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Abstract

Image collections today are increasingly larger in size, and they continue to grow con-
stantly. Without the help of image search systems these abundant visual records col-
lected in many different fields and domains may remain unused and inaccessible. Many
available image databases often contain complementary modalities, such as attached
text resources, which can be used to build an index for querying with keywords. How-
ever, sometimes users do not have or do not know the right words to express what
they need, and, in addition, keywords do not express all the visual variations that an
image may contain. Using example images as queries can be viewed as an alternative
in different scenarios such as searching images using a mobile phone with a coupled
camera, or supporting medical diagnosis by searching a large medical image collection.
Still, matching only visual features between the query and image databases may lead to
undesirable results from the user’s perspective. These conditions make the process of
finding relevant images for a specific information need very challenging, time consuming
or even frustrating.

Instead of considering only a single data modality to build image search indexes,
the simultaneous use of both, visual and text data modalities, has been suggested.
Non-visual information modalities may provide complementary information to enrich
the image representation. The goal of this research work is to study the relation-
ships between visual contents and text terms to build useful indexes for image search.
A family of algorithms based on matrix factorization are proposed for extracting the
multimodal aspects from an image collection. Using this knowledge about how visual
features and text terms correlate, a search index is constructed, which can be searched
using keywords, example images or combinations of both. Systematic experiments were
conducted on different data sets to evaluate the proposed indexing algorithms. The ex-
perimental results showed that multimodal indexing is an effective strategy for designing
image search systems.

Keywords: Image Databases, Indexing Methods, Image Search, Multimodal Data
Analysis, Machine Learning, Pattern Recognition, Matrix Factorization.
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Resumen

Las colecciones de imágenes hoy en d́ıa son muy grandes y crecen constantemente. Sin la
ayuda de sistemas para la búsqueda de imágenes esos abundantes registros visuales que
han sido recolectados en diferentes areas del conocimiento pueden permanecer aislados
sin uso. Muchas bases de datos de imágenes contienen modalidades de datos comple-
mentarias, como los recursos textuales que pueden ser utilizados para crear ı́ndices de
búsqueda. Sin embargo, algunas veces los usuarios no tienen o no saben qué palabras
utilizar para encontrar lo que necesitan, y adicionalmente, las palabras clave no expre-
san todas las variaciones visuales que una imagen puede tener. Utilizar imágenes de
ejemplo para expresar la consulta puede ser visto como una alternativa, por ejemplo
buscar imágenes con teléfonos móviles, o dar soporte al diagnóstico médico con las imá-
genes de los pacientes. Aún aśı, emparejar correctamente las caracteŕısticas visuales
de la consulta y las imágenes en la base de datos puede llevar a resultados semántica-
mente incorrectos. Estas condiciones hacen que el proceso de buscar imágenes relevantes
para una necesidad de información particular sea una tarea dif́ıcil, que consume mucho
tiempo o que incluso puede ser frustrante.

En lugar de considerar solo una modalidad de datos para construir ı́ndices de
búsqueda para imágenes, el uso simultáneo de las modalidades visual y textual ha sido
sugerido. Las modalidades no visuales pueden proporcionar información complemen-
taria para enriquecer la representación de las imágenes. El objetivo de este trabajo de
investigación es estudiar las relaciones entre los contenidos visuales y los términos tex-
tuales, para construir ı́ndices de búsqueda útiles. Este trabajo propone una familia de
algoritmos basados en factorización de matrices para extraer los aspectos multimodales
de una colección de imágenes. Utilizando este conocimiento acerca de cómo las carac-
teŕısticas visuales se correlacionan con los términos textuales, se construye un ı́ndice
que puede ser consultado con palabras clave, imágenes de ejemplo o por combinaciones
de estas dos. Se realizaron experimentos sistemáticos en diferentes conjuntos de datos
para evaluar los algoritmos de indexamiento propuestos. Los resultados muestran que el
indexamiento multimodal es una estrategia efectiva para diseñar sistemas de búsqueda
de imágenes.

Palabras clave: Bases de datos de imágenes, Métodos de indexación, Búsqueda de
Imágenes, Análisis de datos multimodal, Aprendizaje de Máquina, Reconocimiento de
Patrones, Factorización de Matrices.
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Chapter 1

Introduction

This thesis addresses the problem of indexing large image collections to provide effective
and efficient content-based access. An effective image search system requires the ability
to associate high-level concepts to images, in order to discriminate between relevant
and non-relevant results. This ability is not natural for computer systems, and this
condition poses the research challenge of modeling strategies to bridge the gap between
visual signals and abstract interpretations made by humans.

This work proposes a family of algorithms for learning the relationships between
visual features and text data, and to make these relationships useful for indexing image
collections. The main goal is to construct a mixed content representation of images,
determined simultaneously by text descriptions and visual characteristics. In that way,
the representation can incorporate high-level, semantic information that may be found
attached to images as well as low-level, appearance information extracted directly from
images. This work proposes strategies to merge the two data sources for building
multimodal representations, with the intention of improving the quality of the results
in an image search system.

1.1 Motivation

Image search systems are becoming a pervasive technology in every field in which vi-
sual information is used to support processes and decisions, including arts, forensics,
medicine, military and scientific applications, among others. Even for personal photo
collections and social networks, simple image search engines are available. And the
main reason for this is that image databases are becoming massive and keep growing
constantly. The social web hosts billions of images from all around the world, while
specialized fields all together collect millions of images every day.

That volume of information cannot be analyzed thoroughly and regularly by people
as it is updated, so lots of potentially useful records may remain inaccessible without a
proper search engine. Depending on the kind of information required, users may need
to query for specific pictures using keywords or example images. The latter may be

16



CHAPTER 1. INTRODUCTION 17

more appropriate for some domains in which available records are at hand, or just for
exploring the web using camera phones.

The main challenge of an image search system is to identify and retrieve from the
database the most relevant images for a given query. There are several difficulties that
make this goal a challenging problem. Searching for images using keywords can be hard
for users if they do not have the right terms in mind. Besides, real world databases do
not have clean text descriptions for every image, and some of the available annotations
may be incomplete, imprecise or noisy. On the other hand, when users search for images
using example pictures, correctly matching visual contents may be hard because of the
semantic gap.

The semantic gap is known as the inability of computers to understand pictures
as naturally as people do. Human beings can extract and recognize objects in very
complex scenes, and can even associate these objects to generic concepts and abstract
ideas. Understanding pictures is a task that people can do effortlessly to discriminate
useful material when they are searching for something. The ability to associate visual
structures with abstract ideas would be very helpful for a search system to find the right
images for complex queries, yet, this is something that cannot be explicitly implemented
using conventional programming notions.

The fundamental assumption of this dissertation is that text resources can provide
information closer to high-level conceptual interpretations made by humans about visual
information. The visual data modality is usually associated to a low-level appearance
model for images, while the text data modality usually describes symbolic representa-
tions or high-level concepts present in the associated images. In that sense, the problem
of understanding images from a computational perspective, can be approached by mod-
eling the relationships between images and texts.

The algorithms and strategies proposed in this work are oriented to building an
image representation that simultaneously contain information extracted from the visual
and textual modalities. This is called a multimodal representation. Then, the main
hypothesis is that by combining the two data modalities, a better response can be
obtained from an image search system. The core research problem approached in this
work is learning the correspondences between both data modalities and making them
useful to index an image collection as well as to represent and interpret incoming queries.

1.2 Problem Statement

The problem studied in this dissertation is the design of effective and efficient strategies
for image indexing and search. In particular, this work focuses on learning multimodal
relationships between visual and text data. The main research question of this work
is: how to automatically identify associations between images and text to improve
the response of an image retrieval system, using the richness of visual data and the
semantics of text annotations?.
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1.2.1 Learning Multimodal Aspects

Images and text descriptions are not paired randomly. We can assume that images
have been placed in a document together with their text description by a writer who
wanted to express an idea. In that case, the image is an illustration of the idea and the
text provides its narrative from an abstract but precise perspective. A similar situation
happens with medical images, when physicians provide a diagnosis and attach a visual
signal as complementary evidence. Even in photo-sharing web sites or social networks,
some tags are assigned to pictures to indicate context, emotions, places and specific
objects.

Without loss of generality, we can assume a joint probability distribution that gen-
erates pairs of images and texts following the same patterns of a human writer. From
this distribution, an image of a tall building is more likely to be observed with words
such as city, office, and hotel, and less likely to be observed with words such as animal,
forest, and waterfall. This work assumes that the structure of this distribution can
be learned from data, more specifically, using machine learning algorithms on a collec-
tion of image-text pairs. A potential solution has three main components: a model of
the relationships between both modalities, an algorithm to learn the unknown param-
eters of the model, and an inference or prediction function to compute the multimodal
representation.

The model of the relationships between visual and text contents may be designed
using supervised learning, which allows to define classification functions that predict
whether observed visual features are correlated with text terms. This strategy is able
to model the relationships between the two data modalities, and well established algo-
rithms for learning their parameters may be used, such as Support Vector Machines.
However, this offers part of the solution only, since the representation obtained with
classification functions is primarily semantic, i.e., the goal is set to predict text terms
instead of building a multimodal representation.

The key point for modeling multimodal aspects is to note that visual contents and
text descriptions are both partial views of common underlying concepts. Images are
signals with abundant visual details including colors, textures, shapes and variations
or combinations of them. Texts are composed of symbols including letters, words and
sentences, usually associated to high-level ideas or interpretations. Both are comple-
mentary information of an observed phenomenon, which is not explicitly codified in
any of the two data modalities, but instead, is hidden or latent in their relationships.
For instance, the term car, is a symbolic representation of an abstract object, and only
when visual features are added, such as colors and shapes, the object starts to become
a concrete instance that can be observed in the real world.

Therefore, we can assume the existence of several hidden aspects that are described
by both data modalities together, which are called multimodal aspects or multimodal
factors in this work. Multimodal aspects are by definition meaningful relationships
between some visual features and some text terms, and the problem of automatically
discovering them is at the core of this research work. Unsupervised learning strategies,
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such as probabilistic graphical models or matrix factorization algorithms are powerful
tools to model and learn latent variables. However, these methodologies are usually
oriented to operate on a single data modality, a condition that may limit their use on
a multimodal setup. The main research challenge of this thesis is to extend the notions
of latent factor analysis to the problem of learning multimodal aspects.

Finally, the problem of building multimodal representations consists on determining
the extent to which an image exhibit each of the multimodal aspects. This can be
understood as measuring the level of expression of each multimodal aspect in an image,
and since these measurements unveil the underlying multimodal structure of an image,
this can be used to represent simultaneously its visual characteristics and high-level
semantic contents. This representation may be used in an image search system to
compare multimodal contents and locate relevant images for a given query.

1.2.2 Research Challenges

The main challenges to realize a model for multimodal learning, as was described in the
previous subsection, are associated to the complexity of image collections. In this work,
three variables that define the complexity of an image database have been identified:
application domain, structure of the text modality, and database size. These variables
and their relationships are depicted in Figure 1.1, which also illustrates datasets used
through this research work1.

The Figure illustrates four regions that represent different degrees of complexity
associated with indexing and searching multimodal image collections. The larger the
database and the less structured the text modality, the more complex are the tasks of
indexing and searching the collection.. Small image databases with predefined categories
and labels may be easier to model, since more prior information can be introduced to
exploit known regularities. The same can be said for an image retrieval system in a
specific domain; more assumptions about image contents and semantic distributions
can be hold when the domain is narrow.

The first important challenge of this work is to propose methods for learning mul-
timodal aspects that can be applied under realistic and natural conditions, as those
that can be found in real world databases. The evolution of algorithms and methods
proposed in this work follow the path of the blue arrow depicted in Figure 1.1, which
moves from small databases with controlled text data, toward large image collections
with natural language descriptions. The latter is a situation harder to deal with, but
more faithfully represents practical conditions.

Notice that the arrow does not cross the region of large databases with categorical
or multi-label text descriptions. This condition is not considered realistic, as collecting
clean labels for large amounts of images is a very costly effort. Nevertheless, research
initiatives have been started recently to investigate this collections, such as the Ima-
geNet2 initiative, which is depicted in the Figure as reference only.

1Except for the ImageNet data set, which is illustrated for reference only
2http://www.imagenet.org
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Figure 1.1: Illustration of the complexity of image databases.

1.2.2.1 Textual Modality

A common step in image analysis is the definition of categories or labels for images,
which is a process also known as manual annotation. These labels determine in a sum-
marized fashion the understanding that humans may have of visual contents in images,
and are very useful for recognition and categorization tasks. For broad application do-
mains that involve natural scenes or web photos, labels may be collected for large image
collections using crowdsourcing services, such as the Amazon Mechanical Turk 3, as has
been done for the ImageNet collection [1]. However, for specific application domains
that require specialized knowledge to evaluate and analyze images, such as the medical
field, this may be much more expensive.

Collecting clean and controlled labels for large databases is, in general, not practical
for building image search systems. Instead, text resources naturally attached to im-
ages may be easily found in different image databases. Figures in books and scholarly
papers come with captions. Newspapers and web pages include images with context
descriptions. Medical images are associated to health records, among other examples.
Even though these texts are not as clean as manually assigned labels, their contents are
likely associated to semantic or high-level descriptions for images. The main difficulty
of using these text resources is extracting their underlying semantics.

Raw text contents also require normalization and appropriate representation. The
Information Retrieval (IR) and Natural Language Processing (NLP) communities have
established very well studied models for representing text documents, the most promi-

3http://aws.amazon.com/mturk/
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nent being the Vector Space Model [2]. Determining a suitable representation for text
contents in an image collection depends on the structure of these texts, as they can be
very noisy, such as tags assigned by web users, semi-structured, such as captions and
tittles extracted from scholarly articles, or very clean and well defined, such as cate-
gories and semantic keywords. That structure may require different weighting schemes
to highlight important terms and diminish redundant or noisy words.

Real world image databases may have abundant unstructured text resources that
may be exploited for understanding visual contents, and this represents a very chal-
lenging problem.

1.2.2.2 Database Size

Another challenge for designing multimodal search systems is the ability of the algo-
rithms to process large volumes of data, more specifically, the ability to extract multi-
modal relationships from large image collections in a reasonable amount of time. This
is a challenging computational problem that can make the difference between a feasible
solution and an impractical one.

The number of available images in a real world database may be very large. Actually,
if the database is small, perhaps a search system is not needed since people may scan
images quickly and filter out those that are not useful. So, when an image search
system is required, it means that the number of archived records is beyond the ability
of a person to keep track of their contents. Without a system that indexes all their
records, and without the mechanisms to query and access specific images, these data
will remain just archived and unused. And if an image is required, the cost of finding
it might be very high.

A suitable method for indexing a large collection of images requires to extract mul-
timodal relationships from massive amounts of examples to end up on a comprehensive
model. Modern image retrieval benchmarks used for research currently include hun-
dreds of thousands or even millions of images to reflect the importance of this problem.
And even though researchers can rely on the assumption that computers get faster or
algorithms can be parallelized, there are also smart ways to employ computational re-
sources to achieve the goal of processing large amounts of data that can be extended to
a multimodal setup.

1.2.2.3 Application Domain

The application domain poses the interesting question of how to extract and represent
pure visual contents from images, which has been widely studied in a large variety
of fields. The difficulty of modeling visual contents is inversely proportional to the
specificity of the application domain. Specific and narrow application domains allow
to incorporate precise and discriminative features, which can involve prior knowledge
about the patterns that have to be highlighted in an image. Broad domains may require
generic features that account for a wider range of visual transformations.
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When the structural variability of visual contents in a collection of images is very
narrow, simple transformations and normalizations can be applied to align and match
pixels directly, as may be the case of face recognition [3]. For domains with larger vari-
ability of visual contents, feature extraction usually helps to balance for deformations,
rotations, translations and scaling of target objects in images. Under these circum-
stances, representations based on parts of objects have been investigated recently [4, 5].

Obtaining a good representation for image contents is an active area of research and
it directly impacts the performance of any task involving visual signals. Adopting an
appropriate visual representation is one of the main challenges faced in this work.

1.3 Contributions

This work presents several contributions to solve each of the problems described above
for learning multimodal image representations. They are described briefly in the fol-
lowing subsections, and references to published works are provided.

1.3.1 Algorithms for Multimodal Learning

The main contributions of this work are the models associated to learning multimodal
relationships between images and texts. The following are the models and approaches
studied in this research.

Supervised Learning for Image Auto-Annotation

The first proposed method for modeling the relationships between images and texts was
based on supervised learning. This model assumes that each of the terms in the text
vocabulary may be related to visual features using a classification function. This work
was published in:

• Caicedo J.C., González F.A., Romero E. Content-based histopathology image re-
trieval using a kernel-based semantic annotation framework. Journal of Biomedi-
cal Informatics 44(4): 519-528. 2011

• Caicedo J.C., González F.A., Romero E. A Semantic Content-Based Retrieval
Method for Histopathology Images. Information Retrieval Technology. AIRS 2008,
LNCS 4993, pp. 51–60, 2008

• Caicedo J.C., González F.A., Romero E., Triana E. Design Of A Medical Image
Database With Content-Based Retrieval Capabilities. Advances in Image and
Video Technology, PSIVT 2007, LNCS 4872, pp. 919-931, 2007
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Latent Factors for Learning Multimodal Relationships

Two novel unsupervised learning algorithms were proposed to model the relationships
between text terms and visual features using latent factors. These algorithms are based
on Nonnegative Matrix Factorization, and are known as NMF-Asymmetric and NMF-
Mixed. This work was published in:

• Caicedo J.C., Ben-Abdallah J., González F.A., Nasraoui O. Multimodal repre-
sentation, indexing, automated annotation and retrieval of image collections via
non-negative matrix factorization. Neurocomputing 76(1): 50-60. 2012

• González F.G., Caicedo J.C., Nasraoui O. and Ben-Abdallah J. NMF-based
Multimodal Image Indexing for Querying by Visual Example. ACM CIVR 2010

• Ben-Abdallah J., Caicedo J.C., González F.A., Nasraoui O. Multimodal Image
Annotation Using Non-negative Matrix Factorization. IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, 2010, 128-135

Latent Semantic Kernels

Following the ideas of latent factors to find multimodal relationships, an algorithm that
represents images and texts using kernel functions was proposed. This algorithm has
the advantage of exploiting the specific structure of data in the feature space, from
where the latent factors are extracted. This work was published in:

• Caicedo J.C., Moreno J.G., Niño E.A. and González F. Combining Visual Fea-
tures and Text Data for Medical Image Retrieval Using Latent Semantic Kernels.
ACM MIR 2010

Semantic Embeddings

An extension of the proposed NMF-based algorithms was introduced, named the Non-
negative Semantic Embedding. This work models the relationships between visual fea-
tures and text terms directly, instead of using latent factors. This demonstrated to be a
useful approach when the textual modality is clean and structured. Parts of this work
have been published in:

• Vanegas J., Caicedo J.C., González F.A., Romero E. Histology Image Indexing
Using a Non-negative Semantic Embedding. Workshop on Medical Content-Based
Retrieval for Clinical Decision Support. MICCAI 2011.

Additional extensions and other parts of this work are included in a submission to a
Journal:

• Caicedo J.C., Vanegas J., González F.A. Histology Image Search Using Multi-
modal Fusion. IEEE Transactions in Medical Imaging. Submitted. 2012
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Backprojection of Semantic Information

An additional concept introduced in this work is the fusion by backprojecting semantic
information to the visual space. Since the proposed algorithms for latent factors and
semantic embedding are based on matrix factorization and subspace modeling, functions
to project data to an alternative space can be formulated. Parts of this work were
published in:

• Caicedo J.C., González F.A. Image Retrieval Using Multimodal Fusion based on
Matrix Factorization. International Conference on Multimedia Retrieval. ICMR
2012

Also, this extension of multimodal fusion has been included in the journal submission
mentioned above: Histology Image Search Using Multimodal Fusion.

1.3.2 Large Scale Learning

Learning multimodal relationships may require the analysis of very large image databases.
An extension of the matrix factorization algorithms has been proposed to efficiently deal
with big data sets. The proposed approach is based on online learning principles and
provides an efficient implementation with little memory requirements and drastically
reduced execution times using a single CPU. Parts of this work have been published in:

• Caicedo J.C., González F.A. Online Matrix Factorization for Multimodal Image
Retrieval. 17th Iberoamerican Congress on Pattern Recognition. CIARP 2012

An extended version of this work is also being prepared for a Journal submission:

• Caicedo J.C., González F.A. Large Scale Multimodal Image Indexing via On-
line Matrix Factorization. Journal of Multimedia Information Retrieval. To be
submitted. 2012

1.3.3 Modeling Visual Contents

Each application domain requires its own content representation, specially if it cor-
responds to a particular field such as histology images. In this work several image
representations were proposed mainly for medical image analysis.

Bag-of-features for Histology Images

Parts of the multimodal analysis described in this work for histology images has been
conducted on top of a bag-of-features representation. Histology images are particularly
textured due to the structure of tissues and arrangements of cells, which define visual
patterns that may be organized in a dictionary. Early research was developed in the
frame of this thesis to evaluate the performance of bag-of-features for histology images.
These works where published in:
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• Caicedo J.C., Cruz-Roa A., and González F. Histopathology Image Classification
Using Bag of Features and Kernel Functions. AIME 2009, vol. LNAI 5651, pp.
126135, 2009.

• Caicedo J.C., Camargo J.E. and González F.A., Content-based Access to Medical
Image Collections. Biomedical Image Analysis and Machine Learning Technolo-
gies: Applications and Techniques, IGI Global, 2009.

Kernel-based Image Representations

Kernel functions provide a natural framework to combine features in several ways, and
this is specially useful for image analysis when multiple features can be computed,
such as colors, textures, and edges. Alternative strategies using combinations of ker-
nel functions were also explored, including latent semantic analysis and normalized
combinations. These works have been published in:

• Moreno J.G., Caicedo J.C., González F.A. A Kernel-based Multi-feature Image
Representation for Histopathology Image Classification. Acta Biológica Colom-
biana 15 (3), 251-260, 2010.

• Caicedo J.C. and Izquierdo E. Combining Low-level Features for Improved Clas-
sification and Retrieval of Histology Images. International Conference on Mass
Data Analysis of Images and Signals in Medicine, 2010

1.3.4 Applications and Other Contributions

Several applications of the work presented in this dissertation have been explored in
the frame of other research projects and peer collaboration. The following are some
highlights:

A Live Histology Image Retrieval System

Parts of this work were implemented and tested in a project for histology image collec-
tion management. The system can be found online at http://www.informed.unal.edu.co
and all its features, which include, but are not limited to content-based image search,
are discussed by González et al.:

• González F.A, Caicedo J.C., Cruz-Roa A., Camargo J.E., Romero E., Spinel
C., Seligmann D., Forero J. A Web-Based System for Biomedical Image Storage,
Annotation, Content-Based Retrieval and Exploration. Microsoft eScience, 2009.

Exploratory Image Search

The proposed methods to generate a multimodal representation for images have been
also used in other projects to investigate interaction mechanisms between users and an
image collection. Camargo et al. discuss their potential application in this context:
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• Camargo J., Caicedo J.C., and González F.A. Multimodal Visualization Based
On Nonnegative Matrix Factorization. ECDL 2010. LNCS, Volume 6273/2010,
429-432.

• Camargo J., Caicedo J.C., Chavarro A. and González F.A. Kernel-Based Strat-
egy for Exploratory Image Collection Search. IEEE CBMI 2010

Visual Pattern Mining

Parts of the proposed approaches were also introduced to explore applications in visual
pattern mining for histology images. The main purpose in this work was to thoroughly
analyze relationships between visual patterns and categorical labels by introducing a
layer of interpretation. Cruz-Roa et al. discuss the main findings:

• Cruz-Roa A, Caicedo J.C., González F.A. Visual Pattern Mining in Histol-
ogy Image Collections Using Bag of Features. Journal Artificial Intelligence in
Medicine. Vol 52, pp. 91-106. 2011

• Cruz-Roa A., Caicedo, J.C., and González F. Visual Pattern Analysis in Histopathol-
ogy Images Using Bag of Features. CIARP 2009, vol. LNCS 5856, pp. 521-528,
2009.

ImageCLEFmed Challenge

The team at our research lab has participated in the ImageCLEFmed campaign, which
is a medical image search contest for researchers. Some of the proposed representations
have been tested in the context of this challenge, specially focusing on the search task
using visual examples. In the 2007 version, the strategy was mainly based on low-level
visual features and supervised learning oriented to predict image modality. Moreno et
al. discuss the main results obtained in the 2010 version, introducing a multimodal
latent factors space. These works have been published in:

• Moreno J.G., Caicedo J.C., González F.G. Bioingenium at ImageCLEFmed
2010: A Latent Semantic Approach. Cross Language Image Retrieval, Image-
CLEF 2010

• Caicedo J.C, González F.A. and Romero E. Content-based Medical Image Re-
trieval Using Low-level Visual Features and Modality Identification. In proc.
CLEF2007, LNCS 5152, pp. 615–622, 2008

Additional experiments have been prepared for the 2012 version of this challenge, using
improved text and visual representations. Both data modalities were employed sepa-
rately in these experiments, and the results ranked our text strategy in the first place,
among 54 experiments submitted by other research groups. Also, the visual strategy
was ranked in the third place, among other 36 experiments. The official results can
be found in the website of ImageCLEFmed 20124, and a conference paper is currently

4http://www.imageclef.org/medical/2012
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being prepared to report these findings.

1.4 Thesis Organization

The remaining chapters of the thesis are organized as follows:

• Chapter 2: A review of Image Search Methodologies. This chapter discusses pre-
vious works related to image search systems, providing a review of three main
approaches followed by the research work done in content-based image retrieval.
This overview allows to understand why multimodal indexing strategies are an
interesting research direction for building image search systems.

• Chapter 3: Content-Based Histopathology Image Retrieval Using a Kernel-based
Semantic Annotation Framework. This chapter addresses the problem of build-
ing a semantic image representation for image search, using supervised learning
behind an automatic annotation system. This model explores the relationships be-
tween visual features and semantic annotations using classification functions, and
focuses on constructing an enhanced visual representation by combining various
features to improve the performance of classifiers. The research presented in this
chapter approaches the problems of visual representations for specialized imaging
domains, and proposes a supervised model to learn multimodal relationships for
clean and structured text labels.

• Chapter 4: Multimodal Representation, Indexing, Automated Annotation and Re-
trieval of Image Collections via Non-negative Matrix Factorization. A framework
for modeling multimodal latent factors is presented in this Chapter, considering
the problem of image collections with unstructured text contents. The proposed
framework builds a latent factors space that represent simultaneously visual con-
tents and text annotations. Various image search tasks are evaluated under this
framework, including image retrieval with various query paradigms and automatic
image annotation.

• Chapter 5: Histology Image Search Using Multimodal Fusion. An extension of
the latent factors model is presented in this Chapter, to consider the problem of
finding multimodal relationships in collections with clean and structured textual
resources. This extension is also based on matrix factorization, and learns the
relationships between visual and text terms directly, instead of using a latent
factors space. To accomplish multimodal fusion, query images are first mapped
to the text space and projected back to the visual space, then both the original
visual representation and the backprojected representation are combined in a
fused multimodal representation.

• Chapter 6: Large Scale Multimodal Image Indexing via Online Matrix Factor-
ization. This Chapter presents an extension of the latent factor model to learn
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from large amounts of examples, following online learning principles. The chapter
studies computational issues of a matrix factorization algorithm for multimodal
learning, and proposes an efficient model to extract meaningful relationships from
very large image collections. The proposed model exhibits fast convergence rates
and improved retrieval performance.

• Chapter 7: Conclusions. The final chapter presents the main conclusions and
discussions of the dissertation, summarizes the main contributions, and highlights
the most important findings. Also, some future research directions are presented
and discussed.



Chapter 2

A Review of Image Search
Methodologies

2.1 Content-Based Image Retrieval

In the very early stage of computerized image databases, the process of organizing
pictures for office and home usage was completely made by hand. Some commercial
systems provided image collections with thousands of records, carefully indexed by
categories and using several keywords. Examples of such collections were the ClipArt
Gallery of Microsoft and the Corel database. Due to the error prone process and
immense effort required to organize an image database by hand, researchers began to
work on alternative systems that could automatically analyze visual contents to search
for images.

The QBIC [6] and the Photobook [7] are some examples of the first steps made
toward automated manipulation of image contents to support search tasks. The basic
idea underneath these models is to compute visual characteristics directly from im-
ages, and then evaluate a similarity measure between them. A large body of research
was developed to improve the capabilities of image retrieval systems under that model,
exploring various strategies to represent image contents and modeling specialized simi-
larity measures. Riu et al. [8] and Veltkamp et al. [9] provide comprehensive surveys on
the methodologies and techniques used during that period, which may be understood
as the infancy of image retrieval research [10].

All the focus was given to extract and characterize visual properties for images,
which was then understood as a limitation for providing practical image search systems.
Smeulders et al. [11] had a clear influence on the subsequent progress made on the field
by defining the problem of the semantic gap:

“The semantic gap is the lack of coincidence between the information
that one can extract from the visual data and the interpretation that the
same data have for a user in a given situation.”

This implies that human interpretations are not evident from the signal representa-

29
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tion of an image, and that other sources of knowledge should be considered to design
computational models that can react as users expect these systems to do.

2.2 Semantic Image Retrieval

Instead of indexing images using visual contents, a lot of work was turned to index
images using keywords and text annotations. The main assumption is that building
an image index with the right keywords may help users to retrieve images that truly
represent what they are searching for. The main research problem now is how to select
and assign keywords for images automatically. Text annotations are not cleanly or
systematically assigned to images, and many images can have no attached text.

The computer vision community influenced the design of mechanisms to build se-
mantic image indexes, by bringing methods to predict words associated to images. If a
system can automatically generate keywords according to what can be seen on images,
all images could be indexed and searched. A coocurrence model for image parts and
words was proposed by Mori et al. [12] to achieve that goal. Later, Duygulu et al.
[13] proposed an auto-annotation model for images based on machine translation prin-
ciples, assuming that image segments are terms in one language and words are terms
in another language.

Many other works have investigated the problem of automatic image annotation
which is considered to be one of the most challenging and important problems in com-
puter vision [14, 15, 16, 17, 18, 19, 20]. Despite all this effort, the problem is still
considered to be unsolved and the applicability of these methods in real world systems
is debatable [21].

But besides the problem of accuracy of image auto-annotation algorithms, which
most surely will continue to increase, there is a pronounced limitation of keywords
to entirely communicate what images do along all their visual details. Yeh et al. [22]
discuss that an image is worth a thousand words to interact with visual search services, a
concept studied simultaneously by Fan et al. [23]. Later, Rasiwasia et al. [24] proposed
the query-by-semantic example (QSE) that combines an image auto-annotation model
with the visual example paradigm.

Thus, building a useful image search system is not only a problem of generating
accurate keywords for images. Pictures can have several semantic interpretations, and
summarizing their visual contents on a few words restricts the possibilities of finding
useful information. An effective image search system should consider both, visual im-
pressions of images as well as their potential semantic interpretations.

2.3 Multimodal Fusion

Atrey et al. [25] presents a comprehensive survey on the field of multimodal fusion for
a variety of multimedia applications. They refer to the problem of multimodal fusion
as the integration of multiple signals to perform semantic decisions. In the specific
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domain of image retrieval, the available data modalities are visual features and text
annotations, whereas the semantic decision may be understood as determining whether
an image in the database is relevant to the user’s query.

Smeulders et al. [11], Lew et al. [26] and Datta et al. [10] have suggested in different
review papers published during the last decade, that multimodal fusion is a promising
research direction to approach the problem of image search. In particular, they em-
phasize that combining visual information with text resources attached to images, may
result in useful search indexes. Increasing interest has been shown on this topic, and
several contributions model different aspects of the problem.

One of the earliest attempts to combine both data modalities for building an image
index was conducted by La Cascia et al. [27] using a database of web images and text
extracted from the corresponding HTML page. They reported improvements on the
precision of the search task as well as new ways to allow users to interact with an image
collection. Other models for multimodal analysis on image collections have been more
oriented to approach the automatic image annotation problem [15, 28].

Recently, several multimodal image retrieval models have been proposed in the lit-
erature, from which it is important to distinguish between two general approaches: late
multimodal fusion and early multimodal fusion. The former refers to the combination of
both data modalities after each has been processed separately. Examples of late fusion
approaches include linear combinations of similarity scores [29], and combinations of
decisions made by different classifiers [30]. Early fusion, on the other hand, is oriented
to combine multimodal data before its subsequent use. Examples of early fusion include
latent semantic indexing [31] and concatenations of feature vectors [32].

One of the practical differences in the way researchers approach the problems of
image auto-annotation and multimodal fusion is on the process of collecting the target
text resources. Image auto-annotation models are usually oriented to gather clean and
very structured keywords associated to categories [1]. Multimodal fusion usually deals
with very unstructured text sources, which describe ideas in natural language sentences
or noisy, uncontrolled tags [33]. The reason multimodal fusion has been considered a
promising research direction is because it is relatively cheap to collect large databases
of images with unstructured text descriptions, whereas building structured databases is
very costly. However, the former is definitely a harder condition to take advantage of.

There is no clear consensus in the literature about how multimodal fusion should
be modeled for image indexing, and which design has the potential to fully exploit
the multimodal interactions in image collections. The goal of this dissertation is to
contribute to the better understanding of the problem and to propose solutions to
overcome its limitations.



Chapter 3

Content-Based Histopathology
Image Retrieval Using a
Kernel-based Semantic Annotation
Framework

This work has been published in the Journal of Biomedical Informatics [34].

Large amounts of histology images are captured and archived in pathology depart-
ments due to the ever expanding use of digital microscopy. The ability to manage
and access these collections of digital images is regarded as a key component of next
generation medical imaging systems. This chapter addresses the problem of retrieving
histopathology images from a large collection using an example image as query. The
proposed approach automatically annotates the images in the collection, as well as the
query images, with high-level semantic concepts. This semantic representation delivers
an improved retrieval performance providing more meaningful results. We model the
problem of automatic image annotation using kernel methods, resulting in a unified
framework that includes: (1) multiple features for image representation, (2) a feature
integration and selection mechanism (3) and an automatic semantic image annotation
strategy. An extensive experimental evaluation demonstrated the effectiveness of the
proposed framework to build meaningful image representations for learning and useful
semantic annotations for image retrieval.

3.1 Introduction

The use of digital imaging in histopathology has been rapidly rising during the last few
years [35]. Pathology departments using digital microscopy equipments can share slides
without sending the glass, and can include images in electronic reports and publications
[36]. Then, large amounts of digital histopathology images are constantly acquired

32
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as part of the routine operation in these specialized centers. Image collections are
stored using information technologies such as Picture Archiving and Communication
Systems (PACS), but they remain archived in the long term, basically because after
some time they result useless, since the main actual exploit is the one associated to the
specific clinical case. Nevertheless, these large image collections are a potential source of
information and knowledge, which may support educational activities, research studies
and even the clinical decision making process itself, if the right tools to access these
collections are developed [37].

Accessing a collection of histology images can be done using different query paradigms.
For instance, using structured queries in conventional databases, using keywords in a
text retrieval engine or using example images in a content-based image retrieval sys-
tem [10]. In this Chapter, we consider the problem of retrieving histopathology images
from the collection using example images as queries, that is, the user presents reference
images to the system, and the system uses the visual content to match similar images
in the collection. Using visual contents to search for images is considered a beneficial
technology for next generation medical imaging systems [37], and is also considered one
of the major challenges in image retrieval research. The problem underneath an image
retrieval system is the mechanism for identifying relevant images, which is mostly a
similarity measure between image contents.

Different similarity measures have been proposed and studied for medical image
retrieval using low-level features, which focus mainly on characterizing visual properties
that can be computed from pixels [38, 39]. However, bridging the semantic gap [11] has
become the main focus of image retrieval research, i.e. reducing the discrepancy between
the information extracted by low-level features and the high level interpretations of
human beings on the same images. This research has led to semantic representations
of histology images to address the problem of identifying semantically related images
rather than just visually similar images [40]. These strategies aim to provide better
search results which are more likely to match contents in the same way as physicians
would do.

This Chapter presents a framework to archive and retrieve histopathology images
by content. To overcome the problem of delivering semantically valid images for a
medical task, we propose an automatic image annotation framework that recognizes
high-level concepts after analyzing image visual contents. The main contribution of
this work is a strategy to generate multi-feature image representations for the automatic
recognition of histopathology concepts. This strategy has been designed as a unified
framework based on kernel methods theory, and includes three main aspects for semantic
image content recognition: (1) multiple visual features to represent histology image
contents (2) appropriate kernel functions to harness the structure of the input data, and
(3) the optimal combination of multiple kernel functions according to the underlying
image semantics. Kernel functions are fused using a weighted linear combination, whose
weights are found by an optimization process that maximizes the correlation between
low-level features, represented by kernel functions, and high-level semantic concepts.

The proposed strategy has been implemented and evaluated using a large database
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of real histopathology images, extracted from medical records of a pathology lab. An
extensive validation was conducted using the ground truth provided by pathologists.
The experimental evaluation showed that the semantic image annotation leads to an av-
erage improvement in the retrieval response of 57% when it is compared to visual search
using only low-level features. Also, the results show that a multi-feature representation
for visual contents can be progressively improved by operating kernel functions. We
found that modeling feature structure and non-linear patterns with kernel functions is
more likely to improve the discriminative power of multi-feature representation spaces.
The contents of this Chapter are organized as follows: Section 3.2 presents a review of
previous works related to histology image retrieval. Section 3.3 introduces the collection
of histopathology images used in this study. Section 3.4 describes the proposed methods
for automatic image annotation, based on kernel methods. The experimental setup and
results are presented in Section 3.5. Finally, Section 3.6 presents the discussions and
Section 3.7 presents the concluding remarks and future work.

3.2 Related Work

Digital microscopy is a very broad field of active research, that ranges from image
acquisition and compression [41] to automatic disease detection [42]. Content-based
retrieval of microscopy and histology images is one of these areas of research that is
receiving increasing attention from researchers. Image retrieval focuses on methods
and tools for managing large collections of digital slides, providing effective access to all
the available information, in contrast to other research areas that focus on processing
individual images for making automatic decisions, such as automated grading [43, 44]
or tissue classification [45, 46].

Image retrieval on pathology image collections was approached by Zheng et al. [47]
using low-level features. Four different visual features were studied to measure the
discriminative power of similarity measures to correctly identify relevant images given
an example query. They reported a correlation between the computed similarity and
pathological significance on the tested collection, without the use of domain knowledge.
However, to scale up the system performance, low-level features may be insufficient.
Tang et al. [40] investigated the role of semantic information to represent local image
content in gastro-intestinal tissue images. Their method aim to assign a semantic
annotation to each region on the image using machine learning algorithms. The main
disadvantage of this approach is the need for manual annotations made on specific
regions for a large enough sample of training images. Naik et al. [48] also approached
the problem of histology image retrieval using semantic knowledge. They used multiple
texture and architectural features of tissues, and employed a boosting algorithm to
identify feature weights that maximizes retrieval and classification performance.

In this Chapter we address the problem of semantic image retrieval for histopathol-
ogy images, using an automatic annotation strategy. Our previous work on histopathol-
ogy image retrieval [49] showed the potential of using semantic features to represent
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Table 3.1: Histopathology concepts and the corresponding number of examples in the
data set

CONCEPT TRAINING TEST TOTAL

Blood vessel 96 26 122
Cystic change 46 21 67
Eccrine glands 100 48 148

Elastosis 92 33 125
Fibrosis 67 23 90

Lymphocyte inf. 101 39 140
Micronodules 35 6 41

Morpheaform pattern 29 8 37
N-P-C, elastosis 40 12 52
N-P-C, fibrosis 34 16 50

N-P-C, infiltration 133 45 178
N-P-C, pilosebaceous 27 11 38

N-P-C, trabeculae 10 4 14
Necrosis 27 5 32

Perineural invasion 5 1 6
Pilosebaceous unit 119 35 154
Thick trabeculae 45 15 60

Ulceration 10 5 15

image contents. In this Chapter we extend that work by generalizing the representation
of visual contents in a set of multiple heterogeneous features rather than a unique fea-
ture vector. Also, we recast the image annotation problem in terms of kernel methods
for image representation, feature selection and concept detection, as is presented in the
following Sections.

3.3 Basal-cell Carcinoma Images

Images in this work have been used to diagnose a special kind of skin cancer known as
basal-cell carcinoma. Basal-cell carcinoma is the most common skin disease in white
populations and its incidence is growing world wide [50]. The histopathology collection
is composed of 1,502 images at 1,280×1,024 pixels, acquired under a Nikon microscope
and stored in lossless JPG format.

The collection was studied and annotated by a pathologist to describe its contents,
elaborating a data set with images and descriptions of their related concepts. Table 3.1
shows the list of 18 concepts and the number of available examples in the collection.
One image may contain several concepts, that is, different biological structures are
exhibited in one single image. Notice that Table 3.1 lists the number of images per
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Figure 3.1: Three histopathology image examples with some highlighted biological
structures and pathological patterns. Dashed lines (blue) show pilocebaseus units,
a normal biological structure in the skin. Dotted lines (green) show example regions
of Nodule, Palisading cells and Clefts (NPC), a clear evidence of basal-cell carcinoma.
Continuous lines (red) show regions with another clue to detect basal-cell carcinoma:
lymphocyte infiltration.

concept, but not their co-occurrences. The total number of annotated images in the
collection is about 900 corresponding to pathological cases, while the remaining 600 are
images with normal skin tissue. This data set also shows a high imbalance between the
number of examples exhibiting a concept and the rest of the collection.

The concept list also includes some structures that are not pathological such as pi-
losebaceous units, eccrine glands and blood vessels. One of the histopathology concepts
reported in Table 3.1 is N-P-C, which is a convention for Nodule, Palisading cells and
Clefts (N-P-C), which is a typical sign of basal cell carcinoma, not by the presence of
any of them individually but by the manifestation of all three visual patterns together.

Figure 3.1 shows examples of histopathology images with some specific regions in
which the concepts can be observed. These examples show that one image can have more
than one interesting pattern for pathologists. In addition, the Figure shows that normal
biological structures have well-defined visual configurations, in contrast to pathological
patterns that may appear with different visual variabilities. In particular, note that the
dotted lines (green) cover a portion of nodule that contrast with epithelial tissue with
a cleft in the middle. However, the nodule structure in both cases looks different and
also the contrasting tissue in the other side of the cleft. These are some examples of
the variabilities that may be found in real histopathology images.

This data set was divided up into training (75%) and test (25%) sets, using strat-
ified sampling as is shown in the table. The annotations provided by the pathologists
are useful to automatically validate whether search results are relevant to the user in-
formation needs. This image collection has been previously used to test two different
retrieval strategies: one that uses only visual similarity [51] and another that uses a
semantic representation approach based on SVM classifiers with basic kernels [49].
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Figure 3.2: Overview of the main steps of the proposed strategy for automatic image
annotation

3.4 Semantic Image Annotation and Retrieval

The proposed strategy for histology image retrieval is oriented to produce a set of seman-
tic image annotations through visual content analysis. Our framework aims to build a
general and complete visual representation of images that can provide enough evidence
of the presence or absence of certain histopathology concepts. Figure 3.2 shows the
three fundamental steps in our framework: first, the extraction of multiple visual fea-
tures is performed on the input images. Second, the new content representation is build
integrating all visual features using kernel functions. Third, this content representation
is used to detect histopathology concepts. After generating automatic annotations, the
result can be used to search images with similar annotations or just to index the input
images in the retrieval system.

3.4.1 Image features

Feature extraction is an important task for image analysis and understanding and there
are different approaches to address this problem [52]. Global features for characterizing
whole scenes have been proposed using color histograms [53] and MPEG7 features [54].
Likewise, global descriptors such as textures and down-scale representations have been
evaluated in medical imaging [55]. One important advantage of using a global image
description strategy is that it is unnecessary to specify a model for objects or regions
that images may contain. On the contrary, global features provide a holistic image
representation that characterizes the composition of the whole image.

We modeled histopathology images as a set of global histogram features, taking
into account that pathology patterns may have high visual variabilities that are char-
acterized by different feature sets. For instance, as it is shown in Figure 3.1, the NPC
pattern, highlighted in dotted lines (green), contains a mixture of the textures inside
the nodule, the edges provided by the cleft, and the density of the palisading cells. To
describe the different visual characteristics of histopathology patterns, seven feature
spaces have been selected: gray scale histogram, invariant feature histogram [56], local
binary patterns [57], RGB color histogram [56], bag of SIFT features, Sobel histogram
[58] and Tamura texture histogram [59].

These seven low-level features are complementary with respect to the kind of mea-
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sure they do over image pixels, since they apply different computations to build the
histograms. However, some of them measure similar visual properties on images, such
as Tamura texture and Local Binary Patterns, both modeling texture patterns, but us-
ing different approaches (statistical and deterministic, respectively). Also, the invariant
feature histogram and SIFT features are intended to identify characteristics that are
invariant to rotations and translations. The invariant feature histogram follows an inte-
gral approach that sums globally over rotation and create a histogram over translation
[56]. On the other hand, the bag of SIFT features is based on a learned dictionary of ro-
tation invariant visual patterns that are counted in each image to construct a histogram
of frequencies [60].

The global features were chosen to create a general and broad repertory, in contrast
to approaches that carefully select visual features for the specific problem at hand.
The relevant features for each high-level concept are automatically chosen by a fea-
ture fusion process to be described below. All histogram features are global content
descriptors that do not allow to identify spatial location of objects or patterns. This
represents an advantage when dealing with histopathology images, in which pathology
patterns are spread around the image such as lymphocyte infiltration, in which lym-
phocytes can be seen covering different tissue regions. Elastosis is another example of
a stroma’s property that can be seen along the complete tissue slide. In that sense, the
set of histograms provides different measures to detect variations in the global image
composition, that can be exploited to reveal its semantic meaning.

3.4.2 Kernel functions

Kernel methods are an alternative family of algorithms and strategies to perform ma-
chine learning [61]. One of the main distinctive characteristics of kernel methods is that
they do not emphasize the representation of objects as feature vectors. Instead, objects
are characterized implicitly by kernel functions that measure the similarity between two
objects. A kernel function induces an implicit high-dimensional feature space where, in
principle, it is easier to find patterns.

Informally, a kernel function measures the similarity of two objects. Formally, a
kernel function, k : X×X → R, maps pairs (x, z) from a set of objects X, the problem
space, to the real space. A kernel function implicitly generates a map, Φ : X → F ,
where F corresponds to a Hilbert space, called the feature space. The dot product in
F is calculated by k, specifically k(x, z) = 〈Φ(x),Φ(z)〉F .

One can deal with histograms as simple data vectors, regardless their probability
distribution properties. In that sense, we can calculate the dot product between his-
tograms treating them as high dimensional feature vectors. This operation will be
herein denoted as the identity kernel, since it induces a feature space that is equivalent
to the input space. On the other hand, we can harness the structure of histogram data
by evaluating the similarity measure between two histograms in a more meaningful way.
The histogram intersection is a similarity function devised to calculate the common area
between histograms as follows:
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k∩(A,B) =
m∑
i=0

min (ai, bi) (3.1)

where A = (a1...an) and B = (b1...bn) are histograms. This similarity measure has
been shown to satisfy the Mercer’s properties [62]. This is important when using learn-
ing methods, such as SVM, since it guarantees the optimal solution of the associated
convex optimization problem. Another advantage of this kernel is that it can be effi-
ciently computed; in fact, Maji et al. [63] recently proposed a very efficient technique
to train SVM that use the histogram intersection kernel.

Using the histogram intersection kernel with SVM, we are modeling a non-linear
classification rule in a high-dimensional feature space [64]. This particular property
of kernel method solutions, allows us to capture the high variability of visual patterns
along the same semantic concept. This special property will be discussed in the next
Subsection.

3.4.3 Combination of kernels

As discussed before, pathology concepts are characterized by different types of features
including colors, textures and edges. Given two images, a similarity measure may be
calculated by applying a kernel function to a pair of images represented by a particu-
lar type of feature histogram. For instance, when using the Gray Histogram, we can
distinguish if an image has the same brightness level as another one, while using Lo-
cal Binary Patterns, we can evaluate if they have similar low-level tissue composition.
This provides a repertory of kernels that compare images according to different visual
properties. Now, we want to equip the classification system with the ability to adjust
the importance of each feature when dealing with a particular semantic concept.

Formally, there is a set of kernels {ki : X × X → R}i, where i indicates the type
of visual features used to calculate the similarity. Notice that despite the fact that the
different kernels use different features to calculate the similarity, all of them have the
same domain, i.e., they are image kernels. The problem is how to use these different
image kernels to calculate an overall similarity measure for images. The new similarity
measure would correspond to a kernel function kα that induces a new image repre-
sentation space. kα is defined as a linear combination of the n individual histogram
kernels:

kα(x, z) =
n∑
i=1

αiki(x, z) (3.2)

The weights αi allow to parameterize the kernel giving higher or lower importance
to each individual feature. Notice that the linear combination of kernel functions, as-
sociated to different visual features, is implicitly defining a new feature space whose
structure may be adapted to better recognize a particular semantic concept. In par-
ticular, it has been shown that a linear combination of two kernels is a valid kernel
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provided that the associated weights are all positive. In addition, the linear combina-
tion of two kernels leads to a new feature space that is isomorphic to the Cartesian
product of the individual feature spaces [61].

The problem now is to find a vector of weights α that maximizes the performance
of the kernel kα in an image classification task. In the case of histopathology images,
different concepts require different classifiers that emphasize the appropriate visual
features. Herein we use the kernel alignment strategy [65] to build an adapted kernel
function for each concept. Each adapted kernel function is expected to emphasize
those visual features that allow to better recognize the presence (or absence) of the
corresponding concept in a given image.

Kernel-target alignment [65] measures how appropriate a kernel function is for solv-
ing a specific classification problem. In particular, the alignment of two kernels with
respect to a sample S, is defined as:

AS(k1, k2) =
〈K1, K2〉F√

〈K1, K1〉
√
〈K2, K2〉F

, (3.3)

where k1, k2 are kernel functions; K1, K2 are matrices corresponding to the evaluation
of the kernel functions on a sample S; and 〈·, ·〉F is the Frobenius inner product defined
as 〈A,B〉F =

∑
i

∑
j AijBij.

Given the binary labels for a training set, in which 1 indicates the presence of one
selected concept and −1 indicates the absence of that concept in the image, we can build
a target function to optimize the kernel alignment measure. Defining y : X → {−1, 1}
as the binary label for an image in X, the problem space, the target kernel k∗ is then
defined as k∗(x, z) = y(x)y(z). The target kernel k∗ is the optimal kernel for solving
the given classification task, since it explicitly reveals whether the objects x and z are
in the same class or not. The goodness of a given kernel k is measured in terms of how
much it aligns with the target kernel in a training sample. Formally this is expressed
as

A∗S(k) = AS(k, k∗) (3.4)

The problem of finding appropriate weights for kα then becomes the problem of
finding the weights α that maximize the target alignment A∗S(kα). In [66], this problem
is solved by transforming it to an equivalent quadratic programming problem and is
the strategy followed in this work. This kernel combination strategy is in fact a type of
feature fusion task, but performed at the kernel level, making it an integral part of the
learning process. The main advantage is that features are optimally combined during
the learning process depending on the particular type of classification problem to be
solved.

After combining the basic kernel functions, we also composed the resulting kernel
with a Radial Basis Function (RBF) to emphasize non-linear patterns in the represen-
tation space. Given the optimally combined kernel k∗α, we use it to compute the RBF
kernel as follows:

kG(x, z) = exp
(
− (k∗α(x, x) + k∗α(z, z)− 2k∗α(x, z)) /2σ2

)
(3.5)
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3.4.4 SVM Classifiers

Support Vector Machines (SVM) are linear classifiers whose decision function is a hy-
perplane in the feature space. For each histopathology concept we have modeled a new
feature space using adapted combinations of kernel functions, resulting in a new kernel
function to classify images of that particular concept. Then, we train a SVM for each
concept using the corresponding adapted kernel function. All trained SVM classifiers
are then arranged in the semantic image annotator. Since SVM are linear classifiers in
the feature space, and our feature space models non-linear relationships between im-
ages, the resulting classification rule is non-linear in the input space [64]. This enables
the automatic annotation module to capture high visual variabilities among the same
semantic concept.

3.4.5 Semantic Image Annotator

The goal of an image annotation module is to analyze the visual image contents to
produce a semantic interpretation. This interpretation corresponds to the assignment
of several semantic labels. The image annotation module is an arrangement of SVM
classifiers that detects the presence of pre-defined semantic concepts in images. The
aim is to identify which labels are more appropriate to describe an image according to
its visual content.

Semantic annotations are built using SVM outputs, but, instead of using binary
labels that indicate whether or not an image contains a concept, a degree of presence
or absence is modeled for each possible concept. Each image is assigned to a semantic
feature vector in Rn, where n is the number of concepts. Each component of the
semantic feature vector is generated by applying a sigmoid function to the output
νi, i ∈ {1...n} of the corresponding SVM:

f(νi) =
1

1 + e−a(νi+b)
(3.6)

The shape of the function (a and b parameters) has an important repercussion on
the sensitivity of the semantic annotation process. Specifically, the sigmoid function
parameters affect the trade-off between precision and recall. To optimize the retrieval
performance a set of parameters (a, b) may be set for each individual concept. For our
study, we used a unique set of parameters that maximizes the global Mean Average
Precision on the training data, making a general balance among all concepts. It sim-
plifies the procedure to find good candidates and reduces the number of parameters for
the indexing method.

Finally, the semantic similarity of two images is calculated by applying the Tanimoto
coefficient to the semantic feature vectors describing the images. Given two semantic
vectors ν and υ, the Tanimoto coefficient is defined as:

T (ν, υ) =
ν · υ

‖ν‖2 + ‖υ‖2 − ν · υ
(3.7)
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Identity Kernel Hist. Intersection
GRA INV LBP RGB SIFT SOB TAM Features GRA INV LBP RGB SIFT SOB TAM

.14 .09 .18 .07 .19 .16 .17 Blood vessel .10 .09 .06 .06 .22 .18 .19

.12 .07 .19 .07 .18 .17 .19 Cystic change .00 .00 .05 .00 .40 .22 .31

.14 .09 .19 .06 .19 .16 .17 Eccrine glands .10 .09 .12 .06 .23 .17 .18

.13 .03 .19 .01 .26 .18 .20 Elastosis .04 .02 .08 .01 .32 .21 .22

.13 .09 .20 .07 .19 .16 .16 Fibrosis .10 .09 .05 .06 .23 .17 .17

.14 .08 .19 .06 .19 .17 .17 Lymphocyte inf. .09 .08 .07 .05 .23 .18 .18

.13 .10 .20 .10 .15 .16 .15 Micronodules .09 .08 .02 .06 .22 .18 .19

.13 .08 .20 .08 .19 .17 .16 Morpheaform pattern .12 .11 .02 .09 .17 .16 .16

.12 .03 .20 .02 .25 .18 .20 N-P-C, elastosis .04 .03 .03 .00 .31 .21 .22

.12 .04 .20 .02 .25 .18 .19 N-P-C, fibrosis .05 .04 .05 .01 .31 .20 .21

.11 .11 .25 .13 .08 .17 .15 N-P-C, infiltration .11 .11 .08 .09 .11 .16 .16

.13 .08 .20 .07 .18 .17 .17 N-P-C, pilosebaceous .09 .08 .00 .06 .22 .18 .18

.13 .08 .20 .07 .18 .17 .17 N-P-C, trabeculae .09 .08 .00 .06 .22 .18 .18

.14 .10 .20 .10 .15 .16 .15 Necrosis .12 .10 .01 .09 .17 .16 .16

.13 .08 .20 .07 .18 .17 .17 Perineural invasion .09 .08 .00 .06 .22 .18 .18

.13 .08 .20 .07 .19 .17 .16 Pilosebaceous unit .09 .08 .07 .06 .23 .18 .18

.13 .08 .20 .07 .19 .17 .16 Thick trabeculae .09 .08 .04 .05 .22 .17 .18

.13 .08 .20 .07 .18 .17 .17 Ulceration .09 .08 .00 .06 .22 .18 .18

2.34 1.38 3.57 1.23 3.37 3.03 3.08 SUM 1.51 1.32 0.76 0.94 4.24 3.26 3.43

Feature importance

1st 2nd 3rd 4th 5th 6th 7th

Figure 3.3: Heat maps of weights assigned to features

The Tanimoto coefficient evaluates the degree of coincidence between two vectors,
which, in this context, is related to the common concepts of the two images being
compared.

3.5 Experimental Evaluation

The experimental evaluation process presented in this Section has two main goals: first,
to evaluate the performance of the proposed kernel-based annotation framework on real
histopathology images, second, to determine the impact on the retrieval performance,
when using semantic annotations instead of using only low-level visual features.

3.5.1 Feature Combination

The first step in the proposed framework is to build a new image representation based
on kernel functions. In this work, for each of the 18 histopathology concepts, a new
kernel is adapted. The feature combination strategy is applied to each class, using a
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10-fold cross validation on the training data set to estimate the parameters of the kernel
alignment algorithm that optimize the discerning capacity of the feature space. His-
togram features were normalized using norm `1 = 1, which produces discrete probability
distributions instead of frequency histograms, and make the set of features comparable
during the combination process. Figure 3.3 shows the list of histopathology concepts
with the obtained weights for each feature. We evaluated two basic kernel functions,
named Identity Kernel kI and Histogram Intersection Kernel k∩. Notice how each ker-
nel function emphasizes differently the set of features, indicating that the discriminative
power of each descriptor changes according to the way in which it is used. Also, the op-
timization algorithm assigns different weights to each concept, varying the way in which
features are combined. Each concept obtains a different weight adjustment, since the
corresponding set of positive examples have different visual configurations.

The final row in the Figure presents the sum of all weights across different con-
cepts, revealing the general preference that the optimization algorithm had in terms
of feature selection. For the Identity Kernel, the algorithm selected the LBP features
as the more discriminative ones, whereas for the Histogram Intersection Kernel, the
algorithm preferred SIFT features. In general, the more important visual features for
this discrimination task were textures (LBP, SIFT and TAM), which shows consistency
with previous findings for histology image representation.Nevertheless, in most of the
cases, even though features can be ranked in a preference order, histopathology con-
cepts require a combination of several visual features. Notice that just in a few cases,
the weights for certain features is zero, suggesting that multiple visual features are
complementary for recognizing histopathology concepts.

3.5.2 Automatic Image Annotation

The semantic image annotator is composed of 18 binary SVM classifiers that evaluate
image contents under a kernel-based framework. The classification strategy is one-
against-all, i.e., each classifier is learned independently of the others. It is specially
useful since each image can be annotated using multiple labels. The classification
module is first trained using 10-fold cross validation to estimate good parameters for
each classifier. The parameter is chosen to maximize the f-measure per class, since we
want to correctly annotate as many images as possible with high precision. Reported
performance measures are precision, recall, f-measure and average-accuracy. The latter
was computed by averaging the accuracies of the positive class and the negative class for
each binary classification problem. In addition, reported measures are weighted-average
scores among all classes according to the number of images in each class.

The experimentation includes the evaluation of two different strategies for building
kernel functions: a direct combination of kernels adding functions with equal weights
and an optimal combination of kernels using the kernel-target alignment framework.
Each strategy evaluates four kernel functions as well: the Identity Kernel, the His-
togram Intersection Kernel and the composition of these two kernels with the RBF.
Experimental results are presented in Table 3.2 showing the performance measures of
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Table 3.2: Classification results on the test data set using different kernel functions

Kernel Function Precision Recall F1 Accuracy

Direct Feature Combination

kI Identity Kernel 0.575 0.377 0.455 0.637
k∩ Hist. Intersection 0.762 0.351 0.481 0.637
kG RBF Kernel 0.444 0.615 0.516 0.720
kG◦∩ RBF ◦ Intersection 0.662 0.555 0.604 0.726

Optimal Feature Combination

k∗I Identity Kernel 0.567 0.382 0.457 0.643
k∗∩ Hist. Intersection 0.771 0.365 0.496 0.645
k∗G RBF Kernel 0.442 0.609 0.512 0.714
k∗G◦∩ RBF ◦ Intersection 0.656 0.547 0.596 0.735

all evaluated strategies. The best overall performance is obtained by the optimal com-
bination of features in terms of precision and average-accuracy while recall and F1 are
better under the simple combination strategy. This same tendency can be observed
when comparing the Histogram Intersection Kernel and the Identity Kernel. This ba-
sically means that the former discriminates more accurately while the latter annotates
more correct images. Notice that the Identity Kernel deals with features as simple
vectors whereas the Histogram Intersection Kernel exploits the structure of histogram
data. On the other hand, RBF kernels show a considerably higher recall and better
F1 and accuracy values, indicating the effectiveness of the RBF to highlight non-linear
patterns in the feature space.

The average precision of the best model (k∗G◦∩) is 66% and its recall is about 55%.
There are different challenges to effectively recognize histopathology concepts in images
such as the class imbalance, in which the reduced number of samples for a particular
class, make it difficult to recognize a positive example among hundreds of negative ones.
In addition, the high intra-class variability of images and subtle inter-class differences
are also difficult to model, even when using multiple features.

Figures in Table 3.2 give an estimate of classification performance on new, unseen
histopatholgy images. To evaluate the significance of differences between classification
rates, we employed a McNemar’s test [67] on the same test data. Table 3.3 presents
the results for a number of tests comparing the performance of classifiers. We trained
18 classifiers, one per histopathology concept, with each kernel function. Then, we ran
pairwise tests and account for the number of classifiers that are statistically superior
and the number of classifiers in which other kernel function is better. We call it wins
and losses in Table 3.3, and the difference is computed to determine which kernel
provides more advantages to recognize histopathology concepts. It shows that the
optimally combined Histogram Intersection Kernel, composed with RBF (k∗G◦∩), has
the largest number of significantly better classifiers with respect to the other kernel
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Table 3.3: Evaluation of different kernels using McNemar’s test. 18 classifiers are
trained for each kernel, one per concept. A classifier based on a given kernel for a
particular concept is compared against all other classifiers for the same concept. Cell
numbers indicate the number of times that a classifier based on a particular kernel is
significantly better or worse than classifiers based on other kernels.

Kernel kI k∩ kG kG◦∩ k∗I k∗∩ k∗G k∗G◦∩

Wins 4 8 19 16 5 8 19 17
Losses 18 17 8 6 17 17 8 5

Difference -14 -9 11 10 -12 -9 11 12

functions. Notice that kernels composed with RBF have a positive difference whereas
simple kernels accumulate a negative difference in performance, suggesting that the
RBF is an important factor to improve classification performance. In addition, it can
be observed that the Histogram Intersection Kernel gets a higher score with respect to
the Identity Kernel, as well as the aligned kernels with respect to non-aligned kernels.

Our experiments aimed to evaluate differences between classifiers that use different
image representations, which are built by modeling high-dimensional feature spaces
using kernel functions. Experimental results show that image representations using the
Histogram Intersection Kernel provide a better performance than the Identity Kernel,
mainly due to the way in which the former uses structured data. Also, the RBF kernel
shows important performance improvements by highlighting non-linear patterns in the
feature space. Finally, the optimal combination of kernels shows improvements in terms
of absolute performance, even though these results do not provide enough evidence of
significant differences.

3.5.3 Image Retrieval

To evaluate the performance of the retrieval module, images in the test set are used as
queries following a leave-one-out strategy, which amounts to approximately 520 different
queries. Standard performance measures are used to evaluate the system response
including mean average Precision (maPrec), precision at position k (P (n = k)), recall
at position k (R(n = k)), and recall vs. precision plots [68]. The maPrec value is
computed using the images that the algorithm retrieves until every relevant image has
been found, i.e. until a 100% of recall is met. Reported values are the average results
for the 520 test queries. The evaluation of the image retrieval system covers two main
strategies to search for similar images: using low-level visual features and using semantic
annotations.
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Table 3.4: Retrieval performance measures for low-level visual features

Measure GRA INV LBP RGB SIFT SOB TAM

P (1) 0.32 0.19 0.36 0.50 0.46 0.54 0.42
P (100) 0.13 0.10 0.14 0.14 0.18 0.16 0.15
R(100) 0.13 0.10 0.14 0.14 0.17 0.16 0.14
maPrec 0.10 0.09 0.10 0.10 0.12 0.11 0.10

3.5.3.1 Visual Retrieval Performance

A baseline model using similarity functions for low-level image features is included to
compare experimental results. The model based on low-level features calculates the
similarity between histograms to produce an image ranking using the Histogram Inter-
section Kernel as similarity measure [51]. Table 3.4 presents performance measures to
compare the response of low-level features, in which SIFT features and Sobel histogram
offer the better response. The Bag of SIFT features, that showed the better perfor-
mance in terms of maPrec, has an important advantage with respect to the other set
of visual features: it is based on a learned dictionary of visual patterns extracted from
the whole collection, and accounts for an orderless representation of visual patterns in
images. Then, these features provide invariance to both, rotation (given by the SIFT
descriptor) and translation (given by the orderless spatial arrangement of the bag of
features). The invariant feature histogram is also invariant to rotation and translation,
however,it takes a geometric approach based on single image analysis. The strenght
of the bag of SIFT features resides on the collection-based dictionary construction as
opposed to the single image analysis of the other set of features.

Nevertheless, the precision of all visual features decreases very fast as they return
more images. This can be observed in the Table by comparing the precision at 1, P (1),
with respect to precision at 100, P (100), i.e. the variation in precision along the first
100 results. None of the models can maintain a precision higher than 20%, which means
that, in a first page showing 100 results, less than 20 images would be relevant. These
results serve as baseline to evaluate the contribution of the proposed models.

3.5.3.2 Semantic Retrieval Performance

In the following experiments, both, the query images and the database images, have
been automatically annotated by the system. Since these annotations rely on the kernel
function used for classification, the retrieval system is evaluated according to the kernel
strategy that generates the annotations. Again, two strategies are evaluated: the simple
kernel combination and the optimal combination of kernel functions.

Consider the four performance measures reported in Table 3.5 to evaluate the re-
trieval response for all kernel functions. The notation for kernel functions is the same as
that presented in Table 3.2. P (1) is the precision of the first retrieved image averaged
among all tested queries, which is used to evaluate early precision. All semantic mod-
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Table 3.5: Retrieval performance measures for all semantic models

Measure kI k∩ kG kG◦∩ k∗I k∗∩ k∗G k∗G◦∩

P (1) 0.56 0.60 0.62 0.68 0.53 0.60 0.58 0.68
P (100) 0.36 0.39 0.42 0.44 0.36 0.39 0.41 0.42
R(100) 0.35 0.38 0.41 0.43 0.35 0.38 0.41 0.42
maPrec 0.15 0.17 0.20 0.20 0.15 0.17 0.20 0.21

Table 3.6: Groups with significantly different performance according to the ANOVA
test on mean average Precision (maPrec) values.

Class Model maPrec

I Visual Features 0.103

II
k∗I Aligned Identity Kernel 0.150
kI Identity Kernel 0.152

III
k∩ Hist. Intersection 0.169
k∗∩ Aligned Hist. Intersection 0.170

IV

k∗G Aligned RBF Kernel 0.198
kG RBF Kernel 0.201
kG◦∩ RBF ◦ Intersection 0.201
k∗G◦∩ Aligned RBF ◦ Intersection 0.210

els present a P (1) greater than 0.50, meaning that, in more than half of the queries,
these models retrieve a relevant image in the first position. This contrasts with visual
features in which almost all models have a P (1) less than 0.50. In addition, P (100)
shows how the precision changes among the first 100 results, in which all semantic mod-
els keep around 0.40, contrasting with visual feature models, which present a P (100)
around 0.15. It demonstrates the effectiveness of semantic models to bring more rel-
evant images in the first pages of results. The measure R(100) indicates the recall in
the first 100 results, in which semantic models present values around 0.40 whereas only
visual models are around 0.15, indicating that more relevant images are rapidly found
by semantic models.

The last measure in Table 3.5 is mean average Precision (maPrec), which evaluates
the long term precision of the model, that is, the average precision until every relevant
image is found. This is the most standard performance measure in information retrieval
to compare performance between systems and models. The values obtained by semantic
models are around 0.18 whereas only visual features obtain values around 0.10, showing
an average improvement of 57%. These results show an important improvement of
the retrieval performance of semantic retrieval models over the visual-based retrieval
models.
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Figure 3.4: Recall vs Precision graph comparing the retrieval performance of statis-
tically different models. Two models of class IV are plotted to illustrate differences
between the direct and optimal combination of kernels. The best performing visual
feature (SIFT) is included as representative of class I.

To evaluate the significance of the obtained results, we employed and Analysis of
Variance (ANOVA) test on the maPrec values. We ranked all models by maPrec and
evaluated groups of models to find classes with similar intra-class performance and
significantly different inter-class performance. Table 3.6 presents the results of the
test using a significance value α = 1%, showing that the difference between semantic
models and visual features is statistically significant. It also shows 3 classes of semantic
models with statistically different performance, whose partition is mainly due to the
underlying kernel function. Each kernel function is a different image representation for
the learning algorithms, and these results suggest that the most important factor to
build an effective feature space is the use of an appropriate kernel function to exploit the
structure of data and to highlight non-linear relationships. Notice that the Histogram
Intersection Kernel in classes III and IV provides an absolute performance slightly better
when it is obtained from an optimal combination of features. Even though the optimal
combination of features does not show enough evidence to be considered as a factor
that produces statistically significant differences, it has shown a positive impact in the
automatic image annotation and retrieval tasks.

Another way to compare the performance of models is using the recall vs. precision
plot, as is shown in Figure 3.4. The parameter to used to generate the curves is the
number n of nearest neighbors provided by the retrieval process. This Figure shows the
performance of one model of classes I, II and III and two models of class IV, according
to the statistically different classes presented in Table 3.6. It shows the differences in
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performance between models, as predicted by the ANOVA test. We selected two models
of class IV to illustrate the differences between the optimal combination and direct
combination of features, in which a slightly improved performance can be observed. We
argue that, even though the proposed optimal feature combination strategy does not
show a significant improvement, it has potential applications in the design and selection
of feature sets for histology image representation. Also, this strategy may allow a
further improvement of classification and retrieval results if the set of features is more
targeted to describe specific histopathology properties, as opposed to the use of general
purpose image features. Nevertheless, constructing image representations with kernel
functions has allowed to integrate multiple visual features, to exploit feature structure,
to integrate a feature selection strategy and to highlight non-linear patterns in the same
framework, as an effective strategy for semantic histopathology image retrieval.

Figure 3.5 shows an illustration of the differences between visual retrieval and se-
mantic retrieval using the proposed methods. The query image is the first from left to
right, and it is used to search for images exhibiting the lymphocyte infiltrate concept.
The top five results are presented immediately after the query image, marked with blue
squares if they are relevant or red squares if they are not. The results obtained us-
ing Sobel features as retrieval strategy share more appearance commonalities with the
query than those provided by the semantic retrieval. However, the three last results
of the visual retrieval are not relevant because they do not exhibit the target concept,
while the results obtained with the semantic annotations are all relevant.

In summary, the response of the retrieval system is more appropriate when it is
configured to search images using semantic annotations in contrast to the performance
obtained using only low-level features, as the results have shown. It is important to
notice that semantic annotations rely on the automatic analysis of visual image features,
and the performance heavily depends on the image representation. That was in fact
the main purpose of this study, to model and evaluate different factors to generate
expressive feature spaces for histology images. These representations can be efficiently
harnessed by learning algorithms, which extract high-level semantics from images and
labels during training to be transferred to new, unseen images.

3.6 Discussions

The components of a system to retrieve histopathology images using an example image
has been presented and evaluated. The system provides access to images according to
the semantic content, which is generated by an automatic annotation module. The most
remarkable characteristic of the proposed auto-annotation module is that it generates
image representations in high dimensional feature spaces using kernel functions and
multiple visual features, to better recognize histopathology concepts in images. The
following are some specific benefits of the way in which we model the problem:

1. Multiple features: Histology images are known to have objects that can be de-
scribed using multiple features. Architectural features [45], textural features [69]
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(a) Results obtained using only visual information

(b) Results obtained using semantic annotations

Figure 3.5: Illustration of a content-based query. The query is the first image from left
to right. The top-5 results are shown in order of relevance from left to right. Results
are marked with blue if they are relevant and with red if they are not. The query image
is used to search for images with lymphocyte infiltrate.

and even colors [70] have been proposed to capture variabilities of image con-
tents. We designed the annotation module to deal with multiple features of dif-
ferent nature, and implemented seven histograms in our studies to demonstrate
the potential of this approach. These histogram features included textures, colors,
edges and invariants, and each histogram has 256 or 512 bins, that are efficiently
managed by our module.

2. Structured features: In our kernel-based framework visual features can have ar-
bitrary structure as long as they are provided with a valid kernel function. We
evaluated the Identity Kernel and the Histogram Intersection Kernel to process
histogram features. In our study, the Identity Kernel can be regarded as an
attempt to use the original descriptors as simple feature vectors and the lin-
ear combination of Identity Kernels can be understood as the concatenation of
these vectors. Experimental results showed that the Histogram Intersection Ker-
nel, which exploits the particular structure of histograms to evaluate a similarity
measure, provides more accurate results in classification and retrieval tasks. Our
model can be extended to include other structures such as trees and graphs in the
visual feature set.

3. Combination of features: Since all visual descriptors are mapped to a high-
dimensional feature space using a kernel function, we model the problem of feature
combination as a problem of kernel functions combination, and in such a way, we
generate combined feature spaces that integrate all the information. This strategy
can be understood as a late fusion process as opposed to previous approaches for
histology image classification and retrieval that concatenate features in a single
feature vector [48, 71], i.e. using an early fusion strategy. Our approach provides
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the advantage of considering the particular structure of each feature independently
of the others, instead of mixing up everything in a unique vector. Furthermore,
our combination approach can include the automatic weighting of features fol-
lowing a kernel alignment strategy. In our experiments, the latter procedure did
not show a significant improvement in the final performance, however, we con-
sider this extension as a tool of great potential to select more specialized visual
descriptors and to design better image representations.

4. Highlighting non-linear patterns: The histopathology concepts included in our
study showed to have high non-linearity in the feature space. This is observed
by the large improvement on classification and retrieval performance that was
obtained using the RBF kernel. This is an additional advantage of our frame-
work, taking into account that the resulting image representation can be further
improved just by operating kernel functions. Representing non-linear patterns is
specially useful in image classification tasks, where learning algorithms need to
separate complex regions in the feature space.

5. Semantic annotations: Our approach does not attempt to find a unique right
class for every image. Instead, it generates multiple annotations according to the
visual contents, allowing to extend the functionality to new required search terms.
This characteristic makes it different to other approaches that consider just a few
labels, as opposed to ours that considered 18 high-level concepts. In our study
we only considered the query by example paradigm as the way to retrieve images,
but using the automatically generated annotations, images can also be retrieved
using a keyword-based strategy.

6. Semantic vs. visual retrieval: Visual features have been extensively used for image
retrieval, and the community has found that the main problem using them is the
semantic gap. The automatic analysis of visual image contents is at the core
of the proposed strategy, and we found that the way in which visual features
are used determines the final retrieval performance. Our study showed that the
discriminative power of visual features highly depends on the kernel function used
to train classifiers, since they allow learning algorithms to exploit feature structure
and non-linear patterns. On the other hand, a standard visual retrieval approach
only rank images using a similarity measure, i.e. finding nearest neighbors. The
success of the proposed semantic retrieval approach is that it uses machine learning
to translate non-linear patterns that can be found in visual feature spaces into a
more explicit semantic format that is used to rank images efficiently.

3.7 Conclusions

This Chapter presented a novel strategy for automatic annotation of histopathology
images. The proposed framework is entirely based on kernel methods, allowing to
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deal with multiple visual descriptors to build expressive feature spaces. The generated
annotations are used to search images with similar annotations in an image retrieval sys-
tem under the query-by-example paradigm. We implemented and evaluated the model
following an extensive experimentation on real histopathology images. The proposed
strategy to retrieve semantically valid results from a large collection of histopathology
images showed an average improvement of 57% when compared to visual search, based
on low-level features. In our future work, we consider the use of more specialized visual
features for histology images to improve the final search quality, and the automatic anal-
ysis of co-occurrence among annotations to differentiate between normal and abnormal
images.



Chapter 4

Multimodal Representation,
Indexing, Automated Annotation
and Retrieval of Image Collections
via Non-negative Matrix
Factorization

This work has been published in Neurocomputing [72].

Massive image collections are increasingly available on the Web. These collections often
incorporate complementary non-visual data such as text descriptions, comments, user
ratings and tags. These additional data modalities may provide a semantic complement
to the image visual content, which could improve the performance of different image
content analysis tasks. This Chapter presents a novel method based on non-negative
matrix factorization to generate multimodal image representations that integrate visual
features and text information. The proposed approach discovers a set of latent factors
that correlate multimodal data in the same representation space. We evaluated the
potential of this multimodal image representation in various tasks associated to image
indexing and search. Experimental results show that the proposed method highly out-
performs the response of the system in both tasks, when compared to multimodal latent
semantic spaces generated by a singular value decomposition.

4.1 Introduction

Most of the effort on web-content mining has concentrated on textual (and hyper-
textual) data. However, visual information is an important component of the web
content nowadays. In particular, the advent of the Web 2.0, has been accompanied
by an explosion of multimedia content. Specialized sites, such as Flickr and Picassa,
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Figure 4.1: Overview of the proposed approach. NMF-based algorithms process image
and text features to generate multimodal latent semantic space, in which both data
modalities are represented together. Image retrieval and auto-annotation methods ex-
ploit the latent representation to find semantically related images and valid automatic
annotations, respectively.

host billions of pictures uploaded by users. Other types of sites that allow users to
upload visual content include: social networking sites, such as Facebook and MySpace,
community-generated content, such as Wikipedia, and individual-generated content,
such as in the blogosphere and Twitter.

The most salient characteristic of web image collections is that they come with a wide
variety of associated data, such as text descriptions, tags, ratings and user comments.
The availability of different sources of information brings the possibility to involve
semantic evidence during the analysis of visual content in image collections, which is
specially useful when considering the semantic gap [11], i.e. the discrepancy between
visual features and semantic interpretations. Therefore, the combination of these data
sources together with visual characteristics of images, has received increasing attention
from the research community in multimedia processing. The main problem is to take
advantage of different data modalities to enable computer systems with the ability to
make appropriate decisions according to the high-level task, which is known in the
literature as multimodal fusion [25].

In this Chapter, we consider the problem of building a multimodal image represen-
tation that combines two data modalities: visual patterns extracted from images and
text terms extracted from attached text descriptions. The proposed strategy mines the
relationships between these two modalities to construct a unified representation based
on Latent Semantic Analysis (LSA) principles. We propose a solution based on Non-
negative Matrix Factorization (NMF) to construct a latent-factor-based representation
that can be spanned using text terms or visual features. We formulate a set of NMF-
based algorithms for multimodal image analysis, which generates a joint visual-textual
representation that is useful to approach different image analysis tasks.

The main contribution of our work is an NMF-based model to index multimodal
data. In this work, multimodal collections are composed of images and some associated
text descriptions. These image collections can be built from many different web sources,
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including Flickr and Picassa, in which several text descriptions for images can be iden-
tified using information extraction techniques. More details about the representation
and pre-processing of each separate data modality are given in Section 4.3. Then, given
a database of images with the corresponding text annotations, the multimodal analysis
is performed using NMF algorithms as depicted in Figure 4.1.

The NMF-based strategy generates the latent semantic space using both data modal-
ities. The goal is to find a set of latent factors that explain the underlying structure
of the collection and the relationships between multimodal features. The latent repre-
sentation is computed using a training data set composed of objects exhibiting both
modalities. New objects can later be projected to the latent semantic space even if
they do not have both data modalities. In consequence, the multimodal latent seman-
tic model can deal with images without text or text without images, which is specially
useful to address several image analysis tasks and retrieval. The proposed models and
their properties are presented in Section 4.4.

We evaluate the proposed strategy on two different tasks to demonstrate the poten-
tial of the multimodal representation: image indexing and automatic image annotation.
Our method projects the input visual features to the multimodal latent semantic space
to allow the subsequent analysis. Thus, in addition, we develop a set of algorithms for
image search and image auto-annotation that are presented in Section 4.5.

An experimental evaluation was conducted using two image collections: Corel 5k
[13], a collection of photographs with several tags and categories, and MIRFlickr 25000
[73], a data set of images downloaded from Flickr.com with the corresponding user
generated tags and some additional labels provided as ground truth. The experimental
setup and results are presented in Section 4.6, which shows that our proposed model
outperforms baseline strategies. The final discussions are presented in Section 4.7 and
the concluding remarks are presented in Section 4.8. Portions of this work have been
previously reported in [74, 75].

4.2 Relation to Previous Work

The use of multiple data modalities for multimedia analysis has become an important
research topic during the last years. A comprehensive survey of the many research
aspects of multimodal fusion for automatic multimedia analysis can be found in [25],
which includes applications in audio, image and video processing using multiple data
sources to achieve semantic decisions. Also, in the particular field of image retrieval,
Datta et al. [10] discussed the importance of multimodal fusion for image indexing.
The construction of systems that make semantic decisions using heterogeneous data
sources is the ultimate goal of multimodal fusion.

Two main strategies can be considered for combining multimodal information: late
fusion and early fusion. Late fusion, also known as rank aggregation or fusion at a
decision level, consists in processing each data source separately during the indexing
phase, and the multimodal integration takes place during the query phase. The work of
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Ah-Pine et al. [76] is an example of similarity combination to achieve multimodal access
in image collections, using pseudo relevance feedback to re-rank images in different
applications. On the other hand, early fusion, or fusion at a feature level, consists
in modeling feature relationships to create a new multimodal representation, so that
during the decision phase, the only task to do is usually analyzing multimodal features
[77, 78]. Our work is categorized as an early fusion strategy for multimodal image
analysis.

Latent topic analysis has been used to model the relationships between multimodal
data, specifically images and text annotations. A set of generative models that use
latent variables have been proposed to predict missing captions given unlabed images
[79, 15]. These works are based on extensions of the Latent Dirichlet Allocation (LDA)
model, in which a set of hidden factors are assumed to explain the associations between
the two data types. Later, Monay and Gatica-Perez [80] proposed a simplified aspect
model based on Probabilistic Latent Semantic Analysis (PLSA) to index and annotate
images by jointly processing visual features and text data.

More recent works follow a latent topic analysis using matrix factorization ap-
proaches. Hare et al. [81] proposed a linear algebraic technique based on Singular
Value Decomposition (SVD) to learn a semantic space for image features and textual
descriptions. This method is a multimodal extension of Latent Semantic Indexing (LSI)
for image retrieval that results in a semantic space suitable for image search. Latent
topic analysis using matrix factorization has recently drawn of wide interest in infor-
mation retrieval and image analysis. In particular, NMF algorithms have been used
to analyze visual data to discover object classes [82] and to find correlations between
image tags [83]. Other applications of NMF decompositions for visual data include
[84, 85, 86].

All past works are different from ours since they are focused on processing either
visual features or text annotations rather than exploiting multimodal interactions be-
tween both data types. Our work is the first one, according to our knowledge, that
addresses the multimodal indexing problem using an NMF-based algorithm. In [74]
and [75], we addressed the problems of multimodal image indexing and automatic im-
age annotation, respectively. The present Chapter builds upon these works by proposing
a unified method for solving both problems, and performing a systematic and extended
experimental evaluation.

4.3 Multimodal Image Collections

Assume an image collection with attached unstructured text annotations. An excerpt
of text may be identified from the source document for each image using information
extraction techniques to locate captions, to parse image names and tool-tips, among
others [87]. After the information extraction step, each image has an associated un-
structured set of text terms. In our model, it is not required that every image has a
text description, since it is reasonable to find many of them without surrounding text,
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Figure 4.2: Data pre-processing. Each data modality is processed separately to con-
struct two matrices, which are the base of the multimodal analysis.

or it might be difficult to identify a reliable piece of text to be attached. However, it
is assumed that there are enough annotated images to perform a multimodal analy-
sis. These collections containing portions of images without text descriptions will be
referred to as partially annotated image collections, and that portion of the database
will be indexed later after the multimodal analysis has taken place.

We assume the availability of a large enough sample of images taken from the col-
lection together with their associated text descriptions extracted from the source doc-
uments. This sample will be called the training data set. Hence, the first step of
multimodal analysis is to prepare each individual data modality separately in the train-
ing set. This preprocessing step aims to build two matrices, one with visual data and
the other one with text data. Each image is represented as a vector in the visual matrix,
while its corresponding text description is represented as a vector in the text matrix. In
principle, any vector representation for images and text descriptions is allowed as long
as all their features are non-negative. Then, the matrices Xv for visual features and Xt

for text features will be non-negative matrices as well.
Different representations for visual image contents are naturally non-negative [52].

In this work, we adopt a bag-of-features approach to represent image content. We
extract blocks of 8× 8 pixels from a set of training images with an overlap of 4 pixels
along the x and y axes to build a set of training blocks. Each block is processed in
the three RGB color channels using the Discrete Cosine Transform (DCT) and the 21
largest coefficients per channel are used as features, leading to a block descriptor of
63 features with color and texture information [80]. The k-means algorithm is applied
to the block set to construct a vocabulary of n visual terms, which serve as reference
vectors to quantize feature vectors extracted from blocks in any image. In that way,
a histogram with the frequencies of each visual term is constructed for all images in
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Figure 4.3: Illustration of the latent factor model. Hypothetical images, text terms
(rectangles) and visual features (circles) are represented according to their relationships
with latent factors in axes x and y. From left to right, the factor Landscape changes
from artificial to natural scenes. From bottom to top, the factor Distance indicates
whether images were acquired from far away or close to an object.

the collection. Using this representation, the matrix of visual data is built, which is
denoted by Xv ∈ Rn×l, where n is the number of visual features and l is the number of
images in the collection.

Similarly, text descriptions are processed to construct a matrix of text data denoted
by Xt ∈ Rm×l, with m being the number of text features. Since text descriptions are
considered in this work as unstructured annotations, with no restriction in vocabulary,
syntax or even language, some natural language processing is required. In the general
case, standard text processing operations can be applied to clean up meaningless terms
and define the set of index terms. We start by transforming all words to lower-case,
removing punctuation as well as stop-words and applying stemming operations [2].
After that, a vector with the frequencies of each index term for all text descriptions
is built, to construct the matrix of text data. This matrix of term frequencies can be
further improved using Inverse Document Frequency (IDF) weighting to highlight the
importance of words along the corpus. In any case, the resulting matrix still meets the
non-negativity requirement for our indexing approach.

4.4 Multimodal Latent Factor Analysis

Each of the two matrices described above, Xv and Xt, provide information about the
occurrence of different features for each image in the collection1. The concept of occur-
rence is borrowed from the bag-of-words and bag-of-features models, in which values

1Feature vectors for each image are normalized to have L2 norm `2 = 1, in both, visual and text
matrices.
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account for the number of times a particular element appears within the image. In gen-
eral, these values may be understood as occurrence ratios between features and images,
so each image is characterized by the occurrence of certain features and each feature is
characterized by the images in the collection in which they appear.

The purpose of a latent factor model is to try to explain these occurrences by
characterizing both images and features using a set of r factors inferred from occurrence
patterns. For images, discovered factors might measure dimensions such as natural
scenes versus buildings, or amount of forest cover as opposed to man-made objects; less
well-defined dimensions such as illumination conditions or distance to focused objects; or
completely uninterpretable dimensions. For features, each factor measures how much a
feature appears in images related to the corresponding factor. We assume these factors
to form new meaningful dimensions to organize images in the collection. Figure 4.3
illustrates this idea for a simplified example with two dimensions.

Since in our model, images, visual features and text terms can be represented to-
gether in a joint latent factor space, their relationships can be explained using the inner
product between their corresponding representations. Let hi ∈ Rr be the representation
of an image i, and wf ∈ Rr be the representation of a feature f , both in the latent
factor space. The elements of hi measure the extent to which the image i expresses
latent factors. The elements of wf measure the extent to which the feature f appears
in images associated to the corresponding factors. Thus, the resulting dot product be-
tween these representations models the occurrence of the feature f within the image i,
as follows:

xf,i = wTf hi =
r∑

k=1

(wf )k(hi)k (4.1)

From an image collection point of view, the occurrence patterns can be expressed
using matrix notation in the following way:

X = WH (4.2)

where X ∈ Rp×l, W ∈ Rp×r, H ∈ Rr×l, p is the total number of available features, r
is the number of latent factors and l is the number of images in the collection. Notice
that both features and images have a vector representation using r latent factors in
the matrices W and H respectively. Also, the matrix W is considered as the basis of
the latent space, since each image in X is represented through a linear combination of
W ’s columns using the coefficients in H. Thus, the main problem is to compute these
representations out of the original feature matrix X, i.e., to find a factorization of X in
terms of W and H.

4.4.1 Latent Factors via Singular Value Decomposition

A common approach to compute the latent factors in information retrieval is using Sin-
gular Value Decomposition (SVD). This strategy consists of estimating a rank-reduced
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factorization of the feature matrix in terms of its eigenvectors and eigenvalues,

X = UΣV T (4.3)

where U and V are orthonormal matrices. To generate a semantic space using this
decomposition, the eigenvalues in Σ are sorted in decreasing order to preserve the first
r largest eigenvalues while the rest are set to zero. This is equivalent to dividing the
matrices of the decomposition as U = [UrUe]; V

T = [VrVe]
T and splitting Σ in two

matrices, Σr a squared matrix with the first r selected eigenvalues and Σe with the
remaining eigenvalues. Then, the matrix factorization can be rewritten as:

X = UΣV T = UrΣrV
T
r + UeΣeV

T
e (4.4)

Assuming that X has r independent factors, it can be shown that the best rank-r
approximation to X, in the least squares sense, is given by Xr = UrΣrV

T
r . Using this

low rank approximation to X, the basis of the latent factor space is W = Ur and the
latent image representation is H = ΣrV

T
r .

Under this scheme, the basis of the latent factor space is composed of a set of
orthogonal vectors from the matrix U . The criterion used to select the set of vectors is
based on the size of the corresponding eigenvalues in Σ, since the larger the eigenvalue,
the larger the feature variance of the collection in that direction, and the better the
low-rank approximation. In that sense, the latent factors obtained using SVD are
orthogonal factors that maximize the variance of the data representation.

4.4.2 Latent Factors via Non-negative Matrix Factorization

The observed occurrence values in the feature matrix X may be modeled directly by
learning the factor matrices W and H for features and images respectively, using al-
ternative matrix factorization techniques to SVD. Two main requirements are herein
considered to approximate the matrix factorization in Equation 4.2. First, the resulting
basis for the latent factor space should allow non-orthogonal vectors as well as orthog-
onal ones, as long as they correspond to structural patterns in the feature matrix.
Second, the matrix approximation must allow non-negative values only, both for the
basis vectors and the codifying vectors too.

Notice that an approximation of the matrix factorization is allowed rather than
requiring an exact matrix factorization. Then, the matrix factorization in this problem,
may be expressed as X ≈ WH, or more precisely, X = WH+E, where E is a matrix of
approximation errors. Thus, this can be approached as an optimization problem to find
W and H that minimizes the Frobenius norm of the error matrix ‖E‖2 = ‖X−WH‖2,
that is, the difference between the original matrix and its approximation.

Another objective function to evaluate the factorization approximation is the Kullback-
Leibler (KL) divergence:

D(X|WH) =
∑
i,j

(
Xi,jlog

Xi,j

(WH)i,j
−Xi,j + (WH)i,j

)
. (4.5)
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This objective corresponds to the KL divergence between the empirical distribution
of features in the matrix X and the model distribution WH. This amounts to projecting
the observed occurrences on the subspace spanned by the factors based on the KL-
divergence [88]. This is different from a squared error based on Frobenius norm which
would result in an orthogonal projection, resulting in a more appropriate model to deal
with the data representations considered in this work: bag-of-features histograms for
both visual and textual content, which can be interpreted as probability distributions.

According to Liu et al [89], minimizing the KL divergence is obtained by maximizing
the likelihood of observing the data matrix under the assumption that it follows a Pois-
son Model. Minimizing the Frobenius norm is obtained by maximizing the likelihood of
observing a Gaussian distributed data matrix. The Poisson distribution offers a more
faithful model, compared to the Gaussian distribution, for representing ”counts”, which
is exactly the case for our bag of words and bag of features representation for the text
and visual content of our multimodal data, respectively.

Therefore, the formulation of the optimization problem to approximate a Non-
negative Matrix Factorization (NMF), using the divergence objective function, is for-
mally denoted as:

minW,HD(X|WH)
s.t. W,H > 0

(4.6)

This optimization problem is convex inW only orH only, but it is not convex in both
variables together. However, there are different techniques from numerical optimization
that can be applied to obtain a good approximate solution. In particular, an algorithm
to find W and H simultaneously based on multiplicative updates, has been shown to
yield non-increasing objective values and to converge to stable solutions [90]. These
multiplicative update rules are as follows:

Haµ ← Haµ

∑
iWiaXiµ/(WH)iµ∑

kWka

(4.7)

Wia ← Wia

∑
µHaµXiµ/(WH)iµ∑

vHav

(4.8)

Computing W and H in this way provides a good tradeoff between ease of implemen-
tation and speed of convergence. It is straightforward to see that the multiplying factors
used to update matrices W and H become equal to1 when X = WH, which means
that perfect factorization is necessarily a fixed point of the update rules. The proof of
convergence for this strategy was provided by Lee and Seung [90] using an auxiliary
function that is similar to the one used to prove the convergence for the Expectation
Maximization algorithm.

The factorization is set to decompose the input matrix into a fixed number of factors
defined by the parameter r. In our setup, the number of factors (that defines the
complexity or order of the factorization model) is found using cross validation on the
training data to compare the performance of models with different complexity. Tan and
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Fevotte [91] presented a framework to perform model order selection for NMF, using an
automatic relevance determination framework. This requires setting prior distributions
on the elements of W and H, so the method allows to recover an effective dimensionality
of the latent space. Their work was developed to address the factorization using the
KL-divergence, but can be extended to include other types of metrics.

4.4.3 Multimodal Latent Factors

The image database is composed of two data modalities, herein denoted by Xv ∈ Rn×l

and Xt ∈ Rm×l. The former is a matrix whose rows are indexed by n visual features
and whose columns correspond to the l images in the database. The latter has m rows
to represent text terms and l columns for images as well. The construction of a latent
semantic space may be done by decomposing the matrix of images that can have only
visual features or only text annotations. However, to generate a semantic space for
image indexing, we are interested in exploiting multimodal relationships. Thus, two
strategies to construct multimodal image representations are proposed as follows.

4.4.3.1 Mixed multimodal representation

This strategy consists of the construction of a multimodal matrix X = [αXT
v (1 −

α)XT
t ]T , with α ∈ [0, 1], a weighting parameter that controls the relative importance

of the two data modalities. We set α = 0.5 in our experiments (to give the same
importance to visual and text data), unless otherwise stated. Then, the matrix is
decomposed using NMF as follows:

X(n+m)×l = W(n+m)×rHr×l (4.9)

where the subindices indicate the dimensions of the matrices, W is the basis of the
latent space, i.e., the latent factors, in which each multimodal object is represented by a
linear combination of the r columns of W . These factor proportions are codified in the
columns of H. The mixed multimodal representation aims to find correlations between
features of both modalities, i.e. to find relationships between visual features and text
terms, since both of them are aligned in the same feature matrix X. A similar approach
using SVD was proposed by [92], in which visual features and text terms are aligned to
generate a multimodal latent semantic representation.

4.4.3.2 Asymmetric multimodal representation

The previous strategy decomposes the multimodal information by building a multimodal
matrix with visual features and text terms. It has been reported in the literature that
text descriptions tend to provide a more reliable information source to extract semantic
information for image retrieval than visual features [80]. Evidence of this fact can be
observed in different image retrieval challenges that provided data sets with images and
text descriptions, and final pollings show a dominant position of text-based approaches
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[93, 94]. Thus, we present an asymmetric algorithm for the construction of the latent
semantic space that first derives a semantic image representation from text data, and
then follows an adaptation of the visual representation to fit the semantic one. In other
words, the text information plays the role of a leader compared to the visual content.
However, both modalities are exploited to discover the semantic representation.

The algorithm has two main steps to construct the semantic space:

1. Building a semantic image representation: This step decomposes the text matrix
using the NMF algorithm:

Xt = WtHt (4.10)

In this case, the m × r matrix Wt contains the vectors of a basis in which text
terms are correlated with r latent semantic factors. After this step, the semantic
representation for all images in the data set is codified in the matrix Ht.

2. Adapting the latent space basis : To complete the basis of the multimodal latent
space, the construction of a basis for visual features is adapted to match the
previously obtained semantic representation. That is, we find a matrix W v

n×r
which spans the semantic space using visual features instead of text terms, as
follows:

Xv = WvHt (4.11)

Notice that in the second step, the matricesXv andHt, the visual features of the training
collection and their latent representation, are already known. Then, the problem of
finding Wv may be accomplished by computing the multiplicative updates for W while
fixing H. We refer to this computation step as the adaptation algorithm in the rest of
the Chapter.

The convergence of this modified algorithm to obtain the factorization Xv = WvHt

can be understood by analyzing the optimization problems in each step. In the first
step of this algorithm, the latent representation for training images is obtained in Ht,
running update rules in Equations 4.7 and 4.8, which have been shown to converge to a
local minimum [95, 90]. In the second step of our asymmetric approach, the matrix Ht

is fixed, and we solve it by running the update rule in Equation 4.8 only. It is known
that by fixing one of the matrices in the factorization makes the problem of fining the
unknown convex [90], thus a global minimum can be found. However, this will be a
global minium with respect to the previously found matrix, which is a local minimum
of the first problem.

4.5 Image Indexing and Auto-Annotation

4.5.1 Image Indexing

The main goal of image indexing is to generate an image representation that can be used
to match similar contents given a particular information need. After the multimodal
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Input data Projection
y: multimodal y = Wh
yv: visual yv = Wvh
yt: text yt = Wth

Table 4.1: Projection of different input data to the latent space in the proposed frame-
work.

decomposition has been done using the algorithms described above on a training set, all
other images in the collection have to be indexed, i.e., all of them have to be projected
to the latent semantic space. Consider a partially annotated image collection, in which
images with and without associated text can be found. Also, since the system is based
on a multimodal index, we can consider three different ways to query the system: using
example images, using keywords, and using both. Be it for indexing images or to process
queries, we can project all data to the latent space using the strategies presented in
Table 4.1.

Any input data has to be projected to the latent space by finding h > 0 in terms of
the corresponding basis of the multimodal space. When multimodal data is available,
the full factor basis matrix W is used. When only visual or text data is available, the
corresponding sub-matrix of the basis (Wv for visual data, or Wt for text data) is used.
The projection of y on the latent space, h, is found by using the multiplicative updating
rules for h while keeping the matrix W fixed. We refer to this computation step as the
codification algorithm, since new data and the basis of the latent space are given to find
the multimodal latent representation.

Once images and queries have been projected onto the multimodal latent space, a
similarity measure is needed to identify relevant results. We use the dot product as
similarity measure, and results are ranked in decreasing order of similarity. Notice that
the dot product in the multimodal latent space gives a notion of the extent to which
two vectors share similar values for latent factors.

4.5.2 Image Auto-Annotation

The problem of image auto-annotation is to assign a set of keywords to an image that
do not have any attached text. As in the case of image search using visual queries, we
need to project images to the multimodal latent space using the codification algorithm
described in the previous subsection. Then, to find the annotation words that best
describe an unannotated image, we first need to compute its similarity to training
images as follows:

z = hTH (4.12)
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where h is the latent representation of the unannotated image, H is the representation
of the training images in the semantic space, and z ∈ Rl is a vector of similarity scores.
To output annotation words to the query image, we compute their counts in the set of
most similar training images. Then the annotation words are ranked according to their
counts. This step is similar to what has been proposed in other works ([96, 97]) and is
useful here to assess the benefits of using the NMF latent space construction compared
to other multimodal based methods.

4.6 Experimental Evaluation

4.6.1 Datasets

4.6.1.1 Corel 5k dataset

The Corel 5K image database is composed of 5,000 images in 50 categories and has been
manually annotated using a text vocabulary of 371 terms [13]. This data set has been
used as a benchmark in automatic image annotation and retrieval research, allowing
the comparison of several strategies during the last years [81, 14, 80, 24]. The bag of
features approach is used to represent visual contents using a dictionary of 2,000 visual
patterns. The conventional experimental protocol is followed in this work, regarding
testing and training partitions. The data set was split into three subsets with 4,000
images for training, 500 images for validation and 500 for final tests. The training set
is used to feed the learning algorithms while the validation set is used for parameter
tuning.

4.6.1.2 MIRFlickr 25000 dataset

The MIRFlickr-25000 image data set is composed of 25,000 pictures downloaded from
the popular online photo-sharing service Flickr. These photos were collected directly
from the web, to provide a realistic dataset for image retrieval research, with high-
resolution images and associated metadata [73]. The data set comes with the Flickr
tags given by users, which can be considered as low level, noisy text. By processing
this content, a 2,105-word dictionary is defined based on the most frequent terms. The
bag-of-features approach is used to represent visual content using a dictionary of 1,000
visual patterns. This image collection has also been manually annotated using a set of
38 semantic terms provided as ground truth. The annotation vector has binary elements
indicating whether the photo can be described by the term or not. These are considered
as high level textual descriptions.

We follow the conventional training-validation scheme, using 15,000 images for train-
ing and the remaining 10,000 images for testing [98]. For the retrieval experiments, 1,000
random images are taken as queries from the test set. Then, the database for these
experiments contains 24,000 images, from which 15,000 have text annotations and the
remaining 9,000 have only visual features. This is a quite realistic setup, in which
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the image collection is partially annotated, and the multimodal analysis needs to be
generalized to the remaining images.

4.6.2 Visual indexing

We evaluate the response of an image retrieval system that uses only visual features
to retrieve images from the database when a visual query is provided. Our content-
based descriptor is based on the bag-of-features approach, so images are represented by
histograms of the occurrence of visual patterns in a codebook. To match image content
using this representation, the histogram intersection is used as a similarity measure.

In addition to this visual matching strategy, we evaluate the performance of the
system using a latent semantic space built upon visual information only. The NMF and
SVD algorithms are fed with the matrix of visual descriptors and the search is performed
in the semantic space using the dot product as similarity measure (essentially the same
as cosine since the data is normalized to unit 1). To evaluate the performance of the
retrieval response, the Mean Average Precision (MAP) is computed in each experiment.
In the Corel 5k data set, an image in the results is considered relevant if it shares the
same category with the query. For the MIRFlickr data set, an image in the results is
considered relevant if it shares at least one semantic label with the query.

Experimental results on the Corel data set showed that direct matching performs
better than using a visual latent space either with SVD or NMF[74]. The maximum
performance using only visual data reaches a MAP value of 0.101. On the MIRFlickr
data set, visual latent spaces perform slightly better than direct matching, reaching a
MAP value of 0.557. This strategy does not take advantage of the text annotations
in the collection, and works as a baseline to measure the improvement of the proposed
multimodal approach.

4.6.3 Multimodal indexing

The multimodal analysis is performed using the training data by applying three al-
gorithms: SVD mixed, NMF mixed and NMF asymmetric. Afterwards, all images
and queries are indexed in the latent factors’ space and the evaluation is carried out
by observing the performance in terms of MAP. The experiments follow the Query
by Example Paradigm (QBE), to evaluate the response of an image retrieval system
that indexes images using multimodal data, even though the expected queries have
only visual information. This evaluation challenges the algorithm’s ability to retrieve
semantically valid results in the absence of text annotations in the query.

Figure 4.4 presents the performance on the validation sets for all indexing strategies
for both data sets, using different sizes of the latent space. All multimodal strategies
show the construction of improved indexes for image search based on the QBE paradigm.
Overall, NMF-mixed and SVD multimodal presented very similar performance in both
data sets. The results show that the proposed NMF-asymmetric indexing algorithm
achieves a better performance with respect to all other models. This shows that the
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Figure 4.4: Mean Average Precision performance of all indexing strategies evaluating
different sizes of the latent semantic space in the training dataset.

Table 4.2: Retrieval performance on the test sets for Corel 5k and MIRFlickr

Corel 5k MIRFlickr
Model MAP Gain MAP Gain

Direct matching 0.1071 N/A 0.5577 N/A
SVD Mixed 0.1780 66.2% 0.5743 2.98%
NMF Mixed 0.1727 61.2% 0.5783 3.67%

NMF asymmetric 0.2369 121.2% 0.5837 4.67%

proposed strategies effectively involve text semantics in the organization of visual pat-
terns using multimodal factors. Notice that in most of the cases, the number of latent
factors required to observe an improved performance is relatively low (less than 100 for
both collections).

Table 4.2 shows MAP values for all the evaluated models, computed on the test
sets in both collections. Experiments on the Corel data set show large improvements
when using a multimodal index to search with images without text data. The relative
improvement in the MIRFlirckr data set is modest compared to the one observed in
the Corel data set. This is because the MIRFlickr is an image collection extracted
from a real online service, hence it is more noisy and challenging. This provides more
realistic conditions and is also a bigger dataset with a ground truth given by multiple
semantic labels rather than clearly defined categories. Despite all these differences, the
proposed strategies show better performance with respect to baseline models, resulting
in an improved retrieval response.
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Figure 4.5: Effect of the weighting parameter, α, on the performance of the NMF-mixed
algorithm. The weighting parameter controls the contribution of the visual and text
data modalities to the initial construction of the latent space. α = 0 corresponds to the
assymetric multimodal representation, which is built exclusively using text data, and
greater values indicate a greater contribution of visual modality.

4.6.4 Weighted Multimodal Indexing

In Section 4.4.3.1 the NMF-mixed algorithm was introduced with a weighting parameter
that controls the relative importance of visual and text data modalities. In this Section
we investigate the impact of alternative weightings to find the multimodal latent factors.
The weighting parameter α allows a flexible configuration of the multimodal decompo-
sition. When α = 1.0, only visual information is considered in the matrix factorization
algorithm. When α = 0.0, the text data is the only one used to build the latent factor
space, which is basically the same as the NMF-asymmetric algorithm. Intermediate
values for α may result in different performances according to the contribution of each
modality.

Figure 4.5 presents the performance response of the NMF-mixed algorithm when the
weighting parameter α is changed. Both datasets, Corel 5k and MIRFlickr, show basi-
cally the same tendency: as long as more weight is given to the text modality, a better
response in terms of MAP is observed. This is mainly due to the evaluation protocol
followed for both datasets, which is based on a ground truth that relies on semantic
categories or semantic labels. Text annotations are usually more correlated to these
semantic representations, and might be considered closer to the human interpretations
than visual features alone. However, we believe that under other evaluation scenarios,
which may include more perceptual or subjective criteria, giving more weight to the
visual modality may be of benefit to the underlying task. Examples of these alternative
scenarios include exploratory image search [99] and visual pattern mining [100, 101].
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Query type
Database Visual Multimodal Keywords

Fully annotated 0.2289 0.3345 0.3746
Non-annotated 0.1709 0.2211 0.2205

Table 4.3: Mean Average Precision for different types of queries on the Corel 5k data
set.

4.6.5 Answering Multimodal Queries

The previous Sections have evaluated the response of the multimodal indexing system
under the Query by Example paradigm, i.e., assuming that users express their infor-
mation need using example images. That evaluation allows to assess the influence of
multimodal data in the visual retrieval task, and enables the system to give more mean-
ingful results when there is no other clue other than a visual example. This search mode
may support the operation of online image search services for users with camera phones
and other mobile devices that are used to capture an image and then look for similar
ones.

However, the proposed multimodal retrieval system can handle other types of query
paradigms, as was mentioned in Section 4.5.1, including query by keywords and even
multimodal queries, i.e., queries with visual examples and text descriptions. Hence, the
following experiments aim to evaluate other types of query paradigms to search in the
multimodal index. We consider two main scenarios: first, an image collection that is
fully annotated, in other words, text descriptions are available for every image in the
database; second, a non-annotated image database, for which the multimodal analysis
has been extended from a training sample. We used the NMF-asymmetric algorithm
on these experiments on two subsets of the Corel 5k data set (fully annotated and
non-annotated).

Table 4.3 reports MAP figures for this evaluation. Visual-only queries refer to the
QBE paradigm evaluated in previous sections. Notice that when these visual queries
are enhanced with some keywords to provide a multimodal query, the system response
is improved. This is consistent with the notion that, as long as users provide more
clues about their information need, the system should be able to retrieve more relevant
results. In the case of text-only queries the situation is different regarding the type of
collection that has been queried. On a fully annotated collection, the multimodal index
performs better using keywords-only than using a multimodal query. However, when
the collection do not have any text annotation, multimodal queries work slightly better
than keywords-only.

This shows that the multimodal index is able to support multiple query paradigms
even if the image collection is partially annotated. Then, other methods that rely
on visual content only, would provide poor information because of the semantic gap,
and methods that rely on text content only, would leave large portions of the images
inaccessible. The proposed multimodal index can handle all these situations in a unified
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Figure 4.6: Illustration of the generated annotations using visual content versus using
multimodal content for training. Relevant tags are highlighted in blue.

fashion.

4.6.6 Image Auto-Annotation

Automatic annotation is performed in the proposed framework by searching similar
images in the latent factors’ space and selecting frequent terms associated to the top
results. Auto-annotation experiments were carried out using the training-validation
scheme to tune up parameters (number of factors and number of nearest neighbors).
Annotations on the Corel 5k data set are chosen from the 371 terms of the attached
text [13, 81, 14, 80]. Annotations on the MIRFlickr data set are chosen from all 38
semantic labels (relevant and potential) [98, 73]. Performance is measured using stan-
dard precision scores that indicate how many relevant tags have been assigned to query
images.

Table 4.4 reports annotation performance in terms of MAP for both datasets, using
the three multimodal strategies. These results are from the best performing config-
urations and show that NMF-asymmetric has a better performance than the mixed
strategies. The annotation performance has a direct relationship with the retrieval per-
formance since the underlying approach to assign terms is based on searching similar
images. However, the appropriate factorization changes significantly according to the
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Table 4.4: Annotation performance on the test sets for Corel 5k and MIRFlickr. The
best MAP value is reported along with the number of factors to achieve that perfor-
mance.

Corel 5k MIRFlickr
Model MAP Factors MAP Factors

SVD Mixed 0.2663 50 0.5617 100
NMF Mixed 0.2948 100 0.5775 40

NMF asymmetric 0.3180 300 0.6215 50

set of annotation terms: notice that the number of factors required to achieve the best
performance is related to the number of annotation terms in the case of the asymmetric
strategy. This suggests that these factors are learned to correlate the features required
to identify annotation terms.

Figure 4.6 illustrates some example images with the corresponding annotations gen-
erated by a model based on visual data and another model based on multimodal data.
The top four terms are shown for the Corel 5k data set, while the top ten terms are
shown for the MIRFlickr data set. Ground truth annotations are presented as well to
compare the performance of the models. It can be observed that by introducing text
data in the factorization process, the quality of the annotation improves both in terms
of rank and recall.

4.6.7 Computational Issues

The proposed strategy based on NMF algorithms require processing large matrices
in real scenarios. In any of the NMF decompositions, there are basically 3 matrices
involved in the process: Xp×l = Wp×rHr×l. The approximation to this factorization
is achieved by computing iterative updates on W and H, using multiplicative rules
as was presented in Section 4.4.2. So, considering an implementation using matrix
multiplications, and k iterations until convergence, the time complexity of the algorithm
is O(p × l × r × k). Notice that the complexity increases with the number of features
p, the number of training examples l and the number of latent factors r.

In practice, matrix multiplication can gain substancial performance using paralel-
lization due to the nature of these operations. Our implementation was developed in
Matlab and run on a server machine with 32 GB of RAM memory and 8 CPU cores.
The largest matrix factorization in our experiments was done for the MIRFlickr data
set, using 15,000 training examples, 5,000 features (visual + text) and 500 latent fac-
tors. In average, this decomposition takes 15.2 min. using all cores and 3GB of memory.
In the case of the Corel 5k data set, the largest decomposition involving 4,500 training
examples, 2,300 features (visual + text) and 500 latent factors, takes about 3.7 min. in
average.

In search time, every image has already been indexed in the latent factor space,
which in our experiments, turned out to be small, between 40 and 100 factors. A
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similarity search using the dot product is linear in the number of images on the database,
which takes several milliseconds using our implementation in Python. This search can
be also scaled up easily to compute similarities in parallel and using advanced indexing
techniques.

4.7 Discussion

4.7.1 Multimodal representations

Joint image-text analysis has been of wide interest since the seminal work of Barnard
et al [79]. Most of the research efforts have been oriented to enable text-based image
retrieval or to predict relevant annotations [13, 14, 102, 92, 80, 103, 81, 78, 98]. Our
work is oriented to build a multimodal representation for images that integrates visual
features and text terms for solving a variety of tasks. In most of our experiments, we
used the text modality as an auxiliary source of information rather than using it as the
target element to be predicted or explained by the models. The introduction of text
information in the image representation was shown to provide important improvements
in all the experimental setups presented in this work, demonstrating the potential of
the proposed approach.

Our model provides a unified framework to deal with multimodal representations
useful to approach a wide variety of tasks for image indexing and search. Few works
have explored other tasks beyond keyword-based search, such as querying using se-
mantic examples and pictures from mobile phones [23, 22, 24]. We do not restrict our
evaluation to keyword-based search or semantic examples, instead we demonstrated
the potential of multimodal representations for image indexing on fully and partially
annotated collections, for searching with different query paradigms and for performing
auto-annotation. We believe that a truly multimodal image management system should
support all these diverse capabilities in an integrated framework and that is precisely
one of the contributions of our work.

The evaluation carried out in this work was mainly oriented to measure the per-
formance of the multimodal representation to make semantic decisions, i.e., retrieve
relevant results or provide high-level annotations. However, the proposed multimodal
representation may be of great benefit for other tasks such as perceptual image analysis
or subjective evaluations, including visual pattern mining, image collection visualization
and exploratory image search.

4.7.2 Latent Factors via NMF

We investigated the potential of matrix factorization to build multimodal latent factors
to represent images. Latent factors can be obtained using a variety of methods including
Latent Semantic Indexing (LSI), Probabilistic Latent Semantic Analysis (PLSA) and
Latent Dirichlet Allocation (LDA). We discuss some differences and similarities between
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NMF and these other three approaches, that have also been used to model joint image-
text data sets.

Hare et al. [92] used an LSI-like approach to build semantic spaces using visual
and text data. We consider that modeling orthogonal factors is a restrictive strategy,
since some latent factors might be related to each other, indicating meaningful patterns
in the collection [104]. In addition, the basis and the latent representation are not
restricted in terms of the sign that their dimensions can have, that is, latent factors
may have positive or negative components. Different image and text representations
are naturally non-negative as was discussed in Section 4.3. Thus, from a data analysis
view-point, it is reasonable to model the structure of the collection using non-negative
representations as well. Lee and Seung [95] demonstrated how to learn parts of objects
by restricting the element representations to be non-negative. These properties lead to
a more meaningful image representation, since latent factors can be seen as meaningful
parts than can be combined in an additive way to understand image content.

Monay and Gatica-Perez [80] proposed modelling semantic aspects using PLSA to
integrate both visual and text data. Although NMF and PLSA have been shown to
optimize the same objective function, Ding et al. [105] emphasize the fact that they
are different algorithms and converge to different solutions. PLSA deals with data from
a statistical viewpoint, using Maximum Likelihood estimation to find an approximate
latent representation. NMF models data from a sub-space viewpoint, using optimization
strategies to approximate the matrix decomposition. Therefore, multimodal factors in
PLSA consist of probabilities associated to features and terms, whereas NMF provide
multimodal factors as vectors with visual features and terms which again, can be seen
as meaningful parts of objects in the image collection.

Blei and Jordan [15] modelled the joint distribution of text terms and image seg-
ments using LDA, based on a generative model in which the visual data is the primary
modality and is generated first. Thus, conditioned on the topics used for an image,
text terms are then generated. This design explains the observed data following the
process of an annotator, in which images are observed and then annotated. In most
of our experiments, the NMF-asymmetric strategy performed better than NMF-mixed,
suggesting that the text data should be used as the primary modality to approach se-
mantic decisions (see previous Section for a discussion about evaluation). A generative
model for our NMF-asymmetric algorithm would generate text data first and later the
visual one. This design would explain the data following a painter process, in which the
text is given and the pictures are then painted. This difference between Blei and Jor-
dan’s model and ours, motivates further research to better understand joint image-text
modelling.

4.8 Conclusions

We presented an approach for building multimodal image representations using Non-
negative Matrix Factorization as a method to create latent semantic factors where data
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of different modalities can be associated. The two data modalities involved in our
work are visual features and text terms. The main goal of the proposed multimodal
representation is to reduce the semantic ambiguity of the visual content. Since we have
experimentally found that textual data is more reliable for building topics of images, we
introduced the asymmetric NMF method that exploits text data first and then adapts
the basis of the visual descriptors. This can be seen as an enforcement of visual patterns
to be organized according to the text semantics.

The experimental evaluation showed the potential of the proposed multimodal rep-
resentation to approach a wide variety of tasks associated to image indexing in a unified
framework. We demonstrated how to build multimodal factors, to extend them to par-
tially annotated collections, to search using multiple query paradigms and to annotate
images automatically, all supported by the same core methodology. All the evalua-
tions were carried out using two standard real data sets, and the proposed approach
consistently performed better than baseline methods. This work shows that matrix fac-
torization strategies can be effectively used to model multimodal latent factors and also
that multimodal representations are very useful to perform multiple image collection
analysis tasks.



Chapter 5

Histology Image Search Using
Multimodal Fusion

The work presented in this chapter has been submitted to IEEE Transactions
in Medical Imaging.

This Chapter proposes a novel method for histology image search, which indexes im-
ages by combining visual contents and available semantic annotations. The system has
been specially designed to search using example images as queries. The key component
of the system models relationships between visual features and semantic annotations
using a semantic embedding, which is learned from annotated images by nonnegative
matrix factorization. The embedding is used in two directions: from visual to semantic
annotations, to project unannotated image queries to the semantic space, and from
semantic to visual data, to map back semantic annotations to the visual space. Im-
ages are finally represented fusing the semantic enriched visual representation with the
original visual representation. Experiments have been carried out using two different
histology data sets, and the results show consistent and significant improvements in
search performance under the query-by-example paradigm.

5.1 Introduction

Digital pathology consists of a series of technologies to acquire, store, visualize, analyze
and share histology samples in digital format, contributing to the preservation of all
information related to pathology cases. These technologies make easy to exchange his-
tology images and enable pathologists to rapidly study multiple samples from different
cases without having to unpack the glass [35]. The increasing adoption of digital repos-
itories for microscopy images can easily end up in large databases with thousands of
records, which, besides of just archiving images, can also be exploited to support deci-
sion making processes in clinical and research activities. However, to take advantage of
these collections, specialized tools for efficient and effective image search are required.

75
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This Chapter presents a method for indexing and searching histology images that
allows to present an example image to retrieve the most similar ones from a database.
An image retrieval system for histology slides may allow clinicians and researchers
to explore large collections of records previously evaluated and diagnosed by other
physicians. When a new slide is being observed, a camera coupled to the microscope
can capture the current view, send the picture to the retrieval system and show results
in a connected computer. These results can help to clarify structures in the observed
image, explore previous cases and, in general, support the decision making process.

To provide content-based retrieval support in image collections, different techniques
were proposed during the past decade [10], some of them based on simply matching low-
level visual features and some of them more elaborated trying to represent the image
semantics. The main problem of approaches based on low-level visual features is that
they usually fail to capture the high-level semantic of images, producing many non-
relevant results. This problem is known as the semantic gap [11]. A number of different
approaches attempt to bridge this gap, usually using machine learning methodologies.
The general idea is to learn a model that connects low-level features with high-level se-
mantic content. The most prominent approach is based on automatic image annotation
[79], which analyzes visual contents to generate appropriate keywords that describe the
image. Afterward, the system can retrieve images with similar labels. This approach
has been investigated for histology images as well [40, 34].

Even though a system is able to match semantically related images using automatic
annotations, two main problems appear when using this approach: first, the system loses
the notion of visual similarity, since the search ends up relying entirely on keywords.
Second, most of the systems for automatic image annotation need to train one classifier
for each associated keyword, making an implementation hard to setup for real world
vocabularies. In medical imaging, specialized terms with precise meanings actually help
experts to communicate and determine accurate diagnosis. The MeSH controlled vo-
cabulary for indexing journal articles in life sciences has about 30,000 heading subjects,
each with the corresponding descriptions and synonyms. Using a detailed description
to annotate medical images requires the ability to scale up methods to manage large
vocabularies.

In this Chapter, we propose a novel method for indexing histology images using
a multimodal fusion approach, that is, combining two data modalities: visual features
and semantic annotations. Instead of using keywords as categories to learn classification
functions, the proposed method uses them as an additional data source that represents
images. The proposed method has two important features: first, it deals with annotated
and unannotated images in a consistent way, exploiting those images with annotations
to build a semantic embedding and allowing the semantic representation of unannotated
images; second, it can deal with large annotation vocabularies since it does not need to
build a classifier per concept.

The method is based in a matrix factorization algorithm that finds relationships
between visual and semantic representations, making the two data sources exchange-
able from one space to another. We further exploit this property by fusing both data
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modalities in the same vector space, obtaining as a result the combined multimodal
representation for images, which, according to the experimental evaluation, has an im-
portant impact on the retrieval performance of the system.

An experimental evaluation was conducted on two data sets of microscopy images,
one of histology tissues whose descriptions use 40 different terms [106], and another
of basal cell carcinoma with 18 terms [34]. Experimental results show a significant
improvement of the proposed method in terms of retrieval precision, demonstrating
the ability of the multimodal fusion to simultaneously bring discrimination of visual
contents and semantic meanings. The contents of this Chapter are organized as follows:
Section 5.2 discusses relevant related works in histology image retrieval. Details about
the histology image data sets are presented in Section 5.3. Section 5.4 introduces
the proposed algorithms and methods. The experimental evaluation and results are
presented in Section 5.5. Finally, discussions are presented in Section 5.6 and concluding
remarks are presented in Section 5.7.

5.2 Previous Work

The automatic analysis of histology images comprises different purposes and techniques.
From image classification [107] to automatic pathology grading [43], the large amount
of microscopy images in medicine is pushing for computer methods that allow to assess
and manage visual collections to support the decision making process in the clinical
practice. This work is focused on image search and retrieval technologies, which serve
as a mechanism to identify related and useful histology images. In an image retrieval
system, a semantic organization of images is required to successfully identify relevant
histology images and filter out non-related ones. The following subsections discuss main
approaches toward semantic image retrieval.

5.2.1 Supervised learning

Supervised learning algorithms are very common to recognize image semantics by as-
signing labels to them after analyzing visual contents. The approach consists in com-
puting visual features from images and then train classifiers that separate a few image
categories. The design of features are usually oriented to model textures [108, 109], an
important characteristic to be analyzed on microscopy images, as well as combinations
of multiple features [48, 34]. Then, classifiers are trained to recognize a limited number
of categories.

Meng et al. [108] used parts of the IICBU Biological Image Repository to classify
images into 3 to 4 categories using principal component classifiers. Naik et al. [48] used
Support Vector Machine (SVM) classifiers to distinguish between 3 different breast tis-
sue types. Orlov et al. [109] classified fluorescence microscopy images of HeLa cells
with 10 different labels using Nearest Neighbor classifiers. The largest number of cat-
egories studied in microscopy images has been 18, for annotating basal cell carcinoma
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images using SVM classifiers [60], and 20 for detecting fine semantic features in the
Gastro-Intestinal track [40].

The main goal of these methodologies is to categorize input images in a set of labels
that may help to organize an image database. However, if an image retrieval system
relies only on predicted labels to find relevant images, its functionality would be very
limited due to the small number of supported terms. Also, a significant tuning up effort
would be required to maximize the accuracy of recognition rates for new categories.
Thus, this approach may have problems to scale up to real world applications.

An additional drawback of these methods is that the transformation from visual
contents to strict semantic keywords leads to a loss of useful optical information for the
search process, because images are summarized in a few keywords and visual details are
not considered anymore. Then, users can find images related to the same category, but
the system is not aware of their specific visual arrangements.

5.2.2 Multimodal Fusion

The combination of visual features and semantic information has been approached in
some medical image retrieval tasks, such as finding useful images in academic journal
repositories [110]. These strategies combine text descriptions or image captions along
with visual characteristics to find relevant results, a procedure known as multimodal
image retrieval. Cramer and Hersh [30] demonstrate significant improvements of mul-
timodal fusion in a collection of medical images from the ImageCLEFmed challenge.
However, their strategy assumes that the user’s query is composed of example images
as well as a text description. If users only provide example images, because they do not
know precise terms or just because of any practical reason, the system does not have
any other choice rather than matching pure visual contents.

This work is focused on combining semantic terms and visual features in a fused
image representation. An important component of the proposed strategy is the ability
to use the same representation for images that do not have text annotations. In that
way, the system can handle example image queries as well as database images without
semantic metadata. In this work, we build on top of Nonnegative Matrix Factorization
algorithms recently proposed to find relationships in multimodal image collections [111].
We extend these ideas to propose a novel algorithm for fusing multimodal information in
histology image databases with an arbitrary number of terms. Up to our knowledge, our
work is the first multimodal approach specifically oriented to histology image retrieval.

Parts of this work were reported in [112], and this Chapter extends our previous work
in two ways: first, the notion of multimodal fusion by back-projection is introduced,
which allows to effectively combine visual and semantic representations for histology
image indexing. Second, a more comprehensive experimentation was carried out, using
more data and additional evaluations and discussions.
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Figure 5.1: Sample images from two histology datasets.

5.3 Histology Images

In this work, two different histology image collections were used for experimental evalu-
ation. The first data set is composed of 2,641 images extracted from an atlas of histology
for the study of the four fundamental tissues [106]. The collection includes photographs
of histology slides acquired with a digital camera coupled to a microscope, using differ-
ent magnification factors to focus important biological structures. Each of these images
was annotated by an expert, indicating the biological system and organs that can be
observed. The total number of different keywords that can be found in this data set
is 40, which were obtained after a standardization of the vocabulary used to describe
the semantic contents. The list of terms includes circulatory system, heart, lymphatic
system and thymus, among others. Usually, images have just one term attached to it,
but in several cases images can have various keywords.

The second data set is a histopathology image collection that has been used to diag-
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Figure 5.2: Overview of the proposed fused representation. From the input image to
the final fused representation, three main processes are carried out: visual indexing,
semantic embedding and multimodal fusion.

nose a special kind of skin cancer known as basal-cell carcinoma [60]. The collection is
composed of 1,502 images that were studied and annotated by a pathologist to describe
its contents, elaborating a list with 18 terms. The list of keywords includes terms like
micronodules, elastosis, and fibrosis, among others. In this data set, one image usu-
ally contains several keywords attached to it, that is, different biological structures are
exhibited in one single image.

An important difference between both collections is that the former contains images
from healthy, normal tissue slides, used to study biological structures in histology,
whereas the second data set contains pathological cases of carcinoma patients. However,
one common characteristic is that both data sets have a relatively long list of predefined
semantic terms, which includes specialized keywords relevant to image contents in each
collection. Figure 5.1 illustrates some example images from both data sets.

5.4 Multimodal Histology Image Retrieval

The search method proposed in this work is based on a multimodal representation of
images that combines visual features with semantic information. Figure 5.2 presents
an overview of the proposed approach, which is comprised of three sequential stages:
1) visual indexing, 2) semantic embedding and 3) multimodal fusion. Three image
representations are obtained throughout the process: 1) visual features, 2) semantic
annotations and 3) the proposed fused representation. The retrieval engine can be set
up to search using any of the three representations. The following subsections present
technical details about the stages, the representations and how the retrieval engine
works using each of those components.
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5.4.1 Visual Indexing

The first step toward a multimodal representation is building features for visual con-
tents. A large variety of methods have been investigated to extract and represent visual
characteristics in histology images. Be it for automated grading [43], classification [60]
or image retrieval [40], two important features are usually modeled: color and tex-
ture. Color features exploit useful information associated to staining levels, which are
natural biomarkers for pathologists. Texture features exploit regularities in biological
structures, since tissues are highly textured. In this work, a bag-of-features represen-
tation is used, following the setup proposed in[106], which models both, color features
and textures.

The bag of features representation used in this work involves the following three
main processes:

1. Local feature extraction: each image in the collection is processed to extract
a set of local features in small regions. In this work, images are down-scaled to
256 pixels in the largest dimension (height or width). Then, patches of 8 × 8
pixels are extracted in a regular grid with an overlap of 4 pixels in the vertical
and horizontal directions. Each patch contains local information of the image,
which may contain parts of biological structures, such as cells or nuclei. In each
patch, the Discrete Cosine Transform (DCT) is computed at each RGB color
channel, and the largest 21st coefficients per channel are kept as patch descriptor,
preserving the transform basis identifier. Then, the final descriptor for each patch
is a sparse vector with 63 non-zero values.

2. Dictionary construction: A dictionary of patches is built to model the distri-
bution of features that can be potentially found in images of a histology collection.
The dictionary construction is achieved using a k-means algorithm to cluster a
large sample of DCT features extracted from the collection. We set the algorithm
to find 500 clusters and the centroids of each cluster are used as codeblocks.

3. Histogram computation: The final stage of the bag-of-features is the compu-
tation of a summarized representation of features in images. This representation
is a histogram that accounts for the frequency of dictionary codeblocks inside
images. Local DCT features in one image are mapped to the nearest element
in the dictionary and the histogram is built by accumulating the occurrence of
codeblocks. This representation provides a distribution of visual patterns learned
from the whole image collection, and this property, together with the color-texture
description of local features, allows to discriminate visual contents of histology im-
ages.

Indexing images by visual content in the retrieval system means that all searchable
images in the collection, as well as all query images, are represented using the bag-of-
features histogram. Then, the retrieval system requires a similarity function to rank
images in the collection by comparing them with the features of the query. Since
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this representation is a probability distribution of visual patterns, the most natural
way to compare these features is using a similarity measure appropriate for probability
distributions.

The histogram intersection is a measure for estimating the commonalities between
two non-parametric probability distributions represented by histograms. It computes
the common area between both histograms, obtaining a maximum value when both
histograms are the same distribution and zero when there is nothing in common. The
histogram intersection is defined as follows:

k∩(x, y) =
n∑
i=1

min {xi, yi} (5.1)

where x and y are histograms and the sub-index i represents the i-th bin in each
histogram of a total of n. This similarity measure has been shown to be a valid kernel
function for machine learning applications [113], and has been successfully used in many
different computer vision tasks [114].

5.4.2 Semantic Embedding

In this work, we assume the availability of semantic annotations assigned to images in
the database, in other words, a set of images has been collected with attached keywords
describing various semantic aspects of histology slides. The purpose of using semantic
annotations in the proposed framework is to learn the relationships between visual
features and keywords, so the system can predict keywords on example images used as
queries. The goal is to make the retrieval results more accurate by representing images
using semantic terms as opposed to only visual descriptors.

The proposed strategy is based on a matrix factorization algorithm, which allows to
model factors for representing the observed data. This Chapter extends the notions of
multimodal image indexing using Nonnegative Matrix Factorization (NMF) originally
proposed in [72], by introducing the Nonnegative Semantic Embedding and demonstrat-
ing its potential to construct a more effective representation for histology images. The
following subsections present the definitions of the proposed method.

5.4.2.1 Data representation

The previous section introduced the bag-of-features representation for visual image
contents. Likewise, semantic data is herein represented as a bag-of-words following a
vector space strategy, commonly used in natural language processing [2]. First, the
dictionary of indexing terms is identified and selected from the total list of available
keywords. Then, assuming a dictionary with m terms, each image is represented as a
vector in Rm, in which each dimension accounts for the frequency of the corresponding
semantic term if it is found attached to the image. Using this representation, each image
can have as many semantic terms assigned as needed. Also, the size of the semantic
dictionary is not limited and can be easily extended.
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Since both, visual and semantic representations are vectors, a database of images
can be represented with two matrices by stacking the corresponding vectors of visual
and semantic features as columns of the matrices. The notation used in the following
sections sets the matrix of visual data for a collection of l images as Xv ∈ Rn×l, where
n is the number of visual patterns in the bag of features representations. The matrix of
semantic terms for the same collection is Xs ∈ Rm×l, with m the number of keywords
in the semantic dictionary.

5.4.2.2 Nonnegative Matrix Factorization

Matrix decompositions are useful to extract structural information from a collection
of data samples. For an input matrix X ∈ Rn×l, containing l data samples with n
features in its column vectors, Nonnegative Matrix Factorization (NMF) finds a low
rank approximation of the data using non-negativity constraints:

X ≈ WH

W,H ≥ 0

whereW ∈ Rn×l is the basis1 of the vector space in which the data will be represented
and H ∈ Rr×l is the new data representation using r factors.

NMF finds the matrices W and H by solving the associated optimization problem
that corresponds to minimizing the reconstruction error of the original data. In this
work, the Lee and Seung’s approach [95] is adopted to obtain the factorization, using
the divergence criterion as objective function:

D(X|WH) =
∑
ij

(
Xijlog

Xij

(WH)ij
−Xij + (WH)ij

)
(5.2)

which is zero when X = WH. This function may be regarded as the Kullback-
Leibler Divergence (KLDiv) between the two matrices as long as both are normalized
in such a way that the sum of their values is equal to one. Then, the matrices may be
considered to be probability distributions. Following this approach, an iterative algo-
rithm which alternates the optimization of W and H uses the following multiplicative
updating rules:

Wia = Wia

∑
µHaµXiµ/ (WH)iµ∑

vHav

(5.3)

Haµ = Haµ

∑
iWiaXiµ/ (WH)iµ∑

kWka

(5.4)

These rules are guaranteed to decrease the objective function and find at least a
locally optimal solution to the factorization problem [90]. The NMF algorithm has

1The terms “basis” is slightly abusive here, since the vectors in the matrix W are not necessarily
linearly independent and the set of vectors may be redundant.
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been proposed for multimodal image indexing by taking the matrices of visual data
and semantic annotations as input, following two strategies [72]: 1.) NMF-mixed,
which concatenates the two inputs in a unique matrix and 2.) NMF-asymmetric, which
decomposes the semantic data first and adapts the visual data afterward. The main
goal of either algorithm is to build a common latent factors representation for both data
modalities and then employ it as an effective multimodal index.

The latent factors representation is achieved by setting the rank r of the decompo-
sition to some appropriate size, which simply amounts for the number of latent factors.
Therefore, the matrix H determines the latent encoding for every image, and the matrix
W provides the transformation from the space of original features to the latent factor
representation.

One of the reasons NMF has had success in modeling data representations is because
its ability to find parts of objects. When compared to standard latent semantic indexing
or singular value decomposition (SVD), which had orthonormal restrictions and no
constraints in sign, NMF gives more interpretable basis vectors [95] and finds better
structural patterns in different collections of data [104]. This usually results in an
improved performance in the underlying computational task.

5.4.2.3 Learning the Nonnegative Semantic Embedding

The core idea of the proposed semantic embedding is to find a direct relationship be-
tween visual features and semantic terms instead of modeling them through a latent
factor space. The problem is formulated as finding an embedding of semantic terms
that allows to reconstruct the visual features of observed images, using a linear trans-
formation with non-negativity constraints, as follows:

Xv ≈ WXs (5.5)

W ≥ 0

where W ∈ Rn×m is a matrix that approximately embeds visual features in the
space of semantic terms. Instead of extracting a latent factors structure from the data,
the proposed strategy fixes the latent encoding (the matrix H in NMF) as the known
semantic representation for images in the collection, Xs. This can be understood as
requiring the latent factors to match exactly the semantic representation of images,
resulting in a scheme for learning the structure of visual features that correlate with
keywords.

For this problem, the divergence criterion described in Equation 5.2 is adopted as
well. In this case, the optimization problem is convex and can be solved efficiently
following gradient descent or interior point strategies. In this work, the matrix W is
learned with the first multiplicative updating rule of NMF in Equation 5.3, since this
is a rescaled gradient descent approach that uses a data-dependent step size. Notice
that the alternating optimization is no longer needed, since the second matrix has been
fixed in this algorithm. Then, the solution for NSE is found by iteratively running only
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the updating rule for W for a number of iterations or until certain error reduction is
reached.

The matrix W is learned using a training data set with available annotations. Be
it for those images in the collection that do not have any attached keyword, for new
images added to the collection, or for example images used as queries, the learned matrix
enables the system to represent any of those using semantic terms as well, since the
relationships between visual features and keywords has been extracted from training
data.

5.4.2.4 Applying the Nonnegative Semantic Embedding to Unannotated
Images

To recover the semantic information of an image without keywords, the following equa-
tion has to be solved for xs:

xv ≈ Wxs (5.6)

xs ≥ 0

where xv is the observed vector of visual features and W is the semantic embed-
ding. The non-negativity restriction follows the nature of the semantic data, which
is the probability distribution of keywords associated to one image. Again, this prob-
lem is formulated as minimizing the divergence between the visual data and its recon-
struction, and regarding the non-negativity restriction, the solution can be efficiently
approximated using the second updating rule of Equation 5.4 in an iterative fashion.

By solving for xs, the structure of a semantic representation for new images can be
predicted. So, the system can complete missing annotations for images without any
keyword in the database, and also, can represent visual queries with semantic terms for
matching them with images in the database. During search time, the ranking function
for a semantic search is based on the cosine similarity, defined as follows:

kcos(x, y) =
xyT

‖x‖ ‖y‖

where x and y are vectors in the semantic space. This similarity measure is com-
monly used in text information retrieval and natural language processing [2].

5.4.3 Fusing Visual and Semantic Contents

Two strategies for image representation have been presented in the previous sections.
The first strategy is entirely based on visual features, to match for visually similar
images. The second strategy is based on semantic data and estimations of potential
keywords for images without annotations. In this section we introduce the third strat-
egy, based on multimodal fusion. The main goal of this scheme is to combine visual
features and semantic data together in the same image representation to exploit the
best properties from each data modality.
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5.4.3.1 Fusion by back-projection

The proposed fusion strategy is based on projecting semantic data to the visual feature
space and then making a convex combination of both, visual and semantic representa-
tions. It can be understood as an early fusion strategy, since the representations are
merged before its subsequent use.

The proposed approach follows the steps illustrated in Figure 5.2. So, assuming a
histogram of visual features xv and a vector of semantic data xs, the fusion procedure
generates a new image representation defined as:

xf := λWxs + (1− λ)xv (5.7)

where xf ∈ Rn is the vector of fused features in the visual space and λ is the param-
eter of the convex combination that controls the relative importance of data modalities.
This fusion approach takes the semantic representation of images and projects it back
to the visual space using the reconstruction formula:

x̂v := Wxs (5.8)

This back-projection is a linear combination of the column vectors in W using the
semantic annotations as weights. In that way, the reconstructed vector x̂v represents the
set of visual features that an image should have according to the learned multimodal
relationships in the image collection. Therefore, x̂v and xv highlight different visual
structures of the same image, since x̂v is a semantic approximation of the observed
visual features, according to Equations 5.6 and 5.8.

5.4.3.2 Controlling modality importance

The parameter λ in the convex combination of the fusion strategy (Eq. 5.7) allows to
control the importance of each data modality. The problem of assigning more weight
to one or the other modality mainly depends on the performance that each modality
offers to solve queries. More specifically, it depends on how faithfully one modality
represents the true contents of an image. On the one hand, visual features may be
inaccurate to represent high level semantic concepts, but good at representing low level
visual arrangements. On the other hand, the semantic representation may be noisy or
incomplete because of human errors or prediction discrepancies.

Now, the parameter λ is split in two different parameters to consider two kind of
images: database images and query images. For both images, the semantic keywords
are predicted by the learned NSE model. So, the prediction may be more accurate for
images in the database since the model was learned using that data. For these images,
the parameter λ will be called α throughout this Chapter.

On the other hand, query images will require a different parameter tuning since
there is some uncertainty in the quality of their semantic predictions, and so, the original
visual features may be more faithful to the true content. For these images, the parameter
λ will be called β. This distinction is made to highlight that modality importance
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depends on how much we trust the available modalities, and in the experiments run in
this Chapter, it has been associated to images in the database and query images.

5.4.3.3 Searching in the fused space

Notice that the resulting fused representation lies in the visual feature space. So, in
order to exploit the structure of the resulting representation, which inherits the structure
of visual features, the histogram intersection defined in Equation 5.1 is used as ranking
function for search.

5.5 Experiments and Results

In order to evaluate the proposed method we conducted retrieval experiments in both
data sets under the query-by-example paradigm. The main goal is to evaluate the
hypothesis that a semantically enriched representation of images, using the proposed
semantic embedding and fusion approach, improves the retrieval performance.

5.5.1 Experimental setup

We performed automated experiments by sending a query to the system and evaluating
the relevance of the results. A ranked image in the results list is considered relevant if
it shares at least one keyword with the query. For this experiment, the evaluation was
done using information retrieval measures, including Mean Average Precision (MAP),
recall-precision plots and precision at the first 10 results (P@10 or early precision).

5.5.1.1 Queries

For both datasets, a set of randomly sampled query images was used for test, and the
remaining images were used for training. In the histology atlas data set, 100 images were
used as queries, and in the basal-cell carcinoma data set, a 30% of all images were used as
queries, i.e., 301 query images [34]. In all our experiments the semantic data associated
to queries is not used during the search phase, but only for evaluation purposes. Our
goal is to simulate visual queries using example images without associated metadata.

5.5.1.2 Data representation

Images in both datasets are represented using the bag-of-features approach with a
dictionary of 500 visual terms. For semantic data, a binary vector of m dimensions
represents each document, where m = 40 in the histology atlas data set, and m = 18
in the basal-cell carcinoma data set. These are the total number of semantic keywords
in each collection.
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Table 5.1: Retrieval performance using three different semantic indexing methods: Non-
negative Semantic Embedding (NSE), NMF-Mixed [72] and NMF-Asymmetric [72].
NMF-based methods indicate the number of Latent Factors (LF) used to achieve that
performance.

Histology Atlas data set
Method P@10 MAP

Visual matching (baseline) 0.761 0.245
NSE 0.262 0.270

NMF-Mixed (300 LF) 0.252 0.201
NMF-Asymmetric (20 LF) 0.208 0.235

Basal-cell Carcinoma data set
Method P@10 MAP

Visual matching (baseline) 0.362 0.212
NSE 0.276 0.203

NMF-Mixed (400 LF) 0.198 0.182
NMF-Asymmetric (20 LF) 0.226 0.181

5.5.2 Semantic Indexing

This paper proposes a novel method for semantic indexing, NSE, as well as a method
for multimodal fusion, NSE-BP. The goal of this section is to evaluate the former. The
NSE extends the ideas of multimodal indexing proposed in [72], so this Section compares
performance with NMF-Mixed and NMF-Asymmetric algorithms for semantic indexing.

The main difference of NSE with respect to NMF-Mixed and NMF-Asymmetric is
that the latter strategies model relationships between visual and semantic data through
latent factors, whereas the former does it directly. Then, we run the NMF-based al-
gorithms to index the two histology image data sets in the latent factors space, using
several sizes of the latent space. Table 5.2 presents the results of this experiments re-
porting the best performance obtained with each method. These results show that NSE
produces a better performance compared to NMF-Mixed and NMF-Asymmetric, both,
for P@10 and MAP. Notice also that none of the semantic indexing methods improve
early precision with respect to the visual matching baseline.

The Table reports the best performance for NMF-Mixed using 300 latent factors
on the histology atlas data set and 400 latent factors on the basal-cell carcinoma data
set. However, the NMF-Mixed algorithm, which performs a factorization on the joint
matrix of visual and semantic data, does not improve upon the baseline in any of the
histology data sets. The NMF-Asymmetric algorithm provides the best performance
using just 20 latent factors, and is not able to improve performance either.

The NMF-based multimodal indexing algorithms fail to produce a good semantic
representation for images in the histology data sets mainly because latent factors do not
help to model the structure of the semantic space for these vocabularies. Latent factors
are very useful to model patterns in unstructured text data, such as the paragraphs
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surrounding images in web pages, which has been the proposed evaluation setup for
NMF-Mixed and NMF-Asymmetric [72]. However, in the histology image data sets
used in this work, the vocabularies of semantic data are specialized keywords in a
well defined categorical structure that is useful to identify specific visual structures in
histology images. Thus, the NSE algorithm does a better job at finding the relationships
between visual features and semantic keywords directly instead of using intermediate
latent factors.

Figure 5.3 illustrates some labels recovered from the semantic representation gen-
erated by NSE for several histology images. An experiment was conducted on both
data sets to embed images in the semantic space and then, applying a threshold on the
predicted semantic vector for identifying coordinates with high response. Since these
coordinates correspond to keywords in the semantic vocabulary for each data set, these
values may be interpreted as a probability 2 of the label being attached to the image.
Even though the core of our approach is not a discriminative model as many previous
approaches are, predictions work very well in a number of cases. These predictions are
the ones that the proposed fusion strategy incorporates in the visual image representa-
tion. This result also demonstrate the ability of the proposed algorithm to effectively
find relationships between visual patterns and semantic keywords.

5.5.3 Setting Parameters for NSE-BP

NSE-BP fuses visual and semantic contents by back-projecting images represented in
the semantic space to the visual space. Recall from Section 5.4.3 that this fusion
process requires to set a couple of parameters to determine the relative importance of
each data modality. In this Section we discuss the impact of the two parameters α
and β, which determine the weight of the visual data, for database images and query
images, respectively. Since the fusion is achieved following a convex combination of
both data modalities, the weight for semantic data is the complement of the value
assigned to the visual data. By varying these two parameters, a different retrieval
performance is obtained. In this setup, we are interested in optimizing the values of α
and β to maximize simultaneously general retrieval precision (MAP) and early precision
(P@10). This can be understood as a multi-objective optimization problem.

Since the number of parameters is just two, an exhaustive search was run varying α
and β using a step of 0.1 in the interval [0.0, 1.0]. For each configuration, an evaluation
of the resulting fused representation was made to measure MAP and P@10. The results
for both data sets are presented in Figure 5.4. Points in the plot represent (α, β) pairs
and their position in the Cartesian plane reveals the obtained performance. The best
solutions lie in the Pareto frontier which is shown as a black line in the plots. Note that
the distribution of points for each data set looks different and so its Pareto frontier. The

2Using an appropriate normalization.
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(a) Histology atlas data set.
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(b) Basal-Cell carcinoma data set

Figure 5.3: Example images with original keywords and predictions produced by NSE.
Top row presents images, middle row presents original keywords, and bottom row
presents predicted keywords. Predictions are reported with the score obtained from
the projection, and they are in green text if correctly assigned and in red text other-
wise.
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Figure 5.4: Performance on the retrieval task using different values of α and β. The
x axis is MAP and the y axis is P@10. Points in the plot are (α, β) pairs. Optimal
configurations are on the Pareto frontier.
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histology atlas data set has a wider optimal frontier with many parameter configurations
providing a good performance trade-off, compared to the basal-cell carcinoma data set
that has a narrower solution.

Two interesting configurations are highlighted in blue and red, which correspond to
α = β = 1.0 and α = β = 0.0, respectively. When the parameters are set to 1.0 the
search process is configured to use only visual information, whereas with 0.0, it uses
only semantic information. Notice that both configurations lie in opposite sides of the
plot unveiling the trade-off in performance between both data modalities. The blue
point (a visual setup) provides a low MAP value with relatively high early precision,
on the other hand, the red point (a semantic setup) provides high MAP performance
but may decrease P@10 (early precision).

Some points in the Pareto frontier are labeled with the corresponding α and β
values to illustrate good performing configurations. In both data sets, the solutions in
the frontier tend to have a higher value for β with respect to α. This shows that query
images require a slightly higher weight for the visual modality and database images
require a slightly higher weight for the semantic modality. These findings support the
hypothesis that a good retrieval performance is achieved giving more importance to that
modality that we can trust better, which is the visual data for query images because it
is the observed data modality, while the semantic one is predicted by the model. On
the other hand, for database images we can rely more on the semantic representation
of these images since they have been used for training the model.

An interesting result is also illustrated in the plots: purple points correspond to
the performance of the semantic search in the semantic space, as opposed to the red
point which is the performance of semantic search in the visual space, i.e., after a back-
projection of the semantic data has taken place (see Equations 5.7 and 5.8). This result
shows that just by back-projecting semantic data to the visual space, we are recovering
important visual information that is exploited by the histogram intersection similarity
during ranking, providing a significant boost in performance. This also provides evi-
dence that focusing only on semantic data for histology image search leads to loosing
important visual information and results in degraded performance.

5.5.4 Retrieval Experiments

The following experiments aim to compare the performance of three search strategies:
visual indexing (Visual), semantic indexing (NSE) and multimodal indexing using back-
projection (NSE-BP), as was described in Section 5.4. Table 5.2 presents MAP and
P@10 scores measured on the two evaluated data sets. These results show that the
fused representation performs better than the visual and semantic retrieval strategies.

Consider the visual retrieval strategy as the baseline method in our setup, since
no learning is employed to search images. Then, the semantic retrieval obtained by
applying NSE to the database and query images improves in terms of MAP with respect
to the baseline. Notice, however, that early precision as is measured by P@10, has
decreased. This result indicates that the semantic search is able to find all relevant
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Table 5.2: Retrieval performance for visual (Visual Matching), semantic (NSE) and
fused (NSE-BP) representations.

Histology atlas data set
Method P@10 MAP Improvement (MAP)

Visual Matching 0.7610 0.2451 N/A
Semantic: NSE 0.2620 0.2704 +10.32%

Fusion: NSE-BP (λ = 0.6 β = 0.8 ) 0.7590 0.3226 +31.61%

Basal-cell carcinoma data set
Method P@10 MAP Improvement (MAP)

Visual Matching 0.3615 0.2123 N/A
Semantic: NSE 0.2757 0.2032 -4.28%

Fusion: NSE-BP (λ = 0.1 β = 0.2) 0.4346 0.3530 +66.27%

images in less result pages, but sacrificing the quality of the results in the very first
page. The issue can be observed in both histology data sets. This finding supports
the idea that summarizing images in a few keywords may lead to loss of discrimination
power between images, as visual details are not available anymore. Actually, the good
performance on early precision showed by the visual retrieval strategy suggests that
very similar images with respect to only visual contents are highly likely to be relevant
for users.

The multimodal indexing strategy (NSE-BP) produces the best performance in gen-
eral search precision (MAP) and very competitive early precision (P@10) in the histol-
ogy atlas data set. In the basal cell carcinoma data set, multimodal fusion outperforms
the other methods regarding both criteria. Table 5.2 also presents a relative improve-
ment in MAP of the proposed methods with respect the visual baseline, indicating
important gains in the precision of the retrieved results. To determine whether these
improvements are statistically significant, a hypothesis testing using analysis of variance
(ANOVA) was conducted for both performance measures, P@10 and MAP. Table 5.3
summarizes these findings.

In general, the ANOVA tests, conducted with a significance value α = 5%, indicated
that there is significant difference between the performance scores obtained by the
three models. A closer look between the significance of paired models reveals other
interesting results. In both data sets, the statistical difference between visual matching
(Visual) and semantic search (NSE) is not significant in terms of MAP. This means,
that no improvement or loss in general precision is obtained when using either method.
However, the tests indicate that there is a significant difference between Visual and
NSE in terms of P@10, i.e., in early precision. And since the NSE produces a loss in
early precision according to Table 5.2, we conclude that the loss is significant.

Comparing the performance of Visual Matching (Visual) and the multimodal fused
search (NSE-BP), the tests indicate no significant difference between them in terms
of P@10 and a significant difference in terms of MAP. This shows that the proposed
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Table 5.3: Results of the ANOVA test for performance measures obtained by the three
search methods, on both data sets. Statistical differences in MAP and P@10 are re-
ported, and methods are sorted by their corresponding performance from best to worse.
Tests were performed with a significance value α = 5%.

Histology Atlas data set
General Precision Early Precision

Method MAP Diff.? P-value Method P@10 Diff.? P-value
1. Fusion 0.3226 } Yes 0.0422

1. Visual 0.7610 } No 0.9626
2. Semantic 0.2704 2. Fusion 0.7590

} No 0.2550 } Yes 4.7e-20
3. Visual 0.2451 3. Semantic 0.2620

Basal-cell Carcinoma data set
General Precision Early Precision

Method MAP Diff.? P-value Method P@10 Diff.? P-value
1. Fusion 0.3530 } Yes 3.0e-12

1. Fusion 0.4346 } Yes 0.0133
2. Visual 0.2123 2. Visual 0.3615

} No 0.4571 } Yes 2.0e-05
3. Semantic 0.2032 3. Semantic 0.2757

NSE-BP strategy outperforms the general precision of the visual matching strategy
without losses in early precision. A final comparison between the NSE and NSE-BP also
indicates significant differences between their performances, suggesting that multimodal
fusion also improves with respect to a search method based on keywords only.

This demonstrates the ability of the proposed fusion strategy to harness visual
and semantic information together to build an improved representation for images.
The resulting representation is able to give information about visual details that can
match other images as well as general semantic concepts associated to them. Figure
5.5 presents the recall-precision graphs for these retrieval experiments, which allow to
observe the relative improvements from another perspective. The Figure shows how
the performance of the visual and semantic search overlap at some point during the
retrieval process, due to the trade-off in performance between both modalities. Instead,
the multimodal indexing produce consistently better results.

Figure 5.6 present example retrieval results using the three evaluated methods on
the histology atlas data set and the carcinoma data set, respectively. A query image
is presented along with the top 4 results returned by each evaluated method. Result
images with red frame are non-relevant images whereas images with blue frame are rel-
evant results for the query. Relevant images retrieved by the visual indexing scheme are
in general very alike to the query, and share many structural commonalities. However,
strong visual matching does not always lead to correct answers for users.

The semantic indexing strategy finds relevant images that do not necessarily match
the example visually, but share common keywords. Notice that this strategy does not
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Figure 5.5: Recall-Precision Graphs for retrieval experiments to compare the perfor-
mance of the three search methods: Visual Matching, Semantic Indexing and Fused
Indexing.
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improve upon the baseline in the top 4 results, providing more evidence that translating
images to keywords is a hard task that may lead to information loss. The multimodal
indexing strategy produces a more balanced response with relevant images that may
partially match visual structures and also share similar semantics.

The strength of the multimodal fusion strategy lies in a very important property of
the proposed model: the reconstruction principle. The proposed semantic embedding is
a matrix factorization algorithm that aims to reconstruct the matrix of visual data from
a set of keywords, in other words, images are embedded in a semantic space indexed
by keywords. The transformation function between the visual and semantic spaces is a
matrix whose columns are prototypical images associated to keywords. Thus, to recon-
struct the feature vector of an image, a linear combination of these prototypical images
is achieved using as weights the values of associated keywords. This reconstruction is of
course a rough approximation to the real observed visual features, however, it highlights
those features that images with the same keywords should have.

The back-projection step during the multimodal fusion takes advantage of this prin-
ciple and transforms predicted keywords back to the visual space. This reconstruction
works as a semantic smoothing function for the visual data when the fusion takes place.
Then, matching smoothed visual features can be successfully achieved by using again
the histogram intersection similarity to harness the specific structure of non-parametric
probability distribution of visual features.

5.6 Discussions

5.6.1 Other Multimodal Fusion Approaches

The proposed framework provides a principled tool for fusion of visual contents and
semantic resources in histology images. The method models cross-modal relationships
through a nonnegative data embedding which has the interesting property of making
the two modalities exchangeable from one space to another. This property may be
understood as a translation scheme between two languages that express the same idea
in different ways. One of the languages is visual, which communicates optical details
found in images, and the other language is semantic, which represents high-level inter-
pretations of images. These two views of the same data are complementary and are
fused to build a better image representation.

This paper presents the first work that approaches the problem of histology image
retrieval following a multimodal setup. Previous works for semantic retrieval of histol-
ogy images are mainly oriented to train classifiers for recognizing biological structures
in images [40, 108, 48]. That strategy can be understood as a translation from the
visual space to the semantic space without the possibility of a translation in the op-
posite way, and thus, without a clear fusion procedure. Experimental results in this
work have shown that focusing on semantic data only may lead to losses of information
and performance for image search. Multimodal fusion strategies have been used for
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(a) Example queries on the histology atlas data set

(b) Example queries on the basal-cell carcinoma data set

Figure 5.6: Illustration of search results using the three search methods: Visual Match-
ing (Visual), Semantic Indexing (NSE) and Fused Indexing (NSE-BP). The first row of
each example presents the query image. The next images are the top 4 results, which
are framed in blue if the image is relevant to the query and in red if the result is not
relevant.
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other medical image modalities, including late fusion of similarity measures [115, 110]
and fusion of classifier decisions [116, 30]. However, these approaches are not oriented
to model the relationships between data modalities as our approach does, and actually
assume the availability of visual and semantic data for all images, either in the database
or queries, which is not always a realistic scenario.

Multimodal fusion of visual and semantic data has also been recently proposed by
several authors [72, 117, 118] for generic web photo collections, whose methodologies
model the problem using latent factors to fuse both contents. Our work differs from
theirs in the sense that we opted to model cross-modal relationships directly as opposed
to through latent factors, which makes a better job for clean and structured vocabularies
such as those available in medical image collections. Also, in our model the multimodal
fusion is explicitly achieved in the visual space, which contrast with an implicit fusion
done in a latent space.

5.6.2 Why Multimodal Fusion Works

The main reason for studying the fusion of visual and semantic data is because they are
complementary sources of information: while visual data tends to be ambiguous, seman-
tic data tends to be very specific; and while visual data provides detailed appearance
description, semantic data gives no clues on how an image looks like. So, depending on
the fusion strategy, multimodal relationships become more useful for making decisions
on data. In the proposed strategy, there are two important properties that make it
useful for histology image indexing: global vs. local structure and a query expansion
effect.

5.6.2.1 Global vs. Local Collection Structure

The proposed framework starts by learning the relationships between visual features
and semantic data, which later becomes a model for predicting the structure of the
complementary modality when only one of the two is observed. On the one hand,
for observed images, this model can approximately tell which labels an image should
have. On the other hand, for an observed semantic keyword, the model can tell which
visual features are more likely associated with that keyword. Therefore, the model
contains global knowledge extracted from the training image collection, which is mainly
associated to semantic data.

The fusion process also includes information observed only for each specific image,
which provides particular hints that apply for one image and possibly some others lo-
cally similar to it. This local information is obtained from the visual similarity measure,
which discriminates similar appearances in the image collection. Thus, during the fu-
sion process, global knowledge about the multimodal structure of the image collection
is recovered for each image and is incorporated in its representation together with the
original visual features. The beneficial outcome of incorporating global and local infor-
mation for making semantic decisions has also been observed in recommender systems
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[119].

5.6.2.2 Query Expansion Effect

Our setup for image retrieval considers example images as queries. Since the visual
content representation used in this work is based on a bag of features, an analogy with
text vocabularies may help to explain the effects of multimodal fusion.

Visual features in the dictionary of codeblocks may be understood as visual words
representing specific visual arrangements or configurations. One specific pattern is a
low-level word that may have different meanings from a high-level or semantic per-
spective. This problem is known in natural language processing as synonymy and can
reduce the ability of an information retrieval system to retrieve all relevant documents
[111]. Also, different visual words may be related to the same high-level meaning, which
is known as polysemy, and usually decreases retrieval precision, i.e., the ability of the
system to retrieve only relevant documents [111].

Experimental results in Section 5.5.4 are consistent with these definitions, since a
visual synonymy effect is observed when the retrieval system is based on visual features
only (the lowest MAP score). On the other hand, a visual polysemy effect is observed
when using back-projected semantic data, with a higher MAP score but lower early
precision (P@10). Thus, the back-projection of semantic data is able to disambiguate
visual words by introducing other visual words semantically correlated to the query, and
so correcting the synonymy effect. Here is when the visual query expansion happens.
Besides, when both modalities are combined, the polysemy effect can also be corrected,
if appropriate weights are assigned.

5.6.3 On Scaling Up to Large Semantic Vocabularies

Previous works on histology image retrieval are mainly based on classifiers trained
to recognize several biological structures [40, 109, 60, 48, 108, 34]. To transfer these
methodologies to real world system implementations, a significant tuning up effort would
be required, since each classifier may have its own optimal configuration. The proposed
method is a more principled and unified approach that integrates all semantic labels
together for learning multimodal relationships. This makes an implementation simpler
and ready to scale up for new keywords, as long as the corresponding example images
are available.

We reproduced the experimental setup of [34] on the basal-cell carcinoma data set,
and obtained a MAP score of 0.162 using our approach. This contrast to a MAP score
of 0.170 reported by them, using SVM classifiers with histogram intersection kernels
and optimally combined features. Our approach produces a very competitive result
with a simpler strategy, and the difference in performance might be related to different
aspects, such as the use of multiple descriptors as well as optimized parameters in that
work. Instead of optimally combining multiple features for each of the 18 keywords,
and then training and tuning 18 different classifiers, the proposed method makes a
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single training step for learning multimodal relationships with no parameters. Fusion
parameters are required later during the search phase, which can be tuned up online
even while the system is already running.

5.7 Conclusions

This paper presents a novel strategy for multimodal fusion on histology image collec-
tions, which combines visual features and semantic data following a principled approach.
This strategy comprises three main components, including a bag-of-features represen-
tation for visual contents, a semantic embedding algorithm to model the relationships
between visual features and semantic metadata, and a scheme for predicting semantic
data and combining it with visual features. The proposed algorithms for semantic em-
bedding and fusion are based on Nonnegative Matrix Factorization which is a useful
tool for modeling data patterns.

Experimental results show a consistent good performance in different evaluations ex-
plored in this paper, including retrieval precision with varying parameters, comparisons
of retrieval strategies and illustrations of practical examples. This work has shown that
representing images with semantic data provides only part of the information required
to retrieve relevant images. In general, the proposed fused representation for histol-
ogy images has demonstrated to be effective for correctly matching images under the
query by example paradigm. Besides an improved performance, our approach results
in a simple strategy to simultaneously learn from many semantic terms, which may be
available for histology image collections.

Future research directions include the evaluations of these algorithms for large scale
learning and indexing, considering image collections with more images and more se-
mantic terms, both, for histology as well as other medical imaging modalities.



Chapter 6

Large Scale Multimodal Image
Indexing via Online Matrix
Factorization

This work is prepared to be submitted to the Journal of Multimedia Infor-
mation Retrieval.

This Chapter addresses the problem of indexing a large set of images that could have
structured or unstructured annotations. The main goal is to use the annotations to
enrich the image content representation to improve the performance of content-based
image search systems. The proposed method builds a multimodal semantic represen-
tation that fuses both the visual and textual content of images. This is accomplished
by an online matrix factorization algorithm that finds a set of latent factors to encode
the visual and textual content of the image collection. This semantic representation
can be used to search the collection using a query-by-example strategy and to assign
annotations to new images without keywords. The most remarkable characteristic of
the proposed method is its formulation as an online learning algorithm, which is highly
efficient in the use of memory resources and converges very quickly running in a single
CPU. This allows to scale up the applicability of multimodal analysis to very large im-
age collections. Experimental results on three different data sets show that this strategy
produces improved retrieval performance with low computational effort.

6.1 Introduction

Image retrieval systems have became more pervasive during the last years, demonstrat-
ing applications in many different contexts, such as web image search, medical image
analysis, mobile applications, and scientific imaging, among others [10]. Web users find
images by typing some keywords on a search engine, while physicians and mobile users

101
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provide image examples of what they are searching for. So, be it for informal activ-
ities or serious decisions, image retrieval systems have the potential to support many
processes involving visual signals.

Being able to retrieve images automatically allows users to quickly browse image
collections and make informed decisions relevant to their specific task. Without such a
tool, finding images would be infeasible since modern image collections are very large
and unstructured. The main challenge when designing and building image search sys-
tems is to ensure that the visual contents of the results are semantically valid for the
user’s query. Then, if a user is searching for images of dogs, the system should filter
out images without dogs, and also, should not introduce images with cats even if they
look very similar.

For a search engine accepting example images as queries, the content-based approach
has been studied during the last two decades [9, 26] resulting in important progress.
Very efficient systems can be built to find images using visual features in quite large
collections [120, 121]. The accuracy of these systems has raised for some specific tasks,
being the most successful the detection of near-duplicate images. However, it is well
known that matching visual features alone may lead to results with lack of semantic
validity [11].

To overcome this problem, the use of semantic resources has been introduced during
the indexing stage of images, using two fundamentally different strategies: automatic
image annotation [13] and multimodal indexing [25]. The first strategy aims to learn
classification functions that evaluate image contents and automatically generate labels
for images. The second strategy intents to build a representation that incorporates
both, visual and semantic information about images. The main difference between
these strategies is that the former requires manually labeled data whereas the latter
only requires unstructured attached texts.

The purpose of multimodal image indexing is to generate a data-driven image rep-
resentation, which simultaneously incorporates visual information as well as potential
semantic descriptions. The potential source of semantic information for images can be
easily found in different collections, including images from books and scholarly arti-
cles as well as web images. So, instead of requiring human intervention to define and
assign labels for images, an algorithm is designed to automatically discover image cate-
gories from visual features and text data, and incorporate that information in the image
signature.

This paper proposes a multimodal matrix factorization algorithm, which takes as
input visual and text features from a collection of images and produces a latent factor
representation. The resulting representation is used as indexing structure for image
search under the query-by-example paradigm, i.e., users send example pictures to re-
trieve relevant ones from the database. The proposed approach focuses on learning
a semantic representation for images, following an unsupervised, data-driven strategy
instead of learning from labels or predefined categories. This framework can handle
images without text annotations using a projection function to the latent factor space,
which may be understood as a function that implicitly completes text annotations for
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these images.
The design of the algorithm has been inspired by recent theoretical works on large

scale learning, which suggest that the main bottleneck for mining modern collections of
data is computing time rather than the number of samples [122]. Then, the proposed
factorization algorithm has been formulated as an online learning process, which allows
to scale up its applicability to data collections with a vast amount of examples. Exper-
imental evidence shows fast convergence rates, allowing to obtain useful models with a
single pass over the training data and little memory requirements.

In addition, results demonstrate the effectiveness of the proposed algorithm on three
different benchmarks for image retrieval, achieving improved performances with min-
imum computational effort. This is a very remarkable achievement, which makes the
proposed strategy applicable for real world systems based on large image collections.
Up to our knowledge, this work presents the first Online algorithm for Multimodal
Matrix Factorization, which we call OMMF throughout this paper.

The structure of the paper is as follows: the related work is discussed in Section 2.
Section 3 presents the formulation of the proposed algorithm and its extensions. Section
4 reports experimental evaluations and results. Discussions are presented in Section 5
and Section 6 present concluding remarks.

6.2 Previous Works

In this paper, multimodal learning is considered as the problem of finding or discover-
ing in an automatic or unsupervised way, the relationships between visual features on
images, and text keywords attached to them. Then, the learned relationships are used
for organizing an image database by indexing images with or without text descriptions.
Under this definition, multimodal strategies that do not learn the relationships between
these two data modalities are not directly related to this work. For a comprehensive
survey of multimodal strategies in multimedia applications, the reader can refer to [25].
This Section reviews research works of multimodal learning methods oriented to model
image-text relationships, as well as potential computational strategies to scale these
models to large collections of data.

6.2.1 Learning Multimodal Relationships

One of the earlier attempts to modelling the relationships between images and words
is the seminal work of Barnard et al. [79], which introduced the multimodal Latent
Dirichlet Allocation (mmLDA) algorithm to learn the joint distribution of image regions
and words. Several subsequent works have proposed related probabilistic algorithms to
approach this problem, including multilayer Probabilistic Latent Semantic Analysis
[123], and topic regression multimodal LDA [124].

The core concept underneath all these methods is to model latent variables for
discovering the hidden structure of the data, using different prior distributions and
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different dependencies between variables. And that idea has shown to be a powerful
tool for learning multimodal relationships. However, the main bottleneck of all these
models is their computational cost, which make them difficult to implement and scale
for large image collections.

Matrix factorization algorithms have also been proposed for modelling latent struc-
tures, and have been used for learning multimodal interactions. For instance, Chandrika
and Jawahar [31] evaluated a multimodal Latent Semantic Indexing (mmLSI) algo-
rithm, based on Singular Value Decomposition (SVD) along with mmPLSA, obtaining
improved results with both algorithms.

Several algorithms for learning multimodal relationships using Nonnegative Matrix
Factorization (NMF) have been recently proposed by Caicedo et al. [72, 125] and
Akata et al. [117]. These algorithms, the asymmetric NMF (aNMF) and the multi-
modal NMF (mNMF), were proposed simultaneously in independent works, and share
a similar structure. One of their main differences is the underlying cost function that
each algorithm optimizes, the former uses NMF under the Kullback Leibler Divergence
(NMF-KLDiv) and the latter uses NMF under the Frobenius norm.

NMF-KLDiv has been demonstrated to be equivalent to the PLSA algorithm since
they optimize the same objective function [105]. This sets interesting theoretical insights
to model matrix decompositions for learning latent factors. However, even though
matrix factorization can provide an alternative framework for multimodal learning,
these algorithms still require significant computational resources for large scale learning.

6.2.2 Large Scale Multimodal Learning

The main drawback of current multimodal learning strategies is that the associated
algorithms are memory and computation intensive [31], which makes it difficult to use
in a large scale setup. For instance, the work of Romberg et al. [118] aims to build
a multimodal index for a collection of 10 million Flickr images using a PLSA-based
algorithm. However, in their experimental setup, they only could apply the learning
algorithm to a small sample of 10,000 images, losing the potential of such a vast amount
of data.

Recent works investigate the extent to which probabilistic models can be parallelized
efficiently, overcoming underlying problems such as sharing data across workers and
other memory restrictions [126]. Similar approaches have been proposed for paralleliza-
tion of matrix factorization algorithms [127, 89] for web scale collections. However, it
still requires large computational resources dedicated to decompose big matrices. More
efficient strategies can be formulated to exploit the structure of matrix decompositions,
such as the one proposed in this article. Besides, generic distributed matrix factoriza-
tion algorithms are not applicable for a multimodal learning setup, which has two input
matrices instead of one.

A different approach is presented by Mairal et al. [128] who proposed an online
algorithm for sparse dictionary learning, which allows to process datasets of millions
of instances with low memory consumption. This demonstrates the potential of online
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learning for matrix factorization with the use of little computational resources. That
algorithm has been proposed for different matrix factorization setups, mainly oriented
to sparse coding and data compression. Our work follows a similar approach, in the
online learning sense, but focusing the formulation toward multimodal analysis instead
of sparse coding.

6.3 Multimodal Matrix Factorization

Consider the problem of building an image representation using visual features and
text data. The collection of images is assumed to have text descriptions attached to
most of the images, and that information has no particular structure and is possibly
noisy. Many modern collections of images fall under that definition, such as images
on the web with surrounding text, pictures from scholarly articles or books with their
corresponding captions and definitions, and medical images with attached diagnosis
and health records, among others. A collection of images tied to texts can be built by
crawling these multiple sources of information.

From any of those sources, assume an unknown joint probability distribution for
images and texts, from which aligned pairs can be drawn. Some of these pairs may
have a higher probability than others, for instance, a picture of a car is likely to appear
with keywords such as vehicle, motor, wheels, and less likely to have keywords such as
leg, food, or wallet. We want to learn the structure of the probability distribution by
observing these pairs and model the visual-text relationships using latent factors. The
main assumption of the proposed model is that one latent factor describes a meaningful
relationship between a small set of text keywords and a specific set of visual features.

Figure 6.1 illustrates an overview of learning multimodal latent factors from an image
collection. The two available data modalities are in the sides of the picture, labeled with
V for visual and T for text , which are aligned or paired. Latent factors are depicted
in the middle of the Figure as correspondences between some visual arrangements and
keywords that are potentially related to them. The proposed model aims to learn the
parameters of two transformation functions, P and Q, that correlate modalities with
latent factors. These functions take as argument a distribution of features (visual and
textual, respectively) and produce the distribution of latent factors that are more likely
associated with these features.

The problem of learning the two functions P and Q is formulated as a matrix
factorization problem in this work. Notice that these functions define a common rep-
resentation space for both data modalities, which is the space of multimodal latent
factors. Modelling a common representation space for two data modalities is also at
the core of other multimodal learning algorithms [15, 118, 124].

This work assumes a bag-of-features for visual contents, which represents images
using histograms with the frequency of visual patterns [52]. On the other hand, to
represent text contents associated to images, a valid Vector Space Model is assumed
[2], which may account for the frequency of keywords, for instance. The two sources of
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Figure 6.1: Overview of the proposed approach. The two data modalities are correlated
through a latent factors space.

information are organized in two matrices to allow for collection-based analysis. The
goal is to analyze the relationships between these two matrices and to extract meaningful
patterns for building the desired multimodal representation.

The following is the notation used throughout this paper. Let vi be the vector of n
visual features for the i-th image. Let ti be the vector of m text features for the same
image. The number of training samples in a collection with available visual and text
features is `. Then, the matrix of visual features is noted by V = [v1 . . . v`] ∈ Rn×` and
the matrix of text features is T = [t1 . . . t`] ∈ Rm×`. Abussing the notation a little bit,
we will indicate the fact that a vector vi corresponds to a column of V by vi ∈ V , ti ∈ T
is interpreted in the same fashion.

6.3.1 Problem statement

The problem of multimodal analysis in this work is set to build a data-driven repre-
sentation for images in an unsupervised fashion, using as input the visual features and
text annotations of images. This is formulated as finding the common factors between
the two data modalities to span a new representation space combining both aspects.
The multimodal factor decomposition consists on solving the following optimization
problem:

min
P,Q,H

1

2
‖V − PH‖2

F + ‖T −QH‖2
F + λ

(
‖P‖2

F + ‖Q‖2
F + ‖H‖2

F

)
(6.1)

where P ∈ Rn×r and Q ∈ Rm×r are linear functions encoding the relationships
between n visual features and r factors, and between m text features and r factors,
respectively; H ∈ Rr×` is the matrix whose column vectors are the latent representation
for a sample of size `; and λ is a regularization parameter that penalizes arbitrary large
magnitudes of the three matrices, in the Frobenius norm sense.

This optimization problem is equivalent to optimizing the following empirical cost
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function when j = `:

min
P,Q

fj(P,Q) :=
1

j

j∑
i=1

L (vi, ti, P,Q) + λ
(
‖P‖2

F + ‖Q‖2
F

)
(6.2)

where L is a loss function that should be small if P and Q correctly model the
relationships of vi ∈ V and ti ∈ T , and is defined as follows:

L (vi, ti, P,Q) = min
h∈Rr

1

2

(
‖vi − Ph‖2

2 + ‖ti −Qh‖2
2 + λ ‖h‖2

2

)
(6.3)

where h ∈ Rr is the latent factor representation for the pair (vi, ti). This function
finds the latent factor representation that allows to reconstruct simultaneously the
two original feature vectors with minimal error. This formulation suggests a solution
strategy that alternates the optimization of P , Q and H. Two possible solutions to
this problem have been proposed recently; the first approached based on a Nonnegative
Matrix Factorization (NMF) framework, using multiplicative updating rules [117], and
the second, based on first order gradient descent [129].

6.3.2 Online Multimodal Matrix Factorization

In this work we are not interested in optimizing the empirical cost function for learning
P and Q, but instead, the expected cost:

f(P,Q) := E(v,t) [L(v, t, P,Q)] = lim
`→∞

f`(P,Q) (6.4)

where the expectation is taken relative to the joint probability distribution p(v, t),
since these feature vectors are not observed alone, but in pairs or aligned. It has
been shown that Stochastic Gradient Descent (SGD) algorithms can directly optimize
the expected cost function of a learning problem, achieving faster convergence than
second-order batch methods [122]. Furthermore, Bottou [130] shows that SGD is a
bad optimization algorithm in the sense that it would require longer times to reach a
predefined accuracy on a training set, but requires very little time to reach a predefined
expected risk. This property makes it very suitable for large scale learning problems, i.e.,
when the limiting factor is computing time rather than number of training examples.

Figure 6.2 illustrates the operation of the online matrix factorization algorithm
for updating P , one of the model parameter matrices. Assuming that the number
of columns in the matrix V is very large or potentially infinite, we can not solve the
problem for the full matrix. Instead, the columns of the matrix are randomly permuted,
and then, they are used one at a time for learning the structure of the matrix P . To
complete the equation, the column vectors of the matrix H are also computed on the
fly with respect to the observed vector v and the current solution for P . After updating
the model parameters in the matrix P , both vectors, v and h are discarded, and new
vectors are scanned.
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Figure 6.2: Illustration of an online matrix factorization algorithm that randomly scans
a large matrix one vector at a time to update the parameters of the model.

6.3.2.1 Algorithm Outline

The proposed algorithm uses stochastic learning approximations to make the multi-
modal decomposition scalable to very large training data sets. It follows the structure
of an alternating optimization algorithm, taking turns between two main stages: 1)
computing the latent factor representation for one observed vector, and 2) updating
the modality transformation matrices. The procedure is presented in Algorithm 6.1.

The algorithm starts by randomly drawing a pair of feature vectors from the mul-
timodal probability distribution. Since the stochastic algorithm does not need to re-
member examples from previous iterations, it can process large data sets with very
low memory usage. It can be shown that Equation 6.5 is the solution for the problem
in Equation 6.3. Also, a proof of convergence of the algorithm can be obtained by
considering the independent solutions for P and Q.

The first stage of the alternating algorithm consists on computing the latent factor
representation for the observed pair of visual and text features. To compute this rep-
resentation, the analytic solution of Equation 6.3 is obtained by fixing P and Q as the
versions of the matrices known in the iteration k. The resulting solution is expressed in
terms of these two matrices, the observed feature vectors and the regularization param-
eter, as shown in Equation 6.5. Notice that this latent representation is computed for
just one example taken from the distribution, so it is not affected by the step size of the
stochastic algorithm. In addition, in the same way as the feature vectors are discarded
after the iteration k is completed, this latent representation is discarded as well.

The second stage consists on updating the modality transformation matrices. In
this part of the algorithm, the stochastic approximation is carried out by using the
information of the observed visual and text features together with the corresponding
latent representation. The updating rules for P and Q are the first order gradient
descent rules, obtained from the partial derivatives of the objective function in Equation
6.1, and expressed in terms of one observed example, as shown in Equation 6.7 and 6.8.
The step size used in this algorithm is a decreasing rate [130] that depends on the
number of iterations, the regularization parameter and an initial learning rate (see
Equation 6.6).
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Algorithm 6.1 Online Multimodal Matrix Factorization (OMMF)

INPUTS:
p(v, t): multimodal data distribution
λ ∈ R: regularization parameter
P1, Q1: initial transformation matrices
γ0: initial step size
T: number of iterations.

BEGIN
1. FOR k=1:T
2. Draw (vk, tk) from p(v, t)
3. Compute latent factor representation:

hk = (λI + P T
k Pk +QT

kQk)
−1(P T

k vk +QT
k tk) (6.5)

4. Compute current step size:

γk = γ0/(1 + γ0λk) (6.6)

5. Update matrix P:

Pk+1 = Pk + γk
(
(vk − Pkhk)hTk − λPk

)
(6.7)

6. Update matrix Q:

Qk+1 = Qk + γk
(
(tk −Qkhk)h

T
k − λQk

)
(6.8)

7. ENDFOR
8. return Pk+1, Qk+1

END
OUTPUTS: P and Q
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6.3.2.2 Minibatch Extension

A slight variation of this algorithm is obtained by using several samples at each iteration
instead of using only one. This is known as the minibatch extension [128]. The proposed
algorithm benefits particularly from this extension, since the operation in the first stage
(Equation 6.5) involves the computation of an inverse matrix. Experimental results
show faster execution when using minibatches instead of single examples, and also a
better numerical stability for the solution of Equation 6.5.

6.3.2.3 Weighted Modalities

The formulation of the objective function admits weights for data modalities for con-
trolling their relative importance when learning the multimodal latent factors. In this
work, we explore a weighted variation of this algorithm by using a convex combination
between the terms for the reconstruction error of the modalities in Equation 6.1. This
introduces an additional parameter α as follows:

min
P,Q,H

(1− α) ‖V − PH‖2
F + α ‖T −QH‖2

F + λ
(
‖P‖2

F + ‖Q‖2
F + ‖H‖2

F

)
(6.9)

Thus, the new updating rules are:

hk = (λI + (1− α)P T
k Pk + αQT

kQk)
−1((1− α)P T

k vk + αQT
k tk)

Pk+1 = Pk + γk
(
(1− α) (vk − Pkhk)hTk − λPk

)
Qk+1 = Qk+1 = Qk + γk

(
α (tk −Qkhk)h

T
k − λQk

) (6.10)

This parameter can be useful to emphasize the algorithm on learning from the
cleaner or more discriminative modality. The parameter α has been defined here to
represent the weight of the text data. The weight of the visual modality corresponds
to the complementary value of the convex combination.

6.3.2.4 Other Extensions

Additional extensions of this algorithm also include Nonnegative Matrix Factorization,
which can be easily incorporated by introducing a projection function that maps a
point back to the positive feasible region in each iteration [131]. Also, the algorithm
can be used to factorize an input with only one data modality, in which case the unused
transformation matrix can be just dropped from the algorithm in every place. This is
equivalent to giving a weight of one (1) to the required data modality and zero (0) to
the other.

6.3.3 Image Indexing and Search

The proposed Online Multimodal Matrix Factorization (OMMF) algorithm learns the
modality transformation matrices to project visual and text data to the latent space.
After processing a large data set, these two matrices contain the knowledge extracted
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from the joint probability distribution of the multimodal data, and codify the under-
lying structure and connexions between visual features and text annotations. Now,
to effectively index the image collection, an additional processing step is required to
generate the final multimodal representation.

For examples taken from the training database, that have both, visual features and
text data, the multimodal latent representation is computed on the fly using the avail-
able versions of the transformation matrices Pk and Qk, in each iteration k. However,
that latent representation is discarded as these matrices evolve during the training
phase. Then, an additional pass through the data is required to compute the multi-
modal latent representation again for every image, using Equation 6.5. The same can
be done for new images that were not part of the training stage, but that have both
data modalities and are required to be searchable in the system.

An special indexing case is when images do not have attached text. This situation
is very typical, for example, when users are interested in searching the database using
example images as queries, acquired using a camera phone or a similar device. A new
image without text can be projected to the multimodal latent space by solving the
following optimization problem:

min
h
‖v − Ph‖2

2 + ξ ‖Qh‖2
2 (6.11)

where h is the latent representation and ξ is a regularization parameter to penalize
the magnitude of the recovered text annotations. Notice that this objective aims to
minimize the reconstruction error of the observed visual features, using the learned
latent representation. Also, the latent representation is useful to recover the predicted
text data directly. The following analytic solution can derived for the problem in
Equation 6.11:

h =
(
P TP + ξQTQ

)−1
P Tv (6.12)

The projection matrix of visual features to the latent space can be precomputed for
fast indexing of new images. In our experiments, we evaluate the retrieval performance
under the query-by-example paradigm, i.e., queries are image examples without text
descriptions. This approach is useful to assess the generalization ability of the proposed
learning algorithm to construct image representations for pictures with partial data,
which is a very common scenario in real world applications.

Finally, since all images are represented in the multimodal latent space, the dot
product is used as matching criterion, as it estimates the extent to which two vector
representations share the same latent factors.

6.4 Experiments and Results

An experimental evaluation was carried out to assess the properties of the proposed
model in practice. Three different image collections were selected, with varying sizes
and structures. The evaluation includes convergence properties to determine how fast
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the algorithm achieves a stable solution. The quality of the factorization was measured
using precision scores from information retrieval, and comparison with other methods
were made. Also, the impact of different parameters is discussed and experimentally
observed, and finally, computational time over small and large image colletions is also
reported.

6.4.1 Data sets

The performance of the proposed framework has been evaluated using three different
image retrieval benchmarks: Corel 5k [13], MIRFlickr [98] and ImageCLEFmed 2011
[132]. The size of these benchmarks are 5, 000, 25, 000 and 230, 000 images respectively,
introducing 3 different orders of magnitude on the amount of available data for our
experiments. All these collections have attached texts for images in the training set
and include test sets or predefined queries to evaluate retrieval performance.

6.4.1.1 Corel 5k

With 5,000 images from the Corel collection, this is a small scale data set used as
benchmark in different image retrieval experiments. The data set is split in 3 stan-
dard subsets to allow other researchers reproduce results: 4,000 images for training,
500 images for validation and 500 images for test. This collection is organized in 50
different categories with 100 images in each category. In addition, the collection was
manually annotated by researchers exploring image auto-annotation techniques. These
annotations are composed of a dictionary with 374 terms, and each image has between
2 to 5 attached terms.

For this collection, a bag-of-features is used to represent visual contents, using the
same setup as in [72]. Small patches are densely sampled from each image and repre-
sented using the Discrete Cosine Transform (DCT) coefficients for the three RGB color
channels. A dictionary of 2,000 codeblocks was built and each image is represented
as a histogram with their occurrences. For text features, the dictionary of 374 terms
has been employed as free text annotations, building a binary vector for each image
that indicates whether the corresponding term is associated or not. Validation and test
images are assumed to have no text annotations and are used as queries as well. A
database image is considered relevant to a query if it shares the same global category
with the query.

6.4.1.2 MIRFlickr

This collection is composed of 25,000 images crawled from the Flickr website [98]. This
data set has different subsets primarily composed of 15,000 images for training and
10,000 for testing. These images have been labeled by researchers using 39 different
annotations, some of them considered as potential and others as relevant. In our exper-
iments, we evaluate the system using all 39 annotations. In addition, the data set has
user tags taken from the Flickr website, which have been assigned by web users. These
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tags are very noisy and unstructured, and have been used in this work as the text data
modality.

In the same way as the Corel 5k data set, in this collection the visual contents
are represented using a bag of DCT features with a dictionary of 2,000 codeblocks.
However, the text data is processed in a different way, using standard natural language
processing techniques. We employed stop-word removal and stemming to build the
list of indexing terms, and finally, the Term-Frequency Inverse-Document-Frequency
(TF-IDF) weighting scheme was applied. This resulted in a vector space model of
approximately 1,300 dimensions. In our experiments, we divided the training set to use
10,000 images to populate the database, and the remaining 5,000 images as queries.
The rest of the experimental evaluation follows the setup described in [98].

6.4.1.3 ImageCLEFmed 2011

This is one of collections used in the CLEF campaign for multilingual and multimodal
information retrieval. This collection is composed of 230,000 medical images extracted
from scholarly articles in medicine [132]. Each image has associated text extracted from
the corresponding paper, including the title and caption. The type of images is very
wide, including x-ray, MRI, PET, microscopy, photos, graphs and diagrams, among
others. Each year, the organizers propose a set of 30 queries which have to be used
to rank the corresponding collection. When the campaign is done, a set of relevance
judgements are used to rank the experiments of research groups.

For this collection, we computed a Spatial Pyramid of CEDD features, which consists
of a recursive partition of images in quadrants [133], and extracting CEDD features [134]
in each subregion. We employed a pyramid with 2 levels, which results in 21 spatially
distributed regions, ending up in a visual representation with 3,024 features. These
features were selected due to the large variety of image modalities in the collection,
and the good performance that other researchers, using this descriptor, have reported
for this task. Text features are built using a similar procedure for the MIRFlickr data
set, but applying the BM25 weighting scheme [2] instead of TF-IDF. This resulted in
a vector space of approximately 13,000 different terms. During search, an image is
considered relevant according to the relevance judgements employed in 2011.

6.4.2 Convergence

The first set of experiments are oriented to observe the speed of convergence of the
proposed algorithm by comparing it to two alternative multimodal decomposition al-
gorithms that optimize the empirical cost function presented in Equation 6.3: a first
order gradient descent algorithm (batch) [129], and a multimodal Nonnegative Matrix
Factorization (mNMF) [72]. All three algorithms evaluated in this experiment are for-
mulated to minimize the Frobenius norm of the difference between the original and
reconstructed matrices. For these experiments, the data to be processed needs to fit in
main memory since the updating rules of the batch and mNMF algorithms assume the
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availability of the full matrices to compute parameter updates.
Thus, this evaluation was run on the Corel 5k and MIRFlickr data sets, which have

the following dimensionalities:

• Corel 5k: using 4,000 training examples. Visual matrix V ∈ R2000×4000 with
2,000 features, text matrix T ∈ R371×4000 with 371 terms, visual transformation
P ∈ R2000×50 and text transformation Q ∈ R371×50 with 50 latent factors.

• MIRFlickr: using 10,000 training examples. Visual matrix V ∈ R2000×10000 with
2,000 features, text matrix T ∈ R1391×10000 with 1,391 terms, visual transformation
P ∈ R2000×500 and text transformation Q ∈ R1391×500 with 500 latent factors.

Before running the experiments, the input matrices V and T are normalized in order
to have columns with L1-norm = 1, which, for the kind of features used in this work,
produces vectors of probability distributions. Matrices P and Q are randomly initialized
within the interval [0.0, 0.1] for all algorithms, and in all cases, the initialization was
made using the same random seed. In this evaluation, one epoch is considered to be
a complete usage of the training set for updating the model parameters (P and Q).
Experiments were run for 50 epochs with all algorithms and the reconstruction error of
the visual and text matrices were measured on the training data at each epoch.

Figure 6.3 presents the error evolution of the two data modalities along the number
of epochs. The proposed OMMF converges very soon before 5 epochs for both data
modalities. The batch algorithm shows the worst convergence rate, something expected
since it is based on a first order gradient descent strategy. The mNMF algorithm is
in general faster to converge than the batch approach. Notice that mNMF tends to
converge to the same error rate achieved by the OMMF algorithm in both modalities,
which is explained by the similarity of their objective functions.

These algorithms deal with the simultaneous decomposition of two inputs: visual
and text matrices. We can say that an algorithm converges as soon as the error rate
for both matrices has achieved a steady solution. For the mNMF algorithm, the plots
show that convergence may be apparently reached for one of the data modalities, but the
other still needs some improvement. In the frame of 50 epochs run for these experiments,
the batch and mNMF algorithms have not converged yet, likely requiring a number of
additional epochs to reach the solution.

These results show that the proposed algorithm can achieve a very fast convergence
rate, with the additional advantage of little memory consumption, since the full matrix
is not required for training. It is important to note that minimum reconstruction error
is not the ultimate goal of the proposed algorithm. The actual goal for the proposed
strategy is to learn useful relationships between visual features and text annotations
to improve image search performance. Therefore, image search experiments were con-
ducted to observe the evolution of retrieval performance.
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Figure 6.3: Convergence speed of the OMMF algorithm compared to the batch and
mNMF algorithms. Top row: Corel 5k. Bottom row: MIRFlickr.
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Figure 6.4: Evolution of the Retrieval Performance.

6.4.3 Evolution of Retrieval Performance

Results in the previous subsection showed that very few epochs are needed to achieve a
stable model. The following experiments aim to evaluate the quality of performance on
the search task by measuring retrieval precision at each epoch of the algorithm. So, the
solution obtained by the algorithm at a particular epoch is used to index query images
as well as database images and compute the corresponding rankings. The resulting
rankings are objectively assessed using Mean Average Precision (MAP), a common
performance measure for information retrieval [2].

The same procedure is conducted with the mNMF algorithm for comparison in the
evolution of performance, running the experiment for 20 epochs in each data set. Also,
a baseline with no learning is employed to compare the gain in performance of the two
evaluated algorithms, which consists of direct visual matching between query images
and database images using visual features.

Figure 6.4 presents plots of the evolution of performance for the Corel5k data set
as well as the MIRFlickr data set. These results provide another point of view for
the convergence evaluation presented in the previous subsection and also confirm the
main finding: very few epochs of the proposed algorithm are needed to achieve the best
performance. Experiments on both data sets show that starting from the third epoch
the proposed online algorithm reaches a stable retrieval performance, which does not
improve or decrease significantly if it keeps running for more epochs.

Notice that OMMF improves upon the visual-matching baseline since the very first
epoch, i.e., with just one pass over the training data an improved performance is
achieved. In contrast, the evolution observed for the mNMF algorithm starts pro-
viding a performance below the baseline, and requires about 10 epochs to reach it.
It is very likely that many more epochs are needed to get a similar performance to
the one obtained by OMMF, since the progress observed in 20 epochs is slowing down
asymptotically.

Hence, the proposed OMMF algorithm demonstrates useful properties to learn
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visual-text relationships from large image collections. These results suggest that an
iterative process is not necessary, as it is usually expected for matrix factorization algo-
rithms. The result is also consistent with the properties of stochastic gradient descent
algorithms provided by Bottou and Bousquet [122]. They demonstrate that using on-
line learning, a single pass on the training set is asymptotically efficient when the size
of the training sample is very large.

The experiments presented in this subsection suggest that two to five passes are
needed on the Corel5k and MIRFlickr data sets, mainly due to their relatively small
size (thousands of samples). However, the algorithm still enjoys fast convergence even
in those small collections. Also, notice that the performance at the first iteration starts
closer to the best value on the MIRFlickr collection in contrast to Corel5k, showing
how more data can help to get better results with few epochs. Separate experiments
conducted with the ImageCLEFmed data set, which is composed of hundred of thou-
sands of examples, also showed that only one pass over the training data is enough to
achieve the best performance.

6.4.4 Parameter Tuning

The proposed OMMF algorithm has a set of parameters that can impact the quality
of the resulting model. Some of these parameters model the underlying structure of
the data and others control convergence properties. These parameters are set in an
empirical basis depending on the specific data collection. The following results aim to
provide a better understanding of the role of these parameters, and potential strategies
to explore their impact in the model.

6.4.4.1 Controlling Convergence

During training, there are three parameters that can be combined to control the conver-
gence of the algorithm. These parameters, in order of importance, are: initial step size
γ0, regularization parameter λ, and minibatch size. γ0 is the most important parameter
since it can determine whether the algorithm converges or not, regardless the other two.
According to Equation 6.6, γ0 is the seed for estimating the decreasing function of the
step size. If γ0 is too big the algorithm may diverge or converge too early, if γ0 is too
small convergence may take an unusual number of epochs to converge.

Remember that only one epoch should be enough to achieve both, convergence and
good performance. So, when exploring the value of γ0, convergence to a reasonable
error rate should be observed with one epoch only. In our experiments, we explored
values of this parameter of the form 2i with i ∈ [−7, 3]. For each data set a different
good parameter was found, whose values are reported in Table 6.1.

The second important parameter is λ, which determines the amount of regularization
on the learned matrices determining the quality of the resulting factorization. Since this
penalizes the norm of the model matrices, it can give more importance to reconstructing
the original matrices (a small value) or obtaining a more general, smooth model (a
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Table 6.1: Set of parameters to control convergence used for each image collection. In
general, these values provided good convergence rates as well as good retrieval perfor-
mance.

Data set γ0 λ Minibatch ξ
Corel5K 0.125 0.1 128 0.01

MIRFlickr 2.0 0.05 512 0.001
ImageCLEFmed 0.3 0.001 512 0.001

large value). By varying this parameter, the algorithm converges to different solutions
resulting in different error rates and retrieval performances. We explored this parameter
using powers of 10, and measured the performance of the resulting factorization. Results
showed that no large regularization is needed in any of the three datasets, indicating
that the algorithm can be set to reduce the reconstruction error with a small value of
λ.

The third parameter to control convergence is the minibatch size, which can help to
accelerate the speed of the algorithm. Usually, moving this parameter does not require
to adjust the other two, unless a very large change is made. We explored this parameter
using powers of two, from 8 to 512. Since this is the number of simultaneous vectors
used during one update in the model, it speeds up the processing when its value is large,
resulting in less computational load when scanning the whole data set. In general, we
found that the size of the minibatch does not affect the quality of the factorization or
the final error rate and its only advantage is on runtime speedup. An exception has
to be made when the size of the minibatch is close to the number of samples in the
training set, since this makes the algorithm to start behaving like a conventional batch
learning algorithm.

A final regularization parameter is used in the function to project new images to
the latent space. We explored the impact of this parameter, using again powers of 10,
and found that a small value is best in all cases. The set of parameters that give good
convergence properties on each data set are reported in Table 6.1.

6.4.5 Unveiling Latent Collection Structure

In the proposed factorization model, the algorithm provides two parameters that are
associated to the underlying structure of the image collection: the number of latent
factors and the relative importance of each data modality. These two parameters have
the potential of directly improving the performance for the image search task.

The proposed model is a tool to discover a common latent space for visual and text
data, in which their relationships are codified. This is done through a decomposition
of the original matrices by projecting the input data to a new space of lower dimen-
sionality. A priori, the number of latent factors can be set as a portion of the features
available in the input spaces to force correlations between them. However, setting this
parameter carefully can greatly improve the performance of the underlying task. Figure
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(a) Corel5k data set (b) MIRFlickr data set

(c) ImageCLEFmed 2011

Figure 6.5: Impact of the number of latent factors in the retrieval performance for three
data sets. Notice that each data set requires a different number of latent factors and
the scale of useful dimensionalities is sensible to the data structure.

6.5 shows the impact of the number of latent factors for the three data sets used in this
experimental evaluation.

Bars in the Figure represent Mean Average Precision (MAP) values obtained for
experiments in each data set. The Corel5k data set requires very few latent factors,
in the order of tens, showing a best performance with 50 latent factors. More or less
factors do not perform as good, suggesting that 50 factors correctly model a semantic
latent structure of this data. Actually, the Corel5k data set is organized in 50 categories
that are used as ground truth. The MIRFlickr data set, on the other hand, requires sig-
nificantly more latent factors to improve performance, in the order of thousands. Since
this is a more complex data set, more latent factors help to organize patterns between
visual features and text data. A similar pattern is shown in the ImageCLEFmed data
set, which shows good retrieval response with 500 latent factors.

The other parameter that models underlying structure of the image collection is the
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Figure 6.6: Impact of moving the relative importance of each data modality on re-
trieval performance. The higher the text weight, the lower the importance of the visual
modality. The performance is higher when the more informative modality is favored.

relative importance of the two data modalities, or modality weight α (see Equations 6.9
and 6.10). This is specified in the objective function with a convex combination of the
terms associated to the reconstruction of the visual and text matrices. If the parameter
is not used or set to 0.5, both data modalities are considered equally important to
define the latent space. However, if the parameter is moved to favor one modality, the
algorithm is biased to include more information extracted from that modality into the
structure of the latent space.

This is specially useful when one data modality is cleaner or more discriminative
than the other, allowing to boost the search performance and obtaining more accurate
results. Experiments were run to evaluate the impact of this parameter in the three data
sets, in all cases varying the parameter from 0.1 to 0.9 to gradually move the relative
importance from the visual modality to the text modality. A total of 5 experiments
were run and the obtained MAP score was averaged and plotted. Figure 6.6 presents
the results of these experiments.

The results show that the Corel5k data set has a very strong preference for the text
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data modality, which is organized in a dictionary with 374 keywords. These keywords
are clean descriptions of what can be seen in these images and correlate very well
with the 50 ground truth categories used for evaluation. That explains the better
performance when the text weight is higher. The MIRFlickr data set, on the other hand,
obtains a drop in performance when the text modality is prefered. This is explained by
the noisy tags that are assigned to Flickr images by users, which are not controlled by
any means, and so, extracting information from that data is harder. It is interesting
to note that the best performance for the MIRFlickr collection is achieved giving a
weight of 0.2 for text data, and the obtained MAP is significantly better than using
0.1, which is mostly visual. So, even though it is hard to extract useful knowledge from
unstructured text, the algorithm can effectively make it.

The final plot shows results for the ImageCLEFmed data set, which presents a non-
smooth balance between both modalities. However, the best performances are slightly
biased towards the text modality, achieving the best performance with 0.65. Notice
that for this data set, the latent space is not very useful when the parameter is set to
the extremes of the axis, i.e., when one modality is given too much preference. This
confirms that the good performance is achieved by exploiting multimodal interactions
in the collection.

Note that giving more preference to one data modality does not mean that the other
modality is useless. In the extreme case when the text modality is prefered over the
visual one (such as in the Corel5k data set), it is still very important to include the
visual modality information in the latent space, since new images are projected based
on what is observed in their visual features. For more complex collections, such as
MIRFlickr and ImageCLEFmed, good balances between both modalities are achieved
by adjusting the parameter and exploiting the particular structure of the collection.

6.4.6 Image Search Benchmark

The goal of OMMF is to learn a new representation for images that combines visual
data and text annotations. The multimodal representation is herein used for indexing
images in a retrieval system that allows to search using example pictures, that is to say,
the system is asked to retrieve images semantically related to an unknown, new image
that has no keywords or text descriptions.

Since query images are used without text to search the database, the first step
towards obtaining a list of results is to project these query images to the multimodal
latent space, following the procedure presented in Section 6.3.3. Afterwards, images are
matched in the multimodal latent space using the dot product as similarity function.
The list of results is evaluated by measuring the precision of the output, i.e., a score
that indicates the extent to which the results are correct according to the predefined
relevance judgements. This score is the Mean Average Precision (MAP).

Previous subsections have presented experimental evaluations using as performance
measure the precision of the retrieval task. In this section, experiments are oriented
to evaluate the potential of the proposed algorithm to improve retrieval precision with
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Table 6.2: Comparison of retrieval performance using different methods.

Strategy
MAP

Corel5k Improv.
MAP

MFlickr Improv.
Visual search (baseline) 0.1293 N.A 0.3085 N.A

mNMF (Akata et al. [117]) 0.2099 62.3% 0.3672 19.0%
aNMF (Caicedo et al. [72]) 0.2277 76.1% 0.4258 38.0%

OMMF 0.2352 81.9% 0.4044 31.1%

respect to other algorithms and benchmarks, under the same experimental conditions.

6.4.6.1 Small Scale Search

This evaluation aims to compare the performance of OMMF with respect to two re-
cently proposed multimodal indexing approaches: the multimodal NMF (mNMF) [117]
and asymmetric NMF (aNMF) [72, 125]. The mNMF algorithm is based on Nonneg-
ative Matrix Factorization and optimizes the same objective function modelled in this
work, with the difference that non-negativity constraints were added to the optimization
problem and multiplicative updating rules were derived for obtaining the solution.

The aNMF algorithm is also based on Nonnegative Matrix Factorization but has two
important differences with the proposed approach: first, this is a two stages algorithm
that decomposes the text matrix first, and then adapts the visual data modality to
the structure of the latent space. Second, these decompositions solve for the minimum
Kullback-Leibler divergence between the original and reconstructed matrices. It has
been shown that an NMF decomposition based on the KL divergence is equivalent to
the Probabilistic Latent Semantic Analysis (PLSA) algorithm [105], so, this approach is
representative of other multimodal image indexing strategies based on PLSA [118, 123].

Since these two algorithms are based on updating rules that use the full input
matrices, they are not suited for large scale learning. Thus, the Corel5k and MIRFlickr
data sets are used in this experiment. An additional strategy for searching the image
collection using the query-by-example paradigm is directly matching visual contents.
Therefore, visual matching using the Histogram Intersection similarity [113] is used as
the baseline method that does not require any kind of learning for indexing images.
This allows to assess the contribution of using multimodal representations for image
search.

All algorithms are fed with the same underlying visual representation for images as
well as the same text representation. For details about visual and text features for each
data set, please refer to Section 6.4.1. The number of latent factors and other parameters
that apply were optimized to get the best performance for each algorithm. The mNMF
and aNMF algorithms were run for a maximum of 100 epochs each. Table 6.2 reports
MAP scores for each of the evaluated algorithms for the Corel5k and MIRFlickr data
sets.

These results show that all three multimodal indexing algorithms are able to improve
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the search response with respect to the baseline in a significant way. This important
improvement demonstrates the potential of building multimodal representations for
image search. The best performance on the Corel5k data set was obtained by OMMF
with about 80% of improvement with respect to the baseline and about 3% with respect
to the second best multimodal algorithm.

On the MIRFlickr data set, OMMF also shows a significant improvement that out-
performs the baseline as well as the mNMF algorithm. However, the best performance
on this data set was obtained by aNMF. One of the reasons the proposed OMMF is
able to outperform mNMF, even though both optimize a very similar objective func-
tion, is because of its ability for fast convergence. Experimental results on Sections
6.4.2 and 6.4.3 showed that mNMF forwards rather slowly and approaches the solution
asymptotically.

The results from OMMF and aNMF on the MIRFlickr data set are in the same order
of MAP score as well as percentual improvement, which is more than 30% with respect
to the baseline. The relative difference between both results is about 5% in favor of
aNMF. The good performance presented by this algorithm can be mainly explained
by the difference in the objective function of the underlying optimization problem.
Note that aNMF, however, cannot scale up to process large data collections as easily
as the proposed algorithm does. So, even though its potential to model multimodal
relationships in small data collections is good, bringing its applicability to real world
scenarios can be very hard.

6.4.6.2 Large Scale Search

The following experiments aim to demonstrate the potential of OMMF for large scale
image indexing. We conducted experiments with the ImageCLEFmed 2011 database,
which is composed of 230,000 images, and compared the obtained results with those
reported after the challenge ended. For these experiments, the full image collection
was used for training, i.e., no sampling was applied for computational efficiency, so the
algorithm could take full advantage of all the available data.

The ImageCLEFmed challenge provides an image collection of medical images ex-
tracted from scholarly journals and propose a set of 30 queries to retrieve the most
relevant ones from that collection. Images in the database are provided with text sur-
rounding them on papers, such as caption and titles. Queries are designed to also have
both, example images as well as text descriptions. There are three strategies to answer
queries in the ImageCLEFmed challenge: textual, visual and mixed. In our setup, we
evaluate the performance of visual queries.

Table 6.3 presents performance measures obtained for this experiment. We started
with a visual baseline whose MAP score is 0.0278, using Spatial Pyramid CEDD fea-
tures (see Section 6.4.1) and the Tanimotto coefficient as similarity measure. Then, a
multimodal space was learned from the collection by applying the OMMF algorithm,
and then a ranking is computed in the latent factors space. The MAP score for the
30 queries increased to 0.0337, 21% more regarding the baseline, which is a significant
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Table 6.3: Retrieval Performance for the ImageCLEFmed 2011 challenge.

Strategy MAP # Relevant Images
Visual Baseline 0.0278 682

Online Multimodal Factorization 0.0337 659
Top 1 (Visual) @ ImageCLEFmed 2011 0.0338 717
Top 2 (Visual) @ ImageCLEFmed 2011 0.0322 689

improvement for this task. The Table also reports the top 2 results from the compe-
tition of the year 2011 [132], showing that our result is very close to the top 1. These
top results were completely based on visual features, so by integrating them in our
framework, additional improvements may be observed.

Notice that to learn multimodal interactions from the given collection, the input
matrices for this task are in the order of 230,000 columns and 20,000 rows, which do
not fit in main memory. Therefore, other multimodal indexing algorithms, such as
mNMF, aNMF or others based on PLSA, cannot be directly applied to this collection.

6.4.7 Computational Complexity

Matrix factorization algorithms can be expensive to compute because of their intrinsic
computational complexity. For a multimodal matrix factorization algorithm the time
complexity is O(rp`k), where r is the number of latent factors, p = n+m is the number
of visual and text features, ` is the number of training examples, and k is the number
of epochs. This is true for the proposed OMMF as well as NMF-based algorithms, due
to matrix multiplications that dominate the algorithm complexity.

The proposed algorithm reduces the computational complexity of a multimodal fac-
torization in two ways: first, memory requirements to compute parameter updates are
very small. Two things are needed to be in memory, on the one hand the model param-
eters (matrices P and Q), and on the other hand, a small number of vectors that are
currently being processed. This makes the applicability of the algorithm very suitable
for large scale collections, since there is no practical limit of memory for scanning large
image databases. A potential implementation of this algorithm for a very large image
collection can even extract visual and text features from images on the fly, use them
for learning and then discard everything to go on with new samples.

The second advantage, but not least important, is that the number of epochs in the
algorithm is reduced to a constant, cutting down dramatically time complexity. Our
algorithm has been designed on top of stochastic learning theory that is guaranteed to
converge in a single pass on the training set [130], and this property was experimentally
verified in previous subsections of this paper. While other algorithms require hundreds
of iterations over the training data, the proposed algorithm requires only one full scan
for large data collections or very few for small collections.

We implemented the OMMF algorithm as well as the two other NMF-based algo-
rithms in Matlab to conduct small scale experiments. An additional implementation
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Table 6.4: Wall clock times to complete the multimodal decomposition for the three
data sets.

Corel5k MIRFlickr ImageCLEFmed
Vectors 4,000 10,000 230,000
Factors 50 1,200 600

Visual Features 2,000 2,000 3,024
Text Features 371 1,391 13,000

mNMF 130.21 seg 113.15 min —
aNMF 128.93 seg 58.52 min —
OMMF 2.11 seg 7.01 min 1.49 hrs

was written in Java to process large scale experiments, since this programming language
offers built-in libraries to naturally control dynamic I/O. A native interface for BLAS,
named jblas1, was used inside the Java implementation, since the BLAS package offers
state-of-the-art performance for linear algebra computations.

Table 6.4 reports wall clock times required by all algorithms to learn the model that
presented the best performance in the last subsection. The mNMF and aNMF were set
to run for 100 epochs, since this was the number of epochs used to get the reported
precision results. Reported times are the result of running all algorithms in a single
CPU at 2.8Ghz. The size of each data set is also reported to observe how the algorithm
complexity grows with the theoretical variables that affect it. NMF-based algorithms
take about one hundred seconds to process the Corel5k data set and about one hour to
process the MIRFlickr collection. In contrast, the OMMF algorithm makes 2 epochs on
the Corel5k data set in 2 seconds, and 5 epochs on the MIRFlickr data set in 7 minutes.

In addition, OMMF was the only one able to process the ImageCLEFmed data set
due to the memory constraints that apply for other algorithms. The OMMF was set to
run for one single epoch for processing this large collection, finishing in less than one
and a half hours using the Java implementation on a single CPU. That was enough
to obtain the retrieval precision reported in the last section. Assuming that the full
matrix of the ImageCLEFmed data set fits in memory, the computing time required
by aNMF or mNMF to process this collection would be in the order of days. These
results demonstrates the potential of the proposed algorithm to scale up to very large
data collections.

6.5 Discussions

The experimental evaluation presented in this Section has shown that OMMF can
build improved multimodal image representations for image search and achieve very
competitive retrieval performance. Importantly, that is accomplished with very low
computational resources, in contrast to other multimodal learning algorithms. The

1http://www.jblas.org



CHAPTER 6. LARGE SCALE MULTIMODAL ANALYSIS 126

following Subsections present discussions about the main characteristics of the proposed
OMMF algorithm.

6.5.1 Modelling Latent Factors

The proposed algorithm finds multimodal latent factors from an aligned image-text
collection, by learning the relationships between both data modalities. Different strate-
gies have been proposed to model the structure of image-text relationships in the same
direction, mainly based on latent factors using probabilistic models [15, 31, 124, 118] or
matrix factorization [98, 117, 72]. Most of these strategies work under the assumption
that visual features and text annotations share a common latent factor space. From
a probabilistic point of view, some of them have differences and commonalities in the
underlying generative model.

The model proposed by Blei and Jordan [15] assumes that the visual modality is
generated first, and the text modality comes later. On the other hand, Caicedo et
al. [72] proposed an algorithm following the opposite direction, generating the text
first, and the visual modality later. The approach presented in this paper considers
both data modalities simultaneously, which follows the design of other similar works
[81, 31, 117]. There is no clear consensus on the research community about the correct
design for generating multimodal latent factors, and we believe this will require further
fundamental research to better understand the impact of one design or another.

An important contribution of our work in that direction is a formulation that intro-
duces a weighting term to account for the relative importance of each modality, allowing
to better exploit asymmetries between both data sources and potential meaningful pat-
terns. As the experimental results have shown, properly controlling this parameter
allows to obtain major improvements for image search. This suggests that the discus-
sion is not about which data modality is exploited first, but that their contributions to
learn multimodal relations may vary. So, it is likely that each data modality may re-
quire its own modelling before finding correspondences between them, as was suggested
by Putthividhy et al. [124].

An additional interesting result observed from the image search benchmark in Sec-
tion 6.4.6 is that the aNMF algorithm [72] presented better performance than the pro-
posed OMMF on the MIRFlickr data set. These algorithms present many differences,
such as an asymmetric design and non-negativity constraints. However, we believe that
the most important difference between both algorithms is the underlying cost function,
which is the KL-Divergence for aNMF and the Frobenius norm for OMMF. Since a
NMF algorithm that minimizes the KL-Divergence has been theoretically related to
PLSA, this provides a more probabilistic grounding for aNMF. This suggest a possible
improvement to OMMF, to optimize the KL-divergence instead of the Frobenius norm.
This is part of our future work.
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6.5.2 Large Scale Learning

This work makes an important contribution to the problem of large scale multimodal
learning. Most of the previous proposals for learning multimodal relationships have
been designed without considering a large scale setup [15, 31, 124, 118, 81, 117]. Some-
times, these algorithms can be scaled up by relying on parallelized implementations
and assuming the availability of abundant computational resources. However, this can
be expensive, tricky and hard to accomplish, since in a multimodal setup two sources
of information have to be handled, and sharing information among computing nodes is
usually an issue for several algorithms.

The approach that we follow in this work relies on recent theoretical advances
for large scale learning, which provide guarantees about convergence and scalability
[130, 122]. The online formulation of the matrix factorization algorithm that we have
presented requires little computational resources to deal with large collections of data.
Experimental results show that processing a collection with hundred of thousands of
samples can be attained in less than two hours using a single CPU and no special
memory requirements. It is important to highlight that our proposal focuses on us-
ing computational resources wisely instead of needing large infrastructures for running
experiments. This actually makes room for further improvements on runtime and com-
plexity, using for instance, a parallelized formulation of stochastic gradient descent
[135].

Thus, our proposal breaks a computational barrier for large scale multimodal anal-
ysis, providing a feasible solution for huge image collections. Recent studies in machine
learning and statistical data analysis have also shown that algorithms able to process
abundant data quickly, can learn more precise models than algorithms optimized for
specific small collections [136]. The proposed OMMF algorithm is an approach ori-
ented to take advantage of that fact, by providing an unsupervised learning strategy
for producing an improved multimodal image representation.

6.6 Conclusions

The Online Multimodal Matrix Factorization algorithm has been presented. The al-
gorithm takes as input two aligned matrices of visual features and text occurrences
representing the contents of an image collection, and learns the relationships between
these two data modalities. These relationships are encoded in multimodal latent factors
automatically extracted by the algorithm. New images without text annotations can
be projected to the latent factors space, which implicitly predicts some keywords. The
algorithm has been used in this work to index image databases, which are searched
using a query-by-visual-example approach.

The main contribution of this work is the formulation of the multimodal matrix
factorization as an online learning algorithm, which has little memory requirements
and low computational load. This property makes the algorithm very convenient for
processing and indexing large collections of images. An experimental evaluation was
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conducted on three data sets with different amounts of images and associated texts.
Results showed the ability of the algorithm to learn models with fast convergence rates
and to produce very competitive retrieval performance. The largest experiment run in
this evaluation involved 230,000 images with associated text descriptions, which were
all included during the learning stage. The algorithm learned a model in 1.5 hours using
a single CPU and resulted in a significant improvement in search precision.

This work has also provided some insights for modelling multimodal latent factors
using matrix factorization. Experimental evidence shows that weighted modalities re-
veal structural patterns in a collection and can also improve the quality of the retrieval
results. This suggest that there is a tradeoff for considering the influence of each data
modality on the resulting latent factors. Also, the use of Kullback-Leibler Divergence
as objective function in the minimization problems seems to offer promising improve-
ments for learning, and that could be incorporated in the proposed algorithm structure.
These are some future research directions, along with the study of parallelized stochastic
gradient descent algorithms for matrix factorization.



Chapter 7

Conclusions

This thesis has presented models and strategies to address the problem of multimodal
image indexing for building improved image search systems. This thesis focused on
building a multimodal representation that combines the richness of visual data and the
precise semantics of texts terms. Building this representations has been approached as
a problem of learning the relationships that connect both data modalities in particular
image databases. Different strategies were proposed and systematically evaluated on
different multimodal image collections. The results show that introducing information
extracted from the text modality in the image representation improves the quality of
the retrieval results, even in scenarios where queries are exclusively visual.

Three research challenges were identified to learn multimodal relationships: the
structure and chacracteristics of the text modality, the size of the database, and the
type of application domain. Solutions to the main problem of multimodal learning
have been proposed, considering various conditions for these three challenges. The
main contribution of this research work is a family of algorithms based on matrix
factorization, that have extended the notions of latent factor analysis to multimodal
setups. The following subsections discuss different aspects of the addressed problems
and of the strategies used to tackle them.

7.1 Image Search

This dissertation has studied the problems of image indexing to build useful visual search
systems, making contributions to bridge the semantic gap through multimodal repre-
sentations, and approaching practical associated problems such as the structure of the
textual modality, the size of the database, and the application domain. The proposed
methods have demonstrated to be effective for retrieving relevant images, and allowed
to build content-based retrieval systems that deal with images without attached text in
a principled way. This is very important to fully index a partially annotated collection
of images, and specially to consider the query-by-example paradigm for searching.

A system to search using example images as queries have potential applications in
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several domains, such as browsing the web or personal photo collections using example
pictures acquired with the camera phone. In the medical practice, diagnostic images
for new patients can be send as queries to retrieve similar cases from the hospital
archive. Forensics and scientific research may also benefit from these tools. Other
query paradigms can be seamlessly supported as well in the proposed frameworks, such
as keyword-based queries, as was presented in Chapter 4. Combinations of keywords and
example images are also allowed, and may be useful for instance, in specialized software
readers that allow to search using images in a document, by sending the example figure
as well its caption to the search engine.

All these functionalities allow to build improved image search systems, with the
ability to understand visual examples and find related images with complete sense
according to their high-level interpretations. The main contribution presented in this
work was oriented to enable retrieval systems for this situation, by mining multimodal
relationships in the target collections. We envision a multimodal search engine for
images that can also process queries in natural language to state conditions on image
contents, not in the surrounding text. Therefore, building an image search engine that
can manipulate concepts and visual patterns to provide full content-based access is still
an important open research problem.

7.2 Learning Multimodal Relationships

In this work, multimodal image indexing is approached by designing extensions of ma-
trix factorization algorithms for multimodal latent factor analysis. This approach can
be understood as learning a common subspace for two data modalities, whose basis re-
veal underlying relationships between them. Discovering the structure of this subspace
allows to generalize multimodal relationships to new images without text. A family
of algorithms that consider different structures of the text data modality have been
presented.

When the text is composed of clean and structured annotations, multiple classifi-
cation functions can be used to predict labels on images, as was presented in Chapter
3. This has been a popular approach for semantic image indexing, but still faces some
limitations and problems as was discussed in Chapter 2. To overcome some of these
limitations, a direct data embedding from visual features to semantic terms was pre-
sented in Chapter 5: The Nonnegative Semantic Embedding. This model can be also
understood as a supervised learning approach, in which predictions contain the full
distribution of terms for an image, having potential connections with structured output
prediction [137].

For image collections with noisy and unstructured text descriptions, latent factor
models based on Nonnegative Matrix Factorization were presented in Chapter 4: The
NMF-Asymmetric and NMF-Mixed. These models can be understood as unsupervised
learning strategies to discover multimodal aspects from two modality inputs. These
algorithms can also be cast as probabilistic models [105], opening interesting possibilities
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to study new alternatives to unveiling the relationships between both data modalities.
The main goal in any of these cases is to find links between visual features and their

potential semantic interpretations, which can be found explicitly or implicitly in text
data. This work has shown that the goal can be achieved under different textual condi-
tions, from clean to noisy, and from structured to unstructured. This result encourages
to further study the more challenging case of dealing with natural language text, since
this can be cheaply obtained from many sources, and does not require supervision to
build training data sets. Approaching this situation may require more elaboration of
methods to filter and represent the text data modality, and more robust models to avoid
noise, ambiguities and imprecisions. This represents a very interesting and challenging
direction of future research.

7.3 Multimodal Representations

Modeling image contents is a very important problem in computer vision research,
and it is mainly oriented to structure visual characteristics in a particular representa-
tion. Building content representations is traditionally accomplished using a single data
modality based on the computation of visual features from pixels. Sometimes multiple
features are combined together to produce an enhanced representation that integrates
different characteristics such as colors, textures and edges, as was presented in Chapter
3.

Even using multiple visual features, the resulting representation is still a low-level
description of image contents and does not include explicit semantics. The methods and
algorithms proposed in this thesis are focused on computing image representations using
visual features that are organized according to the semantics of text terms. Chapter 4
presents the construction of multimodal factors as the basic features for representing
images in a latent space, and Chapter 5 presents fusion of visual and semantic features
by projecting representations from one space to another.

The resulting multimodal representations have shown to be improved descriptions
of image contents, in the sense that they allow to discriminate images in a more se-
mantic fashion, similarly to the criterion followed by humans to discard non-relevant
information. These representations have been primarily used in this work to compute
ranking scores in an image search engine. However, they could be also used for other
visual analysis tasks, such as categorization, clustering or event detection.

The most appealing property of a multimodal representation, according to the meth-
ods presented in this work, is that they are in fact data-driven representations. So, by
feeding the algorithms with visual features and text terms the representations are au-
tomatically adjusted with respect to the underlying multimodal relationships. This
can be understood as extending the frameworks for image analysis using a complemen-
tary semantic axis, which may allow to improve the accuracy of high-level decisions in
practical systems.
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7.4 Large Scale Multimodal Learning

Processing and indexing large image collections may be very difficult if the number of
images is very large. The main scalability problem is on the use of learning algorithms
since their computational complexity is not usually linear and they may demand high
memory and CPU resources. A typical procedure to obtain a feasible solution is sam-
pling a small portion of the image collection to train models. For instance, Romberg
et al. [118] extracted a sample of 10,000 images for learning multimodal relationships
from the collection that they planed to index, which consisted of 10 million images.

Besides the evident waste of available data to learn from, it is not clear how to select
a representative, non-biased sample to train generic models. A better solution may be
to harness the whole training set. Distributed computing may be used to share the load
among various machines to speedup the process. However, this may pose significant
efforts to configure computing infrastructures and develop practical programs.

This work has presented a learning strategy following online learning principles in
Chapter 6, which demonstrated to be several orders of magnitude faster to learn mul-
timodal relationships than batch models, running on a single CPU with low memory
usage. The very fast convergence rate is achieved by setting the optimization problem
to solve for the expected cost function in a stochastic process, instead of solving for
minimum empirical cost. This has been demonstrated to offer asymptotically faster
convergence when the limitation of the learning algorithm is time rather than the avail-
able amount of data [122].

This view of constraining the algorithm in terms of time instead of data, is a very
useful property for analyzing and indexing large image collections, which are constantly
growing. So, the results presented in this work demonstrate that large scale multimodal
learning can be efficiently achieved by appropriately formulating the problem, instead
of assuming automatic scalability by means of parallelization or distributed computing.
Actually, with the current convergence rate of the proposed algorithm, parallelized
online learning is a potential research direction, since it would further speed up the
process, theoretically in a proportional rate to the number of available machines [135].
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