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Resumen  

 
 
 
Ruminococcus albus es una bacteria fibrolítica que ejerce una función importante en el 
fluido ruminal por su capacidad para degradar celulosa y hemicelulosa y por sus 
interacciones con otras especies. Asimismo, es un microorganismo con alto potencial 
biotecnológico por su capacidad para producir hidrogeno y porque puede ser usado como 
complemento dietario de ganado, pollos y caballos. A pesar de que esta bacteria se ha 
estudiado desde 1950, la mejora de medios de cultivo que permitan su aislamiento 
selectivo y específico a partir de fluido ruminal contribuiría a facilitar su estudio y 
aplicabilidad. El objetivo de este estudio fue optimizar un medio de cultivo para su 
aislamiento y crecimiento evaluando diferentes medios y agentes selectivos. En una 
primera fase se evaluó el método de roll-tube para aislar microorganismos celulíticos 
propuesta por Hungate (1969), utilizando carboximetilcelulosa (CMC) y papel filtro 
Whatman No1 (PMC) como fuentes de carbono en un medio modificado basado en el 
medio RGC (Rumen Fluid Glucose Cellobiose), identificando solo tres aislamientos de 
Streptococcus bovis/equinus en lugar de R. albus. En una segunda fase se evaluó el 
crecimiento de la cepa 7 de R. albus en el medio DSMZ 436 cuya reactivación tardó nueve 
días y los repiques crecieron después de 48 horas incubando a 37°C. Posteriormente se 
evaluó un medio químicamente definido, midiendo la tasa de crecimiento de las cepas 7, 
8, SY3 y B199 que alcanzaron la fase exponencial tardía después de aproximadamente 
10 horas de incubación a 37°C y 39°C. Adicionalmente se evaluó el crecimiento de las 
cepas en presencia de diferentes compuestos, con el fin de proponerlos como agentes 
selectivos. La cepa B199 creció después de 48 horas de incubación en presencia de ácido 
propiónico al 0.5% y LiCl al 0.5%, mientras que el resto crecieron antes de las 24 horas. 
Asimismo, todas las cepas crecieron en presencia de ácido nalidixico, exceptuando la cepa 
8. Para estudios futuros se propone aislar R. albus usando fibra vegetal como fuente de 
carbono y probar la selectividad de estos tres agentes en el medio químicamente definido 
mediante la técnica de roll-tube y evaluar el crecimiento del microorganismo frente a otros 
posibles agentes selectivos como el feniletil alcohol entre otros. Del mismo modo se 
recomienda que para aislar, cultivar y criopreservar exitosamente este microorganismo es 
necesario tener en cuenta las características de su metabolismo y de su hábitat y seguir 
las recomendaciones sugeridas por la literatura para el trabajo en el laboratorio.  
 
 

Palabras clave: Ruminococcus albus, bacterias celulolíticas, microorganismos 

ruminales  
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Abstract 

 
 
Ruminococcus albus is a fibrolytic bacterium which develops a key role in the rumen fluid 
due to its cellulose and hemicellulose degrading capability and interaction with other rumen 
microbiota species. Furthermore, is a high-biotechnological potential bacterium able to be 
used to produce hydrogen as energy source and as a dietary complement for poultry, cattle 
and horses as well. Therefore, despite of R. albus has been a research matter from 1950, 
a culture medium to be specifically isolated from rumen fluid would open the possibilities of 
study and applicability. The aim of this study was to optimize a selective culture medium 
for its growth and isolation by evaluating different media and selective agents. In a first 
stage, roll-tube methodology for isolation of cellulolytic bacteria proposed by Hungate 
(1969) using carboxymethyl-cellulose (CMC) and pebble-milled cellulose (PMC) as carbon 
sources, was evaluated in a RGC-based (Rumen Fluid Glucose Cellobiose) culture 
medium. Three ruminococci-shape isolates were identified as Strptococcus bovis/equinus 
instead R. albus. In a second phase, growth of R. albus strain 7 was evaluated in the 
medium DSMZ 436, in which reactivation took nine days and fresh inocula took 48 hours 
to growth. Both incubations were carried out at 37°C. Afterwards a chemical-defined 
medium was evaluated measuring the growth rate of R. albus strains 7, 8, SY3 and B199 
which reached the late exponential phase before 10 hours of incubation at 37°C and 39°C. 
Subsequently the growth of the four strains was evaluated in the presence of several 
compounds with the aim to propose it as selective agents. The strain B199 grew after 48 
hours of incubating time in the presence of 0.5% propionic acid and 0.5% LiCl, meanwhile 
the remaining strains have grown yet at 24 hours of incubation. All strains grew in the 
presence of 25 µg/mL of nalidixic acid as well, but strain 8 didn’t. For further studies it is 
proposed to isolate R. albus using vegetable fiber as carbon source and screening the 
selectivity of these agents in the chemical-defined medium by the roll-tube technique. 
However, the resistance to other selective agents of R. albus strains as phenyl-ethyl alcohol 
among others should be evaluated as well. Moreover, for a success isolation, growth and 
cryopreservation of R. albus it is recommended to take in consideration metabolic and 
habitat features of this microorganisms and follow the lab procedures as suggested in the 
literature.   
 

 

Keywords: Ruminococcus albus, ruminal bacteria, cellulolytic bacteria  
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Introduction 

Ruminococcus albus is a non-spore forming Gram-positive strict anaerobic bacterium 

which lives in the ruminal tract and belongs to the order Clostridiales, family 

Ruminococcaceae (Hungate, 1966; Hungate, 1957). R. albus can be observed under the 

microscope as single cocci and by pairs. It can be biochemically identified by the presence 

of hydrogen, ethanol, formate, CO2, and acetate in culture media as metabolic end-

products. The unique protein family 37 CBM (carbohydrate-binding modules) has been 

reported to be only among R. albus strains and be responsible for cell attachment to 

carbohydrates (Dassa et al., 2014; Ezer et al., 2008; Xu et al., 2004).  

The importance to study R. albus relays on its intraspecific and interspecific relationships, 

and the impact on the rumen microbiome, and on several potential biotechnological 

applications. The rumen microbiome is a dynamic and complex ecosystem in terms of 

biodiversity, exhibiting both competitive and symbiotic kinds of relationship (Mizrahi, 2013) 

in which R. albus plays a key role. Furthermore, the study of ruminants’ digestive system 

and microbiome has allowed to elucidate how does the transfer of energy and nutrients 

from plant polysaccharides to cattle food products works (meat and milk) (Flint et al., 2008).  

In this sense, metagenomics tools have allowed to increase the knowledge about rumen 

ecology dynamics as other environments as well. The number of reports of previous 

unknown microorganisms from different environments among them, rumen microbiome is 

higher than in previous years. For this reason, many researches have underestimated the 

use of culturing for microbiological study and considered it outdated. But other researchers 

have recently cultivated microorganisms previously considered “uncultivable”, using 

strategies which intend to mimic the conditions of their natural environment which have 

open the field to the “culturomics”. So the use of metagenomics tools in combination with 

culturomics strategies may complement quite well the study of these recently discovered 

microorganisms (Lagier et al., 2015).   

The first step to conduct a study about R. albus or any other bacteria it is very important to 

be able to well grow and preserve it, and if it is required, to be able to isolate. This would 

warranty the possibility to develop any research project. R. albus has been studied from 60 
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years ago but the only medium designed specific for this microorganisms was the one 

proposed by Taya and coworkers (1980) in which they suppress the use of rumen fluid, 

yeast extract and the tryptone, and minimize de mineral salts as well. The other culture 

media used for R. albus isolation and cultivation can be used to work with other rumen 

bacteria species. Atlas recommend on his book (2010) to use a medium with glucose, 

cellobiose, yeast extract and volatile fatty acids (VFAs) mixture among other components 

for R. albus growth but a selective culture medium for specific R. albus isolation from rumen 

has not been reported yet.  

Researchers use to isolate R. albus strains from rumen fluid by isolating cellulolytic species 

using fiber-based material both as carbon source and selective pressure factor as 

described by Hungate (1969). The objective of this project was to determine an optimal 

culture medium for isolation, growth and maintenance of R. albus evaluating three culture 

media: a RGC-based medium, the DSMZ 436 culture medium and a chemical defined-

medium, highlighting both the critical components of the medium and the key steps of the 

process of preparation of the medium and cryopreservation of the cells which are 

determinant in the isolation and culturing of this microorganism.  Inhibitory agents such as 

antibiotics and others also were evaluated in order to propose selective agents for isolation 

of R. albus.  As the hypothesis of the present work, it can be stablished that the isolation 

and growth of R. albus in a given culture medium depends on how similar is it to the natural 

environment (Rumen) in terms of chemical components that promote its selection and 

growth and physical conditions.   
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1. Theoretical frame  
 

1.1 Ruminococcus albus in the rumen fluid 

This microorganism lives in the digestive tract of herbivorous mammals and have been 

reported in abundance mainly in the rumen (Dehority, 1973), a microbial ecosystem 

characterized to be highly diverse and complex comprised by bacteria (1010 to 1011 per mL), 

protozoa (104 to 106 per mL), and fungi (103 to 106 per mL) (Hespell et al., 1997). R. albus, 

Ruminococcus flavefaciens, Fibrobacter succinogenes and Eubacterium cellulosolvens,  

among other microorganisms degrades cellulose synergistically, and with bacteria such as 

Butyrivibrio fibrisolvens and Bacteroides ruminicola, degrades hemicellulose of plants fiber 

(Dehority, 1973). In this way, both the animal and the microbial community are provided by 

oligosaccharides such as cellodextrins, cellobiose, glucose, xylose and arabinose which 

are used as carbon sources (Lynd et al., 2002). On the other hand, rumen microorganisms 

produce large amounts of short-chain fatty acids which are absorbed and used as energy 

source by the animal (Hobson and Stewart, 2012). 

1.1.1 Cellulose breakdown  

Vegetal biomass is composed by cellulose, hemicellulose and ligning which comprise plant 

dry weigh in different percentages depending on the kind and age. Cellulose configuration 

consists of glycosil subunits linear chains which form elementary fibrils which aggregate by 

hydrogen bounds to form microfibrills, and these are in turn attached by Van der Waals 

forces to form the familiar cellulose fibers. In vegetal fiber cellulose is embedded in other 

polymers such as hemicelluloses, pectins and lignin (Lynd et al., 2002).       

R. albus degrades fiber through the cellulosome, a specialized extracellular complex proteic 

system (Figure 1.a). This complex is expressed under cellulose presence (Ohara et al., 

2000) and can be observed as a cell wall swelling embedded in the glycocalyx (Weimer et 

al., 2006). Cellulosome works as an adherent to the substrate, trapping the 

oligosaccharides produced during cellulose degradation (Weimer et al., 2006). R. albus 
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also sticks to the substrate and forms a one-cell layer biofilm trough fimbria-like structures 

(Figure 1.b) built by secretion system type IV (Rakotoarivonina et al., 2002). 

 

 

Figure 1: a) Electronic microscopic view of a Ruminococcus albus cell (1), attached to a cellulose fiver (2) through the 

cellulosome (3) (Curtesy of Fernando Rodriguez-Villamizar, 2012) b) Variable-pressure scanning electron micrograph of 

R. albus 7 cells and associated glycocalyx adhering to cellulose fibers (CF) (1) Cells from young (24-h) cultures (2) 

showing discrete cellular appendages (arrows) (3), (Weimer et al., 2006). 

 

1.1.2 Mixed-acid fermentation pathway 

In the cellulose degradation process, R. albus produces cellodextrin, cellobiose and 

glucose (Lou et al., 1997) that are metabolized throughout the mixed-acid fermentation 

pathway (Figure 2) producing ethanol, hydrogen, carbon dioxide and short volatile fatty 

acids (Thurston et al., 1993). Metabolic products and their related stoichiometry depend on 

culture conditions. For example, Iannoti and coworkers (1973) found that R. albus in batch 

culture produces from 1 mole of glucose, 1.3 mole of acetic acid, 0.7 mole of ethanol, 2 of 

CO2 and 2.6 of H2 (equation 1). Initial pH was 6.8.  

𝐶6𝐻12𝑂6 + 2𝐻2𝑂 → 1.3 𝐶𝐻3𝐶𝑂𝑂𝐻 + 0.7 𝐶𝐻3𝐶𝐻2 𝑂𝐻 + 2𝐶𝑂2 +  2.6 𝐻2                           (1)       

Besides when R. albus was cultured in a chemostat, fermenting 1 mole of glucose it 

produced values closed to 2 mole of acetic acid, 2 mole of CO2, 4 mole of H2 (equitation 2). 

The pH in the culture was maintained in 6.8 and gas was constantly removed by a peristaltic 

pump (Ntaikou et al., 2009a). This stoichiometry is also feasible when R. albus is co-

cultured with hydrogenotrophic microorganisms (Iannotti et al., 1973). 

𝐶6𝐻12𝑂6 + 2𝐻2𝑂 → 2𝐶𝐻3𝐶𝑂𝑂𝐻 + 2𝐶𝑂2 +  4𝐻2                                                                   (2) 
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Figure 2: Mixed acid fermentation pathway. Ruminococcus albus produces ethanol, formate, acetate, and CO2 

from glucose and cellobiose derived from breaking down of cellulose. Succinate production has not been 

reported for this specie (blue dotted line). Some strains produce lactate (orange line). Depending on hydrogen 

partial pressure R. albus produces just hydrogen, acetate and CO2, or these compounds in lower concentrations 

along with ethanol and tends to accumulate formate. Modified from Ntaikou and coworkers (2008). 

This stoichiometric change can be explained as batch culture is a closed system while a 

chemostat is an opened system. When culture medium is inoculated and as time is passing, 

hydrogen partial pressure increases and pH value falls. Therefore, as hydrogen 

concentration increases in the atmosphere, its production in the cells tends to be 

thermodynamically unfavorable. Thus formate in the inner of the cells tends to accumulate 

and hydrogen production drops. In the same way, the half of the Acetil-CoA moles are going 
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to be transformed into acetaldehyde and further in ethanol, and the other half into acetate. 

Hence just 2 mol of ATP are going to be produced instead of 4 (Ntaikou et al., 2009a). 

On the other hand, the events related to hydrogen partial pressure in the rumen cavity are 

of interest in the R. albus and hydrogenotrophic species population dynamics. In rumen 

fluid it could be found syntrophic microorganisms which are removing the hydrogen 

produced by R. albus and by other hydrogen producing species continuously. For example, 

methanogenic and sulfate-reducing microorganisms. Therefore, it is expected hydrogen 

partial pressure in the rumen remains low in healthy ruminants. When hydrogen partial 

pressure increases, it seems hydrogen-consumers’ metabolism is stimulated while, 

hydrogen-producers such as R. albus metabolism is disfavored (Stams and Plugge, 2009). 

In the Ntaikou and coworkers (2009a) work, when R. albus was cultured in continuous at 

acid pH values (amongst 5.9 and 6.8), the stoichiometric proportions of the products were 

the same obtained in batch cultures by Iannoti and coworkers (1973) (equation 1). Ntaikou 

and coworkers (2009a) also evaluated the metabolites production at these low pH values 

combined with high hydrogen partial pressure. They noticed that ethanol and acetate 

proportions didn’t change. So that, they concluded this stoichiometric change also occurs 

when external medium turns into acid as a mechanism of the cell to delay acidification 

because instead of 4 mol of acetate, 2 mol of acetate and 2 mol of ethanol are produced. 

In conclusion, for industrial process, in order to get an optimal cellulose degradation and 

hydrogen production by R. albus, the pH should be kept in neutral values (6.8-7.0) and a 

low hydrogen partial pressure should be maintained along the process. 

1.2 Ruminococcus albus: biotechnological applications  

1.2.1 Hydrogen as an alternative fuel and energy source   

Due to traditional fuel and energy sources inconsistences related to its availability, 

economy, production, applications and environmental impacts, alternative energy sources 

and fuels are a key topic nowadays. Environmental impacts due to exploration and 

exploitation of traditional fuel and energy sources such as petroleum, and nuclear energy 

are well known (Demirbas, 2009). Additionally, for 2030 it has been estimated petroleum 

reserves would be able to supply the 75% of demands (Finley, 2012). So governments, 
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enterprises and the scientific community might work in mid-term projects in order to supply 

the remaining 25% or even a vast majority. Despite of fuels and energy marked depends 

on many variables and it makes the alternative sources massive entry to be uncertain, the 

work on them shall not stop.   

Hydrogen is a suitable and attractive alternative source of energy and fuel for human 

activities such as transportation because of its high energetic content, cleanness and 

efficiency (Sharma and Ghoshal, 2015). Hydrogen can be produced by physicochemical 

and biological processes. Among each one of them biological are the cleanest ones but 

less efficient (Singh and Wahid, 2015). Nevertheless, by optimization of conditions and 

genetic engineering, it can be improved. Therefore, it is worth promoting the research on 

biological methods to produce hydrogen in the lab, and at a pilot and industrial scales and 

evaluate its commercial feasibility. So in the future it would be possible to ensure having 

disposable a very attractive energy and fuel source such as hydrogen.        

Hydrogen has been the main R. albus biotechnological application of interest because in 

terms of quality and efficiency and based on the fact that the maximal theoretical 

performance is 4 mole of hydrogen per 1 mole of glucose (equation 2), and 8 moles per 

mole of cellobiose. This production can be reached by the bacterium maintaining it in a 

chemostat as was discussed before. Ntaikou and coworkers (2008) have reported that the 

R. albus strain 7 in batch cultures produces 2.76 mole of H2 per mole of glucose (69% of 

performance), and per mole of cellobiose, 5.59 mole (69.87%). Additionally, in this study 

was found that R. albus produces 60L of hydrogen per kilogram of sorghum (Sorghum 

bicolor, and at 42 hours of hydraulic retention time in a chemostat, the 54% of the gas 

phase was hydrogen at the end of the process. In a further study conducted by the same 

research group (Ntaikou et al., 2009b), the hydrogen production by R. albus was evaluated 

using different kind of papers: tissue paper, office paper, magazine paper, cardboard and 

newspaper. They found these corresponding values of hydrogen production per kilogram 

of each sort of paper: 282, 242, 94, 137 and 42. This is a higher production compared to 

sorghum, except for the newspaper. These differences of hydrogen production were due to 

paper composition such as the percentage of cellulose, carbohydrates and the lignin 

compounds and other cellulose metabolism-inhibitor substances.  
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1.2.2 Albusin B: A Gram-negative inhibitor and digestive system 
health promoter bacteriocin  

Another biotechnological potential product of R. albus is the albusin B, a bacteriocin 

capable to inhibit R. flavefaciens in vitro (Chen et al., 2004), and pathogen bacteria such 

as Enterobacter aerogenes, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella 

enterica and Staphylococcus aureus in poultry (Wang et al., 2011). Furthermore, it has 

been demonstrated that albusin B increases Lactobacillus sp. counts in the feces of broiler 

chicken supplemented with recombinant yeasts expressing albusin B (Wang et al., 2011). 

As a consequence, increasing in the absorption of nutrients in the small intestine and a gain 

in the body weight over control also were observed. Albusin B also increased the 

processing of phospholipids in the liver and strength the intestinal antioxidant defense as 

well (Wang et al., 2013). In mice these benefits also have been observed (Hsieh et al., 

2013).  

1.3 Methods for isolation of cellulolytic bacteria from 
rumen fluid 

There are two methodologies to isolate cellulolytic microorganisms from rumen fluid: the 

“direct” and the “indirect” method (reviewed in McDonald et al., 2012). The “direct” method 

developed by Hungate (1969) consists of preparing serial dilutions of fresh rumen fluid, 

inoculating dilutions 10-7, 10-8 y 10-9 in rubber stopper tubes and rolling the agar. The 

selection agents in the tube are the anaerobiosis and the cellulose (filter paper Whatman 

N°1 or microcrystalline cellulose). After environ 48 and 72 hours of incubation at 39 °C is 

expected to have isolated cellulolytic colonies with clearance halos along the tube wall 

which belong to cellulolytic bacteria species of the rumen fluid (Hungate, 1969)., among 

them, R. albus. The “indirect” method consist in isolating a wide spectrum of bacteria in a 

general medium and then, evaluate the grown colonies for cellulolytic activity (Bryant and 

Burkey, 1953). 

1.4 Previous works in Colombia 

On the other hand, in Colombia few works in R. albus or even in Ruminococcus genus have 

been conducted. In 2003, Segura-Caro designed and evaluated a set of primers for 
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identification of Ruminococcus genus from rumen fluid of the Colombian breed of cattle 

“Blanco orejinegro”. And recently (Rodriguez-Villamizar, 2014) the effect of R. flavefaciens 

in cattle was evaluated together with other rumen fluid species in a probiotic emulsion.  

1.5 Reported antibiotic screenings for R. albus  

Antibiotics screening for R. albus have been reported in previous studies. Champion and 

coworkers (1988) evaluated \the susceptibility of eight R. albus strains and nine R. 

flavefaciens strains to several antibiotics: ampicillin, bacitracin, chloramphenicol, 

clindamycin, erythromycin, kanamycin, losalocid, lincomycin, monencin, neomycin, 

penicillin, rifampicin, streptomycin and tetracycline. For both R. albus and R. flavefaciens 

they found that the inhibition halo was less than 0.1 cm using a concentration of 10g/mL of 

streptomycin. For the other antibiotics evaluated, for both species, some strains were 

resistant while others no. Therefore, streptomycin could be a good antibiotic candidate for 

the selective medium formulation. Streptomycin belongs to the aminoglycoside antibiotics 

that inhibits protein synthesis attaching to the 16S subunit of the ribosome of Gram-negative 

bacteria and some Gram-positive bacteria (Forge and Schacht, 2000). Below there are 

some aminoglycoside antibiotics postulated to be tested for R. albus resistance.  

But in other study Tarakanov and Lavlinskii (2002) found different results. They also 

evaluated the susceptibility of 21 isolates of R. flavefaciens and 6 isolates of R. albus to the 

following antibiotics: tetracycline, ampicillin, erythromycin, streptomycin, rifampicin and 

chloramphenicol. As results for R. albus, they observed five of the strains were resistant to 

10mg/L of erythromycin and three of these five were resistant to the same concentration of 

tetracycline, but just one of those three was resistant to the same concentration of 

streptomycin; another isolation which was resistant only to erythromycin was resistant to 

10mg/L streptomycin as well. Despite in both mentioned studies, authors assured that the 

diet of the animals used for strains isolation were free of antibiotics. Results obtained in 

both studies does not permit to conclude which antibiotics R. albus resists and the 

resistance of some strains may were due to plasmid conference.   
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1.6 Chemical agents and antibiotics to be evaluated as R. 

albus selective agents 

 pH:  

It has been reported R. albus 7 is capable to degrade cellulose in a broad pH range: from 

5.0 to 8.0, in contrast to its habitat partner species, R. flavefaciens C94 and Fibrobacter 

succinogenes A3c (Hiltner and Dehority, 1983). Morris (1988) found that the optimal pH 

values for cellulose adhesion of R. albus strains 20 and X3D54 were 5.5 and 7.0 (Morris, 

1988). 

 Propionic acid:  

Propionic acid has been proposed as selective agent for bifidobacterial species recovery 

from feces. This compound inhibits species of Enterobacteriaceae and some Gram-positive 

bacteria such as Enterococcus, Staphylococcus and Micrococcus (Apajalahti et al., 2003; 

Beerens, 1991).  

 NaCl (sodium chloride): 

Morris (1988) found that 0.5M and 2.5M NaCl increase adhesion to cellulose of the R. albus 

strains 20 and X3D54.  

 LiCl (Lithium chloride): 

Used as selective agent in Baird-Parker culture medium for isolation of Staphylococcus 

aureus. Inhibits enteric cocci and Gram-negative bacilli used at 0.5% (Fleming and Young, 

1940).  It has been evaluated in concentrations of 1, 2, 3 g/L as selective agent for 

enumeration of Lactobacillus casei in fermented milk (Colombo et al., 2014). It has been 

used in 0.2% for the enumeration of bifidobacteria in fermented dairy products(Lapierre et 

al., 1992), and 15g/L is used as selective agent in a selective medium for Listeria 

monocytogenes isolation (Park et al., 2014).  

 Potasium tellurite:   

Used for Baird-Parker culture medium. Inhibits enteric cocci and Gram-negative bacilli used 

at 0.1% (Fleming and Young, 1940). Zadik and coworkers (1993) use 0.5 mg/L for 
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verocytotoxigenic Escherichia coli O157 isolation. Zylber and Jordan (1982) use 2.5 mg/L 

for selective detection and enumeration of Actinomyces viscosus and Actinomyces 

naeslundii in dental plaque and Tanzer and coworkers (1984) use 1 mg/L for enumeration 

of Streptococcus mutans from the same source.  

 Phenylethyl alcohol 

Is a selective compound, it inhibits DNA synthesis and breaks the membranes lipids (Silver 

and Wendt, 1967) of the vast majority of Gram-negative bacteria (Berrah and Konetzka, 

1962) at 0.25% (Lilley and Brewer, 1953), and performs anti-fungic activity (Koike et al., 

2010). It has been used to get Gram-positive bacteria from sheep rumen fluid (0.5% vol/vol) 

(Koike et al., 2010). Sporulation inhibition also has been reported in Neurospora crassa 

(Lester, 1965), in Bacillus megaterium (Slepecky, 1963), in Bacillus cereus (Remsen et al., 

1966) and in B. subtilis (Richardson et al., 1969). Clostridium grows poorly (Ninomiya et al., 

1970).   

 Polymyxin B 

Polymyxin B anchors to the cell membrane increasing permeability of Gram-negative 

bacteria (except Proteus). As a selective agent, it can be tested between 15 and 20 mg/L 

in culture media (Atlas, 2010). Among 10 - 30 µg/mL can be used in in combination with 

trimethoprim and cycloserine for selective isolation of Clostrydium butyricum, from human 

feces (Popoff, 1984).  

 Nalidixic acid:  

It inhibits partially S. aureus growth and totally Gram-negative bacteria growth truncating 

DNA synthesis. Furthermore, it is present in the NS (Non Spore Anaerobic) supplement 

used to favor non-spore forming bacteria growth (Atlas, 2010). 10 mg/L of this agent is used 

in the Columbia CNA Agar. In this culture medium grows yeasts, Staphylococci, 

Streptococci, and Enterococci. Some Gram-negative bacteria such as Gardnerella 

vaginalis and some Bacteriodes sp., also grows (Atlas, 2010). 10, 15, 20 mg/L were 

evaluated as selective agent for enumeration of Lactobacillus casei in fermented milk 

(Colombo et al., 2014). 

 



14 DESIGN OF A CULTURE MEDIUM FOR ISOLATION AN GROWTH OF 
THE HYDROGEN-PRODUCING BACTERIUM Ruminococcus albus 

 
 Gentamicin:  

Inhibits the most of Gram-negative bacteria and Staphylococcus growth by truncating 

proteins synthesis. Streptococcus, Clostridium and Bacterioides could be resistant. Kneifel 

and Leonhardt (1992) propose to use1-4 mg/L for inhibition of bacteria from plant tissue. 

Merz and coworkers (1976) propose to use 50-100 µg/mL for inhibition of bacteria for 

isolation of fungi. Baker and coworkers (1973) established 5-10 µg/mL inhibits partially 

group B streptococci.  Converse and Dillon (1977) propose to use 5 µg/mL for pneumococci 

isolation and Martin and coworkers (1972) evaluated 0.1 – 25 µg/mL in antimicrobial 

susceptibility of anaerobic bacteria isolated from clinical specimens.  

 Streptomycin  

Gardner (1966) established to use 500 µg/mL for selective isolation of Microbacterium 

thermosphactum, a Gram-positive bacterium. Yim and coworkers (2010) stablished to use 

100 µg/mL to isolate Sphingomonas sp., a strict anaerobic Gram-negative bacterium, from 

environmental samples. According to previous work in R. albus, Champion and coworkers 

(1988) showed that R. albus strains 7, 8 and B199 among others were resistant to 10-200 

µg/mL streptomycin doing sensidisk agar diffusion test. In contrast, Tarakanov and 

Lavlinskii (2002) in their evaluation of the susceptibility 6 natural isolates of R. albus to 

several antibiotics found that just one growth in both 10 and 50 µg/mL concentration and 

other just in 10 µg/mL.   

 Colisitn sulfate (polymyxin E)  

It inhibits Gram-negative bacilli increasing permeability of the cell membrane (Atlas, 2010).  

Park and coworkers (2014) propose to use 10 mg/L for isolation of Listeria monocytogenes.  

Nordmannand coworkers (2016) found that 3.5 µg/mL is the optimal concentration to detect 

natural or resistant bacteria. Ehrmann and coworkers (2013) propose to use 3.75 mg/L for 

isolation of Capnocytophaga species from oral polymicrobial samples. Thayer and Martin 

(1966) established to use 20 µg/mL for isolation of N. gonorrhoeae and N. meningitides. 

Colisitin microdifusion from disk to agar is poor (Lo-Ten-Foe et al., 2007), for this reason, 

evaluation in liquid medium is desirable. 

 Amikacin 
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For example, 0.05 g/L is used in Wilkins-Chalgren Agar with Amikacin and 7% Sheep Blood 

BDTM which is a selective medium for the isolation of strictly anaerobic bacteria from clinical 

specimens (Wilkins and Chalgren, 1976), due to the amikacin, most facultative organisms 

are inhibited. Kneifel and Leonhardt (1992) evaluated among 4 – 16 mg/L () for isolation of 

bacteria from plant tissue. 0.075 g/L is included in the Bacteroides Bile Esculin Agar with 

Amikacin BDTM.  

 Trimethoprim 

16 µg/mL is used for isolation of Clostridium butyricum from human feces (Popoff, 1984). 

1.5 mg/L is used for isolation of Capnocytophaga species from oral polymicrobial samples 

(Ehrmann et al., 2013). 20 mg/L is used for the isolation of Arcobacter from meats (de Boer 

et al., 1996). And BBLTM.SXT Blood Agar BDTM used for isolation and presumptive 

identification of group A and B streptococci contains 1.25 mg/L.  

 D-cycloserine 

10-20 g/mL is used in a selective culture for Clostrydium butyricum, isolation from human 

feces (Popoff, 1984). 250 µg/mL is used for detection of Clostridium difficile (Tait et al., 

2014). 0.1 g/L was used for isolation of Methanosarcina sp. (Zinder and Mah, 1979). 500 

mg/L (cycloserine) cycloserine-cefoxitin fructose agar (CCFA) is used for Clostrydium 

difficile isolation (Fedorko and Williams, 1997).  
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2. Materials and Methods 
 

2.1 Microorganisms 

For this work, several strains of Ruminococcus albus from different collections and 

providers were used. R. albus strain 7 (DSMZ 20455) was obtained from Deutsche 

Sammlung von Microorganismen und Zellkulturen (DSMZ) culture collection. The R. albus 

strains 7, 8, SY3 and B199 used in the step of evaluation of the chemical-defined medium 

were obtained from the culture collection of the Department of Animal Sciences of the 

University of Illinois at Urbana-Champaign (Urbana Illinois – USA). Strain 7 was reported 

by Bryant and coworkers (1958). Strain 8 was isolated by Hungate and Stack (1982). Strain 

SY3 came from the culture collection of the Research Institute Aberdeen, Scotland. This 

strain was originally isolated from a sheep’s rumen  (Wood et al., 1982). And strain B199 

was obtained from Terry Miller (New York State Health Department, Albany) (Russell, 

1985).  

Inoculations and other handling procedures of anaerobic grown cultures of this work were 

carried out by injection with disposable syringes according to Deutsche Sammlung von 

Microorganismen und Zellkulturen (DSMZ) recommendations (available in: 

https://www.dsmz.de/). First, sterilizing the butyl rubber stopper by flaming it using a drop 

of ethanol which has been placed previously on the top. Overpressure in the bottle or tube 

due to microbial growth (e.g., gas production by fermentation) was released removing the 

gas excess by puncturing the rubber stopper with a sterile injection needle allowing gas fills 

the syringe and then it was withdrawed. Then, the vial was turned with the culture upside 

down and the syringe was filled with the needed amount of liquid. Finally, needle and filled 

syringe was withdrawed carefully and transferred to a fresh medium. 

The first R. albus strain 7 (DSMZ 20455) was reactivated according to DSMZ 

recommendations (Appendix A) but omitting gasification with oxygen-free gas and 

suspending it in 0.5 mL liquid medium as fast as possible given to lab conditions of the 

Instituto de Biotecnología de la Universidad Nacional – IBUN (Bogotá, Colombia). Then it 

was injected in four 50 mL of culture medium serum bottles. Two of them were incubated 

at 37 °C and the other two at 30 °C. The second acquired strain 7 of R. albus (DSMZ-
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20455) was reactivated according to DSMZ recommendations but in this occasion, 

procedure was carried out under oxygen-free CO2 gas stream according to USBA (Bogotá, 

Colombia). Then it was injected in 10 ml fresh culture medium tubes which were incubated 

at 37°C.   

 

Strains 7, 8, SY3 and B199 were stored at temperatures below -130°C liquid nitrogen tank 

in 8 mL serum bottles with agar slant prepared under CO2 oxygen-free gas, inoculated with 

the respective strains   and incubated till late exponential phase.  Stored serum bottles with 

cultures of strains were   warmed to 37 °C before culture transferring. Then at least of 500 

µL of liquid of each serum bottle were taken with a syringe and transferred to tubes with 

fresh medium prepared as described above. Tubes were incubated at 37°C till turbidity was 

observed (from 24 to 48 hours).     

 

2.2 Culture media composition 

2.2.1 RGC-based culture medium  

The culture medium used was based on RGC (Rumen Fluid Glucose Cellobiose) medium 

(Makkar and McSweeney, 2005) composition as follows: 1L of culture medium contains 5.0 

g yeast extract, 2.0 g of cellobiose, 300 mL of mineral solution I, 300 mL of mineral solution 

II, 2mL of 0.1% resazurin solution, 12.0 g NaHCO3, 0.8 mL fatty acid mixture 2g Cysteine-

HCl*2H2O. The final volume was completed with 400 mL of distilled water. The mineral 

solution I composition was: 0.3% K2HPO4; the mineral solution II was: 0.3% KH2PO4, 0.6% 

(NH4)2SO4, 0.6 % NaCl, 0.06% MgSO4*7H2O, 0.06% CaCl2*7H2O. The fatty acids mixture 

solution contains: 10.0 mL Isobutyric acid, 10.0 mL isovaleric acid, 10.0mL 2-Methylbutyric 

acid and 70 mL of distilled water.  

2.2.2 DSMZ436 culture medium 

DSMZ436 culture medium was prepared using the reagents and composition 

recommended by the DSMZ. 1L of culture medium contains 5.0 g tryptone, 2.0 g yeast 

extract, 3.0 g glucose, 2.0 g cellobiose, 40 mL of mineral solution I, 40 mL of mineral 
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solution II, 1 mg resazurin, 4.0 g Na2CO3, 1.0 mL fatty acid mixture 500 mg Cysteine-

HCl*H2O. The final volume was completed with 920 mL of distilled water. The mineral 

solution I composition is: 0.6% K2HPO4; the mineral solution II one is: 0.6% KH2PO4, 2.0% 

(NH4)2SO4, 1.2% NaCl, 0.25% MgSO4 *7H2O, 0.16% CaCl2*7H2O. The fatty acids mixture 

contents: 10.0mL Isobutyric acid, 10.0 mL isovaleric acid, 10.0mL 2-Methylbutyric acid and 

70mL of distilled water.   

2.2.3 Chemical-defined medium  

1 L of Chemical defined culture medium (Makkar and McSweeney, 2005) has the following 

composition: 40 mL of mineral solution I, 40 mL of the mineral solution II, 1 mL of 0.1% 

resazurin solution, 0.5 mL of 0.1% hemin solution, 1 mL of Pfemming’s solution, 4 g of 

(NH4)2SO4, 860 mL of distilled water, 10 mL of VFA (volatile fatty acids) solution, 10 mL of 

vitamin B solution, 4 g of cellobiose or cellulose (depending on the of the carbon source of 

the culture medium) and 4 g of NaHCO3.  

The mineral solution I composition is: 0.6% K2HPO4. The mineral solution II one is: 0.6% 

KH2PO4, 1.2% NaCl, 0.12 % MgSO4 * 7H2O, 0.12 % CaCl2*7H2O. 100 mL of hemin solution 

contains 100 mg of hemin and 1 mL NaOH 1N. 1 L of the Pfemming’s solution contains: 

0.5 g EDTA, (ethylenediaminetetraacetic acid), 0.1g ZnSO4, 7H2O, 0.03 g MnCl2*4H2O, 

0.03 g H3BO3, 0.2 g CoCl2.6H2O, 0.01 g CuCl2.2H2O, 1.5 g FeCl2.4H2O, 0.02 g NiCl2.6H2O, 

0.03 g Na2MoO4.2H2O, 0.01 g Na2SeO3. The fatty acids mixture contents: 700mL NaOH 

0.2N, 13.7 mL acetic acid, propionic acid 6 mL 3.68 mL butyric acid, 1.1 mL isobutyric acid, 

0.94 mL 2-methylbutiric acid, 1.1 mL n-valeric acid, 1.1 mL isovaleric acid, 340 mg PAA 

(phenylacetic acid) and 376 mg PPA (3-phenylpropionic acid), pH is adjusted to 7.5 and 

the volume to 1 L of Schaefer vitamin B solution contains: 20 mg thiamine HCl, 20 mg Ca-

D-pantothenate, 20 mg nicotinamide, 20 mg riboflavin, 20 mg pyridoxine-HCl, 1 mg para-

aminobenzoic acid, 0.5 mg biotin, 0.125 mg folic acid, 0.2 mg vitamin B12, 0.125 mg 

tetrahydrofolic acid. And 200 mL of cysteine sulfide solution contains: 1.25 g NaOH, 5 g 

Cysteine-HCl, and 5 g Na2S*9H2O.  
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2.3 Isolation and identification of Ruminococcus albus 
from rumen fluid  

This first stage was carried out in CORPOICA (Mosquera, Colombia) in 2012. The objective 

was obtaining isolates of R. albus from rumen fluid of individuals corresponding to 

Colombian beers of cattle in order to evaluate their hydrogen production on an agro-

industrial vegetal matter.   

2.3.1  Animals  

A sample of 50 to 100 mL of both liquid and solid phase of rumen fluid was taken using an 

esophageal catheter of adult alfalfa-fed individuals belonging to the following Colombian 

bovine breeds: Blanco orejinegro (white with black ears), Costeño con cuernos (hormed-

coastal), Hartón del Valle (from the Colombian department “Valle del Cauca”), 

Romosinuano (blunt from Sinu river), Sanmartinero (From San Martin, an eastern town of 

Colombia).  

2.3.2  Roll-tube technique for isolation of cellulolytic 
bacteria  

For culture medium preparation liquid components were mixed first, then the nitrogen 

sources and the carbon source were added. Subsequently the pH was adjusted to 7.2, the 

sodium carbonate was added and the medium was pre-reduced boiling for 15 minutes. 

Later it was cooling down under oxygen-free CO2 gas stream, cysteine-HCl as reducing 

agent was added and when the color of the medium torns into transparent it was placed 

into tubes or serum bottles gasified with CO2. Culture medium was autoclaved under 

121°C and 20 psi. for 15 minutes. 

The roll-tube technique developed by Hungate (1950) was used for isolation of R. albus 

which has been successful for isolation of this bacterium among other oxygen-sensible 

microorganisms (Hungate, 1950; Hungate, 1976). Tubes and/or serum bottles with rubber 

stoppers and aluminum seals are used to keep the anaerobic environment in both gas and 

liquid phase of the tube or bottle. To get pure cellulolytic isolations from rumen fluid, the 

previously mentioned medium was prepared as described before, with addition of 1.5% 
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agar. As carbon source, 1% pebble milled cellulose (PMC) (Whatman N°1 filter paper) and 

0.05% cellobiose were added to one set of tubes, while the other set contained 1% 

carboxymethyl-cellulose (CMC), and cellobiose at 0.05% as well. Dilution medium was also 

prepared as previously described but the only compounds it contained were mineral 

solutions I and II, the resazurin, the NaHCO3 and the cysteine-HCl. This medium were 

placed in tubes; 9 mL per tube of dilution medium, and 4.5 mL per tube of the PMC or CMC 

media.    

Then serial dilutions were prepared transferring 1mL of fresh rumen fluid to a 9 mL dilution 

medium-containing tube and so on 9 times, till achieve 10-9 dilution. Immediately both CMC, 

and PMC 4.5 mL media tubes were inoculated with 0.5mL of the 10-8 y 10-9 dilution tubes 

by triplicate. Both CMC, and PMC media tubes should be previously melted and kept at 45 

°C in the moment of inoculation. After inoculation, tubes were placed horizontally on a roll-

tube machine which turns around allowing agar to adhere to the tube wall forming a tinny 

agar film. Rolled tubes were incubated at 39 °C for 3 to 8 days till single colonies with 

cellulolytic halos were observed.  

 

To recover single isolations, tubes were opened and gasified with oxygen-free CO2. 

Carefully the colony was punctured with a curved-tip Pasteur pipet connected to a silicon 

CO2 gas pipeline (CO2 should pass through a 0.2 m pore to avoid microbial contamination 

in the process). Then colony was transferred to a tube containing the previous described 

liquid medium with 0.2% cellobiose as carbon source. Inoculated tubes were incubated 

from 24 to 48h at 39 °C till turbidity was observed. 

2.3.1 Morphological identification of microorganisms  

After turbidity was observed in liquid culture media tubes, a drop of culture was placed on 

a slide to observe microscopic morphology under 100x phase contrast microscope. To 

confirm morphology, Gram staining was carried out to such isolations where cocci were 

observed. Then isolations were stored at 4 °C, afterwards isolations were re-inoculated for 

cryopreservation.  
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2.3.2 Cryopreservation procedure 

Preservation of isolated colonies was carried out in 2 mL cryo-tubes adding 800 µL of 

exponential-phase growing culture medium and 200 µL of oxygen-free glycerol under 

oxygen-free CO2 gas stream. 

2.3.3 Molecular identification of presumptive isolations  

 

Such colonies which morphology corresponded to R. albus microscopic description: single 

and paired gram positive cocci (Hungate, 1957) were identified by amplification and 

sequencing of the 16S rDNA carried out by the Laboratoire d’Electrochimie et de 

Physicochimie des Matériaux et des Interfaces - LEPMI (Grenoble, France).   

 

2.4 Evaluation of DSMZ 436 culture medium  

The first growth evaluation in DSMZ 436 was carried out in the Instituto de Biotecnologia 

de la Universidad Nacional – IBUN (Bogota, Colombia), and was prepared as following: All 

medium components were mixed and pH was adjusted to 5.8. Resazurin was added and 

the medium was boiled till it turns from pink to transparent, which means oxygen has been 

depleted. Culture medium was placed in bottles into the anaerobic chamber under 80% N2, 

10% CO2 and 10% H2 Oxygen-free atmosphere. The bottles with medium were sterilized 

under 121 °C and 15 psi. for 20 minutes. Resuspension of lyophilized cells were inoculated 

in four bottles; two were incubated at 30 °C and the other two at 37 °C for nine days, till 

turbidity was observed. When culture medium exhibit growth, 0.5 mL of the inoculum was 

transferred to a fresh 50 mL medium and was incubated at 37 °C for Gram staining. 

Afterwards working culture was preserved at 4 °C.     

This medium was evaluated for a second time in the Unidad de Saneamiento y 

Biotecnologia Ambiental – USBA at the University Pontificia Universidad Javeriana in 

Bogotá, Colombia. pH adjustment was done before the boiling pre-reduction (as the 

previous method), the pre-reduction was done under N2 gas and cooling down under CO2. 

Culture medium was autoclaved at 121 °C and 15 psi. for 20 minutes. The reviving inoculum 
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was placed with syringes in two 10 mL tubes which were incubated for nine days till turbidity 

was observed. When culture medium exhibit growth, 0.5 mL inoculum was transferred to a 

fresh 50 mL medium with addition of 50 µL of 1 mg/mL hemin solution and then, Gram 

staining was performed. Afterwards working culture were preserved at 4 °C.     

2.5 Evaluation of chemical- defined culture medium  

This evaluation was carried out in The Animal Sciences Laboratory at the University of 

Illinois at Urbana – Champaign (Illinois, United States of America).  

Four strains of R. albus: 7, 8, SY3 and B199 were reactivated in 10 mL tubes of a chemical 

defined culture medium which was prepared as following: 1 L of the culture medium has 40 

mL of mineral solution I, 40 mL of mineral solution II, 1 mL of 0.1% resazurin solution, 0.5 

mL of 0.1% hemin solution, 1 mL of Pfemming’s solution, 4 g of (NH4)2SO4, add 860 mL of 

distilled water, boiled in microwave and cooled down under oxygen-free CO2 gas. When 

medium was at environment temperature, 10 mL of VFA (volatile fatty acids) solution were 

added, 10 mL of vitamin B solution, 4 g of cellobiose or cellulose (depending of the aim of 

the medium) and 4g of NaHCO3. Then the pH was adjusted to 6.8 and the medium was 

transferred to an anaerobic chamber under 100% CO2 gas, 20 mL of cysteine-sulfide 

solution were added, when the pink color was turned into transparent, it was placed into 

rubber-stopper tubes or bottles and autoclave at 121 °C and 15 psi for 20 minutes.  

2.5.1 Cryopreservation procedure 

For cryopreservations, chemical-defined medium tubes were prepared, autoclaved and 

inoculated with each one of the R. albus strains: 7, 8, SY3 and B199. Tubes were incubated 

at 37 °C for 24 hours. 5 ml bottles of chemical defined medium with 1.5% agar addition 

were prepared and autoclaved. Medium was keep at 45 °C in such way that agar remained 

melted. Bottles were inoculated with 200 µL of the 24 hours incubated liquid medium with 

each strain. Bottles were homogenated and incubated in inclined position at 37°C to form 

agar slants, for 10 hours or till cultures reach late exponential growth phase. Immediately, 

agar slants bottles were stored at temperatures below -130 °C liquid nitrogen tank or in -80 

°C freezer.  
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2.5.2 Molecular identification of presumptive strains  

In order to ensure purity of cultures, chemical defined medium was prepared with 1.5% of 

agar addition and placed in plates in anaerobic chamber. 0.1ml of 24 hours incubated 

culture with each strain were placed on the agar surface of one plate per strain and 

streaking was carried out to get single colonies. Plates were incubated for 24-48 hours till 

single colonies were observed. Single colonies of each one of the strains were placed in 

chemical defined liquid medium tubes and incubated for 24 hours. Gram staining were 

carried out and 100x microscopic morphology observation was done.  

For confirmation of identity, 24 hours grown cultures in liquid medium of each strains were 

transferred to 15 mL falcon tubes and centrifuged at 10000 rpm. for 10 minutes at 4 °C. 

Supernatant was removed and DNA extraction was carried out using a modified 

PowerSoil® kit protocol (Appendix B). Extracted genomic DNA was checked by 

electrophoresis in a 1% agarose gel stained with bromide ethidium, runt for 40 minutes at 

100 volts. Later 16S rRNA subunit gene was amplified using universal primers 27_F and 

1492_R. For a total reaction volume of 25 µL in a 200 µL PCR tube, reagents volumes were 

added as follows: 2.5 µL of 10 µM 27_F primer, 2.5 µL of 10 µM 1492_R primer, 2 µL 

previously extracted genomic DNA, 12 µL of MasterMix and 6 µL of molecular grade water. 

PCR tubes were placed in a thermocycler which was programmed as follows: 10 minutes 

for 94 °C initial DNA denaturing step, 34 repetitions of 94 °C of denaturation step for 30 

seconds, 53 °C for 30 seconds and 72 °C for primer hybridization and elongation steps, 

and a final elongation of 72 °C for 7 minutes. Further PCR products were checked in a 1% 

agarose gel electrophoresis run at 100 volts for 40 minutes. PCR products were purified 

with the QIAquick® PCR purification kit (Sample and Assay Technologies) as described in 

Appendix C, and sent for sequencing in both directions (ACGT, Inc., Wheeling, IL).  

2.5.3 Growth curve of R. albus strains 7, 8, SY3 and B199 in the 
chemical defined medium 

To determine growth curve R. albus strains 7, 8, SY3 and B199, chemical defined medium 

10 mL tubes were prepared. Each strain was inoculated in three tubes which were 

inoculated at 37 °C and in other three tubes which were inoculated at 39 °C, to have a total of 
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six tubes per strain. To stablish de blank, the OD (optical density) of one non-inoculated fresh 

medium containing tube was read in a Spectromic 20D spectrophotometer at 600 nm and 

adjusted to 0. Then, the OD of the other tubes before being inoculated was read. When tubes 

were inoculated, again the OD. This registered value belonged to the time 0 reading. The OD 

of whole tubes was measured once per hour during 14 hours. Then for strains 7, 8 and SY3, a 

last OD measurement at 24 hours after inoculation was taken.  

2.5.4 Evaluation of agents to improve culture medium 
selectivity 

According to literature revision and laboratory availability, R. albus resistance to several 

selective agents were evaluated to select such ones which would serve as selective 

components in a culture medium for R. albus isolation. The following agents were evaluated 

in liquid chemical-defined medium 10 mL tubes by triplicate, adding the agent of interest. 

Growth was checked by observing turbidity after 24 hours and 48 hours of incubation.   

To investigate if the four strains of R. albus 7, 8 SY3 and B199 grow at low pH, they were 

inoculated in tubes which pH was previously adjusted to 6.0, and incubated for 24 hours at 

37 °C. The four R. albus strains growth was also evaluated at 0.5% propionic acid, in 5% 

NaCl, 00.5% of Lithium chloride (LiCl),  

Antibiotics resistance also was evaluated in chemical-defined liquid medium because is 

more confident than using agar-diffusion methods. For example, Huys and coworkers 

(2002) demonstrated that major errors can occur in determining gentamicin resistance 

using sensidiscs tests because of antibiotic diffusion in the agar. First, 10 mL of chemical-

defined liquid medium tubes were prepared and autoclaved. Stock solutions of the following 

antibiotics were prepared, sterilized by filtration and added to each medium tube. Then 

tubes were inoculated with 24 hours grown cultures of each strain and incubated for 24 

hours at 37 °C. Polymyxin B resistance of the four R. albus strains was evaluated at 15 

µg/mL, nalidixic acid at 25 µg/mL, gentamicin at 5 µg/mL, and streptomycin at 50 µg/Ml.  
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3. Results  
 

3.1 Isolation and identification of Ruminococcus albus 
from rumen fluid of individuals belonging to five 
bovine Colombian breeds  

After one week of incubation, growth in roll tubes were checked and visible colonies were 

recovered in cellobiose liquid medium under oxygen-free CO2. A total of 161 isolations were 

transferred and incubated at 39 °C for 24-48 hours or till growth was observed:  62 (39%) 

were recovered from CMC medium and 99 (61%) from PMC (Figure 3 a). From Blanco 

orejinegro individual, 20 colonies were recovered: 7 from CMC medium and 13 from PMC 

medium. From Costeño con cuernos individual, 4 colonies were recovered: 2 from CMC 

medium and 2 from PMC medium. From Harton del Valle individual, 42 colonies were 

recovered: 15 from CMC medium and 27 from PMC medium. From Romo-sinuano 

individual, 33 colonies were recovered: 13 form CMC medium and 20 from PMC medium. 

And from Sanmartinero individual, 62 colonies were recovered: 25 form CMC medium and 

37 from PMC medium.        

 

Figure 3: 161 isolations were obtained from rumen fluid of five Colombian bovine breeds. a) Percentage of 

isolations recovered using CMC and PMC as carbon source. b) Percentage of isolations able to be 

cryopreserved after storage at 4°C, reinoculated and incubated at 39°C.   
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Figure 4. Morphologies of isolations obtained from rumen fluid using PMC and CMC independently as carbon 

source in a RGC-based culture medium. a) Vibrio shape rods of an isolation obtained from Harton del Valle 

individual in PMC medium. b) ‘S’ shape filaments of an isolate obtained from Romo sinuano individual in 

PMC medium. c) Spiral shape cells of an isolate obtained from Sanmartinero individual in CMC medium. d) 

Cocci obtained from Blanco orejinegro individual in CMC medium. e) And rods in chains obtained from 

Sanmartinero individual in PMC medium.  
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Figure 5. Morphology and Gram staining of cocci shape pure cultures recovered after cryopreservation. a) 

Isolate obtained from Blanco orejinegro individual in CMC medium. b) Isolate obtained from Romo sinuano 

individual in CMC medium. c) Isolate obtained from Romo sinuano individual in CMC medium. d) Isolate 

obtained from Costeño con cuernos individual in PMC medium.  

 

Once isolations grown, phase contrast microscopic was used to check the morphology. 72 

of the 161 isolations had a homogeneous morphology, which means that isolations were 

pure, while more than one morphology was observed in the remaining 89 isolations. The 

most observed shapes of isolations were vibrio-like, rods, “S” shape filaments, rods in 

chains, spirals and cocci (Figure 4). All these shapes were observed in both PMC and CMC 

isolations. In 54 isolations, cocci shape of cells was observed but just 12 of them were pure. 

Gram staining was carried out on all 54 isolations. Concerning to 12 pure ones, just two 

had Gram-negative cocci, the remaining nine were Gram-positive. 

All the 161 colonies were stored at the fridge and revived for cryopreservation, but just 107 

grew again and could be cryopreserved (Figure 3 b). To establish the identity of the nine 

cocci cultures, cryopreserved tubes were inoculated in fresh cellobiose medium and 
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incubated for 3 days. Just four of the nine cultures grown (Figure 5) and the 16S rDNA 

ribosomal subunit gene could be amplified and sequenced. Amplification, sequencing and 

identification was carried out by the Laboratoire d’Electrochimie et de Physicochimie des 

Matériaux et des Interfaces - LEPMI (Grenoble, France).  For three of the four isolations, 

sequencing results were consistent. The isolation corresponding to the figure 5.a) matched 

in a 100% with the Streptococcus equinus strain C3, the isolation corresponding to the 

figure 5.b) matched in a 100% with Streptococcus equinus strain W3, and the isolation 

corresponding to the figure 5 c) matched in a 100% with Streptococcus bovis strain JB1. 

Despite all three strains had R. albus morphology and grew in CMC and PMC medium, 

none of them were Ruminococcus albus. The isolate obtained from Costeño con cuernos 

individual in PMC medium (Figure 5 d), could not be identified maybe because actually was 

not pure.   

3.2 Evaluation of DSMZ 436 culture medium  

Once R. albus strain 7 obtained from DSMZ was inoculated in the DSMZ 436 culture 

medium, it took nine days of incubation for bottles at 30 °C to exhibit turbidity; in those at 

37 °C growth was not observed. Then an inoculum of the fresh grown medium was 

incubated at 30 °C for 48 hours. A drop of this new grown culture was fixed in a glass slide 

and Gram staining was carried on, observing single and by pair Gram-positive cocci of 

several sizes, but Gram-positive rods also were observed (Figure 6 a). It means the culture 

was contaminated. To suppress contamination, serial dilutions of 1mL of this grown culture 

medium were inoculated in fresh growth medium till dilution 10-6 and incubated at 37 °C for 

24-48 hours. Then Gram staining of grown dilution tubes was carried on. In slides belonging 

to the dilution10-1 and 10-2, Gram-positive and Gram-negative rods were observed 

respectively (Figures 6 b and 6 c) and in the remaining dilution tubes several sizes of cocci 

were observed (Figure 6 d).  

According to slides of the most of dilutions, culture seems to be pure. But to ensure it, it 

was made the decision to get isolations by streaking in solid DSMZ 436 medium adding 

1.5% of agar and microcrystalline cellulose as carbon source instead of cellobiose. Agar 

was placed in plates as quick as possible to avoid oxygen introduction but despite of this, 

medium turned into pink and after 8 days of incubation at 37 °C, no growth was observed. 
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Meanwhile, culture medium bottles of dilutions which seems to be pure, were stored at 4 

°C, but when fresh medium was inoculated with these cultures, no growth was observed.     

 

Figure 6. Morphology and Gram staining of R. albus strain 7 cultures in the first trait for culturing this strain. 

a) First Gram staining. Both rods and cocci are observed. b) Morphology and Gram staining of the dilution 

dilution10-1 c) Morphology and Gram staining of the dilution dilution 10-2. Morphology and Gram staining of 

the dilution dilution10-5.  

 

Again DSMZ 436 culture medium was prepared and inoculated with resuspended 

lyophilized strain 7 of R. albus. When cultures were incubated at 37 °C, growth was 

observed nine days later. Microscopic observation of fresh drop of culture was done 

observing single, pairs of cocci and sporadically cocci arranged in clusters. When Gram 

staining was carried on, Gram-negative cocci and clusters and a Gram-negative 

filamentous structure was observed as well (Figure 7 a). Curiously when bottle was stirred 

manually, the cell growth emerged from the button of the bottle as a floc. An inoculum of 

the growth culture was placed in a fresh medium bottle adding 50µL of 0.1% hemin which 

was incubated at 37 °C for 24 hours. A new Gram staining was carried readjusting the 
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washing with alcohol-acetone step from 30 seconds to 15 seconds, and in this time Gram-

positive cocci and cell clusters were observed (Figure 7 b). The culture was stored at 4 °C 

but when fresh medium was inoculated with this culture, growth was never observed after 

days of incubation.     

 

Figure 7. Morphology and Gram staining of R. albus strain 7 cultures in the second trait for culturing this 

strain. a) First Gram staining which seems Gram-negative b) Second Gram staining which seems Gram-

positive.  

3.3 Evaluation of chemical- defined culture medium  

After 24 to 48 hours of incubation of reactivated strains 7, 8, SY3 and B199 of R. albus in 

chemical-defined medium, growth of four strains was observed. Microscopic observation 

and a new inoculum was carried on, observing Gram-positive single and pairs of cocci for 

strains 7, 8 and B199 (Figure 8: a, b, d), and for strain SY3 (Figure 8 c) single, pairs and 

clusters of cocci were observed, which was consistent with a floc formed in the bottom of 

the tube. Morphological uniformity was observed in all four strains. To secure purity, 

chemical defined medium agar plates were inoculated with the four strains in the anaerobic 

chamber by streaking. Plates were incubated anaerobically at 37 °C for 48 hours. Tubes 

were stored for 3 days at 4 °C but when a new inoculum of these cultures was intended to 

be incubated, just R. albus SY3 and B199 grown. A single colony of each strain was 

transferred from the agar plate to a liquid medium and incubated 24-48 hours at 37 °C 

observing growth of four strains. From this point of experiments ahead, strains were 

maintained at 37 °C all the time, renewing inoculations each two days, or once a week, 

even it was proved strains could revive from a 20-days old culture if it is maintained at this 

temperature.  
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3.3.1 Molecular identification of presumptive strains  

16S rRNA ribosomal subunit gene sequence obtained for each of presumptive strain was 

compared by nucleotide BLAST to determine their similarity and identity (BLAST: Basic 

Local Alignment Search Tool, available in The National Center for Biotechnology 

Information - NCBI at http://www.ncbi.nlm.nih.gov/). All four strains matched in a 100% 

identity and a 100% of similarity to R. albus 7, 8, SY3 and B199, which means cultures 

were pure and were actually what presumptively they were.    

 

Figure 8. Morphology of R. albus strains at 24 hours of incubation at 37°C. a) strain 7, b) strain 8, c) strain 

SY3 and d) strain B199. 
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3.3.2 Growth curve of R. albus strains 7, 8, SY3 and B199 in 
the chemical defined medium 

The four strains of R. albus exhibited similar growth curves among them (Figure 9); they 

reached late exponential phase at 8 – 10 hours of incubation both at 37 °C and 39 °C. The 

slope of this phase is slightly higher at 39 °C than at 37 °C, which is expected because is 

the natural temperature of the rumen, but at both temperatures the four strains can growth 

pretty well.  

3.3.3 Evaluation of agents to improve culture medium 
selectivity 

Almost all the strains grown under 0.5% LiCl and 0.5% propionic acid presence in the 

culture medium after 24 hours of incubation (Table 1). But it is necessary to remark that in 

the strain B199 tube, growth was observed after 48 hours of incubation, even the turbidity 

was less than observed when no selective agent was present. Three of the four strains 

grew under presence of 25 µg/mL nalidixic acid as well. No growth was observed in the 

strain 8 even at 48 hours of inoculation. None of the four strains grew under 5% NaCl nor 15 

µg/mL polymixin B. Just strain 7 exhibit resistance against 5 µg/mL gentamycin and 50 

µg/mL streptomycin, which is consistent to Champion and coworkers paper (1988). Strain 

B199 also grew under streptomycin presence. Hence 0.5% LiCl, and 0.5% propionic acid 

would be useful as selective agent for R. albus isolation, and nalidixic acid, would be 

evaluated in less concentration in strain 8.     

Table 1: R. albus strains screening resistance to selective agents after 24 hours of incubation 

 

Selective agent  
Strains 

R. albus 7 R. albus 8 R. albus SY3 R. albus B199 

LiCl (0.5%) + + + +* 
NaCl (5%) - - - - 

Propionic acid (0.5%)  + + + +* 

Nalidixic acid (25 µg/mL) + - + + 

Streptomycin (50 µg/mL) + - - + 

Gentamicin (5 µg/mL) + - - - 

Polymixin B (15 µg/mL) - - - - 

*Growth was observed after 48 hours of incubation  
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Figure 9. Growth 

curve of R. albus 

strains incubated at 

37°C (green or blue 

line) and at 39°C (red 

line). a) Strain 7, b) 

strain 8, c) strain SY3 

and d) strain B199.   
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4. Discussion 
 

  
Ruminococcus albus could not be obtained throughout the Hungate methodology using the 

RGC-modified culture medium. For instance, the culture media preparation, growth, and 

cryopreservation of R. albus strain 7 was carried out following the reconditions of the DSMZ 

and the protocols of the IBUN and USBA labs. Later, with the R. albus strains 7, 8, SY3 

and B199 of R. albus following the recommendations and methodologies of The Animal 

Sciences Laboratory at the University of Illinois at Urbana-Champaign. In the first step of 

this work, a total of 161 isolations were obtained from individuals of five Colombian beers 

of bovines; 62, from the medium using CMC as carbon source and 99 from the medium 

using PMC as carbon source. The microscopic morphology of these isolation was diverse; 

cocci, rods, spiral shape and “S” shape were observed. 12 presumptive pure isolations 

which cells shape was cocci, were cryopreserved. When they were revived, just four grew 

again and three of these four could be identified by 16s rRNA gene Sequencing. All three 

strains were isolated from CMC culture medium and were identified as Streptococcus 

bovis/Streptococcus equinus instead of Ruminococcus albus. Hungate method 

undoubtedly allows isolation of cellulolytic rumen fluid bacterial species, but using CMC or 

PMC as the only selective agents is not specific enough to isolate a target cellulolytic specie 

or group of close-related cellulolytic bacterial species. 

Nyonyo and coworkers (2014) evaluated the isolation of rumen cellulolytic bacteria using a 

new culture medium proposed by the same research group (Nyonyo et al., 2013). Nyonyo 

research group identified by sequencing of 16s rRNA gene, isolations of rumen bacteria 

using Whatman N°1 filter paper (PMC), Carboximethyl-cellulose (CMC) and xylan as 

carbon sources, both in combinations and each one alone. They obtained a total of 129 

isolations belonging to six phyla: Firmicutes, Proteobacteria, Spirochaetes, Bacteroides, 

Fibrobacteres, and Actinobacteria. The isolations exhibited the capability to degrade the 

three carbon source, two or just one (Figure 10). In a qualitative scale from 1 to 5, isolations 

related to genus Ruminococcus, Fibrobacter, Pseudobutyrivibrio, Lechnospiraceae, 

butyrivibrio, Streptococcus, Enterococcus, and Prevotella degraded filter paper in a value 

of 2. In a value of 3 of degradation, isolations were related to genus Ruminococus. 

According to results of this study more than the traditional three rumen fluid predominant-

believed species of bacteria Fibrobacter succinogenes, R. albus and R. flavefaciens  
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(Russell et al., 2009) were able to grow using filter paper as sole carbon source. Moreover, 

the genus identity could be stablished just for 19.4% of isolations. which suggest, still there 

is a lot of non-identified fibrolytic rumen microorganisms.   

 

 

Figure 10: Diagram which represents the isolations obtained by Nyonyo and coworkers (2014) grouped by 

their degradation capability of PMC, CMC and xylan. Several isolations are able to degrade two or even the 

three carbon sources. Modified from Nyonyo and coworkers (2014). 

 

In Nyonyo’s study it also can be highlighted that not all isolations able to degrade CMC are 

able to degrade PMC which suggests that the use of only PMC as both carbon source and 

selective agent narrows the spectra of species which could be isolated and avoid the 

isolation of undesired species such as Streptococcus bovis/ Streptococcus equinus. 

Streptococcus bovis nor S. equinus are fibrolytic microorganisms but are amylolytic      

(Theodorou and France, 2005). They could grow in CMC medium because they probably 

have β-D-glucosidase activity (Lynd et al., 2002). CMC is a cellulose soluble derivate    

generated by C2, C3 and C6 carboxymethyl substitutions in the glucose units (Gelman, 

1982). Microorganisms that grow in CMC produce endoglucanases in absence of activity 

against cellulose, which means that it cannot be assumed these microorganisms have 
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cellulolytic activity (McDonald et al., 2012). For instance, although CMC is a suitable to use 

both in solid and liquid culture media, is not confident for isolation of only cellulolytic 

bacteria. Additionally, despite in four of the five Colombian breed of cattle, the most of the 

bacteria were recovered from PMC actually non fibrolytic-degrading cocci could be 

identified in this attempt.  

Another concern that may explain why R. albus could not be isolated would be related to 

its abundance in the rumen fluid. It has been estimated that this bacteria represents among 

20% to 10% of the culturable isolations (Varel and Dehority, 1989), and the 2.2% of the 

total of the microorganisms populations (Kraus et al., 1999), and it has been cultured since 

1957 (Hungate, 1957). From these numbers it can be inferred that is not impossible to 

isolate nor cultivate R. albus. Therefore, failure in the attempt of isolation not only depends 

on the randomly matters, but also in the culture media and methodologies. The first issue 

to be highlighted is that before conducting the isolation assays, the growth of any R. albus 

reference strain in the RGC-based media should be evaluated. So it would be useful to 

know previously if R. albus really grows on these culture media.  

Both culture media key components and procedures in R. albus isolation, growth, 

manipulation and cryopreservation in which there was inconsistencies along this work were 

recognized in the step of evaluation of growth of the four R. albus strains in the chemical-

defined medium. These issues are discussed below and highlighted as recommendations.  

4.1 Recommendations 

- Isolation of rumen cellulolytic microorganisms by Hungate method: 

 

McDonalds and coworkers (2012) recognize Hungate method as the best method 

developed for isolation and cultivation of anaerobic microorganisms which cannot be 

cultured in Petri plates. But they also remark researchers usually have difficulties when 

colonies are taken off the rolled tubes because micro-colonies adjacent to cellulolytic 

colonies can be also taken. In the first step of this work, in 89 of 161 colonies more than 

one morphology was observed under microscope. To avoid remove contamination an 
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assure purification in isolations, McDonalds and coworkers (2012) suggest a procedure 

which is analogous to Koch’s postulates to confirm that isolations really are cellulolytic. In 

a first step, transfer the colony from the solid medium to serial dilutions solid medium 

containing just a sugar as carbon source, for example, cellulose. From the las dilution take 

just one colony and inoculate again in serial dilutions medium, and repeat this procedure 

one time more till colonies of the same morphology grow. Then transfer one of the colonies 

to a cellulose containing serial dilutions solid medium. So it is expected that colonies whit 

cellulolytic activity grow.    

- Sampling and extraction of rumen fluid for isolation of microorganisms: 

The correct sampling of rumen fluid for isolation of microorganisms is a crucial step for 

successful isolation. Despite in the trait of the present study isolations could be obtained, 

sampling of rumen fluid was not correct at all because oxygen exposure and contamination 

with other fluids such as saliva must be avoided as much as possible. This procedure has 

two key steps: the collection of rumen fluid and the isolation of rumen bacteria and other 

cells.  

 

For rumen collection is desirable to use fistulated animals. First a sample of rumen is taken 

with the hand from the inferior part of the rumen. Filter the sample with four cheesecloth 

disposed over a bottle previously heated at 39 °C. Discard the solid material and continue 

this procedure till obtain the needed amount. Filter again the contents through a 

cheesecloth. For bacterial isolation, dispose the collected rumen fluid into a separatory 

funnel, gasify with CO2 and incubate at 39 °C for 20 minutes. Discard the inner layer of the 

funnel to avoid the protozoa presence and big food particles. Measure the rumen fluid final 

volume and dilute with McDougall’s buffer in a proportion of 1:4. 1 litter of McDougall’s 

buffer is composed by: sodium bicarbonate 9,8 g, sodium phosphate dibasic 2,44 g, 

potassium chloride, 0,57 g, magnesium sulfate 0,12 g and calcium chloride 0,16 

(Laboratorio de Nutrición Animal, 2016).  
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Table 2: Components of culture media expressed in percentage used for R. albus grow traits  

 

 

Components 

Culture media 

RGC DSMZ 436 Chemical-defined medium 

Mineral solution I K2HPO4 0.09 0.024 0.024 

Mineral solution 

II 

KH2PO4 0.09 0.024 0.024 
(NH4)2SO4 0.18 0.08 - 
NaCl 0.18 0.048 0.048 
MgSO4 *7H2O 0.018 0.01 0.0048 
CaCl2*7H2O 0.018 0.0064 0.0048 

Volatile Fatty 

Acids solution 

n-valeric acid - - 0.011 
isobutyric acid 0.008 0.01 0.011 
isovaleric acid 0.008 0.01 0.011 
2-methylbutyric acid 0.008 0.01 0.0094 
Acetic acid - - 0.137 
Propionic acid - - 0.06 
Butyric acid - - 0.0368 
PPA - - 0.00374 
PAA - - 0.0034 

Haemin solution Haemin - - 0.00005 

Nitrogen source (NH4)2SO4 0.18* 0.08* 0.4 
Tryptone   0.5 - 
Yeast extract  0.5 0.2 - 

Carbon sources Glucose  0.3 - 
cellobiose 0.2 0.2 0.4 
Carboxymethyl-cellulose CMC)  1** - 1** 
Pebble milled cellulose (PMC)  1** - - 
Microcrystalline cellulose   - - 0.4** 
AHP-CS  - - 0.4**  

Buffer NaHCO3 1.2 - 0.4 
Na2CO3  0.4 - 

Reducing agents  Cysteine-HCl*H2O 0.2 0.05 0.1 
Na2S.9H2O - - 0.1 

*(NH4)2SO4 is included in mineral solution I 

**These carbon source are used when fibrolytic activity want to be evaluated or fybrolytic strains want to be 

isolated.  

 

 

- pH of the culture media should be adjusted to 6.8-7.0 under oxygen-free 100% CO2 

gas stream: 

K2HPO4 and KH2PO4 salts work as a buffer in culture medium preventing from abrupt 

changes due to metabolic products (McDonald et al., 2012). Sodium carbonate or sodium 

bicarbonate, in combination with CO2 gas under anaerobiosis, maintains a stable pH of the 

culture medium as a second buffer (McDonald et al., 2012), resembling nature’s buffer 

carbon dioxide – carbonate and bicarbonate (Wolfe et al., 2011). The presence of CO2 in 
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the rumen due to fermentation and the bicarbonate and phosphate salts contained in the 

saliva of the animal which allows maintain the rumen pH in 6-7 values (Theodorou and 

France, 2005). When nitrogen or hydrogen is present in high concentration in the gas 

stream, the principal buffers are K2HPO4 and KH2PO4 (McDonald et al., 2012).  

For this reason, it is important to adjust the pH under CO2 stream. DSMZ suggest in their 

cultivation of anaerobes manual (available in https://www.dsmz.de/) to maintain the same 

concentration of CO2 in the streaming in all the steps of culture medium preparation. In 

other words, to use the same gas concentrations in all the steps of the culture media 

preparation and manipulation whether it would be work using both gas streaming station 

and anaerobic chamber or just one of both. When the CO2 concentration is changed in any 

step, final pH won’t be the same than it presumptively was adjusted. For this reason, R. 

albus growth would be inhibited when it was intended to revive in both traits carried on with 

the strain 7 provided by DSMZ.   

On the other hand, in the Ntaikou and coworkers (2009a) study, when R. albus was cultured 

in continuous at acid pH values (amongst 5.9 and 6.8), the stoichiometric proportions of the 

products were the same than those obtained by Iannoti and coworkers (1973) in batch 

cultures (equation 1). They also evaluated the metabolites production at these low pH 

values, and at high hydrogen partial pressure finding that ethanol and acetate proportions 

didn’t change. They concluded that this stoichiometric change also occurs when external 

medium turns acid as a mechanism of the cell to delay acidification because instead of 4 

mole of acetate, it is going to be produced 2 mole of acetate and 2 mole of ethanol. 

Therefore, the pH of any medium for R. albus, should be adjusted and remain close to the 

neutral value (6.8-7.0) to get an optimal growth and ATP production at least in exponential 

growth phase.   

- Carbon sources: 

As carbon sources, the most of R. albus strains are able to break down cellulose 

(Pavlostathis et al., 1988), hemicellulose and xylan (Dehority, 1973), and asimílate and 

metabolice glucose, cellobiose, xylose and arabinose  (Ntaikou et al., 2008; Thurston et al., 

1993; Thurston et al., 1994). But it has been found that among strains metabolism 

capabilities differ. For example, strain 7, is able to break down very well cellulose, 
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hemicellulose and xylane, in overall term is a fibrolytic strain (Dassa et al., 2014). 

Meanwhile, strain 8 just degrades hemicellulose (Moon et al., 2011), strain SY3 also 

degrades cellulose as strain 7 (Wood et al., 1982). But strain B199 is not cellulolytic strain 

(Thurston et al., 1993), moreover phylogenetically is located in a basal position with respect 

to the other strains (Krause et al., 1999). Carboxymethyl-cellulose (CMC), pebble milled 

cellulose and microcrystalline cellulose are complex carbon sources which allows growing 

just organisms which are able to degrade them. But it is suggested to use 0.05% cellobiose 

to allow bacteria have starting energy for expression and production of enzymatic degrading 

complexes. Ruminococcus albus grows better using cellobiose as carbon source more than 

glucose (Thurston et al., 1993). Cellobiose would be added at 0.4% as in chemical-defined 

medium. The presence of only cellobiose at 0.4%. 

- Nitrogen sources:  

R. albus is able to use ammonia (Nolan and Dobos, 2005; Taya et al., 1980), yeast extract, 

pancreatic digestion of casein and casamino acids (trypticase) (Bryant and Robinson, 

1961). But it prefers consume ammonia and urea, more than aminoacids and peptides (Kim 

et al., 2014). Ammonia is not included in the salt solution II of the chemical-defined medium 

(table 2), it is added independently during culture medium preparation in a concentration of 

0.4%. R. albus is able to grow only in ammonia at 0.4%.   

- Volatile fatty acids (VFAs): 

R. albus uses VFAs such as isovaleric acid, isobutyric acid, and 2-methylburitic acid to 

synthetize amino acids (Allison and Bryant, 1963). It also has been reported the use of m-

butyric acid, propionic acid and valeric acid (Nyonyo et al., 2014) for rumen fluid bacterial 

growth. It would be expected that R. albus grows better in chemical-defined medium 

because chemical-defined medium has the presence of seven VFAs in contrast to the other 

two media which have only three VFAs. In composition is more closed than the others to 

the chemical composition found in rumen fluid.  
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- Vegetal phenolic compounds: 

It has been reported some phenolic compounds that are present in the vegetal materials 

which decrease lag phase time and increase growth rate of R. albus using cellulose as 

carbon source, and other ones which perform a contrary effect. These are syringic acid (4-

hydroxy-3,5-dimethoxybenzoic acid) that inhibits S. bovis growth in concentration above 

4% (O'Donovan and Brooker, 2001), p-hydroxibenzoic acid, and 3-phenylpropionic acid. 

According to literature review, 3-phenylpropionic acid seems to be the best for improve 

cellulolytic activity of R. albus for its specificity for R. albus and R. flavefaciens (Borneman 

et al., 1986), evaluated 3-pheylpropionic acid in the presence of cellobiose as sole carbon 

source but they didn’t found any significant difference in growth, so they postulated that 3 

– phenylproionic acid just facilitates R. albus adhesion to cellulose. In other studies of 3-

phenylpropionic acid effect in cellulose presence, it has been reported that a set of factors 

increases or improves, such as the size of the capsule (glicocaliz), high molecular weight 

molecules (Stack and Cotta, 1986), the affinity constant (ks) of R. albus for cellulose 

(Morrison et al., 1990) and the hydrolysis (Hungate and Stack, 1982). Moreover, it is 

expected that the presence of 3-phenylpropionic acid and of 3-phenylacetic acid in the 

chemical defined medium would increase the cellulolytic activity, thus the growth of R. albus 

using complex carbon sources, more than in the other two media. For this reason, this 

component is advisable to be used in culture media for R. albus especially when cellulolytic 

or fibrolytic activity is going to be evaluated.  

- Reducing agent: 

Due to low redox potential present in the rumen (between -300 and -350) (Theodorou and 

France, 2005) it is advised to use agents which allow culture media to reach and maintain 

a low redox potential. Cystein – HCl is utilized to reduce the oxide-reduction potential by 

trapping oxygen molecules (Caldwell & Bryant, 1966).  

 

- Rumen fluid presence: 

Rumen fluid is a complex substance composed by 246 identified metabolite species and 

probable more uncharacterized ones (Saleem et al., 2013). As a chemical defined medium 
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cannot supply all those components, microorganisms may grow better adding clarified 

rumen fluid.  

- Culture medium head space  

It is important to let at least 50% of headspace of the total of capacity of the recipient (tube, 

bottle, vial, etc.) in which culture medium is going to be prepared to avoid a fast increase in 

atmospheric pressure and metabolic gas products accumulation such as CO2 and 

hydrogen. The reason not only remains in the security of the lab stuff and the personal, but 

also in the quality of the experiment and because it has been demonstrated that when 

hydrogen partial pressure increases, cell growth would be stopped as it was exposed 

before. The events related to hydrogen partial pressure in the rumen cavity are interesting. 

In rumen fluid it could be found syntrophic microorganisms which are removing the 

hydrogen produced by R. albus and by other hydrogen producing species continuously. For 

example, methanogenic and sulfate reducing ones. Therefore, it is expected in healthy 

ruminants, hydrogen partial pressure in the rumen remains low. When hydrogen partial 

pressure increases, it seems hydrogen-consumers’ metabolism is stimulated while, 

hydrogen-producers such as R. albus metabolism is disfavored (Stams and Plugge, 2009). 

Furthermore, it has been found that when hydrogen partial pressure increases, formate is 

going to be accumulate into the cell because formate-dehydrogenase enzyme will be 

product-saturated (Ntaikou et al., 2009a).     

- Vitamins and supplements: 

Vitamins and supplements such as hemin, menadione (K3 vitamin precursor), B complex 

vitamins (thiamin, riboflavin, folate and the cobalamin) stimulates R. albus growth  (Bryant 

and Robinson, 1962; Scott and Dehority, 1965).   

- Incubation temperature: 

Some works report their experiments incubating R. albus at 37 °C, while others at 39 ºC. In 

this study it could be observed that despite growth curves show a better growth at 39 °C 

than at 37 °C, both temperatures are useful to carry on studies on R. albus. The growth 

curve of strain 7 at 39 °C has a slight higher slope than at 37 ºC but the maximum OD in 



44 DESIGN OF A CULTURE MEDIUM FOR ISOLATION AN GROWTH OF 
THE HYDROGEN-PRODUCING BACTERIUM Ruminococcus albus 

 
 

both curves is just the same. Strain 8 growth curves shows a similar tendency than ones 

belonging to strain 7. Growth curves of strain SY3 shows a different tendency than these 

of strains 7 and 8. Despite strain SY3 reach exponential phase faster at 37 °C than at 39 

ºC, as slop as maximal OD are slightly higher than these at 37 ºC. These results were 

expected and are consistent with the fact that rumen temperature use to be among 38 °C 

and 42 °C because of fermentation and homeothermic metabolism of ruminants 

(Theodorou and France, 2005).  

- Cryopreservation   

According to results of this work, cryopreservation of R. albus strains would be better if it is 

performed in serum bottles agar slants more than in cryo-tubes. When cryo-tubes were 

subtracted from the -20 ºC freezer in the R. albus isolation trait of this work, the color of the 

medium was pink, which means oxygen was present. It would be the explanations for the 

results obtained when the revival attempt was done. Just four of the nine strains that wanted 

to be sequenced could grow again and the three that could be identified were Streptococcus 

bovis and Streptococcus equinus; both are anaerobic facultative bacteria for instance 

resists oxygen presence (Romero-Hernández et al., 2013). For this reason, agar slants in 

serum bottles is a better method for cryopreservation of strict anaerobes.  

- Reactivation  

DSMZ in their manuals recommend for anaerobic bacteria to carry on reactivation of 

lyophilized microorganisms in presence of oxygen-free sterile gas streaming or under 

anaerobic atmosphere using an anaerobic chamber and working with syringes and 

needles. Oxygen exposure would not warranty a good recovering. DSMZ also affirms that 

frequently the freeze dried cultures of anaerobic strains takes a long lag phase till rehydrate 

and grow. This may explain the reason because in both trials of reviving the DSMZ R. albus 

strain 7 it took 9 days to revive.   

Moreover, from the experience of this work it would be suggested that when culture which 

is going to be reactivated is stored in serum bottle agar slant, try to take the most of liquid 
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that syringe allows absorbing it from agar, it would warranty a more probable successful 

recovering.   

- Storage of working cultures: 

Additionally, it is important to remark that the fact that the 34% of the isolations in the first 

step of this work could not revive after store at 4 °C in the first stage of this work. Something 

similar occurred in the last stage when the work with the four strains was carried out. After 

storing at 4 °C and be reinoculated, they didn’t grow again. This suggest that not always is 

confident to store working culture of microorganisms, it is better to maintain working cultures 

at 37 °C or 39 °C, preparing new inocula among every two days to once a week.   

- Evaluation of inhibitory effect in R. albus of further selective agents.  

Some of the selective agents listed in the introduction of this work could not be evaluated 

in the present study. For instance, in future studies, R. albus resistance to the following 

agents in the proposed concentrations according to literature review would be evaluated: 

Potassium tellurite in ranges of 0.5%-2.5%, phenylethyl alcohol in ranges of 0.25%-0.5%, 

colisitn sulfate (polymyxin E) 3.5 µg/mL -20 µg/mL, amikacin in ranges of 0.05 µg/mL – 16 

µg/mL trimethoprin in ranges of 1.5 µg/mL – 20 µg/mL, D-cycloserine in ranges of 10 µg/mL 

– 500 µg/mL.    
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5. Conclusions and future perspectives  
 

In this work it was achieved to find a culture medium composition and the procedures for 

preparation of it, which mimics the nutritional and the environmental conditions that favor 

the growth and cryopreservation of strains of R. albus. The contribution of this work to the 

science development is the transferring of knowledge that will allow to improve and extend 

the study of anaerobic microorganisms in Colombian institutions, specially concerning to 

microbiota of the rumen fluid.   

Chemical-defined medium would be an ideal medium for isolation of R. albus from rumen 

by the roll-tube technique, using pebble-milled cellulose (PMC) as carbon source if good 

cellulolytic R. albus strains want to be isolated, or vegetal fiber if the interest is on R. albus 

overall strains. The four strains of Ruminococcus albus; 7, 8, SY3 and B199 used in the 

last stage of this work were able to grow in the chemical-defined medium after less than 24 

hours of incubation. Cultures reached the exponential phase at 8 – 10 hours after 

inoculation. In contrast to the strain 7 grown in the DSMZ436 medium, which grew 9 days 

after resuscitation and 48 hours further reinoculations. It would be interesting to evaluate 

R. albus growth in DSMZ436 culture medium performing the preparation procedure 

followed for chemical defined-medium and compare the results to find out the effect of the 

media composition in R. albus growth.  

In the trait for isolating Ruminococcus albus from rumen fluid it was identified two isolations 

of Streptococcus bovis and one of S. equinus for several reasons: i. S. bovis and S. equinus 

have a similar morphological description than R. albus. ii. They could be isolated from CMC 

media; CMC allows the growth of microorganisms which perform β-glucanase activity but 

that not necessarily or actually are fibrolytic. And iii. In the cryopreservation of recovered 

isolations, the cryo-tubes used were not impermeable to oxygen. This step undesirably 

selected oxygen-tolerant isolations.  

According to these issues, it would be suggested that for isolation of Ruminococcus albus, 

strict anaerobic conditions shall be maintained in all the steps of the process, as in 

preparation of culture medium as in manipulation of grown cultures. The anaerobic chamber 

use, facilitate the procedures saving reagents and time. Reagents which favor their 
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metabolism and growth most be added to culture media, and procedures recommended in 

the literature must be followed with as much as fidelity as possible. They may not be 

modified because final results would not be different than those expected.  

Concerning to selective agents, further assays should be conducted to find such one which 

allow growth all the known strains of R. albus and which would be used as selective agents.  
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7. Appendices 

Appendix A: Opening of Ampoules and Rehydration of 
Dried Cultures (anaerobic microorganisms) 
recommendations of DSMZ (available in 
https://www.dsmz.de/)   

It is important to retain anoxic conditions during all steps after the opening of ampoules with 

freeze‐dried anaerobes. 

1. Remove the glass ampoule from the secondary packaging.  

2. Heat the tip of the ampoule in a flame.  

3. Place two or three drops of water onto the hot tip to crack the glass 

4. Carefully strike off the glass tip with an appropriate tool (e.g. forceps) 

5. Remove the insulation material with forceps and take out the inner vial 

6. Lift the cotton plug using a forceps, remove it, keep it under sterile conditions and 

flame the top of the inner vial 

7. After opening keep the inner vial under a flow of oxygen‐free gas by inserting a 

gassing cannula.  

8. Add approximately 0.5 ml of the recommended anoxic medium to the vial and 

suspend the cell pellet completely (in some cases this may take several minutes).  

9. Transfer the cell suspension either by using a 1 ml syringe with hypodermic needle, 

which was made anoxic by flushing with oxygen‐free gas. 

 

Remarks:   

- We recommend to prepare also 1:10 and 1:100 dilutions of the inoculated medium, 

because some ingredients of the freeze‐dried pellet may inhibit growth in the first 

tube. Inoculation of only one tube may prevent successful resuscitation of certain 

lyophilized strains (e.g., Geobacter spp.). 

- In most cases freeze dried cultures of anaerobic strains exhibit a prolonged lag 

period upon rehydration and should be given at least twice the normal incubation 

time before regarding them as non‐viable. 

https://www.dsmz.de/
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- An anaerobic gas chamber should be available. 

It is recommended to score the ampoule with a sharp file at the middle of its shoulder 

about one cm from the tip.  

1. Transfer the ampoule with the file mark in the anaerobic chamber and strike the 

ampoule with a file or large forceps to remove the tip.  

2. If necessary, wrap the ampoule in tissue paper and enlarge the open end by striking 

with a file or pencil, then remove the glass wool insulation and the inner vial. 

3. Gently raise the cotton plug and sterilize the upper part of the inner vial using an 

incandescent flaming device  

4. (Alternatively wipe the upper part of the inner vial with tissue paper soaked in 70% 

ethanol). 

5. Add approx. 0.5 ml of anoxic medium to resuspend the cell pellet and transfer the 

suspension to a vial with the recommended cultivation medium (5 to 10 ml). 

 

Remarks: 

- If possible the last few drops of the suspended cell pellet should be transferred to 

an agar plate or slant of the recommended medium to obtain single colonies in order 

to check the purity of the strain.  Anaerobic incubation conditions for agar plates can 

be achieved by placing plates in an anaerobic chamber or an activated anaerobic 

Gas Pak jar or similar system. 
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 Appendix B: protocol for genomic DNA extraction of 
rumen fluid samples and R. albus cells  

 

A modified protocol of the PowerSoil® DNA isolation kit was used as in de following 

description: 

1. Transfer 200 µL of the Power Beads tube liquid phase to the falcon tube with 

the pellet of bacterial cells and resuspend it.  

2. Transfer de suspended cells to the Power Beads tube and gently vortex to 

mix.  

3. Add 60 µL of the solution C1 and mix by inversion or vortex briefly.  

4. Secure Power Bead tube to a vortex adapter and vortex at the maximal 

speed for 10 minutes.  

5. Centrifuge tubes for 30 seconds at room temperature.  

6. Transfer the supernatant to a clean 2 mL collection tube. Expect the 

supernatant between 400 to 500 µL.  

7. Add 250 µL of solution C2 and vortex for 5 seconds. 

8. Incubate at 4°C for 5 minutes.  

9. Centrifuge the tubes for 1 minute at room temperature.   

10. Avoiding the pellet, transfer up to but no more than 600 µL of supernatant to 

a clean 2 mL collection tube.  

11. Add 200 µL of solution C3 and vortex briefly. 

12. Incubate at 4 °C for 5 minutes.  

13. Centrifuge the tubes for 1 minute at room temperature.   

14. Avoiding the pellet, transfer up to but no more than 750 µL of supernatant to 

a clean 2 mL collection tube.  

15. Add 1200 µL of solution C4 to the supernatant and vortex for 5 minutes.  

16. Load approximately 675 µL onto a spin filter and centrifuge for 1 minute at 

room temperature. Discard the flow throughout and add 675 µL of 
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supernatant to the spin filter and centrifuge for 1 minute at room temperature. 

Load the remaining supernatant onto the spin filter and centrifuge for 1 

mi8nute at room temperature. A total of three loads for each sample 

processed are required.  

17. Add 500 µL of solution C5 and centrifuge at room temperature for 30 

seconds. Discard the flow throughout.  

18. Centrifuge again at room temperature for 1 minute at 10000g.  

19. Carefully place the spin filter in a clean 2 mL collection tube. Avoid any 

solution C5 into the spin filter.  

20. Add 25 µL of the solution C6 to the center of the white filter membrane. 

21. Centrifuge at room temperature for 1 minute at 10000g.  

22. Discard spin filter. DNA in the tube is now ready to be used for any 

downstream application. No further steps are required.        
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Appendix C: protocol for PCR products DNA purification 

 

To purify PCR products, QIAquick® PCR purification kit of Sample and Assay 

Technologies was used as follows: 

  

1. Add 5 volumes of buffer PB to 1 volume of the PCR reaction and mix.  

2. Place a QIAquick column in a provided 2 mL collection tube  

3. To bind the DNA, apply the sample to the QIAquick column and centrifuge 

for 1 minute. Discard flow through and place QIAquick column back in the 

same tube.  

4. To wash add 0.75 mL buffer PE to the column and centrifuge for 1 minute. 

Discard flow throughout and place QIAquick column back in the same tube.  

5. Centrifuge column once more in the provided collection tube for 1 minute to 

removal of residual wash hopper.  

6. Place columns in a clean 1.5 centrifuge tube.  

7. To elute DNA add 25 µL of molecular-grade water to the center of the column 

(instead of 50 µL of buffer EB), and centrifuge the column for 1 minute.  

 


