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Notation 
 
f(x): vector field (set of expressions for a system dynamics) 
 
ff:      a double vector with equal  characteristics.    
 
xi: space state variables of a dynamic system 
 
DB: discontinuity boundary (in the text)  
 
Σ: symbol of  the DB in  the figures and formula 
 
Hj: set of equations defining the DB 
 
VF: vector field (in the text) 
 
Zj: notation for the sub-space or sub-region in the state space  
 
fi_N: normal component of fi 

 
fi_T: tangential component of fi 

 
Θ: angular range  
 
Φ: orbit or trajectory 
 
Φs: sliding orbit or trajectory  
 
Ω: point belonging to the state space  
 
Ωc: point belonging to the DB with a crossing dynamics 
 
Ωs: point belonging to the DB with a sliding dynamics  
 
i: sub-index indicating the order of a system  
 
j: sub-index indicating the number of sub-spaces  
 
α: parameter of a system  
 
///      duplication of the symbol  ///  in a sequence means that are presenting many points of    
the same type. 



 
 

 

 

sC sequence of  elements including at least one sliding segment.   

 sequence of cycles that belong to a global bifurcation 

segment:  name for a piece of orbit or trajectory that could be flat or a curve. 

 

Note: In this work, the words ‗special points‘ are used as ‗isolated points‘. Thus for every 
special point in the DB one can find a sufficiently small neighbourhood without any other 
special point in it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

Summary 

 

 
The main objective of this research is to develop a new method for improving the 
understanding of the behaviour and the analysis of sliding bifurcations in nonsmooth 
systems. This method is called singular point tracking (SPT) because it is based on the 
identification and synthesis of certain points with unique characteristics. These points have 
been not given much attention, thus motivating an in-depth study on the subject. As a result 
of this research, it has been found that the information about singular points combined with 
the information on regular ones can be used for finding or detecting nonsmooth 
bifurcations. 
 
The results of the abovementioned method have been presented at international events, 
published in specialized journals, and constitute the main part of this document. In the 
publications listed below, only the format and notation has been changed slightly in 
comparison with the original published versions. In the rest of this document, I discuss how 
the abovementioned method was developed. 
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International Journal of Bifurcations and Chaos. Year: 2009 Vol: 19 Issue: 3, March 
2009 Pages: 947–975.  

II. Continuation of Nonsmooth Bifurcations in Filippov Systems Using Singular Point 
Tracking. International Journal of Applied Mathematics and Informatics. Year: 2007, 
Vol: 1 Issue 1, August 2007, Pages: 36–49. 

III. Characteristic Point Sequences in Local and Global Bifurcation Analysis of Filippov 
Systems. WSEAS Transactions on Systems. Year: 2008, Vol: 7 Issue 10, October 
2008, Pages: 840–854. 

IV. Numerical Analysis of Sliding Dynamics in Three-Dimensional Filippov Systems 
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Recent Advances on Applied Mathematics. Proceedings of the American Conference 
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VII. SPTCont 1.0: A LabView Toolbox for Bifurcation Analysis of Filippov Systems. 
New Aspects of Systems. Proceedings of the 12th WSEAS International Conference 
on Systems. 22–24 July 2008, Heraklion, Greece.  

VIII. Detecting Sliding Areas in Three-Dimensional Filippov Systems Using an 
Integration-Free Method. New Aspects on Computing Research. Proceedings of the 



 
 

 

 

2nd European Computing Conference. (ECC‘08) 11–13 September 2008, Malta, 
Pages: 160–166. 

IX. Localization of sliding bifurcations in a rotational oscillator with double cam. Journal 
Dyna. Nro 167, pag 160-168, 2011. 

X. Detection and Continuation of Filippov Sliding Limit Cycles Bifurcation in Multiple 
DB Systems. Submitted to IJBC in 2010. 

 
 
 
This document begins with the definitions of the simplest elements belonging to a system. 
Then, in each section, the complexity of these elements and their interactions is increased. 
In the first part, the classification of singular points in the discontinuity boundary (DB) is 
expanded. This classification has been expanded because it has been found that the DB of 
nonsmooth systems contains a considerable amount of useful information, which can be 
used for determining the dynamics of the system. Using groups of points, I build curves and 
surfaces that are included in the classification. In order to include each element in the 
classification, an exclusive condition of existence has been generated. Boolean-valued 
functions based on geometric criteria are used for formulating these conditions. Each 
element, point, curve, or surface has been illustrated with didactic symbols and colours.  
 
In the subsequent sections, changes in the groups of elements have been associated with 
changes in the parameters. Therefore, an identification of the changes in the groups of 
elements will help to determine the occurrence of bifurcations. The identification procedure 
begins with a complete analysis of planar systems where the groups of singular and special 
points build chains that provide information related to the dynamics of these systems. Then, 
this method is extended to three-dimensional systems where the groups of singular points 
form 2-dimensional networks. For n-dimensional systems, the groups of singular points 
form a  (n-1)-dimensional hyper-networks. As a result, the SPT method is very precise with 
regards to the detection of a local sliding bifurcation and helps in the location of a useful 
initial point for tracking a global sliding bifurcation. Then, during the detection of global 
bifurcations, the singular points are considered a part of the sequences that determine each 
class of an orbit or a cycle. Using this characteristic, I have developed an extension of the 
SPT method that allows continuation of sliding cycles. 
 
In order to demonstrate the use of this method, published papers include illustrative 
examples. The classical oscillator that is used for demonstrating most of the new methods 
in nonsmooth systems has also been used in this case. Further, the Cassini model (1), (2) 
which is quite new and has been demonstrated to be useful for the validation of methods 
related to systems with multiple DBs, has been used. Moreover, new models have been 
developed to enrich other fields of analysis. 
 
The complete catalogue of local bifurcations for Filippov systems (a subclass of nonsmooth 
systems) presented by Kuznetsov (3) has been used for validating the SPT method. The 
result is promising; further, new features have been added to this method in order to 



 
 

 

 

increase its applications. Chapter 5 describes the additions to the method that have proven 
to be useful for tracking sliding cycles in order to detect the bifurcations of sliding cycles. 
 
The SPT method has some interesting features: after the method was implemented in 
numerical solutions, the computing time was reduced in comparison with the traditional 
methods. The new form to present the results, using diagrams and a symbolic 
representation to indicate the sequences of the elements and the dynamics opens a door to a 
wider graphic tool for analysing complex systems. Finally, in order to support the 
validation of the abovementioned method, a toolbox of numerical functions that correspond 
to the equations presented in this document was developed. With this toolbox, it was 
possible to perform comparisons, develop new examples, and confirm the utility and the 
power of the SPT method. 
 
Keyworks:   Nonsmooth systems, sliding bifurcations, continuation, limit cycle, Filippov 
systems, singular point. 
 
 

Resumen 

 
El principal tópico de esta investigación está relacionado con un nuevo método para 
mejorar el entendimiento del comportamiento y el análisis de bifurcaciones deslizantes en 
sistemas no suaves. Este método ha sido llamado seguimiento de puntos singulares 
(Singular Point Tracking) debido a que está basado en la identificación y seguimiento de 
algunos puntos con características únicas. Estos puntos han sido poco estudiados motivando 
el deseo de realizar un más profundo estudio acerca del tema. Como resultado de esta 
investigación, se ha encontrado que la información de los puntos singulares unida a la 
información de los puntos regulares puede ser usada para encontrar o detectar bifurcaciones 
no suaves.  
 
Los resultados del método han sido presentados en eventos internaciones, publicados en 
revistas especializadas y son el principal bloque de este documento. En las publicaciones 
listadas abajo sólo se ha realizado un pequeño cambio en el formato, en comparación con 
las versiones publicadas originalmente. En el resto del documento, utilizando un formato de 
catálogo, se presenta cómo fue desarrollado el método. 
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El documento comienza con la deducción de los elementos más simples pertenecientes al 
sistema y de ahí comienza un proceso progresivo en el cual, en cada sección, la 
complejidad de los elementos y sus interacciones es incrementada. En la primera parte es 
expandida la clasificación de los puntos singulares en el límite de discontinuidad. Esta 
clasificación ha sido ampliada porque se ha encontrado que el límite de discontinuidad de 
un sistema no suave guarda mucha información útil para determinar la dinámica del 
sistema. Utilizando estos grupos de puntos han sido creadas cadenas y mallas que también 
admiten clasificación. Para incluir cada elemento en la clasificación han sido generadas 
condiciones exclusivas de existencia. Para formular estas condiciones han sido usadas 
funciones booleanas basadas en criterios geométricos. Cada elemento, punto, curva o 
superficie ha sido caracterizada con símbolos y colores didácticos 
 
En la secciones subsecuentes los cambios de los grupos de elementos han sido asociados 
con los cambios de parámetros y, de esta forma, ellos permiten la ocurrencia de 
bifurcaciones. El procedimiento comienza con un completo análisis en los sistemas planos 
donde los grupos de puntos singulares forman cadenas que dan información acerca de la 
dinámica del sistema. Luego, el método es extendido a sistemas tridimensionales donde los 
grupos de puntos singulares forman mallas. En sistemas n-dimensionales los grupos de 
puntos singulares forman hiper-superficies (n-1)-dimensionales. Como resultado, el método 



 
 

 

 

SPT es muy preciso en la detección de bifurcaciones deslizantes locales y ayuda en la 
localización del punto inicial útil para realizar el seguimiento de bifurcaciones deslizantes 
globales. Ya dentro de la detección de bifurcaciones globales, los puntos singulares son 
parte de las secuencias que determinan cada clase de órbita o ciclo. Usando esta 
característica ha sido desarrollada una extensión del método SPT que permite la 
continuación de ciclos deslizantes. 
 
Para demostrar la forma de usar este método, los artículos publicados incluyen ejemplos 
ilustrativos. El oscilador clásico que es usado para mostrar la mayoría de los nuevos 
métodos en sistemas no suaves también ha sido usado en este caso. También ha sido 
considerado el modelo de Cassini (2), (1) el cual es reciente, y está demostrando ser útil 
para validar métodos relacionados con sistemas de múltiples límites de discontinuidad. 
Nuevos modelos también han sido desarrollados para enriquecer otros campos de análisis. 
 
El catálogo completo de bifurcaciones locales para sistemas de Filippov (una subclase de 
los sistemas no suaves) presentado por Kuznetsov (3) ha sido usado para validar el método 
SPT. Los resultados son prometedores y desde entonces el método ha recibido nuevas 
capacidades para ampliar sus usos. Ha sido anexada una extensión en el Capítulo 5 que es 
útil para seguir ciclos, con el fin de detectar bifurcaciones de ciclos deslizantes.  
 
El método SPT tiene algunos rasgos interesantes: después de que el método fue 
implementado en soluciones numéricas, en comparación con los métodos tradicionales, el 
tiempo de computación fue reducido. La nueva forma de presentar los resultados, utilizando 
mapas y representación simbólica para indicar las secuencias de elementos y dinámicas, 
abren una puerta hacia una más  amplia herramienta gráfica para analizar sistema 
complejos. Finalmente, como soporte para validar el método, ha sido desarrollada una caja 
de herramientas de funciones numéricas que corresponden a las ecuaciones presentadas a lo 
largo de este documento. Con esta caja de herramientas, ha sido posible hacer 
comparaciones, desarrollar nuevos ejemplos y confirmar la utilidad y el poder del método 
SPT. 
 
 
Palabras claves:   Nonsmooth systems, sliding bifurcations, continuation, limit cycle, 
Filippov systems, singular point. 
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Chapter 1 
 
 
 

Introduction 
 

 
  
 
The main objective of this research is to develop a new method for improving the 
understanding of the behaviour and the analysis of sliding bifurcations in nonsmooth 
systems. This method is called singular point tracking (SPT) because it is based on the 
identification and synthesis of certain points related to unique characteristics. These points 
have been not given much attention, thus motivating an in-depth study on the subject. 
 
This Ph.D. Thesis fits into the global picture of research in nonsmooth systems showing 
sliding dynamics. This study deepens the results presented by Kuznetsov et al., (4) using 
the geometrical characteristics of points in the DB.  Also we study the relation among 
sequences (or chains) of points over the DB and the sequence of sets over the DB, with 
sliding bifurcations. Further, the results consistently fit considering the relation with points 
which are part of limit cycles.  
 
This research topic was selected on the basis of the suggestions of certain researchers in 
their papers. In the following paragraph, I have discussed the complaints, recommendations 
for future work, and points emphasized by some of the leading researchers in this field. I 
have presented the context of these comments and then I have explored the possibilities to 
contribute to any of the needs. A more detailed explanation of these comments is presented 
in Section 2.3 (State of the Art of Nonsmooth Systems). 
 
In (3), an organized classification of the local sliding bifurcations was discussed for the first 
time. Global bifurcations have been reported in detail in                                                                                                    
(5), (6), (7), (8), and others. Here are some of the comments on the topic:  
 

 There is an increasing number of interesting results on the bifurcations of periodic 
solutions in three-dimensional Filippov systems specifically in general n-
dimensional Filippov systems. Considerably little is known about local bifurcations 
in n-dimensional systems  

 The bifurcation analysis of piecewise-smooth systems (PSS) has received 
considerable attention in the last few years. However, in most cases, the study was 
restricted to continuous PSS or to bifurcations of Filippov systems without sliding. 
This greatly simplifies the analysis, since, as we will see, sliding bifurcations are 



1. Introduction 
 

 

 

many and of a considerably subtle nature. Indeed, the appearance or disappearance 
of sliding at a particular parameter value is a bifurcation, even if it leaves the 
attractors of the system unchanged.  

 Very little is known about the normal forms and the numerical analysis of sliding 
bifurcations. 

 Apart from numerous applications, there are two natural directions in which the 
analysis presented in this paper can be extended: to more dimensions and to higher 
codimension. 

 
SlideCont, presented by Dercole et al., (9) is a software application of a method focusing 
on the sliding bifurcation. SlideCont is a suite of routines accompanying Auto97 (10), 
which allow one to perform bifurcation analysis of generic discontinuous piecewise-smooth 
autonomous systems of ordinary differential equations. Some comments of the authors of 
these papers are as follows: 

 
 There are several directions in which this work could be extended. First of all, there 

are interesting global sliding bifurcations in n-dimensional Filippov systems that 
involve multiple sliding and which are therefore unsupported in SlideCont 2.0. In 
the planar case, further efforts are required for implementing a more systematic 
detection of codimension-2 local and global bifurcations and branch switching at 
such bifurcations. 

 The current version has two major limitations. The first is related to the fact that an 
orbit of a Filippov system might cross the DB p times and involve q sliding sets. 
The continuation of a corresponding solution in Auto97 would require a boundary 
value problem with (p+1+q)n differential equations, a number that is not 
determined a priori. One way to allow the continuation of a generic solution is the 
automatic generation of the defining system at run-time, a feature that has not been 
implemented yet. However, as a partial remedy to this limitation, all boundary-
value problems involving only one standard set have also been implemented in a 
modified way, with two standard sets (one in S1 and the other in S2) joined at the 
DB. 
The second limitation is that the stability of pseudo-equilibriums, and sliding and 
crossing cycles is not computed. However, limit and branch points are detected by 
Auto97 along a solution branch. Further, limit points can be continued with one 
extra control parameter. It has also been noted that SlideCont does not support the 
time-integration of Filippov systems. Finally, SlideCont runs only in command 
mode with Auto97 and has no graphic user interface (GUI). The development of 
software that supports all of the abovementioned computational tasks for n-
dimensional Filippov systems in one integrated user-friendly graphic environment 
is another (admittedly ambitious) goal of the future work. 

  
In (11) Merillas gives his concept about SlideCont.  The application has the ability to 
continue equilibriums, limit cycles, and their sliding bifurcations but, to date, it lacks the 
capability to perform direct numerical simulations of Filippov systems and automatically 
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switch between sliding and non-sliding motions. Moreover, this tool is only useful for 
Filippov systems, and therefore, mechanical systems with impact and other nonsmooth 
dynamical systems are not included. 
 
In 2006, various researchers wrote a paper (7) in which is treated in ordered way the recent 
achievements in the field. It refers to two-parameter nonsmooth bifurcations of limit cycles, 
classification and open problems. Some of the points presented in the abovementioned 
paper are as follows: 
 

 Judging from experience with smooth bifurcations, another vital ingredient 
necessary to develop the applications of the theory of nonsmooth systems is a 
robust numerical framework for analyzing both regular and C- bifurcations in 
piecewise-smooth systems. Software such as AUTO (10) and CONTENT (12), 
when used in the standard mode will in general fail at grazing points. Instead, one 
needs to build a suite of routines that are specifically designed to compute through 
a discontinuity set, to accurately detect points of intersections within these sets, and 
to detect and follow parameter values at which grazings occur.  
 

Further, after an analysis of some methods that can lead to discontinuous systems directly, 
these eight researchers concluded the following: many problems related to the numerical 
analysis of nonsmooth systems are yet to be solved. 
 
 
SICONOS (Simulation and Control of Nonsmooth Dynamical Systems) software 
development was part of a European project involving different research teams and it was 
focussed to modelling, simulation, analysis, and control of nonsmooth dynamical systems 
(NSDS). Basically, the SICONOS platform aims at providing a general and common tool 
for NSDS present in several scientific fields such as applied mathematics, electrical 
networks, mechanics, and robotics. In the SICONOS platform, several things need to be 
implemented. We need to add routines for the continuation of periodic orbits and the 
detection of bifurcation points. Further, it is necessary to implement more examples in 
order to test the platform (11). 
 
Thus, there are many directions in which to act, such as the applications towards a specific 
field of knowledge, the classification of local and global bifurcations, and numerical 
methods to support the new ideas. Some of these directions require more qualification, so 
the first decision was to pursue the direction of the applications in the field of the 
electromechanical systems. In the course of the first studies, when the paper of Kuznetsov 
et al. (4) was studied using some simple algorithms, it was found that there exists a deeper 
discrimination of singular, tangential, and other points that could be further used in one of 
the possible research works. Nonsmooth systems, due to its unique nature involving the 
DB, which has characteristics of more than one vector field, has a considerable amount of 
information that could be used for studying these class of systems in a different way from 
the one used thus far.  
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Then, the direction of the research was slightly changed; we focused on obtaining 
information related to special elements on the DB of nonsmooth systems and the relation 
among them when the values of the parameters are changed.  
 

1.1 Objective 
 

Bifurcation analysis in smooth systems has been very well studied, and we have now many 
tools that let us deal with almost all smooth systems. Recently, smooth bifurcations 
generated in nonsmooth systems have also received considerable attention. Currently, the 
number of tools used for bifurcation analysis is increasing. However non-smooth 
bifurcations such as those involving sliding sets, generated in nonsmooth systems have not 
been fully studied and the state-of–the-art is still in the classification process. The first 
available tools for the analysis are being improved and at present only cover low-
dimensional and relatively simple systems. Although the theory of smooth systems plays 
still an important role in the framework of nonsmooth systems, the vast majority of 
problems in nonsmooth dynamical systems call for completely new methodologies. 
  
On the basis of the previous paragraph, a practical objective is to contribute to the process 
of developing better tools or new methods for analysing those bifurcations which appear 
only in nonsmooth systems. A modified direction from that of the analysis of smooth 
systems should be taken due to the difference in the mathematical approximations between 
both types of systems. The mathematical initiative must deal with the unusual behaviour of 
nonsmooth systems. 
  
Therefore, the main objective of this work is to develop methods for the detection of 
changes in the flow, orbits or sub-spaces of nonsmooth systems mainly using the 
information of the elements that constitute them. This method should be based on the 
geometrical changes due to the definition of bifurcations for these classes of systems given 
in the literature. 
 
The steps required for achieving this aim are as follows: 
 

 Study the different characteristics of singular, tangential, collinear, sliding, crossing, 
and regular points in order to find differences that allow us to easily distinguish 
among these different types of points.  

 To deduce mathematical and geometrical relations and develop a method to identify 
and detect each type of points. 

 Study the sequences of points in the DB and the changes in the set when a 
parameter value is changed, on the basis of previous works.  

 Study the conformation of the well-known sliding cycles. 
 Develop a method for recognizing and comparing cycles. 
 Develop a method for recognizing and comparing sequences of cycles.  
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1.2 Main result(s). 
 
This research has revealed that the information related to singular points when combined 
with the information related to regular points can be used for finding or detecting 
nonsmooth bifurcations. 
 
As results, we have a new method, which we called singular point tracking (SPT). It has 
been presented and tested. The tests and verifications have proved that this method shows 
information that will improve our understanding of the behaviour and analysis of sliding 
bifurcations in nonsmooth systems. 
 
Research was expanded to include the classification of 36 singular and special points on the 
DB. This expansion becomes the stone to support the method. Over the DB, the sequences 
of singular and special points with segments composed of crossing and sliding points 
become closely related with the dynamics of the neighbourhood of the DB. Through 
Poincaré maps we observed that when the parameter values were changed, the singular 
points transformed into curves between areas in which all points had the same dynamics. 
These dynamics differed from those of the next area. On the basis of this information, we 
could find the parameter values that generate bifurcations. Each element, point, line, or 
surface has been illustrated with didactic symbols and colours with good results. Taking a 
look at the symbols in the figures and taking into account the labels nonlinear phenomena 
can be easily analyzed.  
 
The results of the SPT method are promising and have been presented at international 
events and published in specialized journals. To demonstrate the way to use this method, 
these articles include illustrative examples. The classical oscillator used for demonstrating 
most of the new methods in nonsmooth systems has been used in this study. The Casini 
model (13), (2), has been demonstrated to be useful in validating methods related to 
systems with multiple DBs, has also been used. New models have also been developed to 
explore other fields of analysis. The complete catalogue of the local bifurcation for Filippov 
systems (a smaller class of nonsmooth systems) presented by Kuznetsov (4) was used for 
validating the SPT method. The result was hopeful, and since then, new features have been 
added to this method in order to increase its applications. The extension discussed in 
Chapter 5 to track the sliding cycles for detecting bifurcations has been proved as a new 
way to study global dynamics in nonsmooth systems. An advantage of the SPT method is 
that it is based on previously collected information, and the performance gets better with an 
increase in the amount of information in the database. In this document, we have presented 
a large group of sequences of the dynamics in the DB and the sequences of periodic 
solutions that enrich the database and were recollected in the format of a catalogue. It is 
useful to know how this method was developed in a sequential form in order to carry out 
in-depth consultations.  
 
The SPT method has some interesting features: when the tracking was implemented in the 
numerical solutions, the computing time decreased in comparison with brute- force 
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methods. Further, the new way to present the results, using diagrams and the symbolic 
representation to indicate sequences of element and dynamics, opens a door to a wider 
graphic tool for analysing complex systems. Finally, as a support to validate the SPT 
method, a toolbox of numerical functions that correspond to the equations presented in this 
document was developed. Therefore, it was possible to perform comparisons, develop new 
examples, and confirm the utility and the power of the SPT method. 
 
Finally, we can conclude that the SPT method is very precise regarding direct detection of 
most of local bifurcations catalogued and helps in the location of initial points used for 
tracking global bifurcations. Some cases require a study of the analytical differences in 
which the dynamics shows the same code, especially when the special points involved are 
saddle-nodes. Now, in the detection of global bifurcations, the singular and special points 
are a part of the sequences that determine each class of orbits or cycles. 
 
At this moment, the SPT method needs to be improved further in order to obtain the benefit 
of a tool which runs fast in your research.  Addition of more information to the database is 
needed which will increase the reliability and performance of the method. This information 
would consist of new sequence codes for local dynamics and for sequences of periodic 
solutions. As the method runs with more information, the user needs to perform less 
previous analysis to study any system. One branch of applications where we found many 
possibilities is the one associated with mixed phenomena such as dry friction and impact. 
From the geometrical and numerical points of view, there are also improvements to be 
made in the software application that is used for driving the method. It is mandatory to 
expand the analysis to systems with a DB composed of non flat surfaces. Finally, a 
comparison of some known models simulated with the SPT method has revealed that some 
numerical problems could be improved.  
 
The SPT method differs from other approaches in terms of the identification and 
manipulation of the system information. While the methods in (9), (14) consider a system 
as one entity to be solved by a group of equations, the SPT method is based on previously 
collected information of the orbit in the evolution of the system. For that reason the first 
step it to break the orbit into entities. Then, the method identifies the entities of the orbits 
evaluating several characteristics such as its position, order, number, and ownership. This 
information is compared with the previously collected information and determines which 
situation is presented and how to change parameters and initial conditions in order to obtain 
more results. In the case of the first group of methods that uses boundary value problems as 
the main tool, the main difficulty is that practical systems can have many DBs and a high 
dimension. This situation leads to a large group of equations that need to be manipulated 
and solved. The SPT method was conceptualized for systems with many discontinuity 
boundaries and a high dimension; the procedure for the comparison is the same for both 
simple and complex systems.  
 
Another difference of the SPT method is the tool used for validating the approach 
developed through this work. Other approaches (9), (14) have used Auto (10), which has 
provided a considerable number of successful results in the treatment of problems in the 
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field of smooth bifurcations. However, some characteristics are restricted: the graphical 
user interface (GUI) is not very friendly. Another approach (15) uses the environment of 
Matlab®, which is a tool with all the characteristics required for developing any 
application. This includes a group of toolboxes that allow one to solve differential 
equations using various methods, a group of functions to detect events, and a wide GUI 
with a good set of graphics that aid the comprehension of the results. This would have been 
also a good tool selected for solving boundary value problems. The SPT method was tested 
using a slow, high-level language, Labview®, graphically programmed, with similar 
characteristics to Matlab and with the possibility to share codes. Labview was selected 
because the highly developed editing and debugging functions, allowing the shortest 
development times.  
 

1.3 Motivation 
 
With the advances in mechatronic technology, the ways to design, to make, and to 
merchandise machines and devices have changed. The electrical drivers have been 
integrated with the mechanisms, sensors, and controls in order to build up highly integrated 
servomechanisms of a growing intelligence. These servomechanisms are being 
manufactured and sold to be incorporated in multiple systems. Moreover, servomechanisms 
are now common elements in electrical appliances, vehicles, and all types of machinery. 
Rapidly, the servomechanism has changed from being a expensive and exclusive subsystem 
only included in spaceships, airplanes, and sophisticated machinery to be a part of many 
common systems such as car brakes, steering, computer disks, and cameras.  
 
Servomechanisms consist of elements that have mass. They are elastic and have friction 
with each other. These servomechanisms move and spin. They get separated and then move 
close to each other upon impact. When a mathematical model is built, it is found that its 
responses are not linear. Further, when the model includes friction or mechanical backlash, 
the equations that represent the system are nonsmooth. These behaviours generate multiple 
challenges with regards to the development of models and studies which are needed to 
improve the systems performance.  
 
Finally, research on servomechanisms is a dynamic field where new results are presented 
every year. These advances are due to the demand for more robust and economical 
machines and equipment with better performance and greater efficiency.  
 

1.4 Justification  
 
Discontinuous events characterize the behaviour of a large number of dynamical systems of 
relevance in applied science and engineering. The field of nonsmooth systems with 
emphasis on mechanical, biological, electronic, economical, and social systems are 
branches of the knowledge and has many theoretical and practical problems to be solved. In 
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the last ten years, many theoretical achievements and new numerical methods for 
nonsmooth bifurcation analysis have been reported, but it is still almost in the start point 
since each new solution reveals its own set of problems.  
 
Non-smooth mechanical nonlinearities are abundant in nature and they are usually related 
to a combination of phenomena which are difficult to isolate. They can be friction, systems 
with a discontinuous restoring force due to rigid stops or set-up elastic stops, simple impact, 
and the discontinuous characteristics of intermittent contacts between some components. 
 
Nonsmooth systems appear in many types of engineering systems and in everyday life. 
Examples include the stick-slip oscillations of a violin string and grating brakes (16). Some 
related phenomena such as chatter and squeal cause serious problems in many industrial 
applications and, generally, these sorts of vibrations are undesirable because of their 
detrimental effects on the operation and performance of mechanical systems (17). Brakes 
are one of the most important safety and performance components in vehicles. 
Appropriately, ever since the advent of vehicles, the development of brakes has focused on 
increasing the braking power and reliability. However, the refinement of vehicle acoustics 
and comfort through the improvement in other aspects of vehicle design has dramatically 
increased the relative contribution of brake noise to these aesthetic and environmental 
concerns. Brake noise is an irritant to consumers who believe that it is symptomatic of a 
defective brake and signals a warranty claim, even though the brake operates exactly as 
designed in all other aspects. Therefore, noise generation and suppression have become 
prominent considerations in the design and manufacture of brake parts. Indeed, many 
material producers for brake pads spend up to 50% of their engineering budgets on issues 
related to noise, vibration, and harshness. A wide array of brake noise and vibration 
phenomena is described by an even wider array of terminology. Squeal, groan, chatter, 
judder, moan, hum, and squeak are just a few of the terms found in the existing literature 
(18). Another element related to brakes and friction is the clutch, an element of the power 
train vehicles. In recent years, the research effort on power train systems has mostly been 
concentrated upon driveline vibrations. Clutch vibrations have been studied to a relatively 
less extent. The refinement in the design of vehicle power train systems for reducing 
vibration and noise is greatly assisted by dynamic modelling and analysis, and there are 
many complex phenomena that need to be analyzed in an entire power train. One of them is 
the judder and stick-slip phenomenon that occurs during clutch engagement. Judder is a 
friction-induced vibration between masses with sliding contact. Stick-slip is the non-linear 
intermittent sliding stiction (sticking) at a contact surface. 
 
Numerous studies in recent years have highlighted the dynamics of mechanical systems 
with a discontinuous restoring force due to rigid stops, set-up elastic stops, and dry friction 
(19), (20), (21), (22) , (23). Compared with the dynamical systems having a smooth vector 
field, the systems with a discontinuous vector field behave in a more complicated way. As 
pointed out by Nordmark et al. (24), for instance, the motion of a harmonically-forced 
impact oscillator may become chaotic all of a sudden when it grazes a rigid stop with a 
variation of a control parameter. Further analysis based on local mappings reported by 
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Nordmark revealed the nature of the grazing phenomena of the impact oscillator with a 
rigid stop (25), (20).  
 
Mechanical systems subject to impact effects have been recently the focus of renewed 
interest in the mechanical engineering and applied mathematics scientific communities. 
Over the past decades, significant attention has been paid to vibro-impact problems because 
of their significance on the performance and life of mechanical systems. However, it is 
extremely difficult to solve these vibro-impact problems with strong non-linearities and 
non-smoothness (26). The principle of operation of vibration hammers, impact dampers, 
shakers, pile drivers, and machinery for compacting, milling, and forming is based on the 
impact action for moving bodies. Impacts also occur in the case of other equipment such as 
mechanisms with clearances, heat exchangers, fuel elements of nuclear reactors, gears, 
piping systems, and wheel-rail interaction of high-speed railway coaches, but these impacts 
are undesirable as they lead to failures, strain, reduced service life, and increased noise 
levels. Research on repeated impact dynamics is important regarding optimization design of 
machinery with rigid obstacles or clearances, noise suppression, and reliability analyses. 
The physical process during impacts has strongly non-linear and discontinuous 
characteristics. The presence of the non-linearity and the discontinuity considerably 
complicates the dynamic analysis of repeated impact systems. However, these systems can 
be described theoretically and numerically by discontinuities that are in good agreement 
with the reality. Compared with a single impact, vibro-impact dynamics are more 
complicated and hence have received significant attention (22), (23). In the context of 
actual mechanical systems, this can lead to a sudden fatal loss of control and the subsequent 
system failure. For example, high-precision mechanics notwithstanding the inevitable 
introduction of the play in joints and cylinders, leads to noise production, fatigue, fracture, 
and loss of kinematics control. When train cars travel at speeds above a critical value, the 
so-called hunting motions are initiated. These motions correspond to lateral oscillations of 
the cars relative to the track. At large amplitudes, these oscillations result in impacts with 
the rails that are believed to be responsible for reports of discomfort to train passengers. 
Discontinuities are sometimes unavoidable, as in the presence of limits on the motion of the 
parts of a mechanism; or sometimes they are desirable, as in the presence of ground that 
allows sustained gait. Their occurrence warrants the development of new nonlinear tools 
for their treatment (27). In a broad sense, there are two different methods to solve the 
impact problem in multi-body systems, namely, the continuous and the discontinuous 
approaches described in specialized publications (28), (29), (30), (31), (32), (26). However, 
the most interesting part is that advanced dynamics have also been studied, and the level of 
analysis is increasing from systems with a unilateral constraint and low dimension to multi-
body systems and higher dimension (33), (22), (23), (27), (34), (35), (36). 
 
A research subject derived from vibro-impact systems is backlash. This is characterized by 
a low clearance in elastic transmission systems. The effect of backlash on dynamics has 
been investigated in the literature, which includes bi-linear or piecewise-smooth systems as 
well. For instance, a bi-linear model is used for studying the dynamics of compliant off-
shore structures for sub-harmonic resonances and chaos (37). Periodically forced bi-linear 
oscillators were studied (38). The long-term response of models with bi-linear stiffness and 
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damping is studied for the existence and stability of boundary-crossing periodic orbits (39).  
Phenomena that characterize the response is also investigated. The most general n-periodic 
solutions and their stability are also studied for tri-linear systems with harmonic forcing 
(40). Chaos in these systems is also analyzed experimentally, and the results are compared 
with the theoretical solutions (41). 
 
In many problems related to chemical engineering, a discontinuity may appear. This drives 
the attention of researchers towards the study of new methods to solve complex dynamics 
(42), (43), (44). The discontinuity may be a result of an external activity. For example, it is 
obtained by the addition of a control element or can directly be a natural part of a model 
under consideration. This could be the case of a closed dynamical system, more precisely, 
an ideal gas-liquid system. The theory of Filippov systems can be applied to these systems. 
The dependence of the solution on a given parameter set is studied, namely, the dependence 
of the solution on the molar in-flow of the gas. It is shown that local sliding bifurcations 
can appear on the DB. 
 
There are many trends, not only in the comprehension of the phenomena, but in models, 
that accurately capture the dynamics of the system over the entire range of the system 
operation. These trends reveal the importance of design, simulation, training, and 
performance optimization of nonsmooth systems. 
 
Finally, normal forms and the numerical analysis of sliding bifurcations (4)  are not 
completely known. Consequently, any improvement in the field of nonsmooth systems 
rebounds in a wide range of knowledge, and this is a justification for a further study. 
 

1.5 Methodology 
 
Bifurcations are associated to changes in the behaviour of physical systems. However, since 
physical systems are represented using mathematical expressions, the changes can be found 
in the mathematical expressions. But the mathematical representation of a nonsmooth 
system can be quite complex. Therefore, this forces us to initiate a process of dividing the 
system into smaller elements and then to analyze these elements. The first step is to carry 
out an individual analysis of the differential equations representing each vector field. Then, 
we should analyze the DB since the dynamics are influenced by the elements of the 
neighbouring regions. 
 
The strategy for comprehension and for future dissemination uses mathematical notation 
and graphical symbols for representing elements. Graphical symbols allow readers to use a 
relatively big part of their brains to obtain a faster understanding. Graphic symbols are 
associated with the main characteristic of each element. The colour and the shape of the 
symbols will also be a tool in this methodology. Therefore, a report is presented with more 
than 100 figures, including the mathematical representation. 
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The results have been presented with a catalogue that includes most of the possibilities so 
that the SPT method can be used in the study of many phenomena. The new concepts are 
initially explained and then are reinforced by a continuous presentation in the different 
systems where they are applicable. 
 

1.6 Outline of the document 
  
The first chapter of this report contains an introduction to the topics. Motivation, 
justification, objectives, and methodology are also presented. In the second chapter is given 
a short summary of the necessary basic concepts to support the new ideas that will be 
presented in the subsequent chapters. The third chapter contains a summary of the problems 
faced by researchers in the field of nonsmooth systems. The presentation is done from the 
theoretical and numerical points of view.  
  
 Chapter 4 presents the contribution of this work to the field of the localization and analysis 
of local bifurcations in nonsmooth systems, especially those of the Filippov type. 
  
Chapter 5 presents the contribution of this work to the field of the localization and analysis 
of global bifurcations in nonsmooth systems, especially those of the Filippov type. 
 
Chapter 6 is focussed on the conclusions and then some appendixes follow for 
completeness. References are included in the final part of this document.  
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Chapter 2 
 
 
 

General Framework 
 

 
 
This chapter briefly outlines some issues, which are introductory knowledge provided 
regarding the objective of developing methods for analysing or identifying bifurcations in 
nonsmooth systems (NSS). We discuss dynamic systems (DS) with an emphasis on 
discontinuous characteristics. Three classes of nonsmooth (also called variable-structure, or 
hybrid) systems are mostly considered. Numerically, we can think also on a classification 
(event-driven systems, time-driven systems). One of the most important characteristics that 
can be generated by the interaction between two vector fields is sliding dynamics, which 
can be solved using the Filippov or the Utkin method.  
 
For completeness purposes the state-of-the-art in the field of nonsmooth bifurcations, 
including sliding bifurcations, is presented at the end of this chapter.  
 

2.1 Dynamic system  
 
The engineering models in which the phenomena of friction, mechanical clearances, and 
impact are involved, can be modelled by assuming that all elements have concentrated 
parameters. Therefore, ordinary differential equations are used in these models. 
 
 
A dynamical system is a mathematical representaction of a deterministic process (45). All 
possible states of a system can be represent by points in a set X called state space in a way   
X {x : x   with   x Rn    is a state of the dynamcal system }. The state space is a space of 
real vectors of dimension n. The evolution of a dynamical system supposes a change of 
state in a time t T, where T is an ordered set.  
 

2.1.1 Classes of discontinuous systems 
 
Physical systems can operate in different modes and the transition from one mode to other 
some times is idealized as instantaneous, discrete transition. In this, the time scale of the 
transition from one mode to another is much smaller than the scale of the dynamics of the 
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modes. The mathematical modelling of physical systems therefore may lead to 
discontinuous dynamical systems, which switch between different modes, where the 
dynamics in each mode is associated with a different set of differential equations (46). 
 
Since approximately 2000, discontinuous systems have been organized depending on the 
discontinuity degree of their orbits and vector fields. In each class, theoretical and 
experimental works have been generated in order to improve upon the existing knowledge. 
 
Grade 0, systems with jumps in the values of the state-space variables. They are typical of 
systems in which there is an impact and are modelled by assuming a negligible deformation 
of the bodies and a very short contact time (47), (48), (28), (29), (26), (30). 
 
Grade 1, systems described by differential equations with discontinuous right hand side. 
These systems are also called Filippov systems and can develop so-called sliding motions. 
The vector fields of these systems are discontinuous and typical of systems with dry friction 
(40), (49), (8), (24), (5), (7).  
 
Grade 2, systems in which the orbits are continuously differentiable but with discontinuities 
in the derivatives of the first order. An example is the group of systems so called mass-
spring-damper with an elastic movement limiter in one or both sides of the strokes (19), 
(50) , (22), (23). 
 
Higher grade are assigned to system with discontinuities in the second derivate or higher. 
 
 

2.1.2 Other types of systems related to nonsmooth systems 
 
Due to the richness in the types of systems present in nature and engineering, different 
mathematical representations are used to study the dynamical systems. Some of these 
representations are useful for the study of nonsmooth systems, but because of their 
similarity nature we will not describe them in detail. For more information, see Thiele (51), 
and Schutter and Heemels (52). 
 

2.1.5 Hybrid systems 
 
We can have combinations of continuous and discrete states, of continuous and discrete 
time. The resulting systems are called hybrid systems. A hybrid system is essentially a 
system with a combination of a discrete and continuous states and a combination of time-
driven and event-driven evolutions. Typically, the phases of a time-driven evolution are 
separated by discrete time instants when something happens. Usually, the mode is then 
characterized by a discrete state variable. The time-driven nature is evident in both discrete 
and continuous time (53) . 
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2.1.6 Variable-structure systems 
 
Variable-structure systems (VSSs) with a sliding mode were first proposed and elaborated 
in the early 1950s in the Soviet Union by Emelyanov et al. in their pioneer works. Since 
then, VSS has be developed into a general design method and is being examined for a wide 
spectrum of system types, including nonlinear systems, discontinuous systems, multi-
input/multi-output systems, discrete-time models, large-scale and infinite dimensional 
systems, and stochastic systems (54).  

VSS is a discontinuous nonlinear system of the form 


x =f(x,t)  where x=[x1,x2,…,xn]ЄRn is 
the state vector, t Є R is the time variable, and F(x,t)=[f1(x,t),f2(x,t),…,fn(x,t)]:Rn+1→Rn   is  
a  piecewise continuous  function.  Because of the piecewise continuity of these systems, 
they behave like different continuous  nonlinear  systems  in different  regions of  their state 
space.  At the boundaries  of these  regions, their  dynamics  switch abruptly. Hence, their 
structure varies  over different parts of their state space.  

 

2.1.7 Piecewise-smooth dynamical systems 

A piecewise-smooth dynamical system (PWS) is a discrete or continuous-time dynamical 
system whose phase space is partitioned into different regions, each associated with a 
different functional form of the system vector field.  

 

2.1.8 Event-driven systems 
 

The state of the system changes because of the occurrence of an event. An event 
corresponds to the start or the end of an activity. In general, event-driven systems are 
asynchronous, and the event occurrence times are not equidistant (52). Typical examples of 
event-driven mechanisms in mechanical systems are multi-body mechanisms where the 
event is confirmed when two of the bodies make or finish contact or in the case of bodies 
with elastic barriers to the movement when the action of the barrier begins or ends. 
 
 

2.1.9 Discontinuous time-driven systems 
 

http://www.scholarpedia.org/article/Dynamical_Systems
http://www.scholarpedia.org/article/Dynamical_Systems
http://www.scholarpedia.org/article/State_space
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The even driven systems and the discontinuous time-driven systems more than a 
classification are systems in which the adopted name is related with the method of calculus 
more than the characteristics of the system. 
 
Time-driven systems change state in response to uniformly progressing physical time (51). 
Further, a change in the state of the discontinuous system introduces a change in the state 
space. This class of systems is typical of the switched electronic systems (39). 
 
 

2.2 Solution of sliding systems  
 
Zigzag movement is possible in VSSs. In these systems, the orbits have the tendency to 
consecutively cross the DB toward the both neighbourhood regions because of the effect of 
the dynamics of the respective vector fields or the effect of the algorithm of control. 
 
The zigzagging segments are characterized by the following behaviour (see figure .1): 

 
1. If the initial conditions are inside the region Z1, close to DB (which indicates that 

equation f1(x) is been used to calculate the vector field) the orbit evolves toward the 
region Z2, crossing the DB. 

2. If the initial conditions are inside the region Z2, close to DB (which indicates that 
equation f2(x) is been used to calculate the vector field) the orbit evolves toward the 
region Z1, crossing the DB. 

 
These two movements can be alternate by great number of times. This type of combination 
of continuous movement toward the opposite region is called zigzagging because the 
system evolves along the DB forming orbits with shape similar to a saw tooth. See top of 
figure 2.1. 
 
This movement is not real in a system triggered by events. The zigzag evolution is due to 
the size of the step of integration or in other terms the delta of time used for each sample in 
the process of integration. Independently of how small the delta of time be choose, the form 
is evenly presented. Moreover, the selection of relatively small deltas of time leads to 
another problem; the lack of efficiency in the process of integration. 
 
In VSSs commuted by time, the zigzag movement between two vector fields is real. In 
these cases, the solution that used extremely short delta of time in the simulation to   
eliminates the zigzag movement get in a problem. The results obtained are unreal due to the 
physical characteristic of the switches. These devices have low efficient over specified 
values of frequency. The solution proposed by V. I. Utkin (55), (56) is used for this class of 
systems. 
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Note: The concept of zigzagging movement do no avoid that some special system have a 
real dynamic that is similar to movement described.  
 

 
Figure 1.  Zigzagging movement and attractive trajectories that generate sliding movements 

 
 
Figure 2.1 (botton) shows the four possibilities that are observed when the orbits of both 
sides exhibit the tendency to cross the DB. Further, the vectors normal to the trajectories 
and the components f_T in the direction of the DB are shown. The tangential component to 
the DB gives a clue of what class of geometric solution that should be used in order to 
obtain a more real simulation of the movement. The solution more adjusted to the problem 
in the discontinuity boundary of nonsmooth systems is the proposed by A. F. Filippov (57).  
 

 2.2.1 Filippov’s method for attractive movements 
 
Filippov systems (57) are defined as n-dimensional systems with a number j of structures. 
However, in order to simplify the concept, in this section, a planar system (n= 2) with two 
structures or region where the function is defined, will be used. X  is a set, also called state 
space.  x is a vector  indicating  a state.  
 


x  = {    f1(x, α),  xZ1,      f2(x, α)   x  Z2    }            (2.1) 
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Where  f1 and f2 are smooth vector functions, Z1 and Z2 are the corresponding regions 
where the vector fields are defined, αR1 is a parameter. The regions are open domains of 
the planar state space and are defined using the scalar function H(x, α).  
 
Z1 = {x  Rn  such that: H(x, α) > 0}              (2.2) 
 
Z2 = {x  Rn such that: H(x, α) < 0}             (2.3) 
 
Between Z1 and Z2, the state space has a DB, a curve symbolized by Σ1,2, which is a smooth 
function from Rn to R ,  defined as  
 
Σ1,2 = {x  Rn such that: H(x, α) = 0}               (2.4) 
  
The Filippov solution (57) for a point x located on the DB (x  Σ1,2) gives as a result a 
vector field G(x) (called the Filippov vector field), which is a convex combination of the 
vector fields f1(x) and f2(x).  
 
G(x) = λ f1(x) + (1 - λ) f2(x)                 (2.5) 
  
where λ is defined as a function of the vector fields f1(x) and f2(x). In order to obtain the 
value of λ, the normal vector to the DB is used. The symbol <  ,  > denotes the standard 
scalar product and Hx(x) a gradient (a normal vector to a point in a curve or surface). 
 
Thus 
 
λ =   Hx(x), f2 (x)   /    Hx(x), f2(x) – f1(x)                               (2.8) 

 
with a  denominator  different of zero  
 
   = G(x);    x ∑ 
  

defines a scalar differential equation on  the  sliding set  ∑s  of  the discontinuity boundary, 
which is smooth on one-dimensional sliding intervals of  ∑s. Solutions of this equation are 
called sliding solutions (4). 
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Figure 2.   Solution of Filippov. 

 
The Filippov solution is only applicable to points Ωs with attractive or repulsive dynamics. 
See figure 2.  The sliding  set ∑s  is defined as: 
 
∑s = {(x Σ1,2) such that: (σ(x) ≤ 0)}              (2.9) 
 
where σ(x) is a scalar interpretation of a geometric condition 
 
σ(x) = {   Hx(x) , f 1(x)     Hx(x) , f 2 (x)  }            (2.10) 
 
Acording to the ubication of the regions Z1 and Z2 in the figure 2.2 the sliding segment is 
stable (or attractor) if  
 
  Hx(x) , f 1(x)  > 0 and     Hx(x) , f 2 (x)  < 0           (2.11) 
 
The segment is unstable (or repulsive or scaping) if 
 
  Hx(x) , f 1(x)  < 0 and     Hx(x) , f 2 (x)  > 0           (2.12) 
 
Crossing points, which are points where σ(x) > 0, are also found on the DB. At these 
points, the evolution of the trajectory will not be within the DB. Instead, it crosses from the 
region in which has been evolving to the other. The crossing set is defined as: 
 
∑c = {(x Σ1,2) such that:  (σ(x) > 0)}           (2.13) 
 
According to the definition in (2.9), it is also possible that a point x located on the DB has 
the associated vectors with the normal component f_N (x) without magnitude. This is 
because the vector is tangential to the DB or it vanishes.  At such points, either both vectors 
f 1(x) and f 2(x) are tangent to the DB, or one of them vanishes while the other is tangent to 
the DB, or they both vanish.  Then, the point is within the confines of the definition of a 
sliding point and is called a singular sliding point (Ωsss).  
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For this σ(x) = 0. 
  
Ωsss = {(x Σ1,2) such that:    Hx(x) ,(f 2(x) – f 1(x)  = 0}         (2.14) 
 
From (2,9) and (2.12) the crossing set is open, while the sliding set is the union of closed 
sliding segments and isolated sliding points. 
 
Other special points that define important dynamics in the sliding dynamics G(x) are: 
 

1. Equilibria. Both vector f 1(x) and f 2(x) are transversal to the DB. 
2. Quasi-equilibria. Both vector f 1(x) and f 2(x) are anticollinear. 
3. Boundary  equilibria. One of the vector f 1(x) or f 2(x) vanishes. 
4. Tangent. One of the vector f 1(x) or f 2(x) is tangent to the DB.  

 
Note: In this work, the term ‗special points‘ is used for referring to the points that are alone 
on the DB. This implies that the points in the neighbourhood are different. Other term also 
used is isolated point. 
 
Here only introductory concepts of the Filippov concepts are outlined. In next chapter we 
will do a deeper work. For a more references dealing with different aspects, see (57), (5), 
(4), (15),  (9), (46),  (58), (59),  (44), (60), (61), (17), (62), (1), (63). 
  
 

2.2.2 Solution of Utkin 

 
Utkin‘s equivalent control of Utkin (56) is a solution for controlled VSSs using fixed or 
variable spaces of time in which each structure is active or valid. These systems are defined 
in a manner similar to the Filippov systems with the following solution: 
 
G(x) = (f2(x)/2 + f1(x)/2) + (f2(x)/2 – f1(x)/2)λ             (2.15) 
 
In this case, the coefficient λ is defined as  
 
λ = (  Hx(x) , f2(x)  +  Hx(x) , f1(x)  ) / (  Hx(x) , f2(x)  –  Hx(x) , f1 (x)  )      (2.16) 
 
with a denominator  different of zero. 

2.3 State of the art of nonsmooth systems 
 
The study of dynamical systems started with the mathematical representation of the 
functional relations among the different variables of the considered physical phenomenon. 
Usually, the result of the modelling process is a high-order differential equation or a set of 
first-order differential equations. First analysis was carried out using the closed-form 

file:///G:/000%20TESIS%20%2008%20Abril/00INFORME%20TESIS/solucion%20de%20utkin.doc
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solutions of the equations. Later, due to lack of linearity of most of the equations, an 
approximated solution was obtained using numerical methods and was usually called a 
simulation. 

 

On the other hand, the main focus of numerical continuation and bifurcation analysis, as 
opposed to a simulation, is to numerically-compute the continuum families of stationary 
solutions for the system equations as one or several parameters are varied. Such 
computational results lead to a deeper understanding of the system behaviour. Moreover, 
stability, multiplicity of solutions, and bifurcations often provide direct links to the 
underlying mathematical theories (64). 

 

In mathematics and physics, bifurcation theory has been developed over several decades. 
Within these disciplines, the emphasis was traditionally placed on theoretical research. 
Inspired by the discovery of numerous applications and stimulated by new emerging fields, 
researchers had to renew and reshape some of the results of bifurcation theory. The 
availability of more powerful computers and the simultaneously appearance of catastrophe 
and singularity theory were the driving forces that gave bifurcation theory a practical 
significance (65). 

 

The task of bifurcation classification is to determine the class of systems in which a 
bifurcation is presented. Therefore, a first rough division is between bifurcations of smooth 
and nonsmooth systems.  

 

Bifurcations of smooth systems generally produce a change in the number of equilibrium 
points, periodic orbits, and invariant sets of the system. Now, these bifurcations are called 
smooth bifurcations in order to differentiate them from the new types of bifurcations that 
have been discovered subsequently in nonsmooth systems. Smooth bifurcations are present 
in both classes of systems, smooth and nonsmooth. However, in nonsmooth systems and, 
with more emphasis in Filippov systems, new types of bifurcations called non-smooth (or 
discontinuity-induced) bifurcations are present. These non-smooth bifurcations are found 
only in nonsmooth systems.  
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Figure 3. Presence of bifurcations in smooth and nonsmooth systems. 

 
 

 
 
The study of smooth bifurcations in smooth systems is still incomplete as more work is 
required in relation to the classification of bifurcations of a high co-dimension, but the 
mathematical and practical background is abundant. Pre-graduate students can access many 
academic publications. See for example (66), (45). 
 
Moreover due to their robustness, numerical continuation or path-following methods are 
widely used in scientific applications for smooth systems. With the recent advances in this 
subject regarding new adaptations, applications, and analysis of efficiency and complexity, 
numerical continuation is the standard method used for studying bifurcations in smooth 
systems.  
 
Using the principles and methods of numerical continuation discussed in (64), (65), (67) 
(68), (12), (69), (70)and others, computer software for the study of bifurcations in smooth 
systems have been possible. Some examples follow. 
 
MatCont is a continuation package for the interactive numerical study of a range of 
parameterized nonlinear dynamical systems, in particular ODEs. There is also an 
interactive graphical package developed in a Matlab environment with MatCont, a 
command-line version. Both packages allow the computation of equilibrium curves, limit 
points, Hopf points, limit cycles, and the flip, fold, and Torus bifurcation points of limit 
cycles.  
 
Locally, in (70), a method with the capacity to locate and to identify local bifurcations of 
co-dimension one in continuous and discrete autonomous dynamical systems is presented. 
In this work, direct methods or test functions were used for the detection of the five generic 
bifurcations of dynamical systems: fold and Hopf for continuous-time dynamical systems; 
and fold, flip, and Neimark-Sacker for discrete-time dynamical systems. Indirect methods 
are based on simulation techniques, and in turn, the algorithms are based on continuation 
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techniques that use predictor, corrector, and adjustment stages, using several sorts of 
parametrization. The software application derived from this method shows a graphical 
identifier for bifurcations and has been endowed with a graphical interface in a Matlab 
environment. It allows one to observe the behaviour of the system through variables versus 
time and phase-space plots. It also shows the appearance of bifurcations in bifurcation 
diagrams as one or two parameters are varied. 
 
Bifurcations in nonsmooth systems can also be driven by phase-space transitions like those 
triggered by smooth bifurcations but, often, additional transitions not observed in smooth 
systems also occur. They are due to discontinuities or jumps in the vector field which 
represent a very different sort of nonlinearity. The main concept for bifurcation does not 
change, but careful definitions must be introduced and the methods and test functions used 
for detecting stability and bifurcations are quite different. Regarding these topics, Leine, in 
(46), (19) attempts the bifurcations of periodic solutions in discontinuous systems of 
Filippov type.  Furthermore, bifurcations of fixed points in non-smooth continuous systems 
are addressed. Filippov‘s theory for the definition of solutions of discontinuous systems is 
surveyed, and the jumps in the fundamental solution matrices are discussed. The way in 
which the jumps in the fundamental solution matrix lead to the jumps of the Floquet 
multipliers of periodic solutions is discussed. Floquet multipliers can jump through the unit 
circle causing discontinuous bifurcations. Numerical examples that exhibit various 
discontinuous bifurcations are attempted. Further, the question of infinite number of 
unstable periodic solutions is addressed. 
 
A large group of systems that are relevant to engineering applications is modelled using 
sets of ordinary differential equations where the right-hand side is discontinuous. 
Moreover, some systems have trajectories that show jumps in the space state due to the 
impact of elements of the physical system. Or, in other systems, the trajectories show 
discontinuities in the derivatives. This group of systems becomes a significant class of 
nonsmooth systems, and in addition to smooth bifurcations, it shows a class of bifurcations 
that are unique, such as grazing and transitions to sliding motion. 
  
The classification of these new bifurcations was first attempted by Bautin and Leontovich 
(71), who obtained an incomplete classification since they did not allow for sliding. Around 
the same time, Feigin (72) published his work on C-bifurcations. 
 
The next major contribution was made by Filippov (57), who classified singular points in 
planar discontinuous systems and identified all codim 1 local singularities. However, some 
unfoldings of local singularities were missing in Filippov‘s work, and bifurcations of 
sliding cycles were not considered at all. The next contributions were made after 1999, and 
during all these years, Di Bernardo et al. worked on theoretical and practical problems 
using the Zero-Time Discontinuity mapping method  (20), (5), (7), (62). Finally, Kuznetsov 
et al. (3) presented a catalogue of local and global bifurcations in planar systems. In 
particular, since the 1990s, this research has been involved in not only the discovery of 
phenomena and theories (45) but also all important achievements related to the conversion 
of theoretical knowledge into applications to be used by all researchers (69), (12), (68), (9), 
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(15). Currently, the existing contributions on the sliding bifurcations of cycles refer either 
to specific bifurcations  (27), (73) or to particular classes of systems, like mechanical 
systems of the stick-slip type (49), (40), (38) (24), (34), relay systems (74), (75), and 
piecewise linear systems. 
 
From the fundamental work done by Filippov (57) and based on its solution, researchers 
have developed algorithms, methods, and tools useful for the analysis of sliding systems. 
Before outlining some of them, we present an alternative to the discontinuous vector field, 
which is often approximated toward a smoothened vector field. See for example (76). In it 
for instance, sgn(x) is approximated by [[2/π]arctan(εx)]. A smooth approximation 
normally yields a good approximation for large values of ε although difficulties can be 
expected at repulsion sliding modes. It should be noted that the smooth approximation 
always has the existence and uniqueness of solutions, whereas this is not the case for a 
discontinuous system. However, the main disadvantage of the smoothing method is the fact 
that it yields stiff differential equations, which are expensive to solve (46). The smooth 
approximation also could avoid the capture of phenomena and that the real systems shows 
and do not behave in the way that nonsmooth bifurcation can be registered.  
 
 
In the study of n-dimensional piecewise-smooth dynamical systems, the derivation of 
appropriate local mappings in a neighbourhood of a grazing event is often required. One of 
these maps is the so-called Discontinuity Map (DM), introduced in (24). This map can be 
defined as the correction to be made to the system trajectories in order to account for the 
presence of a switching manifold in the phase space. One type of  DM takes into account 
the fact that the manifold has been crossed and computes the final part of the trajectory 
from the corrected initial point on the desired Poincaré section. It is termed Poincaré 
Discontinuity Mapping (PDM). In (20), another type of DM  is discussed. This is the so-
called Zero-time Discontinuity Mapping (ZDM). It is obtained by considering the zero-time 
correction needed to take into account the presence of the boundary. ZDM will be 
particularly useful for describing the local dynamics of non-autonomous systems 
(periodically forced), while PDM will be more suitable for the construction of Poincaré 
maps for periodic orbits that graze. In this sense, DM represents the correction brought 
about by the presence of the switching manifold. The construction of both PDM and ZDM 
requires the knowledge of both the flows on each side of the switching manifold. Using 
these mappings, the local dynamics of a system close to grazing can be effectively 
described analytically.  
 
The new methods respond to a mathematical or numerical manipulation for obtaining 
results in the research or the analysis of a bifurcation. Further, for using these methods in 
the area of engineering, they are better to be converted into software applications. Next, we 
outline some ideas and methods that end up in software applications. 
 
The simulation of routines detecting sliding modes and simulating the equivalent dynamics 
is the main characteristic of the method proposed in (77) and (78). The analysis and the 
design of the method are based on the computation of piecewise-quadratic Lyapunov 
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functions. The computations are performed using convex optimization in terms of linear 
matrix inequalities. The method was converted in a software application named PWStool, 
which is a toolbox for computational analysis of piecewise-linear systems. The key features 
of the toolbox are modelling, simulation, analysis and optimal control for piecewise-linear 
systems. This software application was developed on a Matlab platform. 
 
The occurrence of a sliding mode poses a difficulty for numerical integration. For solving 
this problem, Leine  (46) proposed a numerical technique for the integration of differential 
inclusions with sliding modes. The idea of Leine is to construct a band or a boundary layer 
around the DB, namely, a sub-region ZΣ, to allow for an efficient numerical approximation. 
In the sub-region ZΣ, the vector field is such that the solution is pushed to the middle of the 
band, to the DB Σ. The sub-region ZΣ ends when the vector field in Z1 or Z2 becomes 
parallel to Σ. The width of ZΣ should be sufficiently small to yield a good approximation. A 
similar approach is used in (15) by Piiroinen et al. but adding the condition that the vectors 
inside the sub-region of approximation are not tangent to the DB boundary, instead they 
have a little inclination that move the dynamics toward the separatrix line. The result is a 
faster numerical solution. 
 
SICONOS is an application with a method to solve the equations of dynamical systems 
using, among others, the principles of complementary formalism. It is dedicated to 
modelling, simulation, analysis, and control of nonsmooth dynamical systems (NSDSs). 
Basically, the SICONOS platform aims at providing a general and common tool for NSDSs 
present in various scientific fields such as applied mathematics, electrical networks, 
mechanics, and robotics. Currently, researchers in different areas of engineering and 
applied science often write their own numerical codes for dealing with systems 
characterized by nonsmooth nonlinearities. These codes are typically specific to the system 
of interest. The SICONOS platform will attempt to fill this gap, thereby creating new 
software for solving nonsmooth problems under a common framework. With respect to the 
SICONOS platform, several things need to be implemented. Routines need to be added for 
the continuation of periodic orbits and the detection of bifurcation points. Further, it is 
necessary to implement more examples in order to test the platform. Finally, a detailed 
study of the consequences of approximating nonsmooth systems with smooth ones is 
required in order to obtain a better understanding of this technique (11). 
 
SlideCont, the most recent and complete work, has been developed by Dercole et al. (9) 
and it is based on boundary-value problems. It is made up of a suite of routines 
accompanying Auto97, which allow one to perform bifurcation analysis of generic 
discontinuous piecewise-smooth autonomous systems of ordinary differential equations 
(57), of Filippov type, with special attention to planar systems. The complete SlideCont can 
be used for performing a partial bifurcation analysis of n-dimensional Filippov systems and 
a considerably more complete bifurcation analysis of planar Filippov systems (n = 2). In 
particular, SlideCont is a ready-to-use collection of the defining systems for continuing 
particular solutions of Filippov systems and their bifurcations with respect to at most two 
control parameters. According to Dercole, this work could be extended in several 
directions. First, there are interesting global sliding bifurcations in n-dimensional (n > 2) 
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Filippov systems involving multiple sliding, which are not supported in SlideCont 2.0. In 
the planar case (n = 2), further efforts are required for implementing a more systematic 
detection of co-dimension 2 local and global bifurcations and the branch switching at such 
bifurcations. The current version 2.0 of SlideCont has two major limitations. The first one 
is related to the fact that an orbit of a Filippov system might cross the DB p times and 
involve q sliding segments. The continuation of a corresponding solution in Auto97 would 
require a boundary-value problem with (p + 1 + q)n differential equations, a number that is 
not determined a priori. One way of allowing the continuation of a generic solution is the 
automatic generation of the defining system at run-time, a feature that has not yet been 
implemented. However, as a partial remedy to this limitation, all boundary-value problems 
involving only one standard segment have also been implemented in a modified form with 
two standard segments (one in Z1 and the other in Z2) connected at the DB. The second 
limitation, which will also be removed in the forthcoming versions of SlideCont, is that the 
stability of pseudo-equilibria and of the sliding and crossing cycles is not computed. 
However, limit and branch points are detected by Auto97 along a solution branch, and limit 
points can be continued with one extra control parameter. Note that in planar Filippov 
systems, periodic solutions with a stable sliding segment are always super-stable (i.e., have 
zero multiplier). It should also be noted that SlideCont does not support the time integration 
of Filippov systems. Such integration should be based on automatic switching from the 
computation of an orbit of fi to the integration of the system or its modification, and back. 
Finally, SlideCont runs only in the command mode of Auto97 and has no GUI. The 
development of a software system that supports all of the above-mentioned computational 
tasks for n-dimensional Filippov systems in one integrated user-friendly graphic 
environment is another (admittedly ambitious) goal of their future work. Finally, this 
method is only useful for Filippov systems and consequently mechanical systems, including 
impact and other NSDs, are not included. 
 
The method selected by Piiroinen et al.  (15) for analysing Filippov systems is similar to 
the hybrid-system approach, where integrations of smooth ODEs are mixed with discrete 
maps and vector field switches. The idea is to present a numerical algorithm where the user 
only provides the different vector fields and information about the discontinuity surfaces, 
and then, the vector fields for the sliding regions are automatically computed by a routine 
using the descriptive equations. The introduced methods provide a simple way to 
automatically simulate generic orbits of Filippov systems using a hybrid-system approach. 
Although many research groups have developed simulation environments for specific 
nonsmooth problems, we are unaware of a general Filippov system solver as the one 
proposed here. Therefore, this software c can be used by both applied mathematicians and 
engineers for such simulations and hopefully make the entire community think about these 
problems in a more general setting. However, one problem with the hybrid-system 
approach is that the combinatory complexity of the code increases rapidly with an increase 
in the number of discontinuity surfaces. Further, for even more efficient calculations, it 
would be useful to have a script that initially generates a code for the user-specific problem 
in terms of the state-space dimension and the number of discontinuity surfaces. As 
mentioned earlier, the algorithm can also be used as a building block for a continuation 
algorithm that follows both periodic orbits in one parameter and co-dimension-one 
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bifurcations in two parameters using Poincaré maps. The method lacks a general simulation 
and a continuation interactive environment that supports both discontinuous vector fields 
and state jumps, so that the user must specify a surface as continuous, Filippov, or impact.  
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Chapter 3 
 
 
 

Problems Formulation in the Analysis of Nonsmooth Systems 
 

 
The study of the dynamical systems advances has many challenges. Some of them are:  the 
unification of the mathematical representations of the different subtypes of dynamical 
systems. A second challenge is to find and to classify phenomena that influence the 
performance of the systems. On the basis of the last challenge, bifurcations that maintain 
correlations of the changes in the dynamics caused by the changes in the parameters of the 
system are presented. The third challenge is to find efficient methods for analysis and 
visualising of the mathematical results and especially the most representative dynamics 
such as bifurcations. Therefore, a part of this work is to look for functions that can quickly 
detect the values of the parameters that generate substantial changes in the dynamics, in the 
mathematical representations. 
  
All the advances are obtained in parallel; an advance in numerical methods allows the 
detection of new bifurcations that outlines new challenges in the theoretical formulation of 
problems that require numerical methods again. Therefore, a continuous study in each one 
of the abovementioned fields is necessary. 
 
 

3.1 Problems with mathematical modelling  
 
Many researchers have focused on the development of an equivalent method for analysing a 
general dynamical system. They have selected the special subclasses of hybrid dynamical 
systems. Some systems included in this class are complementary systems (LCSs), mixed 
logical dynamical systems (MLDs), piecewise affine systems (PWAs), variable structure 
systems (VSSs), and systems with inclusions. Each subclass has its own advantages over 
the others (53). The nonsmooth systems can be classified as a sub-class of the hybrid 
dynamical systems on the basis of the mathematical representation of the change in the 
structure when an event is presented. 
 
 

3.2 Trends in search and classification of bifurcations  
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In particular, in the field of sliding bifurcations, there are open problems and limitations 
that still remain. Nonsmooth systems undergo bifurcations more dramatically than smooth 
systems. This is attributed to the discontinuities or jumps in the vector fields. At present, 
there is no complete catalogue of sliding bifurcations in n-dimensional systems. Moreover, 
there is no complete knowledge on normal forms and on numerical analysis of sliding 
bifurcations (9), (15), (4). 
 

3.3 Numerical problems with analysis of nonsmooth systems  
 
The advances in the theoretical field of nonsmooth bifurcations is bundled according to the 
availability of numerical tools for testing new ideas or concepts and this is the reason why 
almost all development presented in the numerical field boosted the theoretical field. 
 
In the study of dynamical systems, the research effort on the classification and development 
of functions for the detection of nonsmooth bifurcations has been slowed mainly by the 
following reasons: 
 
1. The tradition of evaluating any behaviour in the dynamics using a mathematical tool 

that provides an orbit or an output to the phase diagram. This tradition is derived from 
the good results obtained in the study of smooth systems, but it has delayed the 
development and standardization of new tools, more appropriate with the characteristics 
of nonsmooth systems. 

2. The lack of a graph that represents the vector fields but shows the interaction between 
two or more vector fields, including sliding, and impacts dynamics. 

3. The difficulty to obtain high precision results in the integration processes of nonsmooth 
systems makes that the results of a research group have acceptation in proportion to the 
methods and numeric tools they are using. 

 
In the following paragraph, we briefly describe some problems found by researchers when 
they are using generic mathematical software to develop routines for the integration and 
detection of bifurcations of nonsmooth systems.  

 
 

Curly or zigzag lines between vector fields   
 

A problem that is not completely solved by commercial simulation tools is that of 
computing in systems where the state space is divided into sub-regions and the orbits cross 
the limits between several (more than two) different sub-regions. This is one of the reasons 
why many researchers develop their own tools. They attempt to capture complex 
phenomena that are not visible if the numerical tools use simple algorithms.  
 
Let a system be represented as: 
 



3. Formulation of problems 
 

 

55 



x = f j(x, α)                         (3.1) 
 
n:  dimension of the state space   
m:           number of vector fields  
Zj:  regions where the vector fields are defined 
α:  parameter of the system 
 
For this analysis, if i = 3 and j = 2, then 
 


x = (f 1(x, α), f 2 (x, α))                   (3.2) 
  
f 1 is defined in the Z1 region, and f 2 is defined in the Z2 region. 
 
H(x,α) is a smooth scalar function that determines the DB, symbolized by Σ and  is located 
between the regions Z1 and Z2. 

 
Σ = {x R3 : H(x, α) = 0}                 3.3) 
 
and  
 
Z1 = {x  R3 : H(x, α) < 0}                 (3.4) 
 
Z2 = {x  R3 : H(x, α) > 0}               (3.5) 
 
Let x0 be the initial conditions for the system of interest. In order to obtain the trajectory for 
the condition x0  Z1, then  f1(x, α) is integrated numerically. 
 
x1= x0 +              

  

  
               (3.6) 

 
 
If x1  Z2 
 
the next point on the orbit will be 
 
x2= x1 +               

  

  
              (3.8) 

 
In contrast,  
 
if x1  Z1 

 
then 
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x2= x1  +               
  

  
                   (3.9) 

 
In some cases, the orbit is surpassed from one side to the other. Then, after a switching in 
the set of equations, the trajectory can return to the initial region and so forth. In these 
cases, the simulation shows a shape that sometimes does not correspond to the real 
phenomena. Zigzagging is presented by the practical impossibility to reduce time step in 
the integration process to a zero value. Zigzagging looks like a curly line with teeth. See 
Figure 4.  
 
 
 
  

 
Figure 4. Zigzagging movement in 3D systems. 

 
 
 
The zigzagging produced in the continuous and repeatedly changing regions moves 
according two factors: the size of the time step and the slope of the segments with relation 
to the DB.  
 
In some cases, the slope of the segments is almost perpendicular to the DB. In these cases, 
the advance is very gradual until the orbit reaches to a point where it can leave another 
sector where the dynamics are different. See Figure 5. 
  
Let x0 be the point representing the initial condition of an orbit that after evolving during a 
dt  time arrives to point x1  (In figure 5). In the next integration, the orbit arrives to point  x2. 
Now, the integration from point x2 results in a point very close to point x1. As a 
consequence, the real advance of the orbit is very small as compared to the time lapsed. The 
previous phenomena lead to few effective simulations. 
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Figure 5. Perpendicular to DB zigzag movement. 

 
 
 

The simulation process in which zigzagging is allowed generates some errors. One of them 
corresponds to when the orbit reaches a sector with attractive dynamics, as is illustrated in 
Figure 6. 
 
Let x0 be a point representing the initial conditions of an orbit that after some time reaches 
point x1. After the next integration, the result is point x2. This trajectory is not the real 
trajectory. The real behaviour evolves from point x0 to point x3 on the DB, as is shown in 
Figure 6. From point x3, the flow line indicates that the following point should be x4 instead 
of point x1 or the subsequent point x2. 

 

 
Figure 6. Error generated by an orbit near a sliding sector in the DB. 

 
The zigzagging movement also generates errors when the orbits leave a sector where the 
dynamics are attractive. Let x0 be the initial condition of an orbit that after some time 
reaches the DB Σ1,2 at point x1. In this case, point x1 shows attractive dynamics. In Figure 7, 
two solutions can be observed: 
 
1. A zigzagging orbit allowing a continuous commutation of the dynamics between the 

vector fields.  
2. A curve which fits the real phenomena 
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In the first option, a zigzagging segment (x1, x2
•) (red-blue lines) is obtained through the 

continuous commutation of equations 1x
 = f1(xi,α) and 2x  = f2(xi,α) and this is observed 

until the orbit reaches point x2
•. At this point, crossing dynamics from Z1 to Z2 are allowed, 

and the evolution results in the orbit Φa. 
 
In the second option, a curve (x1, x2) that evolves from the orbit Φs on the DB (orange line) 
until it reaches point x2 is presented. At this point, crossing dynamics from Z1 to Z2 are 
allowed, and the evolution result in the orbit Φb. 
 
The error is the distance or the difference between x2 and x2

•, which is small on the DB but 
generates a greater error when the orbit evolves in the Z2 region. One alternative to 
minimize the error is to decrease the time step in the integration process. In the limit, when 
the integration step tends to 0, provided that there are no singular points within the sliding 
region, the zigzagging trajectory can move arbitrarily close to the sliding trajectory, but the 
time taken for the integration process will increase.  

 
Figure 7. Error generated by an orbit leaving sliding sector in the DB. 

 
 

Problems in the detection of the change of regions of a trajectory. 
 

The numerical integration process is discrete, and the result of this process is a group of 
distanced points at which it is assumed that the trajectory is a straight line. As mentioned in 
the previous paragraph, a change in the vector field where the time step does not produce a 
point on the DB, generates an error in the trajectory. Then, the correct procedure implies the 
use of an additional function that performs the following tasks:  
 

1. Detection of a change of region of a trajectory. See Figure 8. 
2. Backward movement from point xn+1 until the detection of the crossing point xc. 
3. Forward movement from point xn with a time step that assures a new point in the same 

position as that of point xc.  
4. Evaluation of whether at xc we have crossing or sliding dynamics (or impact). 
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5. If the dynamics indicates a crossing point, the integration process is restarted from this 
point using the set of equations f2. Then, the correct trajectory Φb is generated. 

6. If the dynamics indicates a sliding point, a Filippov solution is used for obtaining the 
correct trajectory Φc (if it is a impact point, to runs the law of impact to obtain the jump 
and the reset to the same region). 

 
 

 
Figure 8. Backward movement close to a crossing point. 

 
 

The detection of the arrival of the simulation values to the discontinuity boundary where 
some event can be generated is common in various types of problems related to dynamical 
systems. Therefore, an arrival detection function is important. Some of the events in which 
it is important to detect the arrival to a boundary are as follows: 

 
1.  Poincaré maps. 
2.  Limit between two neighbouring region of a state space. 
3.  Stability of one-dimensional system. 
4.  Systems with impacts. 
5.  Start and end of sliding segments in Filippov systems. 
6.  Zero-speed crossing in the switching representation of a system with friction (Variable 

structure representation ).  
7. Continuation of bifurcations using the predictor-corrector method in the correction 

phase. 
 

 

Problem of a restart after an impact  
 

This problem is different from the ones discussed thus far. It is a problem related to systems 
with impacts in which the non-conservative Newton restitution law is used for computing 
the post-impact velocity. The simplest system of this type is one that has a unique vector 
field and a limit where the vector field loses its validity and an algebraic function is 
activated. The representation of this type of system is  
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

x = f j(x, α)                         (3.10) 

 
n:  order of the system and equal to i = 1, 2,…, n   
m R: number of vector fields with j = 1, 2, 3, …, m 
Zj:  subspaces where vector fields are valid  
α:  parameter of the system 
γ:  restitution coefficient 
 
For this analysis, if i = 3 and j = 1, then  
 


x  = ( f 1(x, α),    fΣ( x , γ)  )                (3.11) 

 
f 1: set of equations describing the vector field on Z1   
fΣ: scalar equation of the DB 
 
H(x,α) is a smooth scalar function that determines the DB (Symbolized Σ ), in such a way 
that a point in this DB fulfils  
 
Σ = {x  R3 : H(x, α) = 0}              (3.12) 
 
and 
 
Z1 = {x R3 : H(x, α) < 0}                 (3.13) 
  
With  
f :  

 (x, x


)(x, x


) 

x


= - x


                                (3.14) 
 

where x


 is the arrival speed of the trajectory to the DB, x


 is the bounce speed of the 
trajectory, and γ is the restitution coefficient for this type of phenomena. The value of x 
corresponding to the place where the impact occurs does not vary. 
 
Let x0 be the initial conditions for the system considered. In order to obtain a trajectory with 
these initial conditions, an integration process with x0  Z1 is initiated. This process uses 
f1(x, α) with a small time step, if we compare it with the time system response. The result is 
a trajectory Φa, as illustrated in Figure 9. 
 
Once the orbit arrives at the DB  at point xn, the vector field f1 is changed with the function 
fΣ, which generates point xn+1. At this point, fΣ should be changed again with the original 
vector field f1 in order to generate the trajectory Φb. 
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Figure 9. Trajectory of an impact and its bounce. 

 
The problem occurs at point xn+1.   This point belongs to the DB, and from the definition for 
piecewise smooth systems used  for this class of systems the function fΣ  should be  applied 
to every  point belonging to the DB. The result is a point that belongs to the DB. Then, fΣ 
captures the dynamics within the DB, which are different from what happens in the real 
phenomena. Figure 10 shows the error caused by the simulation. 
 
 
 

 
Figure  10.  Error in the trajectory of a bounce. 
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A simple but not exactly solution extend the region of impact to  H(x, α) ≥ 0.  In order to 
solve the difficulty, in numerical applications, a more complex representation that is not 
available in most of the commercial tools for simulation is required. The evaluation of this 
additional representation is used as a detector that identifies whether an impact is occurring 
and proceeds to run a routine of reset once the bounce speed has been calculated. 
 
 
Problem of impact with infinite bounce  
 
There are many systems where the impact is caused by the separation of two bodies that 
usually work together. These bodies separate because of a calibration failure, but after some 
time, they get together again in a sequence of impacts.  
 
The cam-follower is a case in which the follower should remain on the cam, but due to a 
design problem, the changes in the shape of the cam accelerate the follower over its gravity-
producing jumps. The landing of the follower is elastic and generates bounces. See Figure 
11. 
 
 

 
 

Figure 11.  Scheme of a bounce in a cam-follower system. 
 
 

The analysis of systems with impact and elastic bounce, which are modelled using formulas 
with the restitution coefficient, reveals a decreasing bounce speed. However, since the 
restitution coefficient is usually a percentage, in mathematical sense, the bounce speed 
never reaches zero. This simulation result, compared with the real behaviour, is different 
because in the real phenomena, after some time, the element comes to rest. This large 
number of smaller and smaller bounces is sometimes referred as chattering and is 
characterized by an infinite number of impacts occurring in finite time (79). Numerically is 
needed take some speed value as a limit. When the bounce speed is under this value is 
suppose the ball is resting and the iteration is stopped. 
 
Note: chattering takes different meanings according to different knowledge areas (see 
mechanical systems with friction and vibration (17),  mechanical systems with impacts 
(79), (11), sliding control  (80),  and so on).  
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Let  w  be the number of bounces, the friction of the ball with the air is negligible and the 

first impact  with  a  speed  1x


   different of  zero, then  mathematically, the final absolute 

speed  fx


 is equal to 

 

 1f
wx x 

 

                    (3.15) 

 

From the structure of the equation (3.15) is concluded that the absolute final speed  fx


 is 
different of zero for any value of w. 

 

 

Figure 12.  Scheme of an infinite bounce. 
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Chapter 4 
 
 
 

Application of Singular Point Tracking (SPT) Method to 
Identification of Local Bifurcations 

 
 

 
  
This chapter is dedicated to a progressive presentation of what we have called the singular 
point tracking (SPT) method. This name is coined on the basis of the fact that in all the 
relations found in this work, we have considered only a singular or a special point. A 
special point is assumed to be an isolated point of an orbit or an isolated point in a line of 
analysis of the Discontinuity boundary. In the first part, the geometrical concepts that are 
useful in the following sections in order to determine whether a point has associated vectors 
pointing toward an important direction are established. Then, on the basis of the quantity of 
information that is contained in a point that is within the DB, each point is coded with a 
numeric, textual, or graphic symbol that gives information the user of the characteristics of 
the vectors accompanying the point. Then, is developed a syntactic process in which all 
types of points are listed and then grouped according to the dynamics. The next step is to 
study the sequences of points and their respective dynamics along the DB. These sequences 
are listed to be used in the next step as clues of the changes in the dynamics that can be 
considered bifurcations due to the changes in the parameter values. At this point, the SPT 
method is established, and the catalogue of local bifurcations is used for the validation of 
the method. Finally, an introduction to a three dimension system is done to study the spread 
ability of the method. 
 

4.1 Assignation of ranges to the angles of the vectors  
 
The main characteristics of a singular or a special point are as follows: 
 
1. It is accompanied on both sides only by groups of points of the same type. 
2. The orientation of one or both of its vectors is special. For example, perpendicular or 

parallel to the tangent to the DB. 
 
Then, in order to determine whether a point is a singular or a special point, we select the 
angle as a tool because it lets us define arcs in two-dimensional systems and caps in three-
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dimensional systems and so on in n-dimensional systems. These arcs are used for 
determining whether a trajectory is advancing toward the range of the influence of  a 
determined region of a nonsmooth system. Another event that is determined using ranges is 
the evolution of a sliding trajectory on the DB. 
 
 
Ranges in two-dimensional systems 
 
Let Σ be the symbol to represent de discontinuity boundary or the curve that determines the 
limits between regions Z1 and Z2, as illustrated in Figure 13.  Let H be the set of equations 
that describes the curve Σ and H_T be the tangential vector to Σ at point x1. 
 
 

 
 

Figure 13. Assignation of ranges according to the orientation of the DB. 
 

 
In order to determine whether a trajectory that was initiated at point x0 in the region Z1, that 
has evolved and at the moment is on the DB in the point x1, is pointing toward the region Z1 
or the region  Z2, it is necessary to define two angular openings Θ1 and Θ2 (See figure 14) 
using the following notation Θ=(  ini,  end). 
 
Θ2 = ( H_T,  H_T + π)               (4.1) 
 
and  
 
Θ1 = ( H_T + π,  H_T + 2π)               (4.2) 
 
These ranges in turn are divided into quadrants for detecting whether the orientations of the 
movements are toward the right or toward the left of the DB and whether there are any 
orientations perpendiculars or tangent relative to the DB.  
   
Θ2R = ( H_T,  H_T + π/2)                         (4.3) 
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Θ2L = ( H_T + π/2,  H_T + π)             (4.4) 
 
Θ1L = ( H_T + π,   H_T + 3/2π)                    (4.5) 
 
Θ1R = ( H_T + 3/2π,   H_T + 2π)           (4.6) 
 
 
 
Ranges in three-dimensional systems  
 
Let Σ be the symbol to represent de discontinuity boundary or the surface that determines 
the limits between regions Z1 and Z2 as it is illustrated in Figure 14. Let H be the function 
that describes the surface Σ and Hzx1 be the vector normal to the surface at point x1. This 
vector also is used to define a plane Hz  with  two axis Hxx1 and Hyx1 forming a 
transformed Cartesian system of coordinates. 
 
The characteristics of Hxx1 are related to those of the surface Σ. When the vector Hzx1 is 
collinear with the Z axis of the normal Cartesian space, the selection of Hxx1 and Hyx1 is 
the same as that of the X and Y axes of the normal Cartesian space.  
 

 
 

Figure 14. Assignation of directions according to the DB in 3D systems. 
 
 
 
In three dimensions are declared four ranges over the plane Hz. With these four ranges and 
the combination of the positive and negative direction of Hzx1, are declared eight three-
dimensional ranges or caps. In three dimensional spaces a cap is defined using spherical 
coordinates that in turn uses two ranges associated with two planes of the Cartesian 
coordinates, the XY plane and the XZ plane. Then the upper and lower caps are: 
 
Θ2 = ( Hxx1,  Hxx1 + 2π)xy-plane   ( Hyx1,  Hyx1 + π)xz-plane           (4.7) 
 
and  



 Singular points in the identification of  local and global bifurcations  
 

 

 
Θ1 = ( Hxx1,  Hxx1 + 2π) xy-plane   ( Hyx1 + π,  Hyx1 + 2π) xz-plane           (4.8) 
 
  

4.2 Assignation of codes to the ranges  
 

Vectors with an important orientation 
 
The vectors associated to a point located in the DB can be oriented in a direction parallel or 
perpendicular to the curve or the plane that forms the DB. These orientations are important 
because the dynamics of the trajectory can be singular. Other vector fields, which are 
tangential but their size is zero have relation with equilibria points.  The combination of 
vectors fields, f1 and f2 of both regions that become anti-collinear are also important. 
 
Then, in planar systems there are four important orientations (0, 90, 180 and 270 degrees) 
and two possibilities related to the size of the vectors: with size and without. See Figure 15. 
 
 

 
Figure 15. Ranges for analysis of vector orientations. 

 
 
 
The numerical methods are unable to identify when an angle of a vector is equal to an exact 
value. In order to avoid this problem, the angle of reference is converted into a very small 
range, then if the angle of a vector is in this range, it is accepted that the angle is equal to 
the angle of reference. The range is selected by adding and subtracting a small σ to the 
angle of reference. 
 

 i  Θ    if    ( (ref – σ) <  i  <   (ref + σ)}            (4.9) 
 
Therefore, the four orthogonal directions are transformed into four ranges. With the other 
ranges defined previously (for planar systems), there are now eight ranges. The first four 
ranges previously defined should give a little part of their wideness to let the new ranges be 
defined inside them. 
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If each point in the DB have associated two vectors each one from each vector field f1 and 
f2,  and each vector can point in the direction of  one of the eight ranges, then there are 64 
combinations or possibilities. When the size of the vectors is considered, there are 17 
additional possibilities.  
 
Some other characteristics that make differences between both vectors are also included.  
For example, a size comparison of the tangential or normal components of the vectors. 
Consequently, the number of possibilities for analyzing the vectors associated to a point 
reaches more than a hundred.  
  
For the analysis, a point x1 on the DB is taken, and the vectors associated to the point are 
calculated with the equation of the vector fields f1 and f2 that represents the dynamics of 
system in the regions Z1 and Z2; the point is evaluated and coded according to the 
geometric characteristics mentioned in the last paragraphs. We emphasize the coding 
process because it is useful in the construction of a numerical function for detecting 
bifurcations. The presence of dynamics  such as crossing, attractive sliding, start or end of a 
sliding, and changes in the direction of a sliding segment is determined by using the 
information revealed by the orientation and the size of the vectors fields. 
 
In order to recognize each point on the DB, it is possible to assign a three-digit number to 
each point in which the value is related with the characteristics of the vectors.  
 
The first and the second digits (from left to right) denote the orientation of the vectors f1 
and f2. 

 
0: range 0°  
1: range Θ2R 
2: range 90°  
3: range Θ2L 
4: range 180° 
5: range Θ1L 
6: range 270°  
7: range Θ1R 
 
The third digit provides information about the size and other characteristics. 
 
0: both vectors have a size other than zero 
1: both vectors have a size equal to zero. 
2: vector f1 vanishes. 
3: vector f2 vanishes. 
4: both tangential components f1_T and f2_T have the same size.  
5: both normal components f1_N   and  f2_N have the same size. 
6: tangential component f1_T is bigger than f2_T.     
7: tangential component f2_T is bigger than f1_T.   
8: vector f1 and f2 are anti-collinear. 
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If two characteristics are presented at the same time, the first one is considered. 
 
 
Examples: 
 
 
In figure 16, we have a special point (boundary equilibrium in (3)) located where attractive 
sliding is initialized. This point in the region  Z1, has an associated a vector that vanishes. 
However, before reaching this stage, the vector was tangential with an angle in the range 
equal to zero. From the vector field f2, the vector has an angle in the range of (270°, 360°). 
The third digit informs that f1 is a null vector; therefore, the numeric classification of this 
point is 072. 
 
 

 
Figure 16. Point on the DB with numerical classification 072 indicating the beginning of a sliding segment. 

 
 
In figure 17 is shown at the centre of the DB, a special point (tangent point in (3)) found at 
the end of an attractive sliding segment. This point, from the region Z1  has an associated  
tangent vector  with an angle equal to zero. From the region  Z2, it has an associated  vector 
with an angle equal to 270°, and thus, the number associated with this point is 070. 
 
 

 
Figure 17.  Point in the DB with numeric classification 070 indicating the end of a sliding segment. 
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4.3 Assignation of symbols to points on DB  
 
The assignment of numbers to the points on the DB is useful from the numeric point of 
view since it allows the development of algorithms that help to identify and automatically 
classify the points. From a didactic point of view, the assignment of numbers hinders the 
compression, and therefore, a group of graphic symbols has been developed to be used in 
the figures in a way that allows us to draw a quick visual correlation of the dynamics of 
each point. The points will also have a textual indicator that has two parts, the Greek letter 
omega Ω accompanied with an index that indicates the class of the point. 
 
  
Graphic symbols for the points on DB and the regions 
 
Next, an introductory list of some of the classified points and their corresponding symbols 
is presented. In the next sections, these symbols are further explained, and the geometrical 
conditions for their existence are found. As has been mentioned before, the classification is 
mainly taken by the direction and the size of the vector calculated using the function of the 
vector fields f1 and f2  in the point and are called associated vectors. 
 
1. A crossing point from Z1 to Z2 . 
 
2. A crossing point from Z2 to Z1 . 
 
3. An attractive point with both vectors perpendicular to the DB . 
 
4. An attractive sliding point with movement toward the right . 
 
5. A repulsive point pointing toward the right . 
 
6. An attractive sliding point with movement toward the left .  
 
7. A repulsive point pointing toward the left . 
 
8. A double tangency point with movement toward the right . 
 
9. A double tangency point with movement toward the left . 
 
10. A double tangency point with double direction  and . 
 
11. An attractive-tangent point with direction to the left  and . 
 
12. An attractive-tangent point with direction to the right  and .  
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13. An attractive anti-collinear point with inclination to the right  and to the left .  
 
14. A repulsive anti-collinear point with inclination to the right  and to the left . 
 
15. Perpendicular repulsive points , , and . 

 
16.  Atractive-nul  points   ,   ,  and  

 
17. Repulsive-null  points    , ,  and  

 
18. Tangent-null points  , ,  and   

 
19. Null- null points  

 
20. Perpendicular-null points  and  
 
21. A stable node or focus . 
 
22. A saddle node . 
 
23. An unstable  node  or focus . 

 
24.  Point belonging to an orbit in Z1 and rotating in the CW direction . (clockwise) 
 
25.  Point belonging to an orbit in Z1 and rotating in the CCW direction . (counter 

clockwise) 
 
26. Point belonging to an orbit in Z2 and rotating in the CW direction . 
 
27. Point belonging to an orbit in Z2 and rotating in the CCW direction . 

 
28. Point of arriving and  bounce of an  impact   and   

 
29. Impact point at a speed near zero  

 
30. Smooth  crossing  points , ,  and . 
 
 
Conditions of existence of the classified points 
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Classified points are characterized using Boolean-valued functions B(.)  that return True or 
False when their arguments are evaluated.  In these functions we use the logical 
connectives AND, OR and NOT denoted by ,   and  , respectively. We also evaluated 
variables using partial orders denoted by  , , and .  The theory of Sets is used to group 
arguments or subfunctions and to evaluate membership.  A simplification of the Boolean 
symbolism is to indicate that a point is of one type  implies ( ) that  the arguments 
conforming the Boolean function are True.  
 
Suppose two neighbouring region Z1 and Z2 with a DB with an analysis point x1 and 
vectors fields f1 and f2.  
 
In order to simplify the explanation but without a loss of generality, it is assumed that the 
DB is parallel with the X axle of Cartesian plane. Other orientation can be calculated  
through transformation of coordinates. As consequence, the region  Z1 occupies quadrants 3 
and 4 of the Cartesian plane and the region Z2 occupies quadrants 1 and 2. The analysis of a 
combination of the two vectors associated to the point x1  gives the following classification 
(see also (81) (82)). 
  
 
Crossing points 
 
The crossing points Ωc have the following characteristics: 

Ωc   {[(f1 _N > 0)   (f2_N > 0)]   [ (f1 _N < 0)   (f2_N < 0)]}        (4.10) 

with those that cross from Z1 to Z2  (Ωc1,2) 

Ωc1,2  {(f1 _N > 0)   (f2_N > 0)}                         (4.11) 

with those that cross from Z2 to Z1  (Ωc2,1) 

Ωc2,1{(f1 _N < 0)   (f2_N < 0)}                                                (4.12) 

The points of the 11x, 12x, 13x, 21x, 22x, 23x, 31x, 32x and 33x type are crossing points 
from Z1 to Z2.    
 
The x included in the codes indicates a coherent value. For example, the point 22x cannot 
be 225 since it is a contradiction because the point 22x has a vanished vector in contrast to 
the point x25 that represents a point with no vanished vectors. 
 
The points of the 55x, 56x, 57x, 65x, 66x, 67x, 75x, 76x and 77x type are the crossing 
points from Z2 to Z1.  
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Note:  when the angular orientation of  f1  and  f2  with relation to the vector  H_T  is the 
same, we say that the point  not only is crossing but also smooth and the symbol    is 
used.  The type of crossing and the orientation defines between four possibilies. 
 

Sliding regular points and sliding special points. 

The remaining points are divided into the sub-classifications sliding points Ωs and special 
points that again are divided into other sub-classifications.  
 
The sliding points are divided into sliding attractive points  and repulsive points .  
 
Each one of the previous points in turn is divided in terms of the movements toward the 
right or toward the left. The movement to the right or to the left is related with the 
evaluation of the Filippov‘s solution. 
 
Let Gij be the vector that is the result of the Filippov evaluation.  
 
MR = 1 (movement toward the right) otherwise ML = 1 (movement toward the left) 
 
MR = 1 if {(GIJ Θ1R) ( GIJΘ2R)}                  (4.13) 
 
ML = 1 if {(GIJ Θ1L) ( GIJΘ2L)}                                (4.14) 
 
 
The sliding points Ωs have the following characteristics: 
 
 Ωs  {[(f1 _N > 0)   (f2_N < 0) ]   [ (f1 _N < 0)   (f2_N > 0) ]}     (4.15) 
 
The attractive or stable sliding points  (ΩssR) or  (ΩssL) 
 
 Ωss  {(f1 _N > 0)   (f2_N < 0)}= SS                    (4.16) 
 
 
The points of the 15x, 16x, 17x, 25x, 27x, 35x, 36x, and 37x type are attractive sliding 
points. The point of the 26x type meets the abovementioned conditions but is a singular 
point. 
 
The repulsive or unstable points  (ΩsuR) or  (ΩsuL). 
 
 Ωsu  {(f1 _N < 0)   (f2_N > 0)}=SU                       (4.17) 
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The points of the 51x, 52x, 53x, 61x, 63x, 71x, 72x, and 73x type are repulsive points. The 
point 62x meets the required conditions but is a singular point. 
 
The attractive sliding points with movement toward the right  (Ωss→) or (ΩssR) 
 
 Ωss→ {SS   MR}                (4.18) 
 
The points of the 16x, 17x, and 27x type belong to this classification.  
 
The attractive sliding points with movement toward the left  (Ωss←) or (ΩssL) 
 
 Ωss← 

{SS   ML}                (4.19) 
 
The point of the  36x, 35x, and 25x type belong to this classification.    
 
The repulsive points do not move over the DB but show from the Filippov solution a 
tendency that we call ―point to‖. Instead, for the attractive sliding segment we say, ―they 
are moving to‖. 
 
The repulsive points addressing toward the right  (Ωsu→) or (ΩsuR)  
 
Ωsu→ 

  {SU   ML}                  (4.20) 
 
The points of  the 61x, 71x, and 72x type belong to this classification.  
 
The repulsive points addressing toward the left  (Ωsu←) or (ΩsuL) 
 
 Ωsu← 

  {SU   ML}                (4.21) 
 
The points of the 52x, 53x, and 63x type belong to this classification. 
 
The numerical classification does not assure in some cases the sliding direction. The points 
15x, 37x, 51x, and 73x should be intercepted with the function defined in (4.13) and (4.14) 
equations in order to determine whether the direction is MR or ML. 
 
The special points are subdivided into points with one tangential vector, points with both 
tangential vectors (singular), points with one tangential vector and one vanished vector 
(singular), points with both vanished vectors (singular), point with one vector vanish 
(boundary equilibria), and points with anti-collinear vectors having different inclinations 
and vectors with a combination of the above (pseudo-equilibria). 
 
The analytical definitions of tangential, anti-collinear, perpendicular, and vanished vectors 
are presented next: 
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Note: the symbol ff means a duplicate characterisitic. 
 
Points on the DB with a tangential vector ff _T imply that 
 
ff1 _T {(f1_N = 0)   (f1_T 0)}   ff 2_T {(f2_N = 0)   (f2_T  0)}       (4.22) 
  
Points on the DB with a vanished vector ff_X imply that 
 
ff1_X {(f1_N = 0)   (f1_T = 0)]   ff2_X   {(f2_N = 0)  (f2_T = 0)}       (4.23) 
 
Points on the DB with anti-collinear vectors ff12_AC (not tangents) imply that 
 
ff12_AC {[ (f1_T/f1_N)=(f2_T/f2_N) ]  (f1_N 0)   (f2_N   0)}         (4.24) 
 
 
Points on the DB with perpendicular vectors ff12_NN imply that 
 
ff12_NN {(f1_T = f2_T = 0)   (f1_N  0)   (f2_N   0)}        (4.25) 
 
 
Sliding tangent points  
 
A sliding tangential vector refers to the case when one of the vectors is tangential and the 
other determines the characteristics (stable or unstable) of the point. 
 
If the vector f1 is tangential, f2 determines the point.  
 
If f2_N < 0, then according to the direction of the vectors, we have the following 
possibilities: 
 
 
Point  (Ωss→

T) 
 
 Ωss→

T   {ff1_T   (f2_N < 0)   MR}            (4.26) 
 
The points of the 07x type belong to that classification. 
 
 
Point  (Ωss←

T) 
 
Ωss←

T   {ff1_T   (f2_N < 0)   ML}           (4.27) 
 
The points of the 45x type belong to that classification. 
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If f2_N > 0  
  
Point  (Ωsu→

T) 
 
 Ωsu→

T   {ff1_T   (f2_N > 0)   MR}           (4.28) 
 
The points of the 01x type belong to that classification. 
 
 
Point  (Ωsu←

T) 
 
Ωsu←

T   {ff1_T   (f2_N > 0)   MR}           (4.29) 
 
The points of the 43x type belong to that classification. 
 
 
If the vector f2 is tangential, f1 determines the characteristics.  
 
If f1_N > 0, then according to the direction of the vectors, we have the following 
possibilities:  
 
Point  (Ωss→T) 
 
 Ωss→T   {ff2_T   (f1_N > 0)   MR}           (4.30) 
 
 
The points of the 10x type belong to that classification. 
 
Point  (Ωss→T) 
 
 Ωss→T   {ff2_T   (f1_N > 0)   ML} 
 
 
The points of the 34x type belong to that classification. 
 
If f1_N < 0  
 
Point  (Ωsu→T) 
 
Ωsu→T   {ff2_T   (f1_N < 0)   MR}          (4.31) 
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The points of the 70x type belong to that classification. 
 
Point  (Ωsu←T) 
 
Ωsu←T   {ff2_T   (f1_n < 0)   ML}           (4.32) 
 
The following point belongs to that classification: 54x. 
 
 
Null points (vanished vector fields) 
 
If  f1 vanishes at the analysis point, then f1= 0 and f2 determines the characteristics (stable or 
unstable) of the point. The letter V is used to mean vanished and as a sub-index; the letter X 
indicates the vector field that generated the null vector. 
 
If f1_N < 0 
 
Point  (Ωssv→

X) 
 
 Ωssv→

X
 
  {ff1_X   (f2_N < 0)   MR}          (4.33) 

 
 
The points of the 54x, 072 and 472 types belong to that classification. 
 
Point  (Ωssv←

X) 
 
Ωssv←

X   {ff1_X   (f2_N < 0)   ML}          (4.34) 
 
 
The points of the 452 and 052 type belong to that classification. 
 
If  f2_N > 0 
 
Point  (Ωsuv→

X) 
 
Ωsuv→

X   {ff1_X   (f2_N > 0)   MR}            (4.35) 
 
 
The points of the 012 and 412 types belong to that classification. 
 
Point  (Ωsuv←

X) 
 
Ωsuv←

X {ff1_X   (f2_N > 0)   ML}            (4.36) 
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The points of the 432 and 032 types belong to that classification. 
 
If f2 becomes null at the analysis point, f1 determines the characteristics of the point. 
 
If f1_N >0 
 
Point c  (Ωssv→X

) 
 
Ωssv→X

   {ff2_X   (f1_N > 0)   MR}            (4.37) 
 
 
The points of the 103 and 143 types belong to that classification. 
 
Point  (Ωssv←X) 
 
Ωssv←X

   {ff2_X   (f1_N > 0)   ML}           (4.38) 
 
The points of the 343 and 303 types belong to that classification. 
 
 
If f1_N <0 
 
Point  (Ωsuv→X) 
 
Ωsuv→X 

  {ff2_X   (f1_N < 0)   MR}          (4.39) 
 
 
The points of the 703 and 743 types belong to that classification. 
 
Point  (Ωsuv←X) 
 
 Ωsuv←X 

  {ff2_X   (f1_N < 0)   ML}           (4.40) 
 
The points of the 543 and 503 types belong to that classification. 
  
 
Tangential null points  
 
If f1 is a tangent vector and f2 becomes null, it is not possible to assure that the point is 
attractive or repulsive. Then, this is a common point in the transitions of the flow crossing 
from f1 to f2 or vice versa. 
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Point  (ΩSTV
→X) 

 
ΩSTV

→X 
  {ff1_T   ff2_X   MR}              (4.41) 

 
The points of the 003 and 043 types belong to that classification. 
 
 
Point  (ΩSTV

←X) 
 
ΩSTV

←X 
  {ff1_T   ff2_X   ML}           (4.42) 

 
The points of the 443 and 403 types belong to that classification. 
 
 
Point  (ΩSVT

→
X

)  
 
ΩSVT

→
X

 
  {ff2_T   ff1_X   MR}           (4.43) 

 
The points of the 002 and 042 types belong to that classification. 
 
 
Point  (ΩSVT

←
X) 

 
ΩSVT

←
X

 
  {ff2_T   ff1_X   ML}           (4.44) 

 
The points of the 442 and 042 types belong to that classification.  
 
 
Tangent-tangent points  
 
If both vectors are tangent, we can not classify it as a point attractive or repulsive; however, 
the segment of tangent-tangent points moves the evolution along the DB, and hence, it can 
be classified as a pseudo-sliding point or a singular as in (3).  
 
Point  (ΩsTT

→) 
 
ΩsTT

→ 
  {ff1_T   ff2_T   (f1 >0)   (f2 >0)}                           (4.45) 

 
The points of the 000, 004, 006 and 007 types belong to that classification. 
 
 
Point  (ΩsTT

←) 
 


