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Title in English

N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions

Título en español

Álgebras N-Koszul, álgebras Calabi-Yau y extensiones PBW torcidas

Abstract: In the schematic approach to non-commutative algebraic geometry arises some
important classes of non-commutative algebras like Koszul algebras, Artin-Schelter regular
algebras, Calabi-Yau algebras, and closely related with them, the skew PBW extensions.
There exist some relations between these algebras and the skew PBW extensions. We give
conditions to guarantee that skew PBW extensions over fields are nonhomogeneous Koszul
or Koszul algebras. We also show that a constant skew PBW extension of a field is a
PBW deformation of its homogeneous version. We define graded skew PBW extensions,
study some properties of these algebras and showed that if R is a PBW algebra then a
graded skew PBW extension of R is a PBW algebra, and therefore, a Koszul algebra. As
a generalization of the above results, we prove that every graded skew PBW extension
of a finitely presented Koszul algebra is Koszul. Artin-Schelter regularity and the skew
Calabi-Yau condition are studied for graded skew PBW extensions. We prove that eve-
ry graded quasi-commutative skew PBW extension of an Artin-Schelter regular algebra
is an Artin-Schelter regular algebra and, more general, graded skew PBW extensions of
a finitely presented Auslander-regular algebra, are Artin-Schelter regular algebras. As a
consequence, every graded quasi-commutative skew PBW extension of a finitely presented
skew Calabi-Yau algebra is skew Calabi-Yau, and graded skew PBW extensions of a finitely
presented Auslander-regular algebra are skew Calabi-Yau. Since graded quasi-commutative
skew PBW extensions with coefficients in a finitely presented skew Calabi-Yau algebra are
skew Calabi-Yau, the Nakayama automorphism exists for these extensions. With this in
mind, we give a description of Nakayama automorphism for these non-commutative alge-
bras using the Nakayama automorphism of the ring of the coefficients.

Resumen: En el enfoque esquemático de la geometría algebraica no conmutativa surgen
algunas clases importantes de álgebras no conmutativas como álgebras de Koszul, álgebras
Artin-Schelter regulares, álgebras Calabi-Yau y, estrechamente relacionadas con estas, las
extensiones PBW torcidas. Existen algunas relaciones entre estas álgebras y las extensiones
PBW torcidas. Nosotros damos condiciones para garantizar cuáles extensiones PBW tor-
cidas de un cuerpo son álgebras no homogéneas de Koszul o álgebras de Koszul. También,
mostramos que una extensión PBW torcida constante de un cuerpo es una deformación
PBW de su versión homogénea. Definimos las extensiones PBW torcidas graduadas, estu-
diamos algunas propiedades de estas álgebras y mostramos que si R es un álgebra PBW,
entonces cada extensión PBW torcida graduada de R es un álgebra PBW, y por lo tanto un
álgebra de Koszul. Como una generalización de los resultados anteriores, se demuestra que
cada extensión PBW torcida graduada de un álgebra de Koszul finitamente presentada,
es un álgebra de Koszul. La regularidad de Artin-Schelter y la condición de Calabi-Yau
torcida se estudian para las extensiones PBW torcidas graduadas. Se demuestra que cada
extensión PBW torcida cuasi-conmutativa graduada de un álgebra Artin-Schelter regular
es un álgebra Artin-Schelter regular, y más general, extensiones PBW torcidas graduadas



de un álgebra finitamente presentada Auslander-regular, son álgebras Artin-Schelter regu-
lares. Como consecuencia, cada extensión PBW torcida cuasi-conmutativa graduada de un
álgebra Calabi-Yau torcida finitamente presentada, es Calabi-Yau torcida, y las extensiones
PBW torcidas graduadas de un álgebra Auslander-regular finitamente presentada son ál-
gebras Calabi-Yau torcidas. Dado que las extensiones PBW torcidas cuasi-conmutativas
graduadas con coeficientes en un álgebra Calabi-Yau torcida finitamente presentada, son
Calabi-Yau torcidas, existe el automorfismo de Nakayama para estas extensiones. Con esto
en mente, damos una descripción del automorphism de Nakayama para estas álgebras no
conmutativas, usando el automorphism de Nakayama del anillo de coeficientes.

Keywords: Skew PBW extensions, Koszul algebras, Artin-Schelter regular algebras, Calabi-
Yau algebras.

Palabras clave: Extensiones PBW torcidas, álgebras de Koszul, álgebras Artin-Schelter
regulares, álgebras Calabi-Yau.
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Introduction

In the schematic approach to non-commutative algebraic geometry arises some important
classes of non-commutative algebras like Koszul algebras, Artin-Schelter regular algebras,
Calabi-Yau algebras (see for example [3], [4], [5], [14], [26], [38], [76]), and closely related
with them, the skew PBW extensions (see [44], [46]). Koszul algebras were introduced by
Priddy in [63], later, Berger in [10] introduces a generalization of Koszul algebras, which are
then called generalized Koszul algebras or N -Koszul algebras, for N ≥ 2 (2-Koszul algebras
coincide with Koszul algebras). Li in [50] defined the notions of generalized Koszul modules
and Koszul algebras in a similar way to the classical case. Phan in [59] and [60] defined
Koszul algebras for augmented algebras and R-augmented algebras. Regular algebras were
defined by Artin and Schelter in [3] and they are now known in the literature as Artin-
Schelter regular algebras. Calabi-Yau algebras were defined by Ginzburg in [26], and as a
generalization of them, were defined the skew (also named twisted) Calabi-Yau algebras.
These algebras and the relations between them, have been studied recently in several papers
(see also [84]):

(i) Berger and Marconnet in Proposition 5.2 of [12] show that if B = T (V )/〈R〉 is a
connected graded K-algebra (K a field) such that the space V of generators is concentrated
in degree 1, the space R of relations lives in degrees ≥ 2, the global dimension d of B is 2
or 3, and that B is an Artin-Schelter regular algebra (the polynomial growth imposed by
Artin and Schelter is often removed and in fact, it is not necessary), then B is N -Koszul
if d = 3, and Koszul if d = 2.

(ii) Berger and Taillefer in Proposition 4.3 of [14] show that if B is a connected N-
graded Calabi-Yau algebra then B is an Artin-Schelter regular algebra. In Proposition 5.4
they prove that if B is an Artin-Schelter regular C-algebra of global dimension 3 (with
polynomial growth), then B is Calabi-Yau if and only if B is of type A in the classification
of Artin and Schelter given in [3].

(iii) Let K be a field of characteristic zero, V be an n-dimensional space with n ≥ 1,
w be a non-zero homogeneous potential of V of degree N + 1 with N ≥ 2, and B = B(w)
be the potential algebra defined by w (so that the space of generators of B is V ). Berger
and Solotar in Theorem 2.6 of [13] prove that if the space of relations R (i.e. the subspace
of V ⊗N generated by the relations ∂x(w), x ∈ X) of B is n-dimensional, then B is 3-
Calabi-Yau if and only if B is N -Koszul of global dimension 3 and dimRN+1 = 1, where
RN+1 = (R⊗ V ) ∩ (V ⊗R) ⊆ V ⊗(N+1).

(iv) Let K be a field of characteristic zero, let V be an n-dimensional space with

IV



INTRODUCTION V

n ≥ 1, let X = {x1, . . . , xn} be a fix basis of V . The subspace of tensor algebra T (V )
generated by the commutators is denoted by [T (V ), T (V ))]. The elements of the vector
space Pot(V ) = T (V )/[T (V ), T (V )] are called potentials of V or potentials in the variables
x1, . . . , xn. For any potential w of V , let I(∂x(w) : x ∈ X) denote the two-sided ideal
generated by all the cyclic partial derivatives of w. We say that the associative K-algebra
B = B(w) = T (V )/I(∂x(w) : x ∈ X) is derived from the potential w, or that it is the
potential algebra defined from w. Bocklandt, Schedler and Wemyss in [16], Theorem 6.8
proved that if B is an algebra defined by a skew potential w and B is N -Koszul, then B is
skew d-Calabi-Yau if and only if a certain complex defined from w (a bimodule version of a
complex previously considered by Dubois-Violette, [20]) is exact. Berger and Solotar in [13]
give a necessary and sufficient condition for that the homogeneous potentials w of degree
N + 1 in n variables is 3-Calabi-Yau, when the algebra B defined by the potential w is
N -Koszul of global dimension 3: Let w be a non-zero homogeneous potential of V of degree
N +1 with N ≥ 2, let B = B(w) be the potential algebra defined by w. Assume that B is
N -Koszul. Then B is 3-Calabi-Yau if and only the Hilbert series of the graded algebra B is
given by hB(t) = (1−nt+ntN−tN+1)−1 ([13], Theorem 2.7). As an application, they study
skew polynomial algebras over non-commutative quadrics algebras: For any n ≥ 2, let R
be a non-degenerate non-commutative quadric in n variables x1, . . . , xn of degree 1, let z
be an extra variable of degree 1, let B be an algebra defined by a non-zero cubic potential
w in the variables x1, . . . , xn, z. Assume that the graded algebra B is isomorphic to a skew
polynomial algebra R[z;σ, δ] over R in the variable z, defined by a 0-degree homogeneous
automorphism σ of R and a 1-degree homogeneous σ-derivation δ of R. Then B is Koszul
and 3-Calabi-Yau ([13], Proposition 4.1).

(v) Reyes, Rogalski and Zhang in Lemma 1.2 of [75] show that if B is a connected graded
algebra, then B is graded skew Calabi-Yau if and only if B is Artin-Schelter regular.

(vi) In [90], Artin-Schelter regular algebras of dimension 5 generated by two generators
of degree 1 with three generating relations of degree 4 are classified under some generic
condition. There are nine types such Artin-Schelter regular algebras in this classification
list. Among them, the algebras D and G are given by iterated Ore extensions (see [90],
Section 5.2). The algebra D is skew Calabi-Yau with the Nakayama automorphism ν given
by ν(x) = p−3q4x; ν(y) = p3q−4y. D is Calabi-Yau if and only if p, q satisfy the system of
equations (see [51], Theorem 4.3):

{
p3 = q4,
2p4 − p2q + q2 = 0.

The algebra G is skew Calabi-Yau with the Nakayama automorphism ν given by ν(x) = gx;
ν(y) = g−1y. D is Calabi-Yau if and only if g = 1.

(vii) Zhou and Lu in [94] study and classify Artin-Schelter regular algebras of dimension
five with two generators under an additional Z2-grading by Hilbert driven Gröbner basis
computations. All the algebras obtained there, are strongly noetherian, Auslander regular,
and Cohen-Macaulay.

(viii) Let K be a field, let n be an even natural number ≥ 2, and let B be the associative



INTRODUCTION VI

K-algebra defined by generators x1, . . . , xn subject to the single relation
∑

1≤i≤n
2

[xi, xi+n
2
] = ν + λ,

where the bracket stands for the commutator, ν is a linear combination of the xi’s, and
λ ∈ K. Then the filtered algebra B is Koszul. Furthermore B is 2-Calabi-Yau if and only
if ν = 0 (see [11], Theorem 6.4).

(ix) For an Artin-Schelter Gorenstein algebra B, the homological determinant, denoted
hdet, is a homomorphism from the graded automorphism group GrAut(B) of B to the
multiplicative group K \ {0}, generalizing the usual determinant of a matrix. For the
precise definition, we refer to [37]. Let R be a Koszul Artin-Schelter regular algebra of
global dimension d, with Nakayama automorphism ν. Let B = R[x1, . . . , xn;σ1, . . . , σn] be
an iterated skew polynomial ring (see [27], page 23-24), with σi graded. B is Calabi-Yau
if and only if σ1σ2 · · · σn = ν and (hdetσi) = 1 for all i (see [95], Theorem 4.6).

Other authors have studied some properties of algebras constructed from Koszul Artin-
Schelter regular algebras. For example He, Van Oystaeyen and Zhang in [33] show that for
a Koszul Artin-Schelter regular algebra R with Nakayama automorphism ν, the Yoneda
Ext-algebra of the skew polynomial algebra R[z; ν] is a trivial extension of a Frobenius
algebra. Then they prove that R[z; ν] is Calabi-Yau and hence each Koszul Artin-Schelter
regular algebra is a subalgebra of a Koszul Calabi-Yau algebra. A super potential w̌ is
also constructed so that the Calabi-Yau algebra R[z; ν] is isomorphic to the derivation
quotient of w̌. The Calabi-Yau property of a skew polynomial algebra with coefficients in
a PBW-deformation of a Koszul Artin-Schelter regular algebra is also discussed.

Suppose σ : R → R is a graded algebra automorphism and δ : R(−1) → R is a graded
σ-derivation. If B := R[z;σ, δ] is the associated Ore extension, then B is a skew PBW
extension. In this case we have B = R[z;σ, δ] = σ(R)〈x〉 (see [24], Example 5). Some
properties are preserved by Ore extensions, for example:

• If R is a connected graded algebra then B is a connected graded algebra.

• If R is homologically smooth, then so is B (see [51], Proposition 3.1).

• R is Koszul if and only if B is Koszul (see [61], Corollary 1.3).

• Let R = K〈x1, . . . , xn〉/〈f〉 where f = (x1, . . . , xn)M(x1, . . . , xn)
t and M is an n×n

matrix. Then R is Calabi-Yau of dimension 2 if and only if M is invertible and anti-
symmetric (see [32], Corollary 1). Let δ be a graded derivation of the free algebra
K〈x1, . . . , xn〉 of degree 1. If δ(f) = 0, then δ induces a graded derivation δ on R.
Let B = R[z; δ] be the Ore extension of R defined by the graded derivation δ. Then
B is a graded Calabi-Yau algebra of dimension 3 (see [34], Proposition 1.3).

• If R is a skew Calabi-Yau projective K-algebra of dimension d with Nakayama au-
tomorphism ν, then B is skew Calabi-Yau of dimension d + 1 and the Nakayama
automorphism ν ′ of B satisfies that ν ′|R = σ−1ν and ν ′(z) = uz + b, with u, b ∈ R

and u invertible (see [51], Theorem 3.3).
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• Let R be a Koszul Artin-Schelter regular algebra of global dimension d with the
Nakayama automorphism ν. Then B = R[z; ν] is a Calabi-Yau algebra of dimension
d+ 1 (see [33], Theorem 3.3).

• Let R be a skew Calabi-Yau algebra of dimension d with Nakayama automorphism
ν, then R[x; ν] and R[x±1; ν] are Calabi-Yau algebras of dimension d + 1 (see [28],
Theorema 1.1 and Remark 5.1). Furthermore, if R[x; ν] is Calabi-Yau then R[x±1; ν]
is Calabi-Yau (see [28], Corollary 5.5).

In the current literature there are not explicit relations between Artin-Schelter regular
algebras, N -Koszul algebras or Calabi-Yau algebras with the skew PBW extensions defined
in [24], and recently studied in many papers from a homological and constructive approach
(see [1], [2], [23], [25], [43], [44], [45], [67], [68], [69], [70], [72], [73], [74], [89]).

In the present monograph we want to analyze the skew PBW extensions from the
non-commutative algebraic-geometric point of view induced by Koszulity, Artin-Schelter
regularity and the skew Calabi-Yau condition.

In Chapter 1 we give some definitions and elementary properties of skew PBW exten-
sions. We also define some special subclasses of skew PBW extensions and classify most
of the known examples according to these subclasses. The new results of this chapter
are in Subsection 1.2.2 where the skew PBW extensions are classified in a very important
subclasses. In Chapter 2 we present some properties of skew PBW extensions with the
filtration and graduation defined in [45]. Later, we define a more general graduation of
skew PBW extensions, give some examples and study some general properties of graded
skew PBW extensions. The main results of the second chapter are Theorem 2.2.1, Coro-
llary 2.3.14 and Theorem 2.3.22. The graded skew PBW extensions defined here are one
of the main tools of the present thesis. In Chapter 3 we study the Koszulity for skew
PBW extensions. We study the Koszul property for skew PBW extensions over fields and
the Koszul property for graded skew PBW extensions. The new results here are Corol-
lary 3.1.14, Theorem 3.1.15, Example 3.1.17, Example 3.1.18, Proposition 3.1.26, Theorem
3.2.5, Corollary 3.2.7, Example 3.2.8, Remark 3.2.9, and Theorem 3.2.17. In Chapter 4
we investigate the Artin-Schelter regular property and the skew Calabi-Yau property for
graded skew PBW extensions, and we present a description of the Nakayama automor-
phism of graded quasi-commutative skew PBW extensions over finitely presented skew
Calabi-Yau algebras, taking into account the Nakayama automorphism of the ring of co-
efficients. The results in this final chapter are Theorem 4.1.2, Theorem 4.1.3, Theorem
4.2.8, Example 4.2.9, Example 4.2.10, Theorem 4.3.3, Example 4.3.4 and Example 4.3.5.



CHAPTER 1

Skew PBW extensions and preliminaries

In this chapter we recall some definitions and elementary properties of skew PBW exten-
sions; in addition, we will introduce some sub-classes of them: constant, pre-commutative
and semi-commutative. Examples of these sub-classes are presented. The new results in
this chapter are in Subsection 1.2.2. For more details and to check other recent properties
related to skew PBW extensions, see [1], [2], [23], [25], [43], [44], [45], [67], [68], [69], [70],
[72], [73], [74], [89].

1.1 Definition and basic properties

Definition 1.1.1. Let R and A be rings. We say that A is a skew PBW extension of R
if the following conditions hold:

(i) R ⊆ A;

(ii) there exist finitely many elements x1, . . . , xn ∈ A such that A is a left free R-module,
with basis the set of standard monomials

Mon(A) := {xα := xα1
1 · · · xαn

n | α = (α1, . . . , αn) ∈ Nn}.

Moreover, x01 · · · x
0
n := 1 ∈ Mon(A).

(iii) For each 1 ≤ i ≤ n and any r ∈ R \ {0}, there exists an element ci,r ∈ R \ {0} such
that

xir − ci,rxi ∈ R. (1.1.1)

(iv) For 1 ≤ i, j ≤ n there exists ci,j ∈ R \ {0} such that

xjxi − ci,jxixj ∈ R+Rx1 + · · ·+Rxn. (1.1.2)

Under these conditions we will write A = σ(R)〈x1, . . . , xn〉.

Remark 1.1.2. Skew PBW extensions are a generalization of PBW extensions. PBW
extensions were defined by Bell and Goodearl in [9]. Let R and A be rings. It is said that
A is a Poincaré-Birkhoff-Witt extension of R, noted PBW, if the following conditions hold:

1



CHAPTER 1. SKEW PBW EXTENSIONS AND PRELIMINARIES 2

(i) R ⊆ A.

(ii) There exist finitely many elements x1, . . . , xn ∈ A such that A is a left R-free module
with basis

Mon(A) := Mon{x1, . . . , xn} := {xα = xα1
1 · · · xαn

n |α = (α1, . . . , αn) ∈ Nn}.

In this case it is also said that A is a ring of a left polynomial type over R with
respect to {x1, . . . , xn} and Mon(A) is the set of standard monomials of A. Moreover,
x01 · · · x

0
n := 1 ∈ Mon(A).

(iii) xir − rxi ∈ R, for each r ∈ R and 1 ≤ i ≤ n.

(iv) xixj − xjxi ∈ R+Rx1 + · · · +Rxn, for any 1 ≤ i, j ≤ n.

Remark 1.1.3 ([24], Remark 2). Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension.

(i) Since Mon(A) is a left R-basis of A, the elements ci,r and ci,j in Definition 1.1.1 are
unique.

(ii) If r = 0, then ci,0 = 0. In Definition 1.1.1 (iv), ci,i = 1. This follows from x2i −ci,ix
2
i =

s0 + s1x1 + · · ·+ snxn, with sj ∈ R, which implies 1− ci,i = 0 = sj, for 0 ≤ j ≤ n.

(iii) Let i < j. By (1.1.2) there exist elements cj,i, ci,j ∈ R such that xixj−cj,ixjxi ∈ R+
Rx1+ · · ·+Rxn and xjxi−ci,jxixj ∈ R+Rx1+ · · ·+Rxn, and hence 1 = cj,ici,j , that
is, for each 1 ≤ i < j ≤ n, ci,j has a left inverse and cj,i has a right inverse. In general,
the elements ci,j are not two-sided invertible. For instance, x1x2 = c2,1x2x1 + p =
c21(c1,2x1x2 + q) + p, where p, q ∈ R+Rx1 + · · ·+Rxn, so 1 = c2,1c1,2, since x1x2 is
a basic element of Mon(A). Now, x2x1 = c1,2x1x2 + q = c1,2(c2,1x2x1 + p) + q, but
we cannot conclude that c1,2c2,1 = 1 because x2x1 is not a basic element of Mon(A).

(iv) Each element f ∈ A \ {0} has a unique representation as f = c1X1+ · · ·+ ctXt, with
ci ∈ R \ {0} and Xi ∈ Mon(A) for 1 ≤ i ≤ t.

If B is a ring and σ is a ring endomorphism σ : B → B, a σ-derivation δ : B → B
satisfies by definition δ(r + s) = δ(r) + δ(s), and δ(rs) = σ(r)δ(s) + δ(r)s for all r, s ∈ B.

Proposition 1.1.4 ([24], Proposition 3). Let A be a skew PBW extension of R. For
each 1 ≤ i ≤ n, there exists an injective endomorphism σi : R → R and a σi-derivation
δi : R → R such that

xir = σi(r)xi + δi(r), r ∈ R. (1.1.3)

Proof. For every 1 ≤ i ≤ n and each r ∈ R we have elements ci,r, ri ∈ R such that
xir = ci,rxi+ ri; since Mon(A) is an R-basis of A, ci,r and ri are unique for r, so we define
σi, δi : R → R by σi(r) := ci,r, δi(r) := ri. We can check that σi is a ring endomorphism
and δi is a σi-derivation of R, i.e., δi(r+r′) = δi(r)+δi(r

′) and δi(rr
′) = σi(r)δi(r

′)+δi(r)r
′,

for any r, r′ ∈ R. Moreover, by the Definition 1.1.1-(iii), ci,r 6= 0 for r 6= 0. This means
that σi is injective.

The notation σ(R)〈x1, . . . , xn〉 and the name of the skew PBW extensions are due to
Proposition 1.1.4.
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Definition 1.1.5. Let A be a skew PBW extension of R, Σ := {σ1, . . . , σn} and ∆ :=
{δ1, . . . , δn}, where σi and δi (1 ≤ i ≤ n) are as in Proposition 1.1.4.

(a) A is called pre-commutative if the conditions (iv) in Definition 1.1.1 are replaced by:
For any 1 ≤ i, j ≤ n, there exists ci,j ∈ R \ {0} such that

xjxi − ci,jxixj ∈ Rx1 + · · ·+Rxn. (1.1.4)

(b) A is called quasi-commutative if the conditions (iii) and (iv) in Definition 1.1.1 are
replaced by

(iii’) for each 1 ≤ i ≤ n and all r ∈ R \ {0}, there exists ci,r ∈ R \ {0} such that

xir = ci,rxi; (1.1.5)

(iv’) for any 1 ≤ i, j ≤ n, there exists ci,j ∈ R \ {0} such that

xjxi = ci,jxixj. (1.1.6)

(c) A is called bijective, if σi is bijective for each σi ∈ Σ, and ci,j is invertible for any
1 ≤ i < j ≤ n.

(d) If σi = idR for every σi ∈ Σ, we say that A is a skew PBW extension of derivation
type.

(e) If δi = 0 for every δi ∈ ∆, we say that A is a skew PBW extension of endomorphism
type.

(f) Any element r of R such that σi(r) = r and δi(r) = 0 for all 1 ≤ i ≤ n, will be called
a constant. A is called constant if every element of R is constant.

(g) A is called semi-commutative if A is quasi-commutative and constant.

Definition 1.1.6 ([24], Definition 6). Let A be a skew PBW extension of R with endo-
morphisms σi, 1 ≤ i ≤ n, as in Proposition 1.1.4.

(i) For α = (α1, . . . , αn) ∈ Nn, σα := σα1
1 · · · σαn

n , |α| := α1 + · · · + αn. If β =
(β1, . . . , βn) ∈ Nn, then α+ β := (α1 + β1, . . . , αn + βn).

(ii) For X = xα ∈ Mon(A), exp(X) := α and deg(X) := |α|. The symbol � will denote
a total order defined on Mon(A). For an element xα ∈ Mon(A), exp(xα) := α. If
xα � xβ but xα 6= xβ , we write xα ≻ xβ. If f = c1X1 + · · ·+ ctXt ∈ A, ci ∈ R \ {0},
with X1 ≻ · · · ≻ Xt, then lm(f) := X1 is the leading monomial of f , lc(f) := c1 is the
leading coefficient of f , lt(f) := c1X1 is the leading term of f , exp(f) := exp(X1) is
the order of f , and E(f) := {exp(Xi) | 1 ≤ i ≤ t}. Finally, if f = 0, then lm(0) := 0,
lc(0) := 0, lt(0) := 0. We also consider X ≻ 0 for any X ∈ Mon(A). For a detailed
description of monomial orders in skew PBW extensions, see [24], Section 3.

(iii) If f is an element as in Remark 1.1.3 (iv), then deg(f) := max{deg(Xi)}
t
i=1.

Skew PBW extensions can be characterized as the following proposition shows.
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Proposition 1.1.7 ([24], Theorem 7). Let A and R be rings that satisfy the conditions (i)
and (ii) of Definition 1.1.1. A is a skew PBW extension of R if and only if the following
conditions are satisfied:

(a) for each xα ∈ Mon(A) and all 0 6= r ∈ R, there exist unique elements rα := σα(r) ∈
R \ {0}, pα,r ∈ A such that

xαr = rαx
α + pα,r, (1.1.7)

where pα,r = 0 or deg(pα,r) < |α| if pα,r 6= 0. If r is left invertible, so is rα.

(b) For each xα, xβ ∈ Mon(A) there exist unique elements cα,β ∈ R and pα,β ∈ A such
that

xαxβ = cα,βx
α+β + pα,β, (1.1.8)

where cα,β is left invertible, pα,β = 0 or deg(pα,β) < |α+ β| if pα,β 6= 0.

Proof. ⇒) We divide the proof of (a) in three steps.

Step 1. For each 1 ≤ i ≤ n, 0 6= r ∈ R and for every k ∈ N,

xki r = rkx
k
i + pk,r,

where rk := σk
i (r) ∈ R − {0}, pk,r ∈ A and pk,r = 0 or deg(pk,r) < k. Moreover, if r is

left invertible, then rk is left invertible. In fact, we will prove this by induction on k: for
k = 0 we have r0 = σ0

i (r) = r and p0,r = 0; for k = 1 we have xir = σi(r)xi + δi(r), so
r1 := σi(r) 6= 0 and p1,r = δi(r), with δi(r) = 0 or deg(δi(r)) = 0 < 1 (if r is left invertible,
then σi(r) is left invertible). By induction we have xk+1

i r = xix
k
i r = xi(rkx

k
i + pk,r),

where rk = σk
i (r) ∈ R − {0}, pk,r ∈ A, pk,r = 0 or deg(pk,r) < k (if r is left invertible,

then rk is left invertible). So, xk+1
i r = (xirk)x

k
i + xipk,r = (σi(rk)xi + δi(rk))x

k
i + xipk,r

= σi(rk)x
k+1
i +δi(rk)x

k
i +xipk,r. Note that rk+1 := σi(rk) = σi(σ

k
i (r)) = σk+1

i (r) 6= 0 since
rk 6= 0 and σi is injective; moreover, pk+1,r := δi(rk)x

k
i + xipk,r = 0 or deg(pk+1,r) < k+ 1

since pk,r = 0 or deg(xipk,r) ≤ k < k+1 (if rk is left invertible, then σi(rk) is left invertible).

Step 2. We complete the proof by induction on the number of variables involved in xα.
For one variable only, the proof is the content of the step 1. Then, xαr = xα1

1 · · · xαn
n r =

xα1
1 · · · x

αn−1

n−1 (xαn
n r) = xα1

1 · · · x
αn−1

n−1 (rαnx
αn
n + pαn,r), with rαn = σαn

n (r) 6= 0 and pαn,r ∈ A,
pαn,r = 0 or deg(pαn,r) < αn (if r is left invertible, then rαn is left invertible). So by
induction

xαr = (xα1
1 · · · x

αn−1

n−1 rαn)x
αn
n + xα1

1 · · · x
αn−1

n−1 pαn,r

= (rαx
α1
1 · · · x

αn−1

n−1 + qα,rαn
)xαn

n + xα1
1 · · · x

αn−1

n−1 pαn,r

= rαx
α1
1 · · · x

αn−1

n−1 xαn
n + pα,r

= rαx
α + pα,r,

where rα = σα1
1 · · · σ

αn−1

n−1 (rαn) = (σα1
1 · · · σ

αn−1

n−1 σαn
n )(r) = σα(r) 6= 0 (by induction and

since rαn 6= 0), qα,rαn
∈ A and pα,r := qα,rαn

xαn
n + xα1

1 · · · x
αn−1

n−1 pαn,r ∈ A (if rαn is left
invertible, then rα is left invertible); note that pα,r = 0 or deg(pα,r) < |α| = α1 + · · ·+ αn

since pαn,r = 0 or deg(pαn,r) < αn, and, qα,rαn
= 0 or deg(qα,rαn

) < α1 + · · ·+ αn−1.

Step 3. Since Mon(A) is R-basis for A, then rα and pα,r are unique.
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Now we will consider the proof of (b). We divide the proof also in three steps.

Step 3.1. We will prove first that for i < j and k,m ≥ 0

xkjx
m
i = ck,mxmi xkj + pk,m,

with ck,m ∈ R left invertible, pk,m ∈ A, pk,m = 0 or deg(pk,m) < k +m. For this, we will
use double induction, on k and on m. For k = 0 we have c0,m := 1, p0,m := 0.

k = 1: For i < j and m ≥ 0 we will prove by induction on m that

xjx
m
i = c1,mxmi xj + p1,m,

with c1,m ∈ R left invertible, p1,m ∈ A, p1,m = 0 or deg(p1,m) < 1+m. For m = 0, c1,0 = 1,
p1,0 = 0. Let m = 1, then xjxi = ci,jxixj +p1,1, with ci,j ∈ R left invertible (see Definition
1.1.3-(iv)), p1,1 ∈ A, p1,1 = 0 or deg(p1,1) ≤ 1 < 1+1. Now we use the induction hypothesis,
so xjx

m+1
i = xjx

m
i xi = (c1,mxmi xj+p1,m)xi, with c1,m ∈ R left invertible, p1,m ∈ A, p1,m =

0 or deg(p1,m) < 1 +m. Then, xjx
m+1
i = c1,mxmi xjxi + p1,mxi= c1,mxmi (ci,jxixj + p1,1) +

p1,mxi = c1,mxmi ci,jxixj + c1,mxmi p1,1 + p1,mxi= c1,m(rmxmi + pm,ci,j)xixj + c1,mxmi p1,1 +
p1,mxi, where rm ∈ R is left invertible since ci,j is left invertible (part (a)); moreover
pm,ci,j ∈ A, pm,ci,j = 0 or deg(pm,ci,j ) < m. Hence, xjx

m+1
i = c1,m+1x

m+1
i xj + p1,m+1, with

c1,m+1 := c1,mrm ∈ R left invertible, p1,m+1 := c1,mpm,ci,jxixj + c1,mxmi p1,1 + p1,mxi ∈ A,
p1,m+1 = 0 or deg(p1,m+1) ≤ m+ 1 < m+ 2. This completes the proof for k = 1.

k + 1: xk+1
j xmi = xjx

k
jx

m
i = xj(ck,mxmi xkj + pk,m), with ck,m ∈ R left invertible,

pk,m ∈ A, pk,m = 0 or deg(pk,m) < k+m. Thus, xk+1
j xmi = (xjck,m)xmi xkj+xjpk,m= (r1xj+

p1,ck,m)x
m
i xkj + xjpk,m, with r1 ∈ R left invertible, p1,ck,m = 0 or deg(p1,ck,m) < 1; then,

xk+1
j xmi = r1xjx

m
i xkj+p1,ck,mx

m
i xkj+xjpk,m = r1(c1,mxmi xj+p1,m)xkj+p1,ck,mx

m
i xkj+xipk,m,

by induction c1,m ∈ R is left invertible, p1,m ∈ A, p1,m = 0 or deg(p1,m) < 1 +m, hence
xk+1
j xmi = ck+1,mxmi xk+1

j + pk+1,m, with ck+1,m := r1c1,m ∈ R left invertible, pk+1,m :=

r1p1,mxkj + p1,ck,mx
m
i xkj + xjpk,m ∈ A, pk+1,m = 0 or deg(pk+1,m) ≤ k +m < k + 1 +m.

This complete the step 1.

Step 3.2. The proof is done by induction on the number of variables involved in xα or
xβ. If xα and xβ include only one variable, then we apply the step 1. So by induction we
assume that (1.1.8) is true when the number of variables of xα or xβ is ≤ n− 1.

Then,

xαxβ =xα1
1 · · · xαn

n xβ1
1 · · · xβn

n = (xα1
1 · · · xαn

n xβ1
1 )xβ2

2 · · · xβn
n

=(c1x
α1+β1
1 xα2

2 · · · xαn
n + p1)(x

β2
2 · · · xβn

n ), c1 ∈ R left invertible,

p1 ∈ A, p1 = 0 or deg(p1) < α1 + · · ·+ αn + β1 ≤ |α+ β|

=c1(x
α1+β1
1 xα2

2 · · · xαn
n )(xβ2

2 · · · xβn
n ) + p1x

β2
2 · · · xβn

n

=c1(c2x
α1+β1
1 xα2+β2

2 · · · xαn+βn
n + p2) + p1x

β2
2 · · · xβn

n ,

c2 ∈ R left invertible, p2 ∈ A, p2 = 0 or

deg(p2) < α1 + β1 + α2 + · · ·+ αn + β2 + · · ·+ βn = |α+ β|

=cα,βx
α+β + pα,β,
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with cα,β := c1c2 ∈ R, left invertible, pα,β := c1p2 + p1x
β2
2 · · · xβn

n ∈ A, pα,β = 0 or
deg(pα,β) < |α+ β|.

Step 3.3. Since Mon(A) is R-basis for A, then cα,r and pα,r are unique.

⇐) The condition (iii) of the Definition 1.1.1 is a particular case of (1.1.7), and the
condition (iv) is a particular case of (1.1.8), thus (a) and (b) implies that A is a skew BBW
extension.

Remark 1.1.8 ([24], Remark 8). (i) A left inverse of cα,β will be denoted by c′α,β. We
observe that if α = 0 or β = 0, then cα,β = 1 and hence c′α,β = 1.

(ii) Let θ, γ, β ∈ Nn and c ∈ R, then we have the following identities:

σθ(cγ,β)cθ,γ+β = cθ,γcθ+γ,β ,

σθ(σγ(c))cθ,γ = cθ,γσ
θ+γ(c).

In fact, since xθ(xγxβ) = (xθxγ)xβ, then

xθ(cγ,βx
γ+β + pγ,β) = (cθ,γx

θ+γ + pθ,γ)x
β ,

σθ(cγ,β)cθ,γ+βx
θ+γ+β + p = cθ,γcθ+γ,βx

θ+γ+β + q,

with p = 0 or deg(p) < |θ + γ + β|, and, q = 0 or deg(q) < |θ + γ + β|. From this we get
the first identity. For the second, xθ(xγc) = (xθxγ)c, and hence

xθ(σγ(c)xγ + pγ,c) = (cθ,γx
θ+γ + pθ,γ)c,

σθ(σγ(c))cθ,γx
θ+γ + p = cθ,γσ

θ+γ(c)xθ+γ + q,

with p = 0 or deg(p) < |θ + γ|, and, q = 0 or deg(q) < |θ + γ|. This proves the second
identity.

(iii) We observe if A is quasi-commutative, then from the proof of Proposition 1.1.7 we
conclude that pα,r = 0 and pα,β = 0 for every 0 6= r ∈ R and every α, β ∈ Nn. On the
other hand, we note that the evaluation function at 0, i.e., A → R, f ∈ A 7→ f(0) ∈ R, is
a ring surjective homomorphism with kernel 〈x1, . . . , xn〉 the two-sided ideal generated by
x1, . . . , xn. Thus, A/〈x1, . . . , xn〉 ∼= R.

(iv) From the proof of Proposition 1.1.7 we also get that if A is bijective, then cα,β is
invertible for any α, β ∈ Nn.

A natural and useful result that we will use later is the following property.

Proposition 1.1.9 ([45], Proposition 1.7). Let A be a bijective skew PBW extension of
a ring R. Then, AR is free with basis Mon(A).

Proof. First, note that AR is a module where the product f ·r is defined by the multiplica-
tion in A: f · r := fr, f ∈ A, r ∈ R. We prove next that Mon(A) is a system of generators
of A. Let f ∈ A, then f is a finite sum of terms like rxα, with r ∈ R and xα ∈ Mon(A), so
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it is enough to prove that each of these terms is a right linear R-combination of elements of
Mon(A). From Proposition 1.1.7, rxα = xασ−α(r) − pα,σ−α(r), with deg(pα,σ−α(r)) < |α|
if pα,σ−α(r) 6= 0, so by induction on |α| we get the result.

Now we will show that Mon(A) is linearly independent: let xα1r1 + · · · xαtrt = 0, with
xα1 ≻ · · · ≻ xαt for the total order � on Mon(A) defined in the previous remark, then
σα1(r1)x

α1 + pα1,r1 + · · · + σαt(rt)x
αt + pαt,rt = 0, with deg(pαi,ri) < |αi| if pαi,ri 6= 0,

1 ≤ i ≤ t; hence, σα1(r1) = 0 and from this r1 = 0. By induction on t we obtain the
result.

1.2 Examples and classification

From now on, and if not stated otherwise, we fix the following notation: K is a field,
K is a commutative ring with unity, all algebras are K-algebras, vector spaces are K-
vector spaces and ⊗ is ⊗K. In [24], [45] and [65] are presented a considerable number of
examples of quasi-commutative, bijective, or skew PBW extensions of derivation type and
endomorphism type. These examples include algebras of interest for modern mathematical
physicists such group rings of polycyclic-by-finite groups, Ore algebras, operator algebras,
diffusion algebras, some quantum groups, quadratic algebras in three variables, and 3-
dimensional skew polynomial rings. In this section we present some of these examples and
others that are important in the remainder of this paper. We also classify these examples
according to Definition 1.1.5. The examples of this section and their classification can also
be found in [88].

1.2.1 General examples

In [45] are presented some particular examples of skew PBW extensions. These examples
are classified as: PBW extensions, Ore extensions of bijective type, operator algebras,
diffusion algebras, quantum algebras, quadratic algebras in three variables, etc. Here we
present a list of those examples and some other examples, including a brief description of
them.

Example 1.2.1. Classical polynomial ring. A = R[t1, . . . , tn] is the classical polynomial
ring , so tir − rti = 0 and titj − tjti = 0, for any r ∈ R and 1 ≤ i, j ≤ n. The R-free basis
is Mon(A).

Example 1.2.2. Ore extensions of bijective type. The ring A = R[x;σ, δ] is the noncom-
mutative polynomial ring with product defined by xr = σ(r)x+ δ(r), where σ : R → R is
an injective endomorphism of R and δ is a σ-derivation of R, i.e., δ(r + r′) = δ(r) + δ(r′)
and δ(rr′) = σ(r)δ(r′) + δ(r)r′, for any r, r′ ∈ R. The R-free basis is {xl|l ≥ 0}. We
have R[x;σ, δ] ∼= σ(R)〈x〉. More generally we can consider the iterated Ore extension
R[x1;σ1, δ1] · · · [xn;σn, δn] where σi, δi are defined on R[x1;σ1, δ1] · · · [xi−1;σi−1, δi−1], i.e.,

σi, δi : R[x1;σ1, δ1] · · · [xi−1;σi−1, δi−1] → R[x1;σ1, δ1] · · · [xi−1;σi−1, δi−1].

The iterated Ore extension is of bijective type if the following conditions hold:

1. for 1 ≤ i ≤ n, σi is bijective;
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2. for every r ∈ R and 1 ≤ i ≤ n, σi(r), δi(r) ∈ R;

3. for i < j, σj(xi) = cxi + d, with c, d ∈ R and c has a left inverse;

4. for i < j, δj(xi) ∈ R+Rx1 + · · · +Rxn,

then R[x1;σ1, δ1] · · · [xn;σn, δn] is a bijective skew PBW extension. Under these con-
ditions we have R[x1;σ1, δ1] · · · [xn;σn, δn] ∼= σ(R)〈x1, . . . , xn〉. A particular case are
the iterated skew polynomial ring (see [27], page 23-24), i.e., the iterated Ore exten-
sion R[x1;σ1, δ1] · · · [xn;σn, δn] such that the following conditions hold: σi(xj) = xj ,
j < i; δi(xj) = 0, j < i; σiσj = σjσi, 1 ≤ i, j ≤ n; δiδj = δjδi, 1 ≤ i, j ≤ n;
σiδj = δjσi, 1 ≤ i 6= j ≤ n; for 1 ≤ i ≤ n, σi is bijective. From these rules we get that
xixj = xjxi, 1 ≤ i, j ≤ n, σi(R) ⊆ R and δi(R) ⊆ R, 1 ≤ i ≤ n.

Example 1.2.3. Weyl algebra and extended Weyl algebra. The Weyl algebra
An(K) = K[t1, . . . , tn][x1, ∂/∂t1] · · · [xn, ∂/∂tn] is an Ore extension. Note that, xip =
pxi + ∂p/∂ti, xixj − xjxi = 0, for any p ∈ K[t1, . . . , tn] and 1 ≤ i, j ≤ n. So, An(K) ∼=
σ(K[t1, . . . , tn])〈x1 . . . , xn〉. Let K(t1, . . . , tn) the field of fractions of K[t1, . . . , tn], then
extended Weyl algebra Bn(K) = K(t1, . . . , tn)[x1, ∂/∂t1] · · · [xn, ∂/∂tn] is also a skew PBW
extension.

Example 1.2.4. Jordan plane. The Jordan plane A is the free algebra generated by x, y
and relation yx = xy + x2, so A = K〈x, y〉/〈yx − xy − x2〉 ∼= σ(K[x])〈y〉.

Example 1.2.5. Particular Sklyanin algebra. The Sklyanin algebra (Example 1.14, [76])
is the algebra S = K〈x, y, z〉/〈ayx + bxy + cz2, axz + bzx + cy2, azy + byz + cx2〉, where
a, b, c ∈ K. If c = 0 and a, b 6= 0 then in S: yx = − b

axy; zx = −a
bxz and zy = − b

ayz,
therefore S ∼= σ(K)〈x, y, z〉 is a skew PBW extension of K, and we call this algebra a
particular Sklyanin algebra.

Example 1.2.6. Universal enveloping algebra of a Lie algebra. Let G be a finite di-
mensional Lie algebra over K with basis {x1, . . . , xn}; the universal enveloping alge-
bra of G, U(G), is a skew PBW extension of K. In this case, xir − rxi = 0 and
xixj − xjxi = [xi, xj ] ∈ G = K +Kx1 + · · ·+Kxn, for any r ∈ K and 1 ≤ i, j ≤ n.

Example 1.2.7. Tensor product. Let G be a finite dimensional Lie algebra over K with
basis {x1, . . . , xn} and U(G) the universal enveloping algebra of G; let R be a K-algebra
containing K. The tensor product A := R ⊗K U(G) is a skew PBW extension of R with
R-base 1 ⊗W = {zσ1

1 · · · zσn
n |α = (σ1, . . . , σn) ∈ Nn}, with zi := 1 ⊗ xi; (r ⊗ 1)(1 ⊗ xi)−

(1⊗ xi)(r ⊗ 1) = 0, for all r ∈ R and zizj − zjzi ∈ Rz1 + · · · +Rzn.

Example 1.2.8. Crossed product. Let G be a finite dimensional Lie algebra over K with
basis {x1, . . . , xn} and U(G) the universal enveloping algebra of G; let R be a K-algebra
containing K. R ∗ U(G) is called crossed product of R if satisfies the following conditions:
R ⊂ R ∗U(G); there exist an injective homomorphism of K-modules G →֒ R ∗U(G), x 7→ x̄
such that x̄r− rx̄ ∈ R for all r ∈ R, x̄ȳ− ȳx̄ ∈ [x, y] +R for all x, y ∈ G; R ∗ U(G) is a free
left R-module with the standard monomials over {x̄1, . . . , x̄n} as a base. So R ∗ U(G) is a
skew PBW extension of R.

Example 1.2.9. Algebra of q-differential operators. Let q, h ∈ K, q 6= 0; consider
K[y][x;σ, δ], σ(y) := qy and δ(y) := h. By definition of skew polynomial ring we have
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xy = σ(y)x + δ(y) = qyx + h, and hence xy − qyx = h. Therefore, the algebra of q-
differential operators Dq,h[x, y] ∼= σ(K[y])〈x〉 is a skew PBW extension of K[y].

Example 1.2.10. Algebra of shift operators. Let h ∈ K, the algebra of shift operators
is defined by Sh := K[t][xh;σh], where σh(p(t)) := p(t − h). Notice that xht = (t − h)xh
and for p(t) ∈ K[t] we have xhp(t) = p(t− ih)xih. Thus, Sh

∼= σ(K[t])〈xh〉 is a skew PBW
extension of K[t].

Example 1.2.11. Mixed algebra. Let h ∈ K, the algebra mixed algebra Dh is defined
by Dh := K[t][x; d

dt ][xh;σh], where σh is as in Example 1.2.10 and σh(x) = x. Then,
Dh

∼= σ(K[t])〈x, xh〉 is a skew PBW extension of K[t].

Example 1.2.12. Algebra of discrete linear systems. This algebra is defined by D :=
K[t1, . . . , tn][x1;σ1] · · · [xn;σn], where σi(p(t1, . . . , tn)) := p(t1, . . . , ti−1, ti +1, ti+1, . . . , tn),
σi(xi) = xi, 1 ≤ i ≤ n. So, D ∼= σ(K[t1, . . . , tn])〈x1, . . . , xn〉 is a skew PBW extension of
K[t1, . . . , tn].

Example 1.2.13. Linear partial differential operators. Algebra of linear partial differential
operators. The nth Weyl algebra An(K) over K coincides with the algebra of linear par-
tial differential operators with polynomial coefficients K[t1, . . . , tn]. As we have seen, the
generators of An(K) satisfy the following relations titj = tjti, ∂i∂j = ∂j∂i, 1 ≤ i < j ≤ n;
∂jti = ti∂j + δij , 1 ≤ i, j ≤ n, where δij is the Kronecker symbol. Let K(t1, . . . , tn) be the
field of rational functions in n variables. Then the algebra of linear partial differential ope-
rators with rational function coefficients is the algebra Bn(K) = K(t1, . . . , tn)[∂1, . . . , ∂n],
where the generators satisfy the relations above.

Example 1.2.14. Linear partial shift operators. It is the algebra with polynomial co-
efficients (respectively with rational coefficients), K[t1, . . . , tn][E1, . . . , Em] (respectively
K(t1, . . . , tn)[E1, . . . , Em], n ≥ m), subject to the relations: tjti = titj, 1 ≤ i < j ≤ n;
Eiti = (ti + 1)Ei = tiEi + Ei, 1 ≤ i ≤ m; Ejti = tiEj , i 6= j; EjEi = EiEj ,
1 ≤ i < j ≤ m.

Example 1.2.15. Algebra of linear partial difference operators. It is the algebra with
polynomial coefficients (respectively rational coefficients), K[t1, . . . , tn][∆1, . . . ,∆m] (re-
spectively K(t1, . . . , tn)[∆1, . . . ,∆m]), n ≥ m, subject to the relations: tjti = titj, 1 ≤
i < j ≤ n; ∆iti = (ti + 1)∆i + 1 = ti∆i + ∆i + 1, 1 ≤ i ≤ m; ∆jti = ti∆j, i 6= j;
∆j∆i = ∆i∆j , 1 ≤ i < j ≤ m.

Example 1.2.16. Algebra of linear partial q-dilation operators. For a fixed q ∈ K−{0}, the
algebra of linear partial q-dilation operators with polynomial coefficients (respectively ratio-

nal coefficients) is K[t1, . . . , tn][H
(q)
1 , . . . ,H

(q)
m ] (respectively K(t1, . . . , tn)[H

(q)
1 , . . . ,H

(q)
m ]),

n ≥ m, subject to the relations: tjti = titj, 1 ≤ i < j ≤ n; H
(q)
i ti = qtiH

(q)
i , 1 ≤ i ≤ m;

H
(q)
j ti = tiH

(q)
j , i 6= j; H

(q)
j H

(q)
i = H

(q)
i H

(q)
j , 1 ≤ i < j ≤ m.

Example 1.2.17. Algebra of linear partial q-differential operators. For a fixed q ∈ K −
{0}, the algebra of linear partial q-differential operators with polynomial coefficients, res-

pectively with rational coefficients is K[t1, . . . , tn][D
(q)
1 , . . . ,D

(q)
m ], respectively the ring

K(t1, . . . , tn)[D
(q)
1 , . . . ,D

(q)
m ], n ≥ m, subject to the relations: tjti = titj , 1 ≤ i < j ≤ n;

D
(q)
i ti = qtiD

(q)
i + 1, 1 ≤ i ≤ m; D

(q)
j ti = tiD

(q)
j , i 6= j; D

(q)
j D

(q)
i = D

(q)
i D

(q)
j ,

1 ≤ i < j ≤ m.
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Note that if n = m, then this operator algebra coincides with the additive analogue
An(q1, . . . , qn) of the Weyl algebra An(q).

Example 1.2.18. Diffusion algebra. The diffusion algebra D is generated by {Di, xi|1 ≤
i ≤ n} over K with relations xixj = xjxi, xiDj = Djxi, 1 ≤ i, j ≤ n; ci,jDiDj −
cj,iDjDi = xjDi − xiDj , i < j, ci,j, cj,i ∈ K∗. Thus, A ∼= σ(K[x1, . . . , xn])〈D1, . . . ,Dn〉 is
a bijective non quasi-commutative skew PBW extension of K[x1, . . . , xn]. Observe that D
is not a PBW extension neither an iterated Ore extension of bijective type.

Example 1.2.19. Additive analogue of the Weyl algebra. The algebra An(q1, . . . , qn) is
generated by the variables x1, . . . , xn, y1, . . . , yn subject to the relations:

xjxi = xixj , 1 ≤ i, j ≤ n, (1.2.1)

yjyi = yiyj, 1 ≤ i, j ≤ n, (1.2.2)

yixj = xjyi, i 6= j, (1.2.3)

yixi = qixiyi + 1, 1 ≤ i ≤ n, (1.2.4)

where qi ∈ K \ {0}. From the relations above we have

An(q1, . . . , qn) ∼= σ(K)〈x1, . . . , xn; y1, . . . , yn〉 ∼= σ(K[x1, . . . , xn])〈y1, . . . , yn〉.

Example 1.2.20. Multiplicative analogue of the Weyl algebra. This algebra is denoted by
On(λji) and is generated by x1, . . . , xn subject to the relations: xjxi = λjixixj , 1 ≤ i <
j ≤ n, λji ∈ K\{0}. Thus On(λji) ∼= σ(K)〈x1, . . . , xn〉 ∼= σ(K[x1])〈x2, . . . , xn〉. If n = 2,
this algebra is called the quantum plane.

Example 1.2.21. Quantum algebra U ′(so(3,K)). It is the algebra generated by I1, I2, I3
subject to relations I2I1 − qI1I2 = −q1/2I3; I3I1 − q−1I1I3 = q−1/2I2; I3I2 − qI2I3 =
−q1/2I1, where q ∈ K− {0}. In this way U ′(so(3,K)) ∼= σ(K)〈I1, I2, I3〉.

Example 1.2.22. Dispin algebra. Dispin algebra U(osp(1, 2)) it is generated by x, y, z over
K satisfying the relations yz − zy = z, zx + xz = y, xy − yx = x. Thus, U(osp(1, 2)) ∼=
σ(K)〈x, y, z〉.

Example 1.2.23. Woronowicz algebra. Woronowicz algebra Wν(sl(2,K)) is generated by
x, y, z subject to the relations xz − ν4zx = (1 + ν2)x; xy − ν2yx = νz; zy − ν4yz =
(1+ ν2)y, where ν ∈ K−{0} is not a root of unity. We have Wν(sl(2,K)) ∼= σ(K)〈x, y, z〉.

Example 1.2.24. Complex algebra. The complex algebra is noted by Vq(sl3(C)). Let q
be a complex number such that q8 6= 1. The complex algebra is generated by e12, e13, e23,
f12, f13, f23, k1, k2, l1, l2 with the following relations:

e13e12 = q−2e12e13, f13f12 = q−2f12f13,

e23e12 = q2e12e23 − qe13, f23f12 = q2f12f23 − qf13,

e23e13 = q−2e13e23, f23f13 = q−2f13f23,

e12f12 = f12e12 +
k21 − l21
q2 − q−2

, e12k1 = q−2k1e12, k1f12 = q−2f12k1,

e12f13 = f13e12 + qf23k
2
1, e12k2 = qk2e12, k2f12 = qf12k2,

e12f23 = f23e12, e13k1 = q−1k1e13, k1f13 = q−1f13k1,
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e13f12 = f12e13 − q−1l21e23, e13k2 = q−1k2e13, k2f13 = q−1f13k2,

e13f13 = f13e13 −
k21k

2
2 − l21l

2
2

q2 − q−2
, e23k1 = qk1e23, k1f23 = qf23k1,

e13f23 = f23e13 + qk22e12, e23k2 = q−2k2e23, k2f23 = q−2f23k2,

e23f12 = f12e23, e12l1 = q2l1e12, l1f2 = q2f12l1,

e23f13 = f13e23 − q−1f12l
2
2, e12l2 = q−1l2e12, l2f12 = q−1f12l2,

e23f23 = f23e23 +
k22 − l22
q2 − q−2

, e13l1 = ql1e13, l1f13 = qf13l1,

e13l2 = ql2e13, l2f13 = qf13l2, e23l1 = q−1l1e23,

l1f23 = q−1f23l1, e23l2 = q2l2e23, l2f23 = q2f23l2,

l1k1 = k1l1, l2k1 = k1l2, k2k1 = k1k2,

l1k2 = k2l1, l2k2 = k2l2, l2l1 = l1l2.

This algebra is a skew PBW extension of the commutative polynomial ring C[l1, l2, k1, k2],
Vq(sl3(C)) ∼= σ(C[l1, l2, k1, k2])〈e12, e13, e23, f12, f13, f23〉.

Example 1.2.25. Algebra U. Let U be the algebra generated over the field K = C by the
set of variables xi, yi, zi, 1 ≤ i ≤ n subject to the relations:

xjxi = xixj , yjyi = yiyj, zjzi = zizj , 1 ≤ i < j ≤ n,

xjyi = q−δijyixj, zjxi = q−δijxizj , 1 ≤ i, j ≤ n,

zjyi = yizj , i 6= j,

ziyi − q2yizi = −q2x2i , 1 ≤ i ≤ n,

where q ∈ K − {0}. We can see that U is a is a bijective skew PBW extension of
K[x1, . . . , xn], i.e., U ∼= σ(K[x1, . . . , xn])〈y1, . . . , yn; z1, . . . , zn〉.

Example 1.2.26. Manin algebra. The coordinate algebra of the quantum matrix space
Mq(2) is also known as Manin algebra of 2×2 quantum matrices. By definition, O2(Mn(K)),
also denoted O(Mq(2)), is the coordinate algebra of the quantum matrix space Mq(2),
it is the algebra generated by the variables x, y, u, v satisfying the relations xu = qux;
yu = q−1uy; vu = uv, and xv = qvx; vy = qyv; yx − xy = −(q − q−1)uv, where
q ∈ K\{0}. Thus, O(Mq(2)) ∼= σ(K[u])〈x, y, v〉. It is not possible to consider O(Mq(2)) as
a skew PBW extension of K. This algebra can be generalized to n variables, Oq(Mn(K)),
and coincides with the coordinate algebra of the quantum group SLq(2).

Example 1.2.27. Algebra of quantum matrices Oq(Mn(K)). This algebra of order n
coincides with the coordinate algebra of the quantum group SLq(2) and is generated by K
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and the variables xij , 1 ≤ i, j ≤ n, subject to

ximxik = q−1xikxim, 1 ≤ k < m ≤ n,

xjkxik = q−1xikxjk, 1 ≤ i < j ≤ n,

ximxjk = xjkxim, 1 ≤ i < j, k < m ≤ n,

xjmxim = q−1ximxjm, 1 ≤ i < j ≤ n,

xjmxjk = q−1xjkxjm, 1 ≤ k < m ≤ n,

xikxjm − xjmxik = (q − q−1)ximxjk, 1 ≤ i < j, k < m ≤ n.

From these relations we can see that Oq(Mn(K)) ∼= σ(K[xim, xjk])〈xik, xjm〉, for 1 ≤ i <
j, k < m ≤ n. If n = 2, and by the identification x11 := y, x12 := u, x21 := v y x22 := x,
we obtain Oq(M2(K)).

Example 1.2.28. q-Heisenberg algebra. The algebra Hn(q) is generated by the set of
variables x1, . . . , xn, y1, . . . , yn, z1, . . . , zn subject to the relations:

xjxi = xixj, zjzi = zizj, yjyi = yiyj, 1 ≤ i, j ≤ n, (1.2.5)

zjyi = yizj , zjxi = xizj , yjxi = xiyj, i 6= j, (1.2.6)

ziyi = qyizi, zixi = q−1xizi + yi, yixi = qxiyi, 1 ≤ i ≤ n, (1.2.7)

with q ∈ K \ {0}. Then Hn(q) ∼= σ(K[y1, . . . , yn])〈x1, . . . , xn; z1, . . . , zn〉. Note that Hn(q)
is isomorphic to the iterated Ore extension

K[x1, . . . , xn][y1;σ1] · · · [yn;σn][z1; θ1, δ1] · · · [zn; θn, δn]

on the commutative polynomial ring K[x1, . . . , xn]:

θj(zi) := zi, δj(zi) := 0, σj(yi) := yi, 1 ≤ i < j ≤ n,

θj(yi) := yi, δj(yi) := 0, θj(xi) := xi, δj(xi) := 0, σj(xi) := xi, i 6= j,

θi(yi) := qyi, δi(yi) := 0, θi(xi) := q−1xi, δi(xi) := yi, σi(xi) := qxi, 1 ≤ i ≤ n,

Since δi(xi) = yi /∈ K[x1, . . . , xn], then Hn(q) is not a skew PBW extension of K[x1, . . . , xn],
however, with respect to K, Hn(q) satisfies the conditions of (iii), and hence, Hn(q) is a
bijective skew PBW extension of K:

Hn(q) = σ(K)〈x1, . . . , xn; y1, . . . , yn; z1, . . . , zn〉.

Example 1.2.29. Quantum enveloping algebra of sl(2,K). Uq(sl(2,K)) is defined as the
algebra generated by the variables x, y, z, z−1 with relations

zz−1 = z−1z = 1, (1.2.8)

xz = q−2zx, yz = q2zy, xz−1 = q2z−1x, yz−1 = q−2z−1y, (1.2.9)

xy − yx =
z − z−1

q − q−1
, q 6= 1,−1 (1.2.10)

From these relations we can see that Uq(sl(2,K)) = σ(K[z±1])〈x, y〉.
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Example 1.2.30. Hayashi’s algebra Wq(J). The quantized algebra Wq(J) is defined as
the algebra generated by the variables xi, yi, zi, 1 ≤ i ≤ n, i ∈ J , where | J |= n, and
relations (1.2.5)-(1.2.7), replacing zixi = q−1xizi + yi by

(zixi − qxizi)yi = 1 = yi(zixi − qxizi), i = 1, . . . , n, q ∈ K− {0}. (1.2.11)

We note that Hayashi’s algebra Wq(J) is a skew PBW extension of the Laurent polynomial
ring K[y±1

1 , . . . , y±1
n ]. Indeed, if we consider

xiy
−1
j = y−1

j xi, ziy
−1
j = y−1

j zi, yjy
−1
j = y−1

j yj = 1, zixi = qxizi + y−1
i , (1.2.12)

for 1 ≤ i, j ≤ n, then Wq(J) ∼= σ(K[y±1
1 , . . . , y±1

n ])〈x1, . . . , xn; z1, . . . , zn〉.

Example 1.2.31. Multi-parameter quantum affine n-spaces. Let n ≥ 1 and q be a matrix
(qij)n×n with entries in K, where qii = 1 and qijqji = 1 for all 1 ≤ i, j ≤ n. Then
multi-parameter quantum affine n-space Oq(Kn) is defined to be K−algebra generated by
x1, . . . , xn with the relations xjxi = qijxixj for all 1 ≤ i, j ≤ n.

Example 1.2.32. The algebra of differential operators Dq(Sq) on a quantum space Sq. Let
q = [qij] be a matrix with entries in K∗ such that qii = 1 = qijqji for all 1 ≤ i, j ≤ n. The
K-algebra Sq is generated by xi, 1 ≤ i ≤ n, subject to the relations xixj = qijxjxi. The
algebra Sq is regarded as the algebra of functions on a quantum space. Note that if K is
a field, then Sq is the multi-parameter quantum affine n-space Oq(Kn) of Example 1.2.31.
The algebra Dq(Sq) of q-differential operators on Sq is defined by ∂ixj − qijxj∂i = δij
for all i, j. The relations between ∂i, are given by ∂i∂j = qij∂j∂i, for all i, j. Thus,
Dq(Sq) ∼= σ(σ(K)〈x1, . . . , xn〉)〈∂1, . . . , ∂n〉. More exactly, Dq(Sq) is a bijective skew PBW
extension of a quasicommutative bijective skew PBW extension of K.

Example 1.2.33. Witten’s deformation of U(sl(2,K)) E. Witten introduced and studied
a 7- parameter deformation of the universal enveloping algebra U(sl(2,K)) depending on a
7-tuple of parameters ξ = (ξ1, ..., ξ7) and subject to relations xz−ξ1zx = ξ2x; zy−ξ3yz =
ξ4y; yx − ξ5xy = ξ6z

2 + ξ7z. The resulting algebra is denoted by W (ξ). Assuming that
ξ1ξ3ξ5 6= 0 (see [40]) we get that W (ξ) ∼= σ(σ(K[x])〈z〉)〈y〉.

Example 1.2.34. Quantum Weyl algebra of Maltsiniotis Aq,λ
n . Let q = [qij] be a matrix

over K such that qijqji = 1 and qii = 1 for all 1 ≤ i, j ≤ n. Fix an element λ := (λ1, . . . , λn)
of (K∗)n. By definition, this algebra is generated by xi, yj, 1 ≤ i, j ≤ n subject to the
relations: For any 1 ≤ i < j ≤ n, xixj = λiqijxjxi; yiyj = qijyjyi; xiyj = qjiyjxi;
yixj = λ−1

i qjixjyi. For any 1 ≤ i ≤ n, xiyi − λiyixi = 1 +
∑

1≤j<i(λj − 1)yjxj. From the

relations above we have that Aq,λ
n is isomorphic to a bijective skew PBW extension

σ(σ(· · · (σ(σ(K)〈x1, y1〉)〈x2, y2〉) · · · )〈xn−1, yn−1〉)〈xn, yn〉.

Example 1.2.35. Quantum Weyl algebra An(q, pi,j). The ring An(q, pi,j) arising as An(R)
for the “standard" multiparameter Hecke symmetry. This ring can be viewed as a quantiza-
tion of the usual Weyl algebra An(K). By definition, An(q, pi,j) is the ring generated over
K by the variables xi, ∂j with i, j = 1, . . . , n and subject to relations xixj = pijqxjxi,
for all i < j; ∂i∂j = pijq

−1∂j∂i, for all i < j; ∂ixj = p−1
ij qxj∂i; for all i 6= j;

∂ixi = 1 + q2xi∂i + (q2 − 1)
∑

i<j xj∂j , for all i. When q = 1 and each pij = 1, these
relations give the usual Weyl algebra An(K). From relations above we have that An(q, pi,j)
is a bijective skew PBW extension,

An(q, pi,j) ∼= σ(σ(· · · σ(σ(K)〈xn, ∂n〉)〈xn−1, ∂n−1〉) · · · )〈x2, ∂2〉)〈x1, ∂1〉.
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Example 1.2.36. Multiparameter quantized Weyl algebra AQ,Γ
n (K). Let Q := [q1, . . . , qn]

be a vector in Kn with no zero components, and let Γ = [γij] be a multiplicatively anti-
symmetric n×n matrix over K. The multiparameter Weyl algebra AQ,Γ

n (K) is the algebra
generated by K and the indeterminates y1, . . . , yn, x1, . . . , xn subject to the relations:
yiyj = γijyjyi, 1 ≤ i, j ≤ n; xixj = qiγijxjxi, 1 ≤ i < j ≤ n; xiyj = γjiyjxi, 1 ≤ i <
j ≤ n; xiyj = qjγjiyjxi, 1 ≤ j < i ≤ n; xjyj = qjyjxj + 1 +

∑
−l < j(ql − 1)ylxl,

1 ≤ j ≤ n.
From relations above we have that AQ,Γ

n (K) is isomorphic to a bijective skew PBW exten-
sion,

AQ,Γ
n (K) ∼= σ(σ(· · · σ(σ(K)〈x1, y1〉)〈x2, y2〉) · · · )〈xn−1, yn−1〉)〈xn, yn〉.

Example 1.2.37. Quantum symplectic space Oq(sp(K2n)). For every nonzero element
q ∈ K, one defines this quantum algebra Oq(sp(K2n)) as the algebra generated by K and
the variables y1, . . . , yn, x1, . . . , xn, subject to the relations: yjxi = q−1xiyj, yjyi = qyiyj,
1 ≤ i < j ≤ n; xjxi = q−1xixj, xjyi = qyixj , 1 ≤ i < j ≤ n; xiyi − q2yixi =
(q2 − 1)

∑i−1
l=1 q

i−lylxl, 1 ≤ i ≤ n. From relations above we have that Oq(sp(K2n)) is
isomorphic to a bijective skew PBW extension,

Oq(sp(K2n)) ∼= σ(σ(· · · σ(σ(K)〈x1, y1〉)〈x2, y2〉) · · · )〈xn−1, yn−1〉)〈xn, yn〉.

Example 1.2.38. Quadratic algebras. Quadratic algebras in 3 variables are considered as
a class of G-algebras in 3 variables with relations homogeneous of degree 2. More exactly, a
quadratic algebra in 3 variables A is an algebra generated by x, y, z subject to the relations

yx = xy + a1xz + a2y
2 + a3yz + ξ1z

2,

zx = xz + ξ2y
2 + a5yz + a6z

2,

zy = yz + a4z
2.

If a1 = a4 = 0 we obtain the relations

yx = xy + a2y
2 + a3yz + ξ1z

2,

zx = xz + ξ2y
2 + a5yz + a6z

2,

zy = yz.

One can check that A ∼= σ(K[y, z])〈x〉. If a5 = a3 = 0, which implies a2 = a6 = 0 and thus
there is a family of algebras with relations

yx = xy + a1xz + ξ1z
2,

zx = xz,

zy = yz + a4z
2.

These algebras are skew PBW extensions of the form σ(K[x, z])〈y〉.

Example 1.2.39. Quantum Weyl algebra A2(Ja,b). It is the algebra generated by the
variables x1, x2, ∂1, ∂2, with relations (depending on parameters a, b ∈ K)

x1x2 = x2x1 + ax21, ∂2∂1 = ∂1∂2 + b∂2
2

∂1x1 = 1 + x1∂1 + ax1∂2, ∂1x2 = −ax1∂1 − abx1∂2 + x2∂1 + bx2∂2

∂2x1 = x1∂2, ∂2x2 = 1− bx1∂2 + x2∂2.
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If we consider the skew PBW extension of K[x1, ∂2], from the relations above we obtain the
isomorphism A2(Ja,b) ∼= σ(K[x1, ∂2])〈x2, ∂1〉. In the particular case a = b = 0, A2(J0,0) ∼=
A2(K), is the usual Weyl algebra. Note that A2(Ja,a) ∼= A2(K) for all a ∈ K.

Example 1.2.40 ([80], Chapter 12). Homogenized enveloping algebra. Let G be a finite
dimensional Lie algebra over K with basis {x1, . . . , xn} and U(G) its enveloping algebra.
The homogenized enveloping algebra of G is A(G) := T (G ⊕ Kz)/〈R〉, where T (G ⊕ Kz)
is the tensor algebra, z is a new variable, and R is spanned by {z ⊗ x − x ⊗ z | x ∈
G}∪{x⊗y−y⊗x− [x, y]⊗z | x, y ∈ G}. From the PBW theorem for G⊗K(z), considered
as a Lie algebra over K(z), we get that A(G) is a skew PBW extension of K[z].

1.2.2 Classification and some other examples

In Table 1.1 we classify Examples 1.2.1 - 1.2.40 of skew PBW extensions as constant,
bijective, pre-commutative, quasi-commutative and semi-commutative, according to the
Definition 1.1.5. This classification is new and it is very useful for the whole thesis.

Remark 1.2.41. In Example 1.2.28, the q-Heisenberg algebra Hn(q) can be seen as skew
PBW extension of K or as skew PBW extension of K[y1, . . . , yn]. Hn(q) as skew PBW
extension of K is pre-commutative, but Hn(q) as skew PBW extension of K[y1, . . . , yn] is
not pre-commutative because zixi = q−1xizi + yi, 1 ≤ i ≤ n. In Table 1.1 we classify
q-Heisenberg algebra as a skew PBW extension of K.

1.2.3 3-dimensional skew polynomial algebra

It is the algebra A generated by the variables x, y, z restricted to relations

yz − αzy = λ, zx− βxz = µ, xy − γyx = ν, (1.2.13)

such that

1. λ, µ, ν ∈ K+Kx+Ky +Kz, and α, β, γ ∈ K∗;

2. Standard monomials {xiyjzl | i, j, l ≥ 0} are a K-basis of the algebra.

Thus, A ∼= (K)〈x, y, z〉 are skew PBW extensions of K. There are fifteen 3-dimensional
skew polynomial algebras not isomorphic (see [77], Theorem C.4.3.1), i.e. A is one of the
following algebras:

(a) if |{α, β, γ}| = 3, then A is defined by

yz − αzy = 0, zx− βxz = 0, xy − γyx = 0. (1.2.14)

(b) if |{α, β, γ}| = 2 y β 6= α = γ = 1, A is one of the following algebras:

(i) yz − zy = z, zx− βxz = y, xy − yx = x;

(ii) yz − zy = z, zx− βxz = b, xy − yx = x;
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(iii) yz − zy = 0, zx− βxz = y, xy − yx = 0;

(iv) yz − zy = 0, zx− βxz = b, xy − yx = 0;

(v) yz − zy = az, zx− βxz = 0, xy − yx = x;

(vi) yz − zy = z, zx− βxz = 0, xy − yx = 0.

Here a, b are any elements K. All nonzero values of b give isomorphic algebras.

(c) If |{α, β, γ}| = 2 and β 6= α = γ 6= 1, then A is one of the following algebras:

(i) yz − αzy = 0, zx− βxz = y + b, xy − αyx = 0;

(ii) yz − αzy = 0, zx− βxz = b, xy − αyx = 0.

In this case b is an arbitrary element of K. Again, nonzero values of b give isomorphic
algebras.

(d) If α = β = γ 6= 1, then A is the algebra

yz − αzy = a1x+ b1, zx− αxz = a2y + b2, xy − αyx = a3z + b3.

If ai = 0, i = 1, 2, 3, all nonzero values of bi give isomorphic algebras.

(e) If α = β = γ = 1, A is isomorphic to one of the following algebras

(i) yz − zy = x, zx− xz = y, xy − yx = z;

(ii) yz − zy = 0, zx− xz = 0, xy − yx = z;

(iii) yz − zy = 0, zx− xz = 0, xy − yx = b;

(iv) yz − zy = −y, zx− xz = x+ y, xy − yx = 0;

(v) yz − zy = az, zx− xz = z, xy − yx = 0;

Parameters a, b ∈ K are arbitrary and all nonzero values of b generate isomorphic
algebras.

Note that the fifteen 3-dimensional skew polynomial algebras are constant and bijective.
Therefore, in Table 1.2 we classify the fifteen 3-dimensional skew polynomial algebras as
pre-commutative, quasi-commutative and semi-commutative according to Definition 1.1.5.

1.2.4 Sridharan enveloping algebra of 3-dimensional Lie algebra G

Let G be a finite dimensional Lie algebra, and let f ∈ Z2(G,K) be an arbitrary 2−cocycle,
that is, f : G × G → K such that f(x, x) = 0 and

f(x, [y, z]) + f(z, [x, y]) + f(y, [z, x]) = 0

for all x, y, z ∈ G. The Sridharan enveloping algebra of G is defined to be the associative
algebra Uf (G) = T (G)/I, where T (G) is the tensor algebra of G and I is the two-sided ideal
of T (G) generated by the elements

(x⊗ y)− (y ⊗ x)− [x, y]− f(x, y), for all x, y ∈ G.
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Note that if f = 0 then Uf (G) = U0(G) = U(G). For x ∈ G, we still denote by x its
image in Uf (G). Uf (G) is a filtered algebra with the associated graded algebra gr(Uf (G))
being a polynomial algebra. Let K be a field algebraically closed with characteristic zero.
If G is a Lie algebra of dimension three, then the Sridharan enveloping algebra Uf (G)
for f ∈ Z2(G,K) is isomorphic to one of the ten types of associative algebras with the
commuting relations listed in Table 1.3, defined by three generators x, y, z and where
α ∈ K\{0} (see [58], Theorem 1.3). Therefore the Sridharan enveloping algebra Uf (G) is a
skew PBW extension of K, i.e. Uf (G) ∼= σ(K)〈x, y, z〉.

According to the commutation relations (Table 1.3), in Table 1.4 we classify the algebra
Uf (G).
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Classification of Examples 1.2.1 - 1.2.40

Example Skew PBW extension C B P QC SC

1.2.1 Classical polynomial ring R[x1, . . . , xn] X X X X X

1.2.2 Ore extensions of bijective type R[x1; σ1, δ1] · · · [xn;σn, δn] ⋆ X X ⋆ ⋆
1.2.3 Weyl algebra An(K) ⋆ X X ⋆ ⋆
1.2.3 Extended Weyl algebra An(K) ⋆ X X ⋆ ⋆
1.2.4 Jordan plane ⋆ X X ⋆ ⋆
1.2.5 Particular Sklyanin algebra X X X X X

1.2.6 Universal enveloping algebra of a Lie algebra U(G) X X X ⋆ ⋆
1.2.7 Tensor product R⊗K U(G) X X X ⋆ ⋆
1.2.8 Crossed product R ∗ U(G) ⋆ X ⋆ ⋆ ⋆
1.2.9 Algebra of q-differential operators Dq,h[x, y] ⋆ X X ⋆ ⋆
1.2.10 Algebra of shift operators Sh ⋆ X X X ⋆
1.2.11 Mixed algebra Dh ⋆ X ⋆ ⋆ ⋆
1.2.12 Algebra of discrete linear systems K[t1, . . . , tn][x1;σ1] · · · [xn; σn] ⋆ X X X ⋆
1.2.13 Linear partial differential operators K[t1, . . . , tn][∂1, . . . , ∂n] ⋆ X X ⋆ ⋆
1.2.13 Linear partial differential operators K(t1, . . . , tn)[∂1, . . . , ∂n] ⋆ X X ⋆ ⋆
1.2.14 Linear partial shift operators K[t1, . . . , tn][E1, . . . , Em] ⋆ X X X ⋆
1.2.14 Linear partial shift operators K(t1, . . . , tn)[E1, . . . , Em] ⋆ X X X ⋆
1.2.15 Linear partial difference operators K[t1, . . . , tn][∆1, . . . ,∆m] ⋆ X X ⋆ ⋆
1.2.15 Linear partial difference operators K(t1, . . . , tn)[∆1, . . . ,∆m] ⋆ X X ⋆ ⋆

1.2.16 Linear partial q-dilation operators K[t1, . . . , tn][H
(q)
1 , . . . ,H

(q)
m ] ⋆ X X X ⋆

1.2.16 Linear partial q-dilation operators K(t1, . . . , tn)[H
(q)
1 , . . . ,H

(q)
m ] ⋆ X X X ⋆

1.2.17 Linear partial q-differential operators K[t1, . . . , tn][D
(q)
1 , . . . ,D

(q)
m ] ⋆ X X ⋆ ⋆

1.2.17 Linear partial q-differential operators K(t1, . . . , tn)[D
(q)
1 , . . . ,D

(q)
m ] ⋆ X X ⋆ ⋆

1.2.18 Diffusion algebra: D X X X ⋆ ⋆
1.2.19 Additive analogue of the Weyl algebra An(q1, . . . , qn) X X ⋆ ⋆ ⋆
1.2.20 Multiplicative analogue of the Weyl algebra On(λji) X X X X X

1.2.21 Quantum algebra U ′(so(3,K)) X X X ⋆ ⋆
1.2.22 Dispin algebra U(osp(1, 2)) X X X ⋆ ⋆
1.2.23 Woronowicz algebra Wν(sl(2,K)) X X X ⋆ ⋆
1.2.24 Complex algebra Vq(sl3(C)) ⋆ X ⋆ ⋆ ⋆
1.2.25 Algebra U ⋆ X ⋆ ⋆ ⋆
1.2.26 Manin algebra Mq(2), O(Mq(2)) ⋆ X X ⋆ ⋆
1.2.27 Coordinate algebra of the quantum group SLq(2) ⋆ X ⋆ ⋆ ⋆
1.2.28 q-Heisenberg algebra Hn(q) X X X ⋆ ⋆
1.2.29 Quantum enveloping algebra of sl(2,K), Uq(sl(2,K)) ⋆ X ⋆ ⋆ ⋆
1.2.30 Hayashi’s algebra Wq(J) ⋆ X ⋆ ⋆ ⋆
1.2.31 Multi-parameter quantum affine n−spaces Oq(Kn) X X X X X

1.2.32 The algebra of differential operators Dq(Sq) on a quantum space Sq ⋆ X ⋆ ⋆ ⋆
1.2.33 Witten’s deformation of U(sl(2,K)), W (ξ) ⋆ X ⋆ ⋆ ⋆

1.2.34 Quantum Weyl algebra of Maltsiniotis Aq,λ
n ⋆ X ⋆ ⋆ ⋆

1.2.35 Quantum Weyl algebra An(q, pi,j) ⋆ X ⋆ ⋆ ⋆

1.2.36 Multiparameter quantized Weyl algebra AQ,Γ
n (K) ⋆ X ⋆ ⋆ ⋆

1.2.37 Quantum symplectic space Oq(sp(K2n)) ⋆ X ⋆ ⋆ ⋆
1.2.38 Quadratic algebras ⋆ X ⋆ ⋆ ⋆
1.2.39 Quantum Weyl algebra A2(Ja,b) ⋆ X ⋆ ⋆ ⋆
1.2.40 Homogenized enveloping algebra A(G) X X X ⋆ ⋆

Table 1.1: Classification of Examples 1.2.1 - 1.2.40.

C : Constant B : Bijective P : Pre-commutative QC : Quasi-commutative SC : Semi-commutative

⋆: Negation X: Affirmation
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Cardinal 3-dimensional skew polynomial algebra P QC SC

|{α, β, γ}| = 3 yz − αzy = 0, zx− βxz = 0, xy − γyx = 0 X X X

yz − zy = z, zx− βxz = y, xy − yx = x X ⋆ ⋆
yz − zy = z, zx− βxz = b, xy − yx = x ⋆ ⋆ ⋆

|{α, β, γ}| = 2, yz − zy = 0, zx− βxz = y, xy − yx = 0 X ⋆ ⋆
β 6= α = γ = 1 yz − zy = 0, zx− βxz = b, xy − yx = 0 ⋆ ⋆ ⋆

yz − zy = az, zx− βxz = 0, xy − yx = x X ⋆ ⋆
yz − zy = z, zx− βxz = 0, xy − yx = 0 X ⋆ ⋆

|{α, β, γ}| = 2, yz − αzy = 0, zx− βxz = y + b, xy − αyx = 0 ⋆ ⋆ ⋆
β 6= α = γ 6= 1 yz − αzy = 0, zx− βxz = b, xy − αyx = 0 ⋆ ⋆ ⋆
α = β = γ 6= 1 yz − αzy = a1x+ b1, zx− αxz = a2y + b2, xy − αyx = a3z + b3 ⋆ ⋆ ⋆

yz − zy = x, zx− xz = y, xy − yx = z X ⋆ ⋆
yz − zy = 0, zx− xz = 0, xy − yx = z X ⋆ ⋆

α = β = γ = 1 yz − zy = 0, zx− xz = 0, xy − yx = b ⋆ ⋆ ⋆
yz − zy = −y, zx− xz = x+ y, xy − yx = 0 X ⋆ ⋆
yz − zy = az, zx− xz = x, xy − yx = 0 X ⋆ ⋆

Table 1.2: Classification of 3-dimensional skew polynomial algebras.

P : Pre-commutative QC : Quasi-commutative SC : Semi-commutative

⋆: Negation X: Affirmation

Type [x, y] [y, z] [z, x]
1 0 0 0
2 0 x 0
3 x 0 0
4 0 αy −x
5 0 y −(x+ y)
6 z −2y −2x
7 1 0 0
8 1 x 0
9 x 1 0
10 1 y x

Table 1.3: Sridharan enveloping algebras of a 3-dimensional Lie algebra.

Sridharan enveloping algebra of 3-dimensional Lie algebra G
Type [x, y] [y, z] [z, x] C B P QC SC

1 0 0 0 X X X X X

2 0 x 0 X X X ⋆ ⋆
3 x 0 0 X X X ⋆ ⋆
4 0 αy −x X X X ⋆ ⋆
5 0 y −(x+ y) X X X ⋆ ⋆
6 z −2y −2x X X X ⋆ ⋆
7 1 0 0 X X ⋆ ⋆ ⋆
8 1 x 0 X X ⋆ ⋆ ⋆
9 x 1 0 X X ⋆ ⋆ ⋆
10 1 y x X X ⋆ ⋆ ⋆

Table 1.4: Classification of the Sridharan enveloping algebras of a 3-dimensional Lie alge-
bra.

C : Constant B : Bijective P : Pre-commutative QC : Quasi-commutative SC : Semi-commutative

⋆: Negation X: Affirmation



CHAPTER 2

Graded skew PBW extensions

Lezama and Reyes in [45] defined a filtration for skew PBW extensions. The associate
graduation to this filtration is a quasi-commutative skew PBW extension. Some properties
of skew PBW extensions are deduced from this filtration and the associated graduation (see
for example [45], [64], [66], [46]). There are skew PBW extensions which are graded but not
quasi-commutative. In the first section we present some properties of skew PBW extensions
with the standard filtration and graduation defined in [45]. In the second section, we define
a more general graduation of skew PBW extensions, give some examples and study some
specific properties of graded skew PBW extensions. In the third section, we study more
general properties of graded skew PBW extensions. The main new results of the present
chapter are Theorem 2.2.1, Corollary 2.3.14 and Theorem 2.3.22.

2.1 Standard filtration for skew PBW extensions and its as-

sociated graduation

Recall that a filtered ring is a ring B with a family F (B) = {Fn(B) | n ∈ Z} of subgroups of
the additive group of B where we have the ascending chain · · · ⊂ Fn−1(B) ⊂ Fn(B) ⊂ · · ·
such that 1 ∈ F0(B) and Fn(B)Fm(B) ⊆ Fn+m(B) for all n,m ∈ Z. From a filtered
ring B it is possible to construct its associated graded ring Gr(B) taking Gr(B)n :=
Fn(B)/Fn−1(B). The following proposition establishes that one can construct a quasi-
commutative skew PBW extension from a given skew PBW extension of a ring R.

Proposition 2.1.1 ([45], Proposition 2.1). Let A be a skew PBW extension of R. Then,
there exists a quasi-commutative skew PBW extension Aσ of R in n variables z1, . . . , zn
defined by the relations zir = ci,rzi, zjzi = ci,jzizj, for 1 ≤ i ≤ n, where ci,r, ci,j are the
same constants that define A. Moreover, if A is bijective then Aσ is also bijective.

Proof. We consider n variables z1, . . . , zn and the set of standard monomials

M := {zα1
1 · · · zαn

n |αi ∈ Nn, 1 ≤ i ≤ n},

let Aσ be the free R-module with basis M (i.e., A and Aσ are isomorphic as R-modules);
we define the product in Aσ by the distributive law and the rules

20
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rzαszβ := rσα(s)cα,βz
α+β,

where the σ’s and the constants c’s are as in Proposition 1.1.7. The identities of Remark
1.1.8 show that this product is associative, moreover R ⊆ Aσ since for r ∈ R, r = rz01 · · · z

0
n.

Thus, Aσ is a quasi-commutative skew PBW extension of R, and also, each element fσ

of Aσ corresponds to a unique element f ∈ A, replacing the variables x’s by the variables
z’s. The last assertion of the proposition is trivial.

The next proposition describes the standard filtration of a skew PBW extensions and
its corresponding graduation.

Theorem 2.1.2. Let A be an arbitrary skew PBW extension of R. Then, A is a filtered
ring with increasing filtration given by

Fm(A) :=

{
R if m = 0

{f ∈ A | deg(f) ≤ m} ∪ {0} if m ≥ 1
(2.1.1)

and the corresponding graded ring Gr(A) is isomorphic to Aσ.

Proof. See [45], Theorem 2.2.

Proposition 2.1.3 establishes the relation between skew PBW extensions and iterated
Ore extension in the sense of Proposition 1.1.4.

Proposition 2.1.3. Let A be a quasi-commutative skew PBW extension of a ring R.

(i) A is isomorphic to an iterated Ore extension of endomorphism type R[z1; θ1] · · · [zn; θn],
where θ1 = σ1;

θj : R[z1; θ1] · · · [zj−1; θj−1] → R[z1; θ1] · · · [zj−1; θj−1]

is such that θj(zi) = ci,jzi (ci,j ∈ R as in (1.1.2)), 1 ≤ i < j ≤ n and θi(r) = σi(r),
for r ∈ R.

(ii) If A is bijective, then each θi in (i) is bijective.

Proof. See [45], Theorem 2.3.

Proposition 2.1.4 ([45], Corollary 2.4). Let A be a bijective skew PBW extension of R.
If R is a left (right) noetherian ring then A is also a left (right) noetherian ring.

Proof. According to Theorem 2.1.2, Gr(A) is a quasi-commutative skew PBW extension,
and by the hypothesis, Gr(A) is also bijective. By Proposition 2.1.3, Gr(A) is isomorphic to
an iterated Ore extension R[z1; θ1] · · · [zn; θn] such that each θi is bijective, 1 ≤ i ≤ n. This
implies that Gr(A) is a left (right) noetherian ring, and hence, A is left (right) noetherian
(see [55], Theorem 1.6.9).
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In the second section of the present chapter we will need some homological properties
of skew PBW extensions that we will recall next. Let B be a ring and let M be a B-
module. Let us denote pdB(M) the projective dimension of M and injdimB(M) the
injective dimension of M . Let lgld(B) (rgld(B)) be the left (right) global dimension of B.
Do not always the left and right global dimensions of B are equal. However, if the ring B is
noetherian the equality holds. If B is noetherian and if injdim(BB) < ∞ and injdim(BB) <
∞, then injdim(BB) = injdim(BB). We say that B has finite global dimension (resp. finite
injective dimension) if the left and right global dimensions of B are finite and equal (resp.
the modules BB and BB have finite injective dimensions which are equal). In such case
we denote these numbers by gld(B) (resp. injdim(B)).

Proposition 2.1.5. Let R ⊆ B be rings such that BR (RB) is faithfully flat and RB (BR)
is projective. Then,

lgld(R) ≤ lgld(B), if lgld(R) < ∞,

rgld(R) ≤ rgld(B), if lgld(R) < ∞.

Proof. See [55], Theorem 7.2.6.

Proposition 2.1.6. Let B be a filtered ring, then

lgld(B) ≤ lgld(Gr(B)), rgld(B) ≤ rgld(Gr(B)).

Proof. See [55], Corollary 7.6.18.

Proposition 2.1.7. Let R be a ring and σ an automorphism of R. Then,

lgld(R[x;σ]) = lgld(R) + 1, rgld(R[x;σ]) = rgld(R) + 1.

Proof. See [55], Theorem 7.5.3.

Proposition 2.1.8 ([45], Theorem 4.2). Let A be a bijective skew PBW extension of a
ring R. Then,

lgld(R) ≤ lgld(A) ≤ lgld(R) + n, if lgld(R) < ∞,

rgld(R) ≤ rgld(A) ≤ rgld(R) + n, if rgld(R) < ∞.

If A is quasi-commutative, then

lgld(A) = lgld(R) + n, rgld(A) = rgld(R) + n.

In particular, if R is semisimple, then lgld(A) = n = rgld(A).

Proof. Since A is a filtered ring, then by Proposition 2.1.6

lgld(A) ≤ lgld(Gr(A)), rgld(A) ≤ rgld(Gr(A));
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according to Theorem 2.1.2 and Proposition 2.1.3, Gr(A) is isomorphic to an iterated Ore
extension of automorphism type. From Proposition 2.1.7 we get the left inequalities. By
Proposition 1.1.9, AR is free, and hence projective and faithfully flat (by definition RA
is free, and hence, projective and faithfully flat). From Proposition 2.1.5 we get the left
inequalities. If A is quasi-commutative, Proposition 2.1.3 and Proposition 2.1.7 give the
equalities. Finally, if R is semisimple, then lgld(R) = 0 = lgld(R).

Let B be a finitely generated algebra with finite generating set {b1, . . . , bn}. Let V be
a finite dimensional subspace of B. V is called a finite dimensional generating subspace
for B if we can express every element of B as a linear combination of monomials formed
by elements of V . An example is the case where V is the subspace of B spanned by the
generators {b1, . . . , bn}. If we set V 0 := K and V s the subspace spanned by monomials
of the form bl1i1 · · · b

lm
im

, bij ∈ {b1, . . . , bn} and
∑m

j=1 lj = s, we have Bm =
∑m

s=0 V
s and

B =
⋃∞

m=0 Bm. Define dV (m) := dimK(Bm). Gelfand-Kirillov dimension is a measure
of the rate of growth of the algebra in terms of any generating set. More exactly: The
Gelfand-Kirillov dimension (GK-dimension) of B is defined by

GKdim(B) := lim
( log dV (m)

logm

)
,

for a finite dimensional generating subspace V of B. The Gelfand-Kirillov dimension of
the algebra B is independent of the choice of V . GK-dimension coincides with the Krull
dimension in the commutative case. Algebras with GK-dimension zero are precisely those
finite dimensional. The Gelfand-Kirillov dimension of a module M over an algebra B is:

GKdimB(M) = sup
V,M0

limn→∞ logn dimK V nM0

where the supremum is taken over all finite-dimensional subspaces V ⊂ B and M0 ⊂ M .

We recall that a filtration {Fi(B)}i∈Z of an algebra B is said to be finite if each Fi(B)
is a finite dimensional subspace.

Proposition 2.1.9 ([39], Proposition 6.6). Let B be an algebra with a finite filtration
{Fi(B)}i∈Z such that Gr(B) is finitely generated. Then

GKdim(Gr(B)) = GKdim(B).

Lemma 2.1.10 ([36], Lemma 2.2). Let B be an algebra with a finite dimensional generating
subspace V , σ a K-automorphism of B and δ a σ-derivation. If σ(V ) ⊆ V , then

GKdim(B[x;σ, δ]) = GKdim(B) + 1.

Proposition 2.1.11 ([64], Theorem 14). Let R be an algebra with a finite dimensional
generating subspace V and let A = σ(R)〈x1 . . . , xn〉 be a bijective skew PBW extension of
R. If σn(V ) ⊆ V , then GKdim(A) = GKdim(R) + n.

Proof. From Theorem 2.1.2 it is clear that A is an algebra with a finite filtration. Let X
be the K-linear subspace of A spanned by 1, x1, . . . , xn. Then V X is a finite dimensional
generating subspace of Gr(A) ∼= Aσ and hence Proposition 2.1.9 implies GKdim(A) =
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GKdim(Gr(A)). Now, from (2.1.1) and Proposition 2.1.3 we have that the ring Aσ is
isomorphic to the Ore extension of automorphism type R[x1;σ1] · · · [xn;σn] say. Note that
R[x1;σ1] · · · [xn−1;σn−1] is an algebra and the automorphism σn of R[x1;σ1] · · · [xn−1;σn−1]
given by σn(r) = cn,r and σn(xi) = ci,nxi for r ∈ R, 1 ≤ i < n is a K-automorphism. If X ′

is the K-linear subspace of A spanned by 1, x1, . . . , xn−1, then V X ′ a finite dimensional
generating subspace of R[x1;σ1] · · · [xn−1;σn−1], and from the assumption σn(V ) ⊆ V
follows that σn(V X ′) ⊆ V X ′. Lemma 2.1.10 guarantees GKdim(A) = GKdim(Gr(A)) =
GKdim(R) + n.

2.2 Graded skew PBW extensions and examples

In this section we define for skew PBW extensions a graduation more general than the
graduation of Theorem 2.1.2. We also give some examples of these special classes of
graded algebras. The results presented here, and the next section, represent the main
tools developed in the present thesis, they will be applied in the next two chapters which
contain the central results of the monograph. Many of these results have been mainly
published in [83], and others are in [85].

A graded algebra B =
⊕

p≥0Bp is called connected if B0 = K. In [76], Definition 1.4,
the concept of finitely graded algebra was presented. It is said that an algebra B is finitely
graded if the following conditions hold:

(i) B is N-graded (positively graded): B =
⊕

j≥0Bj ,

(ii) B is connected.

(iii) B is finitely generated as algebra, i.e., there is a finite set of elements x1, . . . , xn ∈ B
such that the set {xi1xi2 · · · xim | 1 ≤ ij ≤ n,m ≥ 1}∪{1} spans B as a vector space.

We recall that an algebra B is called augmented when is given a morphism of algebras
ε : B → K, called the augmentation map. In particular ε(1B) = 1K. If B is augmented,
then B is canonically isomorphic, as a vector space, to K · 1B ⊕ ker(ε). The ideal ker(ε)
is called the augmentation ideal. A N-graded and connected algebra B is augmented, the
augmentation is given by the projection ε : B → B0 = K. A graded algebra B =

⊕
j∈ZBj

is called locally finite if dimKBj < ∞, for all j ∈ Z. A graded B-module M =
⊕

j∈ZMj is
called locally finite if dimKMj < ∞, for all j ∈ Z. We say that the graded B-module M is
generated in degree s if M = B ·Ms. M is concentrated in degree m if M = Mm. For any
integer l, M(l) is a graded B-module whose degree i component is M(l)i = Mi+l.

The free associative algebra (tensor algebra) L in n generators x1, . . . , xn is the ring
L := K〈x1, . . . , xn〉, whose underlying vector space is the set of all words in the variables xi,
that is, expressions xi1xi2 . . . xim for some m ≥ 1, where 1 ≤ ij ≤ n for all j. The length
of a word xi1xi2 . . . xim is m. We include among the words a symbol 1, which we think of
as the empty word, and which has length 0. The product of two words is concatenation,
and this operation is extended linearly to define an associative product on all elements.
Note that L is N-graded with graduation given by L :=

⊕
j≥0 Lj where L0 = K and Lj

spanned by all words of length j in the alphabet {x1, . . . , xn}, for j > 0; L is connected,
the augmentation of L is given by the natural projection ε : K〈x1, . . . , xn〉 → L0 = K
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and the augmentation ideal is given by L+ =:
⊕

j>0 Lj. Consider the natural filtration
Fi(L) = {

⊕
Lj | j ≤ i} of L. Let P be a subspace of F2(L) := K

⊕
L1

⊕
L2, the algebra

L/〈P 〉 is called nonhomogeneous quadratic algebra. L/〈P 〉 is called quadratic algebra if P
is a subspace of L2, where 〈P 〉 the two-sided ideal of L generated by P .

Let I ⊆
∑

n≥2 Ln be a finitely generated homogeneous ideal of K〈x1, . . . , xn〉 and let
R = K〈x1, . . . , xn〉/I, which is a connected graded algebra generated in degree 1. Suppose
σ : R → R is a graded algebra automorphism and δ : R(−1) → R is a graded σ-derivation
(i.e. a degree +1 graded σ-derivation δ of R). Let B := R[x;σ, δ] be the associated
graded Ore extension of R; that is, B =

⊕
n≥0Rxn as an R-module, and for r ∈ R,

xr = σ(r)x + δ(r). We consider x to have degree 1 in B, and under this grading B is a
connected graded algebra which is generated in degree 1 (see [19] and [61]). We introduce
the definition of graded skew PBW extensions following [19].

Theorem 2.2.1. Let R =
⊕

m≥0 Rm be a N-graded algebra and let A = σ(R)〈x1, . . . , xn〉
be a bijective skew PBW extension of R satisfying the following two conditions:

(i) σi is a graded ring homomorphism and δi : R(−1) → R is a graded σi-derivation for
all 1 ≤ i ≤ n, where σi and δi are as in Proposition 1.1.4.

(ii) xjxi − ci,jxixj ∈ R2 +R1x1 + · · · +R1xn, as in (1.1.2) and ci,j ∈ R0.

For p ≥ 0, let Ap the K-space generated by the set
{
rtx

α | t+ |α| = p, rt ∈ Rt and xα ∈ Mon(A)
}
.

Then A is a N-graded algebra with graduation

A =
⊕

p≥0

Ap. (2.2.1)

Proof. It is clear that 1 = x01 · · · x
0
n ∈ A0. Let f ∈ A \ {0}, then by Remark 1.1.3-(iv),

f has a unique representation as f = r1X1 + · · · + rsXs, with ri ∈ R \ {0} and Xi :=
x
αi1
1 · · · x

αin
n ∈ Mon(A) for 1 ≤ i ≤ s. Let ri = riq1 + · · ·+riqm the unique representation of

ri in homogeneous elements of R. Then f = (r1q1+· · ·+r1qm )x
α11
1 · · · x

α1n
n +· · ·+(rsq1+· · ·+

rsqu )x
αs1
1 · · · x

αsn
n = r1q1x

α11
1 · · · x

α1n
n + · · ·+r1qmx

α11
1 · · · x

α1n
n + · · ·+rsq1x

αs1
1 · · · x

αsn
n + · · ·+

rsqux
αs1
1 · · · x

αsn
n is the unique representation of f in homogeneous elements of A. Therefore

A is a direct sum of the family {Ap}p≥0 of subspaces of A.

Now, let x ∈ ApAq. Without loss of generality we can assume that x = (rtx
α)(rsx

β)
with rt ∈ Rt, rs ∈ Rs, xα, xβ ∈ Mon(A), t + |α| = p and s + |β| = q. By Proposition
1.1.7-(a), we have that for rs and xα there exist unique elements rsα := σα(rs) ∈ R \ {0}
and pα,rs ∈ A such that x = rt(rsαx

α + pα,rs)x
β = rtrsαx

αxβ + rtpα,rsx
β, where pα,rs = 0

or deg(pα,rs) < |α| if pα,rs 6= 0. Now, by Proposition 1.1.7-(b), we have that for xα, xβ

there exists unique elements cα,β ∈ R and pα,β ∈ A such that x = rtrsα(cα,βx
α+β +pα,β)+

rtpα,rsx
β = rtrsαcα,βx

α+β + rtrsαpα,β + rtpα,rsx
β, where cα,β is left invertible, pα,β = 0 or

deg(pα,β) < |α+ β| if pα,β 6= 0. We note that:

1. Since σi is graded for 1 ≤ i ≤ n, then σαi

i is graded and therefore σα is graded. Then
rsα := σα(rs) ∈ Rs and δαi

i (rs) ∈ Rs+αi
, for 1 ≤ i ≤ n and αi ≥ 0.
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2. If W [δνi σ
αi−ν
i ] represents the sum of the possible words that can be constructed with

the alphabet composed of ν times the symbol δi and αi − ν times the symbol σi,
then xαi

i rs =
∑αi

ν=0W [δνi σ
αi−ν
i ](rs)x

αi−ν
i ∈ As+αi

, since each summand in the above
expression is in As+αi

.

3. From condition (ii), we have that for 1 ≤ i < j ≤ n, xjxi = ci,jxixj + r0ij + r1ijx1 +
· · ·+ rnij

xn ∈ A2. Then, for 1 ≤ i < j < k ≤ n, we have that

xk(xjxi) = xk(ci,jxixj + r0ij + r1ijx1 + · · ·+ rnij
xn)

= (σk(ci,j)xkxixj + δk(ci,j)xixj) + (σk(r0ij )xk + δk(r0ij ))
+(σk(r1ij )xkx1 + δk(r1ij )x1) + · · ·+ (σk(rnij

)xkxn + δk(rnij
)xn)

= σk(ci,j)[ci,kxixk + r0ik + r1ikx1 + · · ·+ rnik
xn]xj + δk(ci,j)xixj + σk(r0ij )xk

+δk(r0ij ) + σk(r1ij )[c1,kx1xk + r01k + r11kx1 + · · ·+ rn1k
xn]

+δk(r1ij )x1 + · · ·+ σk(rnij
)xkxn + δk(rnij

)xn
= σk(ci,j)ci,kxi[cj,kxjxk + r0jk + r1jkx1 + · · · + rnjk

xn] + σk(ci,j)r0ikxj
+σk(ci,j)r1ikx1xj + · · ·+ σk(ci,j)rnik

xnxj + δk(ci,j)xixj + σk(r0ij )xk
+δk(r0ij ) + σk(r1ij )[c1,kx1xk + r01k + r11kx1 + · · ·+ rn1k

xn]
+δk(r1ij )x1 + · · ·+ σk(rnij

)xkxn + δk(rnij
)xn

= σk(ci,j)ci,kσi(cj,k)xixjxk + σk(ci,j)ci,kδi(cj,k)xjxk + σk(ci,j)ci,kσ(cj,k)σi(r0ij )xi
+σk(ci,j)ci,kδi(r0ij ) + σk(ci,j)ci,kσi(r1jk)xix1 + σk(ci,j)ci,kδi(r1jk)x1 + · · ·
+σk(ci,j)ci,kσi(rnjk

)xixn + σk(ci,j)ci,kδi(rnjk
)xn + σk(ci,j)r0ikxj

+σk(ci,j)r1ikx1xj + · · ·+ σk(ci,j)rnik
xnxj + δk(ci,j)xixj + σk(r0ij )xk + δk(r0ij )

+σk(r1ij )c1,kx1xk + σk(r1ij )r01k + σk(r1ij )r11kx1 + · · ·+ σk(r1ij )rn1k
xn

+δk(r1ij )x1 + · · ·+ σk(rnij
)xkxn + δk(rnij

)xn
= σk(ci,j)ci,kσi(cj,k)xixjxk + σk(ci,j)ci,kδi(cj,k)xjxk + σk(ci,j)ci,kσ(cj,k)σi(r0ij )xi

+σk(ci,j)ci,kδi(r0ij ) + σk(ci,j)ci,kσi(r1jk)c1,ix1xi + σk(ci,j)ci,kσi(r1jk)r01i
+σk(ci,j)ci,kσi(r1jk)r11ix1 + · · ·+ σk(ci,j)ci,kσi(r1jk)rn1ixn
+σk(ci,j)ci,kδi(r1jk)x1 + · · · + σk(ci,j)ci,kσi(rnjk

)xixn + σk(ci,j)ci,kδi(rnjk
)xn

+σk(ci,j)r0ikxj + σk(ci,j)r1ikx1xj + · · ·+ σk(ci,j)rnik
cj,nxjxn + σk(ci,j)rnik

δn(xj)
+σk(ci,j)rnik

r0jn + σk(ci,j)rnik
r1jnx1 + · · ·+ σk(ci,j)rnik

rnjn
xn + δk(ci,j)xixj

+σk(r0ij )xk + δk(r0ij ) + σk(r1ij )c1,kx1xk + σk(r1ij )r01k + σk(r1ij )r11kx1 + · · ·
+σk(r1ij )rn1k

xn + δk(r1ij )x1 + · · ·+ σk(rnij
)xkxn + δk(rnij

)xn.

Since all summands in the above sum have the form rx, where r is an homogeneous
element of R, x ∈ Mon(A) and rx ∈ A3, we have that xkxjxi ∈ A3. Following this
procedure we get in general that xi1xi2 · · · xim ∈ Am for 1 ≤ ik ≤ n, 1 ≤ k ≤ m,
m ≥ 1.

4. In a similar way and following the proof of Proposition 1.1.7, we obtain that pα,rs ∈
A|α|+s and pα,β ∈ A|α|+|β|. Then rtrsαcα,βx

α+β ∈ At+s+|α|+|β|, rtrsαpα,β ∈ At+s+|α|+|β|

and rtpα,rsx
β ∈ At+|α|+s+|β|, i.e., x ∈ Ap+q.

Definition 2.2.2. Let A = σ(R)〈x1, . . . , xn〉 be a bijective skew PBW extension of a
N-graded algebra R =

⊕
m≥0 Rm. We say that A is a graded skew PBW extension if A

satisfies the conditions (i) and (ii) in Theorem 2.2.1.

In [93], Definition 1.3, James J. Zhang and Jun Zhang introduced the concept of double
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Ore extensions. Let R be an algebra and B be another algebra, containing R as a subring.
We say B is a right double extension of R if the following conditions hold:

(a) B is generated by R and two new variables x1 and x2.

(b) {x1, x2} satisfies a relation x2x1 = p12x1x2+p11x
2
1+τ1x1+τ2x2+τ0, where p12, p11 ∈

K and τ1, τ2, τ0 ∈ R.

(c) As a left R-module, B =
∑

α1,α2≥0
Rxα1

1 xα2
2 and it is a left free R-module with {xα1

1 xα2
2 |

α1 ≥ 0, α2 ≥ 0}.

(d) x1R+ x2R ⊆ Rx1 +Rx2 +R.

We remark that every graded skew PBW extension A = σ(R)〈x1, x2〉 of a connected
algebra R is a right double extension. In this case, p11 = 0. On the other hand, if B is a
right double extension of R with p12 6= 0 and p11 = 0, then B is a (not necessarily graded)
skew PBW extension of R.

Remark 2.2.3. Let A be a skew PBW extension of an algebra R. Note that if we endow R
with the trivial graduation, Gr(A) (as in Theorem 2.1.2) is a graded skew PBW extension
(as in Definition 2.2.2). The reciprocal is false, since there are graded skew PBW extensions
that are not quasi-commutative (see Example 2.2.7) and by Theorem 2.1.2 and Proposition
2.1.1 Gr(A) is a quasi-commutative skew PBW extension. So, the graduation of Definition
2.2.2 generalizes the graduation of Theorem 2.1.2.

Proposition 2.2.4. Quasi-commutative skew PBW extensions with the trivial graduation
of R are graded skew PBW extensions. If we assume that R has a different graduation to
the trivial graduation, then A is a graded skew PBW extension if and only if σi is graded
and ci,j ∈ R0, for 1 ≤ i, j ≤ n.

Proof. Let R = R0 and r ∈ R = R0. From (1.1.5) we have that xir = ci,rxi = σi(r)xi.
So, σi(r) = ci,r ∈ R = R0 and δi = 0, for 1 ≤ i ≤ n. Therefore σi is a graded ring
homomorphism and δi : R(−1) → R is a graded σi-derivation for all 1 ≤ i ≤ n. On the
other hand, from (1.1.6) we have that xjxi − ci,jxixj = 0 ∈ R2 + R1x1 + · · · + R1xn and
ci,j ∈ R = R0. If R has a nontrivial graduation, then we get the result from relations
(1.1.5), (1.1.6) and Definition 2.2.2.

Example 2.2.5. We present some examples of graded quasi-commutative skew PBW
extensions.

1. The particular Sklyanin algebra S (Example 1.2.5) is a graded quasi-commutative
skew PBW extension of K.

2. The algebra of linear partial q-dilation operators K[t1, . . . , tn][H
(q)
1 , . . . ,H

(q)
m ] (Exam-

ple 1.2.16) is a graded quasi-commutative skew PBW extension of K[t1, . . . , tn],
where K[t1, . . . , tn] is endowed with usual graduation.

3. The multiplicative analogue of the Weyl algebra On(λji) ∼= σ(K)〈x1, . . . , xn〉 ∼=
σ(K[x1])〈x2, . . . , xn〉 (Example 1.2.20) is a graded quasi-commutative skew PBW
extension of K[x1], where K[x1] is endowed with usual graduation.
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4. The multi-parameter quantum affine n-space Oq(Kn) (Example 1.2.31).

Remark 2.2.6. The algebra of shift operators Sh := K[t][xh;σh] ∼= σ(K[t])〈xh〉 (Example
1.2.10) is a quasi-commutative skew PBW extension of R := K[t]. Sh is a graded quasi-
commutative skew PBW extension if K[t] is endowed with trivial graduation. But if h 6= 0
and K[t] is endowed with the usual graduation, i.e. R0 = K, R1 is the subspace generated
by t, R2 is the subspace generated by t2, etc., then Sh is not a graded skew PBW extension,
since σh(t) = t− h /∈ R1, i.e, σh is not graded.

Examples 2.2.7. Next, we present specific examples of graded skew PBW extensions of
the classical polynomial ring R with coefficients in K, which are not quasi-commutative
and where R has the usual graduation.

1. The Jordan plane A = K〈x, y〉/〈yx− xy − x2〉 ∼= σ(K[x])〈y〉 (Example 1.2.4).

2. The homogenized enveloping algebra. A(G) ∼= σ(K[z])〈x1, . . . , xn〉 (Example 1.2.40).

3. The Diffusion algebra. A ∼= σ(K[x1, . . . , xn])〈D1, . . . ,Dn〉 (Example 1.2.18).

4. The algebra U ∼= σ(K[x1, . . . , xn])〈y1, . . . , yn; z1, . . . , zn〉 (Example 1.2.25).

5. Manin algebra. O(Mq(2)) ∼= σ(K[u])〈x, y, v〉 (Example 1.2.26).

6. Algebra of quantum matrices. Oq(Mn(K)) ∼= σ(K[xim, xjk])〈xik, xjm〉, for 1 ≤ i <
j, k < m ≤ n (Example 1.2.27).

7. Quadratic algebras in three variables. If a1 = a4 = 0 then the quadratic algebra is
a graded skew PBW extension of R = K[y, z], and if a5 = a3 = 0 then quadratic
algebras are graded skew PBW extensions of R = K[x, z] (Example 1.2.38).

2.3 Some properties

In this section we present some properties of graded skew PBW extensions.

Proposition 2.3.1. Let B be a connected N-graded algebra. B is finitely generated as
K-algebra if and only if B = K〈x1, . . . , xm〉/I, where I is a proper homogeneous two-sided
ideal of K〈x1, . . . , xm〉. Moreover, for every n ∈ N, dimKBn < ∞, i.e., B is locally finite.

Proof. ⇐): As the free algebra L := K〈x1, . . . , xm〉 is N-graded and I is homogeneous, i.e.,
graded, then L/I es N-graded with graduation given by (L/I)n := (Ln + I)/I. Note that
L/I is connected since (L/I)0 = K. Moreover, L/I is finitely generated as algebra by the
elements xi := xi + I, 1 ≤ i ≤ m. Observe that Ln is finitely generated as vector space,
whence, (L/I)n is also finitely generated as vector space, i.e., dimK((L/I)n) < ∞.
⇒): Let a1, . . . , am ∈ B be a finite collection of elements that generate B as K-algebra;
by the universal property of the free algebra K〈x1, . . . , xm〉, there exists a K-algebra ho-
momorphism f : K〈x1, . . . , xm〉 → B with f(xi) := ai, 1 ≤ i ≤ m; it is clear that f is
surjective. Let I := ker(f), then I is a proper two-sided ideal of K〈x1, . . . , xm〉 and

B ∼= K〈x1, . . . , xm〉/I. (2.3.1)
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Since B is N-graded, we can assume that every ai is homogeneous, ai ∈ Bdi for some
di ≥ 1, moreover, at least one of generators is of degree 1. We define a new graduation for
L = K〈x1, . . . , xm〉: we put weights di to the variables xi and we set L′

n := K〈xi1 · · · xim |∑m
j=1 dij = n〉, n ∈ N. This implies that f is graded, and from this we obtain that

I is homogeneous. In fact, let X1 + · · · + Xt ∈ I, where Xl ∈ L′
nl

, 1 ≤ l ≤ t, so
f(X1) + · · ·+ f(Xt) = 0, and hence, f(Xl) = 0 for every l, i.e., Xl ∈ I. Finally, note that
under the isomorphism f̃ in (2.3.1), f̃((L′

n + I)/I) = Bn, so dimK(Bn) < ∞.

Let B be a finitely graded algebra; it is said that B is finitely presented if the two-sided
ideal I of relations in Proposition 2.3.1 is finitely generated.

Remark 2.3.2. Let A = σ(R)〈x1, . . . , xn〉 be a graded skew PBW extension. Then, we
immediately have the following properties:

(i) A is a N-graded algebra and A0 = R0.

(ii) R is connected if and only if A is connected.

(iii) If R is finitely generated then A is finitely generated. Indeed, as Mon(A) = {xα =
xα1
1 · · · xαn

n | α = (α1, . . . , αn) ∈ Nn} is R-base for A, and R is finitely generated
as algebra, then there is a finite set of elements t1, . . . , ts ∈ R such that the set
{ti1ti2 · · · tim |1 ≤ ij ≤ s,m ≥ 1}∪{1} spans R as a vector space. Then there is a finite
set of elements t1, . . . , ts, x1, . . . , xn ∈ A such that the set {ti1ti2 · · · timx

α1
1 · · · xαn

n |
1 ≤ ij ≤ s,m ≥ 1, α1, . . . , αn ∈ N} spans A as a vector space. So, if R is generated
in degree 1 then A is generated in degree 1.

(iv) For (i), (ii) and (iii) above we have that if R is a finitely graded algebra then A is a
finitely graded algebra.

(v) If R is locally finite, A as algebra is a locally finite. Indeed, dimKA0 = dimKR0,
dimKA1 = dimKR1 + n; let Bt be a (finite) base of Rt, t ≥ 0, then for a fixed p ≥ 2
the set {rtx

α | t+ |α| = p, rt ∈ Bt and xα ∈ Mon(A)} is a finite base for Ap.

(vi) A as R-module is locally finite.

(vii) If A is quasi-commutative and R is concentrate in degree 0, then A0 = R.

(viii) If R is a quadratic algebra then A is a quadratic algebra.

(ix) If R is finitely presented then A is finitely presented. Indeed, by Proposition 2.3.1,
R = K〈t1, . . . , tm〉/I where

I = 〈r1, . . . , rs〉 (2.3.2)

is a two-sided ideal of K〈t1, . . . , tm〉 generated by a finite set r1, . . . , rs of homogeneous
polynomials in K〈t1, . . . , tm〉. Then A = K〈t1, . . . , tm, x1, . . . , xn〉/J where

J = 〈r1, . . . , rs, fhk, gji | 1 ≤ i, j, h ≤ n, 1 ≤ k ≤ m〉 (2.3.3)

is the two-sided ideal of K〈t1, . . . , tm, x1, . . . , xn〉 generated by a finite set of homo-
geneous elements r1, . . . , rs, fhk, gji where r1, . . . , rs are as in (2.3.2);

fhk := xhtk − σh(tk)xh − δh(tk) (2.3.4)
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with σh and δh as in Proposition 1.1.4;

gji := xjxi − ci,jxixj − (r0j,i + r1j,ix1 + · · ·+ rnj,i
xn) (2.3.5)

as in (1.1.2) of Definition 1.1.1.

Let B = R[x1;σ1, δ1] · · · [xn;σn, δn] be an iterated Ore extension. Then B is called a
graded iterated Ore extension if x1, . . . , xn have degree 1 in B,

σi : R[x1;σ1, δ1] · · · [xi−1;σi−1, δi−1] → R[x1;σ1, δ1] · · · [xi−1;σi−1, δi−1]

is a graded algebra automorphism and

δi : R[x1;σ1, δ1] · · · [xi−1;σi−1, δi−1](−1) → R[x1;σ1, δ1] · · · [xi−1;σi−1, δi−1]

is a graded σi-derivation, 2 ≤ i ≤ n.

Remark 2.3.3. The class of graded iterated Ore extensions $ class of graded skew PBW
extensions. For example, the homogenized enveloping algebra A(G) and the Diffusion alge-
bra are graded skew PBW extensions but these are not iterated Ore extensions. Therefore,
the definition of graded skew PBW extensions is more general than the definition of graded
Ore extensions.

An algebra is called noetherian if it is right and left noetherian.

Proposition 2.3.4. A graded algebra B is right (left) noetherian if and only if it is graded
right (left) noetherian, which means that every graded right (left) ideal is finitely generated.

Proof. See [41], Proposition 1.4.

Proposition 2.3.5. Let A = σ(R)〈x1, . . . , xn〉 be a graded skew PBW extension.

(i) If R is a graded left (right) noetherian algebra, then every graded skew PBW extension
A of R is graded left (right) noetherian.

(ii) If A is quasi-commutative, then A is isomorphic to a graded iterated Ore extension
of endomorphism type R[z1; θ1] · · · [zn; θn], where θi is bijective, for each i; θ1 = σ1;

θj : R[z1; θ1] · · · [zj−1; θj−1] → R[z1; θ1] · · · [zj−1; θj−1]

is such that θj(zi) = ci,jzi (ci,j ∈ R0 as in (1.1.2)), 1 ≤ i < j ≤ n and θi(r) = σi(r),
for r ∈ R.

Proof. (i) Since A is bijective, then by Proposition 2.1.4 we have that A is a left (right)
noetherian algebra. As A is graded then by Proposition 2.3.4, A is graded left (right)
noetherian.

(ii) By Proposition 2.1.3 we have that A is isomorphic to an iterated Ore extension of
endomorphism type R[z1; θ1] · · · [zn; θn], where θi is bijective; θ1 = σ1;

θj : R[z1; θ1] · · · [zj−1; θj−1] → R[z1; θ1] · · · [zj−1; θj−1]

is such that θj(zi) = ci,jzi (ci,j ∈ R as in (1.1.2)), 1 ≤ i < j ≤ n and θi(r) = σi(r), for
r ∈ R. Since A is graded then σi is graded and ci,j ∈ R0. Moreover, since θi(r) = σi(r),
then θi is a graded automorphism for each i. Note that zi has graded 1 in A, for all i.
Thus, A ∼= R[z1; θ1] · · · [zn; θn] is a graded iterated Ore extension.
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Let M be a B-module. The grade number of M is jB(M) := min{p | ExtpB(M,B) 6= 0}
or ∞ if no such p exists. Notice that jB(0) = +∞. When B is noetherian, jB(M) ≤
pdB(M), and if furthermore injdim(B) = q < ∞, we have jB(M) ≤ q for all non-zero
finitely generated B-module M (see [41]).

Definition 2.3.6. Let B be a filtered ring with filtration {Fn(B)}n∈Z. The Rees ring
associated to B is a graded ring defined by

B̃ :=
⊕

n∈Z

Fn(B).

The filtration {Fn(B)}n∈Z is left (right) Zariskian, and B is called a left (right) Zariski
ring, if F−1(B) ⊆ Rad(F0(B)) and the associated Rees ring B̃ is left (right) noetherian.

Li in [47] shows the following result regarding Zariski’s rings.

Proposition 2.3.7. Let B be a N-filtered ring such that Gr(B) is left (right) noetherian.
Then, B is left (right) Zariskian.

Definition 2.3.8 ([41], Definition 2.1). Let B be a noetherian ring.

(i) An B-module M satisfies the Auslander-condition if ∀p ≥ 0, jB(N) ≥ p for all
B-submodules N of ExtpB(M,B).

(ii) The ring B is said to be Auslander-Gorenstein of dimension q if injdim(B) = q < ∞,
and every left or right finitely generated B-module satisfies the Auslander-condition.

(iii) The ring B is said to be Auslander-regular of dimension q if gld(B) = q < ∞ and
every left or right finitely generated B-module satisfies the Auslander-condition.

(iv) Let B be an algebra; B is Cohen-Macaulay if GKdim(B) = jB(M)+GKdimB(M)
for every non-zero noetherian B-module M .

Proposition 2.3.9 ([15], Theorem 3.9). Let B be a left and right Zariski ring. If its asso-
ciated graded ring Gr(B) is Auslander-Gorenstein (respectively Auslander-regular), then B
is Auslander-Gorenstein (respectively Auslander-regular).

Proposition 2.3.10 ([21], Theorem 4.2). If B is Auslander-Gorenstein (Auslander-regular),
then the Ore extension B[x;σ, δ], with σ bijective, is also Auslander-Gorenstein (Auslander-
regular).

Proposition 2.3.11 ([46], Lemma 2.8). If A is a bijective skew PBW extension of a
noetherian ring R, then A is a left and right Zariski ring.

Proof. Since A is N-filtered, 0 = F−1(A) ⊆ Rad(F0(A)) = Rad(R). By Proposition 2.1.3,
Gr(A) is isomorphic to an iterated Ore extension R[z1; θ1] · · · [zn; θn], with θi bijective,
1 ≤ i ≤ n. Whence Gr(A) is noetherian. Proposition 2.3.7 says that A is a left and right
Zariski ring.

Proposition 2.3.12 ([46], Theorem 2.9). Let A be a bijective skew PBW extension of
a ring R such that R is Auslander-Gorenstein (respectively Auslander-regular), then A is
Auslander-Gorenstein (respectively Auslander-regular).



CHAPTER 2. GRADED SKEW PBW EXTENSIONS 32

Proof. According to Theorem 2.1.2 Gr(A) is a quasi-commutative bijective skew PBW
extension. By Proposition 2.1.3, Gr(A) is isomorphic to an iterated Ore extension

R[z1; θ1] · · · [zn; θn],

with θi is bijective, 1 ≤ i ≤ n. Proposition 2.3.10 says that Gr(A) is Auslander-Gorenstein
(respectively Auslander-regular). From Proposition 2.3.11, A is a left and right Zariski ring,
so by Proposition 2.3.9, A is Auslander-Gorenstein (respectively Auslander-regular).

A graded ring B has finite graded injective dimension q if BB and BB are both of
injective dimension q in the category of graded B-modules. Then, we write grinjdim(B) =
q. If M and N are graded B-modules, we use Homd

B(M,N) to denote the set of all B-
module homomorphisms h : M → N such that h(Mi) ⊆ Ni+d. We set HomB(M,N) =⊕

d∈Z Homd
B(M,N), and we denote the corresponding derived functors by ExtiB(M,N).

Given any graded B-module M , for the graded case, the grade number (j-number) of M
is j

B
(M) = min{p | ExtpB(M,B) 6= 0} or ∞ if no such p exists. In particular, if M = 0,

then j
B
(M) = 0. For finitely graded algebras, we have two additional remarks: Let B be

a finitely graded algebra and let M , N be Z-graded B-modules. Then there is a natural
inclusion HomB(M,N) →֒ HomB(M,N). If M is an B-module finitely generated, then
HomB(M,N) ∼= HomB(M,N) and ExtiB(M,N) ∼= ExtiB(M,N).

For the case of graded modules, in Definition 2.3.8, one can define the notion of a
graded-Auslander-Gorenstein ring, or graded-Auslander-regular ring.

Proposition 2.3.13. The noetherian graded ring B is Auslander-Gorenstein (resp. regu-
lar) if and only if B is graded Auslander-Gorenstein (resp. graded Auslander-regular).

Proof. See [41], Theorem 3.1.

Corollary 2.3.14. Let A be a graded skew PBW extension of an Auslander-Gorenstein
(respectively Auslander-regular) algebra R, then A is graded Auslander-Gorenstein (respec-
tively graded Auslander-regular).

Proof. As A is bijective, then from Proposition 2.3.12 we have that A is Auslander-
Gorenstein (respectively Auslander-regular). Since A is graded then by Proposition 2.3.13
we have that A is graded Auslander-Gorenstein (resp. graded Auslander-regular).

Proposition 2.3.15. Let B be a N-graded noetherian ring and let grgld(B) and grinjdim(B)
be a graded global dimension and graded injective dimension of B respectively. Then gld(B)
(resp. injdim(B)) is finite if and only if grgld(B) (resp. grinjdim(B)) is finite, in which
case these two numbers are equal.

Proof. See [41], Lemma 3.3.

Corollary 2.3.16. Let A be a graded skew PBW extension of a noetherian algebra R. If
gld(R) is finite, then grgld(A) is finite.

Proof. From Remark 2.3.2-(i) A is a N-graded algebra. Now, by Proposition 2.3.5-(i) A is
a graded noetherian algebra. As gld(R) is finite, by Proposition 2.1.8 we have that gld(A)
is finite. Then by 2.3.15 we have that grgld(A) is finite.
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When B is graded, one can define a graded Cohen-Macaulay property by taking M 6= 0
as a graded finitely generated B-module.

Remark 2.3.17. Let B be an algebra.

(i) If B is a graded right (left) noetherian algebra and B0 is finite dimensional, then B
is locally finite ([82], page 1).

(ii) ([82], Theorem 2.4) Every connected graded left (right) noetherian algebra with finite
global dimension has finite GK-dimension.

Proposition 2.3.18. Let A be a graded skew PBW extension of a connected left (right)
noetherian algebra R. Then

(i) A is locally finite.

(ii) If R has finite global dimension then A has finite GK-dimension.

Proof. From Proposition 2.3.5-(i), A is a graded left (right) noetherian algebra. Since R is
connected then by Remark 2.3.2-(ii) we have that A is connected, i.e., A0 = K.

(i) Since K is finite dimensional then from Remark 2.3.17-(i), A is locally finite.

(ii) If R has finite global dimension then by Corollary 2.3.16, A has finite graded global
dimension. Then by Remark 2.3.17-(ii) we have that A has finite GK-dimension.

Proposition 2.3.19 ([46], Proposition 3.5). Let B be a left and right Zariski ring with fi-
nite filtration and such that Gr(B) is Auslander-Gorenstein. If Gr(B) is Cohen-Macaulay,
then B is Cohen-Macaulay.

Proof. Let M be a noetherian B-module, then

GKdim(B) = GKdim(Gr(B)) = GKdim(Gr(B)Gr(M)) + jGr(B)(M)

= GKdim(BM) + jB(M).

Therefore B is Cohen-Macaulay.

Proposition 2.3.20. Suppose that R is Auslander-regular (Auslander-Gorenstein) and
Cohen-Macaulay ring. Let B = R[x;σ, δ] be an Ore extension with σ bijective. If R =⊕

i≥0Ri is a connected graded algebra such that σ(Ri) ⊆ Ri for each i ≥ 0, i.e. σ is
graded. Then B is Cohen-Macaulay.

Proof. See [42], Lemma-(ii), page 184.

Proposition 2.3.21 ([46], Theorem 3.9). Let A be a bijective skew PBW extension of
a ring R such that R is Auslander-Gorenstein, Cohen-Macaulay, and R =

⊕
i≥0 Ri is a

connected graded algebra such that σj(Ri) ⊆ Ri for each i ≥ 0 and 1 ≤ j ≤ n, then A is
Cohen-Macaulay.
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Proof. From Theorem 2.1.2 we have that A is an algebra with a finite filtration and Gr(A) is
a quasi-commutative skew PBW extensions, and by the hypothesis, Gr(A) is also bijective.
By Proposition 2.1.3, Gr(A) is isomorphic to an iterated Ore extension R[z1; θ1] · · · [zn; θn]
such that each θi is bijective, 1 ≤ i ≤ n. Proposition 2.3.10 says that Gr(A) is Auslander-
Gorenstein. From Proposition 2.3.11, A is a left and right Zariski ring, and by Proposition
2.3.20 Gr(A) is Cohen-Macaulay, so by Proposition 2.3.19 A is Cohen-Macaulay.

Theorem 2.3.22. Let A = σ(R)〈x1, . . . , xn〉 be a graded skew PBW extension of a con-
nected algebra R. If R is graded Auslander-Gorenstein and graded Cohen-Macaulay then
A is graded Cohen-Macaulay.

Proof. Since A is bijective, R is a N-graded algebra, connected and each σi is graded, i.e.,
σi(Rm) ⊆ Rm for each m ≥ 0 and 1 ≤ i ≤ n, then by Proposition 2.3.21 we have that A
is graded Cohen-Macaulay.



CHAPTER 3

Koszulity for skew PBW extensions

Koszul algebras were first introduced by Priddy in [63] under the name of homogeneous
Koszul algebras and have revealed important applications in algebraic geometry, Lie theory,
quantum groups, algebraic topology and combinatorics. The structure and history of
Koszul algebras are detailed in [62]. Backelin and Fröberg in [7] show several equivalent
definitions of Koszul algebras. Later they emerged some general notions of Koszul algebras
(or Koszul rings), for example in [8], a Koszul ring is a positively graded ring B = ⊕j≥0Bj

such that B0 is semisimple and B0, considered as a graded left B-module, admits a graded
projective resolution

· · · → Pn → · · · → P1 → P0 ։ B0

such that Pi is generated by its degree i component, i.e., Pi = B(Pi)i. Many interesting
algebras with similar properties to a Koszul algebra do not satisfy that B0 is semisimple,
there do already exist several generalized Koszul theories where the degree 0 part B0 of
a graded algebra B is not required to be semisimple, see [30], [49], [53], [91]. Let B be
a graded algebra, Li in [49] develops a generalized Koszul theory by assuming that B0

is self-injective instead of semisimple and generalize many classical results. Each Koszul
ring B defined by Woodcock in [91] is supposed to satisfy that B is both a left projective
B0-module and a right projective B0-module. This requirement is too strong. In [49]
define generalized Koszul modules and Koszul algebras in a similar way to the classical
case, that is, a graded B-module M is Koszul if M has a linear projective resolution, and
B is a Koszul algebra if B0 viewed as a graded B-module is Koszul. More precisely (see
[49], Definition 2.4), a locally finite graded B-module M generated in degree 0 (we say
M = ⊕i∈ZMi is generated in degree s if M = B ·Ms) is called a Koszul module if it has a
(minimal) projective resolution

· · · → Pn → · · · → P1 → P0 → M → 0

such that Pi is generated in degree i for all i ≥ 0.

Let B be a generalized Koszul algebra over a finite dimensional algebra S. He, Van
Oystaeyen and Zhang in [35] construct a bimodule Koszul resolution of B when the projec-
tive dimension of SB equals 2. Using this they prove a Poincaré-Birkhoff-Witt (PBW) type
theorem for a deformation of a generalized Koszul algebra. When the projective dimension

35
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of SB is greater than 2, they construct bimodule Koszul resolutions for generalized smash
product algebras obtained from braiding between finite dimensional algebras and Koszul
algebras, and then prove the PBW type theorem. The results obtained can be applied to
standard Koszul Artin-Schelter Gorenstein algebras in the sense of Minamoto and Mori in
[57].

On the other hand, Koszul algebras attracted the interest of those studying noncommu-
tative algebraic geometry because some of the Artin-Schelter regular algebras (introduced
in [3]) are Koszul. Koszul algebras must always be quadratic. There have been some at-
tempts to generalize Koszulity to connected graded algebras with non quadratic relations.
Hoping to capture more of the Artin-Schelter regular algebras, Berger introduced N -Koszul
algebras in [10]. These algebras are N -homogeneous, that is, their ideal of relations may be
generated by degree N homogeneous elements, where N is an integer ≥ 2. The 2-Koszul
algebras are exactly the Koszul algebras. The term N -Koszul as used by Berger, is different
than the sense of the term seen in [62]. Green, Marcos, Martinez and Zhang in [29] study
d-Koszul algebras: Let B = B0+B1+B2+ · · · be a graded K-algebra generated in degrees
0 and 1 where K is a commutative noetherian ring. Assume that B0 is a finitely generated
semisimple K-algebra, B1 is a finitely generated K-module and that

· · · → Pi → Pi−1 → · · · → P0 → B0 → 0,

is a minimal graded B-projective resolution of B0. B is a d-Koszul algebra if, for each
i ≥ 0, Pi can be generated in exactly one degree, δ(i), and

δ(i) =

{
i
2d, if i is even;
i−1
2 d+ 1, if i is odd.

By assumption that B is generated in degrees 0 and 1, B is a quotient of the tensor algebra
TB0(B) = B0 + (B1 ⊗B0 B1) + (⊗3

B0
B1) + · · · . If B = TB0(B1)/I is a d-Koszul algebra,

then I is finitely generated and can be generated by elements in ⊗d
B0

B1 since P2 can be
generated in degree d. Furthermore, the finiteness assumptions on B0 and B1 and that K
is noetherian imply that each Pn is finitely generated. We note that if d = 2, then B is
a Koszul algebra since B0 has linear projective resolution. For d ≥ 3, B is not a Koszul
algebra (see [29], page 147).

Cassidy and Shelton introduced K2 algebras in [19], this class of algebras contains all
the N -Koszul algebras and the Koszul algebras, but also admits algebras whose ideals of
relations are generated by homogeneous elements in different degrees (see [60]).

Since Priddy in [63] defined homogeneous Koszul algebras and Koszul algebras, from
now on in this thesis Koszul algebras, defined by Priddy, will be called nonhomogeneous
Koszul and the homogeneous Koszul algebras will be simply called Koszul. In the first
section, we study the nonhomogeneous Koszul property and the Koszul property for skew
PBW extensions over fields. In the second section, we study the Koszul property for
graded skew PBW extensions using PBW algebras and the Backelin’s criterion in terms of
distributivity of lattices. The main results are Corollary 3.1.14, Theorem 3.1.15, Example
3.1.17, Example 3.1.18, Proposition 3.1.26, Theorem 3.2.5, Corollary 3.2.7, Example 3.2.8,
Remark 3.2.9, and Theorem 3.2.17.
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3.1 Koszulity for skew PBW extensions over fields

Some authors have studied nonhomogeneous Koszul algebras. For example, nonhomo-
geneous Koszul algebras are defined in [62], analogous to Definition 3.1.9 below: Let
L = K〈x1, . . . , xn〉 the free associative algebra (tensor algebra) in n generators x1, . . . , xn,
let P ⊆ K

⊕
L1

⊕
L2 be a subspace of F2(L) and B = L/〈P 〉, where 〈P 〉 is the two-sided

ideal of L generated by P ; let B(0) = L/〈R〉, where R is obtained by taking homogeneous
part of P (i.e., R = π(P ), where π : L ։ L2 is the projection onto the quadratic part of
the free algebra L). B is said to be nonhomogeneous Koszul if B(0) is Koszul (see [62], page
140). In [52] nonhomogeneous Koszul algebras are defined as follows: Let V a graded vec-
tor space and a degree homogeneous subspace P ⊆ V

⊕
V ⊗2, the algebra B = T (V )/〈P 〉

is called nonhomogeneous Koszul if P ∩ V = {0}, {P ⊗ V + V ⊗P} ∩ V ⊗2 ⊆ P ∩ V ⊗2 and
T (V )/〈π(P )〉 is Koszul, where π : T (V ) ։ V ⊗2 is the projection onto the quadratic part
of the tensor algebra. Berger in [10] defined the notion of N -Koszul algebra, for N ≥ 2. If
N = 2, the notion of Koszul algebra is obtained. In this section we study the nonhomoge-
neous Koszul property and Koszul property for skew PBW extensions over fields, taking
int account the definitions given in [63]. The results of this section were published in [88].

Let B be an algebra; if B is finitely generated and N-graded, then B is generated
by a finite set of homogeneous elements and from this we can conclude that a positively
graded algebra B is finitely generated if and only if there is a degree preserving surjective
ring homomorphism K〈x1, . . . , xn〉 → B for some free algebra K〈x1, . . . , xn〉 with some
weighting of the variables, and thus B ∼= K〈x1, . . . , xn〉/I for some homogeneous ideal I.

3.1.1 Pre-Koszul algebras

We present a definition of nonhomogeneous pre-Koszul and pre-Koszul algebras, analogous
to the definition given by Priddy in [63].

Definition 3.1.1. Let I be a proper two sided ideal of L = K〈x1, . . . , xn〉 and let B := L/I.

(i) B is said to be a nonhomogeneous pre-Koszul algebra if I is a two sided ideal generated
by elements of the form

n∑

i=1

cixi +
∑

1≤j,k≤n

cj,kxjxk, where ci and cj,k are in K. (3.1.1)

(ii) A nonhomogeneous pre-Koszul algebra is said to be pre-Koszul if ci = 0, for 1 ≤ i ≤ n
in (3.1.1).

Presentations of special types of skew PBW extensions are given in the following re-
mark.

Remark 3.1.2. Let A = σ(K)〈x1, . . . , xn〉 be a skew PBW extension of K.

1. We note that A = K〈x1, . . . , xn〉/I, where I is the two sided ideal generated by
elements as in (iii) and (iv) of the Definition 1.1.1, i.e., elements of the form

cr + xir − ci,rxi, r0 + r1x1 + · · ·+ rnxn + xjxi − ci,jxixj, (3.1.2)
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where r 6= 0, cr, ci,r 6= 0, r0, r1, . . . , rn, ci,j 6= 0 are elements in K, with 1 ≤ i, j ≤ n.

2. If A is pre-commutative, then A = K〈x1, . . . , xn〉/I, where I is the two sided ideal
generated by elements of the form

cr + xir − ci,rxi, r1x1 + · · · + rnxn + xjxi − ci,jxixj, (3.1.3)

where r 6= 0, cr, ci,r 6= 0, r1, . . . , rn, ci,j 6= 0 are elements in K, with 1 ≤ i, j ≤ n.

3. If A is constant, then A = K〈x1, . . . , xn〉/I, where I is the two sided ideal generated
by elements of the form

r0 + r1x1 + · · ·+ rnxn + xjxi − ci,jxixj , (3.1.4)

where r0, r1, . . . , rn, ci,j 6= 0 are elements in K, with 1 ≤ i, j ≤ n.

4. If A is quasi-commutative then A = K〈x1, . . . , xn〉/I, where I is the two sided ideal
generated by elements as in (iii′) and (iv′) of the Definition 1.1.5, i.e., elements of
the form

xir − ci,rxi, xjxi − ci,jxixj (3.1.5)

where r 6= 0, ci,r 6= 0, ci,j 6= 0 are elements in K, with 1 ≤ i, j ≤ n.

5. If A is semi-commutative then A = K〈x1, . . . , xn〉/I, where I is the two sided ideal
generated by elements of the form

xjxi − ci,jxixj (3.1.6)

where ci,j 6= 0 are elements in K, with 1 ≤ i, j ≤ n.

If otherwise is not assumed, in this section all skew PBW extensions are algebras and
extensions of K (i.e., R = K in Definition 1.1.1), so A = σ(K)〈x1 . . . , xn〉 is necessarily a
constant skew PBW extension.

Proposition 3.1.3. Let A be a skew PBW extension. If A is pre-commutative then A is
nonhomogeneous pre-Koszul.

Proof. From (3.1.3) and (3.1.4) we have that A = K〈x1, . . . , xn〉/I, where I is the two
sided ideal generated by elements of the form

r1x1 + · · ·+ rnxn + xjxi − ci,jxixj . (3.1.7)

Then we conclude that A is nonhomogeneous pre-Koszul.

Proposition 3.1.4. Let A be a skew PBW extension. If A is semi-commutative then A is
pre-Koszul.

Proof. Since semi-commutative skew PBW extensions are quasi-commutative, and quasi-
commutative skew PBW extensions of K are pre-commutative, then from (3.1.6) and
Proposition 3.1.3 we get that A is pre-Koszul.
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Let B be a nonhomogeneous pre-Koszul algebra. One can truncate the relations in
(3.1.1) leaving only their homogeneous quadratic parts. Let B(0) be the obtained algebra.
Then B(0) is called the associated pre-Koszul algebra of B. Note that B is homogeneous if
and only if B(0) ∼= B as algebras.

Proposition 3.1.5. Let A be a pre-commutative skew PBW extension, then Aσ is the
associated pre-Koszul algebra of A.

Proof. From Proposition 3.1.3 we have that A is a nonhomogeneous pre-Koszul algebra.
By (3.1.3), A = K〈x1, . . . , xn〉/I where I is the two sided ideal generated by elements of the
form cr+xir−ci,rxi, r1x1+· · ·+rnxn+xjxi−ci,jxixj , with r 6= 0, cr, ci,r 6= 0, r1, . . . , rn,
ci,j 6= 0 elements in K, 1 ≤ i, j ≤ n. Since A is constant then A = K〈x1, . . . , xn〉/I, where I
is the two sided ideal generated by elements of the form r1x1+ · · ·+ rnxn+xjxi− ci,jxixj.
Then A(0) = K〈x1, . . . , xn〉/J , where J is the two sided ideal generated by elements of
the form xjxi − ci,jxixj, where ci,j 6= 0 are elements in K, with 1 ≤ i, j ≤ n. Now,
by Proposition 2.1.1 there exists a quasi-commutative skew PBW extension Aσ of K in
n variables z1, . . . , zn defined by the relations zir = ci,rzi, zjzi = ci,jzizj , for 1 ≤ i ≤ n,
where ci,r, ci,j are the same constants that define A. Since A is constant, then Aσ is defined
by the relations zjzi = ci,jzizj , with ci,j ∈ K\{0}, 1 ≤ i, j ≤ n. Without loss of generality,
we can assume that xi = zi, for 1 ≤ i ≤ n. Then,

Aσ = K〈x1, . . . , xn〉/〈xjxi − ci,jxixj | ci,j ∈ K \ {0}, 1 ≤ i, j ≤ n〉 = A(0).

3.1.2 Koszul algebras and skew PBW extensions

We start this subsection with some homological constructions that will be used in the
definitions and results presented below. If B is an augmented algebra with augmentation
ideal B+, then for every left B-module M we have the following resolution by free B-
modules, called the normalized bar-resolution (see [62]).

B̃ar�(B,M) :

· · · → B ⊗B⊗i+1
+ ⊗M → B ⊗B⊗i

+ ⊗M → · · · → B ⊗B+ ⊗M → B ⊗M → 0, (3.1.8)

where
B̃ari(B,M) := B ⊗B⊗i

+ ⊗M (3.1.9)

and the differential is given by

∂(a0 ⊗ · · · ⊗ ai ⊗m) :=

i∑

s=1

(−1)sa0 ⊗ · · · ⊗ as−1as ⊗ · · · ⊗ ai ⊗m

+ (−1)i+1a0 ⊗ · · · ⊗ ai−1 ⊗ aim. (3.1.10)

We can view B̃ari(B,M) as a B-module by letting B act on the left. Since B⊗i
+ ⊗M is

a B-module, then in particular, this is a K-space, therefore it has a base. Then, tensoring
with B, we obtain that each B ⊗ B⊗i

+ ⊗M in (3.1.9) is a free B-module. Since we have
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the canonical homomorphism B ⊗M → M , defined by b⊗m 7→ bm, B̃ar�(B,M) is a free
resolution of M . Then,

ExtiB(M,N) = H i(HomB(B̃ar�(B,M), N)). (3.1.11)

In fact, the cobar-complex is

COB�(B,M,N) := HomB(B̃ar�(B,M), N), (3.1.12)

so, ExtiB(M,N) can be computed as the i-th cohomology of the cobar-complex. Note that

COBi(B,M,N) = HomB(B ⊗B⊗i
+ ⊗M,N) ∼= HomK(B

⊗i
+ ⊗M,N). (3.1.13)

There is a similar construction of (3.1.8) for non-augmented algebra B, with B+ replace
by B everywhere, called the non-normalized bar-resolution.

Let B be a graded algebra and M , N two graded B-modules. The graded cobar-complex
is:

Cob�(B,M,N) := HomB(B̃ar�(B,M), N)) ∼= HomK(B
⊗�

+ ⊗M,N). (3.1.14)

This identification is compatible with internal gradings.
As in (3.1.11), we can compute these spaces using the graded cobar-complex:

ExtiB(M,N) = H i(Cob�(B,M,N)). (3.1.15)

For an algebra B, a right B-module R, and a left B-module L, we denote by TorBi (R,L)
the derived functor of the tensor product over B, so that TorB0 (R,L) = R⊗B L. If B is a
graded algebra and the modules R and L are graded then the spaces TorBi (R,L) acquire
the corresponding internal graduation induced by the grading of

TorBi (R,L) =
⊕

j∈Z

TorBi,j(R,L). (3.1.16)

So, TorB0,j(R,L) = (R⊗B L)j is spanned by elements x⊗ y where x ∈ Rs and y ∈ Lj−s.

The bar-complex is defined as

Bar�(R,B,L) := R⊗B B̃ar�(B,L). (3.1.17)

We can compute the spaces TorBi (R,L) as homology of the bar-complex:

TorBi (R,L) = Hi(Bar�(R,B,L)) = Hi(R ⊗B B̃ar�(B,L)). (3.1.18)

For a vector space V , let V ∨ := HomK(V,K). There is a duality between bar and cobar-
complexes

COB�(B,M,R∨) = Bar�(R,B,M)∨, (3.1.19)

where the left-hand side we use the natural structure of a left B-module on R∨. This leads
to the corresponding duality between homology:
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ExtiB(M,R∨) = TorBi (R,M)∨ (3.1.20)

In the graded case we have a similar duality using graded duals:

Cob�(B,M,R∗) = Bar�(R,B,M)∗. So, Exti,jB (M,R∗) = TorBi,j(R,M)∗, (3.1.21)

where R∗ is graded by (R∗)s = (R−s)
∗.

A particular case of duality (3.1.21) is

Exti,jB (M,K) = TorBi,j(K,M)∗. (3.1.22)

We denote the relevant bar and cobar-complex by

Bar�(B,M) = Bar�(K, B,M); Cob�(B,M) = Cob�(B,M,K) = Bar�(B,M)∗.

For M = K we have: Bar�(B) = Bar�(B,K) and Cob�(B) = Cob�(B,K) = Bar�(B)∗,

where Bari(B) = B⊗i
+ .

Let B be a finitely graded algebra generated in degree 1; consider the Yoneda algebra
of B defined by

E(B) :=
⊕

i≥0 ExtiB(K,K);

the Ext groups here are computed in the category of graded B-modules with graded Hom

spaces; the product in E(B) is defined in the following way: Let {Pi
di−→ Pi−1}i≥0 be a

graded projective resolution of K that defines the groups ExtiB(K,K), with P−1 := K;
moreover, let f ∈ ExtiB(K,K) = ker(d∗i+1)/Imd∗i with f ∈ ker(d∗i+1) ⊆ HomB(Pi,K) and

g ∈ ExtjB(K,K) = ker(d∗j+1)/Imd∗j with g ∈ ker(d∗j+1) ⊆ HomB(Pj ,K), then we define

ExtiB(K,K)× ExtjB(K,K) → Exti+j
B (K,K)

(f , g) 7→ f g := fg′,

where g′ : Pi+j → Pi is defined inductively by the following commutative diagrams:

Pj

P0 K

♣

♣

♣

♣

♣

♣

♣

✠

g0

❄

g

✲

d0

⇒

Pj+1

P1 Im(d1)

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

✠

g1

❄

g0dj+1

✲

d1

⇒ · · · ⇒

Pj+i

Pi Im(di)

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

✠

g′:=gi

❄

gi−1dj+i

✲

di

Can be proved that this product is well defined, i.e., it does not depend of the projective
resolution of K and the choosing of g0, g1, . . . , gi−1, gi; moreover, fg′ ∈ ker(d∗i+j+1): In fact,
from the step i+ 1 in the previous inductive procedure we have that di+1gi+1 = gidi+j+1,
so fdi+1gi+1 = fgidi+j+1, i.e., 0 = d∗i+1(f)gi+1 = d∗i+j+1(fgi).

Thus, E(B) is a graded algebra; note that the vector space ExtiB(K,K) is graded
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ExtiB(K,K) =
⊕

j≥0Exti,jB (K,K),

with

Exti,jB (K,K) := (ExtiB(K,K))−j := ExtiB(K,K(−j)),

so setting Ei,j(B) := Exti,jB (K,K) we get that

E(B) =
⊕

i,j≥0E
i,j(B)

is a bigraded algebra. For i ≥ 0, we write

Ei(B) :=
⊕

j≥0E
i,j(B);

in particular,

E0(B) =
⊕

j≥0Homj
B(K,K) =

⊕
j≥0(HomB(K,K))−j =

⊕
j≥0HomB(K,K(−j)),

with HomB(K,K(−j)) := {f ∈ HomB(K,K)|f(Kl) ⊆ Kl−j, l ∈ Z}.

In [62], Chapter 1, Lemma 4.1 is presented the following property of noncommutative
graded algebras.

Lemma 3.1.6. Let B be a locally finite algebra and M a locally finite B-module. Then a
graded vector subspace X ⊆ M generates M as an B-module if and only if the composition
X → M → K⊗B M is surjective.

Proof. X generates M if and only if the natural morphism f : B ⊗X → M is surjective.
It is clear that this implies surjectivity of the map f̄ : X → K ⊗B M . Conversely, assume
that f̄ is surjective and let us show that f is surjective. We can argue by induction in
n that the degree n component fn is surjective. This is true for n ≪ 0. Assume that
fn is surjective for all i < n. Given an element m ∈ Mn there exists x ∈ Xn such that
m− x ∈ B+. Hence, by the assumption m− x belongs to the image of f , so m is also in
the image of f .

It follows immediately from the above lemma that inside any generating subspace X ⊆
M one can find a smaller generating subspace X ′ ⊆ X such that the map X ′ → K⊗B M
is an isomorphism.

Let B be a locally finite algebra and M a locally finite B-module. A bounded above
complex of free graded B-modules

· · · → Pn+1 → Pn → · · · → P1 → P0 → 0 (3.1.23)

is called minimal if all the induced maps K⊗B Pi+1 → K⊗B Pi vanish (see [62], page 8).
A resolution

· · · → Pn+1 → Pn → · · · → P1 → P0 → M → 0 (3.1.24)
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of a graded B-module M by free graded B-modules is called a linear free resolution if each
Pi is generated in degree i (see [62], page 9). A complex

· · · → Pn+1
dn+1
−−−→ Pn

dn−→ Pn−1
dn−1
−−−→ · · ·

of modules over an augmented algebra B with augmentation ideal B+ is minimal if, for
each n, ker(dn) ⊆ B+Pn (See [80]).

Remark 3.1.7 (See [62]). Let M be a locally finite B-module of a locally finite algebra
B.

(i) For M , one can construct a minimal free graded B-module resolution of M in the
following way. Using Lemma 3.1.6 choose a generating subspace X0 ⊆ M such
that X0

∼= K ⊗B M . Consider the corresponding morphism B ⊗ X0 → M and
let M1 ⊆ B ⊗ X0 be its kernel. Choose a generating subspace X1 ⊆ M1 such that
X1

∼= K⊗BM1. It is easy to see that continuing in this manner we will find a minimal
resolution of M consisting of the modules Pi = B⊗Xi. Since any two free resolutions
of the same module M are connected by a chain map inducing the identity on M , it
follows that a minimal resolution is unique up to a nonunique isomorphism.

(ii) A linear free resolution can be written in the form

· · · → V2 ⊗B(−2) → V1 ⊗B(−1) → V0 ⊗B → M → 0,

where Vi are vector spaces (of degree zero).

(iii) Linear free resolutions are minimal.

(iv) M admits a linear free resolution if and only if TorBi,j(K,M) = 0, for i 6= j, if and

only if Exti,jB (M,K) = 0, for i 6= j.

(v) If a module M admits a linear free resolution then it is unique up to unique isomor-
phism. Indeed, since Pi is generated in degree i, it follows that an endomorphism of
P� is determined by its action on K⊗B P�, i.e., on the spaces TorBi (K,M). But this
action is trivial for any endomorphism of P� inducing the identity on M .

(vi) B is one-generated if and only if Ext1,jB (K,K) = 0 for j > 1. B is quadratic if and
only if Exti,jB (K,K) = 0 for j > i and i = 1, 2 (see [62], Chapter 1 - Corollary 5.3).

Definition 3.1.8. A locally finite pre-Koszul algebra B is called Koszul if the following
equivalent conditions hold:

(i) Exti,jB (K,K) = 0 for i 6= j;

(ii) B is one-generated and Ext∗B(K,K) is generated by Ext1B(K,K);

(iii) The module K admits a linear free resolution.

Definition 3.1.9 ([63], page 43). We say that a nonhomogeneous pre-Koszul algebra B
is a nonhomogeneous Koszul algebra if B(0) is a Koszul algebra.
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Remark 3.1.10. Notice that if B is Koszul algebra then B is nonhomogeneous Koszul.
Indeed, as B is homogeneous then B(0) ∼= B as algebras and so B(0) is Koszul, therefore
B is nonhomogeneous Koszul.

Let B = K〈x1, . . . , xn〉/〈R〉 be a quadratic algebra with a fixed set of generators
{x1, . . . , xn}. For a multi-index α := (i1, . . . , im), where 1 ≤ ik ≤ n, we denote the
monomials xα := xi1xi2 · · · xim ∈ K〈x1, . . . , xn〉. For α = ∅ we set x∅ := 1. Let us consider
the lexicographical order on the set of multiindices of length m: (i1, . . . , im) < (j1, . . . , jm)
if and only if there exists k such that i1 = j1, . . . , ik−1 = jk−1 and ik < jk. Now let us equip
the subspace L2 with the basis consisting of the monomials xi1xi2 . Let S(1) := {1, 2, . . . , n},
S(1) × S(1) the cartesian product, then for R ⊆ L2 we obtain the set S ⊆ S(1) × S(1) of
pairs of indices (l,m) for which the class of xlxm in L2/R is not in the span of the classes
of xrxs with (r, s) < (l,m), where < denotes the lexicographical order ([62], 4.1-Lemma
1.1). Hence, the relations in B can be written in the following form:

xixj =
∑

(r,s)<(i,j)
(r,s)∈S

crsij xrxs, (i, j) ∈ S(1) × S(1) \ S.

Define further S(0) := {∅}, and for m ≥ 2,

S(m) :=
{
(i1, . . . , im) | (ik, ik+1) ∈ S, k = 1, . . . ,m− 1

}

and consider the monomials {xi1 · · · xim ∈ Bm | (i1, . . . , im) ∈ S(m)}. Note that these
monomials always span Bm as a vector space and the monomials

(B,S) :=
{
xi1 · · · xim | (i1, . . . , im) ∈

⋃

m≥0

S(m)
}

(3.1.25)

linearly span the entire B.

Definition 3.1.11. With the above notation, we call (B,S) in (3.1.25) a PBW-basis of B
if they are linearly independent and hence form a K-linear basis. The elements x1, . . . , xn
are called PBW-generators of B. A PBW algebra is a quadratic algebra admitting a PBW-
basis, i.e., there exists a permutation of x1, . . . , xn such that the standard monomials in
x1, . . . , xn conforms a K-basis of B.

Proposition 3.1.12. Let A be a semi-commutative skew PBW extension. Then A is a
PBW algebra.

Proof. If A = σ(K)〈x1, . . . , xn〉 is a semi-commutative skew PBW extension, then
A = K〈x1, . . . , xn〉/〈xjxi − ci,jxixj〉 (as in (3.1.6)) is a quadratic algebra with genera-
tors x1, . . . , xn and relations xjxi − ci,jxixj , ci,j ∈ K \ {0}, 1 ≤ i, j ≤ n. Using the
above notation we have that for 1 ≤ i ≤ j ≤ n, the class of xixj is not in the span
of the classes of xrxs with (r, s) < (i, j), but, the class of xjxi is in the span of the
class of xixj with (i, j) < (j, i). Therefore S = {(i, j) | 1 ≤ i ≤ j ≤ n} = S(2) and
S(m) = {(i1, . . . , im) | i1 ≤ i2 ≤ · · · ≤ im, 1 ≤ ik ≤ n} for m ≥ 3. Then

(A,S) =
{
xm1
1 · · · xmn

n | m1, . . . ,mn ≥ 0
}
= Mon(A) :=

{
xα1
1 · · · xαn

n | (α1, . . . , αn) ∈ Nn
}
.



CHAPTER 3. KOSZULITY FOR SKEW PBW EXTENSIONS 45

By Definition 1.1.1-(ii), Mon(A) is a K-basis for A and therefore A is a PBW algebra.

Theorem 3.1.13 ([62], Chapter 4 - Theorem 3.1 ). If B is a PBW algebra then B is a
Koszul algebra.

Proof. Let (B,S) :=
{
xi1 · · · xim | (i1, . . . , im) ∈

⋃
m≥0 S

(m)
}

be a PBW-basis with PBW-
generator x1, . . . , xn. Define a multiindex-valued filtration on the algebra B by the rule
Fα(Bm) = 〈Xβ | β ≤ α〉, where length α = m. Since the elements (x1, . . . , xn) generate a
PBW-basis of B, the associated graded algebra Gr(B) =

⊕
α Fα/Fα′ (where α′ precedes α

in the multiindex order, Fα = Fα(Bm)) is quadratic. Thus, Gr(B) is a quadratic monomial
algebra. As a monomial quadratic algebra is Koszul (see [62], Chapter 2 - Corollary 4.3)

then Gr(B) is Koszul. Then, from Remark 3.1.7-(iv), TorGr(B)
i,j (K,K) = 0 for i 6= j. Thus,

the same is true for TorBi,j(K,K) (see [62], Chapter 4, proof of Theorem 7.1). By Remark
3.1.7-(iv), we have that ExtBi,j(K,K) = 0 for i 6= j. Then B is Koszul.

Corollary 3.1.14. Every semi-commutative skew PBW extension is a Koszul algebra.

Proof. Let A = σ(K)〈x1, . . . , xn〉 be a skew PBW extension. From Definition 1.1.1-(ii),
A is a left free K-module with basis the set of standard monomials Mon(A) := {xα :=
xα1
1 · · · xαn

n | α = (α1, . . . , αn) ∈ Nn}. Therefore, if A is semi-commutative then A is
locally finite. Now, by Proposition 3.1.12 we have that A is a PBW algebra. Theorem
3.1.13 says that A is a Koszul algebra.

Theorem 3.1.15. Every pre-commutative skew PBW extension is a nonhomogeneous
Koszul algebra.

Proof. If A is a pre-commutative skew PBW extension then A = K〈x1, . . . , xn〉/I, where
I is the two-sided ideal generated by relations of the form

xjxi − ci,jxixj +
n∑

t=1

ktxt,

ci,j ∈ K \ {0}, kt ∈ K, 1 ≤ i, j, t ≤ n (Remark 3.1.2). By Proposition 3.1.3, A is nonhomo-
geneous pre-Koszul, therefore from Proposition 3.1.5, A(0) = Aσ = K〈x1, . . . , xn〉/〈xjxi −
ci,jxixj〉 is the associated pre-Koszul algebra of A. Note that Aσ is semi-commutative, so by
Corollary 3.1.14, A(0) is a Koszul algebra, i.e., A is a nonhomogeneous Koszul algebra.

Corollary 3.1.16. If A is a pre-commutative skew PBW extension then Gr(A) is Koszul.

Examples 3.1.17. Next we present some examples of Koszul skew PBW extensions. For
this purpose we use Corollary 3.1.14 and the classification given in the Table 1.1, Table
1.2 and Table 1.4.

1. Classical polynomial ring over K (Example 1.2.1).

2. Particular Sklyanin algebra (Example 1.2.5).

3. Multiplicative analogue of the Weyl algebras (Example 1.2.20).
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4. Multi-parameter quantum affine n-space (Example 1.2.31).

5. The 3-dimensional skew polynomial algebra with |{α, β, γ}| = 3.

6. The Sridharan enveloping algebra of 3-dimensional Lie algebra with [x, y] = [y, z] =
[z, x] = 0.

Examples 3.1.18. Recall that every Koszul algebra is nonhomogeneous Koszul (Remark
3.1.10), so Examples 3.1.17 are nonhomogeneous Koszul skew PBW extensions. According
to Theorem 3.1.15 and the classification given in Table 1.1, Table 1.2 and Table 1.4, the
next skew PBW extensions are other examples of nonhomogeneous Koszul algebras.

1. Universal enveloping algebra of a Lie algebras (Example 1.2.6).

2. Additive analogue of the Weyl algebras (Example 1.2.19).

3. Quantum algebras U ′(so(3,K)) (Example 1.2.21).

4. Dispin algebra (Example 1.2.22).

5. Woronowicz algebra (Example 1.2.23).

6. q-Heisenberg algebra (Example 1.2.28).

7. Nine types 3-dimensional skew polynomial algebras: (a); (b) items (i), (iii), (v), (vi);
(e) items (i), (ii), (iv), (v) (Subsection 1.2.3).

8. Six types of Sridharan enveloping algebra of 3-dimensional Lie algebras (Subsection
1.2.4):

Type [x, y] [y, z] [z, x]
1 0 0 0
2 0 x 0
3 x 0 0
4 0 αy −x
5 0 y −(x+ y)
6 z −2y −2x

Note that some particular classes of skew PBW extensions in Example 3.1.17 and
Example 3.1.18 represent the same algebra. For example Sridharan enveloping algebra of
3-dimensional Lie algebra of type 1 and the classical polynomial ring K[x, y, z] are the same
algebra.

3.1.3 PBW deformations

Let L = K〈x1, . . . , xn〉 be the free associative algebra (tensor algebra) in n generators
x1, . . . , xn. Fix a subspace P ⊆ F2(L) = K

⊕
L1

⊕
L2, and let us consider the two-sided

ideal 〈P 〉 in L generated by P . Let B = L/〈P 〉 be a nonhomogeneous quadratic algebra.
It inherits a filtration B0 ⊆ B1 ⊆ · · ·Bn ⊆ · · · from L, let Gr(B) the associated graded
algebra. Consider the natural projection π : F2(L) → L2 on the homogeneous component,
set R = π(P ) and consider the quadratic algebra L/〈R〉. L/〈R〉 is called the homogeneous
version (or the induced quadratic) algebra of B determined by P . We have the natural
epimorphism p : L/〈R〉 → Gr(B) (induced by the projection L → B).
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Definition 3.1.19 ([17], page 316). With the above notation, a nonhomogeneous quadratic
algebra B := L/〈P 〉 is a Poincaré-Birkhoff-Witt (PBW) deformation (or satisfies the PBW
property with respect to the subspace P of F2(L)) of C := L/〈R〉 if the natural projection
p : C → Gr(B) is an isomorphism.

Proposition 3.1.20 ([52], Theorem 3.6.4). Let B = L/〈P 〉 with P ⊆ L1
⊕

L2, P ∩ L1 =
{0} and {P ⊗ L1 + L1 ⊗ P} ∩ L2 ⊆ P ∩ L2. If B is nonhomogeneous Koszul, then the
epimorphism p: L/〈R〉 → Gr(B) is an isomorphism of graded algebras, i.e., B is a PBW
deformation of C = L/〈R〉.

Corollary 3.1.21 ([52], Corollary 3.6.5). Let B = L/〈P 〉, with P ⊆ L1
⊕

L2. If C =
L/〈R〉 is Koszul, then:

1. P ∩ L1 = {0} ⇔ 〈P 〉 ∩ L1 = {0},

2. {P ⊗ L1 + L1 ⊗ P} ∩ L2 ⊆ P ∩ L2 ⇔ 〈P 〉 ∩ {L1
⊕

L2} = P .

Let f ∈ L and let hh(f) the highest homogeneous part of f in the graded alge-
bra L, i.e., if f =

∑m
i=1 fi with each fi in Li and fm nonzero, hh(f) = fm. Now if

W ⊆ L, hh(W ) = {hh(f) : f ∈ W}. Therefore the homogeneous version of B = L/〈P 〉
is L/〈hh(P )〉. Note that the associated graded algebra may be realized concretely by
projecting each element in the ideal I = 〈P 〉 onto its highest homogeneous part, i.e.
Gr(B) = Gr

(
L/〈P 〉

)
∼= L/〈hh(I)〉 ( see [48], Theorem 3.2). Also, Gr(B) does not depend

on the choice of generators P of the ideal I of relations, so we can associate to every non-
homogeneous quadratic algebra L/〈P 〉 two different graded versions: Gr(B) ∼= L/〈hh(I)〉
and L/〈hh(P )〉 = L/〈π(P )〉 = L/〈R〉. So, a nonhomogeneous quadratic algebra L/〈P 〉
is a PBW deformation of L/〈R〉 when the above two associate graded versions coincide,
and thus both give the associated graded algebra Gr(B). Some authors defined a PBW-
deformation of a graded algebra C = C0

⊕
C1

⊕
C2

⊕
· · · as a filtered algebra B with an

ascending filtration 0 ⊆ F0(B) ⊆ F1(B) ⊆ F2(B) ⊆ · · · such that the associated graded
algebra Gr(B) is isomorphic to C (see for example [33]).

Example 3.1.22. Let B = K〈x, y〉/〈xy−x, yx− y〉 be a nonhomogeneous quadratic alge-
bra. Let x̄ and ȳ a coset of x and y modulo 〈xy− x, yx− y〉 respectively, then x2 = xy2 =
xyxy = xyy = xy = x, similarly y2 = y in B, i.e. x2 − x, y2 − y ∈ 〈xy− x, yx− y〉 := 〈P 〉,
so B = K〈x, y〉/〈xy − x, yx − y〉 = K〈x, y〉/〈xy − x, yx − y, x2 − x, y2 − y〉. The asso-
ciated graded algebra Gr(B) is trivial in degree two while the homogeneous version of
K〈x, y〉/〈xy, yx〉, K〈x, y〉/〈xy, yx〉 is not (as x2 and y2 represent nonzero classes). There-
fore the algebra B does not satisfy the PBW property with respect to the generating
relations xy − x and yx− y. B has the PBW property with respect to the generating set
{xy−x, yx−y, x2−x, y2−y} since Gr(B) ∼= K〈x, y〉/〈xy, yx, x2, y2〉 (see [79], Example 4.1).

The definition of a PBW deformation depends on P , if L/〈P 〉 is a PBW deformation
of their homogeneous version then Shepler and Witherspoon in [78] proved that generating
relations is always unique up to additive closure over the degree zero component of L, i.e.
if B satisfies the PBW property with respect to some generating set P of relations, then
the P generator subspace is unique.
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Remark 3.1.23. If the algebra L/〈P 〉 is a PBW deformation of L/〈R〉 then it satisfies
the following conditions (see [17], Lemma 0.4):

(I) P ∩ F1(L) = 0;

(J) (F1(L) · P · F1(L)) ∩ F2(L) = P .

If a nonhomogeneous quadratic algebras satisfy (I) then the subspace P ⊂ F2(L) can be
described in terms of two maps α : R → L1 and β : R → K as P = {x − α(x) − β(x) |
x ∈ R}. If B = L/〈P 〉 is a PBW deformations of its homogeneous version then P can not
have relations in F1(L), so:

(i) If B is a PBW deformation of some skew PBW extension A, then B is constant.

(ii) The homogeneous version of a skew PBW extension A is the skew PBW extension
B such that the conditions (i) and (ii) of Definition 1.1.1 for A are satisfied for B,
and the conditions (iii) and (iv) are replaced by xjxi − ci,jxixj = 0, where ci,j are
the same that for A.

(iii) The homogeneous version of a skew PBW extension is Koszul.

For example the homogeneous version for the universal enveloping algebra of a Lie
algebra G, U(G) is the symmetric algebra S(G).

Proposition 3.1.24. Let A be a constant skew PBW extension of K. Then A is a PBW
deformation of its homogeneous version B.

Proof. Let A be a constant skew PBW extension of K then, xjxi − ci,jxixj + r0 + r1x1 +
· · · + rnxn (as in Definition 1.1.1) are the generated relations of the subspace P , that
is, A = K〈x1, . . . , xn〉/〈P 〉. Then the subspace π(P ) = R is generated by the relations
xjxi − ci,jxixj, i.e, K〈x1, . . . , xn〉/〈R〉 = B is the homogeneous version of A. Now for
Theorem 2.1.2, Gr(A) ∼= Aσ where Aσ is a skew PBW extension of K in n variables
z1, . . . , zn defined by the relations zjzi = ci,jzizj , for 1 ≤ i ≤ n. So by Remark 3.1.23,
Aσ ∼= B and therefore Gr(A) ∼= B, i.e., A is a PBW deformation of B.

Note that if a skew PBW extension A is not constant then Proposition 3.1.24 fails.
Indeed, the homogeneous version of A is the skew PBW extension B with relations
xjxi−ci,jxixj = 0, where ci,j are the same that for A, but Gr(A) is defined by the relations
zir = ci,rzi, zjzi = ci,jzizj (see Theorem 2.1.2 and Proposition 2.1.1), so Gr(A) ≇ B.

Let L/〈P 〉 be a nonhomogeneous quadratic algebra. Take R = p(P ) ⊆ L2 and consider
the corresponding quadratic algebra B = L/〈R〉. The main theorem of [17] establishes
that if B is a Koszul algebra then conditions (I) and (J) in Remark 3.1.23 imply that the
algebra L/〈P 〉 is a PBW deformation of B.

Example 3.1.25. In the following examples we consider skew PBW extensions of K, some
of which are quadratic algebras and the other ones are nonhomogeneous quadratic algebras.
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1. Quadratic algebras: Classical polynomial rings, particular Sklyanin algebras, multi-
plicative analogue of the Weyl algebras and multi-parameter quantum affine n-spaces.

2. Nonhomogeneous quadratic algebras: Universal enveloping algebras of a Lie alge-
bras, additive analogue of the Weyl algebras, quantum algebras, Dispin algebras,
Woronowicz algebras, q-Heisenberg algebras, 3-dimensional skew polynomial alge-
bras and Sridharan enveloping algebras of 3-dimensional Lie algebras.

For nonhomogeneous quadratic algebras we have:

(a) The homogeneous version of a universal enveloping algebra of a Lie algebra is a skew
PBW extension of K with relations xixj −xjxi = 0 for 1 ≤ i, j ≤ n, i.e., the classical
polynomial ring. Therefore, U(G) is a PBW deformation of the classical polynomial
ring (symmetric algebra S(G)) as it was well-known.

(b) The homogeneous version of an additive analogue of a Weyl algebra is the algebra B
generated by the variables x1, . . . , xn, y1, . . . , yn subject to the relations xjxi = xixj,
1 ≤ i, j ≤ n; yjyi = yiyj, 1 ≤ i, j ≤ n; yixj = xjyi, i 6= j; yixi = qixiyi,
1 ≤ i ≤ n, where qi ∈ K \ {0}. An(q1, . . . , qn) is a PBW deformation of B.

(c) The homogeneous version of a quantum algebra is the algebra generated by I1, I2,
I3, subject to relations I2I1 − qI1I2 = 0; I3I1 − q−1I1I3 = 0, I3I2 − qI2I3 = 0,
where q ∈ K \ {0}. In this way U ′(so(3,K)) is a PBW deformation of B.

(d) The homogeneous version of a Dispin algebra is the algebra B generated by x, y, z
over K satisfying the relations yz − zy = 0, zx + xz = 0, xy − yx = 0. Thus,
U(osp(1, 2)) is a PBW deformation of B.

(e) The homogeneous version of a Woronowicz algebra is the algebra B generated by
x, y, z, subject to the relations xz − ν4zx = 0; xy − ν2yx = 0; zy − ν4yz = 0,
where ν ∈ K \ {0} is not a root of unity. We have Wν(sl(2,K)) is a PBW deformation
of B.

(f) The homogeneous version of a 3-dimensional skew polynomial algebra is the algebra B
generated by the variables x, y, z, restricted to relations yz−αzy = 0, zx−βxz = 0,
xy − γyx = 0, such that α, β, γ ∈ K∗. A 3-dimensional skew polynomial algebra is a
PBW deformation of B.

(g) The homogeneous version of a Sridharan enveloping algebra Uf (G) of a 3-dimensional
Lie algebra G is the algebra B = T (G)/J , where T (G) is the tensor algebra of G and
I is the two-side ideal of T (G) generated by the elements (x ⊗ y) − (y ⊗ x) for all
x, y ∈ G, i.e., the symmetric algebra S(G). Then a Sridharan enveloping algebra is a
PBW deformation of the symmetric algebra.

Proposition 3.1.26. If A is a PBW deformation of a skew PBW extension B, then B is
Koszul.

Proof. Let A = σ(K)〈x1, . . . , xn〉 be a PBW deformation of B. Then

A = K〈x1, . . . , xn〉/〈xjxi − ci,jxixj + k0 + k1x1 + · · ·+ knxn〉,
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with ci,j ∈ K \ {0}, kl ∈ K, 1 ≤ i, j ≤ n, 0 ≤ l ≤ n and B ∼= K〈x1, . . . , xn〉/〈xjxi−ci,jxixj〉.
Therefore B is a semi-commutative skew PBW extension. Then by Corollary 3.1.14 we
have that B is a Koszul algebra.

3.2 Koszul property for graded skew PBW extensions

In the literature there exist examples of Koszul algebras which are skew PBW extensions
of an algebra R 6= K. For example, the Jordan plane is an Artin-Schelter regular algebra
of dimension two and therefore is a Koszul algebra, but the Jordan plane is a skew PBW
extension of K[x]. Therefore, the results given in the previous section (see also [88]) do not
apply in this case. In this section we use graded skew PBW extensions (Definition 2.2.2)
and study the Koszul property for these algebras.

Remark 3.2.1. Note that pre-Koszul algebras are graded algebras. So we can rewrite
the Definition 3.1.8 as follows: A locally finite algebra B = K

⊕
B1

⊕
B2

⊕
· · · is called

Koszul if the following equivalent conditions hold (see [62], Chapter 2, Definition 1):

(i) Exti,jB (K,K) = 0 for i 6= j;

(ii) B is one-generated and E(B) is generated by E1,1(B);

(iii) The module K admits a linear free resolution, i.e., a resolution by free B-modules

· · · → P2 → P1 → P0 → K → 0

such that Pi is generated in degree i.

Proposition 3.2.2. Let B be a graded Ore extension of R. Then B is Koszul if and only
if R is Koszul.

Proof. See [61], Corollary 1.3.

Proposition 3.2.3. The graded iterated Ore extension A := R[x1;σ1, δ1] · · · [xn;σn, δn] is
Koszul if and only if R is Koszul.

Proof. From Proposition 3.2.2 the result is clear.

Proposition 3.2.4. Let A be a graded quasi-commutative skew PBW extension of R. Then
R is a Koszul algebra if and only if A is Koszul.

Proof. If A is a graded quasi-commutative bijective skew PBW extension of R, then by
Proposition 2.1.3 A is isomorphic to a graded iterated Ore extension wherein each endo-
morphism is bijective. Then by Proposition 3.2.3, R is Koszul if and only if A is Koszul.
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3.2.1 PBW algebras

In Subsection 3.1.2 we use PBW algebras to study the Koszul property for skew PBW ex-
tensions over fields. The homogenized enveloping algebra A(G) (Example 1.2.40) is a PBW
algebra where the elements (zx1, x2, . . . , xn) are PBW-generators and the corresponding
PBW-basis consists of the monomials (zkxα1

1 · · · xαn
n ) with k, α1, . . . , αn ∈ N. Note that

A(G) is not a skew PBW extension of K, but is a graded skew PBW extension of K[z].
Therefore, in this subsection we use PBW algebras for study the Koszul property of graded
skew PBW extensions, not necessarily over fields.

Theorem 3.2.5. Let A be a graded skew PBW extension of a finitely presented algebra R.
If R is a PBW algebra then A is a PBW algebra.

Proof. Let R be a finitely presented PBW algebra with PBW generators t1, . . . , tm. Then
by Proposition 2.3.1, R = Lt/I, where Lt = K〈t1, . . . , tm〉 and

I = 〈r1, . . . , rs〉 (3.2.1)

is a two-sided ideal of K〈t1, . . . , tm〉, generated by a finite set r1, . . . , rs of homogeneous
polynomials in K〈t1, . . . , tm〉 of degree two. Let

(R,St) :=
{
ti1 · · · tiv | (i1, . . . , iν) ∈

⋃

p≥0

S
(p)
t

}
(3.2.2)

be a PBW basis of R, with S
(p)
t = {(i1, i2, . . . , ip) | (ik, ik+1) ∈ St, k = 1, . . . , p − 1},

S
(1)
t := {1, 2, . . . ,m} and St ⊆ S

(1)
t ×S

(1)
t is the set of pairs of indices (iµ, iν) for which the

class of tiµtiν in Lt
2/P (where P is the space of relations r1, . . . , rs) is not in the span of

the classes of trts with (r, s) < (iµ, iν). For 1 ≤ d ≤ s,

rd = tidtjd =
∑

(rd,qd)<(id,jd)
(rd,qd)∈St

crdqdidjd
trdtqd, (id, jd) ∈ S

(1)
t × S

(1)
t \ St. (3.2.3)

Let A = σ(R)〈xm+1, . . . , xm+n〉 be a graded skew PBW extension of R. As R ⊆ A, we
have that A = K〈t1, . . . , tm, xm+1, . . . , xm+n〉/J where

J = 〈r1, . . . , rs, fhk, gji | m+ 1 ≤ i, j, h ≤ m+ n, 1 ≤ k ≤ m〉 (3.2.4)

is the two-sided ideal of K〈t1, . . . , tm, xm+1, . . . , xm+n〉 generated by a set r1, . . . , rs, fhk, gji
where r1, . . . , rs are as in (3.2.1); let

fhk := xm+htk − σm+h(tk)xm+h − δm+h(tk) (3.2.5)

with σm+h and δm+h as in Proposition 1.1.4;

gji := xm+jxm+i − ci,jxm+ixm+j − (r0j,i + r1j,ixm+1 + · · ·+ rnj,i
xm+n) (3.2.6)

is as in (1.1.2) of Definition 1.1.1. As A is graded skew PBW extension then it is a
quadratic algebra, since r1, . . . , rs, fhk, gji are homogeneous polynomials of degree two in

K〈t1, . . . , tm, x1, . . . , xn〉. Now, let S(1)
tx := {1, . . . ,m,m+1, . . . ,m+n}. From the relations
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(3.2.5) we obtain the set Stx := {(k, l) | 1 ≤ k ≤ m,m+1 ≤ l ≤ m+n}. From the relations
(3.2.6) we obtain the set Sx := {(m + i,m + j) | 1 ≤ i ≤ j ≤ n)}. From Definition 1.1.1,
we have that R ⊆ A and A is a left free R-module. Then, for the algebra A, we have that

S(p) = {(i1, . . . , ik, ik+1, . . . , ip) | (i1, . . . , ik) ∈ S
(k)
t and ik+1 ≤ · · · ≤ ip}.

So,
(A,S) :=

{
ti1 · · · tikxik+1

· · · xip | (i1, . . . , ik, ik+1, . . . , ip) ∈
⋃

p≥0

S(p)
}

(3.2.7)

span A as a vector space. As (R,St) := {ti1 · · · tiv | (i1, . . . , iν) ∈
⋃

p≥0 S
(p)
t } is a K-basis

for R and A is a left free R-module, with basis the basic elements

{xα = x
αm+1

m+1 · · · x
αm+n

m+n | α = (αm+1, . . . , αm+n) ∈ Nn}

= {xik+1
· · · xip | m+ 1 ≤ ik+1 ≤ · · · ≤ ip ≤ m+ n} ∪ {1},

then (A,S) is a PBW basis of A. Therefore A is a PBW algebra.

Remark 3.2.6. If in the free algebra K〈x1, . . . , xn〉 we fix the set {1, 2, . . . , n}, we implici-
tly understand that x1 < x2 < · · · < xn. For example, for A = K〈x, y, z〉/〈z2−xy−yx, zx−
xz, zy − yz〉 with x < y < z, i.e., x = x1, y = x2, z = x3, we have that S(1) = {1, 2, 3},
S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)} = S(2). Note that (A,S) is not a K-basis for A.
Indeed, (2, 1, 1), (1, 1, 2) ∈ S(3) and therefore the classes (nonzero) of yx2, x2y ∈ (A,S), but
yx2−x2y = yx2+xyx−x2y−xyx = (xy+yx)x−x(xy+yx) = z2x−xz2 = 0, since xz = zx
in A. But observe that A = K〈x, y, z〉/〈z2 − xy − yx, zx − xz, zy − yz〉 ∼= σ(K[z]〈x, y〉 is
a graded skew PBW extension of the PBW algebra K[z] and in this case Theorem 3.2.5
fails. So it is important the order of the generators of the free algebra L as in the proof
of Theorem 3.2.5; for the graded skew PBW extension A = σ(K[z]〈x, y〉 we have that
A = K〈z, x, y〉/〈z2−xy−yx, zx−xz, zy−yz〉, i.e., z = x1 < x = x2 < y = x3. In this case
we write the relations as yx = −xy+z2;xz = zx; yz = zy, whereby (3, 2), (2, 1), (3, 1) /∈ S.
So, S = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}, S(p) = {(i1, i2, . . . , ip) | i1 ≤ i2 ≤ · · · ≤ ip}
and (A,S) = {zα1xα2yα3 | α1, α2, α3 ≥ 0} is a PBW base for A.

Corollary 3.2.7. Let A be a graded skew PBW extension of a finitely presented algebra
R. If R is a PBW algebra then A is a Koszul algebra.

Proof. This result follows immediately from Theorem 3.2.5 and Theorem 3.1.13.

Example 3.2.8. Let R = K[t1, . . . , tm] be the classical polynomial ring. Then, from
Corollary 3.2.7 every graded skew PBW extension of R is Koszul. Therefore, Examples
2.2.7 are Koszul algebras. Also, by Remark 3.2.6 and Corollary 3.2.7, we have that A =
K〈z, x, y〉/〈z2−xy−yx, zx−xz, zy−yz〉 is a Koszul algebra. Note that A = K〈z, x, y〉/〈z2−
xy − yx, zx − xz, zy − yz〉 = σ(K[z])〈x, y〉 = K[z][x;σ1, δ1][y;σ2, δ2] is a graded iterated
Ore extension, where σ1(z) = z, σ2(x) = −x, δ1(z) = 0 and δ2(x) = z2. So, we also can
use the Proposition 3.2.3 to guarantee that A is Koszul.
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Remark 3.2.9. (i) Some of the graded skew PBW extensions had already been presented
by other authors as Koszul algebras using other characterizations. For example:

1. The polynomial algebra B = K[x, y] is a Koszul algebra (see [12], Proposition 5.2).

2. Let B = K[x1, . . . , xn] be the polynomial algebra in n variables. Then B is a Koszul
algebra (see [54], Example 1.6).

3. Let B = K〈x, y, z〉/〈yz − zy, zx − xz, xy − yx + z2〉 which is of type S′
1 in the

classification of three-dimensional Artin-Schelter regular algebras given in [3]. By
Proposition 5.2 of [12] B is Koszul.

4. For any n ≥ 2, let B be a non-degenerate non-commutative quadric graded algebra
in n variables x1, . . . , xn of degree 1. Let z be an extra variable of degree 1. Let
B be an algebra defined by a non-zero cubic potential w in the variables x1, . . . , xn,
z. Assume that the graded algebra B is isomorphic to a skew polynomial algebra
B[z;σ; δ] over B in the variable z, defined by a 0-degree homogeneous automorphism
σ of B and a 1-degree homogeneous σ−derivation δ of B. Then B is Koszul (see [13],
Proposition 4.1).

5. The algebra B = K〈x, y, z〉/〈αβxy + aαβyx, αzx + axz, yz + aβzy〉 is Koszul (see
[12], Proposition 5.2).

6. The quantum plane B = K〈x, y〉/〈yx − cxy〉 (c 6= 0) is a Koszul algebra (see [12],
Proposition 5.2).

7. The Jordan plane B = K〈x, y〉/〈yx−xy−x2〉 is a quadratic algebra and 〈yx−xy−x2〉
is a principal ideal, it follows that B is Koszul (see [22]).

8. Smith in [80], Proposition 12.1, showed that the homogenized enveloping algebra
A(G) is Koszul.

(ii) The converse of Corollary 3.2.7 is false. Indeed, the algebra

R = K〈x, y, z〉/〈x2 + yz, x2 + azy | a 6= 0, 1〉

with K an algebraically closed field, is Koszul (see [62], Example of page 84). So, an
associated graded Ore extension A := R[u] is a Koszul algebra (Proposition 3.2.2). Now,
for x < y < z, S(1) = {1, 2, 3}, S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3)} = S(2).
Note that (1, 1, 2), (2, 1, 1) ∈ S(3) and therefore the classes (nonzero) of x2y, yx2 ∈ (R,S),
but ax2y + yx2 = ayzy + y(−a)zy = ayzy − ayzy = 0. Thus, (R,S) is not a K-basis for
R, i.e., R is not a PBW algebra.

(iii) Let R be as in the part (ii) above. Note that A = R[u] ∼= K〈x, y, z, u〉/〈x2 +
yz, x2 + azy, ux − xu, uy − yu, uz − zu〉, with a 6= 0, 1. So, x < y < z < u and
S = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 4)}. Therefore (1, 1, 2), (2, 1, 1) ∈ S(3) and
x2y, yx2 are nonzero monomials in A, but a−1yx2 + x2y = yzy − yzy = 0. Then (A,S) is
not a PBW basis, i.e., A is not a PBW algebra. So, the condition that A is a graded skew
PBW extension of the Koszul algebra R does not imply that A is PBW algebra.

(iv) With the above reasoning we have that not any graded skew PBW extension is a
PBW algebra.
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(v) We have also that not every graded skew PBW extension are Koszul. Indeed, let
R = K〈x, y〉/〈y2 − xy, y2〉 be a quadratic non-Koszul algebra ([19], page 10), then R[u]
is a non-Koszul associate graded Ore extension of R, which is also a graded skew PBW
extension.

3.2.2 Lattices

A lattice is a discrete set Ω endowed with two idempotent (i.e., a · a = a) commutative,
and associative binary operations ∧,∨ : Ω × Ω → Ω satisfying the following absorption
identities: a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b. A lattice is called distributive if it satisfies
the following distributivity identity: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). We write a ≤ b, if
the equivalent conditions a ∧ b = a or a ∨ b = b hold. A sublattice of a lattice Ω is a
subset closed under both operations ∧ and ∨. The sublattice generated by a subset X ⊆ Ω,
[X], consists of all elements of Ω that can be obtained from the elements of X using these
operations. Note that a finitely generated distributive lattice is finite. A lattice is called
modular, if the absorption identities hold for any triple of its elements a, b, c such that
a ≥ c. Equivalently, one should have a ≥ c ⇒ a∧ (b∨ c) = (a∧ b)∨ c. Let [1, z] be the set
{1, . . . , z} ordered in increasing form, I ⊆ [1, z] means that I ⊂ {1, . . . , z} is also ordered
in increasing form.

Proposition 3.2.10. Let u, x1, . . . , xz be elements of a modular lattice Ω. Then the set
u, x1, . . . , xz is distributive if and only if both sets xi, . . . , xz and u ∨ x1, . . . , u ∨ xz are
distributive and the equation u ∨

(∧
i∈I xi

)
=

∧
i∈I

(
u ∨ xi

)
holds for any subset I ⊆ [1, z].

Proof. See [62], Chapter 1, Corollary 6.5.

Let W be a vector space. The set ΩW of all its linear subspaces is a lattice with respect
to the operations of sum and intersection. This lattice is modular but not distributive: the
equation (X+Y )∩Z = X∩Z+Y ∩Z does not hold in general. Given X1, . . . ,Xz subspaces
of a vector space W , we may consider the sublattice of subspaces of W generated by
X1, . . . ,Xz by the operations of intersection and summation. We will say that a collection
of subspaces X1, . . . ,Xz ⊆ W is distributive if it generates a distributive lattice of subspaces
of W .

Proposition 3.2.11 ([62], Proposition 1-7.1). Let W be a vector space and X1, . . . ,Xz ⊆
W be a collection of its subspaces. Then the following conditions are equivalent:

(i) The collection X1, . . . ,Xz is distributive.

(ii) There exists a direct sum decomposition W =
⊕

j∈J Wj of the vector space W such
that each of the subspaces Xi is the sum of a set of subspaces Wj .

(iii) There exists a basis B = {wi | i ∈ I} of the vector space W such that each of the
subspaces Xi is the linear span of a set of vectors wi.

(iv) There exists a basis B of the vector space W such that B∩Xi is a basis of the subspace
Xi, for each 1 ≤ i ≤ z ([6], Lemma 1.2).
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Proof. (ii)⇒ (i), (ii) ⇔ (iii) and (iii) ⇔ (iv) are clear. Let us prove (i) ⇒ (ii). Let [1, z] be
the set {1, 2, . . . , z} ordered in increasing form. For every subset T ⊆ [1, z] let us choose a
subspace WT ⊆

⋂
i∈T Xi such that

⋂

i∈T

Xi = WT

⊕(
(
⋂

i∈T

Xi) ∩ (
∑

j /∈T

Xj)
)
.

Then we claim that Xi =
∑

i∈T WT . More generally, we can prove by descending
induction in a subset S ⊆ [1, z] that

∑
S⊆T WT =

⋂
i∈S Xi. Indeed, suppose this is true

for all strictly larger sets S′ ⊃ S. Then using the definition of WS and the distributivity
identity one can easily derive the above equation for S. Note that in the case S = ∅ this
equation states that the subspaces WT generate W . It remains to prove that the subspaces
(WT ), T ⊆ [1, z], are linearly independent. Assume that

∑
swTs = 0 for a set of nonzero

vectors wTs ∈ WTs , where all subsets Ts are distinct. Choose s0 such that the subset
Ts0 ⊆ [1, z] does not contain any other subsets Ts. Then we have

∑

s 6=s0

WTs ⊆
∑

s 6=s0

⋂

j∈Ts

Xj ⊆
∑

j /∈Ts0

Xj .

This is a contradiction since WTs0
, does not intersect

∑
j /∈Ts0

Xj by the definition.

Proposition 3.2.12 ([62], Proposition 1-7.2). Let W be a vector space and X1, . . . ,Xz ⊆
W be a collection of subspaces such that any proper subset X1, . . . , X̂k, . . . ,Xz is distributive
(X̂k means delete). Then the collection X1, . . . ,Xz is distributive if and only if the following
complex of vector spaces B�(W ;X1, . . . ,Xz)

W →
⊕

t

W/Xt → · · · →
⊕

t1<···<tz−t

W/
z−i∑

s=1

Xts → · · · → W/
∑

s

Xs → 0 (3.2.8)

is exact everywhere except for the leftmost term.

Proof. There is a natural exact sequence of complexes

0 → B�(W/X1; (X2 +X1)/X1, . . . , (Xz +X1)/X1) → B�(W ;X1, . . . ,Xz)

→ B�(W ;X2, . . . ,Xz)[−1] → 0,

where [−1] denotes the shift of homological degree. Since we assume that any proper
subcollection is distributive, the third complex is exact in homological degree 6= z. Note
that HzB�(W ;X1, . . . ,Xz) = X1 ∩ · · · ∩ Xz. It follows easily that the second complex is
exact at the desired terms if and only if the first complex is exact in degree 6= z − 1 and
the connecting map

X2 ∩ · · · ∩Xz → (X2 +X1) ∩ · · · (Xz +X1)/X1

is surjective. Using induction in z we conclude that exactness of the first complex is
equivalent to distributivity of the collection X1 + X2, . . . ,X1 + Xz. It remains to apply
Proposition 3.2.10, with u corresponding to X1.
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Let B = K〈x1, . . . , xn〉/I = L/I, where I is a two-sided ideal generated by homo-
geneous elements of L2 and let L+ =

⊕
p>0 Lp. The lattice associated to B, Ω(B) is

the lattice generated by {Lλ
+I

µLν
+ | λ, µ, ν ≥ 0} ⊆ { Subspaces of K〈x1, . . . , xn〉}, where

I0 = K〈x1, . . . , xn〉, I1 = I; I2 = {
∑

xy | x, y ∈ I}, · · · (see [6]).

Lemma 3.2.13 ([62], Theorem 2-4.1). A quadratic algebra B = K〈x1, . . . , xn〉/〈P 〉 is
Koszul if and only if for all k ≥ 0, the collection of subspaces of K〈x1, . . . , xn〉,

Xi := Li−1PLk−i−1 ⊂ Lk, i = 1, . . . , k − 1 (3.2.9)

is distributive. More precisely, Exti,jB (K,K) = 0 for all i < j ≤ n, if and only if the
collection {X1, . . . ,Xk−1} in Lk is distributive.

Proof. This follows from Proposition 3.2.12 by observing that the complex

B�(Lk;X1, . . . ,Xk−1)

can be identified with the degree-k component of the bar-complex Bar�(B).

Lemma 3.2.14 ([6], Lemma 2.3). Let R = K〈t1, . . . , tn〉/I be a quadratic algebra, let Ω(R)
the lattice associated to R and let

B = K〈t1, . . . , tm, x1, . . . , xn〉/〈I〉,

where 〈I〉 is the two-sided ideal of K〈t1, . . . , tm, x1, . . . , xn〉 generated by I. Then Ω(R) is
distributive if and only if Ω(B) is distributive.

Proof. We put Lt := K〈t1, . . . , tn〉, L := K〈t1, . . . , tm, x1, . . . , xn〉 and Lx := K〈x1, . . . , xn〉.
Let (Lt)+ the two-sided ideal of Lt generated by {t1, . . . , tm}, L+ the two-sided ideal of
L generated by {t1, . . . , tm, x1, . . . , xn} and (Lx)+ the two-sided ideal of Lx generated by
{x1, . . . , xn}. Let λ, µ, ν ≥ 0. If λ+ µ+ ν > 0 then

(Lt)
λ
+I

µ(Lt)
ν
+ ⊆ (Lt)+ ⊂ K〈t1, . . . , tm〉 = (Lt)

0
+I

0(Lt)
0
+.

Thus Ω(R) is distributive if and only if

Ω+(R) = [{(Lt)
λ
+I

µ(Lt)
ν
+ | λ, µ, ν ≥ 0 and λ+ µ+ ν > 0}]

is distributive. Similarly,

Ω+(B) = [{Lλ
+〈I〉

µLν
+ | λ, µ, ν ≥ 0 andλ+ µ+ ν > 0}]

is distributive.
We identify Lt, (Lt)+, I and (Lx)+ with their images in L = K〈t1, . . . , tm, x1, . . . , xn〉. We
may give K〈t1, . . . , tm, x1, . . . , xn〉 a vector space graduation (which is not compatible with
the product) by letting

L0 := Lt, L1 := LtL+Lt, L2 := Lt(Lx)+(Lt)+(Lx)+Lt,
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etcetera. Then (L+)
λ(〈I〉)µ(L+)

ν is a graded subspace of L, for any λ, µ, ν ≥ 0; thus so is
any W ∈ Ω+(B). Furthermore, for W ∈ Ω+(B) and l ≥ 0 we have W ∩ (Lt)l ∈ Ωl, where

Ωl := [U1(Lx)+U2(Lx)+U3 · · ·L+Ul+1 ∈ Ω+(R)}]
∼
−→

l+1∏

m=1

Ω+(R),

isomorphism of lattices,
∏l+1

m=1Ω
+(R) the cartesian product, with sum and intersection

operating component-wise. Thus

Ω+(B) ⊆
∏

l≥0

Ωl
∼
−→

∏

l,m

Ω+(R),

whence Ω+(B) is distributive if Ω+(R) is.
On the other hand there is a surjective lattice homomorphism π0 : Ω+(B) ։ Ω+(R)
defined by π0(W ) = W ∩ (Lt)0, whence Ω+(R) is distributive if Ω+(B) is.

Proposition 3.2.15. Let B = K〈x1, . . . , xn〉/I be a quadratic algebra. Ω(B) is distributive
if and only if for all i, j ≥ 0, if i 6= j then TorBi,j(K,K) = 0.

Proof. See [6], Theorem 3.3.

Lemma 3.2.16. A quadratic algebra R = K〈t1, . . . , tm〉/I is Koszul if and only if

A = K〈t1, . . . , tm, x1, . . . , xn〉/〈I〉

is Koszul, where 〈I〉 is the two-sided ideal of K〈t1, . . . , tm, x1, . . . , xn〉 generated by I.

Proof. Note that R is quadratic if and only if A is quadratic. Also, by Lemma 3.2.14,
Ω(R) is distributive if and only if Ω(A) is distributive. Therefore, by Proposition 3.2.15,
if i 6= j, TorRi,j(K,K) = 0 if and only if TorAi,j(K,K) = 0, for all i, j ≥ 0. Then by Remark

3.1.7-(iv), Exti,jR (K,K) = 0 if and only if Exti,jA (K,K) = 0, for i 6= j. Therefore, R is a
Koszul algebra if and only if A is a Koszul algebra.

Related to Proposition 3.2.3 we have the following theorem.

Theorem 3.2.17. If A = σ(R)〈x1, . . . , xn〉 is a graded skew PBW extension of a finitely
presented Koszul algebra R, then A is Koszul.

Proof. Let R be a finitely presented algebra; by Proposition 2.3.1,

R = K〈t1, . . . , tm〉/〈P 〉 (3.2.10)

where P is the vector space generated by homogeneous polynomials

r1, . . . , rs ∈ Lt := K〈t1, . . . , tm〉. (3.2.11)

Let A = σ(R)〈x1, . . . , xn〉 be a graded skew PBW extension. Then by Remark 2.3.2, A is
a finitely presented algebra. So, by Proposition 2.3.1,

A = K〈t1, . . . , tm, x1, . . . , xn〉/〈W 〉, (3.2.12)
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where W is the vector space generated by the polynomials

r1, . . . , rs, xjtk − σj(tk)xi − δj(tk), xjxi − ci,jxixj − (r0j,i + r1j,ix1 + · · ·+ rnj,i
xn)

∈ L := K〈t1, . . . , tm, x1, . . . , xn〉, (3.2.13)

with 1 ≤ i, j ≤ n, 1 ≤ k ≤ m.

Since R is a Koszul algebra then:

(i) R is a quadratic algebra, and by Remark 2.3.2, A is a quadratic algebra.

(ii) By Lemma 3.2.16, we have that AP := K〈t1, . . . , tm, x1, . . . , xn〉/〈P 〉X is Koszul,
where 〈P 〉X is the two-sided ideal of K〈t1, . . . , tm, x1, . . . , xn〉 generated by the poly-
nomials as in (3.2.11). So, by Lemma 3.2.13, we have that for all k ≥ 0, the collection
of subspaces

XP
i := Li−1PLk−i−1 ⊆ Lk, i = 1, . . . , k − 1 (3.2.14)

is distributive. Therefore, by Proposition 3.2.11, there exists a base Bk of the space Lk

such that Bk∩XP
i is a basis of XP

i for each 1 ≤ i ≤ k−1. Let Xi := Li−1WLk−i−1 ⊆
Lk, i = 1, . . . , k−1, where W is the space generated by the polynomials as in (3.2.13).

Let Y := (Xi \ XP
i ) ∩ Bk. Since XP

i is a subspace of Xi we claim that Ȳ := {y +XP
i |

y ∈ Y } = {ȳ ∈ Xi/X
P
i | y ∈ Y } is a basis of Xi/X

P
i . Indeed, if 0 6= x̄ ∈ Xi/X

P
i ,

then x̄ = x + XP
i , with x ∈ Xi \ XP

i . Note that x = k1b1 + · · · + kρbρ, where b1, . . . , bρ
are different nonzero elements in Bk and k1, . . . , kρ ∈ K. Then x̄ = k1b1 + · · ·+ kρbρ =
k1b̄1 + · · · + kρb̄ρ. If bν ∈ XP

i for some 1 ≤ ν ≤ ρ then b̄ν = 0. So x̄ = s1v̄1 + · · · + sµv̄µ
with s1, . . . , sµ ∈ K and v1, . . . , vµ ∈ Y . Now suppose that k1ȳ1 + · · · + kvȳv = 0 with
k1, . . . , kv ∈ K and 0 6= ȳ1, . . . , 0 6= ȳv ∈ Ȳ . Then y1, . . . , yv /∈ XP

i , k1y1 + · · ·+ kvyv = 0
and so k1y1+ · · ·+kvyv ∈ XP

i . As XP
i ∩Bk is a basis of XP

i then there are different nonzero
elements wv+1, . . . , wv+µ ∈ XP

i ∩Bk such that k1y1+· · ·+kvyv = kv+1wv+1+· · ·+kv+µwv+µ,
with kv+1, . . . , kv+µ ∈ K. As y1, . . . , yv /∈ XP

i then y1, . . . , yv, wv+1, . . . , wv+µ are nonzero
different elements in Bk such that k1y1+· · ·+kvyv+(−kv+1)wv+1+· · ·+(−kv+µ)wv+µ = 0.
Then k1 = · · · = kv = kv+1 = · · · = kv+µ = 0.

Therefore, by Theorem 3.33 in [81], we have that (Bk ∩XP
i )∪Y = Bk ∩Xi is a basis of

Xi. So, by Proposition 3.2.11 the collection of subspaces X1, . . . ,Xk−1 is distributive for
each k ≥ 0. Thus, by Lemma 3.2.13 we have that A is Koszul.

Remark 3.2.18. Phan in [59] and [60] defined Koszul algebras for augmented algebras
and R-augmented algebras. In [87] was studied a generalized Koszul property for skew
PBW extensions, according to [59] and [60].

Remark 3.2.19. Generalized Koszul algebras or N -Koszul algebras are generated in de-
gree one and all their relations are homogeneous of the same degree N (see [12], page 1).
N -Koszul algebras are graded algebras

B = K⊕B1 ⊕B2 ⊕ · · ·

such that there is a graded projective resolution of K

· · · → Pi → Pi−1 → · · · → P0 → K → 0,
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such that for any i ≥ 0, Pi is generated in degree δ(i), where

δ(i) =

{
i
2N, if i is even;
i−1
2 N + 1, if i is odd,

for some N ≥ 2.
Since graded skew PBW extensions are quadratic algebras (2-homogeneous), then:

(i) If N = 2,

δ(i) =

{
i
22 = i, if i is even;
i−1
2 2 + 1 = i, if i is odd.

Thus for N = 2, Koszul algebras and N -Koszul algebras are the same. Therefore, for
graded skew PBW extensions N -Koszul property and Koszul property are equivalent.

(ii) The connected algebra B is said to be K2 if the Yoneda algebra E(B) is generated as
an algebra by E1(B) and E2(B). As an algebra is Koszul if and only if it is quadratic
and K2 (see [19], Corollary 4.6), then Koszul algebras and K2 algebras are the same
for skew PBW extensions.



CHAPTER 4

The Calabi-Yau condition for skew PBW extensions

Regular algebras were defined by Artin and Schelter in [3] and they are now known in the
literature as Artin-Schelter regular algebras; Calabi-Yau algebras were defined by Ginzburg
in [26], and as a generalization of them, were defined the skew (also named twisted) Calabi-
Yau algebras. Reyes, Rogalski and Zhang in [75] proved that for connected algebras, skew
Calabi-Yau property is equivalent to Artin-Schelter-regular property. Moreover, it is clear
that Calabi-Yau algebras are skew Calabi-Yau, but we will exhibit examples of graded
skew PBW extensions which are skew Calabi-Yau, but not Calabi-Yau (one of them is
the Jordan Plane). Since graded quasi-commutative skew PBW extensions are isomorphic
to graded iterated Ore extensions of endomorphism type (Proposition 2.3.5-(ii)), in this
chapter we prove that graded quasi-commutative skew PBW extensions with coefficients in
Artin-Schelter regular algebras are Artin-Schelter regular algebras, and graded skew PBW
extensions of a finitely presented Auslander-regular algebras are Artin-Schelter regular. As
a consequence of this, we prove that graded quasi-commutative skew PBW extensions of
finitely presented skew Calabi-Yau algebras are skew Calabi-Yau, and graded skew PBW
extensions of a finitely presented Auslander-regular algebras are skew Calabi-Yau. We also
give a description of Nakayama automorphism for graded quasi-commutative skew PBW
extensions of Artin-Schelter regular algebras, using the Nakayama automorphism of the
ring of the coefficients. The main results of this chapter are Theorem 4.1.2, Theorem
4.1.3, Theorem 4.2.8, Example 4.2.9, Example 4.2.10, Theorem 4.3.3, Example 4.3.4 and
Example 4.3.5.

4.1 Artin-Schelter regular algebras

In this section we will prove that graded quasi-commutative skew PBW extensions of
an Artin-Schelter regular algebra are Artin-Schelter regular and that graded skew PBW
extensions of a finitely presented Auslander-regular algebras are Artin-Schelter regular.
These results will be appear in [85].

Definition 4.1.1. Let B = K⊕B1⊕B2⊕ · · · be a finitely presented algebra over K. The
algebra B will be called Artin-Schelter regular if it has the following properties:

60
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(i) B has finite global dimension d.

(ii) B has finite GK-dimension.

(iii) B is Gorenstein, meaning that ExtiB(K, B) = 0 if i 6= d, and ExtdB(K, B) ∼= K(l), for
some integer l.

Theorem 4.1.2. Every graded skew PBW extension A = σ(R)〈x1, . . . , xn〉 of a finitely
presented Auslander-regular algebra R is Artin-Schelter regular.

Proof. By Proposition 2.3.1, we know that R = K〈t1, . . . , tm〉/I, where I is a proper
two-sided ideal of K〈t1, . . . , tm〉 generated by finite homogeneous polynomials r1, . . . , rs in
K〈t1, . . . , tm〉 (it is assumed that tj has grade 1, 1 ≤ j ≤ m). Then

A = K〈t1, . . . , tm, x1, . . . , xn〉/J,

where J is a two-sided ideal of K〈t1, . . . , tm, x1, . . . , xn〉, generated by a finite set of ho-
mogeneous polynomials r1, . . . , rs, fhk and gji, where the polynomials fhk are as in (2.3.4)
and gji are as in (2.3.5). Now, by Remark 2.3.2-(ii), we have that A is connected. So,
by Theorem 2.2.1 and Remark 2.3.2-(ix), we know that A = K

⊕
A1

⊕
A2

⊕
· · · is a

finitely presented algebra. Since A is bijective, then by Proposition 2.3.12, we have that
A is Auslander-regular. Now, since R is a noetherian, then by Proposition 2.3.5-(i) we
have that A is noetherian. Therefore, from Proposition 2.3.13 we have that A is graded
Auslander-regular. From Corollary 2.3.16 we have that A has graded finite global dimen-
sion, say d. By Proposition 2.3.18-(ii), A has finite GK-dimension. Now, we have that A
is Gorenstein (see [41], Theorem 6.3). Therefore A Artin-Schelter regular.

Theorem 4.1.3. Let R be an Artin-Schelter regular algebra and let A = σ(R)〈x1, . . . , xn〉
be a graded quasi-commutative skew PBW extension. Then A is Artin-Schelter regular.

Proof. From Remark 2.3.2-(ii), we have that A is connected. So, by Theorem 2.2.1 and
Remark 2.3.2-(ix), we know that A = K

⊕
A1

⊕
A2

⊕
· · · is a finitely presented algebra.

(i) Since R has finite global dimension, say e, then by Proposition 2.1.8 we know that
gld(A) = e+ n = d, i.e., A has finite global dimension.

(ii) Let V be a subspace of R generated by {t1, . . . , tm}. Note that V is a finite dimen-
sional generating subspace of R. As σi is graded for all i, then σn(V ) ⊆ V . Now,
as A is bijective and R has finite GK-dimension then by Proposition 2.1.11 we have
that GKdim(A) =GKdim(R) + n, i.e., A has finite GK-dimension.

(iii) From Proposition 2.3.5-(ii) and his proof, we know that A is isomorphic to a graded
iterated Ore extension of endomorphism type R[z1; θ1] · · · [zn; θn], where θi is bi-
jective, for each i, θ1 = σ1, θj : R[z1; θ1] · · · [zj−1; θj−1] → R[z1; θ1] · · · [zj−1; θj−1]
is such that θj(zi) = ci,jzi, ci,j ∈ K \ {0} and θi(r) = σi(r), for r ∈ R. Then
z1r = θ1(r)z1 = σ1(r)z1 ∈ Rz1 and rz1 = z1θ

−1
1 (r) = z1σ

−1
1 (r) ∈ z1R. Hence

z1 ∈ A1 is a nonzero normal element of A(1) := R[z1; θ1] and A(1)/〈z1〉 = R. From
the Rees lemma (see [41], Proposition 3.4-(b)) we have that

Extj
A(1)(K, A(1)) ∼= Extj−1

A(1)/〈z1〉
(K, A(1)/〈z1〉) = Extj−1

R (K, R).
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By Proposition 2.1.8 we have that d1 :=gld(A(1)) = e + 1. Since R is Gorenstein
then ExtiR(K, R) = 0 if i 6= e, and ExteR(K, R) ∼= K(l1), for some integer l1, i.e.,
Exti+1

A(1)(K, A(1)) = 0 if i + 1 6= e + 1 = d1 and Extd1
A(1)(K, A(1)) ∼= K(l1), for some

integer l1, . Then A(1) = R[z1; θ1] is Gorenstein. Now, z2 ∈ A1 is a nonzero normal
element of A(2) := A(1)[z2; θ2] = R[z1; θ1][z2; θ2] and A(2)/〈z2〉 = A(1). Thus, with
the above procedure we have that R[z1; θ1][z2; θ2] is Gorenstein. Now, zn ∈ A1 is a
nonzero normal element of A(n) := A(n−1)[zn; θn] = R[z1; θ1] · · · [zn−1; θn−1][zn; θn] =
A, A/〈zn〉 = A(n−1), gld(A(n−1)) = e+ n− 1 := dn−1 and gld(A) = gld(A(n)) = e+
n := dn = d. Assuming that A(n−1) is Gorenstein, we have that Exti−1

A(n−1)(K, A(n−1)) =

0 if i − 1 6= e + n − 1 and Exte+n−1
A(n−1)(K, A(n−1)) ∼= K(ln−1), for some integer

ln−1. From the Rees lemma, we have that Exti
A(n)(K, A(n)) = ExtiA(K, A) = 0 if

i 6= e + n = d and ExtdA(K, A) ∼= K(ln−1), for some integer ln−1. Thus A(n) :=
R[z1; θ1] · · · [zn; θn] ∼= A is Gorenstein.

Therefore, A is an Artin-Schelter regular algebra.

4.2 Skew Calabi-Yau algebras

In this section we will prove that graded quasi-commutative skew PBW extensions of a
finitely presented skew calabi-Yau algebra are skew Calabi-Yau algebras, and that graded
skew PBW extensions of a finitely presented Auslander-regular algebra are skew Calabi-
Yau. These results will be appear in [85].

The enveloping algebra of an algebra B is the tensor product Be = B ⊗ Bop, where
Bop is the opposite algebra of B. Bimodules over B are essentially the same as mod-
ules over the enveloping algebra of B, so in particular, B and M can be considered
as Be-modules. Suppose that M and N are both Be-modules. Then there are two
Be-module structures on M ⊗ N , one of them is called the outer structure defined by
(a⊗ b) · (m⊗n) =out am⊗nb, and the another one is called the inner structure defined by
(a⊗ b) · (m⊗n) =int ma⊗ bn, for any a, b ∈ B, m ∈ M , n ∈ N . Since Be is identified with
B ⊗ B as a K-module (KBe = K(B ⊗Bop) = K(B ⊗B)), B ⊗ B endowed with the outer
structure is nothing but the left Be-module Be. Be(B ⊗B) =out

BeBe: In Be(B ⊗B),
(a ⊗ b) · (x ⊗ y) = a · (x ⊗ y) · b =out ax ⊗ yb, whereas that in BeBe (a ⊗ b) · (x ⊗ y) =
ax⊗ b ◦ y = ax⊗ yb. B⊗B endowed with the inner structure is nothing but the right Be-
module Be. Be(B ⊗B) =int Be

Be : In Be(B ⊗B), (a⊗b) ·(x⊗y) = a ·(x⊗y) ·b =int xa⊗by,
whereas that in Be

Be , (x⊗ y) · (a⊗ b) = xa⊗ y ◦ b = xa⊗ by. Hence, we often say Be has
the outer (left) and inner (right) Be-module structures. We characterize the enveloping
algebra of a skew PBW extension in [71].

An algebra B is said to be homologically smooth if as an Be-module, B has a projective
resolution that has finite length and such that each term in the projective resolution is
finitely generated. The length of this resolution is known as the Hochschild dimension of
B. In the next definition, the outer structure on Be is used when computing the homology
Ext∗Be(B,Be). Thus, Ext∗Be(B,Be) admits an Be-module structure induced by the inner
one on Be.
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Let M be a B-bimodule, ν, µ : B → B be two automorphisms, the skew B-bimodule
νMµ is equal to M as a vector space with a · m · b := ν(a) · m · µ(b). Thus, M is a left
Be-module with product given by

(a⊗ b) ·m = a ·m · b = ν(a) ·m · µ(b).

In particular, for B and Be we have the structure of left Be-modules given by

(a⊗ b) · x = ν(a)xµ(b),

(a⊗ b) · (x⊗ y) = a · (x⊗ y) · b = ν(a) · (x⊗ y) · µ(b) = ν(a)x⊗ yµ(b).

Proposition 4.2.1. ([28], Lemma 2.1) Let ν, σ and φ be automorphisms of B.Then

(i) The map
νBσ → φνBφσ, a 7→ φ(a)

is an isomorphism of Be-modules. In particular,

νBσ ∼= Bν−1σ ∼= σ−1νB and Bσ ∼= σ−1
B.

(ii) B ∼= Bσ as Be-modules if and only if σ is an inner automorphism.

Proof. (i) Is verified by straightforward computation.
(ii) Note that the left B-linear maps τ : B → B on a ring B are those of the form a 7→ ax
for some x ∈ B (namely x = τ(1)). Such a map is a Be-module morphism B → Bσ

precisely when we have abx = abτ(1) = τ(ab) = τ(a)σ(b) = axσ(b) for all a, b ∈ B, that
is, bx = xσ(b) for all b ∈ B. Suppose that x is invertible; if τ(a) = τ(b) then ax = bx and
therefore a = b, τ(yx−1) = y, so τ is bijective. Now, if τ is biyective, then is x is invertible.
So σ(b) = x−1bx for all b ∈ B.

Remark 4.2.2. If σ is an inner automorphism of B, given by conjugation x 7→ uxu−1 by
the unit u of B, then the map on B given by left multiplication by u shows that

νBβ ∼= σνBβ ∼= νBβσ

for all automorphisms ν and β of B.

Definition 4.2.3. A graded algebra B is called skew Calabi-Yau of dimension d if

(i) B is homologically smooth.

(ii) There exists an algebra automorphism ν of B such that

ExtiBe(B,Be) ∼=

{
0, i 6= d;
Bν(l), i = d.

as Be -modules, for some integer l. If ν is the identity, then B is said to be Calabi-Yau.
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Ungraded Calabi-Yau algebras are defined similarly but without degree shift. Some-
times condition (ii) is called the skew (twisted) Calabi-Yau condition. The skew Calabi-Yau
condition appears to have first been explicitly defined in [18] where the authors used the
term rigid Gorenstein. The automorphism ν is called the Nakayama automorphism of B.

Proposition 4.2.4. Let B be a skew Calabi-Yau algebra with Nakayama automorphism
ν. Then ν is unique up to an inner automorphism, i.e, the Nakayama automorphism is
determined up to multiplication by an inner automorphism of B.

Proof. Let B be a skew Calabi-Yau algebra with Nakayama automorphism ν and let µ
another Nakayama automorphism, i.e., ExtdBe(B,Be) ∼= Bµ, then ExtdBe(B,Be) ∼= Bν ∼=

Bµ as Be -modules. By Proposition 4.2.1-(i), B ∼= Bν−1µ; by Proposition 4.2.1-(ii), ν−1µ
is an inner automorphism of B. Let ν−1µ = σ where σ is an inner automorphism of B, so
µ = νσ for some inner automorphism σ of B.

Proposition 4.2.5. A skew Calabi-Yau algebra B is Calabi-Yau if and only if ν is an
inner automorphism of B.

Proof. Let B be a skew Calabi-Yau algebra of dimension d.
⇒) If B is Calabi-Yau then ExtdBe(B,Be) ∼= B ∼= Bν . By Propositiona 4.2.1-(ii) ν is an
inner automorphism of B.
⇐) If ν is an inner automorphism of B then by Proposition 4.2.1-(ii), B ∼= Bν . Therefore
ExtdBe(B,Be) ∼= B, and so B is Calabi-Yau algebra.

Proposition 4.2.6 ([75], Lemma 1.2). Let B be a connected graded algebra. Then B is
skew Calabi-Yau if and only if it is Artin-Schelter regular.

Proposition 4.2.7. Let R be a Koszul Artin-Schelter regular algebra of global dimension
d with Nakayama automorphism σ.

(i) ([33], Theorem 3.3) The skew polynomial algebra B = R[x;σ] is a Calabi-Yau algebra
of dimension d+ 1.

(ii) ([95], Remark 3.13) There exists a unique skew polynomial extension B such that B
is Calabi-Yau.

(iii) ([95], Theorem 3.16) If ν is a graded algebra automorphism of R, then B = R[x; ν]
is Calabi-Yau if and only if σ = ν.

The Calabi-Yau and skew Calabi-Yau properties for graded skew PBW extensions will
be next proved using the cited results presented in the literature and from our previous
results.

Theorem 4.2.8. Let A = σ(R)〈x1, . . . , xn〉 be a graded skew PBW extension of an algebra
R.

(i) If A is quasi-commutative and R is a finitely presented skew Calabi-Yau algebra of
global dimension d, then A is skew Calabi-Yau of global dimension d+ n. Moreover,
if R is Koszul and θi is the Nakayama automorphism of R[x1; θ1] · · · [xi−1; θi−1] for
1 ≤ i ≤ n, then A is Calabi-Yau of dimension d+ n (θi as in Proposition 2.3.5-(ii),
x0 = 1).
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(ii) If R is finitely presented and Auslander-regular, then A is skew Calabi-Yau.

Proof. (i) Since R is connected and skew Calabi-Yau, then by Proposition 4.2.6 we know
that R is Artin-Schelter regular. From Theorem 4.1.3 we have that A is Artin-Schelter
regular and, in particular, connected. Thus, using again Proposition 4.2.6, we have
that A is a skew Calabi-Yau algebra. By the proof of Theorem 4.1.3 we have that
the global dimension of A is d+ n.

For the second part, we know that graded Ore extensions of Koszul algebras are
Koszul algebras and, as a particular case of Theorem 4.1.3, we have that a graded Ore
extension of an Artin-Schelter regular algebra is an Artin-Schelter regular algebra.
Now, by Proposition 2.3.5-(ii) we have that A is isomorphic to a graded iterated
Ore extension R[x1; θ1] · · · [xn; θn]. It is known that if A is a Calabi-Yau algebra of
dimension d, then the global dimension of A is d (see for example [14], Remark 2.8).
Then, using Proposition 4.2.7-(i) and applying induction on n we obtain that A is a
Calabi-Yau algebra of dimension d+ n.

(ii) From Theorem 4.1.2 we have that A is Artin-Schelter regular. Since R is connected,
then by Remark 2.3.2-(ii) we have that A is connected. Then from Proposition 4.2.6
we get that A is skew Calabi-Yau.

Using the previous results we have the following examples of graded skew PBW exten-
sions which are skew Calabi-Yau algebras and Artin-Schelter regular algebras.

Example 4.2.9. From Example 2.2.5 and Theorem 4.1.3 we obtain that the algebra of
linear partial q-dilation operators K[t1, . . . , tn][H

(q)
1 , . . . ,H

(q)
m ] (Example 1.2.16), the multi-

plicative analogue of the Weyl algebra On(λji) (Example 1.2.20) and the multi-parameter
quantum affine n-space Oq(Kn) (Example 1.2.31), are Artin-Schelter regular algebras. By
Theorem 4.2.8-(i), we have that the above examples are also skew Calabi-Yau algebras.

Example 4.2.10. The following examples are graded skew PBW extensions of the classical
polynomial ring R with coefficients in K, which are not quasi-commutative and where R
has the usual graduation (see Example 2.2.7). By Theorem 4.2.8-(ii), these extensions are
skew Calabi-Yau algebras, since R is a finitely presented Auslander-regular algebra. By
proof of Theorem 4.2.8-(ii), we have that these extensions are also Artin-Schelter regular
algebras.

1. The Jordan plane. A = K〈x, y〉/〈yx− xy − x2〉 ∼= σ(K[x])〈y〉.

2. The homogenized enveloping algebra. A(G) ∼= σ(K[z])〈x1, . . . , xn〉.

3. The Diffusion algebra. A ∼= σ(K[x1, . . . , xn])〈D1, . . . ,Dn〉.

4. The algebra U ∼= σ(K[x1, . . . , xn])〈y1, . . . , yn; z1, . . . , zn〉.

5. Manin algebra. O(Mq(2)) ∼= σ(K[u])〈x, y, v〉.

6. Algebra of quantum matrices. Oq(Mn(K)) ∼= σ(K[xim, xjk])〈xik, xjm〉, for 1 ≤ i <
j, k < m ≤ n.
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7. Quadratic algebras. If a1 = a4 = 0 then the quadratic algebra is a graded skew PBW
extension of R = K[y, z], and if a5 = a3 = 0 then quadratic algebras are graded skew
PBW extensions of R = K[x, z].

For some of the above algebras other authors had already studied the skew Calabi-Yau
property and the Artin-Schelter regularity, but using other techniques, the novelty here
consists in interpreting these algebras as skew PBW extensions and applying some its
algebraic properties studied previously. For example:

(i) The polynomial algebra B = K[x, y] is a connected graded noetherian algebra of
global dimension 2. It follows that B is Artin-Schelter regular with GKdim(B) = 2
(see [82], Theorem 3.5). Moreover, B is Calabi-Yau of dimension 2 (see [56]). Let B =
K[x1, . . . , xn] be the polynomial algebra in n variables. B is Calabi-Yau of dimension n
(see [11], page 18) and Artin-Schelter regular (see [14], Proposition 4.3).

(ii) Let B = K〈x, y, z〉/〈yz − zy, zx − xz, xy − yx + z2〉 which is of type S′
1 in the

classification of three-dimensional Artin-Schelter regular algebras given in [3]. According
to [12], B is 3-Calabi-Yau (see [92], Example 3.6).

(iii) The quantum plane B = K〈x, y〉/〈yx− cxy〉 (c 6= 0) is an Artin-Schelter regular
algebra of global dimension 2 (see [3], page 172 or [76], Example 2.10).

(iv) The Jordan plane B = K〈x, y〉/〈yx− xy− x2〉 is an Artin-Schelter regular algebra
of global dimension 2 (see [3], page 172). The Jordan plane B is skew Calabi-Yau, but not
Calabi-Yau (see [51]).

(v) Stephenson and Zhang proved that if B is a connected graded noetherian algebra of
global dimension 2, then B is Artin-Schelter regular and GKdim(B) = 2. Moreover, B is
isomorphic to either K〈x, y〉/〈ax2+byx+cxy+dy2〉 where ad−bc 6= 0, or K[x][yσ, δ] where σ
is an automorphism of K[x] and δ is a σ-derivation (see [82], Theorem 3.5). We note that if
a = 0, b = −1, c = 1 and d = 0, then K〈x, y〉/〈ax2+byx+cxy+dy2〉 = K〈x, y〉/〈xy−yx〉 ∼=
K[x, y]; if a = 0, b 6= 0, c = 1 and d = 0, then K〈x, y〉/〈ax2 + byx + cxy + dy2〉 =
K〈x, y〉/〈xy + byx〉 is the quantum plane and if a = −1, b = 1, c = −1 and d = 0, then
K〈x, y〉/〈ax2 + byx + cxy + dy2〉 = K〈x, y〉/〈yx − xy − x2〉 is the Jordan plane. This is
another way of seeing that K[x, y], the quantum plane and the Jordan plane are Artin-
Schelter regular algebras. These examples had already been given by other authors, for
example in [76], Example 2.10.

(vi) The multiplicative analogue of the Weyl algebra On(λji) is Artin-Schelter (see [76],
Example 2.10).

(vii) Multi-parameter quantum affine n-spaces Oq(Kn) is skew Calabi-Yau (see [51],
Proposition 4.1).

(viii) He, Van Oystaeyen and Zhang showed that for the 3-dimensional Lie algebra G
with basis {x, y, z}, U(G) is a Calabi-Yau algebra if and only if the Lie bracket is given by
[x, y] = ax+ by+wz, [x, z] = cx+ vy− bz, [y, z] = ux− cy + az, where a, b, c, u, v, w ∈ K;
and if G is a finite dimensional Lie algebra, U(G) is Calabi-Yau of dimension 3 if and
only if G is isomorphic to one of the following Lie algebras (see [31], Proposition 4.5 and
Proposition 4.6 ):

(a) The 3-dimensional simple Lie algebra sl(2,K);
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(b) G has a basis {x, y, z} such that [x, y] = y, [x, z] = −z and [y, z] = 0;

(c) The Heisenberg algebra, that is; G has a basis {x, y, z} such that [x, y] = z and
[x, z] = [y, z] = 0;

(d) The 3−dimensional abelian Lie algebra.

(ix) Let Uf (G) be a Sridharan enveloping algebra of a finite dimensional Lie algebra G.
Then Uf (G) is Calabi-Yau of dimension 3 if and only if Uf (G) is isomorphic to K〈x, y, z〉/〈R〉
with the commuting relations R listed in the following table (see [31], Theorem 5.5):

Case {x,y} {x,z} {y,z}
1 z −2x 2y

2 y −z 0

3 z 0 0

4 0 0 0

5 y −z 1

6 z 1 0

7 1 0 0

where {x, y} = xy − yx.

Let G be a finite dimensional Lie algebra. Then the Sridharan enveloping algebra
Uf (G) is Calabi-Yau of dimension d if and only if the universal enveloping algebra U(G) is
Calabi-Yau of dimension d (see [31], Theorem 5.3).

Possibly for the algebra of linear partial q-dilation operators, the homogenized envelop-
ing algebra, the Diffusion algebra, the algebra U , Manin algebra and algebra of quantum
matrices, the Artin-Schelter regular and the skew Calabi-Yau properties had not yet been
studied.

Remark 4.2.11. Every skew Calabi-Yau algebra may be extended to a Calabi-Yau alge-
bra, i.e., if B is a skew Calabi-Yau algebra with Nakayama automorphism σ, then B[z, σ]
is Calabi-Yau (see [28], Theorem 1.1 and Remark 5.1).

Remark 4.2.12. Note that the Calabi-Yau property is not preserved by skew PBW ex-
tensions. The Jordan plane A = K〈x, y〉/〈yx−xy−x2〉 ∼= σ(K[x])〈y〉 = K[x][y;σ, δ], where
σ(x) = x and δ(x) = x2, is a graded skew PBW extension of a Calabi-Yau algebra K[x],
but A is not Calabi-Yau. Indeed, the Nakayama automorphism ν of the Jordan plane is
given by ν(x) = x and ν(y) = 2x+ y (see for example [51], page 16) and it is not inner.

4.3 Nakayama automorphism

In final section we give a description of Nakayama automorphism of a graded quasi-
commutative skew PBW extensions over finitely presented skew Calabi-Yau algebras, using
the Nakayama automorphism of the ring of coefficients. We use the ideas of [51], Theorem
3.3 and Remark 3.4. The results of this section also appear in [86] and were submitted for
publication.
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Theorem 4.3.1 ([51], Theorem 3.3). Let R be a projective K-algebra and B = R[x;σ, δ] be
a graded Ore extension. Suppose that R is skew Calabi-Yau of dimension d, with Nakayama
automorphism ν. Then the Nakayama automorphism µ of B satisfies that µ|R = σ−1ν and
µ(x) = ux+ b with u, b ∈ R and u invertible.

Recall that a projective algebra is an K-algebra B such that the K-module B is pro-
jective.

Remark 4.3.2 ([51], Remark 3.4). If in Theorem 4.3.1, σ is the identical then µ(x) = x+b.
If δ = 0 then µ(x) = ux.

Theorem 4.3.3. Let R be a finitely presented skew Calabi-Yau algebra with Nakayama
automorphism ν. Then the Nakayama automorphism µ of a graded quasi-commutative
skew PBW extension A = σ(R)〈x1, . . . , xn〉 is given by

µ(r) = (σ1 · · · σn)
−1ν(r), for r ∈ R, and

µ(xi) = ui

n∏

j=i

c−1
i,j xi, for each 1 ≤ i ≤ n,

where σi is as in Proposition 1.1.4, ui, ci,j ∈ K \ {0}, and the elements ci,j are as in
Definition 1.1.1.

Proof. Note that A is skew Calabi-Yau (Theorem 4.2.8-(i)) and therefore the Nakayama
automorphism of A exists. By Proposition 2.3.5-(ii) and its proof we have that A is isomor-
phic to a graded iterated Ore extension R[x1; θ1] · · · [xn; θn], where θi is bijective; θ1 = σ1;

θj : R[x1; θ1] · · · [xj−1; θj−1] → R[x1; θ1] · · · [xj−1; θj−1]

is such that θj(xi) = ci,jxi (ci,j ∈ K as in Definition 1.1.1), 1 ≤ i < j ≤ n and θi(r) = σi(r),
for r ∈ R. Note that

θ−1
j (xi) = c−1

i,j xi. (4.3.1)

Now, since R is connected then by Remark 2.3.2, A is connected. So, the multiplicative
group of R and also the multiplicative group of A is K\{0}, therefore the identity map is the
only inner automorphism of A. Let µi the Nakayama automorphism of R[x1; θ1] · · · [xi; θi].
By Theorem 4.3.1 and Remark 4.3.2 we have that the Nakayama automorphism µ1 of
R[x1; θ1] is given by µ1(r) = σ−1

1 ν(r) for r ∈ R, and µ1(x1) = u1x1 with u1 ∈ K \
{0}; the Nakayama automorphism µ2 of R[x1; θ1][x2; θ2] is given by µ2(r) = σ−1

2 µ1(r) =
σ−1
2 σ−1

1 ν(r), for r ∈ R; µ2(x1) = θ−1
2 µ1(x1) = θ−1

2 (u1x1) = u1θ
−1
2 (x1) = u1c

−1
1,2x1 and

µ2(x2) = u2x2, for u2 ∈ K\{0}; the Nakayama automorphism µ3 of R[x1; θ1][x2; θ2][x3; θ3]
is given by µ3(r) = σ−1

3 µ2(r) = σ−1
3 σ−1

2 σ−1
1 ν(r), for r ∈ R; µ3(x1) = θ−1

3 µ2(x1) =
θ−1
3 (u1c

−1
1,2x1) = u1c

−1
1,2θ

−1
3 (x1) = u1c

−1
1,2c

−1
1,3x1; µ3(x2) = θ−1

3 µ2(x2) = θ−1
3 (u2x2) = u2c

−1
2,3x2

and µ3(x3) = u3x3, for u3 ∈ K \ {0}.
Continuing with the procedure we have that the Nakayama automorphism of A is given by

µ(r) = µn(r) = σ−1
n · · · σ−1

2 σ−1
1 ν(r),

for r ∈ R; µ(x1) = u1c
−1
1,2c

−1
1,3 · · · c

−1
1,nx1; µ(x2) = u2c

−1
2,3 · · · c

−1
2,nx2. In general, for 1 ≤ i ≤ n,

we have that µ(xi) = uic
−1
i,i+1c

−1
i,i+2 · · · c

−1
i,nxi = ui(ci,n · · · ci,i+2ci,i+1)

−1xi, for ui ∈ K \ {0}.
Note that ci,i = 1 (Remark 1.1.3-(ii)).
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Example 4.3.4. Let A = Oq(Kn) be the quantum affine n-space from Example 1.2.31.
A = Oq(Kn) is a graded quasi-commutative skew PBW extension of K[x1] (see Exam-
ple 2.2.5), with σj(k) = k for k ∈ K and σj(x1) = q1jx1, j ≥ 2. Therefore, according
to Proposition 2.3.5 and its proof, A is isomorphic to a graded iterated Ore extension
K[x1][x2; θ2] · · · [xn; θn], where θj(k) = k for k ∈ K and θj(xi) = qijxi, for 1 ≤ i < j ≤
n. Note that the Nakayama automorphism ν of K[x1] is the identity map. Applying
Theorem 4.3.3 we have that the Nakayama automorphism µ of A is given by µ(k) = k
for k ∈ K, µ(x1) = (σ1 · · · σn)

−1ν(x1) = (q−1
1n · · · q−1

12 )x1 = (qn1 · · · q21)x1, and µ(xi) =
uiq

−1
i(i+1)q

−1
i(i+2) · · · q

−1
in xi = uiq(i+1)iq(i+2)i · · · qnixi = uiq(i+1)iq(i+2)i · · · qnixi, for each 2 ≤

i ≤ n. Since µ is unique up to an inner automorphism (see Proposition 4.2.4) and the
invertible elements in Oq(Kn) are those nonzero scalars in K, the identity map is the only
inner automorphism of Oq(Kn). Therefore, using the same reasoning of [51] in the proof
of Proposition 4.1, we have that ui = q1iq2i · · · q(i−1)i. Then, µ(xi) = (

∏n
j=1 qji)xi, for

2 ≤ i ≤ n. This result is known and can be deduced in some other way (see for example
[51], Proposition 4.1).

Example 4.3.5. Let R be a Koszul Artin-Schelter regular algebra of global dimension d,
with Nakayama automorphism ν. Let A = R[x1, . . . , xn;σ1, . . . , σn] be an iterated skew
polynomial ring, with σi graded. A is a skew PBW extension of R with relations xir =
σi(r)xi and xjxi = xixj, for r ∈ R and 1 ≤ i, j ≤ n. As R is graded and ci,j = 1 ∈ R0, then
by Proposition 2.2.4 we have that A is a graded quasi-commutative skew PBW extension.
Therefore, A is a Koszul Artin-Schelter regular algebra (Proposition 3.2.3 and Theorem
4.1.3). Note that R is a finitely presented skew Calabi-Yau algebra, then A is a skew
Calabi-Yau algebra (Theorem 4.2.8). By Proposition 2.3.5, R[x1, . . . , xn;σ1, . . . , σn] ∼=
R[x1; θ1] · · · [xn; θn], where θj(r) = σj(r) and θj(xi) = xi for i < j. Applying Theorem
4.3.3 we have that the Nakayama automorphism µ of A is given by µ(r) = (σ1 · · · σn)

−1ν(r),
if r ∈ R and µ(xi) = ui

∏n
j=i c

−1
i,j xi = uixi, ui ∈ K \ {0}, 1 ≤ i ≤ n. This automorphism

had already been calculated in Theorem 4.6 of [95], like this: µ(r) = (σ1 · · · σn)
−1ν(r), if

r ∈ R and µ(xi) = (hdetσi)xi, 1 ≤ i ≤ n.



Future work

Lezama and Latorre in [44] introduce the semi-graded rings, which extend graded rings,
skew PBW extensions and graded skew PBW extensions. For this new type of non-
commutative rings they discussed some basic problems of noncommutative algebraic geo-
metry. In particular, they proved some elementary properties of the generalized Hilbert
series, Hilbert polynomial and Gelfand-Kirillov dimension. They extended the notion of
non-commutative projective scheme to the case of semi-graded rings and generalized the
Serre-Artin-Zhang-Verevkin theorem. A definition of Koszul, Artin-Schelter regular and
Calabi-Yau algebras could be given for semi-graded algebras, to study those properties and
their equivalent definitions.
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