internet Scripting, Integration and interfacing, Database access,
and numeric and scienti c processing [9].

Also features as Object orientation, freeness to use, easeness
to use, its capability to be mixed with other languages, and the
clearness of its syntax are causing python becomes one of the
ten most used and important programming languages [2].

III. EXPERIMENTS AND RESULTS

This section will describe the tests performed to compare the
behavior of the three above explained approaches to request
information of system resources.

Two experiments were performed. On the  rst one, three
programs, each one written in Pure Java, JNI and Python were
executed  ve consecutive times, and measured by means of the
strace utility, which is built in with Linux Operating System
[1]. On the other experiment, the programs were run during one
minute, being executed every minute.

Table 1 summarizes the specifications of hardware and
software which was involved in this test. Tables 2, 3 and 4
illustrate the average of measurements with strace for the case
of a single run. Tables 5, 6 and 7 show the results for repeatitive
execution within a loop.

Table 1: Speci cations of test hardware and software

Table 2: Pure JAVA Results

Table 3: JNI Results

Table 4: Python Results

From the results can be observed that the approach which
presents the lowest execution time is Python. This can be
explained from the fact that python does not require the futex
system call, which implies an active waiting, which adds a
considerable delay to execution.

Table 5: Pure JAVA Results on loop execution

Table 6: JNI Results on loop execution

Table 7: Python Results on loop execution

When performing loop execution, Python still exhibits a
better behaviour than other two schemes. It shows that python
can be considered as a good stating point for the development
of monitoring tools which query information at high level from
the system resources.

IV. CONCLUSIONS AND FUTURE WORK

In this work, a comparison among pure JAVA, JNI and
Python when querying information from a system resource
as a  lesystem has been performed. After reviewing results, a

Revista Avances en Sistemas e Informática, Vol.8 No.1, marzo de 2011 - Medellín. ISSN 1657-7663
42

 rst conclusion can be obtained, the good behavior of Python,
which exhibits lowest execution times and even reduced times
in the lowest system calls.

Further work which can be performed is comparing the results
on other test beds, querying another resources, and assessing
other metrics as memory consumption, interrupts and other.

BIBLIOGRAPHY

[1] S. Dienelt, “Pro ling linux system call activity,” Master’s thesis,
Chemnitz University of Technology, 2006.

[2] TIOBE, TIOBE Programming Community Index, http://www.
tiobe.com/index.php/content/paperinfo/tpci/index.html.

[3] Sun Microsystems INC, The Java Language Environment, http://
java.sun.com/docs/white/langenv/Intro.doc2.html.

[4] Sun Microsystems INC, Java Development Kit release 7, http://
java.sun.com/javase/7/webnotes/index.html.

[5] Java Native Interface Speci cation, http://java.sun.com/docs/
books/jni/html/jniTOC.html.

[6] General Python FAQ, http://www.python.org/doc/faq/general/.
[7] R. Lotufo, R. Machado, and A. Saude, A. Silva, “Toolbox of

image processing for numerical python,” in Proceedings of
XIV Brazilian Symposium on Computer Graphics and Image
Processing, 2001, 2001.

[8] R. Lotufo, R. C. Machado, A. Saude, and A. G. Silva, “Toolbox
of image processing using the python language,” in Proceedings.
2003 International Conference on Image Processing, 2003. ICIP
2003., 2003.

[9] M. Lutz, Learning Python. O’Reilly, 2007.

