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Resumen

La reconstrucción de superficie es el proceso mediante el cual un objeto 3D se reproduce

de una colección de valores discretos que muestrean la forma. Estos valores generalmente

son llamados nubes de puntos. Comúnmente, los métodos de reconstrucción se basan en las

propiedades básicas de las nubes de puntos, que son la densidad de muestras, ruido, datos

faltantes y los valores at́ıpicos. Nuestro objetivo es reconstruir la superficie de estructuras

anatómicas a partir de imágenes médicas. Consideraremos dos problemas principales que son

los datos faltantes y la presencia de ruido.

Resolvemos la falta de datos generando nuevos muestras a partir de un conjunto de contor-

nos, basándonos en técnicas de Shape Morphing (forma cambiante). Si adicionamos ruido

al problema anterior, debemos cambiar de enfoque por lo tanto utilizamos un método de

reconstrucción impĺıcita que se ha demostrado que es robusto a los problemas anteriormente

mencionados. Por último combinamos parte de las propuestas anteriores para resolver un

problema especifico, que se presenta cuando reconstruimos imágenes médicas, que se trata,

cuando un contorno se bifurca en otros contornos. Los métodos se evaluarán sobre bases de

datos públicas de imágenes médicas y se compararon con dos algoritmos estándar del estado

del arte y la medición de rendimiento de reconstrucción sera la distancia de Hausdorff.

Palabras claves: 3D reconstrucción, nube de puntos, forma cambiante, bifurcacion, fu-

sión local
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Abstract

The reconstruction of the surface is the process by which a 3D object is reproduced from a

collection of discrete values that sample the shape. These values are generally called point

cloud. Commonly, the reconstruction methods are based on the fundamental properties of

the point clouds, which are the density samples, noise, missing data, and outliers. We aim

to reconstruct the surface of anatomical structures from medical images; Consider two main

problems that are missing data and the presence of noise.

We resolve the missing data by generating new samples from a set of contours based on

Shape Morphing techniques. If we add noise to the previous problem, we must change the

focus and therefore use an implicit rebuild method that is solid for the problems presented

above. Finally, we combine part of the previous proposals to solve a specific problem, that

occurs when we reconstruct medical images, when a contour is bifurcated into another. The

methods are evaluated with the public database from medical images and compared with

the standardized algorithms of state of the art and the Hausdorff distance is used to measure

the performance.

Keywords: 3D reconstruction, point cloud, shape morphing, bifurcation, local merging
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1 Introduction

Surface reconstruction is increasingly essential in geometric modeling for generating surfa-

ces from data points captured from real objects, often by laser range scanners but also by

hand-held digitizers, computer vision techniques, or among other technologies. Industrial ap-

plications include reverse engineering, product design, and the construction of personalized

medical appliances [3]. Reconstruction methods have different types of entry requirements

generally associated with a point cloud. The minimum requirement of all reconstruction

algorithm is a set of 3D points lying on the surface [5]. The properties of the point cloud

impact on the reconstruction algorithms and methods. The most common properties are

sample density, noise, missing data, and atypical values [6]. Some of these properties depend

on how point clouds are acquired or processed. All methods of point cloud reconstruction

in the state of the art encompass one or more of these problems, as can be read in [18, 16, 25].

This thesis work is devoted to reconstruct the surface of anatomical structures, due the

analysis of medical images is an essential tool in the diagnosis of diseases or injuries inside

the body [34]. To accurately study organs, medical personnel usually acquire images with a

variety of devices and techniques that can create models of structures and their physiology.

The most common types of models are magnetic resonance imaging (MRI), X-rays, ultra-

sound (US), computerized tomography, and nuclear medicine studies. The most visible and

relevant information for medical personnel is the boundary of the anatomical structure that

is shown in the scene [24, 9]. When working on the reconstruction of medical images, we find

two significant problems that are related to the missing data and noise.

The manipulation of missing data is a common situation, where only parts of the data can be

used [36]. This problem is originated in the medical image segmentation, despite advances

in techniques and methods for the automatic segmentation of anatomical structures, due

to the ambiguity and noise of the images. The medical staff is nowadays in charge of ma-

nually delimiting the structures in the volume segments [14]. Therefore, an algorithm that

reconstructs the surface of these structures must have the least possible amount to create a

satisfactory result. We propose a methodology that generates new data based on segmented

base contours. This allows us to have a small number of contours and still obtain an ex-

cellent approximate reconstruction of the anatomical structure. To generate new contours,

we use Shape Morphing techniques, which is a field of research in computer science, dealing

with algorithms and methods to build a gradual and continuous transformation between two
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flat or stable shapes [17]. We assume that the surface of specific anatomical structures has

smooth changes. Therefore, by interpolating shapes between the contours, we would not be

alternating the form of the surface. We compare our approach with the standard algorithms

of the state of the art [3] and [22].

In addition to missing data, clouds generally have a presence of noise, that forces the recons-

truction methods to produce surfaces as close to the point cloud and as smooth as possible

to overcome noisy points. Some robust noise algorithms employ robust statistics and impose

softness on their reconstructions [15, 29]. In the reconstruction of surfaces, implicit repre-

sentation schemes are the most used, since they are independent on the topology, robust in

the absence of data and noisy data [11]. The implicit reconstruction methods use a signed-

distance function suitably fitting the point cloud, and can be classified into two categories:

global approaches where the value to interpolate a point depends on the data from the whole

point cloud, and local ones that insert values depending on the neighboring points [11]. One

of the significant advantages of local methods is the improved detail on the reconstruction in

comparison to global methods [20]. To take advantage of local methods, this work proposes

a reconstruction by parts that allows a more precise reconstruction in certain regions.

When reconstructing medical images, cross-sections are often used that are sensitive to noise,

and number of sections [19, 10]. But the most relevant issue for reconstructing some anato-

mical structures is the contour bifurcation due to the lack of data [12, 26]. A bifurcation is

understood as a contour in a 2D slide that is divided into several contours in the next slide.

We will only focus on a specific case that is known as one to many, in which part of a single

base contour that is connected to multiple contours [12].

1.1. Objetives

1.1.1. Geneal Objective

Develop a methodology for 3D reconstruction of anatomical structures from medical imaging

based on data interpolation and local approaches to enhance the 3D model quality.

1.1.2. Specefic Objectives

Develop a methodology for data interpolation aiming to improve 3D reconstruction of

anatomical structures based on morphing.

Develop a 3d reconstruction methodology using support vector and local merging ap-

proach for enhancing the data fitting on spatially varying shapes.
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Develop a rule-based approach for improving the data fitting of 3D reconstruction

models in the presence of bifurcations.



2 3D Reconstruction by deformation of

contours

2.1. Materials and Methods

2.1.1. Point Cloud

Given a three-dimensional point cloud with N samples P={pi∈R3, i = {1, ..., N}}, where

each pi samples the surface S of a three-dimensional real object by scanning and registration

procedures, the reconstruction task aim at estimate the most similar surface to S [20, 27].

The estimated surface, defined as Ŝ={V , T }, is composed by a set of vertices V={vl∈R3, l =

{1, ..., V }} and a set of triangles T ={tn∈{1, ..., V }3, n = {1, ..., T}} where vl is the l-th

vertex, tn indexes the coordinates of the n-th triangle in the vertex set, V is the number of

vertices, and T is the number of triangles of the 3D reconstruction.

2.1.2. Curve Representation

We assume a contour as a parameterized closed curve, ζ, given by ζ = D → Rd , where D

is a domain that determines the parameterization, D = [0, 1], and d ∈ {2, 3} corresponds to

the space dimension [33]. The curve ζ can be extracted from a medical image by segmenting

the region of interest and extracting the points over the boundary. The shape analysis must

be carried out on a shape space representation endowed with a metric that quantifies the

differences between contours. The metric must be invariant to the shape preserving trans-

formations, translation, scaling, rotation, and parameterization [17]. When comparing two

contours, it is necessary to know which point on each shape corresponds to another point

on the other, that is the correspondence problem. The correspondence between two curves

ζ1 and ζ2 is equal to the optimal rotation O ∈ SRO(d) from the Special Orthogonal Group

and re-parametrization γ ∈ Γ, such that the distance between the curves is ζ1 and O(ζ2) is

minimal [17].

To analyze a closed curve ζ, a mapping is defined as H : Rd → Rd, where H(v) = v/
√
‖v‖,

if ‖v‖ 6= 0 and 0 otherwise. Here, ‖•‖ is the euclidean 2-norm in Rd, noting that H is a

continuos map. To study the form of ζ, it is represented using the Square Root Velocity

Function (SRVF) defined as q : D → R [33], where
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q(t) ≡ H(ζ̇(t)) =
ζ̇(t)√∥∥∥ζ̇(t)

∥∥∥ (2-1)

(̇) is the derivative, for every q ∈ L2(D,Rd), there exists a curve ζ such that the given q is

the SRVF of that ζ. The curve can be re-obtained ζ(t) =
∫ t

0
q(`) ‖q(`)‖ d` [33].

Let U be the set of all the representations of SRVFs of the closed curves. U can be called

pre-shape space, therefore, it is a hypersphere in the Hilbert manifold [33]. When we com-

pare two closed curves in the pre-shape space, it is necessary to calculate the shortest path

length, called geodesic, which connects its corresponding points in U . This measure of dissimi-

larity is not invariant to the rotations and depends on the parameterization of the curves[17].

The rotation of a contour curve ζ with O ∈ SRO(d) given another curve Oζ is equivalent

to ζ from the point of view of the shape analysis. Then, the reparameterization of ζ is also

applied with a diffeomorphism γ ∈ Γ[17]. Therefore, all rotations and diffeomorphisms in

the ζ curve will generate a set of curves that have the same shape. This set is equal to

class under the product γ × SRO(d) . The SVRF of O(ζ ◦ γ), denoted by O(q, γ) is given

by
√
γ̇O(q ◦ γ)(t) [33]. [q] is defined as the orbit of q, which is the set of all curves that are

similar to q in the rotation and parameterization [17].

[q] = {O(q, γ) =
√
γ̇O(q ◦ γ)(t)|O ∈ SRO(d), γ ∈ Γ} (2-2)

O is the set of all the orbits, therefore, it is our shape space. O would form a quotient space

of U modulo Γ× SRO(2). Therefore, O inherits the Riemannian metric from U [17]. Taking

into account the previous representation, the analysis of the curves is equal to the analysis of

their orbits, which in this case are the elements of the shape space U . Then, the dissimilarity

between two curves of the contours ζ1 andζ2 is defined as the length of the shortest geodesic

that join the elements of their orbits, ρ ∈ R+ [17].

ρ(ζ1, ζ2) = ρs([q1, q2]) = min
O∈SRO(d),γ∈Γ

ρc(q1, O(q2, γ)) (2-3)

where ρc(q1, q2) defines the length of the geodesic between ζ1 and ζ2.It is necessary to optimize

in O and γ, to find the optimal correspondence between ζ1 and ζ2. ρ addition to measuring

the length of the geodesic, also the rotation and the parameterization between ζ1 and ζ2,

both are represented with their SRVFs. A geodesic is a continuous deformation, which flexes

and stretches a curve towards the other. Its length quantifies the proportion of deformation

necessary to deform a curve into other [17]. The optimization problem 2-3 is solved following

the procedure described in [33]. A geodesic in two curves in the form space this definition

by:

qτ =
1

sin(Θ)
(sin(Θ(1− τ)))q1 − sin(Θτ)q2, (2-4)

where Θ = cos−1(〈q1, q2〉) and τ ∈ {0, 1} quantifies the amount of deformation.
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2.1.3. Power Crust algorithm

The power crust (PC) algorithm approximates the surface S using the cloud of points P
based on the inverse of the medial axis transformation (MAT) [3]. MAT represents an object

by a set of maximum containing balls. Despite PC exactly represents S, computations of

MAT and its inverse are extremely complex and computationally expensive [3].

Assuming that a bounded open region Q ∈ R3 completely contains S, S divides Q into

interior and exterior solids. Then, a ball B={r, ‖r − cb‖ ≤ ρb} centered at cb∈R3 with ra-

dius βb∈R+ is said to be empty if its domain does not contain any points in P , that is,

P ∩ B=∅. The MAT of S is the set of all B maximal empty balls (medial balls) and the set

{cb, b = {1, ..., B}]} is the surface medial axis. Therefore, MAT attains an exact representa-

tion of S at the cost of a high computational complexity [3].

Aiming to cope the above issue, MAT is approximated by a subset J of the Voronoi vertices,

known as poles. Voronoi vertices are extracted from the Voronoi diagram of the point set P
that splits P into a set of cells. The i-th cell holds all the points p∈R3 closer to the i-th entry

point pi than to any other point in P , that is, Qi={pi∈R3, dpc(p, pi) < dpc(p, pi′),∀i 6= i′},
where dpc(·, ·) is a predefined distance function. Such a definition produces cells as convex

polyhedrons, and their vertices are known as the Voronoi vertices o ∈ R3 (J={ov, v =

{1, ..., V }}). The Voronoi diagram used to approximate the MAT is the Power diagram that

is built from the power distance between an ordinary unweighted point pi and a ball B:

dpow(pi,B) = ‖c− pi‖2
2 − β2. (2-5)

As a result, the subset of the two-dimensional polygonal faces in the power diagram separa-

ting these internal cells from the outer cells forming our output surface.

2.1.4. A fast surface reconstruction method from Hermite points

(HRBFQI)

A closed form formulation is proposed to calculate the approximate surface reconstruction

solution based on Hermite Radial Basis Functions from scattered data points [22].

The method constructs a signed scalar function by directly combining the normal positions

and points without any global operation. The calculation is based on compact support lo-

cally and numerically. An automatic scheme is applied to adjust the support sizes of the

basic functions; in this way, the errors between the exact solution and the quasi-solution are

limited. The formulation provides a surface reconstruction solution on approximate HRBF-

based. In addition to being robust to noise.
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The HRBF implicits are built upon the theory of Hermite–Birkhoff interpolation with radial

basis functions [22]. Given a point cloud P , with their respective set of normals N = {ni, i =

{1, ..., N}}. The goal is to find an interpolation function h, given the points and normal

vectors.

h (x) =
N∑
i=1

{αiϑ(x− p)− 〈li.∇(x− p)〉} (2-6)

where ϑ : R3 → R, is determined by a radial basis function ϑ(x) = ϕ(‖x‖), where ϕ :

[0,∞) → R, as a univariate function , 〈·, ·〉 denotes the dot-product of two vectors, and ∇
is the gradient operator [22]. Given an approximation of 2-6, the surface of our point cloud

can be reconstructed from the set p and its normal N . In the reconstruction of the mesh a

polynomial mesh is used, the zero isosurfaces are extracted as a result of the reconstruction

of the surface.

2.1.5. Hausdorff Distance

One way to compare the geometrical differences between the two models is to use Hausdorff

distance. Given a compact metric space W , we consider the space X of nonempty closed

subsets of W :

X = {A ⊂ W |A, is nonempty, closed, bounded} (2-7)

Then the Hausdorff metric is defined on pairs of elements in X as follows [13].

dH(A, E) = max{sup
g∈A

mH(g, E), sup
g∈E

mH(g, E)} (2-8)

where mH(g,K) : J ×X → R is given by

mH(g,K) = ı́nf
g∈H

dh(g, V ) (2-9)

The function mH represents the “minimum”distance from a point g in J a to punto in K in

X, as a subset of J .

2.2. Experimetal Set up

2.2.1. Dataset

Spleen : The basis of the data we use is “Decathlon of medical segmentation”, which is

publicly available [31]. The database has ten semantic segmentation tasks, which are: Liver

Tumors, Brain Tumors, Hippocampus, Lung Tumors, Prostate, Cardiac, Pancreas Tumor,
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Colon Cancer, Hepatic Vessels, and Spleen. In our case, we only use images of Spleen, which

come from the Memorial Sloan Kettering Cancer Center, where the objective is to segment

this structure. The modality of image acquisition is computed tomography. The size of the

database is 61 images, 41 for training and 20 for testing. We are only interested in training

images since they are segmented. The size of each training image is 512× 512× 168 voxeles.

2.2.2. Point Cloud Construction

We get the point cloud as the point lying on the limit of the segmented region extracted

from each image. With the coordinates of the boundary voxels of each region, we generate

the point cloud. We scale the points in the range [−1, 1], as shown in Figure 2-1. We can

see that the data is scattered since there are only 14 segmented images for the reconstruction.

(a) Slice CT (b) Point cloud Spleen

Figure 2-1: A CT slice for the spleen structure and its point cloud.

2.2.3. Method description

Given the limited number of contours that the point cloud has, shown in the Figure 2-1b.

We need to generate new data that allows us to create a surface that recreates the shape

of the spleen. One way to generate new data is to create new contours from existing ones.

To deform and analyze the contours, we use the SRVF as described in Section 2.1.2 taking

into account that each of them is resized from the resulting one unit length to its original

scale. It should be noted that the proposed analysis has a significant advantage over the

methods based on the reference points present in state of the art, which generally require a

curve registration, either manually or automatically. The Figure 2-2 shows the deformation
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correspondences calculated between contours. Since the contours are parallel to an axis, we

can work with them as closed flat curves, which decreases the calculations.

Figure 2-2: Deformation between contours.

The contours that are used as a basis for the deformation, in addition to being rescaled,

are aligned and rotated. Therefore, the interpolated curves must be rescaled and realigned.

We use Spline Interpolation to define the alignment path, as well as the indexes that allows

scaling the contours. In the case of rotation, we use Spherical Spline Quaternion interpola-

tion (Squad) that is described in [1] to rotate the new shapes. We select the contour number

that we want to add to the base contours, and we distribute them uniformly. A new point

cloud is generated as shown in Figure 2-3. To generate the mesh, we use a triangulation

algorithm available in Python library PyMesh1. Hence, the resulting surface is a smooth

approximation that suitably fits the input contours.

Figure 2-3: The black contours are the initials.

1https://pymesh.readthedocs.io/en/latest/index.html
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2.2.4. Results and Discussion

We evaluated our reconstruction scheme in three clouds of different points extracted from

the computed tomography of the spleen. Each point cloud is generated with is generated

with different numbers of contours from 16 images in the database, the selected images have

a number greater than 15 segmented contours. We want to know how our scheme behaves

by reducing the number of contours and if it is robust to the lack of data. To this end, we

extract the contours as shown in the Figure 2-4, always maintaining the upper and lower

contour. Below is the reconstructed surface for an image of our image set.

(a) All contours (b) 10 % contours (c) 20 % contours (d) 30 % contours (e) 40 % contours (f) 50 % contours

Figure 2-4: Examples of point clouds resulting from randomly removing contours.

Figure 2-5 shows the surface generated by our approach, where we can see that a smooth

surface is obtained in all cases.

(a) All contours (b) 10 % contours (c) 20 % contours (d) 30 % contours (e) 40 % contours (f) 50 % contours

Figure 2-5: 3D Reconstruction surface approach.

Figure 2-6 shows the reconstruction of the surface of the PC, where we observe that, in

certain regions, the surface is less smooth due to the lack of data.

(a) All contours (b) 10 % contours (c) 20 % contours (d) 30 % contours (e) 40 % contours (f) 50 % contours

Figure 2-6: 3D Reconstruction surface PC.

Finally, Figure 2-7 illustrates the HRBFQI 3D reconstruction, evidencing that the algorithm
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is not robust to the absence of data.

(a) All contours (b) 10 % contours (c) 20 % contours (d) 30 % contours (e) 40 % contours (f) 50 % contours

Figure 2-7: 3D Reconstruction surface HRBFQI.
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Figure 2-8: Hausdorff distance comparing our approach with two algorithms of the state of

the art. The marks indicate the average reconstructed surface of the 16 images

and the bars the standard deviation.

Figure 2-8 shows that the average Hausdorff distance for the reconstructed surfaces is shorter

for our method, a smaller distance indicates that our reconstruction methodology has a better

performance than the methods we compare. We can also observe that the standard deviation

in our method is smaller, which shows that the surfaces generated are consistent in most

cases. This is because the surface of the spleen is smooth and there are no sudden changes

in its shape. Therefore, the new contours generated replace the deleted contours, as well

as correspond to the shape of said deleted contours. We can say that our scheme allows

reconstructing surfaces from a few contours. The generated surface can serve as a guide to

give a general shape of an anatomical structure, but they would not be useful in the diagnosis

since we are generating new data that may not be real.



3 Surface reconstruction of point clouds

by parts using implicit reconstruction

methods

3.1. Materials and Methods

3.1.1. Implicit Surface

The objective of the implicit surface reconstruction is to find a function f : R3 → R which

defines an approximate implicit surface and satisfies f(p) = 0, for each p1 lying on the

surface. The implicit surface S ′ = {pi ∈ R3|f(pi) = 0} can be declared as a zero-level set

of the signed distance function f(p) [37]. The value that the function takes in a point can

be defined as the Euclidean Distance to the point closest to the surface. The domain can be

seen as a signed distance field. The points on the outside of the surface take positive values,

and the points inside the surface take negative values. The values of the implicit function

and the implicit surface can be expressed as:
f(p) = 0, on-surface

f(p) = +d(p,p′), exterior-surface

f(p) = −d(p,p′), interior-surface

(3-1)

Such that p ∈ R3 , and d(p,p′) is the distance from a point p to a next point p′ on the

surface S.

3.1.2. Training Point Cloud Generation

As stated in the previous section, the objective is to estimate a function f that reproduces the

signed distance in the proximity of the surface. To avoid the trivial solution, points outside

the surface are added to the input data, and they are given values other than zero [8]. One

way to obtain points off the surface and extend P is by considering the set of normalized

normal directions ni of the surface to S in the points pi [11]. The calculation of normals is
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done with [38]. For each p of P , additional points defined as.

p+
i = pi + λni (3-2)

p−i = pi − λni i = 1, ..., n (3-3)

where λ which is given by λ = 0,4ς, ς = min( d
i 6=j

(pi, pj)). The new set of extended training

data is given by the union of.

P ext = P ∪ P+ ∪ P−, with P+ = {p+
i |pi ∈ P} , P− = {p−i |pi ∈ P} (3-4)

To reduce the computational complexity and the conditioning of the interpolation problem,

many suggest that the interpolation fits only a subset Y = {yi ∈ R, i = {1, .., N}} of Pext[11].

It is assumed that the signed distance function f is 0 in P , 1 in P+ and −1 on P−. Therefore,

f could only take the following values for the extended data. That you assign to each pair

of elements of the input space P ,

f(p) = 0, if p ∈ P (3-5)

f(p) = +1, if p ∈ P+ (3-6)

f(p) = −1, if p ∈ P− (3-7)

For the interpolation, support vector regression (SVR) is used

3.1.3. Linear SVR

Given a training set G = {(p1, y1), ..., (pm, ym)}, where pi ∈ R3, yi ∈ R and G ∈ Pext, in

which it is assumed that the values and of all the samples of G can be adjusted (or quasi-

adjusted) by a linear functional, the objective of task regression is to find the parameters

ω = {ω1, ..., ωm} that allows to define the function:

f(p) =< ωT ,p > +b (3-8)

To allow some noise in the training examples, the error condition can be relaxed between the

value predicted by the function and the actual cost. To do this, we use the call loss function

ε-insensitive. Characterized by being a linear function with a sensitive area, of width 2ε, in

which the error is null, and is defined by:

Lε(y, f(x)) =

{
0 if |y − f(p)| ≤ ε

|y − f(p)| − ε in other cases
(3-9)

The main reason for choosing this function is to allow some dispersion of the solution, so that

all the examples that remain confined in the defined tabular region±ε,will not be considered a

support vector,as show in the Figure 3-1. Given that in practice it is challenging for training
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data to be adjusted to the a model with a prediction error equal to zero, the concept of

soft margin is used. For this purpose, the slack variables ξ+
i and ξ−i , allows quantifying the

magnitude of the error. Thus, the variable ξ+
i > 0 when the prediction of the sample f(pi) is

greater than its real value, yi, in an amount greater than ε,i.e. f(pi)− yi > ε. Otherwise, its

value will be zero. In the opposite case, similarly ξ+
i < 0 when the real value of the example

is higher than its prediction in an amount greater than ε, i.e. f(pi)− yi < ε. Otherwise, its

value will be zero. Therefore, the function to be optimized will be:

mı́n
1

2
〈ω, ω〉+ C

n∑
i=1

(ξ+
i + ξ−i )

s.t (〈ω,p〉+ b)− yi − ε− ξ+
i ≤ 0

yj − (〈ω,p〉+ b)− ε− ξ−i ≤ 0

ξ+
i , ξ

−
i ≥ 0, i = {1, ...,m} (3-10)

ξ

∈

ξ -

+

+

ij

∈-

∈-∈+

Figure 3-1: SVR, shows the relationship between slack variables, ξ+
i + ξ−i , and the tabular

zone ε-insensitive

In 3-10 the parameter C > 0 adjusts the trade-off between the closeness of the solution to

the data points and its smoothness [5]. Also determines the amount up to which we tolerate

deviations higher than ε. So only an immense value of the constant C, in the limit case

(C →∞). We would be considering that the set is correctly represented by our hyperplane

predictor (ξi → 0).On the contrary, a number too small for C would allow high ξj values,

that is, we would be admitting a very high number of poorly represented data

The problem of optimization with restrictions belongs to a problem of quadratic program-
ming and is approached through the theory of optimization. The theorem states that an
optimization problem, called primal, has a dual form if the function to be optimized and the
constraints are strictly convex functions. Under these circumstances, the dual problem allows
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us to obtain the solution of the primal problem [32]. The key idea is to construct a Lagrange
function from the objective function 3-10 (primal) and the corresponding constraints, by
introducing a dual set of variables. It can be shown that this function has a saddle point
concerning the primal and dual variables at the solution [32]. As follows,

L(ω, b, ξ+, ξ−, α−, α+, η−, η+) =
1

2
< ω,ω > +C

N∑
i=1

(ξ+
i + ξ−i )−

N∑
i=1

α+
i (ε+ ξ+

i − yi+ < ω,pi > +b)−

N∑
i=1

α−i (ε+ ξ−i +yi− < ω,pi > −b)−
N∑
i=1

(η+ξ+
i + η−ξ

−
i )

(3-11)

L is the Lagrangian. ω, b, ξ+, ξ− are original variable of the problem and α−, α
+
, η−, η+ are the

dual variables associated with the restrictions. What we are looking for is:

máx
α−,α+,η−,η+

{ mı́n
ω,b,ξ−,ξ+

L(ω, b, ξ−, ξ+, α−, α+, η−, η+)} (3-12)

We understand that the variables of the dual are positive. We also deduced from the saddle point

condition that the partial derivatives concerning the primary variables should be canceled for the

optimal [32].

∂L

∂ω
= ω +

N∑
i=1

(α+
i − α

−
i )p1 = 0 (3-13)

∂L

∂b
=

N∑
i=1

α−i −
N∑
i=1

α+
i = 0 (3-14)

∂L

∂ξ+
i

= C − α+
i − η

+
i = 0 (3-15)

∂L

∂ξ−i
= C − α−i − η

−
i = 0 (3-16)

with the only restriction of {α−i , η
−
i } ≥ 0. Substituting the previous equations in function 3-11 we

obtain:

máx
α−,α+

{1

2

N∑
i,j=1

(α+
i − α

−
i )(α+

j − α
−
j ) < pi,pj > +C

N∑
i=1

(ξ+
i + ξ−i )−

N∑
i=1

α+
i (ε+ ξ+

i − yi+ <

(
N∑
i=1

(α−i − α
+
i )pj

)
,pi > +b)−

N∑
i=1

α−i (ε+ ξ−i +yi− <

(
N∑
i=1

(α−i − α
+
i )pj

)
,pi > −b)−

N∑
i=1

((C − α−+
i )ξ+

i + (C − α−i )ξ−i )} (3-17)
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simplifying 3-17, we get the following dual optimization problem:

máx
1

2

N∑
i,j=1

(α+
i − α

−
i )(α+

j − α
−
j ) < pi,pj > −ε

N∑
i=1

(α+
i + α−i )+

N∑
i=1

yi(α
+
i − α

−
i )

s.a
N∑
i=1

(α+
i − α

−
i ) = 0

α+
i , α

−
i ∈ [0, C] (3-18)

The regressor associated with the linear function sought turns out to be

f(x) =
N∑
i=1

(α−i − α
+
i ) < pi,pj > +b (3-19)

In this way, the desired function is obtained without depending of the resolution of the problem of

the dimension in which the input examples are located and would rely solely on the support vectors.

To complete our regression function we should calculate for this we use the Karush-Kuhn-Tucke(KKT)

[32] slack complementarity conditions. These that in the optimal solution the product between the

slack variables and the dual constraints must be annulled. That is:

α+
i (ε+ ξ+

i +y − yi+ < ω,pi > +b) = 0

α−i (ε+ ξ−i +yi − y+ < ω,pi > −b) = 0 (3-20)

(C − α+
i )ξ+

i = 0

(C − α−i )ξ−i = 0 (3-21)

Expression 3-21 allows us to deduct the samples p, y such that α+
i = 0 or α−i = 0. They would be

out of the ε − tube. Being α+
i α
−
i = 0, you can not activate two dual variables associated with the

same data at the same time. In the case that α+
i α
−
i ∈ (0, C), we would have that the corresponding

ξ+
i , ξ

−
i variables must cancel, so we could clear the value of b∗ of the two restrictions:

b = yi− < ω,pi > −ε, if α+
i ∈ (0, C)

b = yi− < ω,pi > +ε, if α−i ∈ (0, C) (3-22)

3.1.4. non-linear SVR and Kernelization

We consider the same G ∈ Pext data set. Let Φ : P → F is the transformation function that maps

each point of P into a dimensional space, which is called feature space. Therefore, each point of P
corresponds to a point in F , where Φ(p) = {φ1(p), ..., φm(p)} and ∀φi(p), i = {1, ...,m}, such that

φj(p) it is a non-linear function. F is a Hilbert space.

Our objective will be to transfer our examples to this new space and to find here the function that

best approximates the images of our group. The function we are looking for will be as follows:

f(p) =< ωT , φ(p) > +b (3-23)
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The primal problem is raised as in section 3.1.4. But in this case it does not depend directly on the

examples of the set but on its images for a certain function φ.

mı́n
1

2
〈ω, ω〉+ C

n∑
i=1

(ξ+
i + ξ−i )

s.t (〈ω, φ(p)〉+ b)− yi − ε− ξ+
i ≤ 0

yi − (〈ω, φ(p)〉+ b)− ε− ξ−i ≤ 0

ξ+
i , ξ

−
i ≥ 0, i = {1, ...,m} (3-24)

This case, after being transformed by the function φ, these examples could have an extremely high

dimension, which would complicate in excess the resolution of this primal problem. By analogy we

could deduce the dual problem, taking into account the linear case.

max
1

2

N∑
i,j=1

(α+
i − α

−
i )(α+

j − α
−
j ) < φ(pi), φ(pj) > −ε

N∑
i=1

(α+
i + α−i )+

N∑
i=1

yi(α
+
i − α

−
i )

s.a
N∑
i=1

(α+
i − α

−
i ) = 0

where α+
i , α

−
i ∈ [0, C] (3-25)

We can solve the previous problem without getting to know the function φ explicitly. After proposing

the dual problem, the objective function depends on the dot product of the images of the data.

Therefore we can use a Kernel, instead of calculating the dot products in F . Then we define a

function kernel K : P × P → R, a real value corresponding to the scalar product of the images of

those elements in the new space F :

K(p,p′) =< Φ(p),Φ(p′) > (3-26)

where Φ : P → F . By transforming the input space to the feature space can be different from an

infinite set of base functions, the question arises as to how to transform the input data, in another

space of infinite dimension. The following theorem answers the question:

Aronszajn’s theorem. Compute K : P × P → R which is symmetric and positive semi-definite,

there is a Hilbert space and a function Φ : P → F such that

K(p, p′) =< Φ(p),Φ(p′) > ∀p,p′ ∈ P (3-27)

An essential consequence of this theorem is that to build a kernel function it is not necessary to

do it from a set of functions, Φ(p) = {φ1(p), ..., φm(p)}. Simply define a function that meets the

above conditions.
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Once you have set the kernel to use, we will solve the problem in the same way:

máx
1

2

N∑
i,j=1

(α+
i − α

−
i )(α+

j − α
−
j )K(pi,pj)− ε

N∑
i=1

(α+
i + α−i )+

N∑
i=1

yi(α
+
i − α

−
i )

s.a
N∑
i=1

(α+
i − α

−
i ) = 0

where α+
i , α

−
i ∈ [0, C] (3-28)

and the prediction function:

f(p) =
N∑
i=1

(α−i − α
+
i )K(pi,p) + b (3-29)

The most used kernel is the Gaussian kernel:

K(pi,p) = G(‖p− pi‖ ;σ) = exp

(
‖p− pi‖2

σ2

)
(3-30)

3.2. Experimental Set-Up

3.2.1. Dataset

The proposed approach is evaluated in the MM-WHS: Multi-Modality Whole Heart Segmentation

with magnetic resonance imaging (MRI); the whole dataset is freely available online 1. The data-

base has 120 multimodality whole-heart images from multiple sites, cardiac CT/CTA, and cardiac

MRI covering all substructures of the heart. All these clinical data have obtained the approval of

institutional ethics and have been anonymized. In this case, we are only interested in the images

of cardiac MRI. The data were collected according to the clinical setting in vivo, and the data

were used in clinics. So the data had several image qualities, some were of relatively low quality.

However, it is necessary to include these data sets to validate the robustness of the algorithms

developed when it comes to real clinical use.

MRI data were acquired at St Thomas Hospital and Royal Brompton Hospital, London, United

Kingdom, using 3D balanced free precession sequences (b-SSFP), with an acquisition resolution of

approximately 2 mm in each direction and they were reconstructed (resampled) in about 1 mm.

For training data sets, manual segmentation of the seven entire heart structures is provided [39, 2]

left ventricle blood cavity, right ventricle blood cavity, left atrium blood cavity, right atrium blood

cavity, the myocardium of the left ventricle, ascending aorta and pulmonary artery.

3.2.2. Point Cloud Construction

We want to reconstruct the myocardium of the left ventricle (MLV). Therefore, we must obtain the

myocardial limit of the MRI of the database that has a size of 288 × 288 × 133 voxels. The MLV

1http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
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point cloud is constructed from the edge of the manual segmentations provided by the database, as

shown in Figure 3-2. The coordinates of each point correspond to the location of the edge pixels

in the magnetic resonance; the values of the point cloud are scaled between [−1, 1].

(a) Slice MRI (b) Point cloud MLV

Figure 3-2: Point cloud extracted from the myocardium of the left ventricle.

3.2.3. Estimation of the SVR parameters

The most straightforward and most used procedure is to define a mesh over the space of the

parameters and select the values to the parameters that provide better estimators of predicted

prediction error. The parameter grid this defines by the following values.

C = 2T1 , T1 = {0, 0,5, .., 5}
ε = 10T1 , T2 = −{1, 1,5, .., 5}
σ2 = median(d(pi, pj))× T3, T3 = {0,1, 0,2, ..., 1}

The most used method for estimating the prediction error is cross-validation. This method calcula-

tes the error directly when the method, or the prediction function f(p), is applied to a test sample.

Denoted by Err = E[L(y, f(p)],L(y, f(x)) was defined, as in the root of the mean square error

(RMSE) [5].

If we had a sufficiently large set, we could select a validation set to evaluate our prediction model.

Since the collection is often not large enough, we could say that this will not always be possible. In

cases where there is not a broad set, we can use cross-validation to evaluate our predictor. When

we apply cross-validation, we subdivide our set of k approximate parts of the same size. We use

k−1 parts to adjust the model and the remaining ones to validate. We perform this same procedure

K times, in our case, K = 10, selecting each time a different validation set. In each case, RMSE

is calculated for each set of parameters, and the settings with the smallest error are chosen to

reconstruct the point cloud.
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3.2.4. Method description

We are based on the premise that dividing the point cloud into several sections gives us a more

accurate reconstruction of the surface. To demonstrate this, the MLV is rebuilt first with all the

points and then divides the data. We use planes parallel to the axes of three-dimensional Euclidean

space to separate the point clouds, as shown in Figure 3-3.

We generate the extended point cloud as shown in the section 3.1.2, the normal for each point in

the cloud can be seen in Figure 3-3c. Then, we divide the point cloud, calculate the parameters for

the SVR as described in the section. A signed distance function is obtained for each section of the

point cloud or the entire cloud, the function is evaluated in a 3D grid of 200× 200× 200 and cubes

are used Marching [23], to extract the surface, the sections of the surfaces are aligned, if necessary

they are scaled according to the original points, to align the points that we use ICP [7]. Finally, we

join the surface sections of MLV with boolean mesh operations defined in PyMesh, in this case,

we use a union.

(a) Planes that cut the point

cloud

(b) Point cloud section (c) Normals point cloud

Figure 3-3: Point cloud process schema.

3.2.5. Results and Discussion

By dividing the point cloud into several sections, as shown in Figure 3-4b, we obtain several

advantages. One is that SVRs fit better with each data set. This can be seen since the surface

of Figure 3-4a is softer and the sections of Figure 3-4b have a more detailed surface. One of the

parameters that affect the detail is σ2 because it affects the extent of the influence of each support

vector p in its vicinity. Using Gaussian on a very small scale, it would allow reconstructing the finer

details, while a large-scale Kernel would provide a coarser approximation [5].

As seen in the graph 3-5, if we divide our initial point cloud into several sections, we have a bet-

ter reconstruction. With more divisions, the distance from Hausdorff decreases as the number of

sections increases. Therefore, it can be inferred that the reconstructed surfaces in the points cloud

sections are more similar to the original data.
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(a) SVR reconstruction (b) Split point cloud (c) Mesh union

Figure 3-4: Surface reconstruction myocardium of the left ventricle.

We can conclude that the use of a single-scale core may not be the best option when the data set is

sampled from a non-stationary source that generates data across a uniform variety in some regions

and data with rapid variations in others.
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Figure 3-5: Performance of our approach, in 26 reconstructed 3D surface, the red diamond

indicates the average of the surface when dividing the initial point cloud, the

bar indicates the standard deviation.



4 Bifurcations on cross-sections.

4.1. Materials and Methods

4.1.1. Convex Hull

Convex hull from a set of points with M samples Z = {zk ∈ R2, k = {1, 2, ...,M}}, as the intersec-

tion of all convex sets containing z [4, 30], its convex T is given by the expression:

T (z) =

{
k∑
i=1

%izi|zi ∈ Z, %i ∈ R, %i ≥ 0,
k∑
i=1

%i = 1

}
(4-1)

In the case of 2-dimensions, if not all the points are aligned, then its convex envelope corresponds

to a convex polygon whose vertices are some of the points of the initial set of points.

Figure 4-1: The convex hull of a set of points

4.1.2. Delaunay triangulation

A triangulation of a set of points Z, is the decomposition of its convex envelope into a set of trian-

gles, so they can only intersect at their edges, and all z ∈ Z is the vertex of at least one of them.

There is no single triangulation for the same set of points. One of the best-known forms of triangles

sets of points is through a triangulation of Delaunay. It has the property that each trio of points

belongs to a triangle, the circumcircle circumscribed to it has no other point in its interior.
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The property is called the Delaunay condition and allows to ensure that the angles the interiors of

the triangles should be as large as possible, maximizing the narrowest angle of the triangulation

and thus avoiding - when possible - the formation of triangles thin.

Figure 4-2: The delaunay triangulation of a set of points.

4.1.3. Voronoi Diagram

It is an interpolation method, based on Euclidean distance. It is created by joining points to each

other, tracing the bisection of the union segments. The intersections of the bisection determine a

set of polynomials in a 2D space, around a control point, in such a way that the perimeter of the

generated polygons is equidistant from the neighboring points and designates an area of influence.

Given the Euclidean distance between two points in R2. like d(zk, zo). Let Z, the set of k different

points in the plane that are called “sites”. The Voronoi diagram de Z is defined, as the subdivision

of a plane in k regions, for each z ∈ Z. Fulfilling the property of proximity in which a point zo
belongs to the region of a zi site. If and only if d(zi, zk) < d(zi, zk) for each zk ∈ Z, k 6= l. We

denote the Voronoi diagram of Z by V or(Z). Each region that corresponds to a zk site will be

denoted as V r(zk) and it will be called Voronoi region of zk[30].

The Voronoi region for a site zk, is constructed from the intersections of the half-planes formed by

plotting the bisectors of zk towards the sites zl, l 6= i. Taking the case where there are only two

sites z and zor, the line segment zzo is plotted and the zoz. This bisector divides the plane into two

half-planes, where the half-plane containing z, represented as ~(z, zo) represents the region of all

points closest to z that to zo, and the half-plane that contains a(~(z, zo)), houses all points closest

to z and z0. According to this, then you can establish in a general way how the Voronoi region is

defined for a site pi[30].

V r(zk) =

n⋂
k=1,l 6=k

~(zk, zl) (4-2)
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V r(zk) is composed by the intersection of n−1 semiplanes that make up a convex polygonal region

that can be open or closed.

Figure 4-3: The Voronoi Diagram of a set of points

4.1.4. Surface reconstruction from curve networks (SRCN).

Given a set of planes D ∈ R3 possibly non-parallel cross-sections partitioned D by curve networks

labelled 2D regions [21], We desire a surface network with the following properties. The surface

network divides the space into labeled 3D regions, which are two regions that share conventional

boundaries, have different labels, and the surface interpolates the networks of curves, and the labels

of the partitioned 3D regions are consistent with those of the 2D areas of each cross section.

The algorithm of surface reconstruction from curve networks. Follow the divide-and-conquer stra-

tegy and consider the partitioning of space into cells by all cross-section planes. The core of the

algorithm is the construction of a closed surface net-work within each partitioned cell, from between

two parallel planes to within an arbitrary convex space [21].

4.1.5. Topology-constrained surface reconstruction (TCSR)

The input of the algorith is a set of planar cross-secctions, each containig one or multiple curves

along the intersection between the plane with the object [40]. These curves divide each cross-section

plane into internal and external regions. The cross sections may not be parallel in all cases and

the section curves may have an arbitrary shape. The output of the algorithm is a closed surface

interpolated between the section curves. The method combines divide and conquer with a global

optimization. The arrangement of the cross-sections, which partitions the space into convex cell,

is considered.Like each cross-section, the cell boundary is divided by section curves into internal

and external regions. The part of the final surface inside each cell is calculated, which we call a

tile,each delimited by one or more section curves at the cell boundary.A tile must divide the cell
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into internal and external volumes that match the labeling at the cell boundary [40].

The algorithm proceeds in three steps,i)calculate a family of different mosaic topologies within

each cell and mark the probability of each topology. ii) Select a tile topology by tge cell so that

the topology of the combined surface of all the cells has the gender specified by the user, while the

cumulative score is maximized,ii) output a smooth surface that realizes the chosen tile topology

within each cell [40].

4.2. Method description

Let be a set of closed of closed and smooth curves on a 2D plane. A base curve, in the plane-1,

and multiple curves on the plane-2 being the plane-1 parallel to the plane-2, as shown in Figure 4-4.

1
1

2
1

2
2

2
3

2
4

Plane-1

Plane-2

Figure 4-4: We have a curve or contour of origin Ω11, and several objective contours Ω2m

To interconnect Ω1 with Ω2m, we need to generate some control points. It is necessary to establish

several points or vertices between planes. We define that the contour of origin must be connected

to all the objective contours. For the control points are obtained from the following procedure

(extracted from [12]):

As a first step,a set of points called Ω2 is created with all the contours of plane 2, for this set we

calculate the convex hull (CVH). As well as Delaunay triangulation, then we identify the Voronoi

triangles, which are defined as the triangles where their vertices correspond to points in three

different contours. We seek to replace the limits of VCH with the sides of the Voronoi triangle that

are parallel. We will establish a criterion for this purpose. First, we determine that the limits of

VCH are parallel to the sides of the triangles, when we find the corresponding sides, we calculate the

opposite internal angle; if this angle is higher than that of a threshold (θ > τ), the side is removed.

The remaining sides of the Voronoi triangle are estabished as new limits of VCH. The remaining

sides of the Voronoi triangle. In each Voronoi triangle, the Voronoi vertex is calculated. A line

segment is generated between the vertices of the Voronoi triangles and the Voronoi vertices. If two
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line segments share the same vertex, this vertex is replaced by adjacent vertices, at an appropriately

set distance. We generate a polynomial line with the vertices; this polynomial line is projected on

the curve of the plane-1 with the help of a algorithm registration points [28]. Subsequently, we

create a line segment between the vertices and their projection on the line. Every Vertice Voronoi

is projected, taking into account the projection of the vertices of the triangles that are connected

to it.

2
1

2
1

2
3

2
4

(a) Connection contours plane 2

2
1

2
2

2
1

2
1

(b) Interconnection of planes

(c) Control points between planes (d) Shape Morphing by sessions

Figure 4-5: Basic form of connections between planes.

4.3. Results and Discussion

Based on the control points we divide the region between the planes into several sections to delimit

these regions, we generate intermediate closed curves with a B-Spline [35] taking into account the

control points as shown in the Figure 4-5. In Figure 4-5d, we split the region into five sections, each

of these regions starts from the initial contours until the intermediate curves, and in the central

zone, the sections are connected. Finally we join the surfaces of each section.

To evaluate the performance of our methodology, evaluate the available Bronchi 3D models is freely

available online 1, which are anatomical structures that have bifurcations. We extract a region of

1https://www.3dcadbrowser.com/
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Figure 4-6: Surface reconstruction between cross-section with synthetic data.

the bronchi where we will evaluate our proposal as in Figure 4-7a.

As it was demonstrated previously when dividing the region into several sections, it is much more

comfortable the reconstruction, in this case, it facilitates the interpolation of forms. In Figure 4-6

we observe that our methodology generates a better surface thanks to the added control points, this

allows us to create a topology that connects the different contours. The surface generated between

the contours is smooth, since assuming another type of surface would cause additional reconstruc-

tion problems. Again we can see in the Figure 4-7c, 4-7d and 4-7b that our methodology generates

a satisfactory reconstruction of the surface between contours. The upper contour is connected to

the lower contours, which shows that our method is capable of generating bifurcations, taking into

account only the segmentation of two cross-sections.

(a) Bronchus (b) Reconstruction

Proposed approach

(c) SRNC reconstruction (d) TCSR reconstruction

Figure 4-7: Comparison surface reconstruction of the bronchus section.

In the Figure 4-8 we can see that our performance is superior to SRNC and TCSR, so we can

conclude that our methodology generates a robust surface reconstruction, which takes into account

the bifurcations between the cross-sections.
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Figure 4-8: Performance of our approach, surface reconstruction in different bronchus sec-

tion.



5 Conclusion and Future Work

5.1. Conclusion

In this work, we introduce three methodologies that allow us to reconstruct the surfaces of anato-

mical structures based on medical images. We must bear in mind that the task we want to do. If we

are only interested in the shape of the structure, we recommend the first proposal, because when

we generate new contours with shape morphing, we introduce information on the surface that may

not be reliable, which affects the measurement of the characteristics on the surface. But it gives us

the advantage of not investing too much time and effort in stages such as segmentation and having

a reconstruction that shows the main characteristics of the surface and form.

In the second methodology proposed, when dividing our data. We calculate the signed distance

function better since we can better adjust the SVR parameters as well as decrease the calculation

time. When we split, we take into account the local characteristics of the data, which allows us to

better adjust the reconstructed surface in certain regions, which contributes to improving the total

reconstruction of our data.

Reconstruction between cross-sections is a difficult problem to address, due to the limited infor-

mation available, in this case. We demonstrate that our methodology that combines base shape,

control points and Shape morphing generates good results.

5.2. Future Work

The interpolar forms between contours only take into account two contours, and if we add informa-

tion from the other contours, we could add information about the structure form in general, which

would allow us to have an approximate improvement of the surface.

Method two, can be improved if we take into account local characteristics, such as the curvature of

a region or the presence of noise when dividing the data, taking into account that we could modify

the mesh size of the parameters, decrease its extension, for example, where the data is soft and

increase the size of the grid in very noisy regions.

In the reconstructions of bifurcations, we assume that we start with a single contour, although it is

possible that this condition is fulfilled in practice. We have to cover more situations if we want to

generalize our methodology. Therefore we must take into account in the foreground we have more

than one contour, to achieve this it would be convenient to have information apriori of the form of
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the structure, to calculate the connections between contours.
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