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ABSTRACT 

 

Development and Evaluation of an Arterial Adaptive Traffic Signal Control System Using 

Reinforcement Learning. (December 2007) 

Yuanchang Xie, B.S., Southeast University; 

M.S., Southeast University 

Chair of Advisory Committee: Dr. Yunlong Zhang 

 

This dissertation develops and evaluates a new adaptive traffic signal control 

system for arterials. This control system is based on reinforcement learning, which is an 

important research area in distributed artificial intelligence and has been extensively 

used in many applications including real-time control. 

In this dissertation, a systematic comparison between the reinforcement learning 

control methods and existing adaptive traffic control methods is first presented from the 

theoretical perspective. This comparison shows both the connections between them and 

the benefits of using reinforcement learning. A Neural-Fuzzy Actor-Critic 

Reinforcement Learning (NFACRL) method is then introduced for traffic signal control. 

NFACRL integrates fuzzy logic and neural networks into reinforcement learning and can 

better handle the curse of dimensionality and generalization problems associated with 

ordinary reinforcement learning methods. 

This NFACRL method is first applied to isolated intersection control. Two 

different implementation schemes are considered. The first scheme uses a fixed phase 
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sequence and variable cycle length, while the second one optimizes phase sequence in 

real time and is not constrained to the concept of cycle. Both schemes are further 

extended for arterial control, with each intersection being controlled by one NFACRL 

controller. Different strategies used for coordinating reinforcement learning controllers 

are reviewed, and a simple but robust method is adopted for coordinating traffic signals 

along the arterial.  

The proposed NFACRL control system is tested at both isolated intersection and 

arterial levels based on VISSIM simulation. The testing is conducted under different 

traffic volume scenarios using real-world traffic data collected during morning, noon, 

and afternoon peak periods. The performance of the NFACRL control system is 

compared with that of the optimized pre-timed and actuated control. 

Testing results based on VISSIM simulation show that the proposed NFACRL 

control has very promising performance. It outperforms optimized pre-timed and 

actuated control in most cases for both isolated intersection and arterial control. At the 

end of this dissertation, issues on how to further improve the NFACRL method and 

implement it in real world are discussed. 
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CHAPTER I 

INTRODUCTION 

 

PROBLEM STATEMENT 

Many urban areas have been experiencing explosive vehicular traffic growth on arterials, 

causing large amount of delay at arterial intersections. Optimal isolated intersection 

control and signal coordination along an arterial have been identified as efficient and low 

cost methods for reducing delay and congestion (1,2). It was estimated that traffic signal 

coordination alone reduced delay by 11 million hours and saved $187 million from 

congestion cost for 85 urban areas in the United States in 2003 (2). Considering there are 

more than 300,000 traffic signals in North America (3), the potential saving from 

improving traffic signal timing is very significant. 

Most current traffic signal control systems used in real world are either pre-timed 

or actuated control. One major problem with the pre-timed signal control is that it does 

not have the capability to respond to short-term traffic demand and pattern changes (4). 

Traffic actuated control can partially solve this problem by extending green phases in 

response to real-time traffic arrivals. However, this green phase extension strategy 

makes decision primarily based on traffic arrivals of the movements being served. Even 

very long queues on other movements may not stop the extension of the current green 

phase (5,6). When traffic demand is heavy, actuated control can result in unsatisfying 

control performance (6). 

Adaptive signal control, which adjusts signal timing parameters in response to 

real-time traffic flow fluctuations, has a great potential to outperform both pre-timed and 

actuated control and has been researched for the last few decades. Several adaptive 

signal control systems such as RHODES and OPAC have been developed, and better 

performances compared with pre-timed and actuated control were reported (7,8). 

 

This dissertation follows the style of Transportation Research Record. 
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However, many existing adaptive traffic signal control systems are based on dynamic 

programming, and these systems’ applicability may be limited due to restrictions from 

their problem formulations and solution procedures. In addition, for some of the adaptive 

control systems using centralized architecture, the maintenance and expansion are 

difficult and costly. Therefore, it is very significant to develop new and more flexible 

distributed adaptive control strategies. 

 

OVERVIEW OF THE PROPOSED METHODOLOGY 

As one of the key elements of artificial intelligence, reinforcement learning has been 

successfully applied to control problems such as elevator operation (9) and robot soccer 

games (10 ). It has also been extensively used for supply chain modeling (11 ), 

activity-travel pattern analysis (12), dynamic resource allocation (13), and time series 

prediction (14). In this dissertation, a reinforcement learning method is proposed for 

arterial traffic signal control. In the field of reinforcement learning, the controller is often 

referred to as agent, which is formally defined as anything that can observe the 

environment and act upon it, and the environment is the subject to be controlled. A 

system consists of a group of agents that interact with each other is called a multiagent 

system (MAS) ( 15 ). At each decision step, the agent applies an action to the 

environment in response to the environment’s current state. Under the effect of this 

action, the environment may change accordingly and results in a new state and a 

feedback signal called reward (or penalty). Based on the new state and the reward, the 

agent can adjust its policy and learn how to achieve a certain goal from the interactions 

with the environment (16). This learning approach is called reinforcement learning. One 

advantage of using the reinforcement learning for control applications is that it can learn 

the optimal control policy directly from interactions between the controller and the 

environment without knowing the underlying model of the subject to be controlled. In 

addition, the reinforcement learning method can well circumvent the problems 

associated with dynamic programming algorithms used in some of the existing adaptive 
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traffic signal control systems. Also, it is conceptually desirable to model arterial traffic 

signal control problem using reinforcement learning and the MAS framework. 

In the case of isolated intersection traffic control, the agent is the traffic signal 

controller and the environment consists of all other traffic and geometry factors related 

to the intersection. Queue length or total delay can be used as the penalty. The concept 

of using reinforcement learning for isolated intersection traffic control is shown in 

Figure 1. 

 

 

FIGURE 1 Modeling intersection traffic signal control as agent and environment system. 

 

Arterial traffic signal control can be modeled as a MAS and solved by the 

reinforcement learning method. For a signalized arterial, the signal controller of each 

intersection is an individually-motivated agent. The agents at different intersections 

interact with each other and try to optimally control traffic along the arterial. Under the 

framework of MAS, it is possible to decompose a complicated control system by 

coordinating agents such that flexibility, efficiency, robustness, and cost effectiveness 

can be achieved. 

（Environment） 

Reward 
(Penalty) 

Traffic Controller 
(Agent) 
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Despite the many potential benefits of using MAS for arterial traffic signal 

control, few thorough investigations have been found in the literature. The potential of 

applying reinforcement learning and agent technology to traffic signal control, especially 

arterial traffic signal control, has not been explored fully. Thus, it is imperative to 

conduct an in-depth research on this topic. 

 

RESEARCH OBJECTIVES 

The following objectives are identified in this study. 

 

1. To develop an isolated intersection control method using reinforcement 

learning. The new control method should be truly demand-responsive and 

has the ability to better solve the curse of dimensionality and generalization 

problems. 

2. To develop a reinforcement learning control method for arterials based on 

the proposed isolated intersection reinforcement learning control method. 

3. To perform a comprehensive evaluation of the proposed reinforcement 

learning arterial traffic control method based on a widely-accepted 

microscopic traffic simulation platform. The reinforcement learning arterial 

control method will be compared with optimized pre-timed and actuated 

control in a real-world traffic network. 

4. To provide directions for further studies and field implementation of the 

proposed reinforcement learning arterial traffic control method. 

 

DISSERTATION OVERVIEW 

This dissertation consists of six chapters. In the next chapter, various traffic signal 

control types and strategies are reviewed. The reviewed control types include pre-timed 

control, actuated control, and adaptive control. In addition, other control strategies such 
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as fuzzy logic control are also reviewed. The review focuses on adaptive traffic signal 

control methods, and covers all well-recognized adaptive control methods. 

In Chapter III, a systematic introduction of reinforcement learning is presented, 

as reinforcement learning is a relatively new concept to traffic and transportation 

researchers. The introduction starts with the discussion of Markov property and Markov 

Decision Processes (MDP), and then proceeds to review various commonly-used 

reinforcement learning methods such as SARSA, Q-Learning, and Actor-Critic method. 

Following the introduction of reinforcement learning is a review of studies that applied 

reinforcement learning to traffic signal control. Problems with the existing applications 

of reinforcement learning in traffic signal control are also discussed. 

In Chapter IV, fuzzy logic control and neural networks are briefly reviewed. 

After that a new reinforcement learning method based on fuzzy logic control and neural 

networks is discussed in details. This neuro-fuzzy reinforcement learning method is then 

applied for isolated intersection and arterial traffic control. In this chapter, two 

application schemes are considered. The first scheme uses a fixed phase sequence and 

variable cycle length, while the second scheme has the capability to choosing phases 

automatically and is not constrained to the traditional cycle concept. Both schemes are 

further extended for arterial traffic control. A number of strategies to coordinate different 

traffic signal controllers (agents) on an arterial are reviewed, and a simple but robust 

coordination strategy is selected to be used in this study. 

Chapter V first describes the data and microscopic traffic simulation platform 

used for evaluating the proposed reinforcement learning control method. Following the 

description of data and simulation platform is test design, which describes how the 

proposed control method is evaluated at both isolated intersection and arterial levels, and 

also under different traffic demand conditions. Finally, the evaluation results from the 

proposed reinforcement learning control, pre-timed, and actuated control methods are 

presented, compared, and discussed. 

Chapter VI summarizes findings and highlights contributions of this research. 

Possible future extensions on this research topic are also provided. 
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CHAPTER II 

TRAFFIC SIGNAL CONTROL BACKGROUND AND LITERATURE REVIEW 

 

INTRODUCTION 

Intersection traffic control first emerged in the form of manually turned semaphores in 

London in 1868 (17). As an important method to resolve traffic conflicts, improve 

operational efficiency, and enhance safety at intersections, this idea was soon adapted by 

other nations and eventually evolved into three major types of traffic signal control 

strategies: pre-timed, actuated, and adaptive control. Each control type can be applied at 

an isolated intersection in its simplest form. By properly considering coordination, they 

can also be used for arterial and network traffic control. This research focuses on 

development of an adaptive traffic control method that can be used for isolated 

intersections and also for signalized arterials. Conceptually, the new algorithm 

introduced in this study can be expanded for network traffic control. 

In the rest of this chapter, pros and cons of pre-timed, actuated, and existing 

adaptive traffic control methods are reviewed in details. In addition, several rule-based 

control methods are also discussed. 

 

PRE-TIMED TRAFFIC SIGNAL CONTROL 

Pre-Timed Isolated Intersection Traffic Signal Control 

Figure 2 illustrates a typical four-approach isolated intersection with eight movements 

(each through movement and its associated right-turn movement are combined as one 

movement). Each movement is usually labeled by a number between 1 and 8 in NEMA 

convention (18). Pre-timed signal control operates in a cyclic manner. In each cycle 

there are several signal phases. For each signal phase, one or more non-conflicting 

movements are allowed. For pre-timed control, the phase sequence and phase duration 
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are fixed. Thus, the cycle length is also fixed. Figure 3 shows a typical example of 

protected left-leading pre-timed control for an isolated intersection. 

 

 

FIGURE 2 Typical four-approach intersection. 

 

 

FIGURE 3 An example of protected left-leading pre-timed control. 

 

For isolated intersections, the control parameters are usually optimized based on 

either the Webster (19) method or the procedure in Highway Capacity Manual (HCM) 

(20). In the Webster method, the best cycle length is determined by  
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where 

=C optimal cycle length (s); 

=L total lost time per cycle (s); 

=ciy observed flow divided by saturation flow rate for the critical lane group in 

phase i . This is often referred to as critical flow to saturation flow ratio, or the 

critical v/s ratio; and 

=n number of phases in a cycle. 

 

After the optimal cycle length is determined, the effective green time is allocated to each 

phase based on the critical v/s ratios of all phases, calculated as 
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             (2) 

 

where 

gi = effective green time in phase i, typically equaling the actual green interval 

duration for the phase; 

=v flow rate; 

=s saturation flow rate; and 

=−= LCG total green time in a cycle (s). 

 

The HCM method (20) uses the similar principle as the Webster method to allocate 

green time among different signal phases, which is to equalize the degree of saturation 

(v/c ratio) of critical lane group of each signal phase. The degree of saturation is defined 

as 
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where 

=C cycle length (s); 

=ciX critical degree of saturation for phase i; 

==
C
g

sc ci
cici critical lane group capacity for phase i; and 

=cig green time allocated to phase i (s). 

 

Xc, or the critical v/c ratio for the entire intersection, can be defined accordingly as 
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From this equation, it is easy to derive the formula for calculating cycle length 
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In practice, a desired value of Xc is chosen first, and the cycle length is then determined 

by Equation (5). 
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Pre-timed timing plans are determined based on average traffic volume data. In 

the real world, traffic volume may change considerably throughout the day and also in 

short intervals. Obviously, a control method based on average traffic volume data cannot 

effectively consider traffic flow fluctuations and may result in suboptimal control. 

Therefore, in practice the applications of pre-timed control are often limited to locations 

with less variable traffic. Besides, the control parameters of pre-timed control need 

calibrations from time to time to reflect mid-term or long-term traffic flow pattern 

changes. 

 

Pre-Timed Arterial Traffic Signal Control 

For closely spaced intersections on an arterial, vehicle arrivals to a downstream 

intersection are often affected by the control strategies of the upstream intersections. 

Vehicles also travel in platoons. Thus, it is desirable to coordinate the pre-timed traffic 

signals of adjacent intersections such that platoons of vehicles can get through a number 

of intersections without being stopped. For this purpose, offset is used in addition to 

cycle length, phase sequence, and phase duration to coordinate adjacent traffic signals 

(21). The offset is defined as the difference between the starting times of two reference 

phases. Assuming all three intersections in Figure 4 use the northbound through phase as 

the reference phase, the offset between intersections 1 and 2 is off_1, and the offset 

between intersections 1 and 3 is off_2. 
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FIGURE 4 Offsets and signal coordination. 

 

A commonly-used signal coordination strategy is to maximize the bandwidth of 

through movements along the arterial, which may maximize the number of vehicles that 

go through the arterial without being stopped. However, this strategy may not be 

effective due to the following reasons: 

 

1. Coordinated pre-timed method usually requires all traffic signal controllers 

being coordinated to have the same cycle length. For different intersections 

on an arterial, their optimal cycle lengths most likely are different. Requiring 

a common cycle length for all intersections may cause increased level of 

delay to vehicles at some of the intersections. 
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2. Offsets are calculated based on the distances between two intersections and 

the average speed. In many cases, travel time between two adjacent 

intersections may vary depending on flow and queuing situations. 

3. Large percentage of turning traffic can make the control strategy less 

efficient. 

4. For two-way traffic, the offset in one direction also determines the offset in 

the other direction. It is difficult to give both directions equally good 

coordination. 

5. Coordinated pre-timed control gives higher priority to traffic on main streets. 

This may cause cross street traffic to experience unreasonably large delays. 

 

Due to these problems, some researchers proposed to minimize delay and the number of 

stops in addition to maximizing bandwidth. Other researcher developed a variable 

bandwidth control method for arterials (22,23,24). Despite these improvements, they are 

still pre-timed control methods. Similar to pre-timed control for isolated intersections, 

the cycle length, phase sequence, phase duration, and offset of coordinated pre-timed 

control are also fixed during a given period of operation. Thus, coordinated pre-timed 

control still suffers from the same problems that isolated pre-timed intersection control 

has, and it lacks the flexibility to deal with short-term traffic flow variations. 

 

ACTUATED TRAFFIC SIGNAL CONTROL 

Actuated Signal Control at Isolated Intersection 

Actuated control provides an intermediate solution between pre-timed control and 

adaptive control (17). It can be further classified into semi- and fully-actuated control 

(25). Actuated control is based on the fundamental principle shown in Figure 5. The 

length of green phase falls between the preset minimum and maximum green times. 

After the minimum green time is served, as long as there is a vehicle actuation occurs 

before the preceding vehicle extension ends and the total green extension has not 

exceeded the preset maximum green time, another green extension will be given to the 
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current green phase. This actuated control strategy can partially solve the criticism 

attributed to the pre-timed control strategy in a sense that it can respond to the real-time 

traffic arrivals of the current green phase. However, this actuated control strategy does 

not take into consideration of the queue lengths on other conflicting movements, and 

may result in suboptimal control especially under heavy traffic conditions. 

 

 
FIGURE 5 Actuated signal control (25). 

 

Actuated Traffic Signal Control on Arterial 

When applying actuated signal control to isolated intersections, the cycle length may 

vary from cycle to cycle, as the phase durations are variable depending on actual traffic 

arrivals. When applying actuated control to arterials, the coordinated actuated control 

must have a constant cycle length and a coordinated phase should be defined for each 

intersection. Actuated control is considered to be more suitable for arterial traffic signal 

control than pre-timed control (8,17). However, it still has unsolved problems such as 

“the-early-return-to-green” (17), which may cause unnecessary stops of vehicles. 
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ADAPTIVE SIGNAL CONTROL 

In the following sections, a number of well known adaptive traffic signal control systems 

are reviewed. Adaptive traffic signal control systems are normally complicated and 

include prediction and estimation modules, it is difficult to cover every detailed aspect of 

each system. Therefore, this review only focuses on the system designs and architectures, 

problem formulations, solution procedures, and optimization algorithms of the existing 

systems. The existing systems that are reviewed include UTCS (8), SCOOT (26), SCAT 

(27,28), DYPIC (29), OPAC (8), RHODES (7), UTOPIA (30,31), PRODYN (32), 

ALLONS-D (33), and MDP&DP (34). 

 

Urban Traffic Control System (UTCS) 

Starting from the 1970s, the U.S. Department of Transportation (USDOT) conducted 

several research projects on urban traffic control system (UTCS) (8). The intersection 

control strategies proposed and evaluated in these projects can largely be classified into 

three categories: first-generation control (first-GC), second-generation control 

(second-GC), and third-generation control (third-GC). First-GC strategy generates traffic 

control plans based on historically averaged traffic volume data. Depending on the 

time-of-day (TOD), different pre-timed control plans are selected and implemented. The 

updating frequency for the control plans is usually 15 minutes; second-GC strategy 

optimizes traffic signal control plans every 5 minutes based on predicted traffic volume 

data instead of historical data. The updating frequency for traffic signal control plans is 

restricted to be no less than 10 minutes in belief that this can avoid transition 

disturbances; third-GC is similar to the second-GC, but updates signal timing plans using 

a shorter interval of 3-5 minutes (35). 

 

Split, Cycle and Offset Optimization Technique (SCOOT) 

Hunt et al. (26) developed the SCOOT system, which is considered to be equivalent to a 

second-GC (36) or third-GC (17) method. In SCOOT, intersections are grouped into 
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many sub-areas and signal controllers in each sub-area operate at a common cycle length. 

SCOOT makes frequent and small changes to signal control parameters such as cycle 

length, phase duration, and offset of a pre-timed plan based on actual traffic flow 

variations (17,37). The adjustment of signal control parameters is based on a traffic 

model that predicts delay and stops resulted from different signal timing plans. The plans 

that can best reduce delay and stops are then selected and implemented (26). SCOOT has 

been widely used in the United Kingdom. There are also a few implementations of it in 

other countries. The latest version of SCOOT is SCOOT MC3 (38), which has some new 

features such as the ability to skip phases for bus priority purpose. 

 

Sydney Coordinated Adaptive Traffic System (SCATS) 

SCATS (27,28) was developed by Australian researchers. It is similar to SCOOT and is 

considered to be an adaptive control method between first-GC and second-GC (17). A 

major difference between SCATS and SCOOT is that SCATS does not have a traffic 

model or a traffic signal control plan optimizer. SCATS selects the best phase durations 

and offsets from some predefined plans (17) based on real time traffic flow conditions. 

SCATS has a hierarchical system structure, which has three levels as shown in 

Figure 6. The lowest level consists of the local controllers at each signalized intersection. 

They perform tasks such as data collection, data preprocessing, and assessment of 

detector malfunctions. In the middle level are the regional masters, which are the core of 

SCATS. Each regional master controls up to several hundred local controllers, and these 

controllers are further grouped into systems and sub-systems. Sub-systems usually 

consist of several intersections and are the smallest control element on multi-intersection 

level. The highest level is the control center, which does not really perform any specific 

control operations. The purpose of the control center is mainly to monitor the entire 

system. 
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FIGURE 6 Structure of SCATS. 

 

Dynamic Programmed Intersection Control (DYPIC) 

Robertson and Bretherton (29) developed an optimal control method called DYPIC 

based on dynamic programming for an isolated intersection. A simple intersection with 

only two conflicting movements was used by Robertson and Bretherton to illustrate their 

method. Since there were only two conflicting movements, the control decisions were to 

either extend or terminate current green signal. In their study, Robertson and Bretherton 

assumed that exact traffic arrival information in the next few minutes (over the decision 

horizon) was known. However, this is impossible in real world applications. Thus, the 

DYPIC control method was used mainly for theoretical studies and for comparison with 

other practical control methods. 

In the DYPIC method, the entire decision horizon was divided into N intervals. 

Each interval was 5 seconds long. At the end of each small interval (decision point), the 

control logic made a decision to either extend the current green phase or terminate it and 

give green to the other movement. There were no constraints such as minimum and 

maximum green times. Robertson and Bretherton (29) formulated this intersection 

control as a dynamic programming problem. Specifically, the decision point 

corresponded to the concept of stage in dynamic programming; states at each stage were 

Control Center

Regional Masters Regional Masters Regional Masters 

Local Controllers 
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characterized by the signal state (green or red) and the queues on each approach. As the 

exact traffic arrival information was assumed to be known for the entire decision horizon, 

queue lengths of each approach at any stage can be estimated using some traffic models. 

The optimization goal was to find an optimal control strategy consisting of a sequence of 

actions 1{ ,..., }NA a a=  that minimize the total delay. Based on the initial signal states, 

queue lengths of each approach, and future traffic arrival information, the entire decision 

process can be illustrated by a decision tree as shown in Figure 7. 

 

 

FIGURE 7 Illustration of the DYPIC method. 
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The following formula was used in DYPIC to find the optimal control strategy 

for the decision problem shown in Figure 7. 

 

11     ,    ,,...,1     )},({min)( ++ ∈∈=+= iiijkai SkSjNikfCjf
i

     (6) 

 

where 

=iS all possible states at stage i; 

=+1iS all possible states at stage i+1; 

=jkC total delay associated with transition from state j at stage i to state k at 

stage i+1; 

=)( jf i value function for state j at stage i; 

=ia action taken at stage i (either extension or termination); and 

=N number of stages minus 1. 

 

Starting from stage N and working backwards, the values of each state at stages 1 

through N can be obtained using Equation (6). The value for the initial state actually is 

the minimum delay resulted from the optimal control strategy. By tracking the path that 

leads to the value of the initial state, one can find the best control strategy. This method 

is often referred to as the backward dynamic programming. It is based on the Bellman 

principle of optimality, which states that no matter what the previous decisions are, the 

remaining actions must be optimal given the current states. The detailed solving 

procedure of the backward dynamic programming will not be discussed here. Interested 

readers can refer to (29) or some other dynamic programming textbooks. 

There are four major problems with the DYPIC method. First, as shown in Figure 

7, since each action may result in two states in the next stage, if there are N+1 stages, the 

maximum possible number of states at the final stage is N2 . If the decision horizon is 2 

minutes and the interval is 5 seconds long, then the maximum possible number of states 

at the final stage could be 167772162 5/120 = . Although dynamic programming 
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theoretically can give this problem a globally optimal solution, so many states will 

definitely make the computation time a serious problem for real time traffic signal 

control. Secondly, in this simple example only an isolated intersection with two 

movements was considered. For practical traffic signal control problems, usually there 

are eight movements and at each stage there could be multiple different actions. Thirdly, 

this example assumed all traffic arrivals during the decision horizon were known. This is 

impossible in reality. Finally, the DYPIC method assumed deterministic state transitions. 

Given current queue lengths, signal states, traffic arrival information, and the action to 

be applied, the resulted new state was determined. This assumption in fact may not 

always be true, as driver behaviors are very complex and no traffic models can perfectly 

predict future traffic states. 

Note that for the DYPIC control method, since the phase durations and phase 

sequence are not fixed, the cycle length is not a fixed value. This is different from 

pre-timed control, coordinated actuated control, SCOOT, and SCAT. Robertson and 

Bretherton (29) compared the DYPIC control method with pre-timed control on an 

isolated intersection. Two different traffic arrival conditions were tested, which were 

random arrival and cyclic arrival. For random arrival condition, the results showed that 

the DYPIC method reduced delay by at least 50 percent. While for the cyclic arrival 

condition, limited tests showed that the DYPIC method reduced average delay by 3 

seconds per vehicle. 

 

Optimized Policies for Adaptive Control (OPAC) 

The second-GC and third-GC strategies were expected to perform better than the 

first-GC strategy, as they seemed to provide better responsiveness to traffic conditions 

by using detected and predicted dada. However, some field tests showed that the 

first-GC strategy in general outperformed the other two strategies (35,39,40). Due to the 

unsatisfactory results of the second-GC and third-GC strategies (35,39,40), Gartner (35) 

suggested a truly demand-responsive control strategy that is not restricted to the 

conventional concepts of cycle length and phase durations (8). 
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In his research, Gartner first presented an isolated intersection traffic control 

example using a dynamic programming approach, later named as OPAC-1 (41), that was 

similar to DYPIC (29). Gartner discussed that though this dynamic programming 

approach can guarantee global optimality, it is not suitable for real time applications due 

to the excessive computation time and the requirement of exact traffic arrival data. 

Based on OPAC-1, Gartner proposed a simplified control algorithm using Optimal 

Sequential Constrained Search (OSCS) algorithm instead of dynamic programming (8). 

The resulted new control method was referred to as OPAC-2. The OSCS algorithm 

requires less computation time but can produce results that are close to the optimal ones 

produced by the dynamic programming approach. However, the OSCS algorithm is less 

straightforward compared with the dynamic programming approach. To implement the 

OSCS algorithm, there are three steps to follow (8): 

 

1. The entire decision horizon is divided into several stages. Each stage is 50 to 

100 seconds long. 

2. In each stage, the signal must be changed once and at most three signal 

changes can be made. There could be many different signal change scenarios 

in each stage. For each scenario, the resulted delay is calculated. 

3. For each stage, the OSCS algorithm is applied. The optimal signal change 

scenario is determined independently for each stage. As shown in Figure 8, 

the inputs to any intermediate stage include queues of all approaches at the 

end of previous stage, current signal status, and the last signal change. For all 

feasible signal change scenarios, their corresponding delays are evaluated and 

compared. The signal change scenario with the lowest delay value is stored 

and used as the optimal solution for the current stage. The resulted queues, 

signal status, and the last signal change information are passed on to the next 

stage for further computation. 
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In the same study (8), Gartner also proposed a rolling horizon approach to predict 

traffic arrivals such that the constraint of knowing exact traffic arrivals was removed. By 

adding the rolling horizon prediction method, OPAC-2 evolved into OPAC-3 (41). 

Gartner evaluated the OPAC-3 control strategy using a special version of NETSIM. The 

evaluation was based on data collected from an intersection in Tucson, Arizona. The 

results showed that compared to the existing control method deployed at that intersection, 

OPAC reduced average delay by 30-50 percent and increased average speed by 10-20 

percent. Although the improvement from OPAC was significant in this study, Gartner 

did not specify if the original control strategy was optimized or not. 

 

 

FIGURE 8 A simple illustration of the optimal sequential constrained search method. 

 

In a subsequent study, Garter et al. summarized the development of OPAC and 

the results of an application of its latest version OPAC-4 (41). OPAC-4 was developed 

to extend the application of OPAC from single intersections to arterials and networks. 

OPAC-4 uses a Virtual-Fixed-Cycle (VFC) technique and is often referred to as 

VFC-OPAC. The VFC-OPAC has a hierarchical structure with three layers as shown in 

Figure 9. The synchronization layer calculates the VFC every few minutes. Based on this 

VFC, the coordination layer optimizes the offset of each intersection. The local control 

layer optimizes signal changes subject to VFC and offset constraints from the 

Stage i

 Queues at the end of 
stage i-1 

 Signal status 
 Last signal change 

 Queues at the end of 
stage i 

 Signal status 
 Last signal change 

Performance of each 
signal change scenario 

Different signal 
change scenarios 



22 

 

synchronization and coordination layers. Although it is conceptually clear how the 

VFC-OPAC works for arterial and network traffic control. Details about this control 

process are not available in (41) and any other literature. 

 

 

FIGURE 9 The hierarchical control structure of VFC-OPAC. 

 

The OPAC-4 system was later tested on an arterial in Reston, Virginia. The field 

test was carried out in two steps. In step one, the existing coordinated pre-timed control 

system was retimed and performance data were collected. In step two, the OPAC-4 

system was implemented and its performance data were also collected. Comparison of 

travel time data showed that the performance of the existing coordinated pre-timed 

control and OPAC-4 control were not significantly different from each other. Gartner et 

al. (41) explained that this might be caused by the traffic flow pattern changes between 

the two data collection periods. 

 

Real-Time Hierarchical Optimized Distributed Effective System (RHODES) 

RHODES is an adaptive traffic signal control system with a hierarchical structure. It was 

developed at the University of Arizona (7). RHODES has two core modules: prediction 

and control. The prediction module predicts future traffic arrival information such as 

when and how many vehicles will arrive, while the control module is used to control 
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intersection and network traffic flows. The intersection control logic uses an algorithm 

developed by Sen and Head (42). This algorithm is called Controlled Optimization of 

Phases (COP) and is also based on dynamic programming. The network control logic 

used in RHODES is based on both COP and REALBAND (43). REALBAND algorithm 

is used to produce progression bands in terms of observed platoons in the network, and 

these progression bands are then used as constraints for COP to develop optimal control 

strategies for individual intersections. 

Although the COP algorithm is also based on dynamic programming, it uses 

definitions for stages, states, and actions that are quite different from DYPIC and OPAC 

methods. In COP, stages are defined as a sequence of phases; states at each stage are 

defined as the number of time steps that could be assigned to the current stage; the 

optimization goal is to find an optimal plan to allocate time steps to each stage (phase) 

such that the overall vehicle delay/number of stops/queue lengths could be minimized. 

This modeling approach is similar to applying dynamic programming to resource 

allocation problems (44). The success of both the OPAC and RHODES models relies on 

an accurate prediction of traffic arrivals over the entire decision horizon, which is very 

difficult in reality. 

 

Urban Traffic Optimization by Integrated Automation (UTOPIA) 

Several Italian researchers proposed an adaptive control method called UTOPIA (30,31). 

UTOPIA explicitly considers the priority of public transport. It adopts a hierarchical 

structure with two levels: area control and local control.  

The area control aims at minimizing the following objective 
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where 

=k
ix number of vehicles on link k during the ith interval; 
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=k
iα coefficient related to average overall travel speed on link k during the ith 

interval; 

=k
iβ coefficient related to saturation flow on link k during the ith interval; 

=⋅)(kp cost function for link k; 

=i index for time intervals; and 

=k index for links. 

 

The area controller continuously provides the optimized k
iα  and k

iβ  values to local 

controllers, and the local controllers try to find an optimal solution to the following 

optimization problem 
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where 

=m
iy a vector of queue lengths for each approach of intersection m during the ith 

interval; 

=m
ic state of the traffic signal for intersection m during the ith interval; 

=mL cost function for intersection m; 

=i index for time intervals; and 

=m index for intersections. 

 

UTOPIA models isolated intersection control as a multi-stage decision problem. The 

entire decision horizon is usually 120 seconds. Each stage (interval) is 6-second long. A 

rolling horizon technique is also adopted in UTOPIA (30).  

Equations (7) and (8) only give a very general description of the optimization 

models used in UTOPIA. It was briefly mentioned in a paper by Davidsson and Taranto 

(45) that a branch and bound algorithm was used in UTOPIA to solve the local controller 



25 

 

optimization problem. Other than these, no other detailed descriptions of the UTOPIA 

method can be found in existing literature. 

 

PRODYN 

PRODYN is an adaptive traffic signal control method developed by Henry et al. (32) 

that is also based on dynamic programming. Similar to many adaptive signal control 

methods based on dynamic programming, PRODYN does not have fixed phase sequence, 

phase durations, and cycle length, and it uses a hierarchical algorithm for network traffic 

control.  

PRODYN has two versions (32,46,47). The initial version of PRODYN has a 

hierarchical structure with two levels (32). The lower level is for intersection control and 

the upper level is for arterial and network coordination. The optimization process of the 

initial version of PRODYN is shown in Figure 10. 

 

 

FIGURE 10 The hierarchical control structure of the initial version of PRODYN. 

 

The lower level consists of many intersection controllers, which generate initial traffic 

signal timing plans to be sent to the upper level signal coordinator. Upper level signal 

coordinator then provides feedbacks to each intersection, and intersections use these 

feedbacks to improve their initial time plans. This is an iterative process and will stop 

until an agreement is reached between the coordinator and lower level controllers. 

The hierarchical structure shown in Figure 10 was abandoned in the later version 

of PRODYN (46,47). The new version uses a forward dynamic programming method for 
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individual intersection control and a decentralized structure for coordinating different 

intersection controllers. To use the forward dynamic programming method, the 

individual intersection control is first modeled as a multi-stage decision problem. Similar 

to OPAC, the decision horizon in PRODYN is divided into many small time intervals 

and each interval is a stage. States are characterized by a number of variables including 

current signal phase and queue lengths. The decision at each stage is either to keep the 

current signal phase green or to switch to the next signal phase. PRODYN also uses a 

rolling horizon method. Assume the length of each stage (time interval) is T , which is 

usually 5 seconds. The length of the decision horizon is TN * , and N  is an integer 

value that can be set to any reasonable numbers such as 15. At stage i, the best control 

policy during time interval ]*)(,*[ TNiTi +  is decided by the current intersection 

states and traffic arrivals between ]*)(,*[ TNiTi + . 

A decentralized coordination method is used in PRODYN. Based on some 

general descriptions in (46,47), this decentralized coordination method is summarized as 

the following procedure 

 

1. Choose one intersection and optimize its control over the entire decision 

horizon; 

2. Based on the optimized control decision, simulate traffic flow outputs from 

this intersection over the decision horizon; 

3. Send the simulated traffic flow outputs to downstream intersections and 

move to the downstream intersections; 

4. Based on the simulated flow outputs sent from upstream intersections, 

optimize traffic control for the current (downstream) intersection; and 

5. Go to step 2. 

 

One problem with this procedure is how to choose the first intersection. Another issue is 

that a downstream intersection can also be an upstream intersection if it is a two-way 

street, which is often the case. Thus for two adjacent intersections A and B, if the 
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simulated traffic flow outputs of A are used for optimizing traffic control of intersection 

B, then the simulated traffic flow outputs from intersection B will retroact on the 

optimality of the optimized traffic control plan of intersection A. The interaction 

between intersections A and B will form a circle. An iteration process may be needed in 

the PRODYN’s coordination algorithm to ensure that equilibrium can be eventually 

reached. However, it is unclear if such iteration process is included in PRODYN based 

on descriptions in available literature (46,47). 

 

Adaptive Limited Look-ahead Optimization of Network Signals – Decentralized 

(ALLONS-D) 

Porche (33) proposed a decentralized adaptive traffic signal control method called 

ALLONS-D in his dissertation. ALLONS-D is based on a depth-first branch and bound 

algorithm and uses a decision tree to help find the best control sequence (33). The 

decision tree used in ALLONS-D is similar to the one used in DYPIC as shown in 

Figure 7, in which each node represents a decision point and has a cost value associated 

with it while each arc is a control action. Figure 7 only shows the decision tree for an 

isolated intersection with two-phase control. For intersections with four or more phases, 

the size of the decision tree will make exhaustive search methods infeasible for real time 

applications. To improve searching efficiency, ALLONS-D uses the branch and bound 

algorithm and a special technique called “Serve the Largest Cost” (STLC) to find the 

best control sequence. The entire optimization process of ALLONS-D can be divided 

into two parts: 1) initial decision path (sequence) building, and 2) backtracking and 

exploration. 

In the decision path building part, a feasible decision path is constructed using 

the STLC technique. In terms of the STLC technique, at each decision point, the control 

phase incurring the highest delay in a most recent time period should be turned green. 

Following this STLC policy, a sequence of decisions is made until the initial queues and 

predicted traffic arrivals are cleared. This process can be better illustrated in Figure 11. 

The reason why the STLC is used is that Porche (33) believed it may result in a path that 
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is close to the optimal one. It is intuitive that the closer the initial decision path is to the 

optimal one, the less computation time is required for the backtracking and exploration 

part that follows. 

 

 

FIGURE 11 Initial decision path building of ALLONS-D. 
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The initial decision path in most cases is not optimal. Therefore, a backtracking 

and exploration process is needed to further improve the initial decision path. The 

backtracking process is similar to the backward recursive method for solving the 

dynamic programming problem shown in Equation (6), while the addition of an 

exploration process distinguishes it from the backward recursive method. The 

backtracking and exploration is a recursive process that starts from the end node of the 

initial decision path as shown in Figure 11. The corresponding cost value for the end 

node is zero, as all queues are assumed to be cleared at this point. Set the initial decision 

path as the Current Best Decision Path (CBDP). The process goes back one interval for 

each iteration and calculates the cost value of the current node. For every node except 

for the end one, all branches growing up from it will be evaluated and compared with the 

CBDP. A cost value is defined for both arcs and paths. The delay cumulated during each 

interval is defined as the arc cost, and the path cost is the summation of the costs of all 

arcs in the path. If any of the branches have a smaller cost than the branch in the CBDP, 

then the branch in the CBDP will be replaced by the new branch. Otherwise, the 

exploration from this node will be terminated, and the process will go back one interval 

and set the parent node as the current node. A flow chart in Figure 12 is used to better 

illustrate the backtracking and exploration process. 
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FIGURE 12 Backtracking and exploration of ALLONS-D. 
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The ALLONS-D algorithm introduced so far is for isolated intersection control. 

For arterial traffic control, Porche (33) considered two coordination methods. The first 

coordination method assigned different weights to each direction. For example, if 

north-south direction was the main street, then larger weight was assigned to north-south 

direction. Porche tested this control method on a three-intersection arterial. However, it 

seemed that this method did not perform well. Another coordination method Porche 

proposed was game theory. Porche only conceptually showed that game theory may be 

used for coordinating traffic signal controllers. No experiments were conducted to show 

if this method can really be applied to coordinate traffic signal controllers. Also, Porche 

did not mention if this game theory coordination method is suitable for real time 

application, which is very important for adaptive traffic signal control systems. 

 

Markov Decision Process and Dynamic Programming (MDP&DP) 

More recently, Yu and Recker (34) developed a stochastic adaptive traffic signal control 

model. The authors formulated traffic signal control as a Markov Decision Process 

(MDP) and solved it by dynamic programming algorithms. MDP is a discrete time 

stochastic process characterized by a set of states (S), actions (A), reward function (r), 

and state-transition function (p). In the context of intersection traffic signal control, the 

state variables are the queue lengths of all approaches; the action variables are the 

control actions that can be taken for each state; the reward function tells the immediate 

reward of each action under specific state; and the state-transition probability function is 

time-varying and dependent on actual traffic arrivals. To solve control problems 

modeled as MDPs, the first step is to find the optimal value function )(* sV  based on 

Equation (9) (16). 
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where )(sAa∈ ; Ss∈  is the current state and Sk ∈  is the next state after action a  

is taken; a
skp  and a

skr  are the transition probability and reward, respectively, from state 

s to state k after action a is taken; and )1,0[∈γ  is a discount factor. Equation (9) is 

often referred to as the Bellman optimality equation (16). Based on this Bellman 

equation, Yu and Recker (34) used a dynamic programming method to solve for the 

optimal value function )(* sV . After the )(* sV  is found, the control problems simply 

become identifying the current system state s and applying the control action )(sAa∈  

that leads to the optimal value function )(* sV . This mapping from system state to an 

action is called policy, which is a very important concept that will be used frequently in 

this dissertation. 

Although dynamic programming algorithm can be used to solve this MDP 

problem and is guaranteed to find the optimal policy (48), it needs a well-defined 

state-transition probability function. In practice, this state-transition probability function 

is difficult and cumbersome to define. In the case of intersection traffic control, the 

state-transition probability function is affected by actual traffic arrivals and is often 

time-varying. Thus, it is even more difficult to give accurate estimation. In addition, for 

intersection traffic signal control applications, the number of states is usually very large. 

This makes the computation time of dynamic programming algorithms a serious problem 

(9,49,48,34). Nevertheless, it is a legitimate attempt to use MDP to model intersection 

traffic control problems. Unlike DYPIC and OPAC methods that assume a deterministic 

state transition, MDP implicitly acknowledges the uncertainty in state transition and 

reflects this uncertainty by a state-transition probability function. 

 

TRAFFIC CONTROL USING FUZZY LOGIC AND RULES 

Several studies have applied fuzzy logic to traffic signal control (6,50,51,52,53,54). 

These fuzzy logic methods use queue lengths and traffic arrivals on all approaches as 

inputs, and the control action is usually determined based on a number of fuzzy rules. 
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The following are two simple examples of fuzzy rules (6) that are used to determine the 

extension of the current green phase. 

 

1. IF current queue length is {Short} AND arrival is {Low} AND conflicting 

queue length is {Medium}, THEN extension is {Short} 

2. IF current queue length is {Medium} AND arrival is {High} AND 

conflicting queue length is {Short}, THEN extension is {Long} 

 

The inputs to the fuzzy logic control system are fuzzified first such that they can 

be used in the fuzzy rules. The fuzzifization of inputs is accomplished by membership 

functions. Figure 13 shows some examples of fuzzy membership functions. 

 

 

FIGURE 13 Fuzzy membership functions of the current queue length. 

 

Based on the fuzzy membership functions in Figure 13, for a current queue length of 3 

vehicles, the memberships that the current queue length belongs to {Short}, {Medium}, 

and {Long} are 0.5, 0.5, and 0.0, respectively. Similarly, one can apply the same 

procedure to the other two input variables, arrival and conflicting queue length, and 

obtain their corresponding membership values. All these membership values will be 

used for computing strength of each fuzzy rule, which is often referred to as firing 

Current queue length 

Membership 
values Short Medium Long 

3

0.5 

1.0 

2 4 6
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strength. Each fuzzy rule corresponds to an output fuzzy set. These output fuzzy sets 

together with their corresponding firing strengths are used to obtain a crisp value, 

because one cannot directly use linguistic outputs such as “extension is {Short}” and 

“extension is {Long}” for practical traffic control. More discussions on fuzzy logic 

traffic signal control will be provided later in Chapter IV, and interested readers can also 

refer to (55,56) for detailed information on fuzzy logic. 

An obvious advantage of using fuzzy logic for traffic signal control is that it 

needs minimal computation resources. Similar to pre-timed and actuated control, it is 

much more computationally efficient than other adaptive methods. Another nice feature 

of fuzzy logic is that it can better represent the current system state. For example, as 

shown in Figure 13, a queue of length 3 will not be absolutely classified as {short} or 

{medium}. On the contrary, it belongs to both {short} and {medium}, each with a 

degree of 0.5. These fuzzy membership values may give the fuzzy traffic signal 

controller better generalization ability. 

Some researchers also proposed rule-based and knowledge-based adaptive traffic 

signal control systems (57,58,59). For instance, Owen and Stallard (59) developed an 

adaptive traffic signal control method called Generalized Adaptive Signal Control 

Algorithm Project (GASCAP). GASCAP is a distributed control system, in which each 

intersection is controlled by a rule-based GASCAP controller. The GASCAP controller 

does not have fixed cycle, phase sequence, and phase durations. The coordination 

between adjacent intersections is realized through upstream detectors of each approach. 

These detectors provide information to each intersection controller on when and how 

many vehicles will arrive. GASCAP has three key components: queue estimation model, 

a set of rules for controlling uncongested traffic, and an algorithm for producing 

pre-timed plans for congested traffic. The major differences distinguish this rule-based 

method from other aforementioned adaptive traffic control methods are the rules for 

controlling uncongested traffic. GASCAP has five sets of rules as shown below. Each set 

of these rules calculates a priority value for each movement based on how many 

estimated vehicles need to be served from that particular movement. 
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1. Demand Rules: This set of rules tends to give green time to movements 

with the largest queue lengths. Phase sequence is not considered in making 

decisions using the demand rules. 

2. Progression Rules: The purpose of progression rules is to coordinate signal 

timings of adjacent intersections. Progression rules give suggestions on 

signal states of each intersection in terms of projected traffic arrivals. 

3. Urgency Rules: Urgency rules are used to detect saturation conditions on 

any of the approaches to an intersection. If any upstream detectors are on 

consecutively for at least 15 seconds, urgency rules will recommend the 

corresponding movements to be given green signal. 

4. Cooperative Rules: Cooperative rules are employed mainly to address 

problems such as spillback. For two adjacent intersections, if one movement 

of the downstream intersection is experiencing spillback, movements of the 

upstream intersection aggravating the spillback will not be given green 

signal. 

5. Safety Rules: Safety rules are used to ensure proper minimum green times, 

prevent conflicting movements from being given green signal at the same 

time, and so forth. 

 

SUMMARY 

This chapter reviewed pre-timed, actuated, and adaptive traffic signal control. The focus 

of the review was adaptive signal control systems or research prototypes including 

UTCS, SCOOT, SCAT, DYPIC, OPAC, RHODES, UTOPIA, PRODYN, ALLONS-D, 

and MDP&DP. 

Pre-timed traffic signal control has fixed cycle length, phase sequence, and phase 

duration. It cannot adapt to short-term traffic flow dynamics and is only suitable for 

stable flow conditions. Actuated control can partially solve the problem with pre-timed 

control by introducing the concept of vehicle extension based on vehicle actuation 
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information. However, actuated control still has many preset constraints and is not 

flexible enough. 

Adaptive traffic control conceptually can better handle real time traffic flow 

fluctuations and significantly reduce control delay. There are two major types of 

adaptive traffic control systems. UTCS, SCOOT, and SCATS are typical examples of 

the first type of adaptive traffic control systems. The rest of the adaptive traffic signal 

control systems reviewed in this chapter can be generally classified as the second type. 

The first type of adaptive traffic signal control systems still has fixed cycle length, phase 

duration, phase sequence, and offset within short time periods. The control systems 

adaptively adjust these parameters based on real time or projected traffic conditions, and 

the parameters are updated every a few minutes to avoid disturbing normal traffic 

operations. 

The second type of adaptive traffic control systems often model traffic control as 

a multi-stage problem or a MDP and solve it by dynamic programming or branch and 

bound. Fuzzy logic, rule-based methods, and knowledge-based methods have also been 

used in the second type of adaptive traffic control systems. For the second type of 

adaptive traffic signal control systems, there are no fixed cycle length, phase sequence 

and duration, and offset. All these parameters are determined in real time based on 

existing and projected traffic flow conditions. The second type of adaptive traffic control 

systems may not have the restrictions of cycle length, fixed phase sequence, phase 

duration, and offset, and has attracted considerable attention in recent years. However, 

this type of methods still has the following problems: 

 

1. Under certain circumstances, the excessive computation requirement makes 

some systems based on dynamic programming not suitable for real time 

applications. Because of this, some approximate methods have to be used 

instead. 

2. Both the multi-stage and MDP&DP modeling approaches require accurate 

traffic arrival information for the next one or two minutes to determine the 



37 

 

best control plans. This information is often affected by the control actions of 

adjacent intersections and is very difficult to obtain.  

3. Although using fuzzy logic, rule-based, or knowledge-based methods has 

minimum computation time requirement, it is difficult to determine the 

optimal rules. 
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CHAPTER III 

REINFORCEMENT LEARNING – THEORETIC BACKGROUND 

 

WHY USING REINFORCEMENT LEARNING 

Adaptive traffic signal control can better respond to short-term traffic fluctuations and 

has been the focus of recent traffic control studies. The review in Chapter II shows that 

dynamic programming has been adopted by many researchers for solving adaptive traffic 

signal control problems, as it is appropriate to model traffic signal control as a 

multi-stage decision problem or as a MDP that can be solved by dynamic programming. 

Also, dynamic programming can guarantee optimal solutions given accurate input 

information such as traffic arrivals and state-transition probabilities. However, in reality 

accurate traffic arrival information is very difficult to obtain, and the state-transition 

probabilities cannot be determined easily, either. More importantly for real-time 

applications, the computation time of dynamic programming could be a problem with 

multiple intersections and variable phasing schemes. 

Fuzzy logic, rule-based, and knowledge-based methods have also been adopted 

for adaptive traffic signal control. These methods are generally referred to as rule-based 

adaptive traffic control methods. In contrast, adaptive control methods based on dynamic 

programming and branch and bound are called optimization-based adaptive traffic signal 

control. Compared to optimization-based adaptive traffic signal control, rule-based 

adaptive traffic control methods are much more computationally efficient. However, one 

problem with rule-based methods is the difficulty to determine the optimal control rules. 

To overcome the aforementioned problems associated with optimization-based 

methods, especially those methods based on dynamic programming, a hybrid method 

based on reinforcement learning and neuro-fuzzy logic is proposed in this research. The 

new method is named as Neuro-Fuzzy Actor-Critic Reinforcement Learning (NFACRL). 

The intersection traffic control is still formulated as a MDP as did by Yu and Recker 

(34), but the NFACRL method is used in lieu of dynamic programming to solve for the 
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optimal value function )(* sV  in Equation (9) and to find the best control policy. There 

are two major advantages of using the NFACRL to solve MDP problems over using 

dynamic programming. First, the NFACRL does not require state-transition probabilities 

and traffic arrival predictions as inputs. It can learn the state-transition probabilities 

interactively from the system operations, and it can also learn the state-transition 

probabilities from simulations (49). Secondly, after the NFACRL is trained, it has the 

same low computational requirement as rule-based methods have. Thus, it is more 

suitable for real-time applications.  

To better present the NFACRL method, a systematic introduction of the MDP 

and reinforcement learning is presented in this chapter, and the NFACRL method will be 

introduced in Chapter IV. The rest of this chapter is organized as follows: in the 

subsequent section, the MDP and various methods that can be used for solving MDP 

problems are discussed. These methods include dynamic programming, SARSA, 

Q-Learning, and Actor-Critic learning; following this discussion is a comprehensive 

review of existing applications of reinforcement learning to traffic control; after the 

review section is a section that analyzes the problems of the existing applications of 

reinforcement learning; and the final section summarizes this chapter. 

 

REINFORCEMENT LEARNING 

Reinforcement Learning Problems 

Reinforcement learning is a sub-field of machine learning (60), and is different from 

supervised learning methods such as neural networks. For supervised learning methods, 

there must be a set of training pairs with input and expected output values. The training 

is to optimize the weights of neural networks such that the outputs from neural networks 

are as close to the expected outputs as possible. For some applications, it is extremely 

difficult to obtain such training pairs for supervised learning, and reinforcement learning 

is thus introduced to solve this problem. Reinforcement learning can learn directly from 

the interaction between the control agent and environment.  
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The concept of reinforcement learning is straightforward. As described in 

Chapter I, the control agent first senses the environment and identifies its current state. 

Based on the current state of the environment, the agent selects an action from the action 

set and applies it to the environment. The state of the environment affected by this action 

will change consequently. The control agent observes the state change and concludes a 

reward (penalty) value from the state change. This reward (penalty) value and the 

resulting new state are then used to update the control agent (16,61). 

In reinforcement learning, the learner is often referred to as agent. Everything 

except for the agent is called environment. For different applications of reinforcement 

learning, the contents of agent and environment can be quite different. For traffic signal 

control, agent corresponds to the traffic signal controller and environment includes many 

factors such as the queue length of each approach, traffic arrivals, and current signal 

state. The interaction process between agent and environment is shown in Figure 14.  

 

 

FIGURE 14 Agent and environment in reinforcement learning. 

 

The interaction between agent and environment happens at any continuous time point, 

and theoretically the agent can make decisions at any time. For practical considerations, 

discrete time steps are often used. The following is a simple sample procedure to further 

explain how the interaction works at discrete time steps. 

 

Agent 

Environment 

Input state to 
agent 'ss =  

Reward r  Action a  

New state 's  



41 

 

1. At time step t=0, observe the state of the environment Sst ∈ . S is the 

collection of all possible states of the environment; 

2. Based on Sst ∈ , the agent chooses an action )( tt sAa ∈ . )( tsA  is the 

collection of all available action choices for state ts ; 

3. Apply )( tt sAa ∈  to the environment at time step t and observe new 

environment state Sst ∈+1  and reward 1+tr  at time step 1+t ; 

4. Use ts , ta , 1+ts , and 1+tr  to update the agent; and 

5. Let 1+= tt  and go back to step 2. 

 

At each time step, the agent chooses an action ta  based on the current environment 

state ts . This mapping from states to actions is usually referred to as policy and 

represented by π . In the following subsections, why this procedure works and how the 

agent is updated will be explained. 

 

Markov Property and Markov Decision Processes 

Reinforcement learning method is built based on Markov property and MDP. A 

stochastic process is said to have the Markov property if it satisfies the following 

condition: 

 

{ } { }ttht sssthsss |'Pr,|'Pr 11 ==≤∀= ++           (10) 

 

This equation suggests that the state of the stochastic process at time step 1+t  only 

depends on the state of the process at time step t, not on any of the states of the process 

at time steps th < . For reinforcement learning problems, the environment should 

satisfy the Markov property and the condition in Equation (11) 

 

{ } { }tttttttttttt asrrssrasrasrrss ,|,'Pr,...,,,,,|,'Pr 1111111 ===== ++−−−++    (11) 
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If a stochastic process satisfies the Markov property, then it can be modeled as a 

MDP. A MDP is formally defined as a tuple ),,,( prAS  (62,63), where 

 

1. S  is the state space; 

2. A  is the action space; 

3. r  is a reward function, where a
ssr '  represents the expected reward when the 

environment transfers from state s  to state 's  under the effect of action a  

at state s ; and 

4. p  is a transition function, where a
ssp '  represents the probability the 

environment will transfer from state s  to state 's  under the effect of 

action a  at state s . 

 
a

ssr '  and a
ssp '  can be expressed more precisely as the following: (16) 

 

{ }',,| 11' ssaassrEr tttt
a
ss ==== ++             (12) 

{ }aassssp ttt
a
ss ==== + ,|'Pr 1'             (13) 

 

In addition to state, action, reward function, and state-transition probability 

function, another important concept of MDP is value function, which includes state 

value function and action value function (16). State value function is a function 

representing how close each state is to the final (goal) state by following certain policy. 

In other words, it shows how good it is for the environment to be in each state under 

certain policy (16). The goal state is generally the control objective. For traffic signal 

control problems, the goal state is when all queues are minimized. The state value 

function following policy π  is defined in Equation (14). 

 

[ ]∑ +=
'

'' )'()(
s

a
ss

a
ss sVrpsV ππ γ              (14) 
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where γ  is a discount factor; a is the action decided by policy π  when the 

environment is in state s ; and Ss ∈'  are the resulted states after action a is taken when 

the environment is in state s. The action value function can be defined in a similarly way. 

If the current policy is π , the value of taking action a at state s is defined in Equation 

(15). 

 

[ ]∑ +=
'

'' )','(),(
s

a
ss

a
ss asVrpasV ππ γ             (15) 

 

where 'a  represents the action determined by policy π  for state 's . In fact, Equations 

(14) and (15) are equivalent. 

As the state function values of each state represent how close they are to the 

control goal (final state), solving a control problem modeled as MDP is equivalent to 

finding an optimal policy *π  (a mapping from states to actions) to minimize (or 

maximize, depending on the problem under study) the state function values for each 

state. With the optimal policy *π , the following two equations hold. 

 

[ ]∑ +=
∈ '

*
'')(
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s

a
ss

a
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sVrpsV γ             (16) 

∑ ⎥⎦
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Equations (16) and (17) are two different forms of the Bellman optimality equation. 

They are often used in combination with dynamic programming to solve for the optimal 

state value or action value function. Once the optimal state value or action value function 

is obtained, the optimal control policy *π  can be readily determined by using Equation 

(18). For each state, one just needs to find the action that leads to the largest state value. 

 
* *

' '( ) '
( ) arg max ( ')a a

ss ssa A s s
s p r V sπ γ

∈
⎡ ⎤= +⎣ ⎦∑ , s∀          (18) 
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where argmax means the argument of the maximum. It returns the action that maximizes 

the state value of s. 

It can also be shown that Equation (14) is equivalent to Equation (19), which is 

the summation of discounted rewards (16). 

 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

==== ∑
∞

=
+

− ssrEssREsV t
k

kt
k

tt ||)(
1

1γπππ         (19) 

 

where 

=tR summation of discounted rewards; and 

=+ktr reward at the (t+k)th time step. 

 

Thus, finding the optimal control policy *π  and state value function )(* sV  actually is 

to maximize the summation of discounted rewards shown in Equation (19). 

 

Dynamic Programming for MDP 

There are mainly three methods that can be used to solve MDP problems: dynamic 

programming, Monte Carlo simulation, and reinforcement learning. In this section, 

dynamic programming method for MDP will be briefly discussed. The discussion serves 

as a basis for introducing the reinforcement learning method. 

Two dynamic programming methods have been used to solve MDP problems: 

policy iteration and value iteration. Policy iteration has two components, which are 

policy evaluation and policy improvement. Policy evaluation and policy improvement 

are two iterative processes. Given certain policy π , policy evaluation tries to 

approximate the values of each state under this policy using Equation (14). The values of 

each state are the inputs to the policy improvement process. The purpose of policy 

improvement process is to adjust the policy according to the new state values, and the 

output of policy improvement is a new policy. Figure 15 shows how policy iteration is 



45 

 

used to find the optimal policy for MDP problems (16), where )(sπ  is the action 

decided by policy π  for state s. 

 

 

FIGURE 15 Policy iteration of dynamic programming. 

 

Both policy evaluation and policy improvement need to visit each state multiple 

times and are computationally inefficient. Compared to policy iteration method, the 

value iteration method effectively integrates policy evaluation and policy improvement 

and has better computational efficiency. The value iteration method is illustrated in 

Figure 16.  
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FIGURE 16 Value iteration of dynamic programming. 

 

Although the policy iteration and value iteration methods are different, both of 

them can guarantee the optimal solutions if accurate knowledge of the probability a
ssp '  

is provided (16). For many practical problems such as adaptive traffic signal control (34), 

it is extremely difficult to obtain accurate estimation of state transition probabilities. In 

addition, the dynamic programming method may have considerably high computational 

requirements if the state space is large. It would be great if some methods can solve 

MDP problems without relying on the state transition probabilities and also have a low 

computational requirement. Fortunately, the reinforcement learning method can meet 

both requirements and will be introduced in the following subsections. 
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SARSA for MDP 

SARSA Reinforcement Learning 

SARSA is one of the three major types of reinforcement learning methods. The other 

two reinforcement learning methods are Q-Learning and Actor-Critic reinforcement 

learning. All these three reinforcement learning methods are based on a 

Temporal-Difference (TD) error (16). The TD error is calculated in terms of observed 

changes from the environment, and is used to update the state value function and the 

action value function. Unlike dynamic programming methods, reinforcement learning 

methods based on the TD error do not require the knowledge of state transition 

probabilities a
ssp ' .  

Equation (20) shows a simple example of using the TD error to update state 

value function (16). 

 

[ ])()()()( 11 ttttt sVsVrsVsV ππππ γφ −++= ++          (20) 

 

where 

=ts observed state of the environment at time step t; 

=+1ts observed state of the environment at time step t+1; 

=φ learning rate; 

=−+ ++ )()( 11 ttt sVsVr ππγ TD error; 

=+1tr observed reward at time step t+1; and 

=γ discount factor. 

 

Equation (20) can be rewritten in the form of Equation (21), which is used in SARSA to 

update the action value function. 

 

[ ]),(),(),(),( 111 ttttttttt asVasVrasVasV ππππ γφ −++= +++        (21) 
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where ta  and 1+ta  are the actions determined by the current policy π  for states ts  

and 1+ts , respectively. By comparing Equations (21) and (16), one can see the similarity 

and difference between dynamic programming and the SARSA reinforcement learning. 

Both dynamic programming and the SARSA method use the one-step reward and the 

state or action value of the resulted state to update the state or action value of the current 

state. The major difference is that the dynamic programming method requires predefined 

state transition probabilities, while the SARSA method does not. The SARSA method 

introduces a learning rate φ  and updates the action value by a linear combination of its 

current action value and the TD error. By using the SARSA method, ),( asVπ  can 

converge to the optimal value ),(* asV  asymptotically (16). After the action value 

function has converged, the following Equation (22) is used to extract the optimal policy 

*π  from the action value function. 

 

),(maxarg)( *

)(

* asVs
sAa∈

=π              (22) 

 

Before using Equations (20) and (21), a reward function 1+tr  has to be properly 

defined. The calculation of the reward function involves direct interactions between the 

control agent and the environment. This means that finding the optimal control policy 

requires implementation of the control system in real world or more likely through 

simulation. Using simulation as an example, the SARSA method is illustrated in Figure 

17. This method can be better understood by taking a look at Figure 14, which shows the 

interaction between agent and environment. 
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FIGURE 17 SARSA for MDP. 

 

Action Selection Methods 

There are several methods that can be used for action selection given current state of the 

environment. These methods include greedy, ε -greedy and softmax action selection 

methods (16). The greedy method is the simplest one. For given state s, it always 

chooses an action with the largest action value V(s,a). 

Sometimes two actions 1a  and 2a  may have approximately the same action 

value, and ),( 1asV  is just slightly larger than ),( 2asV . By using the greedy method, 

action 1a  will always be chosen. In fact, 2a  may be better than 1a , and ),( 2asV  will 

Start simulation 

For ts , choose ta  using ε -greedy method 

Take action ta , observe reward 1+tr  and new state 1+ts  

For 1+ts , choose 1+ta  using ε -greedy method 
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be larger than ),( 1asV  after one more value updating. To address this problem, an 

exploration strategy is incorporated into the greedy method and results in the ε -greedy 

selection method. For the ε -greedy selection method, actions with the largest action 

values are selected for most of the time. The remaining actions are selected with a small 

probability  
|)(| sA

ε . This method is described in Equation (23) more clearly (16). 
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where 

=),( iasπ the probability that action ia  will be chosen for state s; 

=ε a small value; and 

=|)(| sA total number of possible actions for state s. 

 

It can be seen that for the ε -greedy selection method, except for the action with 

the highest action value, all other actions are given the same probability to be chosen. 

Assuming actions 1a , 2a , and 3a  have the highest, second highest, and lowest action 

values, respectively, and action 2a  has a action value that is slightly less than the action 

value of action 1a . In terms of the ε -greedy selection method, action 1a  will have a 

large probability to be chosen and the other two actions will have the same small 

probability to be selected. However, it is intuitive that different actions should be given 

different probabilities commensurate with their action values. For this reason, the 

following softmax action selection was proposed (16). 
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where τ  is a nonnegative parameter called temperature to be specified. When this 

temperature parameter is very large, all actions are given approximately the same 

probability to be chosen. When the temperature value is small, an action with a larger 

action value is given a greater chance to be selected, and the selection method tends to 

be greedy. Usually at the beginning of the learning process, large temperature is used. 

While at the end of the learning process, small temperature value should be chosen. 

Although the softmax is more sophisticated than the ε -greedy action selection method, 

determining the temperature parameter is cumbersome and there is no rigid rule to 

follow. In this study, the ε -greedy is used. 

 

Q-Learning for MDP 

Q-Learning is similar to SARSA. It uses Equation (25) to update action values. 
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Equation (25) is slightly different from Equation (21), which is used by SARSA to 

update action values. SARSA is considered as an on-policy method while Q-Learning is 

an off-policy method. An on-policy method updates action values using the next step 

action determined by the current policy, and an off-policy method updates action values 

using the next step action with the largest action value. The following Figure 18 shows 

how the Q-Learning works. 
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FIGURE 18 Illustration of Q-Learning algorithm. 

 

From Figures 18 and 19, the difference between SARSA (on-policy method) and 

Q-Learning (off-policy method) can be further manifested. A formal expression of the 

difference is “the distinguishing feature of on-policy methods is that they estimate the 

value of a policy while using it for control. In off-policy methods these two functions are 

separated. The policy used to generate behavior, called the behavior policy, may in fact 

be unrelated to the policy that is evaluated and improved, called the estimation policy. 

An advantage of this separation is that the estimation policy may be deterministic (e.g., 

greedy), while the behavior policy can continue to sample all possible actions” (16). 

The Q-Learning results are stored in the action value function ),( asV , which is 

in a table form as shown in Table 1. This table is often called Q-Table. Note that the 
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number of actions for different states could be different. When the environment is in 

certain state, in terms of Equation (22), the best action is determined by finding the 

corresponding row in Table 1 for the current state and then locating the action with the 

highest action value in that row. 

 

TABLE 1 Learning Results of Q-Learning Method 

Action # 
State # 

1 2 … 

1 8 9 … 

2 11 6 … 

… … … … 

 

For each cell in Table 1, its action value is updated by Equation (25) using the 

iteration process shown in Figure 18. To approximate the true action value, the 

corresponding cell needs to be visited as often as possible. However, when the state or 

action space is large, visiting each cell many times requires considerable computation 

time. This is often referred to as the curse of dimensionality problem. Thus, the 

traditional Q-Learning may not be directly applicable for problems with large state or 

action space. Another relevant problem with the traditional Q-Learning based on 

Q-Table is generalization. During the learning process some cells in Table 1 may only be 

visited one or two times even though their neighboring cells are visited many times. This 

may produce inaccurate action values for those less visited cells. When the environment 

happens to be in the corresponding states during actual application, it is possible that 

suboptimal actions will be chosen that may lead to poor control performance. In fact, it 

is reasonable to expect neighboring states to have similar action values. However, by 

using this traditional Q-Learning method, action values of neighboring cells cannot be 

used to update the action values of those less visited cells. 
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Actor-Critic Reinforcement Learning for MDP 

Another well known reinforcement learning method is Actor-Critic Reinforcement 

Learning (ACRL) (64,65,66,67). ACRL has a more complicated structure than SARSA 

and Q-Learning. For SARSA and Q-Learning, optimal policies are stored in action value 

functions. After the optimal action value functions are obtained, Equation (22) is used to 

extract the optimal policies from the optimal action value functions. Storing optimal 

policies in action value functions is straightforward and easy to understand. For ACRL, 

the policy and state value functions are stored separately. Although this increases the 

complexity of the method and makes it difficult to analyze, the ACRL method does have 

two major advantages as discussed in (16). 

For the ACRL method, the unit used to store policy is called Actor, and the unit 

used to store state value function is referred to as Critic. Actor and Critic can use 

different techniques such as neural networks and fuzzy logic (68,69) to store policy and 

state value function. To simplify the introduction of ACRL, a generic description of this 

method is provided here. The following figure has been used by many researchers to 

illustrate the architecture of ACRL (16,65).  

 

 

FIGURE 19 Architecture of Actor-Critic RL method (16,65). 
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At any decision point t, the Actor generates an action ta  based on the current 

environment state ts . This action is then applied to the environment. Under the effect of 

action ta , the environment may change accordingly. A reward value 1+tr  and a new 

state 1+ts  can be obtained. Also, a TD error is calculated using Equation (26). 

 

)()( 11 tttt sVsVr −+= ++ γδ              (26) 

 

For SARSA and Q-Learning, the TD error is defined based on action values and 

used for updating action value functions, since for them policies are stored in action 

value functions. For ACRL, the TD error is used to update both state value function and 

policy using Equations (27) and (28), respectively. 

 

ttt sVsV αδ+= )()(               (27) 

ttttt asVasV βδ+= ),(),(              (28) 

 

where 

=βα , step-size parameters; and 

=),( tt asV action value representing the preference to choose action ta  when 

the environment is in state ts . 

 

For an action, if its corresponding TD error is positive, then the preference of 

choosing this action should be reinforced. Otherwise, the preference of choosing this 

action should be decreased. 

 

Comparison between Dynamic Programming and Reinforcement Learning 

Both dynamic programming and reinforcement learning can be used for solving MDP 

problems. A major difference is that dynamic programming has to have an accurate 
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model of the MDP problems. The reward and state transition probability functions need 

to be exactly known. While reinforcement learning methods such as SARSA, 

Q-Learning, and ACRL do not require perfect models of the MDP problems under study. 

They can implicitly learn the state transition probability functions and observe rewards 

from interactions between the agent and the environment. This property of reinforcement 

learning is very important and useful. For many practical problems that can be modeled 

as MDPs, it is usually very difficult to estimate the state transition probability and 

reward functions accurately. For instance, if an intersection has four approaches and 

eight movements as in Figure 1, assuming the queue lengths of each movement can be 

categorized into 5 classes, then there would be 48 10395 ×≈  possible states if one uses 

queue lengths as state variables. Finding the state transition probability function for this 

problem would be computationally very intensive. In practice, reinforcement learning 

would be a better choice for such type of problems. 

 

REVIEW OF EXISTING INTERSECTION TRAFFIC CONTROL STUDIES 

USING REINFORCEMENT LEARNING 

Traffic Control Using SARSA 

Thorpe (70) conducted one of the pioneering studies on traffic signal control using 

reinforcement learning. In his study, SARSA was used to train each intersection control 

agent and the learning result was stored in a Q-Table similar to the one shown in Table 1. 

Each cell in the Q-Table corresponded to an action value ),( asV  for a state-action pair 

),( as . After the Q-Table was obtained, the intersection traffic control was simply to find 

and implement the best action ),(maxarg
)(

*
tt

sAa
asVa

tt∈
=  for the current state ts . 

Thorpe tested the SARSA control method on a simple 44×  grid traffic network 

with 16 intersections. Each intersection had four approaches and each approach had 

exactly one lane. The distance between any two intersections was 440 feet. Left-turn 

phase was not considered. Thus each intersection only had two through (right-turn 

movements were combined with the corresponding through movements) phases. Each of 
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the 16 intersections was controlled by one agent, and there was no coordination 

explicitly considered. The test was carried out based on a self-developed simulation 

program. A 2-second yellow time and a 1-second all red time were used between phase 

switches for safety consideration. The control decision was made at a 1-second interval. 

One key issue for reinforcement learning application is how to define the 

environment state. In Thorpe’s study, four different methods were used to define the 

environment state, which were: 

 

1. Vehicle count representation: vehicle count representation first summed up 

vehicle counts in each direction (east-west and north-south bounds) and then 

categorized them into 10 states. Since there were two control actions, the 

total number of states using the vehicle count representation method was 

200. 

2. Fixed-distance representation: in Thorpe’s study, each approach of an 

intersection was 440 feet long, which was divided evenly into four segments. 

Each segment had two states: with and without vehicles on it. This 

representation method finally resulted in 512 states. 

3. Variable-distance representation: this representation was almost the same 

as the fixed-distance representation except for how each approach was 

divided into segments. For the variable-distance method, each approach was 

divided into four segments at distances 50, 110, and 220 feet starting from 

the stop line. The total number of states was also 512. 

4. Count/duration representation: the count/duration representation was 

based on the vehicle count representation. In this case, the vehicle counts 

were classified into 8 groups. Since there were two directions and two signal 

states (green or not green), the total number of states was 128. The action 

space in this representation was expanded to 16, which consisted of different 

minimum green times for each direction. Thus, the total number of state 

action pairs became 2048. 
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Another very important issue that affects reinforcement learning’s performance is 

the definition of reward. Thorpe used two different definitions of reward. For the first 

definition, if at each decision point the environment state was not the goal state (goal 

state: all vehicles were cleared), then the value for the action taken at the previous 

decision point was updated by minus 1. For the second definition, the reward was 

defined in Equation (29). 

 

stoppedmovedr −+= constant            (29) 

 

where 

=constant a constant value that was set to -3 in Thorpe’s study; 

=moved number of vehicles that have passed the intersection from approaches 

being given green signal; and 

=stopped number of vehicles that have been stopped due to a red signal in the 

last interval. 

 

Thorpe tested the four state representation methods and two reward definitions 

based on computer simulation, and compared the SARSA control method with a number 

of other strategies such as greatest-volume strategy and pre-timed control. A greedy 

action selection method was used to choose actions for each state. The test was 

conducted under different traffic demand levels. The results showed that the SARSA 

method with count/duration state representation performed the best in terms of average 

travel time. For average stopped time, the SARSA method with fixed-distance and 

variable-distance representations performed better than the other methods tested. Thorpe 

also showed that for count/duration representation, the best reward definition was the 

first one, while for fixed-distance and variable-distance representations, the best reward 

definition was the second one. 

There were a few problems not well considered in Thorpe’s study. First, Thorpe 

used the greatest-volume and pre-timed control strategies as benchmarks for comparison 
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with the SARSA control method. However, he did not describe clearly how the 

greatest-volume and pre-timed strategies were designed. Secondly, two-phase control 

without considering left-turn movements is very uncommon in practice unless may be 

for urban grids with one-way streets and left-turn restriction. Finally, Thorpe did not use 

any commonly-used simulation tools such as CORSIM (71) or VISSIM (72) for the 

comparison of different control strategies. These commonly-used microscopic traffic 

simulation packages should provide a more accurately simulated traffic environment and 

more rigorous performance measure calculation, consequently a more convincing results 

comparison. In spite of all these problems, Thorpe’s study provided useful information 

for conducting further research on this topic. 

 

Adaptive Traffic Signal Control Using Q-Learning 

Abdulhai et al. (73) proposed a truly adaptive traffic signal control strategy based on 

Q-Learning. In their study, they discussed how to apply Q-Learning to both isolated 

intersection and arterial traffic control, and provided testing results for isolated 

intersection control. However, the authors did not provide testing results for arterial 

control, which are of primary interests to many traffic engineering researchers and 

practitioners. 

For the application of Q-Learning to isolated intersection control, Abdulhai et al. 

considered an intersection without turning vehicles. Therefore, there were only two 

phases. Different from most of the adaptive traffic signal control methods reviewed in 

Chapter II, Abdulhai et al. considered a fixed cycle length for the isolated intersection 

control. Since the isolated intersection was controlled by a fixed cycle length strategy 

and there were just two phases, in each cycle there was only one decision to make, and 

the action set was whether to make the phase switch or not. In their study, Abdulhai et al. 

used total delay accumulated between two consecutive phase switch points as the reward. 

As for state variables, they used queue lengths on each approach and the elapsed time 

since last phase change. However, they did not make it clear how the states were defined 

in terms of queue lengths. If an approach can store up to 20 vehicles, then for this 
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approach alone there could be 21 states in terms of the number of vehicles in the storage 

bay. When the state space is large, there could be a generalization problem. In their 

study, Abdulhai et al. used a technique called Cerebellar Model Articulation Controller 

(CMAC) for storing and generalizing the learned action value function. 

The Q-Learning control was tested and compared with pre-timed control under 

different traffic flow patterns. The results showed that under uniform and constant-ratio 

flow conditions, Q-Learning control performed approximately the same as pre-timed 

control. While for variable traffic flow condition, Q-Learning control reduced average 

delay by more than 50% compared to pre-timed control. Although the results were very 

promising under the variable flow condition, the authors did not mention if the pre-timed 

control was optimized or not. In addition, this comparison was only for two-phase 

control. In practice, most intersections have four-phase signal operation. 

In their study, Abdulhai et al. also proposed a general framework for arterial and 

network traffic control using Q-Learning. They suggested including queue information 

from adjacent intersections as the state variables for the current intersection control 

agent, to facilitate the coordination among these intersections. However, they 

acknowledged that this may considerably increase the state space and make the training 

time of Q-Learning a serious problem. 

 

Signal Control Using Actor-Critic Reinforcement Learning 

Bingham (5) proposed an isolated intersection traffic control strategy based on a 

Generalized Approximate Reasoning-based Intelligent Control (GARIC) algorithm 

developed by Berenji and Khedkar (74). The GARIC algorithm was essentially an 

Actor-Critic Reinforcement Learning (ACRL) method (16), in which there were two 

major components called action selection network (ASN) and action evaluation network 

(AEN). ASN was in the form of a fuzzy logic controller and it corresponded to the Actor 

in Figure 19. Given certain state of the environment, the ASN generated a continuous 

action output representing how long the current green signal should be extended. AEN 
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was a fully connected feed-forward neural network used to approximate values of each 

state, and it corresponded to the Critic in Figure 19. 

Bingham considered a very simple isolated intersection as the test bed. This 

intersection had two one-way streets. She used two state variables. The first state 

variable APP was the number of vehicles in the movement being given green signal. The 

second state variable QUE was the number of vehicles in the movement being given red 

signal. The APP and QUE were the inputs to both the Actor and Critic. The action 

output of the ACRL was a continuous value, which represented the amount of extension 

that should be given to the current green signal. 

Recall the previous discussions on ACRL in this chapter. A TD error defined in 

Equation (26) is used to update the Actor and Critic at each learning step. This 

corresponds to updating the parameters of the fuzzy membership functions and the 

weights of the fully connected feed-forward neural network in Bingham’s study. The TD 

error defined in Equation (26) has three components. In Bingham’s study, 1+tr  was 

defined as minus total vehicle delay between two consecutive decision points. )( tsV  

and )( 1+tsV  were the outputs of the fully connected feed-forward neural network when 

the environment was in state ts  and 1+ts , respectively. The detailed updating algorithm 

is fairly complicated and can be found in (68,75). 

Bingham compared the control performance of the original and the updated fuzzy 

logic controllers (ASN in her study) using a simulation program called HUTSIM. Three 

different traffic demand levels were tested, which were 300, 500, and 1000 vehicles per 

hour. The results showed that for traffic demand of 300 vehicles per hour, the original 

fuzzy logic controller performed better than the updated one; while for the other two 

traffic demand levels, the updated fuzzy logic controllers slightly outperformed the 

original one. 

 



62 

 

Other Signal Control Using Reinforcement Learning 

Choy et al. (76,77), and Srinivasan and Choy (78) modeled a regional traffic signal 

control problem using reinforcement learning. In their studies, each intersection was 

controlled by a pre-timed controller. Reinforcement learning was used mainly to 

dynamically update the cycle lengths and other parameters of the pre-timed controllers 

in response to changing traffic flow conditions. The methods they proposed are similar 

to those investigated in the UTCS projects, and are not truly demand-responsive adaptive 

control recommended by Gartner (8,35). 

 

PROBLEMS WITH THE EXISTING METHODS 

Existing studies applying reinforcement learning to intersection traffic control provide 

useful information benefiting future research in this area. However, there are still several 

important issues that need to be investigated. 

First, reinforcement learning is based on the MDP framework. In cases where the 

state space dimension is large, reinforcement learning will suffer from the curse of 

dimensionality (42,34) problem. For example, for an isolated four-approach intersection 

with eight movements (each through movement and its associated right-turn movement 

are combined as one movement) as shown in Figure 2, if one uses the numbers of 

queuing vehicles of each movement as state variables and the maximum queue length for 

each movement is five vehicles, then the total number of states is 68 1068.16 ×≈ , which 

means the Q-Table will have around 61068.1 ×  rows. If some continuous state variables 

such as length of green time are introduced, the state space could theoretically be infinite. 

The huge state space first makes the storage of the Q-Table very difficult. It also requires 

demanding computation time to fill the Q-Table accurately (16). Yu and Recker (34) 

tried to solve this difficulty by setting a threshold for each movement, such that each 

movement only had two states, namely congested and non-congested. This method 

significantly reduced the total number of states to 25628 = , however, an obvious 

problem incurred is that this probably will degrade the control performance. 
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Secondly, the coordination of different control agents has not been adequately 

investigated in previous studies. Bingham (5) and Abdulhai et al. (73) only reported 

results for isolated intersections. Although Thorpe (70) did apply his proposed method to 

a 44×  network, coordination was not explicitly considered or discussed in his study. 

Thirdly, most previous studies used isolated intersections and networks with very 

simple structures for testing. Thorpe (70) tested his reinforcement learning control 

method on a network without considering left-turn phases. Abdulhai et al. (73) evaluated 

their truly adaptive reinforcement learning traffic control method on an isolated 

intersection without turning vehicles. Bingham (5) evaluated an ACRL traffic controller 

on an isolated intersection of two one-way streets. In all these studies, there were only 

two phases to be considered for each intersection. In reality, most intersections have 

eight movements and are typically controlled using three or four phases. 

Finally, most of the previous studies did not use a commonly-accepted traffic 

simulation platform for algorithm evaluations. Thorpe (70) used a simulation program 

developed by himself. Bingham (5) used the HUTSIM developed by the Helsinki 

University of Technology. In the study by Abdulhai et al. (73), they did not mention 

which simulation program was used. 

 

SUMMARY 

This chapter focused on introducing reinforcement learning methods and their recent 

applications in intersection traffic control. Markov property and MDP were first 

discussed, which were the modeling bases of reinforcement learning methods. After that, 

dynamic programming and three reinforcement learning methods were introduced and 

compared. The three reinforcement learning methods discussed were SARSA, 

Q-Learning, and ACRL. Both dynamic programming and reinforcement learning can be 

used for solving MDP problems, and dynamic programming has been applied to solve 

adaptive traffic signal control modeled as a MDP problem (34). Comparison in this 

chapter showed that reinforcement learning has certain advantages over dynamic 

programming for intersection traffic control problems based on MDP framework. This is 
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mainly because reinforcement learning does not need to have perfect models of the 

systems to be controlled, and can implicitly learn the state transition probability function 

from the interactions between environments and agents. 

Some recent applications of reinforcement learning to traffic signal control were 

reviewed. Several problems with these existing applications were identified and 

discussed. Those problems include the following: 

 

1. Only very simple two-phase signal control was considered. 

2. The curse of dimensionality problem was not well addressed in most previous 

studies. 

3. Coordination among intersection control agents was not explicitly considered. 

And  

4. No comprehensive tests have been conducted using commonly-accepted 

microscopic traffic simulation tools. 

 

Despite of these limitations, the existing studies provide much useful information for this 

dissertation and future research in this area. In the next chapter, a new reinforcement 

learning signal control method based on neural networks and fuzzy logic will be 

developed, and details about how to apply this new signal control method to both 

intersection and arterial control are also presented. 
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CHAPTER IV 

DEVELOPMENT OF AN ARTERIAL TRAFFIC SIGNAL CONTROL SYSTEM 

BASED ON NEURAL FUZZY ACTOR-CRITIC REINFORCEMENT 

LEARNING 

 

INTRODUCTION 

In Chapters II and III, a comprehensive review of intersection traffic signal control, 

reinforcement learning, and reinforcement learning for adaptive traffic signal control is 

presented. The review shows that adaptive traffic signal control is conceptually more 

efficient than pre-timed and actuated control. Many adaptive traffic signal control 

methods have been developed. Compared to traditional adaptive traffic control methods 

such as OPAC and RHODES, modeling adaptive traffic control as a MDP problem can 

better account for the uncertainty in state transition by introducing a state transition 

probability matrix. The review also shows the advantages of using reinforcement 

learning over dynamic programming for adaptive intersection traffic control modeled as 

a MDP problem. In the meantime, problems with reinforcement learning and its 

applications to adaptive traffic control are also discussed in details. To address these 

problems, in this chapter a Neuro-Fuzzy Actor-Critic Reinforcement Learning 

(NFACRL) method is developed for both intersection and arterial traffic control. The 

NFACRL method is designed to consider more practical traffic signal control problems 

with more than two phases and left-turn movements. Compared to the traditional 

reinforcement learning methods such as Q-Learning, the NFACRL method can better 

handle the curse of dimensionality and generalization problems. Coordination of 

intersection traffic control agents is also taken into account. In addition, the NFACRL 

method will be compared with optimized pre-timed and actuated control strategies using 

a commonly-accepted microscopic traffic simulation tool. 
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In the following sections, a concise description of fuzzy logic control and neural 

networks is presented first. The NFACRL method is then introduced and two 

implementation schemes for isolated intersection traffic control using the NFACRL are 

proposed. Following that are the discussions of coordination strategies and the 

development of an arterial adaptive traffic control system using the NFACRL. 

 

FUZZY LOGIC CONTROL AND NEURAL NETWORKS 

Fuzzy Logic Control 

Fuzzy Sets and Fuzzy State Representation 

Before introducing fuzzy sets and fuzzy state representation, an example of discrete state 

representation is presented. Discrete state representation has been used in several 

previous studies (34,70,73). It uses crisp boundaries to partition observed state values 

into different categories. For example, if a set of boundary values shown in Table 2 is 

used for partitioning state values, then a queue of 6 vehicles will be classified as 

“Uncongested”, while a queue of 7 vehicles will be classified as “Congested”. Although 

the difference between queues of 6 and 7 vehicles is almost negligible, these two queues 

belong to distinctly different states according to the discrete state representation. Also 

for queues of 1 vehicle and 6 vehicles, although a queue of 6 vehicles is six times as long 

as a queue of only 1 vehicle, they all belong to state “Uncongested” and are treated the 

same. Obviously, it is problematic to use such partition method for categorizing input 

state values. One way to address this problem is to use smaller partition intervals, but 

this will considerably increase the number of states and make the reinforcement learning 

problem intractable. 

 

TABLE 2 Threshold Values for Each Category 

 Uncongested Congested 

Threshold values <=6 vehicles >=7 vehicles 
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This problem can be better solved by using fuzzy sets and fuzzy set 

representation. In the fuzzy set representation, each category in Table 2 will have a 

membership function associated with it. For given queue length, there are two 

membership function values showing the degrees that the given queue belongs to each 

category. Using membership function values can avoid classifying a queue into a 

category absolutely. To explain how this works, first the concept of fuzzy sets is 

formally defined below (55). 

 

{ }XxxxA iiAi ∈= |))(,( μ              (30) 

 

where 

=A fuzzy set; 

=X a collection of values, which can be discrete or continuous and is often 

referred to as universe of discourse; 

=ix values that belong to set X; and 

=)( iA xμ membership function for fuzzy set A. Its values are always between 0 

and 1 and represent the degrees that each ix  belongs to the current fuzzy set. 

 

There are many types of membership functions, including Triangular, 

Trapezoidal, and Gaussian membership functions as defined in Equations (31) through 

(33). Examples of these three types of fuzzy membership functions are also shown in 

Figure 20. 

 

Triangular membership function (55) 
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Trapezoidal membership function (55) 
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Gaussian membership function (55) 
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FIGURE 20 Fuzzy membership function examples. 

 



69 

 

A number of operations are defined for fuzzy sets, including union and 

intersection. The union of fuzzy sets A and B is denoted as BA∪ , and the membership 

function for the resulted new fuzzy set is defined as (55,79) 

 

{ })(),(max)()()( xxxxx BABABA μμμμμ =∨=∪          (34) 

 

The intersection of fuzzy sets A and B is denoted as BA∩ , for which the new 

membership function is defined as (55,79) 

 

{ })(),(min)()()( xxxxx BABABA μμμμμ =∧=∩          (35) 

 

If the fuzzy sets and fuzzy set representation is used to classify a queue into two 

categories as shown in Table 2, then ix  represents the queue length; X denotes all 

possible discrete queue length values; and there are two fuzzy sets U and C, which stand 

for “Uncongested” and “Congested” conditions, respectively. For fuzzy set C, if the 

membership function is a Triangular function with parameters a=5, b=7, and c=9, then 

given queue lengths 6 and 7, their corresponding membership function values are 0.5 

and 1, respectively. Compared with the results from the discrete state representation 

presented at the beginning of this section, the results from the fuzzy set representation 

are more rational. Moreover, the number of states can be kept within a reasonable range. 

The process of applying the fuzzy set representation and calculating the membership 

function values is often called fuzzification. 

 

Fuzzy Rules and Reasoning 

Using fuzzy sets, state variables can be written in the following linguistic term 

 

♦ Current Queue Length is {A} 
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where “Current Queue Length” is a state variable and also called a linguistic variable in 

this case. A is a linguistic value corresponding to a fuzzy set that could denote 

“Uncongested” or “Congested” condition. For each observed value of “Current Queue 

Length”, there is a fuzzy membership function value associated with the linguistic term 

“Current Queue Length is {A}”, and this membership function value is also called 

degree of compatibility. Action variables can also be expressed in the same way by using 

linguistic term. For instance, 

 

♦ Green Time Extension is {G} 

 

where “Green Time Extension” is an action variable (also a linguistic variable) and G is 

a linguistic value corresponding to a fuzzy set that could denote “Short” or “Long”. 

Using linguistic terms, traffic control can be realized using fuzzy rules that 

consist of linguistic terms as in the following examples: 

 

♦ IF Current Queue Length ( q ) is {Short} AND Arrival ( a ) is {Low} AND 

Conflicting Queue Length (c ) is {Medium}, THEN Extension ( e ) is {Short} 

♦ IF Current Queue Length ( q ) is {Medium} AND Arrival ( a ) is {High} AND 

Conflicting Queue Length (c ) is {Short}, THEN Extension (e ) is {Long} 

 

A fuzzy rule usually has two components: antecedent and consequence. In the first fuzzy 

rule presented above, linguistic terms “Current Queue Length ( q ) is {Short}”, “Arrival 

( a ) is {Low}”, and “Conflicting Queue Length (c ) is {Medium}” are antecedents, while 

the last linguistic term “Extension ( e ) is {Short}” is a consequence (55). Each 

antecedent or consequence has a degree of compatibility, which in fact is the fuzzy 

membership function value for the corresponding linguistic term. 

Each fuzzy rule has a numerical value associated with it. This value is called 

firing strength. Firing strength is calculated based on the degrees of compatibility of 

antecedents. For the first fuzzy rule in the previous paragraph, the degrees of 
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compatibility are )(qShortμ , )(aLowμ , and )(cMediumμ . There are basically two methods to 

calculate the firing strength (55). The first one is to calculate it as the intersection of the 

degrees of compatibility of all antecedents, which is in Equation (36). 

 

)()()(1 caqFS MediumLowShortRule μμμ ∧∧=         (36) 

 

The other method is to calculate it as the product of the degrees of compatibility of all 

antecedents (68) as shown in Equation (37) 

 

)()()(1 caqFS MediumLowShortRule μμμ ××=         (37) 

 

Firing strength is used for calculating the output of a fuzzy rule, and the output is 

an induced consequent fuzzy set. The entire process from fuzzy rules to the induced 

consequent fuzzy set is called fuzzy reasoning and is illustrated in Figure 21, in which 

there are two fuzzy rules. The first step of fuzzy reasoning is to calculate the degree of 

compatibility of each antecedent. This step is also called fuzzification. Based on these 

degrees of compatibility, the second step is to calculate the firing strength of each fuzzy 

rule. As discussed before, there are mainly two different methods for calculating the 

firing strength. For the example in Figure 21, Equation (36) is used to calculate firing 

strengths. Each fuzzy rule has a consequence. The consequences in this example are two 

fuzzy sets: )(eShortμ  and )(eLongμ . The calculated firing strengths are then applied to 

these two consequences to obtain induced consequent fuzzy sets. The two induced 

consequent fuzzy sets are represented by the shaded areas in Figure 21. For fuzzy 

reasoning problems with two or more fuzzy rules, a union operation in Equation (34) is 

usually used to merge all induced consequent fuzzy sets to obtain a combined induced 

consequent fuzzy set. For the example shown in Figure 21 with two fuzzy rules, the 

combined consequent fuzzy set is )(eExtensionμ . 
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FIGURE 21 Example of fuzzy reasoning. 
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Fuzzy Logic Controller 

A typical fuzzy logic controller has five major components, which are shown in Figure 

22. The fuzzification process is to obtain the degrees of compatibility of each antecedent 

in fuzzy rules. The fuzzy inference component includes fuzzy rules and fuzzy reasoning, 

which are discussed in the previous section. As shown in Figure 21, the result from 

fuzzy inference is a combined induced consequent fuzzy set. To apply fuzzy logic 

controllers to practical control problems, a meaningful and crisp value usually needs to 

be obtained from the combined induced consequent fuzzy set. 

 

 

FIGURE 22 Structure of a typical fuzzy logic controller. 
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The process of obtaining a crisp value from the output of fuzzy inference, a 

combined induced consequent fuzzy set, is called defuzzification. A number of methods 

are available for this purpose, including Centroid of Area (COA), Bisector of Area 

(BOA), Mean of Max (MOM), Smallest of Max (SOM), and Largest of Max (LOM) 

(55). Using the combined induced consequent fuzzy set shown in Figure 21 as an 

example, the COA method is defined in Equation (38). 

 

∫

∫ ⋅
=

e
Extension

e
Extension

COA dee

edee
Output

)(

)(

μ

μ
           (38) 

 

Compared with other defuzzification methods such as SOM and LOM, the COA method 

can give a more reasonable output, especially for fuzzy sets with irregular shapes. 

However, the COA method requires more computation time as integrals are involved. 

After defuzzification, a crisp value can be obtained and used for practical applications. 

For the example in Figure 21, the output crisp value represents the amount of green time 

extension that should be given to the current green phase. 

There are several different types of fuzzy logic controllers. The one just 

introduced is called Mamdani fuzzy logic controller. Other well-known fuzzy logic 

controllers include Sugeno and Tsukamoto fuzzy logic controllers. Detailed information 

about them can be found in (55). 

 

Neural Networks 

In traditional reinforcement learning methods such as Q-Learning, a Q-Table is usually 

used for storing the learned control policy in the form of action values. As discussed in 

Chapter III, this Q-Table method has certain limitations when the state or action space is 

large. In recent studies, neural networks are often used instead of the Q-Table in 

reinforcement learning for storing learned policies (16,74,75), to improve generalization 

ability and better handle the curse of dimensionality problem. In the proposed NFACRL 
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method, neural networks are combined with fuzzy logic control to approximate the best 

control policy. For better understanding of the proposed NFACRL method, a 

feed-forward back-propagation neural network is briefly described here. 

Figure 23 shows the structure of a typical feed-forward back-propagation neural 

network. This network has three layers. The first layer is the input layer that takes inputs 

and sends them to the second layer. Each node in the first layer represents an input 

variable. The second layer is the hidden layer that consists of a number of hidden 

neurons, and each hidden neuron has a transfer function. The input to each transfer 

function is the summation of the weighted outputs from the first layer. The third layer is 

the output layer. In this example, it consists of only one neuron. In fact, there could be 

more than one neuron in the output layer depending on the problems to be solved. 

Similar to the hidden layer, the neuron in the output layer also has a transfer function. Its 

input is the summation of the weighted outputs from the hidden layer. The output of this 

transfer function is also the output of this neural network. In addition to these neurons, 

there are a number of weights and biases in the network. Before a neural network can be 

used to solve problems, these weights and biases have to be calibrated through a process 

called training. 

In the sample network shown in Figure 23. The transfer functions for the hidden 

layer are chosen to be a Tangent (tanh) function and a linear function is used as the 

transfer function for the output layer. Assume there are n pairs of observed input and 

output data )},(),...,,(),...,,{( 11 nnii yxyxyx . The prediction output iŷ  using this sample 

neural network is given by Equation (39). 
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⎦
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1 1
)(1*),(1tanh*)(22),(ˆ ψ     (39) 

 

where 

P = number of input neurons; 

M = number of hidden neurons; 
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b1(j) and b2 = biases; 

w2(j) = weights connecting hidden layer and output layer; 

w1(j,k) = weights connecting input layer and hidden layer; 

ikx  = the kth element of the ith input; 

ix  = ],...,,...,[ 1 iPiki xxx , the ith input; 

ψ  = a vector contains all the network parameters (b1(j), b2, w1(j,k), and 

w2(k));  

i = 1, 2,…, n; j = 1, 2,…, M; and k = 1, 2,…, P. 

 

 
FIGURE 23 A typical feed-forward back-propagation neural network. 

 

The goal of training the sample neural network is to minimize the error term 

defined in Equation (40) by fine tuning weights and biases. An often used method for 

minimizing the error term is the back-propagation training, which is detailed in (55,80) 
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When applying neural networks to store the learned policy of a traffic control 

problem, the input to the network shown in Figure 23 could be the queue lengths and the 

output could be the amount of green time extension. Depending on the problems under 

study, neural networks can have multiple output units and each of them stands for a 

specific control action. The value of each output unit represents the preference that the 

corresponding action should be chosen. 

 

NEURO-FUZZY ACTOR-CRITIC REINFORCEMENT LEARNING (NFACRL) 

Introduction 

Most existing reinforcement learning traffic control studies are for oversimplified 

two-phase controlled intersections, and there are only two control actions. However, 

intersections in real world usually have four approaches and eight movement 

combinations as shown in Figure 2. There could be as many as eight control actions, 

which are shown in Figure 24. Due to this significant difference, the methods developed 

in most existing reinforcement learning traffic control studies (5,70,73) are not directly 

applicable to controlling a realistic intersection shown in Figure 2 for the following two 

major reasons. 

 

 

FIGURE 24 Possible control actions for a four-approach intersection. 

 

First, for controlling realistic intersections with more than two phases, phase 

sequence is expected to have significant effects on traffic control performance, and it is 

necessary to examine the possibility of applying reinforcement learning to phase 

sequence selection. While in most previous reinforcement learning traffic control studies 

1φ  2φ  3φ  4φ  5φ  6φ  7φ  8φ  
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(5,70,73), there were only two actions and phase sequence optimization was not 

considered at all. In these studies, reinforcement learning was used mainly for 

determining when to switch phases. 

Secondly, when there are eight movement combinations, the state space will be 

very large if the discrete state representation method is used. Large input state space 

makes the reinforcement learning process very slow and also brings up the 

generalization problem (16). Thorpe (70) did not consider large state space problem in 

his study. Abdulhai et al. (73) used Cerebellar Model Articulation Controller (CMAC) to 

store the Q-Table. However, it is not clear whether this method can handle large state 

space or not. Although fuzzy logic adopted by Bingham (5) can help solve the large state 

space problem, determining the fuzzy rules is difficult, especially when there are many 

state variables. To solve the aforementioned two major problems, the NFACRL method 

is introduced. 

 

NFACRL Structure 

The NFACRL method developed by Jouffe (81,82) is also an actor-critic type of 

reinforcement learning, but it is different from the GARIC method used by Bingham (5). 

The NFACRL method takes the form of neural networks and also incorporates fuzzy 

logic control into it. The structure of the NFACRL method is shown in Figure 25. The 

symbols used in Figure 25 are described below. 

 

=iS  the thi  input variable; 

=K  the total number of input variables; 

=iNM  the number of fuzzy sets or membership functions for the thi  input 

variable; 

=)( ia
iM  the thia )(  fuzzy set or membership function for the thi  input 

variable; 

=jR  the thj  fuzzy rule; 
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=N  the total number of nodes in the third layer; 

=jλ  the weight connecting the thj  fuzzy rule and the critic output; 

=j
qw  the weight connecting the thj  fuzzy rule and the thq  action output; 

=V  the critic output; 

=qA  the thq  action output; 

=P  the total number of actions; 

},...,1{)( iNMia ∈  

Ki ,...,1= ; 

Nj ,...,1= ; and 

Pq ,...,1= . 

 

 

FIGURE 25 Example of the NFACRL (81). 
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Similar to neural networks, the NFACRL method has four layers as shown in 

Figure 25. The first layer is the input layer. It receives state variable values and sends 

them to different fuzzy membership functions in the second layer. Each node in the first 

layer represents an input (state) variable. Each node in the second layer is a fuzzy set 

with a fuzzy membership function associated with it. The inputs to the second layer are 

the state variable values, and the outputs of the second layer are fuzzy membership 

function values. The inputs and fuzzy sets of the second layer constitute many linguistic 

terms such as “Queue is {Short}” and “Queue is {Long}”. Thus, the outputs of the 

second layer can also be considered as degrees of compatibility. The third layer 

corresponds to fuzzy rules in a fuzzy logic controller, and the outputs of the third layer 

can be considered as firing strengths. The fourth layer is a collection of nodes 

representing consequences. The first node stands for the Critic (see Figure 19), and its 

output value shows how good the current state is. The remaining nodes correspond to the 

available actions that can be taken, and their output values are the preferences to choose 

each action given the current state inputs. 

There are three major differences between the architectures of the NFACRL 

method and the GARIC method used by Bingham (5). 

 

1. First, the NFACRL method has multiple outputs that are crisp values 

representing Critic and actions, while the GARIC method only has one 

continuous output. Multiple outputs can be more useful for modeling phase 

sequence optimization than the single continuous output. Since GARIC only 

has a continuous output, it can only be used to decide weather and how to 

extend the current green phase. While for the NFACRL method, the multiple 

action outputs can be used to decide which control phase should be chosen 

for the next step.  

2. Bingham (5) used GARIC mainly for fine tuning the parameters of fuzzy 

membership functions. The fuzzy rules in her study needed to be 

prespecified. If the control problem has many input variables, specifying the 
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fuzzy rules could be cumbersome and prone to error. It will be shown later 

that the NFACRL dos not need to specify the fuzzy rules. 

3. GARIC uses a neural network as the Critic and a fuzzy logic controller as 

the Actor, and Critic and Actor are relatively independent of each other. For 

the NFACRL, Critic and Actor are closely related. Both of them use the 

same fuzzy membership function values as the inputs. 

 

For the GARIC method, fuzzy rules need to be prespecified based on users’ 

experience. If a control problem has many state variables, the fuzzy rules will become 

very complicated as the example shown below, and are difficult to specify even for very 

experienced experts.  

 

♦ IF 1S  is {1} AND 2S  is {2} AND 3S  is {1} AND 4S  is {1} AND … AND 

KS  is {2}, THEN Action Output is { tA } 

 

Specifying fuzzy rules in the GARIC method is similar to determining how to connect 

the nodes in the second, third, and fourth layers in Figure 25. The maximum possible 

number of fuzzy rules is 

 

∏
=

=
K

i
iNMPNmax

1

              (41) 

 

For control problems with many state variables, there could be several hundreds of 

complicated fuzzy rules need to be specified manually if the GARIC method is used. In 

the NFACRL method, by introducing the weights between the third and fourth layers, 

one can simply use Nmax  fuzzy rules. Through fine tuning the weights between the 

third and fourth layers, the best fuzzy rules can be found automatically even though the 

number of fuzzy rules can still potentially be large. 
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Calculation Procedure of the NFACRL 

For the NFACRL control, the input and fuzzification parts are the same as the typical 

fuzzy logic control. Given the input and fuzzy membership functions, fuzzy membership 

function values are generated and fed into the third layer of NFACRL. The fuzzy 

inference method used in the NFACRL is a little different from what is shown in Figure 

21. Assuming the thj  fuzzy rule has the following K antecedents 

 
)()2(

22
)1(

11 ,...,, Ka
KK

aa MSMSMS ∈∈∈           (42) 

 

then the firing strength of the thj  fuzzy rule is 

 

( )∏
=

=
K

i
i

j
iaR SFS

j
1

)(μ               (43) 

 

where 

=∈ },...,1{)( iNMia  one of the fuzzy sets for the thi  input variable; and 

( ) =i
j

ia S)(μ  the membership function value of the thia )(  fuzzy set for the thi  

input variable, and this value is used in the thj  fuzzy rule. 

 

Some of the firing strengths may be zeroes, which means the corresponding 

fuzzy rules will not affect the final control output. After the firing strengths of each 

fuzzy rule are obtained, the next step is to calculate the preference of choosing each 

action using Equation (44). 
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)(Pref              (44) 
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where 

=)(Pref qA  preference of choosing the thq  action; and  

Pq ,...,1= . 

 
j

qw  in Equation (44) is also referred to as action weight. If the following two row 

vectors are used to represent firing strengths and action weights, 

 

},...,{
1 NRR FSFSFS =              (45) 

},...,{ 1 N
qqq www =               (46) 

 

then Equation (44) can be rewritten as  

 
T

qq wFSA )()(Pref =               (47) 

 

In Equation (47), T means transpose. Similarly, the critic output of the NFACRL is 

defined in Equation (48). 

 

T
N

j

j
R FSFSV

j
)(

1

λλ ==∑
=

             (48) 

 

where 

},...,{ 1 Nλλλ = ; and 

=jλ  the thi  critic weight connecting the thi  fuzzy rule and the critic output. 
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Learning Procedure of the NFACRL 

The previous subsection describes how to calculate the outputs of NFACRL for given 

action and critic weights. In this subsection, the process of fine tuning the action and 

critic weights will be introduced. 

Let )}(),...,(),({)( 21 tttt Nλλλλ =  represent the critic weights at time step t, and 

)}(),...,(),({)( 21 twtwtwtw N
qqqq =  denote the action weights at time step t for the thq  

action output. If the state variables at time step t  are S(t)= )}(),...,({ 1 tStS K , then the 

critic and action outputs for state S(t) using weights at time step t are 

 
T

t ttSFStSV )]())[(())(( λ=             (49) 

T
qqt twtSFStSA )]())[(())(,(Pref =            (50) 

 

where 

=))(( tSFS  firing strengths calculated based on state variables at time step t; 

=))(( tSVt  critic output calculated based on state variables at time step t and 

weights at time step t; and  

=))(,(Pref tSAqt  preference for the thq  action calculated based on state 

variables at time step t and weights at time step t. 

 

After all the action outputs have been calculated, an ε -greedy algorithm is used 

to choose an action based on the calculated preferences of each action. If action j is 

selected and executed, and the resulted new state at time step t+1 is )1( +tS , then the 

critic output for state )1( +tS  using weights at time step t is 

 
T

t ttSFStSV )]())[1(())1(( λ+=+            (51) 
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where ))1(( +tSVt  is calculated based on input S(t+1) using weights at time step t. The 

transition from states S(t) to S(t+1) also results in a reward 1+tr  at time step t+1. Based 

on ))(( tSVt , ))1(( +tSVt , and 1+tr , A TD error is calculated using Equation (52). 

 

))(())1((1 tSVtSVr tttt −++= + γδ            (52) 

 

This TD error is used to update both the critic and action weights using Equations (53) 

and (54), respectively. 

 

))(()()1( tSFStt tβδλλ +=+             (53) 

))(()()1( tSFStwtw tjj βδ+=+            (54) 

 

where β  is a learning rate to be specified. Note that at each step only the action 

weights connecting to the chosen (jth) action are updated. 

If after certain updating steps the changes of critic and action weights are less 

than a prespecified small value, or the control performance tends to be stable, the 

learning process is terminated and the trained NFACRL is then used for real world 

control applications. After the learning process is terminated, a greedy action selection 

strategy should be used in lieu of the ε -greedy action selection method, such that the 

NFACRL method will not give irrational instructions during implementation. The entire 

learning process of the NFACRL method is summarized in Figure 26. 
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FIGURE 26 Training process of the NFACRL method. 
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Summary of NFACRL 

The NFACRL method is a combination of neural networks, fuzzy logic control, and 

actor-critic reinforcement learning, and is different from the GARIC method used by 

Bingham (5). It has the ability to handle phase sequence optimization of traffic signal 

control, large state space, generalization ability, and complicated fuzzy rules. 

The following three problems can have significant effects on the performance of 

NFACRL. Before applying the NFACRL method to traffic signal control, these three 

problems need to be solved. 

 

1. Choices of state variables and actions; 

2. Definition of reward; and 

3. Coordination of control agents. 

 

In the following two sections, these three problems are addressed and two intersection 

and arterial control methods based on NFACRL are proposed. 

 

ISOLATED INTERSECTION TRAFFIC CONTROL BASED ON NFACRL 

Fixed Phase Sequence Control Based on NFACRL 

There could be many different ways of applying the NFACRL method to intersection 

traffic control. One option is to consider a fixed phase sequence. In this case, the action 

space is to either extend the current green phase or terminate it, which is similar to what 

has been used in previous studies (70,73). 

In this research, only four-approach and three-approach intersections are 

considered, as they are the most common types of intersections in real world. For a 

typical four-approach intersection in Figure 2, the following phase sequence shown in 

Figure 27 is used. The control logic starts with the first phase ( 1φ ), and then visits the 

remaining five phases one by one in order. After the last phase ( 6φ ) in the sequence has 

been visited, the control logic goes back to the first phase and repeats the entire process. 
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Similar phase sequences are also used in the pre-timed and actuated control strategies 

that are to be compared with the NFACRL control. These pre-timed and actuated control 

strategies are optimized by Synchro. 

 

 
FIGURE 27 Phase plan for a four-approach isolated intersection. 

 

For a three-approach isolated intersection with five movements as shown in Figure 28, 

the phase sequence shown in Figure 29 is used. 

 

 

FIGURE 28 Layout of a typical three-approach intersection. 

 

 

FIGURE 29 Phase plan for a three-approach isolated intersection. 
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Choices of State Variables 

In most previous reinforcement learning traffic control studies, queue lengths were used 

as state variables (5,70,73). For the fixed phase sequence control based on NFACRL, 

queue lengths are also used as state variables. In addition to queue lengths, another state 

variable representing the current signal status is included.  

For four-approach isolated intersections with eight movements (each through 

movement and its associated right-turn movement are combined as one movement) as in 

Figure 2, totally nine state variables are used, which means K in Figure 25 is equal to 

nine. The first eight state variables are used to represent the queue lengths and the last 

state variable is used to indicate the current signal state. More specifically, the first eight 

state variables are defined in Equation (55). 

 

ii QS =                  (55) 

 

where 

=iS  the thi state variables; 

=iQ  queue length of the thi  movement (see Figure 2); and 

8,...,1=i . 

 

The last state variable is defined as  
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For three-approach isolated intersections as the one shown in Figure 28, six state 

variables are used. Consequently, the parameter K in Figure 25 is equal to six. Among 

the six state variables, the first five ones are used to represent the queue lengths and are 

defined as 

 

11 QS =                  (57) 

22 QS =                  (58) 

33 QS =                  (59) 

64 QS =                  (60) 

85 QS =                  (61) 

 

The last state variable is used to indicate the current signal state and is defined as 
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S           (62) 

 

Fuzzy Membership Functions 

To apply the NFACRL method, a set of fuzzy membership functions needs to be defined 

for the state variables. For each queue length state variable, two fuzzy sets are defined, 

which are {Short, Long}. The membership function for fuzzy set {Short} is defined in 

Equation (63). 
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xShortμ           (63) 

 

The membership function for fuzzy set {Long} is defined in Equation (64). 
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The value 10 in both Equations (63) and (64) is a subjective number selected for this 

study. These fuzzy membership functions are illustrated in Figure 30.  
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FIGURE 30 Fuzzy membership functions for queue length state variables. 

 

For the state variable representing signal status, the definition of its fuzzy 

membership function is a little different. Using the three-approach intersection shown in 

Figure 28 as an example, the state variable 6S  has three fuzzy sets, which are 

{ 321 ,, φφφ }. The corresponding fuzzy membership functions are defined in Equations 

(65) through (67). 
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Using the same principle, a set of fuzzy membership functions is defined for state 

variable 9S  for four-approach intersections. 

 

Fuzzy Rules 

For this fixed phase sequence control scheme, the third and fourth layers of the 

NFACRL (Figure 25) are assumed to be fully connected. Each node in the third layer 

has K connections with the second layer, one for each input state variable. Taking the 

three-approach intersection control as an example, a sample fuzzy rule is presented 

below 

 

♦ IF 1S  is {Long} AND 2S  is {Short} AND 3S  is {Long} AND 4S  is {Short} 

AND 5S  is {Short} AND 6S  is { 1φ }, THEN Next Action is {Extension} 

 

Since each of the five queue length state variables has two categories and the signal state 

variable has three values, totally there are 96 nodes in the third layer of the NFACRL 

(see Figure 25). 

Similarly, for the four-approach intersection control, each of the eight queue 

length state variables has two fuzzy sets associated with it, and the signal state variable 

has six possible states. Therefore, for the four-approach intersection control there are a 

total of 1536 nodes in the third layer of the NFACRL (see Figure 25). 
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Definition of Reward 

As shown in Equation (16), the objective of reinforcement learning is to find an optimal 

policy *π  (a mapping from states to actions) to maximize the reward of each state, and 

it is equivalent to maximizing the summation of discounted rewards shown in Equation 

(68). 
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This is similar to the DYPIC method based on dynamic programming, whose 

optimization goal is in Equation (69). 

 

11     ,    ,,...,1     )},({min)( ++ ∈∈=+= iiijkai SkSjNikfCjf
i

     (69) 

 

where jkC  is the total delay associated with transition from state j at stage i to state k at 

stage i+1. Comparing Equations (68) and (69) suggests that the minus delay between 

two decision points can be used as the reward. 

Thorpe (70) used a linear combination of discharged and stopped vehicles as the 

reward. Bingham (5) used minus delay as the reward. Abdulhai et al. (73) also used 

minus total delay between two decision points as the reward, and the total delay was 

calculated by counting queue lengths every 1 second. It makes sense to use minus total 

delay as the reward, as minimizing delay is often used as the objective of traffic signal 

control. However, simply using queue length to represent delay in the reward function 

may not be enough, as queue length can not accurately reflect the delay caused by 

acceleration and deceleration maneuvers. Also, sometimes it is desirable to consider 

minimizing number of stops. Thus, in this research, the following reward definition is 

used. 
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5544332211 xxxxxr βββββ −+−−=           (70) 

 

where 

=1x number of vehicles that have passed the intersection from approaches being 

given green signal; 

=2x number of vehicles in queues; 

=3x number of vehicles newly added to queues; 

=4x number of vehicles in approaches being given green signal; 

=5x number of vehicles being stopped when signal is switched from green to red; 

and  

=iβ nonnegative coefficients for each variable. 5,...,1=i  

 

1x  encourages moving more vehicles through the intersection during two decision 

points; 2x  represents stopped delay; 3x  is used to account for deceleration delay; 4x  

is to have more vehicles in the current green phase; and 5x  is used to penalize 

switching green signal to red while there are many vehicles being served by this green 

signal. 

Variable Phase Sequence Control Based on NFACRL 

Fixed phase sequence control based on NFACRL can significantly reduce the dimension 

of state and action spaces, consequently reducing the number of action and critic weights. 

However, the fixed sequence NFACRL control may lack the flexibility to fully adapt to 

traffic flow fluctuations due to the fixed phase sequence constraint. In this section, a 

variable phase sequence control method based on NFACRL is proposed. The variable 

phase sequence NFACRL control also uses queue lengths and signal states as inputs. But 

the decision output is not extension or termination. Instead, the decision output is any of 

the available control actions. For the three-approach intersection in Figure 28, the 
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decision output could be 1φ , 2φ , or 3φ  shown in Figure 29. In this case, a sample 

fuzzy rule is 

 

♦ IF 1S  is {Long} AND 2S  is {Short} AND 3S  is {Long} AND 4S  is {Short} 

AND 5S  is {Short} AND 6S  is { 1φ }, THEN Next Action is { 3φ } 

 

For the four-approach intersection in Figure 2, the decision output could be any of the 

eight phases in Figure 24. 

For the three-approach intersection, five queue length state variables and one 

signal state variable are used in the variable phase sequence NFACRL control. These 

variables are defined exactly the same as in the fixed phase sequence NFACRL control. 

Namely, each queue length state variable has two fuzzy sets and each signal state 

variable has three fuzzy sets. Therefore, the variable phase sequence NFACRL has 96 

nodes in the third layer (see Figure 25). 

For the four-approach intersection in Figure 2, eight queue length state variables 

and one signal state variable are used in the variable phase sequence NFACRL control. 

The eight queue length state variables are defined the same as in the fixed phase 

sequence NFACRL control. The signal state variable is defined a little differently, which 

is shown in Equation (71). 

 

1,...,8)(  Red,  andGreen   if  ,9 ==== ≠ i,jjS jij φφ        (71) 

 

Therefore, for four-approach intersection control with variable phase sequence, the 

NFACRL method has 2048 nodes in the third layer (see Figure 25). 

For the variable phase sequence NFACRL control, the same fuzzy membership 

functions in Figure 30 are used for all queue length state variables. The fuzzy 

membership functions for the signal state variables are defined in the same way as in the 

fixed phase sequence NFACRL control. The reward definition used in the fixed phase 
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sequence NFACRL control is also used in the variable phase sequence NFACRL control, 

but different coefficients for each variable are chosen. 

 

ARTERIAL TRAFFIC CONTROL BASED ON NFACRL 

Multiagent Reinforcement Learning 

Isolated intersection control is a single agent decision problem. For a system that has 

more than one intersection, multiple control agents should be used. A system consists of 

several agents is usually referred to as multiagent system (MAS). As many practical 

control problems, such as arterial traffic control, can be modeled as MASs, multiagent 

reinforcement learning (MARL) has attracted considerable attention over the past two 

decades (62,83,84,85,86,87,94,88,89,88,89). In the following subsections, three major 

MARL methods are briefly reviewed. 

 

MARL Based on Independent-Agent 

Independent-agent is the simplest MARL method. It directly applies single-agent 

reinforcement learning to MAS. Each agent treats all other agents as part of the 

environment (62). One potential problem of this method is that the existence of other 

agents may affect the environment and invalidate the Markov property assumption (90). 

 

MARL Based on SG 

Many MARL studies have been focused on using stochastic game (SG) or Markov game 

(MG). SG is a natural extension of MDP to handle problems with multiple agents. Recall 

that in Chapter III a MDP is defined by a tuple ),,,( prAS . Similarly, a SG is defined by 

a more complicated tuple as ),,...,,,...,,,( 11 prrAASn nn  (62,91,92,93), where 

 

1. n is the total number of agents in the MAS; 

2. S is a set of discrete states; 
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3. iA  ),...,1( ni =  is the action space for the thi  agent; 

4. ir  ),...,1( ni =  is the reward function for the thi  agent, which is affected by 

the current system state and all actions that will be taken; and 

5. p  is a transition function, which gives the probability that the system will 

be in each state provided with the current system state and actions to be 

taken. 

 

Under the framework of SG, the state transition is still assumed to satisfy the Markov 

Property. 

Littman (93) appears to be the first researcher to use SG as the framework to 

solve MARL problems. He studied a two-agent zero-sum SG problem, and proposed a 

minimax-Q algorithm similar to Q-Learning for solving this problem. For the two-agent 

zero-sum SG problem, there are two competing agents. The gain of one agent always 

leads to the loss of another, and the summation of gains from both agents is equal to zero. 

For arterial traffic signal control, the gain of one control agent does not necessarily mean 

the loss of other agents. Therefore, the zero-sum SG framework is not suitable for 

modeling arterial traffic control problems.  

Hu and Wellman (62) further researched the MARL problem under the 

framework of general-sum SG, in which different agents can increase their gains 

simultaneously. They developed a multiagent Q-Learning algorithm to solve n-agent 

general-sum SG problems. For ease of description, the following discussions only 

consider a two-agent general-sum SG problem. Different from the Q-Learning for MDP, 

the multiagent Q-Learning proposed by Hu and Wellman (62) requires each agent to 

keep two Q-Tables, one for itself and one for the other agent in the system. Using agent 

1 as an example, during the learning process, it updates it own Q-Table using Equation 

(72). 
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where 

=+ ),,( 211
1 tttt aasV  action function value for agent 1 at time step t+1; 

=1
ta  action taken by agent 1 at time step t; 

=2
ta  action taken by agent 2 at time step t; 

=⋅)(1π  policy function of agent 1; 

=⋅)(2π  policy function of agent 2; 

=+
1

1tr  reward for agent 1 at time step t+1; and 

=++ )(),,()( 1
2211

1
1

tttttt saasVs ππ  is the expected reward of agent 1 under the 

mixed strategy Nash Equilibrium (62); 

 

Note that updating agent 1’s state action function (Q-Table) needs the policy function 

information of agent 2. This can be done by keeping track of agent 2’s Q-Table using the 

following Equation (73). Detailed updating procedure can be found in (62). 
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There are two major difficulties in applying this multiagent Q-Learning method 

to arterial traffic control. First, with multiple intersections, the number of state variables 

will become very large and make the learning process extremely slow. Based on 

previous discussions on a four-approach intersection, there could be 9 state variables. If 

an arterial has four such intersections, then the total number of state variables is 36. 

Assuming each state variable has 2 categories, the total number of possible states is 
1036 109.62 ×≈ . The huge number of possible states will not only considerably slow 

down the reinforcement learning process, but also give rise to the generalization 

problem. 
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MARL Based on Cooperative-Agent 

MARL based on the SG framework is theoretically sound. However, it is not suitable for 

real world control applications due to its complexity and large state space. Tan (94) 

conducted a study to compare the performance of independent-agent and 

cooperative-agent in a MAS. For independent-agent method, agents treat each other as 

part of the environment. While for cooperative-agent method, agents share information 

with each other. For the cooperative-agent MARL method, Tan (94) experimented with 

the following three cooperation strategies: 

 

1. The first strategy shared real-time state information among all agents. 

Although testing results showed that sometimes cooperative-agent method 

using this strategy could moderately outperform the independent-agent 

method, this strategy significantly increased the state space of each agent in 

the system and might not be suitable for arterial traffic signal control. 

2. The second strategy shared experiences among all agents. These experiences 

were different from the instant information shared in the first strategy. They 

were past state, action, and reward information experienced by each agent. 

Tan reported that the second strategy improved the learning speed. However, 

it produced approximately the same performance as the independent-agent 

method did. 

3. The third strategy was similar to the first one. But the author applied it to a 

new problem, in which two agents were designed to accomplish a common 

task. In addition to having the large state space problem of the first strategy, 

the third strategy required a lot of communications between the two agents. 

 

Arterial Traffic Control Using Multiagent NFACRL 

Review in previous section shows that there are basically three MARL methods:  

 

1. MARL based on independent-agent; 
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2. MARL under the framework of SG; and 

3. MARL based on cooperative-agent that shares experiences or information. 

 

Due to the large state and action spaces problem, the second method under the 

framework of SG is ruled out for arterial traffic control in this research. In fact, this 

method so far has mainly been used in theoretical studies. The cooperative-agent method 

may also not be a good idea. As in this research, each intersection is controlled by an 

agent. Since different intersections may have different geometric settings, their 

environments are most likely different. Under this circumstance, sharing experience 

among different agents may not be useful. In addition, previous study by Tan (94) 

showed that sharing experience among agents only expedited the learning process and 

did not appear to improve the learning results. 

For the independent-agent MARL method, agents are expected to learn how to 

coordinate implicitly. Although the first strategy is very simple, it can be very useful in 

practice. Compared to the other two more complicated MARL methods, it has the 

following nice properties: 

 

1. No communication devices need to be installed between adjacent 

intersections.  

2. Simplicity sometimes means robustness. In this case, the malfunction of other 

controllers will not directly affect the function of the current controller. 

 

With all the above considerations, in this research the independent-agent method is 

chosen to coordinate different control agents. 

 

SUMMARY 

In this chapter, a neuro-fuzzy actor-critic reinforcement learning (NFACRL) method was 

introduced for adaptive traffic signal control. NFACRL uses a neuro-fuzzy network to 

store the actor and critic values of each state, such that the curse of dimensionality and 
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generalization problems can be properly handled. It also has the ability to model discrete 

action outputs and can be used to optimize phase sequence of traffic signal control. To 

present the NFACRL method more clearly, fuzzy logic control and neural networks were 

also briefly discussed at the beginning of this chapter. 

After the NFACRL method was introduced, two implementation schemes were 

proposed to apply the NFACRL method to isolated intersection traffic control. The first 

scheme considered a fixed phase sequence and the second one did not. For both 

implementation schemes, the implementation details such as the choice of state and 

action variables, fuzzy membership functions, fuzzy rules, and reward functions were 

discussed in details. 

The two NFACRL control methods were further extended for the traffic control 

of an arterial consisting of several intersections. Each intersection was controlled by an 

agent and the arterial traffic signal control was modeled as a multiagent system. Various 

methods to coordinate different agents in this multiagent system were reviewed. Based 

on the review, a simple but robust independent-agent method was adopted for arterial 

adaptive traffic signal control. 
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CHAPTER V 

EVALUATION OF THE NFACRL TRAFFIC CONTROL METHOD BASED ON 

MICROSCOPIC SIMULATION 

 

INTRODUCTION 

This chapter discusses in details the evaluation of the NFACRL traffic control using 

VISSIM microscopic traffic simulation. The evaluation is carried out at both isolated 

intersection and arterial levels based on simulation network created from real world data. 

The fixed and variable NFACRL control schemes for isolated intersection traffic control 

are evaluated first. Both NFACRL control schemes are then extended to arterial traffic 

control by using an independent-agent coordination method. For the isolated intersection 

evaluation, the two NFACRL control schemes are compared with optimized pre-timed 

and actuated control. For the arterial evaluation, the two NFACRL control schemes are 

compared with optimized coordinated pre-timed and coordinated actuated control. 

The rest of this chapter is organized as the following: first, data used for setting 

up the simulation traffic network are described. Secondly, the VISSIM microscopic 

traffic simulation program used in this research is discussed. Details about how to code 

the simulation traffic network and various control algorithms are also presented. Thirdly, 

test design is described. Following that are the testing results at both intersection and 

arterial levels. The last section summarizes this chapter. 

 

DATA DESCRIPTION 

Data from a real world arterial network in College Station, Texas are used. The chosen 

arterial is a segment of FM 2818 (Harvey Mitchell Parkway), shown in Figure 31, which 

include three four-approach intersections and one three-approach intersection. The 

traffic volume data for each intersection in Figure 31 are listed in Tables 3 through 5. 

The morning peak period traffic data were collected on October 7, 2004 from 7:00 A.M. 
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to 8:00 A.M.; the noon peak period traffic data were collected on October 12, 2004 from 

11:45 A.M. to 12:45 P.M.; and the afternoon peak period traffic data were also collected 

on October 12, 2004 but from 4:45 P.M. to 5:45 P.M.  

 

 

FIGURE 31 Testing arterial network. 

 

MICROSCOPIC TRAFFIC SIMULATION 

Microscopic traffic simulation has been used as a standard method for testing and 

comparing different traffic control strategies. Compared to evaluating traffic control 

strategies in the real world, using microscopic traffic simulation has the following 

advantages: 
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TABLE 3 Traffic Volume Data during Morning Peak Hour 

Southbound Westbound Northbound Eastbound 
Intersection Time 

R T L All R T L All R T L All R T L All 

7:15:00 AM 4 4 6 14 2 204 29 235 56 10 61 127 24 150 4 178

7:30:00 AM 4 5 6 15 7 277 33 317 63 19 81 163 55 237 8 300

7:45:00 AM 11 7 4 22 7 162 29 198 43 12 27 82 56 184 2 242

Longmire & 

FM 2818 

8:00:00 AM 4 7 3 14 4 73 25 102 39 9 29 77 32 128 2 162

7:15:00 AM 16 5 13 34 2 205 1 208 9 8 26 43 14 151 27 192

7:30:00 AM 28 10 7 45 3 315 0 318 13 32 53 98 16 231 60 307

7:45:00 AM 30 9 25 64 3 327 3 333 15 24 51 90 11 235 38 284

Southwood & 

FM 2818 

8:00:00 AM 13 6 15 34 3 104 6 113 4 15 17 36 16 163 24 203

7:15:00 AM - - - - - 217 8 225 41 - 54 95 8 148 - 156

7:30:00 AM - - - - - 353 12 365 86 - 113 199 16 179 - 195

7:45:00 AM - - - - - 404 14 418 112 - 109 221 24 217 - 241

Rio Grande & 

FM 2818 

8:00:00 AM - - - - - 191 10 201 50 - 52 102 18 174 - 192

7:15:00 AM 16 26 21 63 22 145 12 179 39 53 61 153 6 93 15 114

7:30:00 AM 17 39 45 101 61 206 16 283 26 101 82 209 1 102 30 133

7:45:00 AM 30 47 58 135 74 208 10 292 10 99 96 205 8 124 32 164

Welsh & 

FM 2818 

8:00:00 AM 29 50 49 128 23 142 24 189 14 78 49 141 8 99 11 118

        NOTE: L – Left-Turn Movement;  T – Through Movement;  R – Right-Turn Movement 
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TABLE 4 Traffic Volume Data during Noon Peak Hour 

Southbound Westbound Northbound Eastbound 
Intersection Time 

R T L All R T L All R T L All R T L All 

12:00:00 PM 10 11 12 33 11 118 64 193 82 9 42 133 38 106 6 150

12:15:00 PM 3 13 11 27 5 131 69 205 88 19 58 165 34 106 8 148

12:30:00 PM 3 12 8 23 6 92 49 147 74 6 61 141 46 114 8 168

Longmire & 

FM 2818 

12:45:00 PM 8 18 6 32 7 80 41 128 57 20 39 116 48 149 8 205

12:00:00 PM 12 10 13 35 4 144 6 154 10 8 17 35 32 147 18 197

12:15:00 PM 29 17 8 54 7 168 3 178 8 13 24 45 24 138 24 186

12:30:00 PM 15 10 13 38 6 143 6 155 7 12 17 36 17 133 15 165

Southwood & 

FM 2818 

12:45:00 PM 18 8 5 31 6 121 5 132 11 11 20 42 24 187 26 237

12:00:00 PM - - - - - 161 19 180 29 - 21 50 18 165 - 183

12:15:00 PM - - - - - 184 22 206 23 - 20 43 17 170 - 187

12:30:00 PM - - - - - 168 24 192 21 - 14 35 7 148 - 155

Rio Grande & 

FM 2818 

12:45:00 PM - - - - - 145 14 159 31 - 11 42 14 202 - 216

12:00:00 PM 5 17 23 45 10 115 39 164 21 12 21 54 15 146 1 162

12:15:00 PM 4 14 16 34 8 150 25 183 22 25 28 75 23 118 3 144

12:30:00 PM 1 20 20 41 27 108 26 161 21 25 29 75 14 105 4 123

Welsh & 

FM 2818 

12:45:00 PM 3 26 20 49 13 104 23 140 46 20 29 95 26 128 8 162

       NOTE: L – Left-Turn Movement;  T – Through Movement;  R – Right-Turn Movement 
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TABLE 5 Traffic Volume Data during Afternoon Peak Hour 

Southbound Westbound Northbound Eastbound 
Intersection Time 

R T L All R T L All R T L All R T L All 

5:00:00 PM 9 10 12 31 12 197 47 256 64 22 59 145 71 185 12 268

5:15:00 PM 10 28 11 49 16 204 49 269 75 21 68 164 81 170 9 260

5:30:00 PM 10 16 11 37 13 161 61 235 62 12 56 130 68 184 8 260

Longmire & 

FM 2818 

5:45:00 PM 4 14 12 30 19 196 55 270 73 17 43 133 72 200 11 283

5:00:00 PM 23 13 17 53 10 249 6 265 19 17 27 63 20 219 34 273

5:15:00 PM 49 23 20 92 7 231 15 253 14 13 22 49 27 248 17 292

5:30:00 PM 39 19 20 78 13 237 10 260 10 12 13 35 30 248 34 312

Southwood & 

FM 2818 

5:45:00 PM 31 17 12 60 8 193 7 208 7 12 12 31 17 288 32 337

5:00:00 PM - - - - - 261 48 309 40 - 18 58 19 229 - 248

5:15:00 PM - - - - - 231 54 285 34 - 25 59 41 256 - 297

5:30:00 PM - - - - - 241 56 297 34 - 32 66 40 287 - 327

Rio Grande & 

FM 2818 

5:45:00 PM - - - - - 205 49 254 48 - 15 63 42 284 - 326

5:00:00 PM 6 48 37 91 29 170 51 250 51 51 27 129 50 143 13 206

5:15:00 PM 13 53 42 108 40 163 52 255 53 50 30 133 61 197 12 270

5:30:00 PM 16 83 27 126 22 144 49 215 55 46 29 130 54 190 20 264

Welsh & 

FM 2818 

5:45:00 PM 14 76 41 131 26 105 59 190 43 54 12 109 40 147 14 201

      NOTE: L – Left-Turn Movement;  T – Through Movement;  R – Right-Turn Movement 
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1. It is cost effective. Testing a traffic control system using microscopic 

simulation is much easier than doing it in the real world. This saves a lot of 

efforts including installment of communication hardware, deployment of 

detectors, and related construction work. 

4. It is safe. For new traffic control systems that are still in the testing stage, 

evaluating it in the real world may cause unexpected results such as serious 

traffic accidents. 

5. It is fast. Implementing a traffic control system in microscopic simulation can 

be done in a few days, and the testing can usually be accomplished with a 

desktop computer. 

6. It is very flexible. Traffic analysts can modify parameters or traffic network 

settings conveniently to suit different analysis purposes. Doing the same in 

the real world would be cumbersome or even impossible. 

7. It is controllable. By using the same random number, traffic analysts can test 

different traffic control strategies under exactly the same traffic condition. 

While it is usually impossible to replicate the exact same conditions in the 

real world. Since different traffic control strategies will have to be tested 

during different time periods, there is no way to expect the traffic conditions 

during those time periods to be exactly the same. The difference in traffic 

conditions often makes the comparison results questionable, causing 

difficulties to draw valid and convincing conclusions from the results (41). 

 

There are many microscopic traffic simulation packages being used, including 

VISSIM (72), CORSIM (71), AIMSUN (95), and Paramics (96). There have been 

studies comparing different traffic simulation programs (97), however, no universal 

consensus has been reached as to which program is the best one. In this research, VISSM 

is chosen mainly for the following reasons: 
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1. VISSIM is one of the most popular microscopic traffic simulation software 

being widely used around the world, and has been trusted by many traffic 

engineering researchers and practitioners. Using VISSIM as the testing 

platform makes it easy for other researchers to compare their traffic control 

methods with the one proposed in this research. 

2. VISSIM provides a NEMA editor that can code actuated traffic signal 

control. Actuated traffic signal control is considered to be better than 

pre-timed control and is used as one of the baselines in this study. 

3. VISSIM has a signal control DLL (Dynamic-Link Library) interface that can 

be used to code and test the proposed NFACRL control method. 

 

TESTING DESIGN 

Testing Procedure 

The testing of the proposed NFACRL control method is conducted at both isolated 

intersection and arterial levels. The intersection at Welsh Avenue and the intersection at 

Rio Grande Boulevard (three-approach intersection) in Figure 31 are chosen for isolated 

intersection control testing, and the entire arterial network in Figure 31 is used for 

arterial control testing. 

For testing on the two isolated intersections, the fixed and variable phase 

sequence NFACRL control schemes are evaluated and compared with pre-timed and 

actuated control. The pre-timed and actuated control plans are optimized by Synchro 

(103). The two NFACRL controllers are first trained using simulated traffic data and 

then applied to control the same simulated traffic. To make the evaluation and 

comparison results more convincing, each of the four control methods is tested 30 times 

using different random seeds. 

The fixed and variable phase sequence NFACRL control schemes are extended 

to control the entire arterial using an independent-agent coordination method. Based on 

this coordination method, each intersection is controlled by one NFACRL controller. 
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These NFACRL controllers treat each other as part of the environment and learn how to 

coordinate implicitly. The NFACRL controllers based on the two schemes are trained 

and evaluated. Their performances on arterial control are then compared with those of 

coordinated pre-timed and coordinated actuated control. Again, the coordinated 

pre-timed and coordinated actuated control plans are optimized by Synchro (103). Each 

of the four control methods is tested 30 times independently using different random 

seeds. 

 

Testing Under Different Flow Patterns 

Using the intersection at Welsh Avenue in Figure 31 as an example, the northbound 

traffic volumes during morning, noon, and afternoon peak hours are plotted in Figure 32. 

Similarly, the southbound, eastbound, and westbound traffic volumes of this intersection 

are plotted in Figures 33 through 35. These figures clearly show that during different 

time periods of the day, traffic volumes of this intersection exhibit quite different 

patterns. 

To better illustrate the difference among traffic flow patterns during morning, 

noon, and afternoon peak periods, the total entrance traffic volumes during each of these 

three peak periods are plotted in Figure 36. This figure shows that the total entrance 

traffic volumes during morning and afternoon peak periods are significantly larger than 

that during noon peak period. 

To give a thorough evaluation of the proposed two NFACRL control schemes, 

they are tested using these three sets of traffic volume data at both the isolated 

intersections and the arterial. 
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FIGURE 32 Northbound traffic flows of the intersection of FM 2818 and Welsh 

Avenue. 
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FIGURE 33 Southbound traffic flows of the intersection of FM 2818 and Welsh 

Avenue. 
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FIGURE 34 Westbound traffic flows of the intersection of FM 2818 and Welsh 

Avenue. 
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FIGURE 35 Eastbound traffic flows of the intersection of FM 2818 and Welsh 

Avenue. 
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FIGURE 36 Total entrance traffic volumes. 

 

Network Coding 

GIS data from the website of the City of College Station (98) are used to code the 

arterial network. The coded arterial network in VISSIM is shown in Figure 37. 
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FIGURE 37 Coded arterial network. 

 

Algorithm Implementation 

Pre-Timed and Actuated Control 

Many software packages can be used to optimize pre-timed and actuated traffic control 

plans for both isolated intersections and arterials. Those packages include Synchro (103), 

PASSER II (99), PASSER V (100), and TRANSYT-7F (101). Synchro is chosen for this 

research as it has a very friendly user interface and its performance is also comparable 

with or better than other packages (102). Synchro is also more commonly used in 

practice than other packages. 

The cycle length and phase duration optimization algorithm used in Synchro is 

based on the method in Highway Capacity Manual 2000 (20). In addition to cycle length 

and phase duration, the algorithm used in Synchro can also optimize phase sequence and 
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offsets. More information on Synchro can be found in (102,103). The optimized 

pre-timed and actuated control plans are coded in VISSIM using the provided fix timed 

controller and the NEMA controller (104). 

 

Reinforcement Learning Control 

One reason for choosing VISSIM as the simulation platform is that VISSIM has a 

convenient DLL interface. With the help of this DLL interface, users can implement 

their own algorithms to control the simulated traffic. In this study, the two NFACRL 

control schemes are first coded as DLL files using the C++ language. The NFACRL 

control schemes in the form of DLL files communicate with the simulated traffic 

through the DLL interface. The entire idea of control flow using the DLL feature is 

illustrated in Figure 38. 

 

 

FIGURE 38 DLL interface and implementation of NFACRL control schemes. 
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It can be seen from Figure 38 that the DLL interface functions as a relay. It 

obtains detector outputs and signal states from the VISSIM microscopic traffic simulator 

and sends them to the NFACRL controller. In return, the NFACRL controller gives 

control instructions back to the VISSIM simulator to control the simulated traffic. The 

DLL interface in this case can also be regarded as a translator. It interprets the 

instructions sent by the NFACRL controller and changes signal states in the VISSIM 

traffic simulator accordingly. 

 

Performance Evaluation Criteria 

VISSIM provides various outputs, including average delay per vehicle, average stopped 

delay per vehicle, and average number of stops per vehicle. Similar outputs have been 

used by several researchers for evaluating traffic control methods (4,17,105). In this 

research, all these three outputs are adopted as performance evaluation criteria for both 

isolated intersection and arterial control. For ease of description, these three performance 

criteria hereinafter are referred to as delay, stopped delay, and number of stops per 

vehicle. 

For arterial control, three additional criteria are used, which are overall average 

speed, throughput, and average arterial travel time. Overall average speed is the average 

speed of all vehicles in the arterial system. Throughput is defined as the number of 

vehicles that have passed through the arterial system. Average arterial travel time is 

defined as the average travel time for vehicles traveling from one end of the arterial to 

the other end. In the rest of the dissertation, overall average speed and average arterial 

travel time are referred to as speed and arterial travel time, respectively. 

 

PERFORMANCE EVALUATION ON ISOLATED INTERSECTIONS 

Two isolated intersections are chosen for evaluating the proposed NFACRL methods. 

The first is the intersection of Welsh Avenue and FM 2818, which is a four-approach 

intersection. The second is the intersection of Rio Grande Boulevard and FM 2818, 
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which is a three-approach intersection. For ease of description, hereinafter these two 

intersections are referred to as four-approach and three-approach intersections. Also, the 

two NFACRL methods with fixed and variable phase sequences are referred to as 

NFACRL-F and NFACRL-V, respectively. 

NFACRL controllers are like neural networks. They need to be trained before 

they can actually be used. In this study, the NFACRL controllers were trained 90 runs 

based on the data from each selected intersection. The trained NFACRL controllers were 

then applied to the two intersections for performance evaluation. As described before, 

for each intersection under different traffic flow conditions, the performance evaluation 

process was repeated 30 runs with different random seeds. 

 

Evaluation with Morning Data 

Four-Approach Intersection 

Table 6 and Figure 39 show the simulation results for the four-approach intersection 

based on the morning peak period traffic volume data (Table 3). It can be seen that for 

all performance criteria, the NFACRL-V control consistently outperforms the pre-timed 

control, actuated control, and NFACRL-F control. Also, the NFACRL-F control 

performs better than the pre-timed and actuated control in terms of delay and stopped 

delay. Compared to the pre-timed control, the NFACRL-F control reduces delay by 6.6 

seconds per vehicle, which is 14.7% of the delay resulted from the pre-timed control. 

Although the NFACRL-F control performs slightly worse in terms of number of stops 

per vehicle, this could be solved by fine tuning the weight 5β  in Equation (70). For this 

scenario, actuated control has better performance than pre-timed control. This may be 

explained by actuated control’s ability to adjust green signal length according to 

real-time traffic flow conditions. 

It is expected that the NFACRL-V control has better performance than the 

NFACRL-F control, as NFACRL-V control is not constrained to any fixed phase 

sequences and has much greater flexibility to deal with changing traffic flow conditions. 



117 

 

The fact that for most performance criteria both NFACRL methods perform better than 

the optimized pre-timed and actuated control is very encouraging. It shows that it is 

feasible to use reinforcement learning in practical intersection traffic control problems 

with more than two phases, and reinforcement learning can be used to decide when to 

make phase switch as well as how to choose phase sequence. 

 

TABLE 6 Simulation Results for Four-Approach Intersection Based on Morning 

Peak Period Data 

Model Statistics Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per 

Veh 

Average 38.0 25.8 0.90 
NFACRL-F 

Stdev 4.2 3.7 0.04 

Average 32.7 21.0 0.85 
NFACRL-V 

Stdev 2.7 1.8 0.05 

Average 44.6 31.4 0.92 
Pre-Timed 

Stdev 3.8 2.7 0.06 

Average 41.7 29.2 0.89 
Actuated 

Stdev 3.5 2.5 0.05 

Improvement 6.6 5.7 0.02 NFACRL-F vs. 
Pre-Timed Percent. Improve. (%) 14.7 18.0 2.7 

Improvement 3.7 3.4 -0.01 NFACRL-F vs. 
Actuated Percent. Improve. (%) 8.9 11.8 -0.9 

Improvement 11.8 10.5 0.07 NFACRL-V vs. 
Pre-Timed Percent. Improve. (%) 26.6 33.3 7.9 

Improvement 9.0 8.2 0.04 NFACRL-V vs. 
Actuated Percent. Improve. (%) 21.6 28.2 4.4 

 

        NOTE: 
Improvement

Percent. Improve. (%)  
Average value of Pre Timed or Actuated control

=
−
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FIGURE 39 Simulation results for four-approach intersection based on morning peak 

period data. 

 

For each of the 30 evaluation runs, the four control methods (Pre-timed, actuated, 

NFACRL-F, and NFACRL-V) used the same random seeds, and were evaluated under 

exactly the same traffic conditions. Paired-t tests were conducted to further compare the 

performance of the four control methods. One-tail paired-t test and a significance level 
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of 0.05 were used in this study. The results of paired-t tests are presented in Table 7. 

Data in Tables 6 and 7 show that NFACRL-V control significantly outperforms the 

pre-timed and actuated control in terms of all three performance criteria. NFACRL-F 

control significantly reduces delay and stopped delay compared to the optimized 

pre-timed and actuated control. Although NFACRL-F control slightly increases the 

number of stops per vehicle compared to the optimized actuated control, the results in 

Table 7 indicate that this increase is statistically insignificant. Thus, the overall 

performance of the NFACRL-F control is better than that of the optimized pre-timed and 

actuated control. 

 

TABLE 7 Paired-t Test for Four-Approach Intersection Based on Morning 

Peak Period Data 

Model Statistics Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per 

Veh 

p-value 0.000 0.000 0.011 NFACRL-F vs. 
Pre-Timed Comparison Better Better Better. 

p-value 0.000 0.000 0.193 NFACRL-F vs. 
Actuated Comparison Better Better No Diff. 

p-value 0.000 0.000 0.000 NFACRL-V vs. 
Pre-Timed Comparison Better Better Better 

p-value 0.000 0.000 0.001 NFACRL-V vs. 
Actuated Comparison Better Better Better 

 

Three-Approach Intersection 

Table 8 and Figure 40 present the simulation results for the three-approach intersection 

based on the morning peak period traffic data (Table 3), and Table 9 shows the 

corresponding paired-t test results. The general trend shown in Tables 8 and 9 is similar 

to what has been suggested by the data in Tables 6 and 7. The only difference is that the 
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NFACRL-F control performs even better in this case, and both NFACRL control 

methods significantly outperform the optimized pre-timed and actuated control for all 

three performance criteria, indicated by the improved averages and the paired t-test 

results. 

 

TABLE 8 Simulation Results for Three-Approach Intersection Based on 

Morning Peak Period Data 

Model Statistics Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per 

Veh 

Average 15.0 6.9 0.47 
NFACRL-F 

Stdev 0.5 0.4 0.01 

Average 14.2 5.8 0.47 
NFACRL-V 

Stdev 0.8 0.7 0.02 

Average 16.5 7.3 0.56 
Pre-Timed 

Stdev 1.0 0.5 0.03 

Average 16.1 7.1 0.55 
Actuated 

Stdev 1.0 0.5 0.03 

Improvement 1.6 0.4 0.08 NFACRL-F vs. 
Pre-Timed Percent. Improve. (%) 9.5 5.6 14.8 

Improvement 1.1 0.2 0.07 NFACRL-F vs. 
Actuated Percent. Improve. (%) 7.1 2.6 13.3 

Improvement 2.3 1.5 0.08 NFACRL-V vs. 
Pre-Timed Percent. Improve. (%) 14.2 20.8 14.9 

Improvement 1.9 1.3 0.07 NFACRL-V vs. 
Actuated Percent. Improve. (%) 11.9 18.3 13.3 
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FIGURE 40 Simulation results for three-approach intersection based on morning peak 

period data. 
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TABLE 9 Paired-t Test for Three-Approach Intersection Based on Morning 

Peak Period Data 

Model Statistics Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per 

Veh 

p-value 0.000 0.000 0.000 NFACRL-F vs. 
Pre-Timed Comparison Better Better Better 

p-value 0.000 0.024 0.000 NFACRL-F vs. 
Actuated Comparison Better Better Better 

p-value 0.000 0.000 0.000 NFACRL-V vs. 
Pre-Timed Comparison Better Better Better 

p-value 0.000 0.000 0.000 NFACRL-V vs. 
Actuated Comparison Better Better Better 

 

Evaluation with Noon Data 

Four-Approach Intersection 

Table 10 and Figure 41 show the simulation results based on the noon peak period traffic 

data (Table 4) for the four-approach intersection. The NFACRL-V control produces the 

lowest delay and number of stops per vehicle. The NFACRL-F control also generates 

lower delay and number of stops per vehicle than the pre-timed and actuated control. In 

addition, paired-t test results in Table 11 show that these improvements on delay and 

number of stops per vehicle from the NFACRL methods are statistically significant. 

While the delay and number of stops per vehicle results show that the two 

NFACRL methods outperform the optimized pre-time and actuated control, one 

inconsistency in Tables 10 and 11 indicates that the two NFACRL methods do not 

perform well on stopped delay. For isolated intersection control, the most important 

performance evaluation criteria are delay and number of stops per vehicle. Since in this 

example the delay and numbers of stops per vehicle for the two NFACRL control 
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methods are significantly less than those for the optimized pre-timed and actuated 

control, the two NFACRL methods can still be considered to be better. 

 

TABLE 10 Simulation Results for Four-Approach Intersection Based on Noon 

Peak Period Data 

Model Statistics Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per 

Veh 

Average 18.6 11.1 0.62 
NFACRL-F 

Stdev 0.4 0.3 0.02 

Average 18.3 11.9 0.52 
NFACRL-V 

Stdev 0.7 0.6 0.02 

Average 19.9 11.7 0.69 
Pre-Timed 

Stdev 0.8 0.6 0.02 

Average 19.2 11.1 0.68 
Actuated 

Stdev 0.7 0.6 0.02 

Improvement 1.3 0.6 0.06 NFACRL-F vs. 
Pre-Timed Percent. Improve. (%) 6.6 5.5 9.2 

Improvement 0.6 0.0 0.06 NFACRL-F vs. 
Actuated Percent. Improve. (%) 3.2 0.4 8.6 

Improvement 1.6 -0.2 0.17 NFACRL-V vs. 
Pre-Timed Percent. Improve. (%) 8.0 -1.4 24.4 

Improvement 0.9 -0.8 0.16 NFACRL-V vs. 
Actuated Percent. Improve. (%) 4.6 -6.9 23.8 
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FIGURE 41 Simulation results for four-approach intersection based on noon peak period 

data. 
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TABLE 11 Paired-t Test for Four-Approach Intersection Based on Noon Peak 

Period Data 

Model Statistics Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per 

Veh 

p-value 0.000 0.000 0.000 NFACRL-F vs. 
Pre-Timed Comparison Better Better Better 

p-value 0.000 0.314 0.000 NFACRL-F vs. 
Actuated Comparison Better No Diff. Better 

p-value 0.000 0.116 0.000 NFACRL-V vs. 
Pre-Timed Comparison Better No Diff. Better 

p-value 0.000 0.000 0.000 NFACRL-V vs. 
Actuated Comparison Better Worse Better 

 

Three-Approach Intersection 

Table 12 and Figure 42 show the simulation results based on the noon peak period traffic 

volume data (Table 4) for the three-approach intersection, and Table 13 shows the 

corresponding paired-t test results. The results in Tables 12 and 13 are very consistent 

and show that both NFACRL methods significantly outperform the optimized pre-timed 

and actuated control in terms of all performance criteria. Also, the results in Tables 12 

and 13 show that the NFACRL-V control produces the best results for all performance 

criteria. 
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TABLE 12 Simulation Results for Three-Approach Intersection Based on Noon 

Peak Period Data 

Model Statistics Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per 

Veh 

Average 8.2 2.8 0.33 
NFACRL-F 

Stdev 0.8 0.3 0.03 

Average 7.1 2.4 0.26 
NFACRL-V 

Stdev 0.6 0.3 0.03 

Average 9.5 3.6 0.38 
Pre-Timed 

Stdev 0.3 0.2 0.01 

Average 8.9 3.4 0.37 
Actuated 

Stdev 0.3 0.2 0.01 

Improvement 1.3 0.9 0.06 NFACRL-F vs. 
Pre-Timed Percent. Improve. (%) 14.0 24.2 14.6 

Improvement 0.8 0.6 0.04 NFACRL-F vs. 
Actuated Percent. Improve. (%) 8.7 18.3 10.5 

Improvement 2.3 1.3 0.12 NFACRL-V vs. 
Pre-Timed Percent. Improve. (%) 24.7 35.5 31.0 

Improvement 1.8 1.0 0.10 NFACRL-V vs. 
Actuated Percent. Improve. (%) 20.1 30.6 27.7 
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FIGURE 42 Simulation results for three-approach intersection based on noon peak 

period data. 
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TABLE 13 Paired-t Test for Three-Approach Intersection Based on Noon 

Peak Period Data 

Model Statistics Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per 

Veh 

p-value 0.000 0.000 0.000 NFACRL-F vs. 
Pre-Timed Comparison Better Better Better 

p-value 0.000 0.000 0.000 NFACRL-F vs. 
Actuated Comparison Better Better Better 

p-value 0.000 0.000 0.000 NFACRL-V vs. 
Pre-Timed Comparison Better Better Better 

p-value 0.000 0.000 0.000 NFACRL-V vs. 
Actuated Comparison Better Better Better 

 

Evaluation with Afternoon Data 

Four-Approach Intersection 

Table 14 and Figure 43 show the simulation results based on the afternoon peak period 

traffic volume data (Table 5) for the four-approach intersection. The data in Table 14 

suggest that both NFACRL methods perform better than the optimized pre-timed and 

actuated control for all three criteria. More specifically, compared to the pre-timed and 

actuated control, the NFACRL-F control reduces delay by 9.0 and 6.7 seconds per 

vehicle, respectively. The corresponding improvements from the NFACRL-V control are 

even greater, at 12.3 and 9.9 seconds, respectively. The paired-t test results in Table 15 

indicate that the improvements from the two NFACRL methods relative to the optimized 

pre-timed and actuated control are statistically significant. 
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TABLE 14 Simulation Results for Four-Approach Intersection Based on 

Afternoon Peak Period Data 

Model Statistics Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per 

Veh 

Average 36.6 25.2 0.85 
NFACRL-F 

Stdev 1.5 1.3 0.02 

Average 33.4 21.6 0.86 
NFACRL-V 

Stdev 2.5 2.0 0.04 

Average 45.7 31.1 1.01 
Pre-Timed 

Stdev 5.3 3.3 0.10 

Average 43.3 29.5 0.97 
Actuated 

Stdev 4.7 3.1 0.08 

Improvement 9.0 5.9 0.15 NFACRL-F vs. 
Pre-Timed Percent. Improve. (%) 19.8 18.9 15.3 

Improvement 6.7 4.2 0.11 NFACRL-F vs. 
Actuated Percent. Improve. (%) 15.4 14.3 11.8 

Improvement 12.3 9.5 0.14 NFACRL-V vs. 
Pre-Timed Percent. Improve. (%) 26.9 30.5 14.0 

Improvement 9.9 7.8 0.10 NFACRL-V vs. 
Actuated Percent. Improve. (%) 22.9 26.6 10.5 
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FIGURE 43 Simulation results for four-approach intersection based on afternoon peak 

period data. 
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TABLE 15 Paired-t Test for Four-Approach Intersection Based on Afternoon 

Peak Period Data 

Model Statistics Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per 

Veh 

p-value 0.000 0.000 0.000 NFACRL-F vs. 
Pre-Timed Comparison Better Better Better 

p-value 0.000 0.000 0.000 NFACRL-F vs. 
Actuated Comparison Better Better Better 

p-value 0.000 0.000 0.000 NFACRL-V vs. 
Pre-Timed Comparison Better Better Better 

p-value 0.000 0.000 0.000 NFACRL-V vs. 
Actuated Comparison Better Better Better 

 

Three-Approach Intersection 

Table 16 and Figure 44 present the simulation results based on the afternoon peak period 

traffic volume data (Table 5) for the three-approach intersection. The results show that 

for all three evaluation criteria the NFACRL-F control outperforms the optimized 

pre-timed and actuated control, and the NFACRL-V control again performs better than 

the NFACRL-F control in terms of all three criteria. The paired-t test results in Table 17 

show that compared to the optimized pre-timed and actuated control, all the 

improvements from the two NFACRL methods are statistically significant. 
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TABLE 16 Simulation Results for Three-Approach Intersection Based on 

Afternoon Peak Period Data 

Model Statistics Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per 

Veh 

Average 11.1 4.5 0.37 
NFACRL-F 

Stdev 0.4 0.4 0.02 

Average 10.4 4.3 0.32 
NFACRL-V 

Stdev 0.6 0.7 0.01 

Average 13.3 5.9 0.45 
Pre-Timed 

Stdev 0.7 0.5 0.02 

Average 13.3 6.0 0.45 
Actuated 

Stdev 0.9 0.6 0.02 

Improvement 2.2 1.4 0.07 NFACRL-F vs. 
Pre-Timed Percent. Improve. (%) 16.6 24.2 16.6 

Improvement 2.2 1.5 0.08 NFACRL-F vs. 
Actuated Percent. Improve. (%) 16.3 24.6 16.9 

Improvement 3.0 1.6 0.13 NFACRL-V vs. 
Pre-Timed Percent. Improve. (%) 22.2 27.3 29.0 

Improvement 2.9 1.7 0.13 NFACRL-V vs. 
Actuated Percent. Improve. (%) 22.0 27.7 29.2 
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FIGURE 44 Simulation results for three-approach intersection based on afternoon peak 

period data. 
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TABLE 17 Paired-t Test for Three-Approach Intersection Based on Afternoon 

Peak Period Data 

Model Statistics Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per 

Veh 

p-value 0.000 0.000 0.000 NFACRL-F vs. 
Pre-Timed Comparison Better Better Better 

p-value 0.000 0.000 0.000 NFACRL-F vs. 
Actuated Comparison Better Better Better 

p-value 0.000 0.000 0.000 NFACRL-V vs. 
Pre-Timed Comparison Better Better Better 

p-value 0.000 0.000 0.000 NFACRL-V vs. 
Actuated Comparison Better Better Better 

 

Summary and Comparison of Performance during Morning, Noon, and Afternoon 

Peak Periods 

The evaluation results on isolated intersections show that in general the NFACRL-F and 

NFACRL-V control perform significantly better than the optimized pre-timed and 

actuated control, and the NFACRL-V control outperforms the NFACRL-F control in 

most cases. For isolated intersection control, delay and number of stops per vehicle are 

the two most critical performance criteria. For all six scenarios considered in this 

dissertation, the NFACRL-V control produces lower delay and lower number of stops 

per vehicle than the optimized pre-timed and actuated control. The NFACRL-F control 

generates lower delay and lower number of stops than the optimized pre-timed and 

actuated control in all cases except for the morning peak period for the four-approach 

intersection. In this case, the NFACRL-F control generates approximately the same 

number of stops per vehicle compared to the optimized actuated control. 

As delay is one of the most critical criteria for isolated intersection performance 

evaluation, it is interesting to further examine the relationship between the delay 

reductions from the two NFACRL methods and traffic volume levels. The delay 
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reductions from the two NFACRL methods relative to the pre-timed control are plotted 

in Figures 45 and 46. Also plotted are the corresponding total traffic volumes during 

morning, noon, and afternoon peak periods. Figure 45 shows that for the four-approach 

intersection, the total traffic volumes during morning and afternoon peak periods are 

much higher than that of noon peak period. Interestingly, the delay reductions from the 

two NFACRL methods relative to the pre-timed control during the morning and 

afternoon periods are also more significant than that during the noon peak period.  
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FIGURE 45 Delay improvements from the NFACRL methods relative to the pre-timed 

control and corresponding traffic volumes for the four-approach intersection. 
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Figure 46 shows the comparison results for the three-approach intersection. The traffic 

volume data in Figure 46 show similar trend as the traffic volume data in Figure 45 

suggest. Again, the delay reductions from the two NFACRL methods relative to the 

pre-timed method in general are larger during morning and afternoon peak periods, 

though for the NFACRL-V method the relative delay reductions during morning and 

noon peak periods are virtually the same. 
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FIGURE 46 Delay improvements from the NFACRL methods relative to the pre-timed 

control and corresponding traffic volumes for the three-approach intersection. 
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The results in Figures 45 and 46 seem to suggest that for isolated intersection 

traffic control the benefits of using the proposed NFACRL methods are more significant 

when traffic volume is higher. 

 

PERFORMANCE EVALUATION ON ARTERIAL 

The proposed NFACRL-F and NFACRL-V methods were also evaluated on the entire 

arterial network shown in Figure 31. Again, the NFACRL-F and NFACRL-V controllers 

were trained 90 runs based on the arterial traffic data during morning, noon, and 

afternoon peak periods. The trained NFACRL controllers were then applied to the 

arterial for performance evaluation. For each of the three different traffic flow conditions 

(morning, noon, and afternoon), the performance evaluation process was repeated 30 

runs with different random seeds. In addition to delay, stopped delay, and number of 

stops per vehicle, three new performance criteria were considered for performance 

evaluations on arterial. These three criteria were speed, throughput, and arterial travel 

time. 

 

Evaluation with Morning Data 

Table 18 and Figure 47 list the simulation results for the arterial based on the morning 

peak period traffic data. Paired t-test was also performed and the results are provided in 

Table 19. The results show that the NFACRL-V method performs the best. It 

significantly improves all performance criteria over the pre-timed control and 

significantly improves all performance criteria but throughput over the actuated control. 

Results in Table 18 and Figure 47 suggest that the NFACRL-F method can 

effectively reduce delay and increase speed. However, it does not perform well on 

number of stops per vehicle and arterial travel time compared to the optimized 

coordinated pre-timed and actuated control. One reason for this phenomenon is that the 

coordinated pre-timed and actuated control strategies use fixed cycle length and offset to 

maximize the green signal bandwidth along the arterial. This is like giving vehicles 
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traveling along the arterial higher priority. Thus the number of stops for vehicles 

traveling along the arterial and the arterial travel time can be significantly reduced. 

While for the NFACRL-F method, vehicles from arterial and cross streets are treated the 

same. Another possible reason is that the fixed phase sequence restricts NFACRL-F 

method’s ability to minimize number of stops. It may often happen that a platoon of 

vehicles is coming from the arterial and there are only a few vehicles waiting in the cross 

streets, and the arterial directions cannot be given green signal immediately due to the 

phase sequence restriction and minimum green times that have to be served for the 

cross-street movements. 

 

TABLE 18 Simulation Results for Arterial Based on Morning Peak Period Data 

Model Statistics Speed 
(mph) 

Delay
(s/veh)

Stopped
Delay 
(s/veh)

Number of 
Stops per 

Veh 

Throughput
(# of Veh.) 

Arterial 
Travel 

Time (s)

Average 25.1 55.9 31.5 1.52 4104 212.1 
NFACRL-F 

Stdev 0.4 2.3 1.7 0.05 10 3.1 

Average 25.6 52.9 32.1 1.25 4104 186.1 
NFACRL-V 

Stdev 0.4 1.9 1.5 0.04 9 2.5 

Average 23.8 63.6 42.2 1.46 4093 211.3 
Pre-Timed 

Stdev 0.5 3.1 2.0 0.06 11 3.0 

Average 24.7 58.3 38.4 1.35 4112 194.4 
Actuated 

Stdev 0.5 2.8 1.9 0.05 11 2.5 

Improvement 1.3 7.7 10.7 -0.06 11 -0.8 NFACRL-F vs. 
Pre-Timed Percent. Improve. (%) 5.4 12.1 25.4 -4.2 0.3 -0.4 

Improvement 0.4 2.4 6.9 -0.17 -8 -17.7 NFACRL-F vs. 
Actuated Percent. Improve. (%) 1.6 4.1 18.0 -12.6 -0.2 -9.1 

Improvement 1.8 10.7 10.1 0.21 11 25.2 NFACRL-V vs. 
Pre-Timed Percent. Improve. (%) 7.7 16.8 24.0 14.2 0.3 11.9 

Improvement 1.0 5.4 6.3 0.10 -8 8.3 NFACRL-V vs. 
Actuated Percent. Improve. (%) 3.9 9.3 16.5 7.3 -0.2 4.3 
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FIGURE 47 Simulation results for arterial based on morning peak period data. 
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TABLE 19 Paired-t Test for Arterial Based on Morning Peak Period Data 

Model Statistics Speed 
(mph) 

Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per

Veh 

Throughput 
(# of Veh.) 

Arterial 
Travel 

Time (s)

p-value 0.000 0.000 0.000 0.000 0.000 0.139 NFACRL-F vs. 
Pre-Timed Comparison Better Better Better Worse Better No Diff.

p-value 0.000 0.000 0.000 0.000 0.000 0.000 NFACRL-F vs. 
Actuated Comparison Better Better Better Worse Worse Worse 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 NFACRL-V vs. 
Pre-Timed Comparison Better Better Better Better Better Better 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 NFACRL-V vs. 
Actuated Comparison Better Better Better Better Worse Better 

 

Evaluation with Noon Data 

Table 20 and Figure 48 present the simulation results for the arterial based on the noon 

peak period traffic data. It is easy to see that the NFACRL-V method outperforms the 

coordinated pre-timed and coordinated actuated control for all performance criteria. The 

paired-t test results in Table 21 also indicate that compared to the coordinated pre-timed 

and coordinated actuated control all improvements from the NFACRL-V method are 

statistically significant. 

The NFACRL-F control in this case produces better speed, delay, stopped delay, 

and throughput results than the coordinated pre-timed and coordinated actuated control, 

and these improvements are statistically significant. However, the NFACRL-F control 

generates larger number of stops per vehicle than the coordinated pre-timed control and 

longer arterial travel time than the coordinated actuated control. The result from the 

NFACRL-F control in this case shows the same trend as the result from the NFACRL-F 

control based on the morning data suggests. It seems that the optimized coordinated 

pre-timed and coordinated actuated control methods favor the arterial more than the 

cross streets. Thus, they generally produce good performance along the arterial such as 

less arterial travel time. However, the overall performance of the system may not be the 
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best. The NFACRL methods give the arterial and the cross streets equal priority. They 

may not have the best performance for the arterial. However, they usually generate better 

performance for the entire system than the optimized coordinated pre-timed and 

coordinated actuated control. 

 

TABLE 20 Simulation Results for Arterial Based on Noon Peak Period Data 

Model Statistics Speed 
(mph) 

Delay
(s/veh)

Stopped
Delay 
(s/veh)

Number of 
Stops per 

Veh 

Throughput
(# of Veh.) 

Arterial 
Travel 

Time (s)

Average 28.3 42.0 23.0 1.38 2881 196.2 
NFACRL-F 

Stdev 0.2 1.0 0.6 0.04 10 2.6 

Average 28.8 39.9 25.0 1.06 2877 168.4 
NFACRL-V 

Stdev 0.2 1.0 0.9 0.03 10 1.3 

Average 26.8 49.0 31.0 1.35 2859 200.0 
Pre-Timed 

Stdev 0.3 1.4 0.9 0.02 10 1.7 

Average 26.3 52.0 28.4 1.67 2855 180.4 
Actuated 

Stdev 0.8 4.1 2.0 0.11 14 1.6 

Improvement 1.5 7.0 8.0 -0.03 22 3.8 NFACRL-F vs. 
Pre-Timed Percent. Improve. (%) 5.4 14.3 25.7 -2.3 0.8 1.9 

Improvement 2.0 10.0 5.4 0.29 26 -15.8 NFACRL-F vs. 
Actuated Percent. Improve. (%) 7.6 19.3 19.0 17.3 0.9 -8.7 

Improvement 1.9 9.0 6.0 0.29 18 31.6 NFACRL-V vs. 
Pre-Timed Percent. Improve. (%) 7.2 18.5 19.3 21.6 0.6 15.8 

Improvement 2.5 12.1 3.4 0.61 22 12.0 NFACRL-V vs. 
Actuated Percent. Improve. (%) 9.4 23.2 12.0 36.6 0.8 6.7 
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FIGURE 48 Simulation results for arterial based on noon peak period data. 



143 

 

TABLE 21 Paired-t Test for Arterial Based on Noon Peak Period Data 

Model Statistics Speed 
(mph) 

Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per

Veh 

Throughput 
(# of Veh.) 

Arterial 
Travel 

Time (s)

p-value 0.000 0.000 0.000 0.000 0.000 0.000 NFACRL-F vs. 
Pre-Timed Comparison Better Better Better Worse Better Better 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 NFACRL-F vs. 
Actuated Comparison Better Better Better Better Better Worse 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 NFACRL-V vs. 
Pre-Timed Comparison Better Better Better Better Better Better 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 NFACRL-V vs. 
Actuated Comparison Better Better Better Better Better Better 

 

Evaluation with Afternoon Data 

Table 22 and Figure 49 present the simulation results for the arterial based on the 

afternoon peak period traffic data. In this scenario, the NFACRL-V method consistently 

performs the best in terms of all performance criteria. The paired-t test results in Table 

23 also suggest that compared to the coordinated pre-timed and coordinated actuated 

control all improvements from the NFACRL-V method are statistically significant. 

The data in Table 23 also show that, compared to the coordinated pre-timed and 

coordinated actuated control, the NFACRL-F control produces better or approximately 

the same results in terms of speed, delay, stopped delay, and throughput. However, the 

NFACRL-F control generates larger number of stops per vehicle and longer arterial 

travel time than both the coordinated pre-timed and coordinated actuated control. 
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TABLE 22 Simulation Results for Arterial Based on Afternoon Peak Period Data 

Model Statistics Speed 
(mph) 

Delay
(s/veh)

Stopped
Delay 
(s/veh)

Number of 
Stops per 

Veh 

Throughput
(# of Veh.) 

Arterial 
Travel 

Time (s)

Average 24.1 62.3 37.5 1.66 4365 208.7 
NFACRL-F 

Stdev 0.3 2.2 1.7 0.04 15 2.2 

Average 25.2 56.1 35.7 1.31 4368 179.6 
NFACRL-V 

Stdev 0.4 2.2 1.9 0.03 15 1.8 

Average 23.9 63.9 40.4 1.45 4359 189.4 
Pre-Timed 

Stdev 0.7 4.5 2.8 0.08 16 2.4 

Average 24.2 62.0 39.9 1.43 4359 181.5 
Actuated 

Stdev 0.7 4.3 2.8 0.08 15 2.1 

Improvement 0.2 1.6 2.8 -0.20 7 -19.4 NFACRL-F vs. 
Pre-Timed Percent. Improve. (%) 1.0 2.5 7.1 -14.0 0.2 -10.2 

Improvement -0.1 -0.3 2.4 -0.23 6 -27.2 NFACRL-F vs. 
Actuated Percent. Improve. (%) -0.3 -0.5 5.9 -16.0 0.1 -15.0 

Improvement 1.3 7.8 4.7 0.14 10 9.8 NFACRL-V vs. 
Pre-Timed Percent. Improve. (%) 5.5 12.3 11.6 9.9 0.2 5.2 

Improvement 1.0 5.9 4.2 0.12 9 1.9 NFACRL-V vs. 
Actuated Percent. Improve. (%) 4.1 9.6 10.6 8.4 0.2 1.1 
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FIGURE 49 Simulation results for arterial based on afternoon peak period data. 
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TABLE 23 Paired-t test for Arterial Based on Afternoon Peak Period Data 

Model Statistics Speed 
(mph) 

Delay 
(s/veh) 

Stopped 
Delay 
(s/veh) 

Number of 
Stops per

Veh 

Throughput 
(# of Veh.) 

Arterial 
Travel 

Time (s)

p-value 0.023 0.018 0.000 0.000 0.004 0.000 NFACRL-F vs. 
Pre-Timed Comparison Better Better Better Worse Better Worse 

p-value 0.268 0.328 0.000 0.000 0.008 0.000 NFACRL-F vs. 
Actuated Comparison No Diff. No Diff. Better Worse Better Worse 

p-value 0.000 0.000 0.000 0.000 0.001 0.000 NFACRL-V vs. 
Pre-Timed Comparison Better Better Better Better Better Better 

p-value 0.000 0.000 0.000 0.000 0.001 0.000 NFACRL-V vs. 
Actuated Comparison Better Better Better Better Better Better 

 

Summary and Comparison of Performance during Morning, Noon, and Afternoon 

Peak Periods 

The paired-t test results in Tables 19, 21, and 23 show that, for all tests on the arterial, 

the NFACRL-V method produces better results than the coordinated pre-timed and 

coordinated actuated control for almost all performance criteria. The only exception is 

the throughput value for the test on morning peak period data, which is slightly less than 

that of the coordinated actuated control. The difference between the two throughputs is 8 

vehicles, which is only 0.2% of the throughput resulted from the coordinated actuated 

control. In the meantime, the NFACRL-V control reduces delay by 5.4 seconds per 

vehicle, which is 9.3% of the delay resulted from the coordinated actuated control. 

For the NFACRL-F control, the paired-t test results suggest that it generally 

performs better on delay, speed, stopped delay, and throughput compared to the 

coordinated pre-timed and coordinated actuated control. However, it does not perform 

well on number of stops per vehicle and arterial travel time. 

To further compare the performance of the proposed NFACRL methods during 

morning, noon, and afternoon peak periods, the delay reductions from the two NFACRL 

methods relative to the coordinated pre-timed control during different peak periods are 



147 

 

plotted in Figure 50. Also plotted are the total entrance traffic volume data during these 

three peak periods. 
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FIGURE 50 Delay improvements from the NFACRL methods relative to the 

coordinated pre-timed control and corresponding traffic volumes for the arterial. 

 

From Figure 50, it seems that there is no direct connection between the total entrance 

traffic volume and the relative delay reductions from the two NFACRL methods.  
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A close look at the traffic volume data in Tables 3 through 5 suggests that the 

performance of the NFACRL methods relative to the coordinated pre-timed control may 

depend on the proportion of cross-street traffic and cross-street turning traffic. 

Cross-street traffic and cross-street turning traffic are defined in Figure 51 and Figure 52, 

respectively.  

 

 

FIGURE 51 Cross-street traffic. 

 

 

FIGURE 52 Cross-street turning traffic. 

 

The cross-street and cross-street turning traffic data are listed in Table 24. It 

shows that during morning peak period 66.2% and 49.7% of the total entrance traffic are 

cross-street traffic and cross-street turning traffic, respectively. While for afternoon peak 

period only 54.7% and 38.0% of the total entrance traffic are cross-street traffic and 

cross-street turning traffic, respectively. Higher percentages of cross-street traffic and 

cross-street turning traffic may result in narrower green signal bandwidth along the 

arterial, thus the benefits of coordinating different traffic signal controllers may become 

N Not drawn to scale

FM 2818 

N Not drawn to scale

FM 2818 
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smaller. Also, the large amount of traffic turning into the arterial can considerably affect 

the queue lengths of the arterial direction at each intersection. The initial queues may 

have negative impact on the performance of the coordinated pre-timed and coordinate 

actuated control. This probably is the reason why during the morning peak period the 

relative improvements from the two NFACRL methods are more significant. 

 

TABLE 24 Cross Street Traffic during Morning, Noon, and Afternoon Peak Periods 

 Morning Noon Afternoon 

Total entrance traffic (A) 4091 2888 4354 

Total cross-street traffic (B) 2710 1624 2383 
(B/A)*100 66.2 56.2 54.7 

Total cross-street turning traffic (C) 2035 1268 1656 
(C/A)*100 49.7 43.9 38.0 

 

SUMMARY 

In this chapter, the proposed NFACRL-F and NFACRL-V control schemes were 

evaluated at two isolated intersections and on the entire arterial. The evaluations were 

performed using VISSIM simulation based on geometric and traffic data collected from 

a four-intersection arterial (FM 2818) in College Station, Texas. To better assess the 

performance of the proposed new methods under different traffic demand conditions, the 

evaluations were conducted using traffic data during morning, noon, and afternoon peak 

periods. Optimized pre-timed and actuated control methods were also evaluated to be 

compared with the two NFACRL methods. For each of the four control strategies 

(NFACRL-F, NFACRL-V, pre-timed, and actuated), the evaluation process was 

repeated 30 times with different random seeds. 

A four-approach intersection and a three-approach intersection in the arterial 

were selected for isolated intersection testing. The testing results showed that in almost 

all cases, the two NFACRL control methods produced lower delay, stopped delay, and 
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number of stops per vehicle compared to the optimized pre-timed and actuated control. 

Paired-t tests were also conducted and showed that all the improvements from the two 

NFACRL methods were statistically significant. Although the two NFACRL methods 

produced slightly larger stopped delay for the four-approach intersection using the noon 

peak period data, they were still considered to perform better than the optimized 

pre-timed and actuated control due to the considerably reduced delay and number of 

stops per vehicle. Further comparison of the evaluation results based on morning, noon, 

and afternoon peak periods showed that the performance of the two NFACRL methods 

relative to that of the pre-timed control seemed to be more significant when traffic 

volume was higher. 

The NFACRL-F and NFACRL-V control schemes were also extended for 

arterial control. The results showed that the NFACRL-V control significantly 

outperformed the coordinated pre-timed and coordinated actuated control for speed, 

delay, stopped delay, number of stops per vehicle, and arterial travel time. The 

NFACRL-V control also produced good throughput results in most cases. The 

NFACRL-F control exhibited less flexibility than the NFACRL-V control. However, in 

most cases the NFACRL-F control still generated better delay, speed, stopped delay, and 

throughput results compared to the optimized coordinated pre-timed and coordinated 

actuated control. The results also showed that the NFACRL-F control did not perform 

well on number of stops per vehicle and arterial travel time compared to the coordinated 

pre-timed and coordinated actuated control. Possible reasons for this were discussed, and 

future studies are needed to address this problem. The performance of the NFACRL 

methods during the morning, noon, and afternoon peak periods were also compared and 

analyzed. The result suggested that the benefits of using the NFACRL methods for 

arterial control may be even larger with higher proportions of cross-street traffic and 

cross-street turning traffic. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

CONTRIBUTIONS 

This research investigates the application of reinforcement learning to adaptive traffic 

signal control. A new adaptive traffic signal control method based on neuro-fuzzy 

actor-critic reinforcement learning (NFACRL) is developed and evaluated at both 

isolated intersection and arterial. Compared to previous studies using reinforcement 

learning for traffic signal control, this research has the following contributions: 

 

1. A comprehensive review of existing traffic signal control methods and 

reinforcement learning is presented in this dissertation. This review 

systematically points out the connection between MDP, dynamic programming, 

and reinforcement learning. It also explains clearly the advantages of modeling 

traffic signal control as a MDP problem and using reinforcement learning 

methods to solve it. 

2. By introducing the NFACRL, the curse of dimensionality and generalization 

problems associated with traditional reinforcement learning methods can be 

properly solved.  

3. Bingham (5) also combined fuzzy logic and reinforcement learning for traffic 

signal control. In her study, the fuzzy rules need to be prespecified explicitly. 

When the state space is large, there could be several hundreds of fuzzy rules. 

Specifying so many fuzzy rules is very cumbersome. In the proposed NFACRL 

method, action weights are introduced and there is no need to define each fuzzy 

rule. 

4. Most previous studies considered traffic signal control with only two phases, and 

phase sequence optimization was not investigated. In practice, typical 

intersections are controlled by four or even more phases. To show the potential 
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of applying reinforcement learning control methods in the real world, a fixed 

(NFACRL-F) phase sequence control strategy and a variable (NFACRL-V) 

phase sequence control strategy are proposed in this research. Four-phase control 

and three-phase control are used for the four-approach and three-approach 

intersections, respectively. This is the first time that complicated and realistic 

phase configuration is considered in truly adaptive traffic signal control based on 

reinforcement learning. Also, it is the first time that reinforcement learning is 

used for phase sequence selection. 

5. Various strategies for coordinating agents in a multiagent system are reviewed 

and their pros and cons are discussed in details. Finally, a simple but robust 

independent-agent strategy is adopted to coordinate different NFACRL-F and 

NFACRL-V controllers. 

6. A new reward function is proposed in this research. The new reward function 

takes into account multiple factors such as delay and number of stops, and has 

been shown to perform well in this research. Theoretical reasons for choosing 

this new reward function are also provided. 

7. A comprehensive comparison of the proposed NFACRL control methods with 

pre-timed and actuated control is conducted based on VISSIM simulation. Most 

previous studies did not use a commonly-used microscopic traffic simulation 

platform for performance evaluations and did not compare their methods with 

optimized pre-timed or actuated control. Self-developed simulation platforms 

give users more control over the simulation process, but the simulated traffic 

environment may not be as close to the true traffic condition as those from 

commonly-used simulation tools such as VISSIM. Also, pre-timed and actuated 

control strategies are the two most widely used control methods in practice. It is 

necessary to show that the proposed new methods are better than them. 
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MAJOR FINDINGS 

There are three major findings in this dissertation. First, this dissertation shows that it is 

feasible to apply reinforcement learning to adaptive isolated intersection control with 

more than two phases and complicated phase configurations. For all tests on isolated 

intersections, the proposed NFACRL-F and NFACRL-V methods produce considerably 

less delay than the optimized pre-timed and actuated control. In most cases, the two 

NFACRL methods generate significantly smaller stopped delay and number of stops per 

vehicle. The performance of the NFACRL-F and NFACRL-V control during morning, 

noon, and afternoon peak periods are also compared. The comparison result suggests 

that the performance of the NFACRL-F and NFACRL-V control relative to the 

optimized pre-timed control tend to be larger when traffic demand is higher. 

Secondly, it is found in this dissertation that reinforcement learning can be used 

for phase sequence selection. In fact, the NFACRL-V method with phase sequence 

selection ability consistently outperforms the NFACRL-F method with fixed phase 

sequence for most performance evaluation criteria in this research. As only two phases 

were considered in most previous studies, none of them investigated the phase sequence 

selection using reinforcement learning. 

Lastly, this research shows that reinforcement learning has the potential to be 

used for realistic arterial adaptive traffic signal control. The proposed NFACRL-F and 

NFACRL-V control strategies are applied to the control of a four-intersection arterial 

network based on VISSIM simulation. A simple but robust independent-agent 

coordination strategy is considered, in which control agents learn to coordinate with each 

other implicitly. The evaluation results show that both NFACRL methods can effectively 

increase overall network speed and reduce delay and stopped delay compared to the 

optimized coordinated pre-timed and coordinated actuated control. In addition, the 

NFACRL-V control exhibits more flexibility and produces significantly better 

performance in terms of number of stops per vehicle and arterial travel time, compared 

to the optimized coordinated pre-timed and coordinated actuated control. It is also found 

that the NFACRL-F method does not perform well for criteria such as number of stops 
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per vehicle and arterial travel time. This could be the problem of the parameters used in 

the reward function or the definition of state variables. Overall, the test results show that 

the proposed NFACRL-F and NFACRL-V methods are promising tools for isolated 

intersection and arterial adaptive traffic signal control. 

 

FUTURE RESEARCH 

Although encouraging results are obtained in this research, further studies are still 

needed to address the following problems: 

 

1. In this research, the decision interval is either 3 or 7 seconds. If a green extension 

decision is made, the next decision point is 3 seconds later. In other words, the 

green extension is 3 seconds; if a termination decision is made, the next decision 

point would be 7 seconds later. Because, in addition to 3-second minimum green 

time for the next phase, a 3-second yellow time and a 1-second all-red time need 

to be considered to ensure safety. In future studies, smaller green extensions such 

as 2 seconds can be considered, this should further improve the performance of 

the NFACRL methods. 

2. The coordination strategy considered in this research is fairly simple. Even with 

this simple coordination strategy, arterial control using the NFACRL-V method 

still performs better than the coordinated pre-timed and coordinated actuated 

control in all cases. The NFACRL-F method also outperforms the coordinated 

pre-timed and coordinated actuated control in many cases in terms of speed, 

delay, and stopped delay. However, the NFACRL-F control does not perform 

well for number of stops per vehicle and arterial travel time. One possible 

solution to this problem is to add four new state variables representing upstream 

traffic arrival information. With advanced traffic arrival information, the 

NFACRL-F control should be able to better adjust its control strategy such that 

the number of stops and arterial travel time can be reduced. 
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3. A number of factors can affect the performance of the NFACRL control methods, 

for instance, the fuzzy membership function, learning rate β  (Equations (53) 

and (54)), choice of state variables, ε  in the action selection method (Equation 

(23)), and iβ  in the reward function (Equation (70)). Due to limited 

computation resources and considerable amount of time spent on algorithm 

developing and debugging, a comprehensive evaluation of the effects of various 

factors on the NFACRL control performance is not conducted in this dissertation. 

In future studies, a comprehensive evaluation needs to be conducted. 

4. In this dissertation, the proposed NFACRL methods are only applied to isolated 

intersection and arterial control. By using the same coordination strategy adopted 

in this research, it would be interesting to see how the NFACRL methods 

perform on a signalized street network. 

5. In this research, it is assumed that queue lengths can be observed accurately, and 

there are no pedestrians. To apply the proposed NFACRL method in the real 

world, it is necessary to conduct future studies that take pedestrians into account. 

Also, an accurate and reliable queue detection method needs to be developed. 
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