
Prototype of a tool for automatic
generation of commit messages for Java

applications

Luis Fernando Cortés Coy

Universidad Nacional de Colombia

Facultad de Ingeniería, Departamento de Ingenieria de Sistemas e Industrial

Bogotá, Colombia

2014

Prototype of a tool for automatic
generation of commit messages for Java

applications

Luis Fernando Cortés Coy

A thesis submitted in partial ful�llment of the requirements for the degree of:

Maestría en ingeniería - Ingeniería de sistemas y computación

Advisor:

Jairo Aponte, Ph.D

Co-Advisor:

Mario Linares-Vásquez, Ph.D candidate

Research line

Software Engineering

Research group

ColSWE: Software Engineering Research Group

Universidad Nacional de Colombia

Facultad de Ingeniería, Departamento de Ingenieria de Sistemas e Industrial

Bogotá, Colombia

2014

Dedication

This work is dedicated to my parents, brothers,

grandparents, who with their love and teachings

have allowed me to get big wins. To my love

Gina Vargas who encouraged and advised me

until the end.

Acknowledgments

I am grateful to my advisors Mario Linares and Jairo Aponte for their support and help

that I allowed reaching the dissertation goal. Their knowledge, advise and ideas were major

factor to perform this thesis.

I express my grateful to the members of ColSWE research group from Universidad Nacional

de Colombia and SEMERU research group from The College of William and Mary for their

time and feedback given to complete this work successfully.

To my parents, brothers, friends and my love Gina Vargas thanks for helping me uncondi-

tionally, for their patience and advise.

Abstract

Title in English
Prototype of a tool for automatic generation of commit messages for Java applications.

Título en español
Prototipo de una herramienta para la generación automática de recomendaciones de comen-

tarios de commit en aplicaciones Java.

Abstract
Although version control systems allow developers to describe and explain the rationale

behind code changes in commit messages, the state of practice indicates that most of the time

such commit messages are either very short or even empty. In fact, in a recent study of 23K+

Java projects it has been found that only 10% of the messages are descriptive and over 66% of

those messages contained fewer words as compared to a typical English sentence. However,

accurate and complete commit messages summarizing software changes are important to

support a number of development and maintenance tasks. This thesis presents an approach,

coined as ChangeScribe, which is designed to generate commit messages automatically from

change sets. ChangeScribe generates natural language commit messages by taking into

account commit stereotype, the type of changes (e.g., �les rename, changes done only to

property �les), as well as the impact set of the underlying changes. This work presents

the evaluation of ChangeScribe in an evaluative survey involving 23 developers in which

the participants analyzed automatically generated commit messages from real changes and

compared them with commit messages written by the original developers of six open source

systems. The results demonstrate that automatically generated messages by ChangeScribe

are preferred in about 62% of the cases for large commits, and about 54% for small commits.

Resumen
Aunque los sistemas de control de versiones le permiten a los desarrolladores de software

describir y explicar las razones por la cuales modi�caron el código fuente utilizando un

mensaje en el commit, en la práctica estos mensajes son muy cortos o incluso vacíos. De

hecho, en recientes estudios de 23K+ de proyectos Java se ha encontrado que el 10% de

los mensajes son descriptivos y alrededor del 66% de estos contienen pocas palabras com-

parado con el tamaño promedio de una oración escrita en el idioma inglés. Sin embargo,

resumir los cambios en el software de una manera precisa y completa es muy importante para

x

apoyar las tareas que se realizan en el desarrollo y mantenimiento de un software. Este tra-

bajo presenta ChangeScribe un prototipo para generar mensajes de commit usando lenguaje

natural y teniendo en cuenta el estereotipo del commit, el tipo de cambio (rename de un

archivo, cambios a archivos de propiedades, etc), y también el conjunto de impacto de los

cambios realizados. De otro lado, presenta la evaluación de ChangeScribe en un estudio de

usuarios que involucró 23 desarrolladores de software que analizaron los mensajes de commit

generados automáticamente por ChangeScribe y los mensajes de commit escritos por los

desarrolladores originales de seis sistemas open source. Los resultados demuestran que los

mensajes generados de forma automática por ChangeScribe son preferidos en cerca del 62%

de los casos en commits largos, y en cerca de 54% de los casos en commits cortos (pocas

modi�caciones).

Keywords
Commit message, software summarization, code changes

Palabras clave
Mensaje de commit, Software summarization, cambios al codigo fuente

Contents

Dedication v

Acknowledgments vii

Abstract ix

Contents xi

List of Figures xiii

List of Tables xiv

1. Introduction 1

1.1. Background and Justi�cation . 1

1.2. Problem De�nition . 2

1.3. Contributions . 4

1.4. Thesis Organization . 4

1.5. Bibliographical Notes . 4

2. Related work 6

2.1. Describing and Augmenting Context of Code Changes 7

2.2. Natural Language Descriptions of Software Artifacts 8

2.3. Empirical Studies on Characterizing Commit Messages 12

3. The approach: Generating commit messages for Java applications 13

3.1. Change Extraction . 14

3.2. Method and Commit Stereotype Identi�cation 14

3.3. Impact Set Analysis and Content Selection 17

3.4. Generating Commit Messages . 17

3.4.1. General Description . 18

3.4.2. Detailed Description . 19

3.5. Availability . 23

4. Evaluative survey: Evaluating generated commit messages 26

4.1. Research Questions . 26

xii Contents

4.2. Data Collection Process . 29

4.3. Replication Package . 30

4.4. Threats to Validity . 30

4.5. Results . 31

4.5.1. RQ1: Content Adequacy . 32

4.5.2. RQ2: Conciseness . 33

4.5.3. RQ3: Expressiveness . 34

4.5.4. RQ4: Which messages did participants prefer? Why? 35

5. Architecture of ChangeScribe 37

5.1. Git as data source . 38

5.2. Source code di�erencing . 40

5.3. Commit stereotype identi�cation . 40

5.4. Text generation . 41

6. Conclusions 43

A. Examples of commit messages generated with ChangeScribe 45

A.1. Generated commit message of Elastic Search project 45

A.2. Generated commit message of Spring Social project 45

A.3. Generated commit message of JFreeChart project 46

A.4. Generated commit message of JFreeChart project 47

A.5. Generated commit message of Apache Lucene/Solr project 47

A.6. Generated commit message of Apache Lucene/Solr project 48

A.7. Generated commit message of Apache Felix project 48

A.8. Generated commit message of Retro�t project 49

Bibliography 51

List of Figures

2-1. Architectural view of DeltaDoc . 9

2-2. Example of Commit 2.0 output [4] . 9

2-3. Example of output of Rastkar approach [24] 11

3-1. Architectural view of ChangeScribe . 14

3-2. Example of the commit signature of spring social commit 17

3-3. Visualization of ChangeScribe plug-in . 24

3-4. The two windows in the ChangeScribe Plugin: help window, a) lists stereo-

types (method and commit) and their descriptions; Preferences window, b)

allows developer to set variables such as the impact threshold, and the author

name. 25

4-1. Example of code changes describing a commit. The changes are presented

using a di�-based style similarly to GitHub 30

4-2. Example of a set of questions for a particular commit 31

5-1. ChangeScribe in action . 38

5-2. Component diagram of ChangeScribe . 39

5-3. Class diagram of Git component . 40

5-4. Class diagram of commit stereotype component 41

5-5. Class diagram of phrase generator component 42

List of Tables

2-1. Approaches for generating descriptions of source code changes and software

artifacts. The table lists the description type, artifacts (Code Changes,

Statement,Class,Method,BugReport,Code Fragment,CrosscuttingConceRn),

and techniques (InformationRetrieval, ProgramAnalysis, SoftwareVisualization,

Natural LanguageProcessing, Stereotypes Identi�cation,Unsupervised Learning,

Supervised Learning, Impact Analysis) . 6

2-2. Summary of a Java class generated by [16] 11

2-3. Commit types proposed by Hattori [32] . 12

3-1. Method stereotypes identi�ed by JStereoCode [29] 15

3-2. Commit types proposed by Dragan et al. [17] 16

3-3. Example of commit messages generated with two di�erent values of the impact

threshold . 20

3-4. ChangeScribe templates for descriptions of modi�ed types 21

3-5. Example of ChangeScribe's commit message, which includes details of refer-

ences to added/deleted classes . 22

3-6. Example of ChangeScribe's commit message, which includes details of classes

impacted by a method addition/deletion . 23

4-1. Java Projects hosted at GitHub and used in the survey. The table lists the

system description, total of commits at GitHub, number of developers, and

commits analyzed . 27

4-2. Survey questions aimed at evaluating message properties and collecting par-

ticipant preferences . 28

4-3. Content Adequacy evaluation of the original and automatic commit messages 33

4-4. Conciseness evaluation of the original and automatic commit messages . . . 34

4-5. Expressiveness evaluation of the original and automatic commit messages . . 35

1. Introduction

1.1. Background and Justi�cation

Changes to software systems are stored in version control systems (VCS) such as Subversion1

and Git2 and are partially documented in commit messages (a.k.a., commit notes, commit

comments, or commit logs). The main purpose behind commit messages is to describe

the changes and help encoding rationale behind those changes. These commit messages,

especially if they are correct and complete, are essential to program comprehension and

software evolution in general since they help developers understand and validate changes,

locate and re(assign) bug reports, and trace changes to other software artifacts.

However, the state of the practice on using and writing commit messages by actual developers

seriously discords with theory. In fact, the study by Maalej and Happel [1] analyzed more

than 600K+ commit messages and personal work descriptions demonstrating that 10% of

the messages were removed because they were empty, had very short strings (fewer than two

words) or lacked any semantical sense. Also, in another study of 23K+ software systems by

Dyer et al. [2] it has been shown that 14% of the commit messages were virtually empty, 66%

of the messages contained fewer words than a typical English sentence (i.e., 15 - 20 words)

and only 10% of analyzed messages were descriptive.

One possible explanation behind this dissonance between theory and practice has been re-

cently explored in several studies [3�5]. In particular, it has been observed that the number

and nature of daily activities by software developers, including a large number of inter-

ruptions, can in�uence their attention to modi�ed code [3, 4]. In fact, these daily activities

become one of the causes for ignoring or forgetting implementation details behind the changes

by commit time [5]. Moreover, identifying and remembering the exact set of changes done

during a commit can be hard and expensive for non-trivial large changes spanning across

multiple code packages, classes, methods, con�guration �les, database schemas, and other

artifacts [4].

Regardless of exact reasons or excuses for the vast majority of unusable commit messages,

commit messages still remain as an important source of information, knowledge, and docu-

1http://subversion.apache.org/
2Website of Git SCM http://git-scm.com/

http://subversion.apache.org/
http://git-scm.com/

2 1 Introduction

mentation that developers rely on while addressing software maintenance tasks [4,6,7]. The

main objective of a commit message is to provide information about the what and the why

as related to software changes [8]. The what refers to the changes implemented during the

incremental change while the why describes the motivation and context behind the changes.

Although the what details about the changes and changed code units can be generated

automatically and accurately with line-based di�erencing tools, these tools do not provide

enough context to understand the why behind the changes. Moreover, according to Buse and

Weimer [8], raw di�s are not always enough as a summary for some of the what questions

about the change, because raw di�s only report textual di�erences between two versions of

the �les, which is often long and confusing, and does not provide developers with answers

to many high-level questions.

Previous approaches tried to augment some of the what and why aspects of commit messages

by automatically enhancing them using visualization [4], code summarization [8], [9], and

line-based di�erencing [10]. In addition, a recent approach by Rastkar and Murphy [11]

used a multi-document summarization technique to describe the motivation behind software

changes.

1.2. Problem De�nition

Software applications are modi�ed constantly, and changes are stored in Version Control

Systems (VCS). Systems as Subversion, Mercurial, or Git are historical repositories of soft-

ware [6], and these allow di�erent actions during the development process. The commit

is one of those actions because the commit is the integration of the source code changes

into a version control system. Moreover, regardless to the VCS used by the development

team, VCS allow developers to write a message with a textual description of the source code

modi�cations.

The software development community uses the information of a commit in di�erent ways.

For instance, to understand the parts of the system changed and the reasons for these

modi�cations. Also, this information allows software developers to share the modi�cations

and synchronize their version of the source code with the modi�cations made by other

developers. As well, this information is raw data useful for research in software engineering,

speci�cally in software evolution, software maintenance and mining software repositories, in

order to understand and improve the development of systems from the history of artifacts

generated during this process. For instance, Sunghun et al. [12] used commit annotations

together with the descriptions of the Bug Tracking system Bugzilla3 to predict whether a

3Bug tracker or Bug Tracking System is an information system for recording and tracking of bugs and

supports the software developer with the quality assurance of the software projects.

1.2 Problem De�nition 3

change can introduce bugs in the system. Bachmann et al. [13] also used software repositories

such as SVN and Bugzilla to create a tool that allowed to link a bug report with its own

correction in the source code. The process involves the analysis of the information contained

in the bug report and the commit log. Also, if the descriptions of the changes and the bugs

have high quality, i.e., the information of changes is useful to understand the modi�cations

applied to the source code. Alonso [14] shows a method to determine the expertise of a

developer in a software project using text mining techniques on CVS logs.

Commit messages should contain descriptive information about the changes to the source

code, and this information should describe which parts of the source code changed, and

the reason for these for each one of the artifacts involved in the commit. According to

D'Ambros et al. [4] in the Eclipse project, 20% of the commits do not have a comment about

the changes and also the Vuze project has the same problem with around of 5300 of 13000

commits. Therefore, based on this numbers is reasonable to use tools such as Unix di� [15]

to extract the textual di�erences between versions of source code, and thus to make a general

model of the changes. This result can broaden the context within which changes were done.

However, this can not change the commit comment written by software developer and the

di� result can be too long confusing for the developer [8].

Studies as [13] [12] [14] [16] assumes that the commit messages of the commits contains a

detailed description about the changes applied to a set of �les. Usually, this description does

not provides information about the what and the why as related to software changes, and

both researchers and software developers are forced to work with information that is not

useful because the commit message does not descriptive or even sometimes this is empty.

For instance, in the repository of Mozilla project was found the following commit message

"Bug 494847 - Kill MTBF, r = dbaron", similarly in the repository of Netbeans project

"The same issue as in # 41049". Other example, can be found in the Macports-dev project

a developer commit changes with the following description "Going forward, could you I ask

you to be more descriptive in your commit messages? Ideally you should state what you've

changed and also why (unless it's obvious)"4.

Then, empty or non-descriptive commit messages hinder the evolution and maintenance tasks

with regard to the understanding of previous changes increasing the complexity to maintain

the software, the time to do a modi�cation, and also increasing project costs. Therefore,

worthwhile to propose a solution that help developers to generate automatically commit

messages describing the WHAT and the WHY of the commit.

4http://lists.macosforge.org/pipermail/macports-dev/2009-June/008881.html (Veri�ed may 24,

2014)

http://lists.macosforge.org/pipermail/macports-dev/2009-June/008881.html

4 1 Introduction

1.3. Contributions

This thesis presents a novel approach, coined as ChangeScribe, that automatically generates

commit messages for a given change-set between two adjacent versions of a Java system

and describes the what and why of a change in natural language by indicating commit

stereotype [17], type of changes (e.g., �les rename, changes done only to properties �les) and

the impact set of the changes. While ChangeScribe integrates some previously published

techniques it also o�ers a new way of summarizing code changes by taking into account

the impact set of changes being committed; the impact-value threshold is de�ned by the

developer and allows to �lter the content with change-set is large. ChangeScribe has been

instantiated to work with software applications written in Java and hosted using Git as an

underlying VCS. In general, this thesis makes the following contributions:

� An approach and tool, ChangeScribe, for automatic generation of commit messages for

Java applications hosted in Git repositories;

� An empirical study with 23 developers comparing ChangeScribe's commit messages

with those written by the original open source developers; and

� An open source Eclipse plug-in that implements the proposed approach and is publicly

available5.

1.4. Thesis Organization

The remainder of this thesis provides the following content: Chapter 2 reviews related work in

the �eld of software summarization, speci�cally on approaches that improve the description

of source code changes using visualization or natural language descriptions. Also, on commit

characterization. Chapter 3 presents ChangeScribe, our approach for automatic generation of

commit messages for Java projects hosted on Git. Chapter 4 presents the evaluative survey

applied to 23 software developers. Chaper 5 shows the ChangeScribe architecture and some

implementation details. Finally, some conclusions and future work are discussed in chapter

Chapter 6.

1.5. Bibliographical Notes

This section reports that parts of this thesis have been previously published in collabora-

tion with other researchers in the 14th IEEE International Working Conference on Source

5http://www.cs.wm.edu/semeru/data/ICSME14-ChangeScribe

http://www.cs.wm.edu/semeru/data/ICSME14-ChangeScribe

1.5 Bibliographical Notes 5

Code Analysis and Manipulation (SCAM 2014), which was held in Victoria, Canada from

September 28th to 28th. These parts have been used with the permission of the co-authors.

2. Related work

Automatic generation of commit messages is mainly related to (i) other approaches for

augmenting the context provided by di�erencing tools, (ii) techniques for generating natural

language descriptions for software artifacts, and (iii) previous studies on the characteristics

of commit messages. The di�erences between ChangeScribe and the related work are listed

in Table 2-1.

Table 2-1.: Approaches for generating descriptions of source code changes and software arti-

facts. The table lists the description type, artifacts (Code Changes, Statement,

Class, Method, Bug Report,Code Fragment, Crosscutting ConceRn), and

techniques (Information Retrieval, Program Analysis, Software Visualization,

Natural Language Processing, Stereotypes Identi�cation, Unsupervised

Learning, Supervised Learning, Impact Analysis)

Approach Type Artifact Technique

Semantic Di� [18] Abstract summary CC PA

Ldi� [10] Line-di� CC PA

iDi� [19] Line-di� CC PA

Parnin et al. [9] Abstract summary CC PA

DeltaDoc [8] Abstract summary CC PA

Rastkar and Murphy [11] Extractive summary CC IR

Commit 2.0 [4] Visual CC SV

Haiduc et al. [20] Extractive summary C+M IR

Hill et al. [21] Word sequences S NLP

Sridhara et al. [22] Abstract Summary M NLP

Rastkar et al. [23, 24] Abstract summary CCR PA+NLP

JSummarizer [16] Abstract Summary C NLP+SI

Lotufo et al. [25] Extractive summary BR UL

Rastkar et al. [26] Extractive summary BR SL

Ying and Robillard [27] Extractive summary CF SL

McBurney and McMillan [28] Abstract Summary M NLP+IR

ChangeScribe Abstract summary CC NLP+SI+IA

2.1 Describing and Augmenting Context of Code Changes 7

2.1. Describing and Augmenting Context of Code

Changes

Jackson and Ladd [18] introduced Semantic Di� tool, which detects di�erences between

two versions of a procedure, and then summarizes the semantic di�erences by using program

analysis techniques. Other approaches that improve line-based di�erencing tools are LDi� by

Canfora et al. [10] and iDi� by Nguyen et al. [19]. Parnin et al. [9] proposed an approach for

analysing di�erences between program versions at byte code statement level; for describing

the changes, type information and fully quali�ed source code locations of the changes (in

the source entity and the entities impacted by the change) are presented. ChangeScribe

also relies on line-based di�erencing, however it augments the context of the changes with a

natural language description that includes the commit stereotype, change descriptions, and

impact set.

Buse and Weimer [8] designed an automatic technique, DeltaDoc, to describe source code

modi�cations using symbolic execution and summarization techniques. DeltaDoc generates

textual descriptions of the changes, but when the change-set is very large (i.e. many �les

or methods), it describes each method separately ignoring possible dependencies of those

methods. DeltaDoc takes as input two revisions of a software and generates a commit

message based only on modi�ed methods ignoring added and removed methods. As the �rst

step DeltaDoc computes the conditions under which a path is executed. Then, as the second

step the documentation is generated describing the e�ects of the modi�cations on behaviour

of the software. As the third step, the documentation is summarized to reduce the size

because the message can be as long as Unix di�. The summarization process loses context

information because this does not preserve the source code semantics. The last step, the

content is �ltered where only the relevant statements such (i.e. return and throw statements)

are retained and other as assignments to local variables are not. The process implemented

by DeltaDoc is depicted in the Figure 2-1.

Recently, Rastkar and Murphy [11] proposed a multi-document summarization technique

for describing the motivation behind a change. The main concept of this approach is based

on the extraction and generation of information of related documents to the source code

such as feature requests, emails and bug reports. In the �rst step of the summarization

process a set of relevant documents is constructed. Once the documents are selected, they

identify the most important sentences to form the summary. Finally, they �lter the content

using a proposed ranking based on eight relevant features, documents adjacency, sentence

frequency, sentence similarity, sentence similarity to the document title, sentence position in

the document, and the sentence length, among others.

The code context of source code changes can be also augmented using visualizing tools.

8 2 Related work

For instance, D'Ambros et al. [4] proposed Commit 2.0, a tool for augmenting commit logs

with a visual context of the changes. Commit 2.0 provides a visualization of the changes at

di�erent granularity levels, and allows developers to annotate the visualization. Commit 2.0

only considers structural changes as additions, deletions of instance variables, the change

annotations are sent to software repository as usual, but the visualizations are sent to a blog

service called Posterous 1. In Commit 2.0, the Java packages are represented as rectangles,

and the classes are viewed as rectangles within corresponding package. In the rectangle

representing classes, the width is proportional to the number of attributes, and the height

to the number of methods, but the size of packages means nothing. This approach enables

to software developer a di�erent way to view and comment the changes, but the problem of

reducing the e�ort and time is not resolved. The Figure 2-2 shows Commit 2.0 output.

As compared to the approaches above, DeltaDoc contains information about the what of the

change, in the Rastkar and Murphy approach the importance is for the why of the change.

In our approach, the commit messages generated contain more information on the what

about the changes including information on dependencies and do not require using artifacts

of multiple types. While ChangeScribe only generates a textual description, however, in the

future work, visualization like the one in Commit 2.0 can be integrated into our proposed

approach.

2.2. Natural Language Descriptions of Software

Artifacts

Summarizing software artifacts is an active research topic in software maintenance and most

of the existing techniques work mainly on source code artifacts. Haiduc et al. [20] proposed

an approach for summarizing methods and classes as collections of the most representative

terms from the source code; the terms were extracted and selected using di�erent Information

Retrieval techniques (e.g., VSM and LSI) and leading summaries. The most relevant result

obtained with this approach was that the summaries formed with leading terms of classes

and methods and terms extracted with VSM are the most pertinent for software developers.

Also, for the summarization techniques based on text retrieval, VSM obtained higher scores

for relevant information evaluation because VSM favours terms with high frequency in the

documents. Regarding to summary size the evaluators prefer summaries with 10 relevant

terms and not with 5 relevant terms because the �rst ones contains more relevant information

than shorten alternative.

Hill et al. [21] used natural language processing (NLP) techniques for generating natural

language phrases (i.e., sequences of words) from source code units that are relevant to a

1Website of Posterous https://posterous.com/ (Veri�ed may 29 of 2014)

2.2 Natural Language Descriptions of Software Artifacts 9

Predicate
extraction

Document
generation

Text
optimization

Acceptation
test

Version 2

Version 1

Change
summary

Figure 2-1.: Architectural view of DeltaDoc

Figure 2-2.: Example of Commit 2.0 output [4]

10 2 Related work

query. In this approach proposes an algorithm to extract information of source code identi�er

using verb, noun and prepositional phrases. The process implemented by Hill is composed

of four steps: (i) splitting source code identi�ers. (ii) computing the treatment (verb, noun

or prepositional phrase) to all �elds and methods of a class. (iii) identifying verb, direct and

indirect objects, and preposition. (iv) inferring arguments to generate additional phrases.

Sridhara et al [22] proposed generating natural language comments for Java methods us-

ing summarization techniques; the method's comments are generated from elements in the

method's signature and body, which are identi�ed as relevant to the method behaviour. This

approach assumes that no comment of classes and methods are present because this docu-

mentation frequently is outdated. The automatic summary generation is composed of three

components: (i) the content selection to be included in the summary. (ii) natural language

generation to describe the content of the Java type. (iii) combining the generated sentences.

This work uses a novel approach that capture the conceptual knowledge of the software

developers using linguistic information of the source code and the language semantic, this

model is know as Software Word Usage Model (SWUM).

Rastkar et al. [23, 24] described cross-cutting concerns and how they were implemented in

a system; the summaries contained sentences describing salient code elements (i.e., relevant

to the concern), and the sentences were generated using structural and natural language

information that is extracted from the source code. The proposed approach is composed by

the following steps: (i) extract structural and natural language facts from the source code

represented as an ontology (ii) apply a set of heuristics to the previous ontology to �nd

patterns and salient code elements (iii) generate sentences using the previous information

(patterns, salient code elements, information from the ontology) and using de�ned templates.

The Figure 2-3 shows an example of generated summary.

Moreno et al. [16] proposed a technique for generating summaries of Java classes in JavaDoc

format composed of three parts: (i) general description explaining the objects represented

by the class, (ii) class stereotype [29] description including the class responsibilities, and (iii)

class behaviour description. The summary generation process is composed of the following

steps: (i) method and class stereotype identi�cation, (ii) content selection based on two

proposed heuristics (using the stereotypes and the access level of Java types), and (iii)

generation of a readable text describing the class using the JavaDoc format. An example of

a generated summary with this approach is showed in Table 2-2.

Ying and Robillard [27] used machine learning techniques for summarizing Java code frag-

ments. McBurney and McMillan [28] generate summaries of Java methods by including local

information (keywords in the method) and contextual information (keywords in the most im-

portant referenced methods). Other artifacts such as bug reports have been summarized by

2.2 Natural Language Descriptions of Software Artifacts 11

Figure 2-3.: Example of output of Rastkar approach [24]

Table 2-2.: Summary of a Java class generated by [16]

An AbstractPlayer extension for m player

handlers. This entity class consists mostly

of mutators to the m player handler's state.

It allows managing:

- mute;

- volume; and

- next with no gap.

Also allows:

- �nishing m player handler;

- handling next;

- playing audio �le f;

- stopping m player handler;

- playing m player handler; and

- handling previous.

using machine learning techniques [25,26]. For instance, Lotufo et al. [25] used unsupervised-

12 2 Related work

learning methods, meanwhile Rastkar et al. [26] used supervised-learning approaches that

are suitable for summarizing conversational data (e.g., email and forum discussions).

2.3. Empirical Studies on Characterizing Commit

Messages

Few studies have mined software repositories aimed at characterizing commit messages. Alali

et al. [30] analysed distributions of terms in commit messages of nine open source systems.

The results suggest that vocabulary terms such as �x, add, test, bug, patch are in the top ten

list of most frequently used terms; the combinations �le-�x, �x-use, add-bug, remove-test,

and �le-update are the most frequent sets. In order to characterize the commits with respect

to the number of �les and lines the results show that 75% of commits are small in all cases

(lines and �les). The largest commits do not happen frequently, for instance when the license

is updated in each �le or modifying a large class. In this approach, a change is considered

small when the developer modi�es between 0 and 5 lines of the source code or when modi�es

only 1 �le. In addition, Dyer et al. [2] found that 14% of the commit messages from 23k+

Java projects from SourceForge are empty; only 10% of the messages are descriptive; and

over 66% of the messages contain only one to �fteen words.

Other studies such as [31] and [32], did not analyse the characteristics of commit messages,

but used commit messages to categorize the commits in terms of the change type. For

example, Hindle et al. [31] proposed a commit classi�cation for large commits based on the

commit intention, for example if the commit �x a bug, add a module, modify the legal

information, among others. Similarly, Hattori et al. [32] proposed a classi�cation based on

the commit size and content of the commit messages. The proposed classi�cation based on

the size is showed in the Table 2-3. This classi�cation is used in this work as reference to

study the performance of ChangeScribe for di�erent commit size.

Table 2-3.: Commit types proposed by Hattori [32]

Commit type Size (number of �les)

Tiny 1 to 5

Small 6 to 25

Medium 25 to 125

Large up to 125

3. The approach: Generating commit

messages for Java applications

ChangeScribe was conceived as an approach for helping developers to generate commit mes-

sages automatically. Therefore, ChangeScribe is integrated with the JGit plug-in1, and the

message generation process is triggered when a developer decides to commit a set of changes

to the repository. Then, the commit message (automatically generated by ChangeScribe) is

presented in an editable text area to allow developers to add rationale and include issue-ids

to link the commit to a feature/issue request. Currently, ChangeScribe does not link change

sets to issue tracking systems because we wanted to provide a general approach able to work

when no issue trackers are available. However, future extensions of ChangeScribe will include

the feature for linking commits to features/issues.

Our approach is aimed at summarizing code changes between two adjacent versions of a

system; in addition, the messages include commit stereotypes and sentences that could help

describe the motivations behind the changes. However, augmenting the context provided

by di�-line based descriptions also has a drawback: large commits can generate large de-

scriptions. We take care of this limitation by allowing developers to select the length of the

message. Yet we did not base it on the number of lines or characters, because truncating the

description can impact semantics of the message. Instead, we de�ned an impact-set based

metric to show only modi�ed classes with an impact set above certain threshold. For each

class in the change set, the impact value is measured by the number of its methods im-

pacted by the change (i.e., class added, class removed, class modi�ed) over the total number

of methods in the commit. The threshold is de�ned by the developer during the commit

process, and allows her to control the length of the message without truncating it arbitrarily.

The process for generating commit messages (Figure 3-1) using ChangeScribe takes as input

two adjacent versions (i.e., Vi−1 and Vi) of a Java project versioned in Git. The process

includes the following steps: 1 extraction of source code changes for added, removed or

modi�ed types (e.g. class or interface); 2 detection of method responsibilities within a class

using method stereotypes; 3 characterization of the change set using commit stereotypes; 4

estimation of the impact set for the changes in the commit; 5 selection of the content (i.e.,

�ltering) based on the impact-value threshold de�ned by the developer; and 6 generation of

1Website of JGit project http://www.eclipse.org/jgit/

http://www.eclipse.org/jgit/

14 3 The approach: Generating commit messages for Java applications

ChangeScribe - core

Changes Extraction
(JGit + Change Distiller)

Java project
version i

Java project
version i-1

1
Method Stereotypes

Identification
(JStereoCode)

Commit Stereotypes
Identification

2

3

Stereotypes Detector Message Generator

Content Filtering

Impact Set Analysis

Sentences Generation

Impact
threshold

4

5

6

ChangeScribe - GUI

Figure 3-1.: Architectural view of ChangeScribe

change descriptions for each modi�ed type that exceed the impact-value threshold de�ned

by the developer, and the general description for the commit. In the following sections, we

describe the details for each one of these steps.

3.1. Change Extraction

We extract the change set between two adjacent versions of a Java project by using the

JGit2 library for Eclipse. For each element of the change set we identify the change type

(i.e., addition, deletion or modi�cation) and the renamed �les. If a Java type (class or

interface) is updated, then we identify source code changes using the Change Distiller tool

implemented by Fluri et al. [33]; Change Distiller extracts �ne-grained source code changes

based on a customized tree di�erencing algorithm.

3.2. Method and Commit Stereotype Identi�cation

A method stereotype describes method intents and its responsibilities within the class [34].

Those responsibilities/intents can be categorized as structural, behavioral, creational, and

collaborational. For instance, a creational method creates and destroys objects; structural

methods are responsible of getting and setting attributes of an object; collaborational meth-

ods de�ne the communication between objects of an application. We used JStereoCode

implementation proposed by Moreno et al. [29] to identify method stereotypes by analysing

2Implementation of Git SCM in Java. http://wiki.eclipse.org/JGit/

http://wiki.eclipse.org/JGit/

3.2 Method and Commit Stereotype Identi�cation 15

abstract syntax trees and using the rules proposed by Dragan et al. [34]. Table 3.2 lists

method stereotypes identi�ed by JStereoCode tool.

Table 3-1.: Method stereotypes identi�ed by JStereoCode [29]
Category Method stereo-

type

Description

Structural

A
cc
es
so
r

Get Returns a local �eld directly

Predicate Returns a Boolean value

that is not a local �eld

Property Returns information about

local �elds

Void accessor Returns information about

local �elds through the pa-

rameters

M
u
ta
to
r

Set Changes only one local �eld

Command Changes more than one lo-

cal �elds

Non-void com-

mand

Command whose return

type is not void or Boolean

Creational

Constructor Invoked when creating an

object

Destructor Performs any necessary

clean-ups before the object

is destroyed

Copy construc-

tor

Creates a new object as a

copy of the existing one

Factory Instantiates an object and

returns it

Collaborational

Collaborator Connects one object with

other type of objects

Controller Provides control logic by in-

voking only external meth-

ods

Local controller Provides control logic by in-

voking only local methods

Degenerate

Abstract Has no body

Empty Has no statements

Incidental Any other case

Method stereotypes [34] of added, removed, or modi�ed methods are used to compute the

commit stereotype [17]. According to Dragan et al. [17] a commit is characterized by aggre-

gating the responsibilities of added and removed methods. Therefore, commit stereotypes

can provide information about the intention of a change because it provides information

about the types of design changes were performed to the software system in a commit.

ChangeScribe uses the method stereotypes to identify commit's intent using rules proposed

by Dragan et al. [17] (See Table 3-2), which consider only added/removed methods; we

included also the stereotypes of modi�ed methods to characterize the commit.

16 3 The approach: Generating commit messages for Java applications

Table 3-2.: Commit types proposed by Dragan et al. [17]

Commit type Description Rule

Structure modi�er Only the simple accessor

and mutator, get and set,

are present.

|get| + |set| 6= 0

|methods| - (|get| + |set|) = 0

State Access modi-

�er

Consists mostly of accessors |accessors| > 2/3 . |methods|

State update modi-

�er

Consists mostly of mutators |mutators| > 2/3 . |methods|

Behavior modi�er Consists mostly of com-

mand and non-void-

command methods

|non-void command| +

|command| > 2/3 . |methods|

Object creation

modi�er

Consists mostly of factory

methods

|factory| > 2/3 . |methods|

Relationship modi-

�er

More collaborators than

non- collaborators.

Not all the methods

are factory methods.

Low number of controller

methods.

|collaborators| >

|non-collaborators|

|factory| < 1/2 . |methods|

|controller| < 1/3 . |methods|

Control modi�er Many control features Con-

troller is present

|controller| + |factory| >

2/3 . |methods|

Large modi�er Categories of stereotypes

(accessor with muta-

tor) and (factory with

controller) have to par-

ticipate in distributions

not in small proportions

Controller or factory

have to be present

Number of methods in

a commit is high

|accessors| + |mutators| >

1/5 . |methods|

|factory| > 1/10 . |methods|
∨

|controller| > 1/10 . |methods|

|accessors| <= 1/2.|methods|
∨

|mutators| <= 1/2 . |methods|

|factory| 6=0
∨

|controller|6=0

|methods| > average + stdev

Lazy modi�er Has to contain get/set

methods It might have a

large number of degenerate

methods Occurrence of

other stereotypes is low

|get| + |set| 6= 0

|methods| - (|get| + |set| -

|degenerate|) <= 1/3 . |methods|

|degenerate| > 1/3 . |methods|

Degenerate modi-

�er

Has at least one degenerate

method

|degenerate| > 1

Small modi�er Number of methods in a

class is less than 3

|methods| < 3

The commit signature proposed by Dragan et al. [17] refers to the distribution of method

stereotypes that are added and removed methods, considering this signature as a graphic

3.3 Impact Set Analysis and Content Selection 17

representation of the commit stereotype. Based on the above, the commit signature describes

the structural complexity of a source code change. For instance, in the Spring Social change
3, the commit stereotype for this change-set is object creation modi�er commit, it allows de-

veloper to understand that those modi�cations to the software system gains more creational

features because the modi�ed types contains many factory methods (2 constructor method,

5 factory method and 1 controller method), the Figure 3-2 depicts the commit signature.

In ChangeScribe for each change-set the commit stereotype is used in the generated commit

message and the commit signature is a visual element for augmenting the context of the

source code changes when the developer is doing the commit, this signature is not available

after doing the commit of the changes.

Figure 3-2.: Example of the commit signature of spring social commit

3.3. Impact Set Analysis and Content Selection

Once the commit stereotypes are identi�ed, we �ltered the content to be included in the

commit message. For each class in the change set, ChangeScribe computes the impact value

measured as the relative number of methods impacted by a change in the commit. For

example, the number of methods invoking a new class over the total of methods in the

change set. Then, a class is included in the commit message if its impact-value is greater

or equal to the impact threshold de�ned by the software developer (the rationale here is to

include only classes that have more impact in the change set). Table 3-3 lists two examples

of commit message when the developer disables the �lter and uses an impact threshold of

17%.

3.4. Generating Commit Messages

The message is composed of three elements: (i) tag (only for non-initial commits), (ii) general

description, (iii) detailed description of the changes.

3 http://goo.gl/xyp3cS

http://goo.gl/xyp3cS

18 3 The approach: Generating commit messages for Java applications

3.4.1. General Description

The general description characterizes the change set providing a general overview of the

commit. It has the following parts: (i) a phrase describing whether this change-set is an initial

commit, (ii) a phrase describing commit's intent, (iii) a phrase describing class renaming, (iv)

a sentence listing the new modules, (iv) a sentence indicating whether the commit includes

changes to properties or internationalization �les.

The commit intent is described using the commit stereotype, and the corresponding sentence

is generated using the template below:

This is a <commit stereotype> : <commit stereotype description>

For example, if the change set consists mostly of factory methods, the sentence will be

"This is a degenerate modi�er commit: this change set is composed of empty, incidental,

and abstract methods. These methods indicate that a new feature is planned".

When new modules are added, we add a sentence using the following template:

The commit includes these new modules: <module 1>, <module 2>, ..., <module

n>

We consider a module as a functional unit that groups code units with the same responsi-

bilities (i.e., a package). For example, one commit for the Spring Social4 includes two new

packages and this change is described by ChangeScribe as follows: The commit includes these

new modules: facebook, twitter.

ChangeScribe also describes other relevant changes such as class renames by using the follow-

ing sentence: "This commit renames some �les". In addition, when the change set includes

changes to property or internationalization �les, the general description includes a sentence

generated with the following template:

This commit includes changes to internationalization, property or con�guration

�les (<�le 1>, <�le 2>, ... , <�le n>)

4goo.gl/XzSxbu

goo.gl/XzSxbu

3.4 Generating Commit Messages 19

For example, one commit in Apache Solr 5 modi�es several property, con�guration and

internationalization �les, and ChangeScribe describes the change as follows: This com-

mit includes changes to internationalization, property or con�guration �les (CHANGES.txt,

schema-complex-phrase.xml, solrcon�g-query-parser-init.xml).

3.4.2. Detailed Description

This part of the commit message describes the changes made to each Java type (class or

interface) that exceed the impact threshold de�ned by a developer, and the changes are

organized according to packages. According to the change type, if it was an addition or

deletion, our approach describes the class' goal and its relationships with other objects.

Moreover, if an existing �le is modi�ed, we describe the changes for each inserted, modi�ed

and deleted code snippet.

For each class added or removed, we describe the responsibilities by extracting information

from source code identi�ers based on the approach by Hill et al. [21]. ChangeScribe gener-

ates noun, verb or prepositional phrases using method identi�ers. For example, for the con-

structor with the signature public CloudGateway(Settings, ClusterName, CloudBlobStore-

Service), ChangeScribe will generate the sentence "Instantiate cloud gateway with settings,

cluster name and cloud blob store service" ; for the method of the class CloudGateway with

signature void doStart(), ChangeScribe will generate the sentence: "Start cloud gateway".

ChangeScribe generates sentences for class signatures (a.k.a., class declaration) using the

class stereotypes proposed by Moreno et al. [35]. The following template is used to generate

sentences for class signatures:

<change type> <class stereotype> <represented object>. It allows: <methods

description>

For example, for the ConstructorCodeAdapter class responsible for data encapsulation, the

sentence generated is "Add an entity class for constructor code adapter" ; and with the class

declaration public class TwitterService implements TwitterOperations, ChangeScribe

generates the sentence Add a TwitterOperations implementation for twitter service. It allows

[...].

5goo.gl/uokJfW

goo.gl/uokJfW

20 3 The approach: Generating commit messages for Java applications

Table 3-3.: Example of commit messages generated with two di�erent values of the impact

threshold

ChangeScribe message without �lter

BUG - FEATURE: <type-ID>

This is a degenerate modi�er commit: this change set is composed of empty,

incidental, and abstract methods. These methods indicate that a new feature

is planned. This change set is mainly composed of:

1. Changes to package org.springframework.social.connect.web:

1.1. Modi�cations to ConnectController.java:

1.1.1. Add try statement at oauth1Callback(String,NativeWebRequest)

method 1.1.2. Add catch clause at oauth1Callback(String,NativeWebRequest)

method 1.1.3. Add method invocation to method warn of logger object at

oauth1Callback(String,NativeWebRequest) method

1.2. Modi�cations to ConnectControllerTest.java:

1.2.1. Modify method invocation mockMvc at oauth1Callback() method 1.2.2.

Add a functionality to oauth 1 callback exception while fetching access token

2. Changes to package org.springframework.social.connect.web.test:

2.1. Add a ConnectionRepository implementation for stub connection reposi-

tory. It allows to:

Find all connections; Find connections; Find connections to users; Get con-

nection; Get primary connection; Find primary connection; Add connection;

Update connection; Remove connections; Remove connection

Referenced by: ConnectControllerTest class

ChangeScribe with �lter (Impact threshold = 17%)

BUG - FEATURE: <type-ID>

This is a degenerate modi�er commit: this change set is composed of empty,

incidental, and abstract methods. These methods indicate that a new feature

is planned. This change set is mainly composed of:

1. Changes to package org.springframework.social.connect.web:

1.1. Modi�cations to ConnectController.java:

1.1.1. Add try statement at oauth1Callback(String,NativeWebRequest)

method 1.1.2. Add catch clause at oauth1Callback(String,NativeWebRequest)

method 1.1.3. Add method invocation to method warn of logger object at

oauth1Callback(String,NativeWebRequest) method

When the Java type is modi�ed, ChangeScribe generates phrases for all changes at statement

level. The Change Distiller tool [33] generates a list of classi�ed changes based on the

operation type (insertion, deletion or modi�cation) and the changes to the abstract syntax

tree. This information is used by ChangeScribe for generating sentences and describing the

modi�ed types using the text templates listed in Table 3-4. For example, when a new

method is added, the sentence generated is Add an additional functionality to <Object>.

But, if the method is removed, the resulting sentence is remove functionality to <Object>.

In addition, we included context information such as the visibility, or whether the method

is unused: remove an unused functionality from <Object>.

3.4 Generating Commit Messages 21

Table 3-4.: ChangeScribe templates for descriptions of modi�ed types
Change type Template (T) and example (E)

Add/remove functionality

T: <operation> <context information> functionality to <func-

tionality name>

E: Remove an unused functionality to rescore search source builder

Class rename

T: Rename type <old class name> with <new class name>

E: Rename type InternalSettingsPerparerTests with InternalSet-

tingsPreparerTests

Method rename
T: Rename <old method name> with <new method name>

E: Rename buckets method with getBuckets

Object state rename
T: Rename <old name> object attribute with <new name>

E: Rename rescore method with addRescore

Add/remove/update vari-

able declaration

T: <operation> variable declaration statement at <method

name>

E: Add variable declaration statement at backgroundIn-

voke(Method,Object[]) method

Add/remove object state
T: <operation> (object state) <attribute name> attribute

E: Add (Object state) entries attribute

Change attribute type

T: Change attribute type <old type> with <new type>

E: Change attribute type RescoreBuilder with

List<RescoreBuilder>

Update parent class

T: <operation> parent class <old parent class name> with <new

parent class name>

E: Modify the parent class DirectoryReader with FilterDirecto-

ryReader

Add/remove parent class
T: <operation> parent class <parent class name>

E: Remove parent class DirectoryReader

Update parent interface

T: Modify parent interface <parent interface name> with <new

parent interface name>

E: Remove parent class DirectoryReader

Add/remove parent inter-

face

T: <operation> parent interface <parent interface name>

E: Remove parent class DirectoryReader

Add/remove/update

Javadoc

T: <operation> javadoc at <class/method name>

class/interface/method

E: Modify javadoc at Histogram interface

E: Modify javadoc at rescore() method

Decrease/increase acces-

sibility of attributes and

methods

T: Decrease/Increase accessibility of <old accessibility> to <new

accessibility> at <attribute or method name> attribute/method

E: Decrease accessibility of protected to private at method get-

Name()

Parameter type change

T: Type's <parameter name> change of <old type> with <new

type> at <method name> method

E: Type's size change of String with Long at setSize(Long size)

For each added, removed or modi�ed type (i.e., class), a sentence is added to describe the

impact of the change in two ways: (i) references to the type in the change set, and (ii)

co-lateral changes triggered when a method was added to or removed from an existing class.

The �rst case uses the text template below:

22 3 The approach: Generating commit messages for Java applications

Referenced by: <class name 1> class, <class name 2> class, ... , <class name n>

class

For the second case, we use the text template (<operation>:= added | deleted):

The <operation> methods triggered changes at <class name 1>, <class name 2>,

... , <class name n>

The complete commit message is created by concatenating the general description and de-

tailed description. Table 3-5 shows a complete commit message for a change set in Spring

Social Java project6. Table 3-6 shows the complete commit message for another change set7,

which updates a class with a new constructor method. This change triggered modi�cations

to other classes (the OAuth2ProviderSignInAccount class) and this case is documented by

ChangeScribe. Other examples of commit messages generated with ChangeScribe are listed

in Appendix A.

Table 3-5.: Example of ChangeScribe's commit message, which includes details of references

to added/deleted classes

BUG - FEATURE: <type-ID>

This is a small modi�er commit that does not change the system signi�cantly. This

change set is mainly composed of:

1. Changes to package org.springframework.social.oauth2:

1.1. Modi�cations to AccessGrant.java:

1.1.1. Add a constructor method

The added/removed methods triggered changes to OAuth2ProviderSignInAccount

class

2. Changes to package org.springframework.social.web.signin:

2.1. Modi�cations to OAuth2ProviderSignInAccount.java:

2.1.1. Modify arguments list when calling connect method at connect(Serializable)

method

6http://goo.gl/a1q8Xh
7http://goo.gl/ch4PZK

http://goo.gl/a1q8Xh
http://goo.gl/ch4PZK

3.5 Availability 23

Table 3-6.: Example of ChangeScribe's commit message, which includes details of classes

impacted by a method addition/deletion

BUG - FEATURE: <type-ID>

This is a small modi�er commit that does not change the system signi�cantly. This

change set is mainly composed of:

1. Changes to package org.springframework.social.oauth2:

1.1. Modi�cations to AccessGrant.java:

1.1.1. Add a constructor method

The added/removed methods triggered changes to OAuth2ProviderSignInAccount

class

2. Changes to package org.springframework.social.web.signin:

2.1. Modi�cations to OAuth2ProviderSignInAccount.java:

2.1.1. Modify arguments list when calling connect method at connect(Serializable)

method

3.5. Availability

ChangeScribe is built as an Eclipse plug-in and released under Eclipse Public License, EPL
8. The most recent version of the plug-in is available to download here9. ChangeScribe can

be installed on Windows, Linux and Mac. Before installing ChangeScribe you should: install

Java 7+ and download Eclipse Juno 4.2+. The plug-in provides the following features: (i)

Automatic generation of commit messages. (ii) A visualization of the method's stereotype

distribution in the commit, namely commit signature by Dragan et al. [17]. (iii) An help

button describing commits/methods stereotypes. (iv) ChangeScribe is integrated to the

commit mechanism: it allows to select the classes to be committed, and has a button for

committing the code and the message to the Git repository. (v) It has a settings window

to enable the stereotypes visualization, set the name of the committer/author, and set the

threshold for the impact �lter when the commit is large (contains several �les, for instance

when change-set is an initial commit). The Figure 3-3 depicts the plug-in user interface.

The help button shows a window with the explanation of the commit/method stereotypes.

This guide explains each commit stereotype and shows the color used to represent in the

commit signature, as can be seen in the Figure 3-4-a. In the case of method stereotypes,

the help guide shows a table with all descriptions of the method stereotypes.

The describe button is responsible to launch the ChangeScribe message generator using the

8Eclipse Public License de�nition: http://www.eclipse.org/legal/epl-v10.html (Veri�ed May 24 of

2014)
9Website of ChangeScribe update site http://www.cs.wm.edu/semeru/changescribe/update/

http://www.eclipse.org/legal/epl-v10.html
http://www.cs.wm.edu/semeru/changescribe/update/

24 3 The approach: Generating commit messages for Java applications

Generated
Commit
message

Commit
signature

List of
modified files

Commit/push
buttons

Figure 3-3.: Visualization of ChangeScribe plug-in

�les selected in the list of modi�ed �les. Also, to con�gure ChangeScribe plug-in, such as

de�ne the committer/author user name, activate/deactivate the impact set-based �ltering

and to de�ne the impact threshold. This window is depicted in the Figure 3-4-b.

3.5 Availability 25

a. Help window b. ChangeScribe preferences window

Figure 3-4.: The two windows in the ChangeScribe Plugin: help window, a) lists stereotypes

(method and commit) and their descriptions; Preferences window, b) allows

developer to set variables such as the impact threshold, and the author name.

4. Evaluative survey: Evaluating

generated commit messages

We conducted a evaluative survey to assess our approach. The goal of this survey is to assess

the quality of commit messages generated by ChangeScribe. The context is 50 commits

from 6 open source projects (i.e., Elastic Search, Spring Social, JFreeChart, Apache Solr,

Apache Felix, and Retro�t) hosted at GitHub (see Table 4-1), and written in Java. The

commit messages were selected randomly while manually looking for a diverse set of messages,

including those representing initial commits, refactoring, large commits, short commits, and

commits with pseudo-messages. In terms of size-categories de�ned by Hattori and Lanza [32],

4 commits are tiny, 10 are small, 17 are medium, and 19 are large. Also, our decision to use

Java projects in the survey is based on the fact that some of the elements in our automatically

generated commit messages are built using previous techniques designed for Java projects.

In addition, the projects that we selected are fairly active and mature software systems that

have been used in the case studies before.

Since ChangeScribe uses code summarization techniques for generating commit messages,

we decided to use an evaluation framework, which was previously used for assessing auto-

matically generated code summaries [22] [16]. Therefore, the quality focus of the survey is on

the evaluation provided by real developers regarding the content adequacy, conciseness, and

expressiveness. In addition, we wanted to understand other attributes that are important

for useful commit messages as perceived by developers.

4.1. Research Questions

In the context of our survey, we de�ned the following research questions:

� RQ1: Does the content adequacy of commit messages generated by ChangeScribe out-

perform real commit messages?

� RQ2: Does the conciseness of commit messages generated by ChangeScribe outperform

real commit messages?

4.1 Research Questions 27

� RQ3: Does the expressiveness of commit messages generated by ChangeScribe outper-

form real commit messages?

� RQ4: What are the attributes that describe commit messages preferred by developers?

Table 4-1.: Java Projects hosted at GitHub and used in the survey. The table lists the

system description, total of commits at GitHub, number of developers, and

commits analyzed
Project Description Commits@GH #Devs. Analyzed

Elastic Search
Distributed restful search

engine
7474 159 5

Spring social

Library for connecting

applications with SaaS

providers such as Face-

book and Twitter.

1559 12 10

JFreeChart
Java chart library for

professional quality

charts.

323 7 10

Apache Solr
Open source enterprise

search platform
10K 16 10

Apache Felix
Open source implemen-

tation of OSGI speci�ca-

tion

10K 11 10

Retro�t
Type-safe REST client

for Android and Java
666 447 5

The �rst three research questions (i.e. RQ1-RQ3) aim at comparing real commit messages

to messages generated by ChangeScribe, based on the three properties: content adequacy,

conciseness, and expressiveness. Meanwhile, the purpose of the last research question (RQ4)

is to identify developers' preferences in terms of other attributes/properties of commit mes-

sages. For RQ1-RQ3, we evaluated the quality of a property in a commit message by using

a 3-points Likert Scale similarly to [16]. For RQ4, we asked the participants to select the

message that they preferred (i.e., original developer's or the one by ChangeScribe) and write

speci�c rationale for the choice. Table 4-2 lists the questions that we used to evaluate each

one of the research questions.

To validate the results for each property are statistically signi�cant, when comparing the

rankings of the original message vs ChangeScribe's message, we used the Mann-Whitney

28 4 Evaluative survey: Evaluating generated commit messages

Table 4-2.: Survey questions aimed at evaluating message properties and collecting partic-

ipant preferences

Property (RQ) Question Possible Answers

Content adequacy

(RQ1)

Considering only the content of

the commit message and not the

way it is presented, do you think

that the commit message?

1. Is not missing any relevant

information.

2. Is missing some information

but the missing information

is not necessary to under-

stand the commit.

3. Is missing some very impor-

tant information that can

hinder the understanding of

the commit

Conciseness (RQ2) Considering only the content of

the commit message and not the

way it is presented, do you think

that the commit message?

1. Has no unnecessary infor-

mation

2. Has some unnecessary in-

formation

3. Has a lot of unnecessary in-

formation

Expressiveness (RQ3) Considering only the content of

the commit message and not the

way it is presented, do you think

that the commit message?

1. The message is easy to read

and understand

2. Is somewhat readable and

understandable

3. Is hard to read and under-

stand

Preferences (RQ4) When comparing both commit

messages, which one do you pre-

fer?
1. COMMENT 1

2. COMMENT 2

Preferences (RQ4) Why do you prefer that? Open question

test [36] with α = 0.05. We also computed the Cli�'s delta d e�ect size [37] to measure the

magnitude of the di�erence. We followed the guidelines in [37] to interpret the e�ect size

values: negligible for |d| < 0.147, small for 0.147 ≤ |d| < 0.33, medium for 0.33 ≤ |d| <

4.2 Data Collection Process 29

0.474 and large for |d| ≥ 0.474.). Because we are not assuming population normality and

homogeneous variances, our decision in terms of statistical test was to use non-parametric

methods (Mann-Whitney test, and Cli�`s delta).

4.2. Data Collection Process

In order to evaluate the quality of the commit messages as perceived by developers, we

designed an online survey using the Qualtrics tool1. We asked survey participants (i.e., Java

developers) to evaluate commit messages written by original developers and generated by

ChangeScribe. For the analysis, we provided the set of changes in the commit and displayed

those using GitHub's di� style. Figure 4-1 depicts an example of changes presented for one

of the questions in the survey.

We designed the survey using the following guidelines:

� The commit messages should be anonymized while presenting them to developers in

order to avoid participants' bias towards any speci�c source. Therefore, in the sur-

vey we identi�ed the messages as COMMENT 1 (i.e., real message) and COMMENT

2 (i.e., ChangeScribe) � Figure 4-2. In addition, instead of using links to GitHub

for showing the commits, we collected the di�s and presented the changes outside of

GitHub without any reference to the commits' ids or real messages (see Figure 4-1);

� The participants should understand the code changes before evaluating the quality of

the messages. In this case, each set of questions for a particular commit started with an

initial step (Figure 4-2, step 1), which asked a participant to provide her own commit

message;

� The survey should not take more than 60 minutes to reduce the drop-out rate, and to

avoid getting quick answers because of the duration of the survey. We estimated that

the four steps (Figure 4-2) for evaluating a commit and the corresponding messages

(i.e., real and ChangeScribe) would be done in maximum 12 minutes. Therefore, we

asked participants to evaluate �ve commits each.

In addition to the questions in Table 4-2, we included questions suggested by Feigenspan et

al. [38] to measure programming experience of the participants.

1Website of Qualtrics http://qualtrics.com

http://qualtrics.com

30 4 Evaluative survey: Evaluating generated commit messages

4.3. Replication Package

All the experimental materials used in our survey and ChangeScribe (Eclipse plugin) are

publicly available at: http://www.cs.wm.edu/semeru/data/ICSME14-ChangeScribe. In

particular we provide: (i) the links to the commits used in the survey, (ii) real and Change-

Scribe commit messages, and (iii) anonymized survey's results.

Figure 4-1.: Example of code changes describing a commit. The changes are presented

using a di�-based style similarly to GitHub

4.4. Threats to Validity

This section describes the main threats to validity that can potentially a�ect our results and

conclusions. First of all, the empirical evaluation was limited to 50 change sets from six open

source systems only. The survey involved 23 developers who evaluated 107 instances of the

commits. Thus, the importance that several variables could a�ect the e�ectiveness of the

approach such as the quality of the commit messages written by the original developers and

the quality of the commits itself, the problem domain, and the background of the survey

participants and their familiarity with the systems. In order to minimize these threats we

made sure to randomly sample commit messages representing di�erent categories. Also, we

http://www.cs.wm.edu/semeru/data/ICSME14-ChangeScribe

4.5 Results 31

.

.

.

1

2

3

4

Figure 4-2.: Example of a set of questions for a particular commit

made sure that our participants had signi�cant experience in software development and had

minimal or no experience with the systems from the survey. However, we realize that a more

comprehensive assessment is needed in order to generalize the results.

In order to reduce the internal validity threats and maximize the reliability of the results

of evaluation, we con�rmed that (i) participants had adequate knowledge of version control

systems, (ii) they had the habit of writing commit messages as part of their working routines,

and also, (iii) the messages that they wrote re�ect appropriate understanding of the changes

included in each commit in evaluation. Furthermore, in all the cases, the evaluated commit

messages were presented to participants anonymously to reduce bias, and the changes were

presented outside GiHub to avoid references to the original commit messages. However,

some learning e�ect may have occurred while the subjects judged the commit messages since

after the �rst evaluation, they knew the content and format of the questions, and also, they

might had been able to infer which of the two was the original commit message.

4.5. Results

23 participants completed the evaluative survey in which they analyzed 50 commits and

provided 119 evaluations. In each evaluation the participant analyzed the changes in the

source code; wrote their own commit message; evaluated both the commit message written

by original open source developer and the automatic commit message generated by our

approach; and �nally, the participant made a decision about which of the two messages she

32 4 Evaluative survey: Evaluating generated commit messages

would prefer. Based on the information gathered about their background we found that all

of the participants rated their knowledge of control version systems as satisfactory, good

or very good, 21 of them (91%) most of the times or always wrote commit messages when

contributing to a software project, only one of them had less than four years of programming

experience, and 18 of them (78%) had industry experience as developers. Regarding academic

degrees, ten participants were bachelors, ten were master students, and three were PhD

students or had PhD degrees.

As the �rst step of the analysis, one of the authors evaluated the content adequacy of the

commit messages created by the participants in order to determine whether each respondent

understood the shown changes. Worth noting that the evaluator was quite familiar with each

change set included in the survey, and thus, he was competent to judge this property of these

commit messages. The result of this evaluation showed that 10% of the commit messages

generated by the participants (12 commit messages out of the 119) did not contain correct

information, and therefore, indicated a poor understanding of the changes done. We decided

to discard these 12 evaluations, since understanding the changes is essential for conducting

reliable and accurate assessment of the original and automatic commit messages. Thus, in

the end we kept 107 evaluations.

As mentioned above, the participants were asked to evaluate both the commit messages

generated by ChangeScribe and the commit messages written by the original developers.

The properties evaluated were: content adequacy, conciseness, and expressiveness. Content

adequacy judges whether the message contains all important information about the changes

done. Conciseness assesses whether a commit message is clear and succinct or, in other

words, if it does not contain super�uous and unneeded information. Expressiveness evaluates

if a commit message is easy to read and if the way that the message is presented facilitates

understanding of the changes done.

4.5.1. RQ1: Content Adequacy

We consider this property as the most important one since commit messages that contain all

essential information about the changes done may ease a number of maintenance tasks. The

results show that only in 16% of the cases our approach generated commit messages that

missed essential information. Conversely, the original commit messages miss essential infor-

mation in 40% of the cases (Table 4-3). In general, this result indicates that the approach

achieves a signi�cant improvement in terms of relevant information needed to properly ex-

plain the changes done by the committer, and thus, its use might substantially alleviate a

well-known maintenance issue.On the other hand, the results show that our approach is able

4.5 Results 33

to generate a commit message that includes all essential information of the changes done

in 60% of the cases, while the messages written by the developers only reach this degree of

completeness in 21% of the cases. From this point of view, the improvement achieved by

ChangeScribe is also signi�cant. In terms of statistical signi�cance of the results, the di�er-

ence is signi�cant (p− value = 1.543E − 08) between the content adequacy rankings of the

original messages and the messages by ChangeScribe; and the magnitude of the di�erence is

large (d = −0.9386784).

Table 4-3.: Content Adequacy evaluation of the original and automatic commit messages

Response Original commit mes-

sages (% ratings)

Automatic commit mes-

sages (% ratings)

Not missing any information 21 60

Missing some no essential informa-

tion

38 24

Missing essential information 40 16

4.5.2. RQ2: Conciseness

The automatic commit messages generated by the tool contain a lot of super�uous and

unneeded information in 27% of the cases (Table 4-4). Only in 25% of the cases the generated

commit message does not have any unnecessary information, while the messages written by

the original developers reach this level of conciseness in 86% of the cases. These percentages

indicate that, regarding this property, there is a wide margin for improvement. In terms

of statistical signi�cance, the di�erence is signi�cant (p − value < 2.2E − 16) between the

conciseness rankings of the original messages and the messages by ChangeScribe; and the

magnitude of the di�erence is large (d = 0.662866).

Due to the format and the information included by default in the automatic commit message,

this message is always longer than the original one. We found that the average length of

the original commit messages is �ve lines, while the length of the commit message generated

by our approach has 43 lines, on average. Overall, these results indicate that there is a

trade-o� between content adequacy and conciseness. That is why our tool allows developers

to set up a threshold that controls how much information will be included in the commit

message. For this survey we �ne-tuned this threshold having in mind that content adequacy

is more important than conciseness. However, we are aware that the excess of non-essential

information in the generated commit message could potentially adversely a�ect developers'

productivity and also decrease the degree of acceptance of the tool.

34 4 Evaluative survey: Evaluating generated commit messages

The evaluated commit messages were classi�ed by commit size using the taxonomy proposed

by Hattori and Lanza [32], but due to the size of our set of commits, instead of having four

categories (tiny, small, medium, and large), we divided the set in two categories, namely small

and large commits. Thus, our set has 37 large and 13 small commits. For large commits,

the results show that in 62% of the cases our approach was preferred by the participants.

Therefore, ChangeScribe clearly outperforms the original commit message when the change

set includes many di�erent changes that often require detailed and longer explanations. For

small commits, the automatic commit message was preferred in 7 of the 13 cases. Those who

favoured the original commit messages considered that ChangeScribe includes unnecessary

information. For instance, one of the participants noted: "The amount of extra information

provided by comment 2 just adds noise to the real purpose of commenting".

Table 4-4.: Conciseness evaluation of the original and automatic commit messages

Response Original commit mes-

sages (% ratings)

Automatic commit mes-

sages (% ratings)

Has no unnecessary information 86 25

Has some unnecessary information 9 48

Has some unnecessary information 5 27

4.5.3. RQ3: Expressiveness

In our interpretation, this property was positively evaluated by the participants although the

original commit messages got better scores (Table 4-5). For instance, 17% of the automated

messages were rated as hard to read and understand, while only 10% of the original commit

messages got this score. At the other end of the scale is where the di�erence is more notorious

and there is more room for improvement. There, the results show that while the original

commit messages are easy to read and understand in 71% of the cases, the automatic commit

messages get this rating only in 39% of the cases. We found the di�erence is statistically

signi�cant (p − value = 1.728E − 05) between the conciseness rankings of the original

messages and the messages by ChangeScribe; and the magnitude of the di�erence is medium

(d = 0.3572579). This indicates that, overall, readability and understandability of the

automatic messages are acceptable.

4.5 Results 35

Table 4-5.: Expressiveness evaluation of the original and automatic commit messages

Response Original commit mes-

sages (% ratings)

Automatic commit mes-

sages (% ratings)

Is easy to read and understand 71 39

Is somewhat readable and under-

standable

19 44

Is hard to read and understand 10 17

4.5.4. RQ4: Which messages did participants prefer? Why?

As a �nal question of each evaluation, we asked respondents which commit message they

preferred and why. In 51% of the cases the participants preferred the commit messages

generated by ChangeScribe.

When analysing the reasons why respondents preferred the original message, we found that

most of the times they argue that the original message is simpler, or shorter, or has enough

information to infer the general idea and get a high level understanding of the purpose of

the change. For instance, one of the participants noted: "Even though it is not complete

and misses information, it includes the reason for the commit which will allow you to under-

stand the multiple changes that the commit includes". In some cases, they argued that the

automatic commit message explains the change step by step including details and technical

information that are not truly relevant to describe the changes done at a high level. In

this regard, another respondent pointed out: "The changes made do not justify the use of a

message as complex and detailed as Comment 2. Also, Comment 2 presents a large amount

of unnecessary information". Comment 2 refers to the automatic commit message.

On the other hand, they preferred the automatic commit message mainly because generated

message is more explanatory and covers more extensively the changes done. One of the

participants noted: "Comment 1 is easy to read, and hard to understand for someone that

does not have the necessary background. / Comment 2 is very lengthy, but easy to understand,

even for someone that may not be very familiar with the software. / / I would prefer to see

the second comment a bit shorter ...". Here again Comment 2 refers to the automatic commit

message while Comment 1 makes reference to the original one.

In summary, the participants' responses indicate that ChangeScribe's messages are more

detailed and longer than the original ones, so that they are able to convey more (relevant)

information about the changes. That is why the content adequacy is the property with

the highest scores. However, for being longer and wordy, these messages tend to include

36 4 Evaluative survey: Evaluating generated commit messages

unnecessary information. This would explain why the conciseness feature obtained the

lowest scores. In this regard, one of the participants explained why the automatic commit

messages should be preferred: "Even when some unnecessary information is included, it is

always better to have unnecessary info that you can �lter rather than not having necessary

information that you may need".

5. Architecture of ChangeScribe

We integrated ChangeScribe into a well known IDE used in open source and commercial

environments, namely Eclipse IDE1. We exploit the advantages of Java Development Tools

(JDT)2 as Abstract Syntax Tree features, search references, workspace features, among oth-

ers. ChangeScribe built for Java applications only hosted on Git (see the screen-shot in

Figure 5-1).

ChangeScribe provides a dialog for the commit operation; The ChangeScribe menu option

is available only on the Eclipse Package View for Java projects. The dialog is build using

Eclipse UI API's (SWT3 and JFace4). Also, ChangeScribe provides a dialog integrated with

the Eclipse preferences to con�gure the plugin options such as the impact threshold, the

author and commiter user names, and so on.

The ChangeScribe plug-in is composed of 7 components: (i) The user interface responsible

for displaying the modi�ed �les, the commit stereotype, and the generated commit message,

(ii) The Git component to interact with the source repository where the Java project is

hosted, (iii) The source code di�erencing component to analyse the source code and extract

the di�erences, (iv) The stereotype identi�cation component to compute the method and

commit stereotypes to describe the commit intention, (v) The summary generator component

responsible for generating the commit message; this component is based on the following one,

(vi) The phrases/sentences generator component to generate natural language sentences

using the approach of [21], (vii) The impact analysis component to search for dependences

of each modi�ed Java type to compute a threshold that re�ects the importance of the class in

the change-set; this impact value is used to �lter the content of the commit message. Figure

5-2 depicts the components of ChangeScribe. In this section, we describe the ChangeScribe

architectural elements.

1Website of Eclipse IDE http://www.eclipse.org
2Website of Eclipse JDT http://www.eclipse.org/jdt/
3Website of SWT project http://www.eclipse.org/swt/
4Website of JFace project http://wiki.eclipse.org/JFace

http://www.eclipse.org
http://www.eclipse.org/jdt/
http://www.eclipse.org/swt/
http://wiki.eclipse.org/JFace

38 5 Architecture of ChangeScribe

Figure 5-1.: ChangeScribe in action

5.1. Git as data source

For this thesis we used information obtained from Git repositories. Git is an open source

version control system that allows to have multiple local branches and tags, also Git is very

fast and optimized to take up little space on your hard disk. Git is a distributed system,

which means that each developer obtains an entire copy of the repository with the clone

command, and also this allows developers to work with any work-�ows such as Subversion

style, integration manager, among others. For instance, in the integration manager work-

�ow a single person, the integrator role is responsible to do commit to the blessed repository,

and then, software developers clone that repository and they do push their own independent

repositories, and ask to the integrator to pull in their changes.

Git stores detailed information for each commit in a repository. This information includes:

date of the commit, list of modi�ed �les, author of the changes, commiter, and a message

that can be used to describe the modi�cations applied to the source code. We extract

5.1 Git as data source 39

Figure 5-2.: Component diagram of ChangeScribe

the source code changes using a Java Git implementation called JGit5. This Java library

allows to implement repository access routines (i.e. commit, push, pull, merge, rebase,

and so on), several network protocols (i.e. HTTP, HTTPS, SSH), rename identi�cation

algorithm, and core version control algorithms. This main class to perform this process is

SCMRepository because this allows extract a list of modi�ed classes and also get the Git

repository status. Each modi�ed �le is modelled by ChangedFile class. This class contains

the main information of a modi�ed �le such as the �le name, �le path, a list of modi�ed

methods, the type of change (add, delete, update). The TypeChange enumeration lists the

types of possible changes. Figure 5-3 depicts the classes used to interact with the source

code repository.

5Website of JGit project http://www.eclipse.org/jgit/

http://www.eclipse.org/jgit/

40 5 Architecture of ChangeScribe

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

Comparable
ChangedFile

- absolutePath: String
- changeT ype: String
- isRenamed: boolean
- modifiedMethods: Lis t<StructureEntityVersion>
- name: S tring
- path: S tring
- renamedPath: String
- typeChange: TypeChange

+ ChangedFile()
+ ChangedF ile(S tring, S tring, String)
+ compareT o(Object): int
+ getAbsolutePath(): String
+ getChangeT ype(): String
+ getChangeT ypeT oShow(boolean): String
+ getModifiedMethods(): L is t<StructureEntityVersion>
+ getName(): String
+ getPath(): String
+ getRenamedPath(): String
+ getT ypeChange(): TypeChange
+ isRenamed(): boolean
+ setAbsolutePath(String): void
+ setChangeT ype(String): void
+ setModifiedMethods(List<S tructureEntityVersion>): void
+ setName(String): void
+ setPath(S tring): void
+ setRenamed(boolean): void
+ setRenamedPath(String): void
+ setT ypeChange(TypeChange): void
+ toS tring(): String

«static ,enumeration»
ChangedFile::TypeChange

«enum»
+ ADDED
+ ADDED_INDEX_DIFF
+ MODIFIED
+ REMOVED
+ REMOVED_NOT_STAGED
+ REMOVED_UNTRACKED
+ UNTRACKED
+ UNTRACKED_FOLDERS

- T ypeChange(String)

SCMRepository

- g it: G it
- repository: Repository

+ getD ifferences(S tatus, String): Set<ChangedFile>
+ getG it(): Git
+ getRemovedF iles(S tatus, String): Set<ChangedFile>
+ getRepository(): Repository
+ getS tatus(): Status
+ SCMRepository()

-typeChange

Figure 5-3.: Class diagram of Git component

5.2. Source code di�erencing

Once the list of modi�ed �les is identi�ed ChangeScribe computes the source code di�erences

for each �le. This process is implemented using Change Distiller, a plug-in proposed by Fluri

et al. [33]. Change Distiller like ChangeScribe uses Java Development Tool (JDT). Change

Distiller receives as input two versions of a Java type (Class or interface) and for each

version this builds an intermediate abstract syntax tree using the AST Visitor from JDT

Eclipse API. Finally, the di�erencing algorithm is applied to the proposed AST generating

a classi�ed list (based on a set of change types) of basic edit tree operations.

5.3. Commit stereotype identi�cation

This architectural element was built to extract the commit intention. Then, In this step

is necessary to compute the method stereotypes. We use JStereCode Tool implemented by

Moreno et al. [29] to identify method stereotypes by analysing abstract syntax trees and

5.4 Text generation 41

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version EA 11.0 Unregistered Trial Version

CommitStereotypesRules

+ checkBehaviorModifier(Lis t<S tereotypedMethod>, T reeMap<MethodStereotype, Integer>): CommitStereotype
+ checkControlModifier(Lis t<S tereotypedMethod>, T reeMap<MethodStereotype, Integer>): CommitStereotype
+ checkDegenerateModifier(Lis t<S tereotypedMethod>, T reeMap<MethodStereotype, Integer>): CommitStereotype
+ checkLargeModifier(Lis t<S tereotypedMethod>, T reeMap<MethodStereotype, Integer>): CommitStereotype
+ checkLazyModifier(Lis t<S tereotypedMethod>, T reeMap<MethodStereotype, Integer>): CommitStereotype
+ checkObjectC reationModifier(Lis t<S tereotypedMethod>, T reeMap<MethodStereotype, Integer>): CommitStereotype
+ checkRelationshipModifier(Lis t<S tereotypedMethod>, T reeMap<MethodStereotype, Integer>): CommitStereotype
+ checkSmallModifier(Lis t<S tereotypedMethod>, T reeMap<MethodStereotype, Integer>): CommitStereotype
+ checkS tateA ccessModifier(Lis t<S tereotypedMethod>, TreeMap<MethodStereotype, Integer>): CommitStereotype
+ checkS tateUpdateModifier(Lis t<S tereotypedMethod>, T reeMap<MethodStereotype, Integer>): CommitStereotype
+ checkS tructureModifier(Lis t<S tereotypedMethod>, T reeMap<MethodStereotype, Integer>): CommitStereotype

MethodStereotypeRules

methodA nalyzer: MethodAnalyzer

checkF orAbstract(): MethodStereotype
checkF orAccessorStereotype(): MethodStereotype
checkF orCollaborationalS tereotype(boolean): MethodStereotype
checkF orCreationalStereotype(): MethodStereotype
checkF orEmpty(): MethodStereotype
checkF orMutatorS tereotype(): MethodStereotype
- isBoolean(T ype): boolean
- isP rim itive(IVariableB inding): boolean
- isVoid(T ype): boolean

Figure 5-4.: Class diagram of commit stereotype component

using the rules proposed by Dragan et al. [34]. This tool uses AST Visitor from JDT Eclipse

API similar to Change Distiller and performs an AST walker analysis. Once the method

stereotypes are computed, we implement the rules proposed by Dragan et al. [34] in order to

compute the commit stereotype. MethodStereotypeRules class is responsible for compute the

method stereotype for all methods of a class. The CommitStereotypeRules class is responsible

for check the commit stereotype, for instance, if the commit is behaviour modi�er, control

modi�er, among others. Figure 5-4 shows the classes responsible for computing the commit

stereotype.

5.4. Text generation

Regarding the text generation, we implement the algorithm proposed by Hill et al. [21]. In

this process is necessary to split the source code identi�ers to obtain a list of words. Then

for each word, we assign parts of speech for each one of them using the approach proposed

by Toutanova et al. [39]. For the content �lter, we implement the impact algorithm using the

search engine of JDT API. This API allows to search for references and declarations of any

class, interface, �eld, method, and so on. The Phrase interface models a sentence of natural

language and this interface is implemented by three classes VerbPhrase class, NounPhrase

class, ParameterPhrase class. These classes implement the rules proposed by Dragan et

al. [17]. The Figure 5-5 shows the class diagram of the phrases generation component.

42 5 Architecture of ChangeScribe

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

EA

 1
1.

0
Un

re
gi

st
er

ed
 T

ria
l V

er
si

on

EA
 1

1.
0

Un
re

gi
st

er
ed

 T
ria

l V
er

si
on

M
et
h
o
d
P
h
ra
se
G
en
er
at
o
r

-
el

em
en

t:
S

te
re

ot
yp

ed
E

le
m

en
t {

re
ad

O
nl

y}
-

m
et

ho
d:

 M
et

ho
dD

ec
la

ra
tio

n
-

pa
ra

m
et

er
s:

 L
in

ke
dL

is
t<

P
ar

am
et

er
>

=
ne

w
 L

in
ke

dL
is

t<
...

-
ph

ra
se

: P
hr

as
e

-
ph

ra
se

S
tri

ng
: S

tri
ng

-
ty

pe
: S

tri
ng

«e
nu

m
er

at
io

n»
M
et
h
o
d
P
h
ra
se
G
en
er
at
or
::

M
et
h
o
d
P
h
ra
se
Ty
pe

B

A
S

IC

C
O

M
P

LE
TE

N
o
u
n
P
hr
as
e

-
co

m
pl

em
en

tP
hr

as
e:

 S
tri

ng
B

ui
ld

er
-

co
nn

ec
to

r:
S

tri
ng

-
pa

ra
m

et
er

s:
 L

is
t<

P
ar

am
et

er
>

-
ph

ra
se

: S
tri

ng
B

ui
ld

er

P
ar
am

et
er

-
pr

im
iti

ve
s:

 S
et

<S
tri

ng
>

-
ty

pe
N

am
e:

 S
tri

ng
-

va
ria

bl
eN

am
e:

 S
tri

ng

P
ar
am

et
er
P
h
ra
se

~
ph

ra
se

B
ui

ld
er

: S
tri

ng
B

ui
ld

er
-

va
ria

bl
e:

 P
ar

am
et

er

P
h
ra
se

ta

gg
ed

P
hr

as
e:

 L
in

ke
dL

is
t<

T
ag

ge
dT

er
m

>

«i
nt

er
fa

ce
»

P
h
ra
se
G
en
er
at
o
r

T
yp
eP
hr
as
e

V
er
b
P
h
ra
se

-
ad

dF
irs

tP
ar

am
: b

oo
le

an
-

de
cl

ar
in

gC
la

ss
: S

tri
ng

-
di

re
ct

O
bj

ec
t:

S
tri

ng
-

in
di

re
ct

O
bj

ec
t:

S
tri

ng
-

pa
ra

m
et

er
s:

 L
is

t<
P

ar
am

et
er

>
-

ve
rb

: S
tri

ng

-p
ar
am
et
er
s

0
..*

-p
hr
as
e

-p
ar
am
et
er
s

0
..*

-v
ar
ia
bl
e

Figure 5-5.: Class diagram of phrase generator component

6. Conclusions

This thesis presents an approach for generating automatic commit messages based on the

code changes included in a change set. ChangeScribe extracts and analyses the di�erences

between two versions of the source code, and also, performs a commit characterization based

on the stereotypes of methods modi�ed, added and removed. The outcome is a commit

message that provides an overview of the changes and classi�es and describes in detail each

of the changes made by a developer in the source code.

Furthermore, we conducted an evaluative survey in which 23 developers performing 107

evaluations of 50 commit messages from six open source systems and equivalent number of

commit messages generated by ChangeScribe. According to the survey results, 84% of the

generated commit messages do not miss essential information required to understand the

changes, 25% of them are concise, and in 39% of the cases the generated message is easy to

read and understand. The results also demonstrate that while the original commit messages

miss some very important information that can hinder understanding of the changes what

and why in 40% of the cases, ChangeScribe's commit messages have been rated to have this

de�ciency in just 16% of the cases. Finally, in 51% of the cases the survey participants

preferred ChangeScribe's commit messages to the ones written by the original developers.

All in all, the evaluation indicates that ChangeScribe can be useful as an online assistant to

aid developers in writing commit messages or to automatically generate commit messages

when they do not exist or their quality is low.

The evaluation also provided us with useful tips for the future work. First of all, we observed

that, according to the participants, the generated messages must be shorter and more suc-

cinct. We plan on studying how we can improve these properties without a�ecting content

adequacy. In the future we are also planning on using an improved version of the tool in a

study that can help us assess the impact of our approach on real development practices in

longitudinal study. In this context, the tool could generate an initial version of the commit

message and the developer would make only minor modi�cations, before committing the

changes.

Currently, ChangeScribe is working as an Eclipse plug-in allowing developers to generate

the commit messages. But, when is necessary generate the commit message of multiple

change-set, for instance in Mining Software Repositories, ChangeScribe not allow this feature

44 6 Conclusions

because this run within Eclipse IDE. In this context, is necessary implement a command

line version and an Application Programming Interface (API) to enable ChangeScribe for

large scale studies of Mining Software Repositories, program comprehension and software

evolution and maintenance. Also, another feature that can be implemented is the SVN or

Mercurial support. This feature will allow greater and easier ChangeScribe acceptance by

developers.

A. Examples of commit messages

generated with ChangeScribe

This appendix shows examples of commit messages generated with ChangeScribe plug-in of

several open source projects.

A.1. Generated commit message of Elastic Search

project

This change set is available at: http://goo.gl/1c0s1l.

BUG - FEATURE: <type-ID>

This commit renames some �les. This change set is mainly composed of:

1. Changes to package org.elasticsearch.node.internal:

1.1. Rename type InternalSettingsPerparerTests with InternalSettingsPreparerTests

A.2. Generated commit message of Spring Social

project

This change set is available at: http://goo.gl/5Igx1s.

Initial commit. This is a degenerate modi�er commit: this change set is composed of

empty, incidental, and abstract methods. These methods indicate that a new feature is

planned. This commit includes changes to internationalization, properties or con�gura-

tion �les (.classpath, .gitignore, .project, ...). The commit includes these new modules:

- facebook

http://goo.gl/1c0s1l
http://goo.gl/5Igx1s

46 A Examples of commit messages generated with ChangeScribe

- twitter

This change set is mainly composed of:

1. Changes to package org.springframework.social.twitter:

1.1. Add a data class for tweet. It allows to:

Get text;

Set text;

Get created at;

Set created at created at date;

Get tweet from user;

Get set from user;

Get id;

Set id;

Get pro�le image url;

Set pro�le image url;

Get tweet to user id;

Set tweet to user id;

Get tweet from user id;

Get set from user id;

Get language code;

Set language code;

Get source;

Set source

Referenced by:

SearchResults class

TwitterService class

A.3. Generated commit message of JFreeChart project

This change set is available at: http://goo.gl/M1ILNF.

BUG - FEATURE: <type-ID>

This is a small modi�er commit that does not change the system signi�cantly. This

http://goo.gl/M1ILNF

A.4 Generated commit message of JFreeChart project 47

change set is mainly composed of:

1. Changes to package org.jfree.chart:

1.1. Modi�cations to TestUtilities.java:

1.1.1. Add javadoc at serialised(Object) method

A.4. Generated commit message of JFreeChart project

This change set is available at: http://goo.gl/StXeJS.

BUG - FEATURE: <type-ID>

This is a small modi�er commit that does not change the system signi�cantly. This

change set is mainly composed of:

1. Changes to package org.jfree.chart.plot:

1.1. Modi�cations to RingPlot.java:

1.1.1. Modify variable declaration extendedSeparator

2. Changes to package org.jfree.chart.util:

2.1. Modi�cations to LineUtilities.java:

2.1.1. Add a functionality to extend line

The added/removed methods triggered changes to RingPlot class

A.5. Generated commit message of Apache

Lucene/Solr project

This change set is available at: http://goo.gl/LOcTWh.

BUG - FEATURE: <type-ID>

This is a small modi�er commit that does not change the system signi�cantly.This com-

http://goo.gl/StXeJS
http://goo.gl/LOcTWh

48 A Examples of commit messages generated with ChangeScribe

mit includes changes to internationalization, properties or con�guration �les

(CHANGES.txt). This change set is mainly composed of:

1. Changes to package org.apache.lucene.facet:

1.1. Modi�cations to MultiFacets.java:

1.1.1. Add variable declaration statement at getAllDims(int) method

1.1.2. Add line comment at getAllDims(int) method

1.1.3. Add foreach statement at getAllDims(int) method

1.1.4. Add if statement at getAllDims(int) method

1.1.5. Add return statement at getAllDims(int) method

1.1.6. Add method invocation to method add of results object at getAllDims(int) method

1.1.7. Remove line comment at getAllDims(int) method

1.1.8. Remove throw statement of UnsupportedOperationException exception

A.6. Generated commit message of Apache

Lucene/Solr project

This change set is available at: http://goo.gl/IV6aWm.

BUG - FEATURE: <type-ID>

This is a state update modi�er commit: this change set is composed only of mutator

methods, and these methods provide changes related to updates of an object's state.

This change set is mainly composed of:

1. Changes to package org.apache.solr.common.cloud:

1.1. Modi�cations to ClusterState.java:

1.1.1. Remove an unused functionality to get shard

A.7. Generated commit message of Apache Felix project

This change set is available at: http://goo.gl/6NfXeg.

http://goo.gl/IV6aWm
http://goo.gl/6NfXeg

A.8 Generated commit message of Retro�t project 49

BUG - FEATURE: <type-ID>

This is a behaviour modi�er commit: this change set is composed of command and

non-void-command methods, and these methods execute complex internal behavioural

changes within an object. This commit includes changes to internationalization, proper-

ties or con�guration �les (pom.xml, metadata.xml). This change set is mainly composed

of:

1. Changes to package org.apache.felix.ipojo.test.scenarios.component:

1.1. Modi�cations to Recon�gurableSimpleType.java:

1.1.1. Add a functionality to prop recon�gurable simple type

1.1.2. Add (Object state) controller attribute

2. Changes to package org.apache.felix.ipojo.test.scenarios.factories:

2.1. Modi�cations to Recon�gurationTest.java:

2.1.1. Rename testRevalidationOnREcon�guration method with testRevalidationOnRe-

con�guration

2.1.2. Add a functionality to set recon�guration test

2.1.3. Add a functionality to test revalidation on recon�guration using con�g admin and

controller

2.1.4. Add a functionality to tear recon�guration test

2.1.5. Add a functionality to test revalidation on recon�guration with controller

2.1.6. Add (Object state) admin attribute

3. Changes to package org.apache.felix.ipojo.test.scenarios.util:

3.1. Modi�cations to Utils.java:

3.1.1. Add a functionality to wait utils for service

A.8. Generated commit message of Retro�t project

This change set is available at: http://goo.gl/U0TaQt.

http://goo.gl/U0TaQt

50 A Examples of commit messages generated with ChangeScribe

BUG - FEATURE: <type-ID>

This is a large modi�er commit: this is a commit with many methods and combines

multiple roles. This change set is mainly composed of:

1. Changes to package retro�t.core:

1.1. Modi�cations to Callback.java:

1.1.1. Add a functionality to client error

1.1.2. Remove an unused functionality to client error

1.2. Add a data class for client message. It allows to:

Instantiate client message;

Get title;

Get message;

Get button label

2. Changes to package retro�t.http:

2.1. Modi�cations to CallbackResponseHandler.java:

2.1.1. Modify arguments list when calling clientError method at

handleResponse(HttpResponse) method

2.1.2. Add a private functionality to parse client message

2.2. Modi�cations to UiCallback.java:

2.2.1. Add a functionality to client error

2.2.2. Remove an unused functionality to client error

Bibliography

[1] M. D'Ambros, M. Lanza, and R. Robbes. Commit 2.0. In Workshop on Web 2.0 for

Software Engineering (Web2SE '10), pages 14�19, 2010.

[2] S. Rastkar, G. Murphy, and A.W.J Bradley. Generating natural language summaries

for crosscutting source code concerns. In ICSM'11, pages 103�112, 2011.

[3] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock, and

K. Vijay-Shanker. Automatic generation of natural language summaries for java classes.

In ICPC'13, pages 23�32, 2013.

[4] L. P. Hattori and M. Lanza. On the nature of commits. In ASE'08, pages 63�71, 2008.

[5] L. Moreno and A. Marcus. Jstereocode: automatically identifying method and class

stereotypes in java code. In ASE'12, pages 358�361, 2012.

[6] N. Dragan, M.L. Collard, M. Hammad, and J.I. Maletic. Using stereotypes to help

characterize commits. In ICSM'11, pages 520�523, 2011.

[7] W. Maalej and H.J. Happel. Can development work describe itself? In MSR'10, pages

191�200, 2010.

[8] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A language

and infrastructure for analyzing ultra-large-scale software repositories. In ICSE'13,

pages 422�431, 2013.

[9] G. Murphy. Attacking information overload in software development. In VL/HCC'09,

page 4, 2009.

[10] W. Maalej and H.J. Happel. From work to word: How do software developers describe

their work? In MSR'09, pages 121�130, 2009.

[11] A.E. Hassan. The road ahead for mining software repositories. In Frontiers of Software

Maintenance (FoSM'08), pages 48�57, 2008.

[12] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How developers drive software

evolution. In Proceedings of International Workshop on Principles of Software Evolution

(IWPSE 2005), pages 113�122, 2005.

52 Bibliography

[13] R. Buse and W. Weimer. Automatically documenting program changes. In ASE'10,

pages 33�42, 2010.

[14] C. Parnin and C. Gorg. Improving change descriptions with change contexts. InMSR'08,

pages 51�60, 2008.

[15] G. Canfora, L. Cerulo, and M. Di Penta. Ldi�: An enhanced line di�erencing tool. In

ICSE'09, pages 595 �598, 2009.

[16] Sarah Rastkar and Gail C. Murphy. Why did this code change? In ICSE'13, pages

1193�1196, 2013.

[17] Sunghun Kim, E. J. Whitehead, and Yi Zhang. Classifying software changes: Clean or

buggy? 34(2):181�196, 2008.

[18] Adrian Bachmann and Abraham Bernstein. Data retrieval, processing and linking for

software process data analysis. Technical report, University of Zurich, Department of

Informatics, 2009.

[19] Omar Alonso, Premkumar T. Devanbu, and Michael Gertz. Expertise identi�cation

and visualization from cvs. In MSR '08: Proceedings of the 2008 international working

conference on Mining software repositories, pages 125�128. ACM, New York, NY, USA,

2008. ISBN 978-1-60558-024-1.

[20] Ieee standard for information technology- portable operating system interface (posix)

base speci�cations, issue 7. IEEE Std 1003.1-2008 (Revision of IEEE Std 1003.1-2004),

pages c1 �3826, dec. 2008.

[21] D. Jackson and D.A. Ladd. Semantic di�: A tool for summarizing the e�ects of modi-

�cations. In ICSM'94, pages 243�252, 1994.

[22] Hoan A. Nguyen, Tung T. Nguyen, Hung V. Nguyen, and Tien N. Nguyen. idi�:

Interaction-based program di�erencing tool. In ASE'11, pages 575�575, 2011.

[23] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On the use of automated text

summarization techniques for summarizing source code. In WCRE'13, pages 35�44,

2010.

[24] E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically capturing source code context

of nl-queries for software maintenance and reuse. In ICSE'09, pages 232�242, 2009.

[25] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker. Towards auto-

matically generating summary comments for java methods. In ASE'10, pages 43�52,

2010.

Bibliography 53

[26] S. Rastkar. Summarizing software concerns. In ICSE'10, pages 527�528, 2010.

[27] R. Lotufo, Z. Malik, and K. Czarnecki. Modelling the hurried bug report reading process

to summarize bug reports. In ICSM'12, pages 430�439, 2012.

[28] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. Automatic summarization of bug

reports. IEEE TSE, to appear, 2013.

[29] Annie T.T. Ying and Martin P. Robillard. Code fragment summarization. In

ESEC/FSE'13, 2013.

[30] Paul W. McBurney and Collin McMillan. Automatic documentation generation via

source code summarization of method context. In ICPC'14, page to appear, 2014.

[31] A. Alali, H. Kagdi, and J. Maletic. What's a typical commit? a characterization of

open source software repositories. In ICPC'08, pages 182�191, 2008.

[32] A. Hindle, D. German, , and R. Holt. What do large commits tell us?: a taxonomical

study of large commits. In MSR'08, pages 99�108, 2008.

[33] B. Fluri, M. Wursch, M. Pinzger, and H.C. Gall. Change distilling:tree di�erencing for

�ne-grained source code change extraction. IEEE Transactions on Software Engineering,

33(11):725 �743, 2007.

[34] N. Dragan, M. Collard, and J.I. Maletic. Reverse engineering method stereotypes. In

ICSM'06, pages 24�34, 2006.

[35] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker. Jsummarizer: An auto-

matic generator of natural language summaries for java classes. ICPC'13 - formal tool

demonstration, pages 230�232, 2013.

[36] Sheskin D.J. Handbook of Parametric and Nonparametric Statistical Procedures (fourth

edition). Chapman & All, 2007.

[37] R.J. Grissom and J.J. Kim. E�ect sizes for research: Univariate and multivariate

applications. Taylor and Francis, New York, NY, 2012.

[38] J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg. Measuring program-

ming experience. In ICPC'12, pages 73�82, 2012.

[39] Kristina Toutanova and Christopher D. Manning. Enriching the knowledge sources

used in a maximum entropy part-of-speech tagger. In Proceedings of the 2000 Joint

SIGDAT Conference on Empirical Methods in Natural Language Processing and Very

Large Corpora: Held in Conjunction with the 38th Annual Meeting of the Association

for Computational Linguistics - Volume 13, EMNLP '00, pages 63�70. Association for

Computational Linguistics, Stroudsburg, PA, USA, 2000.

	Dedication
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Justification
	Problem Definition
	Contributions
	Thesis Organization
	Bibliographical Notes

	Related work
	Describing and Augmenting Context of Code Changes
	Natural Language Descriptions of Software Artifacts
	Empirical Studies on Characterizing Commit Messages

	The approach: Generating commit messages for Java applications
	Change Extraction
	Method and Commit Stereotype Identification
	Impact Set Analysis and Content Selection
	Generating Commit Messages
	General Description
	Detailed Description

	Availability

	Evaluative survey: Evaluating generated commit messages
	Research Questions
	Data Collection Process
	Replication Package
	Threats to Validity
	Results
	RQ1: Content Adequacy
	RQ2: Conciseness
	RQ3: Expressiveness
	RQ4: Which messages did participants prefer? Why?

	Architecture of ChangeScribe
	Git as data source
	Source code differencing
	Commit stereotype identification
	Text generation

	Conclusions
	Examples of commit messages generated with ChangeScribe
	Generated commit message of Elastic Search project
	Generated commit message of Spring Social project
	Generated commit message of JFreeChart project
	Generated commit message of JFreeChart project
	Generated commit message of Apache Lucene/Solr project
	Generated commit message of Apache Lucene/Solr project
	Generated commit message of Apache Felix project
	Generated commit message of Retrofit project

	Bibliography

