
A conceptual stochastic rainfall-runoff
model applied to tropical watersheds

Sara María Vallejo Bernal

Thesis presented in fulfilment of the requirements for the degree of:
Master of Science in Applied Mathematics

Advisor: Prof. PhD. Jorge Mario Ramirez Osorio
Co-Advisor: Prof. PhD. Germán Poveda Jaramillo

Research Area: Stochastic Hydrology

Universidad Nacional de Colombia
Faculty of Science, School of Mathematics

Medellín, Colombia
2020



Quien ha visto la esperanza, no la olvida. La
busca bajo todos los cielos y entre todos los
hombres. Y sueña que un día va a encontrarla
de nuevo, no sabe dónde, acaso entre los suyos.
En cada hombre late la posibilidad de ser o, más
exactamente, de volver a ser, otro hombre.

Octavio Paz



Agradecimientos

A mi esposo Yeisson, por darle a mi corazón, la paz que mi mente necesita. A mi profesor
Germán Poveda, por enseñarme que se puede construir la vida, tal cual cómo uno la sueña. A mi
profesor Jorge Mario Ramírez, por creer siempre en mí, incluso cuando yo misma dejé de hacerlo.
A mi Alma Mater, la Universidad Nacional de Colombia, el lugar donde conocí la esperanza, el
lugar donde volví a ser otra mujer.



Abstract

We derive and solve a linear stochastic model for the evolution of discharge and runoff in an
order-one watershed. The system is forced by a statistically stationary compound Poisson process
of instantaneous rainfall events. The relevant time scales are hourly or larger, and for large times,
we show that the discharge approaches a limiting invariant distribution. Hence any of its prop-
erties are with regard to a rainfall-runoff system in hydrological equilibrium. We give an explicit
formula for the Laplace transform of the invariant density of discharge in terms of the catchment
area, the residence times of water in the channel and the hillslopes, and the mean frequency and
the probability distribution of rainfall inputs. As a study case, we consider a watershed under a
stationary rainfall regime in the tropical Andes and test the probability distribution predicted by
the model against the corresponding seasonal statistics. A mathematical analysis of the invariant
distribution is performed yielding formulas for the invariant moments of discharge in terms of
those of the rainfall. The asymptotic behavior of probabilities of extreme events of discharge is
explicitly derived for heavy-tailed and light-tailed families of distributions of rainfall inputs. The
scaling structure of discharge is asymptotically characterized in terms of the parameters of the
model and under the assumption of wide sense scaling for the precipitation amounts and the
inverse of the residence time in the channel. The results give insights into the conversion of
uncertainty inherent to the rainfall-runoff dynamics, and the roles played by different geophysical
variables. The ratio between the mean frequency of rainfall events to the residence time along the
hillslopes is shown to largely determine the qualitative properties of the distribution of discharge.
Finally, a purely theoretical approach is proposed to reinterpret the hydrological concept of return
period in the context of time-continuous Markov processes.

Keywords: stochastic hydrology, rainfall-runoff modeling, Poisson precipitation.



Un modelo conceptual estocástico de
lluvia-escorrentía aplicado a cuencas

tropicales

Resumen

En este trabajo derivamos y resolvemos un modelo estocástico lineal para la evolución del caudal
y la escorrentía en una cuenca hidrográfica de orden uno. El sistema es forzado por un proceso de
Poisson compuesto, estadísticamente estacionario, de eventos de lluvia instantáneos. Las escalas
de tiempo relevantes son horarias o mayores, y cuando el tiempo tiende a infinito, mostramos que
el caudal se acerca a una distribución invariante límite. Por tanto, cualquiera de sus propiedades
está relacionada con un sistema de lluvia-escorrentía en equilibrio hidrológico. Damos una fór-
mula explícita para la transformada de Laplace de la densidad invariante del caudal en términos
del área de la cuenca, los tiempos de residencia del agua en el canal y las laderas, y la frecuencia
media y la distribución de probabilidad de los eventos de lluvia. Como caso de estudio, consider-
amos una cuenca bajo un régimen de lluvias estacionario en los Andes tropicales y evaluamos la
distribución de probabilidad predicha por el modelo con las estadísticas estacionales correspondi-
entes. Realizamos un análisis matemático de la distribución invariante obteniendo fórmulas para
los momentos invariantes del caudal en términos de los de la precipitación. El comportamiento
asintótico de las probabilidades de los eventos extremos del caudal se deriva explícitamente para
familias de distribuciones de lluvia de cola pesada y cola ligera. La estructura de escalamiento
del caudal se caracteriza asintóticamente en términos de los parámetros del modelo y bajo el
supuesto de escalamiento simple para la precipitación y el inverso del tiempo de residencia en el
canal. Los resultados dan una idea de la conversión de la incertidumbre inherente a la dinámica
lluvia-escorrentía y los roles que juegan las diferentes variables geofísicas. Mostramos que la
relación entre la frecuencia media de los eventos de lluvia y el tiempo de residencia en las laderas
determina en gran medida las propiedades cualitativas de la distribución del caudal. Finalmente,
proponemos un enfoque puramente teórico para reinterpretar el concepto hidrológico de período
de retorno en el contexto de procesos de Markov continuos en el tiempo.

Palabras clave: hidrología estocástica, modelo de lluvia-escorrentía, Precipitación de Poisson
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1. Introduction

Understanding and modeling the process by which rainfall is converted into runoff in watersheds is
a key problem in hydrology. The uncertainty related to occurrence and intensity of rainfall induces
uncertainty in the discharge in non-trivial ways that are mediated, in turn, by intertwined physical
processes constraining the flow of water through the landscape. See for example Te Chow et al.
(1962); Gupta et al. (2007).

Traditionally, an empirical approach has been proposed to address this challenge. The mathemat-
ical models consist of a system of deterministic equations that can be implemented by calibrating
some parameters based on the response to a predetermined and well-known precipitation event so
that the simulated discharge matches the in situ measurements (Snyder, 1938; Nash, 1957, 1959;
James et al., 1987; Bhunya et al., 2011). Once calibration is achieved, responses to different
precipitation events are studied under the assumption that the estimated parameters will remain
constant regardless of the new rainfall regime in the watershed. In spite that diverse models have
enriched the hydrological literature (Nguyen et al., 2015; Quintero et al., 2016; Hrachowitz and
Clark, 2017), multiple attempts to understand and predict rainfall-runoff processes have proven to
be a significant source of uncertainty in hydrological design (Moradkhani and Sorooshian, 2009;
Beven, 2011).

However, a distinct body of literature has been developed within the framework of conceptual
stochastic models pioneered by Eagleson (1972). This new approach uses a probabilistic descrip-
tion of rainfall as input to a dynamical model of runoff, routing and discharge. In such models,
the watershed is considered as an ensemble of interconnected conceptual storages – hillslopes and
stream links – that dynamically respond to a randomly evolving precipitation field (Reggiani et al.,
1998). Unlike the traditional approach, conceptual stochastic models do not intend to focus on
the uncertainty associated with the response of the watershed to individual rainfall events. The
purpose is to understand the emergent properties of the dynamic system and its relation to the
probabilistic properties of the uncertainty.

This thesis aims at deriving and studying robust probabilistic properties of the rainfall-runoff pro-
cess, namely the equilibrium probability distribution of discharge and its dependence on both, the
geophysical properties of the watershed, and the probabilistic structure of rainfall. To achieve this
goal we consider a solvable, conceptual, mathematical model recently introduced by Ramirez and
Constantinescu (2020). There, the authors solve and analyze the linearized mass and momentum
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equations of Gupta and Waymire (1998) for the surface runoff and discharge at all streams and
hillslopes within the river network of a spatially heterogeneous watershed forced by a random
rainfall field. Here, we review and expand on some of the results of Ramirez and Constantinescu
(2020) within the context of the hydrological processes involved in runoff generation in an order-
one watershed, and the associated transfer of uncertainty.

In essence, the model considered here reduces the hillslope-channel system to a couple of con-
nected linear reservoirs under a random instantaneous forcing. The reservoirs track the evolution
of hillslope runoff R(t) and river discharge Q(t) via coupled stochastic linear differential equations
driven by a random precipitation process p(t). Evapotranspiration is ignored, and p is assumed
to be net, runoff producing, rainfall. The time scales for t are of the order of hours or longer, and
we are in particular interested in the behavior as t→∞.

Net precipitation is considered in the model as a compound Poisson Process. What this means
is that the rainfall process p(t) is random, with rainfall events that are assumed instantaneous,
happening at an average rate of λ events per unit time. The precipitation amount falling over
the hillslopes during each event is independent of anything else, and significantly, of arbitrary
probability distribution density f .

Under all these simplifications, one can solve the stochastic differential equations for R(t) and
Q(t) and readily simulate them. The model itself is fully derived from first principles and solved
in chapter 2, where we also highlight the specific hypothesis that allowed us to simplify the
rainfall-runoff equations into a linear system. A comparative review of previously proposed solv-
able mathematical rainfall-runoff models can be found there as well.

But the most important result is that the model yields an exact characterization for the invariant
probability density g of the discharge Q which we present in chapter 3. In the case of a watershed
with a single river, g is written in terms of the rate of rainfall events λ, the probability density
of the rainfall amount f , the area of the watershed a, and two inverse time scales: H and K,
determining the structure of travel times for sub-surface and river flow, respectively. The result-
ing expression for g gives the uncertainty structure of discharge whenever subject to a climate in
statistical equilibrium.

The overarching objective of this work is to study the dependence of important features of g on
all other parameters. Our main concern is the role played by each component of the system in
determining emerging qualitative properties of the distribution of discharge; therefore, our model
is not intended for quantitative predictions of discharge on any particular basin. Notwithstanding
this, we do include a case study in chapter 4, where some of the predictions of the model are tested
against real data with the following explicit purpose: illustrate that whenever a small catchment
is under a rainfall regime that approximately satisfies the hypotheses of the model, the probability
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distribution of discharge is in fact adequately approximated by the invariant distribution com-
puted via the model. This validation exercise also yielded the following interesting observation:
the constant H determining the distribution of hillslope travel times is very difficult to statistically
identify, especially when compared to K. This is of course of relevance to our results listed above.

In chapter 5 we analyze the properties of the invariant distribution of discharge in relation to
the precipitation and the geomorphological features of the watershed. In section 5.1 we derive
the structure of the invariant moments of discharge, while in section 5.2 we study the asymptotic
properties of the probabilities of extreme events, namely, the behavior of the right tail of the invari-
ant distribution. We also provide a rigorous mathematical framework to study and analyze some
traditional concepts of the hydrology in the context of our model, such as the scaling properties
of the spatially averaged rainfall rates, residence times and river flows, which we present in section
5.3, and the return period of extreme hydrological events that is reinterpreted for time-continuous
stochastic process in section 5.4.

Finally, the conclusions are drawn in chapter 6. Some relevant technical details about the math-
ematical techniques used in this work are included in the Appendix.



2. A conceptual stochastic rainfall-runoff
model

In this chapter we formulate and solve linearized versions of the mass and momentum conservation
equations for an order-one watershed forced by a stochastic precipitation process. We start by
performing a first-principle derivation where we highlight how the storage-discharge relationships
can be simplified in order to arrive at a linear model. Then we pose a stochastic differential
equation for the rainfall-runoff system and its solution. Finally, we include a comparative review
of previously proposed solvable mathematical rainfall-runoff models.

Consider a watershed with a single river of length ` [L] surrounded by hillslopes of total area a [L2].
See Figure 1. We will derive linear versions of the mass and momentum conservation equations
for the discharge Q [L3/T] at the end of the stream, and the total runoff R [L3/T] flowing into
the channel from its surrounding hillslopes. Time is denoted by t and refers to the evolution of
hydrological variables at hourly to daily time scales.

Figure 1. Schematic representation of the channel and the hillslopes, showing all the variables involved
in the formulation of the stochastic rainfall-runoff model.
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Rain on the hillslope is assumed to be net, runoff-producing rainfall. Namely, we assume that the
watershed is subject to a precipitation intensity process p(t) [L/T] composed of a sequence of
random rainfall events, such that during the n-th event, an amount Pn [L] of water falls uniformly
over the hillslope. Each Pn is assumed to be the total height of water (rainfall minus evapotran-
spiration) available for infiltration and surface runoff.

The generated runoff per unit of cross-hillslope length is r(t, x, y) [L2/T]. For simplicity we assume
that r includes both Hortonian and Dunnian overland and sub-surface flow. Lateral flows are
neglected, possibly preventing the extension of our framework to the case of steep mountain
basins, where lateral flows play a decisive role in soil saturation dynamics during intense rainfall
events (Botter et al., 2007b). At a point with coordinate x [L] along the stream, the discharge is
q(t, x) [L3/T]. Here we will arrive at a linear model for the total runoff R(t) :=

∫ `
0
r(t, x, L) dx

and the discharge at the end of the river Q(t) := q(t, `).

2.1. Conservation of mass and momentum

Conservation of mass for the hillslope-channel system can be written as equations for the time
derivative of the cross-sectional area of the channel A(t, x) [L2] and the effective height of the
hillslopes runoff h(t, x, y) [L], in terms of the flows r and q:

∂h

∂t
= −∂r

∂y
+ p(t),

∂A

∂t
= −∂q

∂x
+ r(t, x, L), (2-1)

along with the boundary conditions

r(t, x, 0) = 0, q(t, 0) = 0. (2-2)

A complete description of the model needs the appropriate equations of conservation of momentum
on the hillslopes and channel, or equivalently, the specification of a relationship between h, A and
the flows r, q respectively. The conservation of momentum equation is taken to be the simplest
possible and the hillslope is modeled as a linear reservoir under the assumption that the runoff at
each point is proportional to the total upstream storage, r(t, x, y) = H

∫ y
0
h(t, x, ψ) dψ. Namely,

there exists H > 0 [1/T] such that ∂r
∂y

= Hh. Upon integration of the conservation of mass
equation on the hillslope one gets

1

H

∂

∂t

∫ L

0

∂r

∂y
dy =

∫ L

0

(
−∂r
∂y

+ p(t)

)
dy,

which by (2-2) and after further integration with respect to x, yields

dR

dt
= H (−R + ap) . (2-3)
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The equation for conservation of mass in the channel can be integrated along the longitudinal
variable to obtain

∂

∂t

∫ `

0

A(t, x) dx = −Q(t) +R(t). (2-4)

The momentum conservation equation for the channel can be cast as a relationship between the
total storage

∫ `
0
A(t, x) dx and the discharge Q(t). For example, Menabde and Sivapalan (2001)

use Chezy’s resistance law q = C(S/W )1/2A3/2 (where W [L] denotes the wet perimeter, S
denotes the stream slope and C [L1/2/T] is the Chezy coefficient) along with the simplification
∂A
∂x

= ∂W
∂x

= ∂W
∂t

= 0 to obtain

∂

∂t

∫ `

0

A(t, x) dx = `
dA

dt
=

2

3
`

(
1

C

√
W

S

) 2
3

Q−
1
3

dQ

dt
=

1

K(Q)

dQ

dt
. (2-5)

Note that the assumption of uniform flow implies the absence of pronounced topographic effects
and prevent from the use of more detailed models exploiting topographic properties (Botter et al.,
2007b). Equations (2-4) and (2-5) yields to

dQ

dt
= K(Q) (−Q+R) . (2-6)

Here we take one step further and suppose K(Q) ≡ K is constant. This is equivalent to assuming
∂A
∂x

= ∂v
∂x

= ∂v
∂t

= 0, where v [L/T] is the water velocity along the channel.

2.2. Dynamical interpretation of H and K

Since the quantities H and K will play an important role in what follows, we now provide a
dynamical interpretation of them. We define the residence time as the time spent by a water par-
ticle within the hillslope (or the channel), seen as the control volume for the underlying transport
process (Botter et al., 2007a).

We denote the position of a water particle flowing down the hillslope as y(t) [L] and its velocity
as w = dy

dt
[L/T]. By continuity, r = wh. The assumption ∂r

∂y
= Hh is therefore equivalent to

∂w

∂y
= H,

∂h

∂y
= 0,

which along with the boundary conditions (2-2) yields to w = Hy. Thus, y(t) satisfies dy
dt

= Hy(t)

and y(t) = y0e
Ht with y0 denoting the initial position of the water particle. The time it takes for

a particle with initial position y0 to reach the channel at y(t) = L is

t =
1

H
log

(
L

y0

)
,
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and its mean can be computed by integrating over all the possible values of the initial position y0

t =
1

L

∫ L

0

1

H
log

(
L

y0

)
dy0 =

1

H
.

The constant H can therefore be interpreted as the inverse of hillslope mean residence time.

Now, denote the velocity of the flow down the channel as v [L/T]. By continuity and the as-
sumption that ∂v

∂x
= 0, we have that Q = vA. Therefore, the assumption ∂v

∂t
= 0 is equivalent

to
∂Q

∂t
= v

∂A

∂t
.

Recall from (2-5) that

`
∂A

∂t
=

1

K

∂Q

∂t
,

then, the constant K [1/T] is then given by the inverse of the mean time it takes to transverse
the channel, K = v

`
.

This results are equivalent to assuming that the catchment-scale runoff and discharge are char-
acterized by an exponential residence time distribution, and that all uncertainties related to the
transport processes occurring within the hillslopes and the channel are parametrized by H and K
respectively. See McGuire et al. (2005) and references therein.

2.3. Poissonian precipitation

The uncertainty in the model comes solely from the precipitation process p in (2-3) which, at
time scales of interest here, can be approximated as a random sequence of instantaneous events.
As noted in Botter et al. (2008), this implicitly postulates that the size of the considered basin
is smaller than the correlation scale of rainfall events and that the timescales of the process of
interest are greater than the characteristic duration of single rainfall events. We therefore write p
as a random sums of impulses occurring at random times T1, T2, . . . , namely

p(t) :=
∞∑
n=0

Pnδ(t− Tn), (2-7)

where {Pn : n = 1, 2, . . . } is the sequence of independent and identically distributed (i.i.d) rainfall
amounts, having common but arbitrary probability density function

f(y) dy = P(Pn ∈ dy), n = 1, 2, . . .

The inter-arrival times {T0, T1 − T0, T1 − T2, . . . } are assumed to be independent and identically
distributed with fixed exponential distribution with mean 1/λ > 0 [1/T]. The counting process

N(t) := max{n ≥ 0 : Tn ≤ t},
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is a Poisson process, while
∫ t
0
p(s) ds =

∑N(t)
n=1 Pn is a compound Poisson process of intensity λ

and jump distribution f .

The formulation above concerns the case in which an order-one watershed is subject to a random,
yet statistically stationary precipitation regime p(t) of instantaneous Markovian events. Namely,
we are interested in the hourly to daily evolution of the precipitation, runoff and discharge within
a months to year-long season where the statistical properties of precipitation and the geomorpho-
logical properties of the catchment can be assumed constant.

We are well aware that no precipitation event is instantaneous, however this assumption is reason-
able when the time scale of the storm event is much smaller than the timescale of other continuous
time processes. We thus regard a precipitation event as ‘instantaneous’ if its duration is much
smaller than the the time scale of the hydrological response, defined as the mean water retention
time in the catchment (Botter et al., 2013).

Note also that the physical parameters H and K of the model are also assumed deterministic,
although in reality are highly uncertain, as illustrated in chapter 4. Botter (2010) consider a
similar model where the residence times are assumed random spatially. See also (Ramirez and
Constantinescu, 2020)

2.4. Solution

We now explicitly solve the 2-dimensional system of equations given by (2-3) and (2-6) for the
two processes of interest: Q(t) denoting the total stream flow at the most downstream point
of the river, and R(t) denoting the total runoff from the hillslopes into the river. The model is
succinctly written in terms of the following two-dimensional stochastic differential equation

dX(t) = MX(t) dt+ dY (t), (2-8)

where

X(t) =

[
Q(t)

R(t)

]
, M =

[
−K K

0 −H

]
, Y (t) =

N(t)∑
n=1

[
0

HaPn

]
.

If −M is a matrix with non-negative eigenvalues, then the only solution to the stochastic differ-
ential equation (2-8) is the stochastic process

X(t) = eMtX(0) +

∫ t

0

eM(t−s) dY (s), t ≥ 0.

The eigenvalues of −M are λ1 = K and λ2 = H, then by integration with respect to Y as in
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(A-14), we obtain the explicit solution

X(t) = eMtX(0) +

N(t)∑
n=1

eM(t−Tn)
[

0

HaPn

]
, (2-9)

whit

eMt =
∞∑
k=0

Mktk

k!
.

The stochastic process X belongs to the family of piecewise deterministic Markov process (Davis,
1984), which owes to the fact that the sample paths of X evolve deterministically between precip-
itation events and are only perturbed at the storm times {Tn : n ≥ 1}: R(t) jumps by a random
amount at each Tn, while Q(t) suffers a discontinuity in the derivative as shown in Figure 6. X is
also a process of the Ornstein-Uhlenbeck type since it satisfies the stochastic differential equation
(2-8) and is driven by the process of pure jumps {Y (t), t ≥ 0}.

Note that the assumption (2-7) for the rainfall field is a mathematical necessity: the exponential
distribution for the inter-arrival times Tn+1 − Tn ensures that X is a Markov process and thus a
solution to a stochastic differential equation of the form (2-8).

2.5. Related approaches in the literature

The analysis of conceptual stochastic models in hydrology has a long history going back to the
seminal work of Eagleson (1972). Here we review some of the most significant approaches that
have used solvable stochastic models for rainfall-runoff processes, and how they relate to the
model and results presented here.

One distinct approach, pioneered by Koch (1985), has used the classical concept of the unit
hydrograph (Dooge, 1959) for the probabilistic modeling of a catchment’s response to random
precipitation fields via ‘shot noise processes’. There, scaled versions of a prescribed deterministic
unit hydrograph are randomly aggregated according to a precipitation field modelled typically as
a compound Poisson process of instantaneous events (see Claps et al. (2005) for a review). Al-
though used mostly for simulation purposes as in Morlando et al. (2016), shot noise processes are
simple enough so that explicit mathematical results can be derived. For example, and with clear
relation to the work presented here, in Konecny (1992) the authors consider a shot noise process
with a unit hydrograph of fixed exponential decay and derive the invariant distribution of discharge
peaks. Shot noise models with instantaneous rainfall events and exponentially decaying hydro-
graphs are the one-dimensional version of model developed by Ramirez and Constantinescu (2020).

The Geomorphological Instantaneous Unit Hydrograph (GIUH) has provided hydrologists with a
framework to describe the response of a catchment in terms of the geomorphology of its river
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network (Rodríguez-Iturbe and Valdes, 1979; Gupta et al., 1980). The expression for the hydro-
graph in a GIUH model is interpreted as the sum over all possible paths leading to the basin’s
outlet, of the probability densities of travel times associated with each path, times the probability
of the path. The travel time density of each path is, in turn, given by the convolution of densi-
ties of travel times of individual hillslopes and streams found along the path. See Gupta et al.
(1980, equations 15-16). As for the particular form of the travel time distribution, several explicit
mathematical models have been formulated (see Van der Tak et al., 1989; Rinaldo et al., 1991;
Saco and Kumar, 2002), including the original proposal by Rodríguez-Iturbe and Valdes (1979) of
exponentially distributed travel times. Our formulation is equivalent to the random aggregation
of GIUH specialized on the case of an order one catchment with exponentially distributed travel
times on the hillslope and the channel.

In the seminal work by Rodriguez-Iturbe et al. (1999), the authors derive equations for at-a-point
soil moisture dynamics driven by stochastic rainfall in the form of Poissonian instantaneous events
with exponentially distributed amounts. Following this line of research, in Botter et al. (2007a)
and Botter et al. (2007b), the authors derive and validate analytic expressions for the dynamics
of soil moisture and runoff at a point. As in here, the ultimate goal is studying the stationary
distribution of runoff and its relationship to the statistical properties of rainfall and as mediated
by the geophysical properties of the soil column. This particular model has been applied, extended
and generalized in Botter et al. (2008, 2009); Botter (2010); Suweis et al. (2010); Basso et al.
(2015). Under some scenarios, which we detail in chapter 5, some of the results found along this
impressive line of research, are validated by our approach. There are also important differences
and complementary aspects, which we now summarize:

i. The conceptual derivation of our model is based on the mass and momentum conservation
equations for the distributed hillslope-channel system. We thus arrive at a linear two-
tiered system, where the linearization can be traced back to hypotheses on the transfer of
momentum for hillslope and channel flow.

ii. All of our mathematical derivations consider an arbitrary probability density f of the rainfall
amount P , and we give necessary and sufficient conditions on f , for the existence of an
invariant distribution of discharge. We explicitly include results in what follows for three
very different families of distributions.

iii. In Botter et al. (2007a), precipitation is considered at daily time scales, for which varia-
tions of river discharge only require the slow component of the hydrological response to be
resolved. Here, we explicitly keep track of fast and slow components, as encoded by the
inverse time-scales H and K respectively, thus allowing for a detailed mathematical analysis
of the effect that the time scale separation H � K has on different aspects of the model.
We show that, in fact, our formulation reduces to that of Botter et al. (2007a) in the limit
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as H/K → 0. Furthermore, for a large range of H/K, we show that the single-reservoir
model approximates very well the results of the two-reservoir system.

iv. Two key findings of Botter et al. (2007a) are mathematically demonstrated via our approach,
for arbitrary f and ratio H/K, in fact. First the existence of the threshold λ/H = 1

controlling the shape of the invariant distribution of discharge, and second the analytical
relationship between the coefficients of variation of discharge and rainfall.

v. The analysis of the extreme events and the scaling structure of discharge in sections 5.2
and 5.3 are, to the best of our knowledge, a novel contribution. We do it here applying
the mathematical results of Ramirez and Constantinescu (2020) to the case of an order one
watershed.

vi. The return period is one of the fundamental concepts for the applications of hydrology in
engineering, as it is used for hydrological design and risk analysis. In section 5.4 we provide
a mathematical interpretation of this concept by extending its definition for a sequence of
independent realizations of a random variable, to the context of a time continuous stochastic
process. We also propose a new expression to estimate it based on the results of chapter 3.

vii. Lastly, our model extends naturally to watersheds with arbitrary and heterogeneous river
networks via the framework of Gupta and Waymire (1998). The mathematical treatment
of this general case is the subject of Ramirez and Constantinescu (2020).



3. The invariant density

In this chapter we determine the invariant probability density of discharge at the watershed out-
let. Conditions for the existence and the characterization of invariant distributions for Ornstein-
Uhlenbeck type processes are given in Sato and Yamazato (1984, Theorems 4.1-4.2). We now
apply their result to X.

Theorem 3.1 (Sato and Yamazato (1984)). A necessary and sufficient condition for the existence
of a unique invariant density for X is∫ ∞

1

log(y)f(y) dy <∞. (3-1)

If (3-1) holds, then the distribution of X(t) converges weakly to a distribution with Laplace
transform given by

g̃X(s1, s2) = exp

{
− λ
H

∫ 1

0

1− f̃(aH(s2u+ s1m(u))

u
du

}
, (3-2)

where f is the common density of rainfall amounts, f̃ its Laplace transform and the function
m(u) is given by

m(u) :=
1

1− β
(
u− u1/β

)
, β :=

H

K
. (3-3)

Moreover, the process X is ergodic, and gX is its unique invariant density. See also Konecny
(1992) and Ramirez and Constantinescu (2020).

Theorem 3.1 states that under suitable conditions on f , and for any initial condition X(0) ∈ R2
+,

the distribution of X(t) converges to a limiting distribution as t → ∞. Moreover, the limiting
distribution is invariant (also called stationary) in the sense that X(0) is distributed as such, the
distribution of X(t) will remain unchanged for all t ≥ 0. Here and in what follows, the limit as
t → ∞ refers to the passage of enough days for the system to forget its initial condition and
achieve convergence in distribution. By invariant distribution, we thus mean seasonal invariance:
the statistical characterization of the hydrological response of the catchment to the seasonal con-
ditions of precipitation.

The random variable of most interest in X(t) is its first entry Q(t), the discharge at the wa-
tershed’s outlet. While the distribution of Q(t) evolves with time, and depends on the initial
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condition Q(0), here we are concerned with the limiting invariant density g of the process Q(t):

g(x) dx = lim
t→∞

P(Q(t) ∈ dx), x > 0, (3-4)

and its Laplace transform g̃ with respect to discharge, namely

g̃(s) =

∫ ∞
0

e−sxg(x) dx, s > 0. (3-5)

Note that the Laplace transform in (3-2) is bi-dimensional, g̃X(s1, s2) = Ege
s1Q+s2R. The

invariant distribution of Q is characterized by the following formula for g̃, which is obtained as
g̃(s) = g̃X(0, s):

g̃(s) = exp

{
− λ
H

∫ 1

0

1− f̃(Hasm(u))

u
du

}
. (3-6)

Some remarks are in order. Note first that g̃(−s) is the moment generating function of the
invariant distribution of Q and thus characterizes it. Once g̃ has been computed, the actual
density g may be recovered by a numerical inversion algorithm. For all computations reported
here, we use the classical algorithm by Zakian (1969). The process X can also shown to be
ergodic, and thus g is the ergodic limit of the distribution of Q(t) as t → ∞ (see Kallenberg,
2002). The significance of this result is the implication that if the statistical properties of the
precipitation field are stationary for a sufficiently long period of time, the watershed will eventually
attain a statistical invariant regime determined by g. Furthermore, time averages of any functional
of Q can be approximated by corresponding ensemble averages with respect to g.

3.1. Dimensionless analysis of the invariant density

In order to perform further analyses on the invariant distribution g of Q, let us calculate the
invariant densities of the dimensionless precipitation amounts and discharge. Namely, consider
the common mean of rainfall amounts E[Pn] =

∫∞
0
xf(x) dx. From now on we just write E[P ].

Define the normalized rainfall amounts P̂ = P/E[Pn], having common probability density φ.
Also, define the normalized discharge process Q̂(t) = Q(t)/λaE[P ], and denote γ its invariant
probability density.

P̂ =
P

E[Pn]
, Q̂(t) =

Q(t)

λaE[P ]
. (3-7)

Equation (A-9) in the Appendix relates the probability densities of the original and the normalized
random variables. Equation (A-10) do so for the Laplace transforms of the probability densities.
According to those formulas, for the precipitation we have

φ(x) = E[P ]f
(
xE[P ]

)
, φ̃(s) = f̃

(
s

E[P ]

)
.
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For the Laplace transform of the discharge we have

γ̃(s) = g̃

(
s

λaE[P ]

)
,

then equation (3-6) for g̃ can be written in terms of the Laplace transforms of φ and γ as follows

γ̃(s) = exp

{
−1

η

∫ 1

0

1− φ̃ (sη m(u))

u
du

}
, where η =

H

λ
. (3-8)

Table 1. Families of probability distributions commonly used as models for the precipitation in the
tropics.

Pareto (κ, θ) Type I Gamma (ω, ρ) Inverse Gaussian (µ, σ)

f(x) θκθx−θ−1, x ≥ κ
1

ρωΓ(ω)
e−x/ρxω−1

√
σ

2πx3
exp

(
−σ(x− µ)2

2xµ2

)

f̃(s) θE1+θ(κs) (1 + ρs)−ω exp

(
σ

µ

(
1−

√
1 +

2µ2s

σ

))

E[P ]
κθ

θ − 1
ρω µ

φ(x) θ

(
θ − 1

θ

)θ
x−θ−1, x ≥ θ − 1

θ

ωω

Γ(ω)
e−x/ωxω−1

√
σ/µ

2πx3
exp

(
−σ/µ(x− 1)2

2x

)

φ̃(s) θE1+θ

(
θ − 1

θ
s

) (
1 +

s

ω

)−ω
exp

(
1−
√

1 + 2sα

α

)
, α =

µ

σ

Parameters
2.3 < θ < 11

0.028 < κ < 2.27

0.7 < ω < 100

0.5× 10−3 < ρ < 3.6

0.05 < µ < 2.5

0.035 < σ < 250

Note. The Parameters column displays approximate ranges for the parameters of each distribution that would
fit the mean and the coefficient of variation reported in Álvarez-Villa et al. (2011). On the expression for f̃
of the Gamma distribution, En(z) denotes the generalized exponential integral function.

3.2. Qualitative analysis of the invariant density

In our subsequent analysis we will consider the invariant distribution g of the discharge Q under
three different parametrizations of the probability distribution f of the rainfall amount. These
are, the Pareto of type I, Gamma and inverse Gaussian. The Pareto distribution has heavy tails
and only finitely many moments. The Gamma distribution is a generalization of the exponential



3.2 Qualitative analysis of the invariant density 15

distribution and features exponentially decaying tails. These two families, along with the lognor-
mal distribution, are commonly used as models for the precipitation in the tropics (Cho et al.,
2004; Salisu et al., 2010). Since equation (3-2) requires an explicit expression for the Laplace
transform of f , we use the inverse Gaussian distribution instead of the lognormal. Chapter 4
shows an application of the former to a set of rainfall data in the Colombian Andes. The families
of distributions, along with typical parameter ranges are summarized in Table 1. In all cases,
condition (3-1) holds for the probability density functions f and φ.

Figure 2 shows plots of the invariant distribution γ for the non-dimensional discharge Q∗. Each
plot was obtained by numerically inverting its Laplace transform given by (3-8) with φ equal to the
non-dimensional forms of the probability densities listed in Table 1. Two features are most notable.
First, changes of over at least three orders of magnitude for the value of β play an insignificant role
on the qualitative behavior of γ. Secondly and more interesting, is that η = ηc = 1 represents
a threshold where γ (and thus g) changes from unimodal to a monotone decreasing function.
This important transition was observed by Botter et al. (2007a) in the context of soil moisture
and discharge dynamics for the case when P is exponentially distributed. We show here that
this critical value holds also for our model regardless of the value of β, and extends to other
distributions.

Theorem 3.2. Suppose the distribution of P satisfies (3-1) and let g be the probability density
of Q. Then, if 0 < η < 1, limx→0+ g(x) = 0.

Proof. It suffices to prove that γ(x)→ 0 as x→ 0, which by the initial value theorem is equivalent
to proving sγ̃(s) → 0 as s → ∞ (see for example Beerends et al., 2003). Since φ̃(s) = Ee−sP ,
Jensen’s inequality ensures that φ̃(s) ≥ e−s for all s. Moreover m(u) ≤ m0(u) := u

1−β for
0 ≤ u ≤ 1. We thus get the following bound

sγ̃(s) ≤ s exp

{
−
∫ 1

0

1− e−sηm0(u)

ηu
du

}
(3-9)

= s exp

{
−1

η

(
γe − Chi

(
sη

β − 1

)
+ Shi

(
sη

β − 1

)
+ log

(
sη

−β

))}
, (3-10)

where γe denotes the Euler gamma constant, and Shi and Chi are the hyperbolic sine and hy-
perbolic cosine integral functions, respectively. The function on the right hand side of (3-10)
converges to zero if 0 < η < 1 and diverges to infinity for η > 1.

In terms of hydrological processes, η can be understood as the ratio between the mean time
between precipitation events and the mean residence time on the hillslopes; it represents the link
between the precipitation regime and the geomorphology of the basin, and it is the most important
dimensionless number of the model. We now propose an explanation for the critical value ηc = 1.
When η < 1, the mean time between rainfall events is less than the mean residence time on
the hillslopes. This implies that the rate of water deposition is greater than that of evacuation,
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Figure 2. Plots of γ(x) for different combinations of the parameters η, β, and each probability density
considered for φ(s). The leftmost panels shows the transition of γ from a unimodal to a
monotone decreasing distribution at the critical ηc = 1. In the center and right panels, two
curves are plotted for each value of the varying parameter, the unimodal curves correspond to
η = 0.5 while the monotone curves have η = 1.5.
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therefore runoff can accumulate on the slopes before reaching the channel and the invariant density
of the discharge becomes more massive at higher values. Conversely, when η > 1, water on the
hillslopes reaches the channel faster than the flow due to rain, therefore there is less accumulation
of runoff and the invariant density becomes more massive at the smaller values of the flow.



4. A case study of the discharge
distribution

We now focus on presenting and discussing the results of the application of the conceptual model
described in chapter 2 to a specific case study of an order-one tropical watershed: La Gruta catch-
ment, located at the headwaters of the Pesca river, at Boyacá, Colombia, on the eastern mountain
range of the Andes. See Figure 3. Our aim is to illustrate that whenever a small catchment is
under a rainfall regime that approximately satisfies the hypotheses of the model, the probability
distribution of discharge is in fact adequately approximated by the invariant distribution given by
(3-6).
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Figure 3. Location of the study watershed over Colombia. (a) National context, (b) regional context
and (c) local context delimiting La Gruta basin. The geographical location of the discharge
and rain gauges and the recorded time series were provided by IDEAM. The DEM and the
digital river network used to produce this figure were downloaded from HydroSHEDS.
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La Gruta catchment has an estimated drainage area of a = 103.79 km2, an average elevation of
3160 m a.s.l., the length of the channel is ` = 19.56 km, and the average slope of the Pesca River
is 3.72%. The predominant economic activities of the area are agriculture and livestock farming,
so the hillslopes are mainly used as pastures and croplands. The annual cycle of precipitation is
bimodal with wet seasons during March to May (MAM) and September to October (SON) (Urrea
et al., 2019), and the average precipitation is between 800 and 1200 mm/year (Álvarez-Villa et al.,
2011). The rain gauge Pesca is located right in the middle of the watershed (5.52 latitudinal dec-
imal degrees and −73.08 longitudinal decimal degrees, 2678 m.a.s.l). The available precipitation
records comprise the period from January 1968 to December 2001 with hourly resolution. The
outlet of the watershed was chosen as the location of the stream flow gauge La Gruta, (5.57

latitudinal decimal degrees, −73.05 longitudinal decimal degrees, 2500 m a.s.l.) which recorded
discharge at daily resolution from February 1968 to December 2010. Both gauges are operated
by the hydro-meteorological service of Colombia: Instituto de Hidrologia, Meteorologia y Estudios
Ambientales (IDEAM).

The model presented in chapter 2 is based on two assumptions to be verified: the representation
of rain as a compound Poisson process, and the stationarity of rainfall and discharge processes.
For the precipitation process {P (t) : t ≥ 0} to be represented as a compound Poisson process,
the duration of each rainfall event should be sufficiently short as to be regarded as instanta-
neous with respect to the time scale of the hydrological response, and the times between events
{T0, T1 − T0, T1 − T2, . . . } must be i.i.d. exponentially distributed. Additionally, the rainfall
amounts must come from a stationary random process and the probability density function f of
each {Pn : n = 1, 2, ...} must be parametrized. We validate the assumptions with hypothesis
testing techniques with a significance level equal to 0.05. For the first assumption, we perform
a Kolmogorov-Smirnov goodness-of-fit test for the null hypothesis that two distribution functions
are the same. The desired result is therefore not to reject the null hypothesis with a very high
p-value, bigger or equal than 0.8, which have the weakest possible evidence against our statistical
fitting. On the other hand, in order to perform a stationarity test without contradicting the im-
plicit Markovian nature of the discharge and the precipitation processes of the model, we assume
that the corresponding time series are samples of an order-one autoregressive processes and we
perform a Dickey–Fuller F unit root test. Rejecting the null hypothesis allows concluding that the
data comes from a stationary time series. In this case, very small p-values are preferred.

Considering the precipitation seasonality and to ensure large enough data samples and relaxation
into a stationary regime, we performed the hypothesis testing for time intervals of at least 80

days. To that aim, we transformed the time series of hourly precipitation into a time series of
instantaneous precipitation events, by assuming that the n-th event occurred during the n-th
block of consecutive hours with rainfall records. We took the centroid of the consecutive hours as
the arrival time Tn and the sum of the corresponding rainfall records as the column Pn of water
uniformly dropped over the hillslopes around the stream. We did not reconstruct missing records
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of rainfall or discharge, but only considered time intervals with 15% or less of missing data. The
following two time intervals, which we henceforth refer to as validation windows, were selected:

• June 11, 1968 - August 29, 1968 (JJA 1968). With a record length of 80 days and no
missing data.

• September 26, 1989 - December 23, 1989 (OND 1989). With a record length of 89 days
and 13.62% of missing precipitation data.
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Figure 4. Precipitation (mm) and discharge (m3/s) time series for the considered validation windows (a)
JJA 1968 and (c) OND 1989. Green points denote instantaneous precipitation events and red
points denote the non-instantaneous ones. The right panels show the comparison between the
discharge histogram and the computed invariant density g which has the best p-value obtained
in the validation windows (b) JJA 1968 and (d) OND 1989. For JJA 1968 the best p-value is
0.9345 and was obtained with K = 0.92 hr−1 and H = 0.046 hr−1. For OND 1989 the best
p-value is 1 and was obtained with K = 0.92hr−1 and H = 0.0058 hr−1.

For the chosen validation windows, more than 80% of the events recorded by the rain gauge
lasted for 3 consecutive hours or less, and about 50% of the events lasted for less than one hour.
Since the mean recession time of La Gruta watershed is of the order of few days, and in order to
maximize the rainfall sample, for this study case we regard a precipitation event as instantaneous,
with respect to the daily time scale of the hydrological response, if its duration is less or equal to 3

hours. The corresponding time series of precipitation events and daily discharge are shown in Fig-
ure 4(a,c). Green points denote the instantaneous precipitation events and red points denote the
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Table 2. Results for the the statistical tests and parameter estimation
JJA 1968 OND 1989

Test p-value Parameters p-value Parameters
{Tn+1 − Tn} ∼ exp(λ) 0.9987 λ = 0.025 hr−1 0.8574 λ = 0.018 hr−1

{Pn} is stationary 7.8600× 10−7 6.4240× 10−5

{Pn} ∼ IG(µ, b) 0.7812
µ = 1.07× 10−3 m

0.5792
µ = 1.45× 10−3 m

b = 4.50× 10−4 m b = 4.05× 10−4 m
{Q(t)} is stationary 0.0224 0.0321

Q(t) ∼ g(H,K) 0.9345
H = 0.046 hr−1

1.0000
H = 0.0058 hr−1

K = 0.92 hr−1 K = 0.92 hr−1

non-instantaneous ones, which were discarded in what follows. Given that large discharge records
caused by those events were also related to some preceding instantaneous events, and that there
are instantaneous events with magnitudes comparable to those of the non-instantaneous ones, we
did not remove any discharge record.

The sequence of rainfall amounts was found to best fit inverse Gaussian (IG) distributions for both
validation windows. The results of the hypothesis testing are reported in Table 2. Note that the
hypothesis of a stationary precipitation regime implies via (5-1) that the watershed should attain
hydrological balance. In this regard we obtained that during JJA 1968, λaEP = 0.757 m3/s
which approximates quite well the average discharge of 0.762 m3/s reported during that period.
Similarly, for the OND 1989 period, we obtained λaEP = 0.741 m3/s and an average discharge
of 0.728 m3/s.

The parametrization for f and the estimated values for the catchment area a and the precipitation
frequency λ, allowed us to compute g̃ in (3-6) as a function of the yet unknown inverse mean
residence times H and K. The corresponding invariant distribution density g of Q can be then
estimated by numerically inverting its Laplace transform g̃ via the classic algorithm in Zakian
(1969). The computations of g were performed on a non-regular grid of the parameter space
(K,H) constructed as follows: We consider an initial estimate of the form K = v/` where v is
the average water speed in the channel assumed here to take values ranging from 1 to 5 m/s in
steps of 0.25 m/s. We then made H = βK and considered equally spaced values of 0 < β < 1.
Figure 5 shows, as a function of (K,H), the p-values for goodness-of-fit tests between the invari-
ant distribution g calculated from (3-6) and the empirical distribution of Q from the discharge
data. For the JJA 1968 period, we were able to identify acceptable fits for β ∈ [0.025, 0.2]; the
period OND 1989 required values one order of magnitude less than that, β ∈ [0.0025, 0.02]. The
estimated parameters H,K for each validation period were taken as those from the analyzed grid
that produced the highest p-value. See last row of Table 2.
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Figure 5. p-values for goodness-of-fit tests between the invariant distribution g and the empirical distri-
bution of the discharge data, as a function of (K,H), for the validation windows (a) JJA 1968

and (b) OND 1989. The details about the non-regular grid for the parameter space (K,H)

can be found in chapter 4.

Figure 4(b,d) shows the comparison between the empirical and analytic probability density func-
tions corresponding to the chosen H,K parameters for each validation window. During the period
JJA 1968 it rained on average 1.39 times more often and with an average amount of 0.74 times
that of OND 1989, however the mean residence time on the hillslopes was 8 times higher during
JJA 1968 than in OND 1989. This variations of H led to changes of η = H/λ large enough as to
completely change the behavior of the probability distribution of discharge. According to Botter
et al. (2013), when flow-producing rainfall events are relatively frequent, such that their mean
inter-arrival is smaller than the mean residence time of the contributing hillslopes λ > H, (η < 1),
the range of the discharge recorded by a streamflow gauge between two subsequent events is re-
duced, and a persistent supply is guaranteed to the stream from the hillslopes. Therefore, the
discharge is weakly variable around the mean and quite predictable (See Figure 4(c,d)). When the
mean interarrival between flow-producing rainfall events is larger than the mean residence time of
the hillslopes λ < H, (η > 1), a wider range of stream flows is observed between events because
the stream is allowed to dry significantly before the arrival of new runoff. The temporal pattern
of discharge is thus more unpredictable and the preferential state of the system is typically lower
than the mean (See Figure 4(a,b)). The plots 4(b) and 4(d) suggest that our model was able to
reproduce the changes, both in the mean and the shape of the density function of discharge, and
to accurately capture both hydrological regimes.

Lastly, Figure 6 shows the comparison between the empirical and analytic recession curves of
discharge for a period of 30 days of the OND 1989 validation window. The analytical model for
X in (2-9) was forced by the precipitation data of that period and by an initial value equal to
the first measured discharge. When comparing the process Q to the actual value of the discharge
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time series, we observe that the model reasonably captured both the magnitude of the increment
and the recession rate of the discharge after the precipitation events.
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Figure 6. Simulated Q(t) and R(t) (m3/s) for the order one watershed in Figure 3, during the time
period comprised from November 20, 1989 to December 20, 1989. The hillslopes area is
a = 103.79 km2 and the geomorphological parameters are H = 0.0058 hr−1 and K = 0.92

hr−1. Rainfall amounts Pn (mm) and occurrence times Tn (hr) were taken from the time series
of instantaneous precipitation events in Figure 4, denoted by green points. The initial condition
for X(t) was taken to be the first measured discharge of the considered time period. The
orange diamonds denote the discharge data form the recorded time series at daily resolution.



5. Analysis of the invariant density

In this chapter we exploit the properties of the Laplace transform of the density g to derive impor-
tant characteristics of the invariant distribution of Q. We also provide a rigorous mathematical
framework to study and analyze some traditional concepts of the hydrology in the context of our
model.

5.1. Moments

The first characteristic we analyze is the relation between the moments of the discharge, the
moments of the precipitation and the geomorphological features of the watershed. In what fol-
lows, we will write Pg or Eg to denote probabilities or expectations with respect to the density g,
namely conditioned on Q(0) distributed as the invariant distribution of Q(t), which means that
the discharge is under an invariant regime and guarantees that the stochastic process Q(t) is
stationary.

We start with taking expectations throughout the stochastic differential equation (2-8) and using
invariance in the form d

dt
Eg[X(t)] = 0, to compute the invariant mean of the discharge

Eg[Q] = λaE[Pn], (5-1)

where E[Pn] =
∫∞
0
xf(x) dx denotes the common mean of rainfall amounts. From now on we

just write E[P ]. Equation (5-1) for EgQ makes explicit the fact that under a statistical invari-
ant regime for P , the discharge will remain in a state of hydrological balance with the precipitation.

For arbitrary moments, we consider the normalized discharge Q̂. Recall that the Laplace transform
of γ is closely related to the moment generating function of the random variable Q̂ (see equation
(A-8)), and that we can compute moments of any order by differentiating

Eγ[Q̂n] =
dnγ̃(−s)

dsn

∣∣∣∣
s=0

,

which yields to the following theorem.

Theorem 5.1. If P̂ has n finite moments, then Q̂ also has n finite moments given by

Eγ[Q̂n] = Bn

({
ηi−1 ci(β)E[P̂ i]

}n
i=1

)
, n = 1, 2, 3, . . . , (5-2)
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where Bn denotes the n-th complete exponential Bell polynomial, and the constants ci(β) are
given by

ci(β) =
1

i

i−1∏
k=1

k

k + β(i− k)
, i = 1, 2, 3, . . . (5-3)

We use the convention
∏i−1

k=1 xk = 1 is i = 1, so that c1(β) = 1.

See section A.4 in the appendix for the definitions and properties of the Bell polynomials.

Proof. Denote the function inside the exponential in (3-8) by

h(s) := −1

η

∫ 1

0

1− φ̃(sη m(u))

u
du,

then, the n-th invariant moment of Q̂ is

Eγ[Q̂n] = (−1)n
dneh(−s)

dsn

∣∣∣∣
s=0

, n = 1, 2, 3, . . . (5-4)

Faa di Bruno’s formula for the n-th derivative of eh(−s), along with the property (A-18) of the
Bell polynomials gives

dneh(−s)

dsn
= (−1)nγ̃(−s)

n∑
k=1

Bn,k

({
dih(−s)

dsi

}n−k+1

i=1

)
, (5-5)

where Bn,k is the incomplete exponential Bell polynomial.

Calculating the i-th derivative of h(−s) and replacing s = 0, yields to

dih(−s)
dsi

∣∣∣∣
s=0

=− 1

η

∫ 1

0

−1

u

di

dsi
φ̃(−ηsm(u)) du

∣∣∣∣
s=0

=− 1

η

∫ 1

0

−1

u
E[(η m(u)P̂ )i] du

=ηi−1E[P̂ i]
βΓ(i)Γ

(
iβ
1−β

)
(1− β)iΓ

(
i

1−β

)
=ηi−1E[P̂ i] ci(β). (5-6)

Note that i
1−β = iβ

1−β + i. Since i ∈ N, the recurrence property of the gamma function (A-21)
gives

Γ

(
i

1− β

)
= Γ

(
iβ

1− β

) i−1∏
k=0

k + β(i− k)

1− β
.
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Also, for natural numbers the gamma function is related to the factorial as follows

Γ(i) = (i− 1)! =
i−1∏
k=1

k.

These two expressions yield to

ci(β) =
βΓ(i)Γ

(
iβ
1−β

)
(1− β)iΓ

(
i

1−β

)
=

β

(1− β)i
(i− 1)!

i−1∏
k=0

1− β
k + β(i− k)

=
1

i

i−1∏
k=0

k

k + β(i− k)
, i = 1, 2, 3, . . .

Finally, replacing (5-6) and s = 0 in (5-5), and then replacing the result in the equation (5-4),
one arrives at the expression for Eg[Q̂n]

Eγ[Q̂n] = Bn

({
ηi−1 ci(β)E[P̂ i]

}n
i=1

)
, n = 1, 2, 3, . . .

For instance, the first four moments of the normalized discharge Q̂ are:

Eγ[Q̂] = 1,

Eγ[Q̂2] = 1 +
ηE[P̂ 2]

2(1 + β)
,

Eγ[Q̂3] = 1 +
3ηE[P̂ 2]

2(1 + β)
+

2η2E[P̂ 3]

3(2 + β)(1 + 2β)
,

Eγ[Q̂4] = 1 +
3ηE[P̂ 2]

(1 + β)
+

3η2E[P̂ 2]2

4(1 + β)2
+

8η2E[P̂ 3]

3(2 + β)(1 + 2β)
+

3η3E[P̂ 4]

2(3 + β)(2 + 2β)(1 + 3β)
.

The arbitrary moments of Q can be easily found by multiplying the equation (5-2) by the discharge
mean

Eg[Qn] =
(
aλE[P ]

)n Eγ[Q̂n], n = 1, 2, 3, . . . (5-7)

An implicit result of equations (5-2) and (5-7) is that, under the limiting distribution, the discharge
will have exactly as many moments as the precipitation. This is reflected in a direct relationship
between the weight of the tails of g and those of f as we deduce in section 5.2.

If the common distribution of Pn has finite second moment, then we obtain the invariant variance
of Q as

Varg[Q] = λ
a2HK

2(H +K)

(
Var[P ] + E[P ]2

)
. (5-8)
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The implication of (5-8) together with the corresponding equation for EgQ in (5-1), is that the
mean and variance of Q are proportional to the corresponding statistics of the time averaged
rainfall 1

t

∫ t
0
p(s) ds over any period of time t. Although not a very surprising conclusion from

a linear model, the fact that the proportionality coefficients are explicitly given in terms of the
physical properties of the river network, might prove a useful first order approximation.

Finally, denote by CVg[Q] the coefficient of variation of Q with respect to the invariant distribu-
tion. The following expression relates the coefficients of variation of P and Q,

CVg[Q] =

√
η

2(β + 1)
(1 + CV[P ]2), (5-9)

and generalizes the result of Botter (2010) to the case of non-zero β (except that their equation
(10) seems to have a misplaced factor of two). Note that the equation for the second moment
of Q̂ is equivalent to CVg[Q]2 = Varγ[Q̂].

Table 3 summarizes the results for the distributions of interest. For exponentially distributed
precipitation amounts, one has CV[P ] = 1 and CVg[Q] =

√
η

β+1
which equals

√
η in the limit

β ↓ 0, as reported in Botter et al. (2013).

Table 3. Expressions for the the coefficient of variation of Q with respect to the invariant distri-
bution.

Distribution of P CVg[Q]2

Pareto (k, θ), θ > 2
ηk(θ − 1)2

2θ(θ − 2)(1 + β)

Gamma (ω, ρ)
ηρ(1 + ω)

2ω(1 + β)

Inverse Gaussian (µ, σ)
η(µ+ σ)

2σ(1 + β)

In Figure 7 we show qualitative differences in the invariant distribution of discharge across different
cases that share the same η, CV[P ] and CVg[Q]. Note from panel (a) on the right, that for
small values of η and CV[P ], and hence of CVg[Q], there is essentially no qualitative difference
in γ for the three distributions of P considered here. This similarity disappears specially as CV[P ]

increases and even if CVg[Q] is held constant with the Pareto distribution exhibiting the most
distinctive behavior (see panel d). Namely, the parametrization of the distribution of P reflects
significantly on the distribution of Q. Note for each plot on the right, the three curves for γ share
the same values for η, β,CV[P ] and CVg[Q].
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Figure 7. Left panel: contour plot of CVg[Q] as a function of η and CV[P ] given by equation (5-9).
Each contour plot comes in pairs: one is drawn with β = 0.001 and the other with β = 0.1 as
to showcase the limited effect of this variable. For each pair (η,CV[P ]) labeled with a letter
on the left figure, the plots on the right show the corresponding invariant distribution γ of
the normalized discharge. Every set of three curves is computed with the same values of η,
β = 0.01 and φ chosen from the members of each distribution family such that they share the
same value of CV[P ]. The resulting triplets of γ also have the same coefficient of variation.

5.2. Asymptotics of extreme events

We now characterize the asymptotic behavior of the probabilities of extreme events of discharge,
namely, the behaviour of the right tail of the invariant distribution. We are interested in the
asymptotic behavior of

∫∞
x
g(y) dy = Pg(Q > x) as x → +∞ and how its decay depends on

the geomorphological properties of the watershed and the probability density f of rainfall. Our
analysis focuses on the Pareto and Gamma families of distributions as they exhibit contrasting
power-like and exponentially decaying tails. See Table 1.

First we introduce some notation and language. Suppose f(x) and g(x) are positive functions
that decay to zero as x → ∞. We write f(x) ∼ g(x) if limx→+∞

f(x)
g(x)

= 1. If the limit equals
zero, we write f(x) = o(g(x)), which essentially means that f(x) � g(x) as x → ∞. We say
that the probability density of a random variable X has a heavy right tail if P(X > x) decays to
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zero slower than any exponential, namely

lim
x→∞

eξxP(X > x) = lim
x→∞

1− F (x)

e−ξx
= +∞ for all ξ > 0,

where F (x) is the distribution function of X. On the other hand, if

lim
x→∞

1

x
logP(X > x) = −ξ,

for some ξ > 0, we say that the distribution of X has light tails of rate ξ and write P(X > x) '
e−ξx.

For example, the Pareto distribution is always heavy-tailed since 1 − F (x) ∼ κθx−θ. See Table
1. Conversely, the Inverse Gaussian and the Gamma distributions cannot be classified as heavy
tailed irrespective of their scale parameter. We have, in fact,

P(X > x) ' e−x/ρ, X
d
= Gamma(ω, ρ), (5-10)

P(X > x) ' e−2xµ
2/σ, X

d
= Inverse Gaussian(µ, σ). (5-11)

Note that the asymptotic relations ' and ∼ are not equivalent, with the Gamma(ω, ρ) dis-
tribution providing an important example: (5-10) holds but the precise asymptotic equality is
P(X > x) ∼ (x/ρ)ω−1e−x/ρ.

The decay properties of the tail of a distribution can be inferred from studying the properties of
the Laplace transform of its density as s → 0. We now apply this theory to the distribution of
discharge.

If f : R→ R is locally integrable and vanishes on (−∞, 0), its Laplace-Stieltjes transform is

f̂(s) = s

∫ +∞

0

e−sxf(s) dx,

for all s for which the integral converges absolutely. If f has a derivative f ′, then the Laplace-
Stieltjes transform of f is the Laplace transform of f ′

f̂(s) = f̃ ′(s).

Theorem 5.2 (Bingham et al. (1989, Theorem 1.7.1.)). Karamata Tauberian Theorem.
Let U be a non-decreasing right-continuous function on R with U(x) = 0 for all x < 0. If
c ≥ 0, ρ ≥ 0, the following are equivalent

U(x) ∼ cxρ

Γ(1 + ρ)
as x→ +∞,

Û(s) ∼ cs−ρ as s→ 0+.

When c = 0, the results are to be interpreted as U(x) = o(xρ) and Û(s) = o(s−ρ), respectively.
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Theorem 5.3 (Bingham et al. (1989, Theorem 1.7.2.)). Monotone Density Theorem. Let
U(x) =

∫ x
0
u(y) dy. If U(x) ∼ cxρ as x→ +∞, where c, ρ ∈ R, and if u is ultimately monotone,

then
u(x) ∼ cρxρ−1 as x→ +∞.

When ρ = 0, the result is to be interpreted as u(x) = o(x−1).

For the Pareto distributed rainfall, the result follows from an application of the Karamata tauberian
theorem and the monotone density theorem. Namely the distribution of Q is heavy tailed for all
values of the parameter θ. For 0 < θ < 1, equation (5-12) gives the precise asymptotic tail
behavior. If, θ > 1, P will have exactly bθc moments, and by the analysis in section 5.1, so will
Q. Equation (5-13) then follows from general theory (see for example Chung, 2001, Excercise
3.2.5).

Theorem 5.4. Suppose P ∼ Pareto(κ, θ), for some κ > 0, θ > 0. Then

If 0 < θ < 1 : Pg(Q > x) ∼
β Γ(θ)Γ

(
θβ
1−β

)
(1− β)θ Γ

(
θ

1−β

)λ(κa)θHθ−1x−θ =: cx−θ as x→ +∞, (5-12)

If θ ≥ 1 : Pg(Q > x) = o(x−1) as x→ +∞. (5-13)

Proof. Denote Φ(x) := P(Q > x) = 1−
∫ x
0
g(y) dy and Ψ(x) :=

∫ x
0

Φ(y) dy. Then

Ψ̂(s) = Ψ̃′(s) = Φ̃(s) =
1

s
(1− g̃(s)). (5-14)

In this case, f(x) ∼ x−1−θ as x → ∞ and f̃(s) = θE1+θ(κs). Power series expansion of f̃(s)

around s = 0, yields

f̃(s) = −κθsθΓ(1− θ) + 1− κθs

θ − 1
+O(s2).

If 0 < θ < 1, f̃(s) = −κθsθΓ(1− θ) + 1 +O(s), and equation (3-6) becomes

g̃(s) = exp

{
−λ
H

(Haκ)θΓ(1− θ)sθ
∫ 1

0

(u− u1/β)θ

u(1− β)θ
du+O(s)

}
.

By direct integration, g̃(s) ∼ exp(−csθ) as s→ 0+, with

c =
λ(Haκ)θ

K(1− β)θ

Γ(1− θ)Γ(θ)Γ
(

θβ
1−β

)
Γ
(

θ
1−β

) . (5-15)

Substitution of this results in equation (5-14), along with the series expansion of the exponential
function yields Ψ̂(s) ∼ csθ−1 as s→ 0+. By theorems 5.2 and 5.3, one gets

Ψ(x) ∼ c

Γ(2− θ)
x1−θ as x→ +∞,

Φ(s) ∼ (1− θ)c
Γ(2− θ)

x−θ as x→ +∞.
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Therefore

Pg(Q > x) ∼
β Γ(θ)Γ

(
θβ
1−β

)
(1− β)θ Γ

(
θ

1−β

)λ(κa)θHθ−1x−θ as x→ +∞.

If θ > 2, f̃(s) = 1− κθs
θ−1 +O(s2), and equation (3-6) becomes

g̃(s) = exp

{
−λaκθ
θ − 1

s

∫ 1

0

(u− u1/β)θ

u(1− β)θ
du+O(s2)

}
.

By direct integration, g̃(s) ∼ exp(−cs) as s→ 0+, with

c =
λaκθβ

(θ − 1)(1− β)θ

Γ(θ)Γ
(

θβ
1−β

)
Γ
(

θ
1−β

) . (5-16)

Substitution of this results in equation (5-14), along with the series expansion of the exponential
function yields Ψ̂(s) ∼ c as s→ 0+. By theorems 5.2 and 5.3, one gets

Ψ(x) ∼ c as x→ +∞,
Φ(s) = o(x−1) as x→ +∞.

Therefore
Pg(Q > x) = o(x−1) as x→ +∞

The result (5-18) for the Gamma distributed rainfall requires a subtler approach for which we
follow Nakagawa (2005). Let f be a function with Laplace transform f̃(s) =

∫∞
0
f(x)e−sx dx

with s = σ + iτ . We say that σ0 is the abscissa of convergence of f̃ if the integral converges
for σ > σ0 and diverges for σ < σ0. For example, the abscissa of convergence for the probability
density function of a Gamma(ω, ρ) distribution is σ0 = −1/ρ.

Theorem 5.5 (Nakagawa (2005, Theorem 1)). For a non-negative random variable X with
density function f(x), let −ξ be the abscissa of convergence of f̃(s). If ξ > 0 and s = −ξ is a
pole for f̃ , then:

lim
x→+∞

1

x
logP(X > x) = −ξ. (5-17)

In the notation introduced in this chapter, equation (5-17) is written P(X > x) ' e−ξ. Note that
applying L’Hospital rule twice on the limit (5-17) yields f ′(x)/f(x) = −ξ + o(1), which implies
that f(x) = c0e

−ξx+o(1/x) as x→∞ for some positive constant c0.

The asymptotic behavior of Pg(Q > x), in the case P is distributed as Gamma(ω, ρ), follows
from computing the abscissa of convergence s = −ξ, proving it is a pole for g̃ and performing the
integral in (3-6). Then, the theorem by Nakagawa (2005) yields the following exponential decay
for the tails of Q.
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Theorem 5.6. Suppose P d
= Gamma(ω, ρ) with ω > 0, ρ > 0, then

Pg(Q > x) ' exp

 −(1− β)

Haρ
(
β

β
1−β − β

1
1−β

)x
 =: exp(−ξx). (5-18)

Proof. First, we find the pole of f̃ and show it is its abscissa of convergence.

f̃(s) =

∫ +∞

0

f(x)e−sx dx =
1

ρωΓ(ω)

∫ +∞

0

xω−1e−x(s+1/ρ) dx =
1

(1 + ρs)ω
.

Consider the function M(u) = Ham(u) = Ha
1−β (u − u1/β) and recall that β = H

K
< 1. For

0 < u < 1, u > u1/β andM(u) is a non-negative function with a local maximum at u∗ = ββ/(1−β),
M(u∗) = Ha

1−β (ββ/(1−β) − β1/(1−β)).

Now, we proceed to find a pole for g̃. The convergence of
∫ 1

0

1− f̃(sM(u))

u
du for s > 0 is

guaranteed by Zato and Yamazato’s theorem. For s ≤ 0, we have:∫ 1

0

1− f̃(sM(u))

u
du =

∫ 1

0

(1 + sM(u)ρ)ω − 1

u(1 + sM(u)ρ)ω
du

≥ 1

(1 + sM(u∗)ρ)ω

∫ 1

0

(
1 +

Haρs

1− β
(u− u1/β)

)ω
− 1

u
du

≥ (Haρs)ω

(1− β)ω(1 + sM(u∗)ρ)ω

∫ 1

0

(u− u1/β)ω − 1

u
du

≥ (Haρs)ω

(1− β)ω(1 + sM(u∗)ρ)ω

∫ 1

0

(
(u− u1/β)ω − 1

)
du

=
(Haρs)ω

(1− β)ω(1 + sM(u∗)ρ)ω

−1 +

βΓ(1 + ω)Γ

(
β(1 + ω)

1− β

)
(1− β)Γ

(
1 + ω

1− β

)
 .

Then g̃(s)→ 0+ when s ↓ −1/ρM(u∗). But, by Jensen’s inequality we know that

g̃(s) = Ee−sQ ≥ e−sEQ,

therefore, g̃(s) cannot tend to zero, the integral can not converge and s = − 1

ρM(u∗)
is a pole

of g̃. Theorem 5.5 yields:

lim
x→+∞

1

x
logPg(Q > x) = − 1− β

Haρ(ββ/(1−β) − β1/(1−β))

Pg(Q > x) ∼ exp

[
− (1− β)x

Haρ(ββ/(1−β) − β1/(1−β))

]
as x→ +∞.
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The asymptotic results (5-12) and (5-18) can be illustrated using, respectively, log-log and log
plots of g. Differentiating (5-12) with respect to x gives g(x) ∼ cθx−θ−1, hence for large x on a
log-log plot, the graph of g(x) is asymptotically equal to that of cθx−θ−1. The asymptotic result
(5-18) implies that g(x) = c0e

−ξx+o(1/x) for some constant c0 (see Appendix) and therefore, for
large x, the graph of g(x) in a log plot must have slope −ξ. These comparisons are shown in
Figure 8, Note that according to table 1, the parameter θ for Pareto distributed tropical rainfall
is usually greater than 1, however we plot the case of θ < 1 to illustrate a more interesting
mathematical result.

Inverse Gaussian α = 1

η = 0.5

η = 1.5

x
2 4 6 8 10

10-5
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1

x
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x
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10-4
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10-2

10-1

1
Gamma ω = 1 Pareto Type I θ = 0.5

Figure 8. Plots of the non-dimensional invariant distribution γ(x) for large values of x and different
scenarios. For the case of P̂ distributed as an Inverse Gaussian or Gamma distribution, we
show a logarithmic plot; for Pareto distributed P̂ , we show a double logarithmic plot. We used
β = 0.01 for all plots, subcritical η = 0.5 for plots in the upper row, and supercritical η = 1.5

for the lower row. The straight dashed line in the middle column has a slope −ξ given in
equation (5-18). For the Pareto case, the straight dashed lines have the form cx−θ in equation
(5-12). For the case η = 0.5 and P̂ d

= Gamma(1), the numerical Laplace inversion algorithm
fails to adequately describe γ before the asymptotic behavior can be observed.

5.3. Scaling of discharge

The traditional framework for studying the spatial variability of the dynamical processes that take
place in a watershed is based on the concept of scaling. The formal definition of scaling in hy-
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drology, which we now present, was stated by Gupta and Waymire (1990).

Let Y (x) be an arbitrary random field indexed by x ∈ D ⊆ Rd. The parameter x can represent
time, or multidimensional space, or space-time, and D is an arbitrary region of the d-dimensional
Euclidean space Rd. For λ > 0, let Yλ(x) denote the rescaled random process defined by

Yλ(x) = Y (λx) x ∈ Rd.

We will call Y (x) simple scaling if for each λ there is a scale function Cλ, of the form λθ, such
that

Yλ(x)
d
= λθY (x). (5-19)

The parameter θ can be either positive or negative and is referred to as the scaling exponent.
From now on, we write

Yλ
d
= λθY1.

There is an important consequence of simple scaling of Y (x) given in (5-19). If Yλ has finite
moments E[Y h

λ ] of order h, then the strict sense simple scaling in (5-19) implies equality of
moments

E[Y h
λ ] = λhθE[Y h

1 ], h = 1, 2, 3, (5-20)

or equivalently,
logE[Y h

λ ] = hθ log λ+ logE[Y h
1 ]. (5-21)

The property (5-21), being a moment rather than a distributional property, is referred to as wide
sense simple scaling respect to λ and for positive processes, is reflected in two basic forms:

log-log linearity in logE[Y h
λ ] versus log λ for each h, (5-22)

linearity of slope change: h→ hθ. (5-23)

Wide sense simple scaling is much weaker than strict sense simple scaling. For example, if
E[Y h

λ ] = ∞ for some h, then wide sense simple scaling is meaningless, but strict sense simple
scaling can still hold.

If a random variable exhibits wide sense simple scaling respect to λ and we normalize or rescale it
by its mean, which effectively nondimensionalizes it, the moments of the resulting random variable
are independent of λ (Peckham and Gupta, 1999).

E[Ŷ h
λ ] = E

[(
Yλ

E[Y 1
λ ]

)h]
=

E[Y h
λ ]

(E[Y 1
λ ])h

=
λhθE[Y h

1 ]

(λθE[Y 1
1 ])h

= E

[(
Y1

E[Y 1
1 ]

)h]
= E[Ŷ h

1 ]. (5-24)
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On the other hand, we define Yλ to be wide sense multiscaling respect to λ if its statistical
moments obey (5-22) but the slopes s(h) as a function of h do not obey (5-23), i.e., are nonlinear
in h. This can be expressed as

logE[Y h
λ ] = s(h) log λ+ logE[Y h

1 ]. (5-25)

We now consider spatially averaged rainfall rates, residence times and river flows to relate the
wide sense scaling properties of these variables under the assumptions of our model. Our result
is stated in the following theorem and illustrated in figure 9.

Theorem 5.7. Suppose that P is wide sense simple scaling with a scale parameter â = a/a1
and that K follows a power law with â, i.e.

E[P h
a ] =âhθE[P h

1 ], (5-26)

K =kâω. (5-27)

Let â → ∞, then the discharge is wide sense simple scaling with scale parameter â and scaling
exponent

h(θ + 1) if ω < 0, (5-28)

h(θ + ω + 1) if ω > 0. (5-29)

Proof. If K is related to â through a power law, so is H,

H = βkâω,

replacing this assumptions in (5-2), the moments of the discharge Q are given by

E[Qh
a] = (a1λâ

(θ+1)µ)hBh

({(
βkâω

λ

)i−1
ci(β)E[P̂ i

1]

}h
i=1

)
, h = 1, 2, 3, . . . (5-30)

When â→∞, the asymptotic behavior of E[Qh
a] depends on the powers of â

h(θ + 1) + ω(i− 1), i = 1, 2, 3, . . . , h.

and the dominating power m(h) in (5-30) is

m(h) =

{
h(θ + 1) if ω < 0

h(θ + ω + 1)− ω if ω > 0
.

Therefore, when â→∞ the discharge is wide sense simple scaling

E[Qh
a] ∼


âh(θ+1)(a1λµ)h if ω < 0

âh(θ+ω+1) (a1λµ)h

âω

(
βb

λ

)h−1
ch(β)E[P̂ h

1 ] if ω > 0
as â→∞. (5-31)



36 5 Analysis of the invariant density

Gupta and Waymire (1990) observed a multiscaling structure in the instantaneous rainfall data
measured during the Global Atmosphere Research Program, Atlantic Tropical Experiment (GATE).
Here, we relaxed it to the wide sense simple scaling hypothesis of P for academic purposes. On
the other hand, Leopold and Maddock (1953) proposed power laws of the hydraulic geometry,
one of which represents the mean velocity in the channel as a function of the mean discharge
at the outlet of the watershed. This, together with the well know power law between the mean
discharge and the area of a river basin, supports the viability of the hypothesis for K. We proceed
to validate the conclusion of theorem 5.7 against our data.
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Figure 9. Log-Log plots of E[Q3
a] as a function of â. We used an inverse Gaussian distribution for P̂ and

the parameters of the validation window JJA 1968 in table 2. The dots were calculated with
equation (5-30), the dashed and doted lines were calculated with equation (5-31). The scaling
of the discharge is an asymptotic result. In the left panels, the dots approach the dashed line
while in the right panels, the dots approach the doted line as â→∞.

From figure 9 it is evident that the dots approach the same line (dashed or dotted) regardless the
value of θ, which makes evident the relative importance of the hypothesis for the mean residence
time in the channel. The exponent ω in the power law for K not only affects the magnitude of
the scaling exponent, but also determines the scaling structure of discharge. Also, it is important
to note that the scaling of the discharge is an asymptotic result and the data approaches the
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expression in (5-31) as â → ∞. This is a remarkable difference with the hydrological literature,
where the theoretical wide sense scaling is defined with an equality.

5.4. Return period

The return period is one of the fundamental concepts for the applications of hydrology in engi-
neering, as it is used for hydrological design and risk analysis. In this section We propose a novel
interpretation of the return period in the context of the time continuous stochastic process and
we present a new expression to estimate it under the assumptions of our model.

5.4.1. Return period in hydrology

In the classical hydrology literature an extreme event occurs when a random variable X is greater
or equal than a certain threshold u. The recurrence interval τ is the time between occurrences of
the event [X ≥ u] and it is also a random variable. The return period T of the extreme event is
the expected value of τ (Te Chow et al., 1962)

T = E[τ ]. (5-32)

If the random variable X is measured every fixed time interval ∆t, then we have a time series of
observations with a uniform temporal resolution, i.e. daily, monthly, annually, etc. By observations
we mean a sequence {X1, X2, X3, . . . }, of realizations of a random variable X. If we also suppose
that the observations are independent and identically distributed, the following heuristic allows
to relate the return period to the probability p = P(X ≥ u) of occurrence of the extreme event.
For each observation, there are two possibilities: a "success" if X ≥ u with probability p, and
a "failure" if X ≤ u with probability (1 − p). If we have τ − 1 failures followed by a success,
we have a recurrence interval of discrete duration τ , with probability (1− p)τ−1p. The expected
value for τ is given by

E[τ ] =
∞∑
τ=1

τ(1− p)τ−1p = p

∞∑
τ=1

τ(1− p)τ−1 = p
1

p2
=

1

p
.

Therefore, the probability of occurrence of an extreme event in any observation is equal to the
inverse of its return period

P(X ≥ u) =
1

T
. (5-33)

For example, a 50-year flood has a 1/50 = 0.02 or 2% chance of happening or being exceeded in
any one year and a 100-year flood has a 0.01 or 1% chance of happening or being exceeded in
any one year.

In engineering applications, the estimated return period is a statistic. For example, one cannot
determine the magnitude of the extreme event with a return period of 100 years with a time series
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of 30 years. Even if the return period is a lot less than the record length of the time series, a
good estimation of an expected value requires a good sample of recurrence intervals. Typically,
the hydrological records are not long enough. Instead, one traditionally fits a statistical model for
the tail of the distribution of X and predicts the magnitude of such an unobserved extreme event
under the assumptions of equation (5-33).

5.4.2. Marked Poisson Point Process

We now want to extend the concept of return period, which was defined for a sequence of inde-
pendent realizations of a random variable, to the context of a time continuous stochastic process
{X(t), t ≥ 0}. The Marked Poisson Process (MPP) in the real line with intensity λ, describing the
occurrence over time of positive random events, is a natural example to motivate the theoretical
analysis we are about to present.

Consider a MPP which is a double sequence ({ti}∞i=1 , {Yi}
∞
i=1) of R+-valued random variables ti

and Yi, such that the inter-arrival times τi = ti+1 − ti, i = 1, 2, 3, . . . , are exponential variables
with mean 1/λ and the marks {Yi} are i.i.d. variables. See Appendix. One can interpret ti, if
finite, as the timepoint a which the i-th recording of an event with magnitude Yi takes place.

Y1
Y2

Y3

Y4

Y5

Y6

Y7

Y8

τ1 τ2 τ3

u

t

Yn

Figure 10. Schematic representation of a Marked Poisson Process. The dark marks are the ones whose
magnitude exceeds the level u and therefore form the process Y (u) and define the inter-arrival
times τi.

Let us consider a MPP with intensity λ = 1, illustrated in figure 10. If we set an arbitrary level
u > 0, it can be shown that the process Y (u) = {(ti, Yi) : Yi ≥ u} is another MPP with intensity
ρu = P(Yi ≥ u) (Jacobsen, 2006). Therefore, Nu(t) = #{Yi : Yi ≥ u} is a Poisson process with
intensity ρu and the interrarivals {τ1, τ2, τ3, . . . } are exponential variables with mean 1/ρu, i.e.

E[Nu(t)] =tP(Yi ≥ u), (5-34)

E[τi] =
1

P(Yi ≥ u)
, i = 1, 2, 3, . . . (5-35)
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Note that the formulation (5-35) conveys the same meaning as (5-33), thus giving an interpreta-
tion of the concept of return period of events separated by continuous inter-arrival times, namely
T = E[τi].

Equation (5-33), which we refer to as the Binomial Heuristic, is the traditional interpretation of
the return period as the inverse of the probability of a Bernoulli trial in the binomial distribution.
This approach is not adequate for hydrological modeling because each observation of a hydrolog-
ical variable does not necessarily represent an independent Bernoulli trial. However, the results
obtained for engineering applications will be similar to those obtained under the Poisson heuristic
approximation, because when the number of observations of the random variable goes to infinity
and the probability of occurrence of the extreme event goes to zero, namely i→∞ and u→∞
in (5-33), the binomial distribution is a good approximation of the Poisson distribution.

5.4.3. Poisson Clumping Heuristic

Distributional questions concerning rare events associated with random processes may be reformu-
lated as questions about sparse random sets. The sparse random sets, in our case the observations
of [X ≥ u], often resemble i.i.d random clumps thrown down randomly, i.e. centered at points
of a Poisson process. The Poisson clumping heuristic, which we now present as stated by Aldous
(1989), consists of approximating these sparse random sets by a mosaic process S. A mosaic
process S in R+ is the union of i.i.d. random intervals Ii = (ti − εi/2, ti + εi/2) with Poisson
random centers ti happening at a rate λ per unit length and i.i.d. εi > 0. We call λ the clump rate.

For x ∈ R+, let Nx be the number of intervals of S which contain x. Write Ii = |Ii|. Aldous
(1989, Lemma A2.1) shows that Nx has a Poisson distribution with mean λE[Ii]. Then, for a
large interval [a, b] ∈ R+, we can approximate S ∩ [a, b] as the union of those intervals of S whose
centers lie in [a, b], and this approximation gives

P(S ∩ [a, b] empty) ≈ P(Nx = 0) = exp(−λ (b− a)). (5-36)

Now, let {X(t), t ≥ 0} be a continuous-time stationary random process, and suppose that we
are interested in the distribution of Mt = sups∈[0,t]X(s) for large t. We can define the random
set Su = {t : X(t) ≥ u}, and we have

P(Mt < u) = P(Su ∩ [0, t] empty).

For u large, Su is a sparse stationary random set (See figure 11). Suppose Su can be approximated
by a sparse mosaic with some clump rate λu. Then, by (5-36)

P(Su ∩ empty) ≈ exp(−λut).

Finally, define the first hitting time to u as Tu = min{t : X(t) ≥ u}. Studying approximations
to the distribution of Mt for large t is equivalent to studying hitting times since P(Mt < u) =
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P(Tu > t). Therefore
P(Tu > t) = P(Mt < u) ≈ exp(−λut), (5-37)

and the Poisson clumping heuristic states that the first hitting time Tu can be approximated as
an exponential random variable.

u

t
τ1 τ2 τ3

Tu T5T1 T2 T3 T4

τ4 τ5

Observations of the random variable X Stochastic process X(t) Mosaic process Su

Figure 11. Illustration of the interpretation of the return period concept for a continuous time stochastic
process {X(t), t ≥ 0}, from which observations Xi = X(i∆t), i = 0, 1, 2, . . . are made with
a uniform time step ∆t. The random variables τi are the inter-arrivals of the observations
Xi exceeding u, while the random variables Ti are the inter-arrivals of the upcrossings of the
stochastic process {X(t), t ≥ 0}. Note that for u large, {t : X(t) ≥ u} is a sparse random
set which we approximate by a mosaic process Su.

In practice, level crossing counting is often used as a means to describe the variability and ex-
tremal behavior of a continuous stochastic process. For example, the maximum of the process in
an interval is equal to the lowest level above which there exists no genuine level crossing, provided,
of course, that the process starts below that level. Since it is often easier to find the statistical
properties of the number of level crossings than to find the maximum distribution, crossing meth-
ods are of practical importance (Lindgren, 2006).

For sample functions of a continuous process {X(t), t ∈ R+} we say that X(t) has an upcrossing
of the level u at t0 if, for some ε > 0, X(t) ≤ u for all t ∈ (t0 − ε, t0] and X(t) ≥ u for all
t ∈ [t0, t0 + ε). For an interval [0, t], write N+

u (X(t)) for the number of u-upcrossings by X(s),
with s ∈ [0, t]. By the intensity of upcrossings we mean any function ρ+u (t) such that∫

[0,t]

ρ+u (s) ds = E[N+
u (X(t))].

For a stationary process, ρ+u (t) = ρ+u is independent of t and ρ+u is the mean number of upcrossings



5.4 Return period 41

per time unit at level u.
E[N+

u (X(t))] = tρ+u . (5-38)

Note that (5-38) is the continuous version of (5-34), replacing the probability of exceeding u by
the rate ρ+u .

If {X(t), t ≥ 0} has absolutely continuous sample paths, the heuristic (5-37) takes the form: for
u large,

P(Tu > t) = P(Mt < u) ≈ exp(−tρ+u ), (5-39)

which meas that the hitting time Tu is approximately exponential with mean 1/ρ+u .

Now, define {Ti}∞i=1 as the sequence of inter-arrival times between upcrossings. For a continuous-
parameter Markov process, by the strong Markov property, the inter-arrivals have the same dis-
tribution of the first hitting time Tu, therefore

E[Ti] ≈
1

ρ+u
.

Finally, if we interpret the random variable τ in (5-32) as a discrete approximation to the random
sequence {Ti} of inter-arrival times, under the framework of the Poisson clumping heuristic, we
can estimate the return period of a continuous-time Markov process as

T ≈ 1

ρ+u
. (5-40)

Given that for u large, equation (5-40) provides a new expression to estimate the return period of
a hydrological extreme event, we now attempt an exact calculation of ρ+u based on the invariant
density of discharge (3-6).

There exists a very famous formula, found by Marc Kac and Steve O. Rice (Rice, 1944), for
ρ+u , the expected number of upcrossings of a level u. The simplest version is valid for stationary
processes {X(t), t ∈ R} with absolutely continuous sample paths and absolutely continuous
distribution with density fX(t)(u) = fX(0)(u), independent of t. For such a process, the derivative
Ẋ(t) exists almost everywhere, and the conditional expectation E

(
Ẋ(0)+

∣∣X(0) = u
)
exist, with

Ẋ(0)+ = max
(
0, Ẋ(0)

)
. The upcrossings intensity is therefore given by

ρ+u =E[N+
u (X(t))] =

∫ ∞
0

zf(X,Ẋ)(u, z) dz

= fX(0)(u)E
(
|Ẋ(0)+|

∣∣X(0) = u
)
, (5-41)

where f(X,Ẋ)(u) is the join density of X(t) and Ẋ(t). This expression holds for almost any u,
whenever the involved densities exist.

This formula can be replaced in the context of the discharge to find an expression to estimate the
return period T of the extreme event [Q ≥ u].
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Theorem 5.8. If {Q(t), t ≥ 0} is a time continuous stationary process with density function
characterized by (3-2), then the Laplace transform of the upcrossings intensity ρ+u at level u is
given by

ρ̃+(s) = K

∫ ∞
0

∫ ∞
0

F (u, r)e−su dr du = KF̃ (s, 0), (5-42)

with
F̃ (s, s2) = − ∂

∂s2
g̃(s, s+ s2).

Proof. Lets consider the stochastic process Q(t), which under the assumptions of our model, is
stationary, continuous, differentiable almost everywhere, and has a density g. According to (5-41),
the upcrossings intensity can be estimated as

ρ+u = g(u)E
[
Q̇+(t)

∣∣Q(t) = u
]

(5-43)

= g(u)

∫ ∞
0

v P
(
Q̇+(t) ∈ dv

∣∣Q(t) = u
)

(5-44)

= g(u)

∫ ∞
0

v P
(
K(−Q(t) +R(t)) ∈ dv

∣∣Q(t) = u
)

(5-45)

= g(u)

∫ ∞
0

v P(Q(t) ∈ du,K(−u+R(t)) ∈ dv)

P(Q(t) ∈ du)
(5-46)

= g(u)

∫ ∞
0

v g
(
u,

v

K
+ u
) dv

K
, (5-47)

where g is the invariant distribution of the process X(t), i.e. the join invariant distribution of
R(t) and Q(t).

Let x = v
K

+ u, then

ρ+u = E[N+
u (Q(t))] = K

∫ ∞
u

(x− u) g(u, x) dx. (5-48)

The Laplace transform of ρ+(u) is

ρ̃+(s) = K

∫ ∞
0

∫ ∞
u

(x− u) g(u, x)e−su dx du.

We would like to relate it to the Laplace transform of g, for which there exists the analytical
expression (3-6). Let r = x− u, then dr = dx and

ρ̃+(s) = K

∫ ∞
0

∫ ∞
0

r g(u, r + u)e−su dr du. (5-49)

Let h(u, r) = g(u, r + u), then

ρ̃+(s) = K

∫ ∞
0

∫ ∞
0

rh(u, r)e−su dr du.
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Finally, let F (u, r) = rh(u, r), then

ρ̃+(s) = K

∫ ∞
0

∫ ∞
0

F (u, r)e−su dr du = KF̃ (s, 0),

with
F̃ (s, s2) = − ∂

∂s2
h̃(s, s2).

Even though expression (5-42) characterizes the upcrossings intensity, it cannot be explicitly
written in terms of g̃, nor computationally implemented to estimate the return period, since we
are interested in a rare event which is not possible to sample numerically.



6. Conclusions

We have derived and solved a mathematical model for the rainfall-runoff process in a catchment
of order one. The model is linear, implying that its predictions should be understood as a first
order approximation of the actual dynamics. Our main result is the characterization of the limit-
ing invariant distribution of discharge in relation to the basin area, residence times on hillslopes
and channel, and the statistical properties of the rainfall process. At a very fundamental level,
our results give a mathematically minded glimpse of how the uncertainty in the rainfall process
interacts with the geophysical variables within a catchment to produce uncertainty in the discharge.

The invariant distribution of discharge is characterized in equation (3-8), and depends on two
a-dimensional parameters. The first one is η = H/λ, relating the time scale associated with the
occurrence of rainfall events and that of hillslope runoff. The second one, β = H/K, is essen-
tially the ratio between the residence times for channel and hillslope flow. We have confirmed
and expanded the results obtained by Botter et al. (2007a) on the important role played by η on
the invariant density g of discharge. The threshold η = H/λ = 1 largely determines the shape of
the probability density of the invariant distribution of discharge: g is unimodal for η < 1, while
monotone decreasing for η > 1. On the other hand, we show that the parameter β plays a very
marginal role on determining g when considered over a large range of physically sensible values,
10−4 < β < 10−1 (see Figure 2). Even at sub-daily time scales, the slow component of the system
dominates the dynamics and the transfer of uncertainty from precipitation to discharge. Namely,
most of the properties of the system can be recovered in the limitH/K → 0. We conclude that, at
least in the case of an order-one catchment, the at-a-point dynamics modeled by a single reservoir
as in Botter et al. (2007a) are a good approximation to the double-reservoir model presented here.

In the case study presented in chapter 4 we were careful enough to find a catchment subject to a
statistically invariant rainfall dynamics of approximately instantaneous Poissonian events, where
the hydrological budget evidences that evapotranspiration plays a minor role. From our results
there, we can draw two conclusions. First, that whenever its hypothesis are sufficiently satisfied,
our model can be parametrized for H and K so that the predicted invariant distribution matches
the seasonal ensemble of discharge. Moreover, that the qualitative changes in the distribution of
discharge predicted at the threshold η = 1 do occur in natural catchments. Secondly, and this is
quite troubling, that while H is the most important parameter of the model, it seem to depend
itself on the precipitation regime. While this is probably a manifestation of the true non-linear
nature of the underlying phenomena, one should be careful on assigning H a value based simply
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on geomorphological considerations.

The transfer of uncertainty between the precipitation process and the discharge is summarized
by the mathematical results in chapter 5. First, we relate all moments of P and Q via equation
(5-2) which yields the relation (5-9) between the corresponding coefficients of variations CV(P )

and CVg(Q). Figure 7 shows, however, that this flow of uncertainty is far from trivial: the distri-
bution of discharge can have quite different behaviors even the values of CV(P ), CVg(Q) or η
are held constant. Another important implication from equation (5-2) is that under the invariant
distribution, Q has exactly as many moments as does the rainfall amounts Pn. This observation
is magnified in section 5.2 where we establish that the invariant distribution of Q inherits the
tail behavior of the distribution of P . For the cases of P distributed as Pareto and Gamma dis-
tributions, which represent heavy-tailed and light-tailed examples respectively, equations (5-12)
and (5-18) characterize the weight and index of the tails of g in terms of all other parameters of
the model. From both results we can conclude that an increase in variability of seasonal rainfall
statistics, will likely produce an increase of uncertainty in discharge, and that this increase will
depend heavily on the residence time H.

In section 5.3 we supposed a wide sense scaling structure of the spatially averaged rainfall rates
and residence times, and analyze the scaling structure of discharge. It turned out to be another
asymptotic result with the discharge being wide sense scaling and approaching the expression in
(5-31) as the scale parameter goes to infinity. The scaling of K seems to be a fundamental
hypotheses, even more important than the scaling of P , given the threshold ω = 0 which largely
determines the scaling structure of discharge. Finally, our approach to the hydrological concept
of return period is purely mathematical as we wanted to provide a rigorous theoretical framework
to extend this concept to the time-continuous stochastic process context. We were able to
reinterpret the return period of a sequence of independent realizations of a random variable, as
the inverse of the intensity of a Marked Poisson Process, but also as the inverse of the intensity
of upcrossings of a stationary Markov process. Moreover, the comparison between the Poisson
clumping heuristic and the binomial heuristic let us justify why the classical definition of return
period in hydrology works well for engineering applications, even when based on questionable
hypothesis of independence.



A. Appendix

The mathematical framework of this work is based on fundamental concepts of the probability
theory, which we now present based on the classical literature by Bhattacharya and Waymire
(2009), Durrett (1999) and Walsh (2012).

A.1. Random variables

Let (Ω,F ,P) be a probability space. A random variable is a function X : Ω→ R such that for
all B ∈ B, X−1(B) ∈ F . We call X−1(B) = {ω ∈ Ω : X(ω) ∈ B} an event and we denote its
probability as P(X−1(B)) = P(X ∈ B).

The distribution function of a random variable X is the function F : R→ [0, 1] defined by

FX(x) = P(X ≤ x).

We say that the random variables X and Y are independent if and only if for all Borel sets A
and B,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B). (A-1)

If P(X ≤ x) = P(Y ≤ y) for all x, y ∈ R, we write X d
= Y .

If there exists a function fX(x) on R such that the distribution function FX(x) of X is

FX(x) =

∫ x

−∞
fX(y) dy,

then the function fX is called the density of X and we write

P(X ∈ dx) = fX(x) dx.

Let h(x) be a smooth, one-to-one function, i.e., strictly monotone and continuously differentiable.
If Y = h(X), then, the density of Y is

fY (y) =
fX(h−1(y))

|h′(h−1(y))|
. (A-2)
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Let g ≥ 0 be a real valued Borel measurable function and suppose X has density fX . We define
the expected value of the random variable g(X) as

E[g(X)] =

∫
R
g(x)fX(x) dx.

In particular, E[X] =
∫
R xfX(x) dx and we say that the random variable X is integrable if

E[|X|] <∞

The variance of X is
Var[X] = E[X2]− E[X]2 (A-3)

and the coefficient of variation is

CV[X] =

√
Var[X]

E[X]
. (A-4)

The Laplace transform of the density fX is defined as

f̃X(s) = E[e−sX ] =

∫
R
fX(x)e−sx dx, (A-5)

and the moment generating function of X as

MX(α) = E[eαX ] =

∫
R
fX(x)eαx dx, (A-6)

If MX(α) exists for α in a neighborhood of the origin, one can compute moments of any order
by differentiating

E[Xn] =
dnMX(α)

dαn

∣∣∣∣
α=0

. (A-7)

Note that the Laplace transform of fX is closely related to the moment generating function of X
since

f̃X(−s) = MX(s). (A-8)

Let X be a random variable with probability density f and denote µ = E[X]. Define the
normalized random variable X̂ = X/µ and denote by φ its probability density, then

φ(x) =µf(µx) (A-9)

φ̃(s) =f̃

(
s

µ

)
. (A-10)

A continuous random variable T is said to have an exponential distribution with mean 1/λ if

P (T ≤ t) = 1− e−λt, t ≥ 0

A discrete random variable X is said to have a Poisson distribution with intensity λ if

P (X = k) =
e−λλk

k!
, k = 0, 1, 2, . . .
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A.2. Continuous-parameter Markov processes

A stochastic process X = {X(i) : i ∈ I} is a collection of random variables defined on the
same probability space (Ω,F ,P), indexed by a variable i in a set I and taking values in a set E
of the d-dimensional Euclidean space Rd, E ⊆ Rd. Typically, the indexing variable i is the time,
t ∈ R+ = [0,∞), and we write X = {X(t), t ≥ 0}.

A stochastic process {X(t), t ≥ 0} has independent increments if for each n and each 0 ≤ s1 <

t1 ≤ s2 < t2 ≤ · · · ≤ sn < tn, the random variablesX(ti)−X(si) i = 1, 2, . . . , n are independent.
The increments are stationary if for each t, the distribution of X(s+t)−X(s) is independent of s.

Let {X(t), t ≥ 0} be a time-continuous stochastic process. We will write Px to denote the
probabilities of X(t) conditioned on X(0) = x, i.e. for an event B in the σ-field of Borel subsets
of E, B ∈ B(E),

Px(X(t) ∈ B) = P
(
X(t) ∈ B

∣∣X(0) = x
)
.

We say that X(t) is a continuous-parameter Markov process if it has the Markov property, i.e.
if the conditional distribution of the future given the present and the past only depends on the
presents. This is mathematically stated as: for s ≥ 0, t > s and B ∈ B(E)

P
(
X(t) ∈ B

∣∣F(s)
)

= PX(s)(X(t) ∈ B)

where F(s) is the σ-algebra generated by {X(u) : 0 ≤ u ≤ s}, i.e. the σ-algebra with all the
information of the stochastic process until time s.

A stopping time τ is a positive real-valued random variable with the property that for every
fixed time s, [τ ≤ s] ∈ F(s). This means that the occurrence of the event [τ ≤ s] depends only
on the information of the past and the present {X(u) : 0 ≤ u ≤ s}, not on any future information.

A Markov process has the strong Markov property if for s ≥ 0, τ <∞ and B ∈ B(E)

P
(
X(τ + s) ∈ B

∣∣F(τ)
)

= PX(τ)(X(s) ∈ B).

If {X(t), t ≥ 0} is a stochastic process with independent increments, then {X(t), t ≥ 0} is a
Markov process.

For a Markov process, we define the transition kernel p(t;x, y) as the conditional probability

p(t;x, y) dy = Px(X(t) ∈ dy).

If the density of X(0) is g0, we write Pg0 to denote probabilities with respect to the density g0,
namely conditioned on X(0) distributed as g0, which are related to the transition kernel as

Pg0(X(t) ∈ B) =

∫
E

∫
y∈B

p(t;x, y)g0(x) dy dx, B ∈ B(E)
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We say that g is an invariant density of the Markov process X(t) if, for every t ≥ 0 and for
every x ∈ R we have that g(x) dx = Pg(X(t) ∈ dx). This means that the distribution of X(t)

does not depend on time, namely if X(0) has a density g, then for every t, the random variable
X(t) has the same density g.

A.3. Poisson process

Let τ1, τ2, τ3, . . . be an i.i.d. sequence of exponentially distributed random variables with mean
1/λ > 0. Let Tn = τ1 + τ2 + · · · + τn for n ≥ 1, T0 = 0, and define a counting process
N(t) = max{n : Tn ≤ t}, t ≥ 0. The random variables τn are referred to as inter-arrival
times, Tn as the arrival times and N(t) is the number of arrivals by time t. We say that
{N(t), t ≥ 0} is a Poisson process with intensity λ.

The Poisson process N(t) with intensity λ has the following three properties:

i. N(0) = 0,

ii. N(t) has stationary independent increments,

iii. For all 0 ≤ s ≤ t, N(t) − N(s) has a Poisson distribution with intensity λ(t − s). This
implies that E[N(t)] = λt.

N(t) is a continuous parameter Markov process.

A Marked Poisson Process (MPP) with intensity λ is a double sequence ({Tn}∞n=1 , {Yn}
∞
n=1),

such that {Tn} are i.i.d. exponential variables with mean 1/λ and {Yn}∞n=1 are i.i.d. non-negative
random variables having a common density fY and independent of the associated Poisson process
{N(t), t ≥ 0}. The random variables {Yn}∞n=1 are referred to as the marks. This means that if
we associate a random value Yn to each arrival time Tn, we form a MPP.

If we sum all the random values of {Yn} until time t, we form a Compound Poisson Process. Let
({Tn}∞n=1 , {Yn}

∞
n=1) be a MPP with intensity λ and let N(t) = max{n : Tn ≤ t}, t ≥ 0 be the

associated Poisson process. The process defined by

Z(t) =

N(t)∑
n=1

Yn (A-11)

is called a compound Poisson process (CPP). The process (A-11) also has independent in-
crements and is therefore Markovian.



50 A Appendix

The expected value of the CPP can be computed as the product of the mean number of arrivals
by time t, E[N(t)], and the common mean of the marks, E[Yn], i.e.

E[Z(t)] = λtE[Yn] (A-12)

The variance of the CPP is
Var[Z(t)] = λtE[Y 2

n ] (A-13)

The stochastic integral of a stochastic process {φ(t), t ≥ 0} with respect to compound Poisson
process {Z(t), t ≥ 0} is ∫ t

0

φ(s) dY (s) =

N(t)∑
n=1

φ(tn)Yn. (A-14)

A.4. Bell Polynomials and gamma function

Definition A.4.1. The partial or incomplete exponential Bell polynomial Bn,k is defined as

Bn,k({xi}n−k+1
i=1 ) = Bn,k(x1, x2, . . . , xn−k+1) = n!

∑
j∈I(n,k)

n−k+1∏
i=1

1

ji!

(xi
i!

)ji
. (A-15)

Here, j ∈ I(n, k) denotes that the sum is taken over all vectors j = {j1, j2, . . . , jn−k+1} of
non-negative integers such that

n−k+1∑
i=1

ji = k,
n−k+1∑
i=1

iji = n. (A-16)

The sum

Bn({xi}ni=1) = Bn(x1, x2, . . . , xn) =
n∑
k=1

Bn,k({xi}n−k+1
i=1 ) (A-17)

is called the n-th complete exponential Bell polynomial.

For instance, the first four complete exponential Bell polynomials are

B1(x1) =x1,

B2(x1, x2) =x21 + x2,

B3((x1, x2, x3) =x31 + 3x1x2 + x3,

B4(x1, x2, x3, x4) =x41 + 6x21x2 + 3x22 + 4x1x3 + x4.

Proposition A.1. Let Bn be the n-th complete exponential Bell polynomial. Then,

Bn

(
{(−1)ixi}ni=1

)
= (−1)nBn({xi}ni=1) (A-18)
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Proof.

Bn

(
{(−1)ixi}ni=1

)
=

n∑
k=1

Bn,k({(−1)ixi}n−k+1
i=1 )

=
n∑
k=1

n!
∑

j∈I(n,k)

n−k+1∏
i=1

1

ji!
(−1)iji

(xi
i!

)ji
=

n∑
k=1

n!
∑

j∈I(n,k)

(−1)
∑n−k+1
i=1 iji

n−k+1∏
i=1

1

ji!

(xi
i!

)ji
=

n∑
k=1

n!
∑

j∈I(n,k)

(−1)n
n−k+1∏
i=1

1

ji!

(xi
i!

)ji
=(−1)n

n∑
k=1

Bn,k({xi}n−k+1
i=1 )

=(−1)nBn({xi}ni=1)

Definition A.4.2. For any positive integer n, the gamma function is defined as

Γ(n) = (n− 1)!. (A-19)

For any real number x, except the non-positive integers, the gamma function can be defined as
an infinite product

Γ(x) =
1

x

∞∏
k=1

(
1 + 1

k

)x
1 + x

k

. (A-20)

By this definition, the gamma function satisfies Γ(x) = (x − 1)Γ(x − 1) for all real numbers x
except the non-positive integers. If we use this recurrence property, for a real number x and a
positive integer i we get

Γ(x+ i) =(x+ i− 1)Γ(x+ i− 1)

=(x+ i− 1)(x+ i− 2)Γ(x+ i− 2)

=(x+ i− 1)(x+ i− 2) . . . (x+ 1)xΓ(x)

=Γ(x)
i−1∏
k=0

x+ k. (A-21)
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