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ABSTRACT 

The Role of Colloidal Particles on the Migration of Air Bubbles  

in Porous Media. (December 2007) 

Ji-Seok Han, B.S, Korea University; 

M.S, Texas A&M University 

Chair of Advisory Committee: Dr. M. Yavuz Corapcioglu 

 

 The contamination of groundwater and soils has been a big issue of great interest and 

importance to human health. When organic compounds from leaking underground storage 

tanks or accidental spills on the surface infiltrate into the subsurface environment, they 

migrate downward through the unsaturated zone. These contaminants are dissolved into 

groundwater and move with groundwater flow. Thus, there is a need for remediation 

technologies. 

Air sparging is relatively cost-effective, as well as an efficient and safe technique for 

recovering organic contaminants in the subsurface. This technique introduces air into the 

subsurface system to enhance the volatilization and bioremediation of the contaminant in the 

groundwater system. In this operating system, the movement of air phase can take place either 

as a continuous air phase or as discrete air bubbles. However, the present research focused on 

continuous air phase assumption and mass balance equations of individual phases rather than 

taking into account the movement of air bubbles and colloidal particle capture on discrete air-

water interface. 
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Generally colloidal particles are treated as suspended particles in the water, so the 

hypothesis is that the rising air bubble can collect the particles and transport them up to the 

water table where the pump extracts the dirty bubbles from the groundwater system to the 

processing unit on the ground surface. 

This dissertation developed a pore-scale study to model the migration of discrete air 

phase in the presence of colloidal particles captured on the air-water interface. The model was 

based on the pore-scale balance equation for forces acting on a bubble rising in a porous 

medium in the presence of colloids. A dimensional analysis of the phenomenon was also 

conducted to provide a more generalized methodology to evaluate the effect of individual 

forces acting on an air bubble.  

 The results indicate that the proposed model can predict the terminal velocity of a 

rising bubble without or with colloidal particles and provide the effect of numbers of colloidal 

particles, properties of colloidal particles, and solid grain size. The results showed that the 

terminal velocity of a discrete bubble was affected by the attachment of particles on a bubble, 

and then the volatile organic compound (VOC) removal rate was changed by the various radii 

of a bubble and the number of  colloidal particles on a bubble. 
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1 INTRODUCTION 

1-1 PROBLEM STATEMENT 

The contamination of groundwater and soils has been a big issue of great interest and 

importance for human health. When organic compounds from leaking underground storage 

tank or accidental spills on the surface infiltrate into the subsurface environment, they migrate 

downward through unsaturated zone. The contaminants may be accumulated on the water 

table or on the bottom of saturated zone because of the difference of the density of 

contaminants. These accumulated contaminants are dissolved into groundwater and move with 

groundwater flow. Thus, there is a need for remediation technologies.  

Although various remediation techniques have been proposed, developed and applied 

to remove contaminants from groundwater and soils, some techniques are expensive and have 

very low effectiveness. In the last few decades, a lot of researches have been focused on in-

situ treatment that is relatively cost-effective, as well as efficient and safe technique for 

recovering organic contaminants in the subsurface. The term in-situ comes from Latin and 

means “in its original place.” That is, treatment occurs in the subsurface. A widely used 

remediation technique is air sparging for removing volatile organic compounds (VOCs) and 

for treating target compounds in the saturated zone. Many researchers have focused on 

optimal condition for air sparging. This technique has two main mechanisms: one is 

volatilization as air moves through porous media and the other is aerobic biodegradation 

through increased oxygen supply. The main removal mechanism of air sparging is 

volatilization rather than biodegradation. 

This dissertation follows the style of Water Resources Research. 
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When air is injected into the porous media, two types of air flow patterns might be 

occurred. One is “bubble flow” that means the injected air moves to the water table in the 

form of discrete air bubbles, and the other is “channel flow” that means the injected air 

migrates in the vertical direction in the form of discrete air channels. These flow patterns 

depend on the size of the porous media. As the porous media size increases, air flow patterns 

move from air channels to bubble flow [Brooks et al., 1999]. 

A mathematical model has been developed for air sparging by Wilson et al. [1998]. 

They have assumed that the mode of transport of air could be in the form of air channels. 

Their work is not included in bubble flow system. The quantitative technique about movement 

of an air bubble has been developed by Corapcioglu et al. [2004]. They have developed the 

model of air movement based on a force balance equation related to inertial force, buoyancy 

force, surface tension and drag force. These researchers have not considered colloidal particles 

in porous media.  

However, colloids are presented and usually suspended in groundwater. Colloids are 

generated from chemical and/or physical perturbations in the natural porous matrix or changes 

in hydraulic system such as pumping or injection of water at high rates. Problems associated 

with colloid in groundwater have been investigated by many researchers for decades. Colloids 

naturally present in subsurface environment as mineral particles released from soil matrix in 

response to various conditions that the soil matrix experiences [DeNovio et al., 2004]. The 

colloids, very tiny particles can be contaminant itself or act as carriers of the contaminant on 

them in subsurface environment. Due to the very small size, colloids have unique chemical 

and physical properties. Sometimes colloids facilitate the transport of the contaminant or 

cause retardation of contaminant transport [Corapcioglu and Choi, 1996]. 
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Colloids can also be introduced into the porous medium from the land surface through 

rapid infiltration of rainfall or injected into subsurface as tracer for an experiment [Keller and 

Sirivithayapakorn, 2004, Ryan and Elimelech, 1996]. Colloid mobilization in macro pores in 

soil matrix due to the changes in solution chemistry is also a colloid generation mechanism in 

groundwater because mobilized colloids in the pores near the land surface can travel to the 

water table [Ryan and Elimelech, 1996].  

Particles present on soil-water interface and in the fluid as suspended form in water 

saturated porous media. The presence of bubble in the water saturated system affects on the 

transport phenomena and behaviors of the particles. The moving air bubbles carry the particles 

attached on their surface if the buoyancy is still big enough to keep rising, or retard when the 

total mass of the particles produces gravitational resistance which is equal to or exceeds the 

buoyancy. Force balance equation, population balance equation, and one dimensional 

advection-dispersion equation describe effects of moving bubble on the behaviors and effects 

of the particles in porous media. 

Attachment of particles on a bubble is explained by many researchers with various 

theories[Schulze et al., 1989, Ralston and Dukhin, 1999, Nguyen, 1994, Nguyen and Evans, 

2003]. Langmuir and Blodgett [1945] showed that bubble-particle collision efficiency is 

related to the size of the particle. Sutherland [1948] developed a collision model for a bubble-

particle system by the derivation of an expression for the ratio of the number of the particles 

encountering a bubble per unit time to the number of the particles approaching the bubble at a 

great distance in a flow tube with a cross sectional area equal to the projected area of the 

bubble’s. Recently comprehensive analysis of bubble-particle collision was performed by Dai 

et al. [2000] dealing with the processes in detail. They mainly focused on the bubble surface 
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mobility, the fluid flow regime at the bubble surface, the influence of particle inertial forces 

on the collision efficiency, and the interfacial forces and the angle of tangency [Dai et al., 

2000]. Bloom and Heindel [1997] introduced the forces acting on a particle as it approaches a 

bubble in a study on floatation deinking efficiency. They mentioned “the interception of a 

particle by a bubble can take place only if the trajectory of the particle is within a streaming 

tube of radius Rc, the so-called capture radius”. 

When a particle is attached on a bubble, this reaction is assumed to be irreversible. 

Many researchers reported and discussed that particle straining in thin water film [Wan and 

Tokunaga, 1997] and particle captures on air-water interface [Corapcioglu and Choi, 1996] 

are treated as irreversible processes. Colloid detachment from solid-water interfaces may 

occur sometimes in saturated or unsaturated transport models, but is generally negligible if 

there are no physical/hydrologic or chemical perturbations [Pinheiro et al., 1999; Schäfer et 

al., 1998; Chu et al., 2001]. 

The difference between bubble velocity and fluid velocity makes particles collide to 

bubble when particles move with the velocity of the fluid. However, our study is assumed that 

there is no water flow in our model system. Presence of bubble affects on the colloid removal 

efficiency. Comparison will be made on with and without the bubbles. “The residence time of 

air bubbles in a saturated coarse medium controls the mass transfer of volatile contaminants 

from water to air phase, thus affecting the efficiency of an air-sparging operation” [Roosevelt 

and Corapcioglu, 1998]. 

The forces acting on bubble and particle are buoyancy force, surface tension force, and 

drag force. Sum of these forces is constant. Corapcioglu et al. (2004) introduced the force 

balance concept to explain the rise velocity of the air bubble, however particles attached on 
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the bubble surface may cause changes in the bubble behaviors. This research will set up force 

balance equation for particle and bubble in pore scale. 

By established the force balance equations for particle-bubble interaction, many 

questions in porous media in the presence of discrete air phase such like capture mechanisms, 

bubble entrapment in pore body, critical size of bubble to trap, the effect of numbers of 

colloidal particles, and the property of colloidal particle, etc. can be solved. Understanding the 

role of moving bubble is essential for improving the effectiveness of air sparging and other 

technologies which are related to a bubble and colloidal particles in porous media. And pore-

scale analysis of interactions between bubble movement and colloids has not been 

systematically investigated in groundwater system. Furthermore, in addition to investigating 

the complex interactions between colloidal particles and moving air bubbles, the relationship 

among colloids, soil particles, and aqueous phase during migration of air bubbles will be 

studied and modeled. 

Another important subject of consideration in this research is properties of the porous 

medium. The most important factor in unsaturated porous media such as vadose zone is the 

presence of the air-water interface. In a conventional analysis of contaminant transport, the 

saturated subsurface is idealized as a two-phase porous medium with contaminants 

participating between the stationary solid matrix and a mobile fluid phase. When colloidal 

particles are present in saturated porous media, the subsurface environment can be modeled as 

a three-phase porous medium with two solid phases. However, in unsaturated porous media, 

an analysis of the phenomenon should consider the contribution of the air phase in addition to 

aqueous phase, soil matrix phase, and the colloidal phase. Here comes the unique concept of 

this research. This research deals with four-phase porous medium that consists of solid phase, 
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aqueous phase, colloidal phase, and discrete air phase (bubble). To emphasize the interaction 

between the discrete air phase and the colloidal particle, force balance between bubble and 

colloid particle will be investigated.   

 

1-2  OBJECTIVES 

Previous studies have been focused on empirical approaches of air sparging design 

parameters which are air distribution, depth of air injection, air injection pressure and flow 

rate, injection mode, contaminant type and distribution, soil type and so on. Also, some 

modeling work for air sparging has been studied. However, the previous research has been 

centered on continuous air phase or only air bubble migration in porous media without 

colloidal particles. Hence analyzing particle-bubble interaction and movement of the particle-

bubble unit in porous media by setting up the force balance equation which is applied forces 

acting on particle and bubble in pore scale is performed. 

The objective of this research is to develop a quantitative simulation to estimate the particle-

bubble units in otherwise saturated porous media. To achieve the objectives of the research the 

followings are accomplished. 

- Describing the relationship between bubble and particle 

- Bubbles catch the particles in the fluid while they pass the pore and the particles 

attached on the bubble surface may cause changes the behaviors of the bubble. The 

changes of bubble behaviors include reduced velocity, and increased residence time in 

the pore. 

- Setting up force balance equations on a bubble and particles with the assumption that 
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the sum of all forces acting on bubble and particle are balanced on a critical condition.  

- Velocity change of the bubble caused by particles attached on a bubble will be 

calculated 

- Investigating the effect of the property of porous medium such as a solid grain size 

- A dimensional analysis of the phenomenon will be provided a more generalized 

methodology to evaluate the effect of individual forces acting on the particle-bubble 

unit in porous media 

- Investigating the effect of the property of a colloidal particle which are hydrophilic and 

hydrophobic particle 

- Defining roles of particles for mass transfer rate of VOC 
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2 THEORETICAL APPROACH 

2-1  GENERAL DESCRIPTION OF AIR SPARGING 

Understanding the abilities of bacteria in saturated zones is needed. Most types of 

organic chemicals can be degraded and utilized by bacteria as energy or carbon sources. 

However, remediation of large amounts of organic chemicals can be limited or out of control 

by indigenous bacteria because the population and activity of the bacteria in the subsurface 

environments depends on the depth at which they live. Generally, the microbial population 

decreases with increasing the depth. When natural biodegradation or attenuation is not 

sufficient to remove the contaminants, the capabilities of the bacteria to degrade or utilize 

organic chemical have to be increased by adding air or nutrients in the saturated zone. 

 Air sparging can remediate volatile organic compounds (VOCs) dissolved in 

subsurface through basic two mechanisms: one is physical stripping (volatilization) as air rises 

upward to the surface and aerobic biodegradation of VOCs through increased oxygen supply. 

Figure 2.1 shows basic VOCs removal mechanisms in the presence of an air phase in porous 

media. As shown in Figure 2.1, dissolved or sorbed VOCs may be volatilized or biodegraded. 

When air is injected into saturated zones, discrete air bubbles are formed in the pore and then 

moved or trapped in the porous media.  At that time, the processes of volatilization and 

biodegradation are occurred in porous media. Volatilization is governed by the VOC’s vapor 

pressure and biodegradation is related to delivery of oxygen to soil microorganisms. The main 

mechanism of air sparging is volatilization in short term periods and that of biosparging is 

biodegradation in long term periods. 

   



9 

 

VOC

Bubble

VOC

VOC

VOC

Volitilization

Microbe Biodegradation

Sorption

Desorption

S
o
lid

 g
ra

in

CO2  + other products

 
Solid 

Grain

bubble

bubble

 

Figure 2. 1 Conceptual model for removal of VOCs dissolved in porous media 
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2-2  CAPTURE MECHANISM OF A PARTICLE ON A BUBBLE 

  The studies about the attachment of the particle at the air-water interface have been 

reported and investigated. Wan et al. [1994] experimented the transport of a particle in glass 

bead micro-models with a gas-liquid interface and noted that the retention of a colloidal 

particle flowing through these systems was proportional to the gas saturation because a 

colloidal particle preferentially sorbed to the gas-water interface. Also, they found that 

interfacial attractive force between a gas bubble and a particle was greater than the adhesive 

force between a glass wall and a particle.  

Generally the basic particle’s capture mechanisms are sedimentation, interception, and 

Brownian diffusion in porous media. According to Weber et al. [1983], sedimentation is 

caused by gravity; however, it is not an important attachment mechanism of a colloidal 

particle because the particles are almost buoyancy neutral. Brownian diffusion can be shown 

because of the particle’s size. Finally, interception is the main mechanism for capturing a 

particle on the bubble because they have finite size. If one particle moves along a streamline 

of fluid, it approaches the bubble surface more closely than one particle’s radius; thus it will 

collide with the bubble surface. 

According to Schulze [1977], he suggested that there were the three important 

fundamental processes during the attachment of particles to bubbles. Figure 2.2 shows the 

three mechanism of the attachment of particles on a bubble. That processes are given by: 

(1) “Approach of the solid particle to the liquid-gaseous interface upon  formation of a 

thin film between the phase boundaries”, 

(2) “Formation of the three-phase contact” 



11 

 

hfilm

bubble

liquid

particle

F

θ

liquid

bubble

particle

liquid

bubble

particle

T

N

(1)

(2)

(3)h

 

Figure 2. 2 The three important mechanisms during the attachment of particles to bubbles 
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(3) “Rupture of the particle out of the fluid interface”. 

After the attachment of the particle to bubbles is completed, we assume that this process is 

irreversible. One of the widely used theories about sorption of a particle on the gas-water 

interface is related to particle surface hydrophobicity. Wan et al. [1994] have suggested that: 

- Hydrophobic particles can be attracted more on gas bubble than hydrophilic particles. 

- Hydrophobic forces between a particle and a gas bubble increases with increasing 

particle surface hydrophobicity. 

- Particle surface hydrophobicity is related to water-air contact angles of the cell 

surfaces. 

Wan et al. [1994] have concluded that “the sorption appears to be due to the hydrophobic 

force: sorption at the gas-water interface increases with increasing particle hydrophobicity.” 

Wan and Wilson [1994] suggested two energy stages about the sorption of particle onto the 

gas-water interface. “The DLVO and hydration forces control the first stage, in which the 

interface is ruptured, the capillary force fixes each particle at an equilibrium position on the 

interface in the second stage. The capillary force strongly binds particles on the gas-water 

interface, so they essentially cannot be desorbed from the gas-water interface”. Wan and 

Wilson [1994] described that capillary attraction force became stronger “when the system was 

disturbed, for example, by increasing flow rate, changing flow direction, and especially by 

moving the bubbles.” 

Goldenberg et al. [1989] also observed that adhesion of hydrophobic colloids (clay 

minerals) on the surface of bubbles of air and the transport of the composite units formed by 

bubbles and mineral particles in a glass micro model. The mechanism of the attachment of the 

particle on a bubble involves a sorption process and an adhesion process. “Sorption process is 
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that clay particles are partitioned between the bulk phase and the gas-liquid interface by 

movement of the particles from the liquid to the liquid-gas interface. Adhesion process is that 

interaction between liquid molecules, solid surfaces and gas molecules to form interfaces. The 

main factors governing these processes are long-range physical interactions through 

electrostatic or Van der Waals forces.” According to Wan and Wilson [1994], they classified 

the six types of particles and their size and surface characteristics: 

i. “Hydrophilic, negatively charged latex: These high surface charge density, hydrophilic 

latexes are manufactured from hydrophobic sulfate charge-stabilized latexes. The 

process consists of grafting carboxylic acid polymers to the particle surface to 

produce a porous, highly charged surface layer. The final functional surface groups 

are predominantly carboxylate with an insignificant amount of sulfate.” 

ii. “Hydrophobic, negatively charged latex: These microspheres are also stabilized by 

sulfate charges, but the surface functional groups are sulfate and hydroxylate. Their 

hydrophobicity is attributed to low charge density.” 

iii. “Positively charged, hydrophobic latex: The only surface functional group present on 

these particles is amidine. The surface charge density is relatively low and the 

particles have a hydrophobic surface.” 

iv. Na-montmorillonite 

v. Hydrophilic bacteria 

vi. Hydrophobic bacteria 

Although they have performed the experiments for the colloid’s transport on the gas-water 

interface by using these six classified colloidal particles, the results had had two categories.
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2-3  IDEALIZATION OF PACKING SYSTEM IN THE POROUS MEDIA 

In pore-scale analysis, the packing system of solid grain is very important factor for 

water and bubble movement in porous media. According to Graton and Fraser [1935], there 

are three types of layers which are square layer, simple rhombic layer, and special rhombic 

layer. These layers depend on the angle of intersection of the sets of rows in the layer. They 

defined that “the unit solid is an ideal sphere of radius R of solid grain”, “the row is an 

aggregate of uniform spheres arranged with their centers along a straight line and successively 

spaced at the distance of 2R, so that each sphere along this line is tangent to its neighbors on 

either side” and “a set of rows is an assemblage of rows in parallel direction”.  As seen in 

Figure 2-3, two sets of rows intersect at 90º is called “the square layer”, three sets of rows 

intersect at 60º is called “simple rhombic layer”, and four sets of rows intersect at 75º31` is 

called “special rhombic layer”. And then they have considered only two kinds of systematic 

packing which were called “loosest” and “tightest” as related with porosity and permeability. 

Finally, they concluded that solid grain’s packing system had six cases as shown in Figure 2.4 

and described below [Graton and Fraser, 1935]: 

- Cases 1 and 4: spheres in second layer vertically over those in first layer. 

- Cases 2 and 5: spheres in second layer horizontally offset with respect to those of the 

first layer, by a distance R along the direction of one of the sets of rows. 

- Cases 3 and 6: spheres in second layer horizontally offset with respect to those of the 

first layer, in a direction bisecting the angle between two sets of rows and by a distance 

of R 2  in case 3 and 2R 1
3

 in case 6.
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Figure 2. 3 Types of layers (From Graton and Fraser, 1935) 
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Figure 2. 4 Type sphere groups of the six cases (From Graton and Fraser, 1935) 
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Table 2. 1 Geometrical relationships of the various packing systems 

 Name 

Spacing of 

layers 

Tangent neighbors Porosity 

Case 1 Cubic R 4  6 0.4764 

Case 2 Orthorhombic R 3  8 0.3954 

Case 3 Rhombohedral R 2  12 0.2595 

Case 4 Orthorhombic R 4  8 0.3954 

Case 5 Tetragonal-Sphenoidal R 3  10 0.3019 

Case 6 Rhombohedral 2R 2
3

 12 0.2595 
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Figure 2.4 is the picture of the six cases, adapted from Graton and Fraser (1935), and 

“represented in each instance by an assemblage of eight spheres, four in each of two layers 

that are stacked one on top of the other”. Table 2.1 shows the geometrical relationships of the 

various packing system and porosity of each case. This study is assumed that packing system 

is followed by Case 2 which is similar to porosity of sand or gravel. 

 

2-4 AIR FLOW PATTERNS IN AIR SPARGING SYSTEM 

Before setting up the modeling of air bubble movement in porous media, it is 

necessary that flow patterns and their geometrical packing systems of soil grain are defined 

and identified. Tung and Dhir [1988] reported that flow regimes in porous media are bubbly 

flow, slug flow, and annular flow. Figure 2.5 shows sketches of the flow patterns in porous 

media. However, assumption of our modeling works is that air flow is not continuous, thus 

both of the bubbly flow and the slug flow are defined as bubble flow which means discrete, 

non-continuous air bubbles moving through the porous media. 

Annular flow is same as channel flow, in which the air phase is continuous. According 

to Tung and Dhir [1988], the theoretical criteria between bubble flow and channel flow are 

determined by void fraction (α0) which is given by: 

0

(1 )
(1 )[6 5(1 )]

3

n

n


    


     (2.1) 

b

p

D

d
   (2.2) 
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Where n is porosity, Db is the bubble diameter, and dp is the diameter of solid grain. 

At a higher void fraction (α0) bubble flow can be changed to channel flow. In other words, dp 

is a key factor whether gas phase flow is going to be bubble flow or not. Many researchers 

have studied and reported that the type of air flow pattern was related to the size of solid grain 

in the air sparging system. [Brook et al., 1999, Elder and Benson, 1999, Peterson et al., 2001] 

 

 

Bubbly flow Slug flow Annular flow
 

 

Figure 2. 5 Sketches of the flow patterns in porous media 
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Table 2.2 shows the relationship between air flow pattern and solid grain size in various 

laboratory air-sparging experiments. From these results, channel flow in porous media will 

generally occur equal to or less than 2 mm of grain size, and bubble flow in porous media will 

generally occur greater than 2 mm of grain size. Thus, dp in this modeling work is assumed to 

be 4 mm that means the type of air flow pattern of this study is bubble flow. 

 

Table 2. 2 Relationship between the type of air flow and the size of porous medium 

Reference Medium 

Grain size 

(mm) 

Air flow pattern 

Ji et al. (1993) Glass beads 4 Bubble flow 

 Glass beads 2 Bubble flow and channel flow 

 Glass beads 0.75 Channel flow 

Adams and Reddy (1997) Sand 2.5 Bubble flow 

 Clay 0.43 Channel flow 

Brook et al. (1999) Glass beads 3 Bubble flow 

 Glass beads 2 Slugs of air (bubble flow) 

 Glass beads 1.5 Bubble flow and channel flow 

 Glass beads 1 Channel flow 

 Glass beads 0.71~0.8 Channel flow 
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3 FORCE BALANCE EQUATION FOR THE MIGRATION OF AIR BUBBLES 

IN POROUS MEDIA 

3-1 FORCE BALANCE EQUATION OF BUBBLE MOVEMENT IN POROUS MEDIA 

 3-1-1 Overview 

The motion of rising air bubble through porous media is studied in order to determine 

the rise velocity of an air bubble in porous media. Rising air bubble interacts with the solid 

grains and groundwater in porous media. When bubble interacts with solid grains and 

groundwater in porous media, the velocity of an air bubble could be changed because of the 

momentum exchange between air and solid phase and between air and water phase. The 

momentum is defined as the product of the mass of the fluid and its velocity. Thus, the 

momentum balance equation is applied to determine the bubble rise velocity. This equation of 

momentum indicates that the sum of the external forces acting on a bubble is equal to the rate 

of change of momentum. This is expressed as following 

 b

d
F mu

dt
  (3.1) 

Where ΣF is the sum of the external forces acting on a bubble, t is the time, m is the mass of a 

bubble, and ub is a rise velocity of bubble. 

The mass of a bubble can be expressed by 

g bm    (3.2) 

Where ρg is a density of a gas bubble, and b is a volume of the bubble. Assuming that the 

fluids (gas and water) are incompressible and the bubble radius is the equivalent radius of a 

sphere with a volume equal to that of a bubble, equation 3.1 can be expressed in the vertical x-
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direction by  

34

3

b b
b g b

u u
F R u

t x
 

  
  

  
  (3.3) 

Where Rb is bubble radius, bu

t




 is the local acceleration term, in which the bubble velocity 

changes with time at the fixed point in space, and b
b

u
u

x




 is the convective acceleration term, 

in which the bubble velocity changes with space during the bubble’s motion through porous 

media. 

3-1-2 Force balance equation of a bubble without a particle in porous media 

The terminal bubble rise velocity can be obtained from equation 3.3. This study has 

been accomplished by Corapcioglu et al. [2004]. The external forces acting on a bubble in 

porous media result from gravitational effect which is defined by buoyancy, surface tension 

effect which is due to interaction between the bubble and solid grain, and drag forces. Other 

forces (for example, Basset history force, lift force and additional inertial force) can be existed 

in this system without question. However, Corapcioglu et al. [2004] have explained that why 

these forces could be neglected from this force balance equation. And the buoyant force is 

balanced by surface tension force and drag force. Thus, the sum of the external forces acting 

on a bubble are given by 

b st dF F F F    (3.4) 

Where Fb is buoyant force, Fst surface tension force, and Fd is drag force. 

Figure 3.1 shows external forces acting on a bubble without a particle in porous media. 
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Figure 3. 1 External forces acting on a bubble without a particle in porous media 
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Buoyant force acts on the bubble in an upward direction because of density difference 

between the bubble and water. Actually, the bubble in porous media goes up because the 

density of bubble is smaller than that of water. Its expression is following as: 

34
( )

3
b f bgF g R     (3.5) 

Where ρf is the density of water 

The surface tension force is caused by “the difference between the inward attraction of 

the molecules inside the bubble and those at the contact surface of the bubble”. Fst in the 

vertical direction is given by 

2 sinstF R    (3.6) 

Where σ is the surface tension, Ө is the contact angle assumed to be constant during the 

bubble movement and R
׳
 is the equivalent radius of a pore throat through which a bubble can 

pass in a particular arrangement of grains. Assuming the equilibrium between the phases in 

porous media, Ө is 30º [Ortiz-Arroyo et al., 2003] 

The pore throat size (R
׳
) is determined from the property of packing arrangement 

system in porous media. Assuming that porous medium is orthorhombic packing arrangement, 

“square layer arrangement is present in three planes that lie at angles of 60º to one another. 

[Graton and Fraser, 1935] Figure 3.2 shows the schematic diagram of a bubble in a porous 

medium with orthorhombic packing arrangement. Maximum radius of a bubble in pore space 

is presented by a circle with radius R
׳
. The center of this circle lies in the center of an 

equilateral triangle with sides equal to the diameter of the solid grains dp. From the Cosine 

theorem, the relationship between R
׳
 and a solid grain diameter dp is given by 
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Figure 3. 2 Schematic diagram of a bubble in a porous medium with orthorhombic packing 

arrangement 
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 (3.7) 

From rearrangement of equation 3.7, R
׳
 is expressed by 

 ' 2 3 3
6

pd
R    (3.8) 

In ideal packing arrangement system, the equivalent radius of a pore throat R
׳
 can be obtained 

from a solid grain diameter dp. 

Drag forces for rising bubble in porous media is expressed by the momentum transfer 

terms. Corpacioglu et al. [2004] expressed drag forces using modified Ergun [1953] equation. 

According to their research, there are two terms for drag forces acting on bubble in porous 

media which are for laminar flow and for turbulent flow. Its equation is given by 

2

3

1 2

4

3

g bb b
d b

uu
F R

k k




 
  
  

 (3.9) 

Where ub is the velocity of bubble in porous medium, µb is the effective dynamic viscosity of 

the bubble, k1 and k2 are coefficients related to intrinsic permeability, the medium-specific 

properties, and the partial contact of the bubble with solid grain such as the shape factor, 

surface area, and tortuosity and so on. 

Coefficients k1 and k2 are expressed by 

2 3

1 2150 (1 )




pd n
k

A n
 (3.10) 

3

2
1.75 (1 )




pd n
k

A n
 (3.11) 



27 

 

Where n is the porosity, A is the correction factor. Corapcioglu et al. [2004] obtained A=26.8 

by fitting the experimental data for a range of bubble radii (0.2~0.3 cm) , µb ≈ µg by using the 

expression of Kovscek and Radke [1994], and the porosity (n) is 0.3954 by assuming that the 

porous medium is an orthorhombic arrangement. The external forces acting on a rising bubble 

in porous media is summarized and presented in Table 3.1.  

In order to determine the terminal bubble rise velocity, the force balance equation is 

established by substituting an each of external force equation presented in Table 3.1 into the 

equation (3.4), and then the expression for the force balance equation of a rising bubble in 

porous media is given by 

2

3 3

1 2

4 4
( ) 2 sin

3 3

g bb b
f b bg

uu
F g R R R

k k


      

 
     

  
  (3.12) 

The terminal bubble rise velocity will be calculated later in Section 4 by using this equation 

(3.12). 
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Table 3. 1 The summary of the external forces acting on a rising bubble without a particle in 

porous media 

External forces acting on a bubble Equation for the external forces 

Buoyant force 
34

( )
3

b f bgF g R     

Surface tension force 2 sinstF R    

Drag force 2

3

1 2

4

3

g bb b
d b

uu
F R

k k




 
  
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Where 

2 3
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pd n
k

A n
 and 

3

2
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

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A n
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3-2 FORCE BALANCE EQUATION OF THE PARTICLE-BUBBLE UNIT IN 

POROUS MEDIA 

3-2-1 Overview 

External forces acting on a bubble without a particle are buoyant force, surface tension 

force, and drag force. When a particle is attached on a bubble, three-phase contact between the 

bubble, particle, and liquid is formed and there are the additional forces for holding up the 

particle on bubble/particle aggregate which is called the particle-bubble unit. Figure 3.3 shows 

a sketch of the external forces acting on the particle-bubble unit. The additional forces which 

are buoyancy, drag force, and surface tension are related to a bubble and particle. It can be 

categorized for the buoyant force, drag force, surface tension of a bubble and an attached 

particle not a particle itself. As mentioned before, drag force equation of a bubble is used by 

modified Ergun equation and that of a particle is dominated by stoke’s law. Buoyant force of a 

bubble is related to the density difference between air phase and water phase, and that of a 

particle is related to one between the particle and water phase. Surface tension of a bubble is 

applied by the capillary force between a bubble and solid grain, and that of a particle is 

interaction between a bubble and a particle. Any other existing possible forces can be 

neglected. According to Corapcioglu et al.[2004], basset history force and lift force is 

assumed to be neglected because of various reasons which are high bubble velocities and 

irrotational flow condition. These assumptions are applied in our study. Each of forces which 

are buoyant force, drag force, and surface tension can be determined by functional relations 

obtained through theoretical consideration. 
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Figure 3. 3 Sketch of the external forces acting on the particle-bubble unit 
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Figure 3.4 shows three-phase contact between bubble, particle, and liquid. Interaction 

forces between a bubble and a particle include many forces acting between a bubble and an 

attached particle. They are usually classified into six categories which are gravitational force, 

buoyant force, hydrostatic pressure force, capillary force, capillary pressure force, and drag 

force [Bloom and Heindel, 1997]. These forces are expressed by the following equations. 

The gravitational force which acts on a particle  

34

3

p

g p pF R g   (3.13) 

Where Rp is a particle radius assumed that particle is spherical shape, ρp is the density of 

particle 

The buoyant force acting on the immersed portion of a particle 

 
23 1 cos (2 cos )

3

p

b p fF R g


     
 

 (3.14) 

Area of the immersed portion of a particle is solved at Appendix A. 

The hydrostatic pressure exerted by a liquid of height Z0 above a contact area of radius 

 sin sin sinp pr R      

2 2 2

0 0(sin )p

hyd p f p fF r gZ R gZ       (3.15) 

The capillary force exerted on the three-phase contact in the z-direction, Ө׳ being contact 

angle, and ' ,sin( ' ) sin( ')             

2 sin 2 sin sin( ')p

ca p pF r R            (3.16) 

The force generated by the capillary pressure in the gas bubble which acts on the contact area 

of the attached particle 
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Figure 3. 4 Three-phase contact between bubble, particle, and liquid (modified by Bloom and 

Heindel [1997]) 
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The darg force acting on a attached particle 

6p

d w p bpF R u  (3.18) 

Where ubp is the velocity of the particle-bubble unit in porous media and µw is the dynamic 

viscosity of water.  

These six forces are explained by the interaction between a bubble and an attached 

particle. However, the assumption of our study is that the particle attachment is irreversible. 

When a particle attached on a bubble, the detachment process can not be occurred. Thus, we 

can neglect any forces which are related to the detachment mechanism. These forces will be 

discussed later in next paragraph. 

 

3-2-2 Force balance equation of the particle-bubble unit in porous media 

Figure 3.5 shows schematic diagram of external forces acting on a particle-bubble unit.  

From this diagram, there are three major forces acting on a particle-bubble unit which are 

buoyancy, surface tension, and drag force. Hydrostatic pressure force and capillary pressure 

force is generated by the difference between the excess pressure in the bubble and the 

hydrostatic force. In this study, we assume that sorption process between a bubble and a 

particle is irreversible and there is no detachment on a particle-bubble unit. Thus, it can be 

assumed that hydrostatic pressure force and capillary pressure force can be neglected on the 

particle-bubble unit.  
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Figure 3. 5 Schematic diagram of external forces acting on a particle-bubble unit 
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Buoyant force acting on the particle-bubble unit is more complex than that of a bubble 

in porous media. When a particle is attached on the bubble, bubble shape is not circle. It is 

meniscus shape of bubble. Thus, buoyant force of the particle-bubble unit is that the buoyant 

force of bubble adds up the buoyant force of particle. It is expressed by 

 
23 34

1 cos (2 cos )
3 3

B P

b f b f pF g R g R


         
 

 (3.19) 

Gravitational force acting on the particle-bubble unit takes into account the shape of a 

bubble and a particle. The expression for the gravitational force acting on the particle-bubble 

unit, Fg
B+P

 is given by 

 
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 

     
 

 (3.20) 

Since surface tension acting on the bubble is reduced by surface tension acting on the 

particle, Surface tension force acting on the particle-bubble unit is carefully considered. It is 

given by 

2 sin 2 sin sin( ')B P

st PF R R            (3.21) 

The drag force acting on a attached particle is just added into the drag force acting on 

the bubble. It means that the drag force acting on the particle-bubble unit is equation 3.9 plus 

equation 3.18. Its expression is given by 

2

3

1 2

4
6

3

b bp g bpB P

d b w p bp

u u
F R R u

k k

 
 

 
    
 

 (3.22) 

The summary of the external forces acting on the particle-bubble unit in porous media is 

presented in Table 3.2. 
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Table 3. 2 The summary of the external forces acting on the particle-bubble unit in porous 

media 

External forces acting on the 

particle-bubble unit in 

porous media 

Equation for the external forces acting on the particle-bubble 

unit in porous media 

Buoyant force 
 

23 34
1 cos (2 cos )

3 3

B P

b f b f pF g R g R
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Gravitational force 
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 

 

Surface tension force 2 sin 2 sin sin( ')B P

st PF R R            

Drag force 2

3

1 2

4
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Where 

2 3

1 2150 (1 )




pd n
k

A n
 and 

3

2
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


pd n
k

A n
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The buoyant force is balanced by gravitational force, surface tension, and drag force. 

Thus, the sum of the external forces acting on the particle-bubble unit are given by 

B P B P B P B P B P

b g st dF F F F F         (3.23) 

Where Fb
B+P 

is buoyant force, Fg
B+P

 is gravitational force, Fst
B+P

 is surface tension force, and 

Fd 
B+P

 is drag force. 

As described before, in order to determine the steady-state velocity of the particle-

bubble unit in porous media, the force balance equation is applied by substituting a each 

equation of external force acting on the particle-bubble unit presented in Table 3.2 into the 

equation 3.23, then the expression for the force balance equation of a rising particle-bubble 

unit in porous media is given by 
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 (3.24) 

The terminal velocity of the particle-bubble unit in porous media will be calculated later in 

Section 4 by using this equation (3.24). 
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4 TERMINAL VELOCITY OF A BUBBLE ATTACHMENT OF PARTICLES 

4-1  TERMINAL VELOCITY OF BUBBLE IN LIQUID AND IN POROUS MEDIA 

4-1-1 Terminal velocity equation for a bubble without a particle 

The bubble rising velocity in liquid has been studied by many researcher. [Peebles and 

Garber [1953], Mendelson [1967], and Haberman and Morton [1953]] They are determined 

from the force balance equation for the bubble rising velocity in liquid. There are two external 

forces acting on a bubble in liquid which are the buoyant force and drag force due to 

interaction between the bubble and water.  

In liquid, the buoyant force acting on a bubble is same as equation 3.5 and given by 

34
( )

3

W

b f bgF g R     (3.5) 

Drag force acting on a bubble in liquid is expressed by  

2 21

2

W

d D f b bwF C R u   (4.1) 

Where ubw is the velocity of bubble in liquid and CD is a drag coefficient in liquid. 

The sum of two external force acting on a bubble in liquid is given by 

3 2 24 1
( )

3 2

W

f b D f b bwgF g R C R u        (4.2) 

In steady state, the bubble rise velocity does not explicitly change with time. This is expressed 

by 

0WF   (4.3) 

 

Substituting equation 4.3 into equation 4.2, we obtain 
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3 2 24 1
( ) 0

3 2
f b D f b bwg g R C R u        (4.4) 

Rearranging equation 4.4 for obtaining terminal velocity of bubble, its expression is given by 

8( )

3

f

bw b

f D

g g
u R

C

 




  (4.5) 

In porous media, the sum of external force acting on a bubble is expressed in Section 3 by 

 

2

3 3

1 2

4 4
( ) 2 sin

3 3

g bb b
f b bg

uu
F g R R R

k k


      

 
     

  
  (3.12) 

In steady state, the sum of external force acting on a bubble in porous media is zero as same as 

equation 4.4 and is given by 
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3 3

1 2

4 4
( ) 2 sin 0

3 3

g bb b
f b bg
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g R R R

k k


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 
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  

 (4.6) 

Equation 4.6 has two unknown variables which are the bubble velocity and radius. The 

other variables such as liquid properties which are density, viscosity, and surface tension of 

water, gas properties which are density and viscosity of gas in a bubble, and porous medium 

properties which are porosity and radius of pore throat, are known constants. Thus, equation 

4.6 can be rearranged to lump the terms with the same exponent of ub. This is expressed by 

 
3 3

2 3

2 1

4 4 4
2 sin 0

3 3 3

g b b b
b b f bg

R R
u u R g R

k k

   
     

   
        

  

 (4.7) 

From this equation, we know that terminal bubble rise velocity is a function of bubble radius 

and it can be expressed by 
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2

1 2 3 0b bC u C u C    (4.8) 

Where constant coefficients of C1, C2, and C3 are given by  

3

1

2

4

3

g bR
C

k

 
  (4.9) 

3
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1

4

3

b bR
C
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 
  (4.10) 

  3

3

4
2 sin

3
f bgC R g R         (4.11) 

As mentioned before, coefficient k1, and k2 is dependent on the porous medium properties 

such as permeability, shape factor, and tortuosity. Its expression is given by 

2 3

1 2150 (1 )




pd n
k

A n
 (3.10) 

3

2
1.75 (1 )




pd n
k

A n
 (3.11) 

Typically, equation 4.8 has two solutions which are given by 

2

2 2 1 3

1
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2
b

C C C C
u

C

  
  (4.12) 

2

2 2 1 3

1

4

2
b

C C C C
u

C

  
  (4.13) 

The second solution expressed by equation 4.13 will be neglected since bubble rise velocity 

cannot be negative. Thus, equation 4.12 is used by model parameters given in Table 4.1 and 

represents the bubble rise velocity in a steady state as a function of bubble radius. The solution 

of a steady state bubble rise velocity is given by 
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 (4.14) 

Figure 4.1 shows the terminal bubble rise velocity in liquid and in porous media. This figure 

includes data obtained by Haberman and Morton [1953] and Corapcioglu et al. [2004] and 

simulation calculated by equation 4.14.  

As seen in Figure 4.1, the terminal velocity of bubble in porous medium is about 5 

cm/s slower than in liquid. The reason is that “A bubble rising through the porous medium is 

confined to traveling through the available pore space and hence is subjected to a boundary 

effect from the solid particles.” [Corapcioglu et al. [2004]] 

From figure 4.1, it can be concluded that 

- The bubble with a larger radius has a higher velocity 

- The terminal velocity of bubble in liquid is much higher than that of bubble in porous 

medium because there is no surface tension effect in liquid. 

- There is a good agreement between experimental data and simulation value calculated 

by equation  4.14. 

Less than 0.2 mm radius of bubble in porous media cannot be observed by experiment of 

Corapcioglu et al. [2004] in which they suggested that “bubbles with diameters approximately 

1.5 to 2 times the grain diameter are more frequently observed than other-sized bubbles.” 

However, we can predict and simulate the terminal velocity of bubble with radii < 0.2 mm in 

porous medium by using equation 4.14. The solution of bubble’s terminal velocity in porous 

media shows that the bubble rise velocity depends on the bubble size. It is higher when the 

bubble radius is larger. 
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Table 4. 1 Model parameters 

Parameters Units Values 

ρg g/cm
3
 0.00123 

ρf g/cm
3
 0.9973 

µb g/cm
.
s 0.00018 

µ f g/cm
.
s 0.01 

σ g/s
2
 72 

g cm/s
2
 981 

n  0.3954 

dp cm 0.4 

Data from Corapcioglu et al. [2004] 
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Figure 4. 1 Terminal velocity of bubble in liquid and in porous media 
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4-1-2 The effect of grain size (dp) for the movement of a bubble without a particle 

  We can calculate from equation 4.14 that the steady state bubble rise velocity in 

porous media cannot exceed 18.5 cm/s. In simulation of our study, starting point of bubble 

size is 0.119 cm because a single bubble might become stuck in an idealized homogeneous 

medium due to the pore throat size. Thus, solid grain size (dp) and pore throat size (R') is 

sensitive and critical factor for movement of bubble in porous media. As mentioned before in 

section 2, simulation of bubble movement without attached particle in porous media is 

assumed that the diameter of solid grain (dp) is 0.4 cm for bubble flow. If the diameter of solid 

grain is changed, the value of R', k1, and k2 should be changed and then bubble rise velocity 

also should be changed. Based on equation 3.8 and 3.10~11, we can calculate the value of dp, 

R', k1, and k2. Solid grain size (dp) is decreased with decreasing pore throat size, coefficient k1 

and k2, and with decreasing the terminal velocity of bubble.  

Table 4.2 indicates the value of dp, R', k1, and k2, and figure 4.2 shows relationship 

between the terminal velocity of bubble (ub) and solid grain size (dp). As seen in figure 4.2, 

the terminal velocity of bubble in porous media is decreased with decreasing the diameter of 

solid grain. When solid grain size (dp) is 0.6 cm, the terminal rise velocity of a single bubble 

in porous media cannot exceed 26.5 cm/s and starting point of bubble radius (Rb) is 0.136 cm. 

And the terminal rise velocity of bubble in porous medium with dp = 0.4 cm cannot exceed 

18.5 cm/s and starting point of bubble radius (Rb) is 0.119 cm. Levich [1962] has reported that 

the rise velocity of a single bubble in a stationary water phase cannot exceed 30 cm/s.  
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Table 4. 2 The value of solid grain size (dp),  pore throat size (R'),  and coefficient of k1, and 

k2 

 

dp (cm) R' (cm) k1 (cm
2
) k2 (cm) 

0.6 0.0464102 1.5144 x10
-5

 1.308 x10
-3

 

0.5 0.0386751 1.0517 x10
-5

 1.09 x10
-3

 

0.4 0.0309401 6.7308 x10
-6

 8.72 x10
-4

 

0.3 0.0232051 3.7861 x10
-6

 6.54 x10
-4

 

0.2 0.0154701 1.6827 x10
-6

 4.36 x10
-4
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Figure 4. 2 Relationship between terminal velocity (Ub) and solid grain size (dp) 
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The maximum terminal rise velocity of bubble in porous media with dp = 0.6 cm is 

lower than that of bubble in a water phase and higher than that of bubble in porous media with 

dp=0.4 cm. Table 4.3 shows that Summary of the maximum terminal rise velocity of bubble 

and the starting point of bubble radius (Rb). 

Difference between the terminal velocity of bubble in water phase and in porous media 

is caused by the surface tension effect and difference between the terminal velocity of bubble 

in porous media with dp=0.6 cm and with dp=0.4 cm is caused by effect of the pore throat size. 

Effect of pore throat size has been studied by Corapcioglu et al. [2004]. When the surface 

tension force is equal to the buoyant force, the bubble can be trapped in pore. Its expression is 

given by 

b stF F  (4.15) 

34
( )

3
b f bgF g R   

 
(3.5) 

2 sinstF R  
 (3.6) 

Substituting equation 3.5~6 to equation 4.15, it can be expressed by 

3

_

4
( ) 2 sin

3
f b Tg g R R        (4.16) 

Rearranging equation 4.16, it is given by 

3_

3 sin

2( )
b T

f g

R
R

g

 

 





 (4.17) 

Where  Rb_T is a trapped bubble radius in porous media, R' is the limiting pore throat radius. 

Trapped bubble radius in porous media can be expressed by the function of the limiting pore 
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throat radius. Figure 4.3 shows that the relationship between trapped bubble radius and the 

limiting pore throat radius. If bubble move through the porous medium, starting point of 

bubble radius should exceed this trapped bubble radius. In other words, the maximum trapped 

bubble radius is almost equal to minimum starting point of bubble radius. Thus, solid grain 

size (dp) decrease with decreasing the starting point of bubble radius in Table 4.3. And the 

terminal velocity of bubble in porous media is decreased with decreasing the diameter of solid 

grain. The reason may be that bubble is hard to pass through smaller pore throat and need 

more driving force such as buoyant force in porous media. 

 

 

 

Figure 4. 3 Relationship between trapped bubble radius and the limiting pore throat radius 
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Table 4. 3 Summary of the maximum terminal rise velocity of bubble and the starting point of 

bubble radius (cm) 

 

Solid grain size (cm) 

The maximum terminal rise velocity 

of bubble in porous media (cm/s) 

The starting point of bubble 

radius (cm) 

0.6 26.5 0.136 

0.5 22.7 0.128 

0.4 18.5 0.119 

0.3 13.4 0.108 

0.2 7.6 0.09 
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4-2 TERMINAL VELOCITY OF THE PARTICLE-BUBBLE UNIT IN POROUS 

MEDIA 

 4-2-1 Terminal velocity equation for the particle-bubble unit 

When the particle is attached on the bubble in porous medium, force balance equation 

for movement of the particle-bubble unit has some different formation other than that for 

movement of a bubble only in porous media. 

As describe in Section 3, the sum of external force acting on bubble in porous media is 

expressed by 

2

3 3

1 2

4 4
( ) 2 sin

3 3

g bb b
f b bg

uu
F g R R R

k k
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 
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  
  (3.12) 

However, when a particle is attached on a bubble in porous media, additional force acting on 

the particle-bubble in porous medium is considered, and then its expression is given by 

equation 3.24 such as 
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 (3.24) 

This equation can be applied by just in case of one single particle. However, attached particle 

is not one single particle, it can be one hundred or the more particle. Summation of particles 

can be inserted into the term of force acting on particle. Thus, equation 3.24 can be expressed 

by 
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 (4.18) 

Solution of the terminal velocity of the particle-bubble unit in porous media is same as that of 

bubble without particle in porous media. Thus, equation 4.18 can be rearranged and 

transformed by 
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 (4.19) 

Same as equation 4.8, this equation is the form of quadratic equation and expressed by 

2

1 2 3 0bp bpC u C u C      (4.20) 

Where C
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3 are constant coefficients given by  
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(4.23) 

As described before, this quadratic equation 4.20 has two solutions which are given by 
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 (4.25) 

In the terminal velocity of the particle-bubble unit in porous media, negative value of the 

terminal velocity can be neglected, thus equation 4.25 can be neglected in our model system.  

Figure 4.4 shows the terminal velocity of the particle-bubble unit in porous media as 

increasing number of particle which are 100, 500, 1000, 5000, 10000. There is no reason to 

choose this numbers of particles. Also, this figure includes data obtained by Haberman and 

Morton [1953] and Corapcioglu et al. [2004]. As seen in Figure 4.4, the terminal velocity of 

the particle-bubble unit in porous media decreases with increasing the number of particle. In 

our modeling work, we can predict that the terminal velocity of 100 particles attached bubble 

in porous media has no big difference with that of bubble only in porous media. 



53 

 

 

 

Figure 4. 4 Comparison of theoretical rise velocity of the particle-bubble unit in porous media 

with various experimental data which come from Haberman and Morton [1953] and 

Corapcioglu et al. [2004] 
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However, the terminal velocity of 10,000 particles attached bubble in porous media is much 

slower than that of bubble only in porous media. As mentioned before, starting point of bubble 

only radius is 0.119 cm. When 10,000 particles are attached on the bubble, starting point of 

bubble radius is 0.348 cm. As a result, we can conclude that 

- As increased number of attached particle, the terminal velocity of the particle-bubble 

unit in porous media is decreased. 

- Attached particle on the bubble in porous media might prevent the movement of 

bubble in porous media due to surface tension of particle. 

- Surface tension of particle is more strong than buoyant force of particle  

There is no experimental data about movement of the particle-bubble unit in porous media. 

Thus, we cannot compare our modeling work with experimental data. We can just predict 

about the effect of attached particle in movement of the particle-bubble unit in porous media 

by using equation 4.24.  

 

4-2-2 The effect of attached particles for the particle-bubble unit 

We can predict and simulate the starting point of the particle-bubble unit in porous 

media. This situation is similar to the effect of solid grain size (dp). As the number of attached 

particle on the particle-bubble unit in porous media is increased, the starting point of the 

particle-bubble unit in porous media is increased. For example, when 100, 500, 1000, 5000, 

and 10,000 of particles are attached on the bubble, the starting point of bubble radius is 0.128, 

0.152, 0.179, 0.27, and 0.348 cm. The meaning of the starting point is that when the particle-

bubble unit moves to upward, the minimum radius of a bubble is needed for our simulation. In 

less than this starting point, a bubble can be trapped or stuck among the porous media.  
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Thus, trapping possibility of the particle-bubble unit with smaller bubble in porous media is 

much higher than that of the particle-bubble unit with larger bubble. This critical trapping 

condition is a very important factor for predicting the particle-bubble unit in porous media. 

The presence of particle in porous media has some advantage and disadvantage for air 

sparging remediation. For example, if the particles are the target of contaminant as a harmful 

substance, the smaller bubbles are not good operating factor for the remediation of the 

particles. However, if the goal of contaminant remediation is volatile organic compound in 

groundwater, the smaller bubbles might be great operating factor for bioremediation since 

trapped bubbles provide oxygen into groundwater. Figure 4.5 shows the terminal velocity of 

the particle-bubble unit in porous media as increasing the number of attached particle with 

various radius of bubble. From Figure 4.5, in all of bubble radius, the terminal velocity of the 

particle-bubble unit in porous media decrease with increasing the number of attached particle 

as mentioned previously. Small size of bubble can be more affected than large size of bubble 

in movement of the particle-bubble unit in porous media. This simulation indicate that the 

terminal velocity of the particle-bubble unit with Rb=0.2 cm is more rapidly decreased than 

that of the particle-bubble unit with Rb=0.6 cm. Thus, the effect of numbers of particles is 

sensitive and critical for a rising the particle-bubble unit in porous media with small size of 

bubble. If over 3000 of particles is attached on the particle-bubble unit with Rb=0.2 cm, this 

bubble might becomes stuck and trapped among the pore body or the pore throat. However, 

the terminal velocity of the particle-bubble unit in porous media with Rb=0.6 cm is almost 

same as that of bubble only in porous media. Otherwise, over 10,000 of particles are attached 

on the particle-bubble unit with Rb=0.6 cm, and then the terminal velocity of the particle-

bubble unit is decreased.  
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Figure 4. 5 The terminal velocity of the particle-bubble unit in porous media as increasing the 

number of attached particles on the bubble with various radii of bubble 
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 4-2-3 The effect of grain size (dp) for the particle-bubble unit’s movement 

We can predict from equation 4.24 that the terminal velocity of the particle-bubble unit 

in porous media cannot exceed 18.5 cm/s as same as that of bubble only in porous media, and 

starting point of bubble size is various with different value of number of the particle. Thus, in 

the particle-bubble unit, solid grain size (dp) and pore throat size (R') is a important factor for 

analysis of movement of the particle-bubble unit in porous media. Figure 4.6 - 4.10 show 

effect of dp with various number of attached particles on the particle-bubble unit in porous 

media. The pattern of rise terminal velocity of the particle-bubble unit in porous media is 

similar to all of solid grain size (dp). However, the value of terminal velocity of the particle-

bubble unit in porous media is different in each of solid grain size (dp). From Figures 4.6 - 

4.10, the maximum terminal rise velocity of the particle-bubble unit in porous media is similar 

to that of a bubble without a particle in porous media. In dp=0.6, the maximum terminal rise 

velocity of 100 particle attached bubble unit is 26.4 cm/s, and that of 10,000 particle attached 

bubble unit is 23.2 cm/s. As compared with that of bubble only in porous media, that of 100 

particle attached bubble unit is almost same as that of bubble without particle. However, 

10,000 particle attached bubble unit’s terminal rise velocity is reduced by almost 13 %. From 

this data analysis, the maximum terminal velocity of 100, 500, 1000 particle attached bubble 

is reduced less than 1 %. Otherwise, that of 5000, 10000 particle attached bubble is reduced 

more than 10 %. Thus, it can be concluded that higher particle attachment on a bubble in 

porous media is caused by reduction of the maximum terminal velocity of the particle-bubble 

unit. Tables 4.4 - 4.8 show the reduction rate of maximum terminal velocity of the particle-

bubble unit in various solid grain size (dp). 
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Figure 4. 6 Effect of dp=0.6 cm  with various attached particles on the particle-bubble unit in 

porous media 
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Figure 4. 7 Effect of dp=0.5 cm  with various attached particles on the particle-bubble unit in 

porous media 
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Figure 4. 8 Effect of dp=0.4 cm  with various attached particles on the particle-bubble unit in 

porous media 
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Figure 4. 9 Effect of dp=0.3 cm  with various attached particles on the particle-bubble unit in 

porous media 
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Figure 4. 10 Effect of dp=0.2 cm  with various attached particles on the particle-bubble unit in 

porous media 
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Table 4. 4 Reduction rate of the maximum terminal velocity of the particle-bubble unit in 

dp=0.6 cm 

Number of particles 

Maximum terminal velocity of the 

particle-bubble unit (cm/s) 

Reduction rate of velocity 

(%) 

100 26.31 0.1 

500 26.18 0.6 

1000 26.03 1.2 

5000 24.77 5.9 

10000 23.13 12.2 
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Table 4. 5 Reduction rate of the maximum terminal velocity of the particle-bubble unit in 

dp=0.5 cm 

Number of particles 

Maximum terminal velocity of the 

particle-bubble unit (cm/s) 

Reduction rate of velocity 

(%) 

100 22.64 0.1 

500 22.53 0.6 

1000 22.39 1.2 

5000 21.26 6.2 

10000 19.80 12.7 
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Table 4. 6 Reduction rate of the maximum terminal velocity of the particle-bubble unit in 

dp=0.4 cm 

Number of particles 

Maximum terminal velocity of the 

particle-bubble unit (cm/s) 

Reduction rate of velocity 

(%) 

100 18.37 0.1 

500 18.28 0.6 

1000 18.16 1.3 

5000 17.19 6.6 

10000 15.93 13.4 
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Table 4. 7 Reduction rate of the maximum terminal velocity of the particle-bubble unit in 

dp=0.3 cm 

Number of particles 

Maximum terminal velocity of the 

particle-bubble unit (cm/s) 

Reduction rate of velocity 

(%) 

100 13.35 0.1 

500 13.27 0.7 

1000 13.17 1.4 

5000 12.40 7.2 

10000 11.40 14.7 
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Table 4. 8 Reduction rate of the maximum terminal velocity of the particle-bubble unit in 

dp=0.2 cm 

Number of particles 

Maximum terminal velocity of the 

particle-bubble unit (cm/s) 

Reduction rate of velocity 

(%) 

100 7.57 0.1 

500 7.52 0.8 

1000 7.46 1.6 

5000 6.96 8.2 

10000 6.32 16.6 
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5 DIMENSIONAL ANALYSIS OF BUBBLE IN POROUS MEDIA 

5-1 DIMENSIONAL ANALYSIS OF MOVEMENT OF A BUBBLE WITHOUT 

PARTICLE IN POROUS MEDIA 

5-1-1 General description of dimensional analysis 

When a bubble goes up through a porous medium, there are some external forces 

acting on bubble which are buoyant force, surface tension, and drag force. Their equation 

expressions are presented in Table 3.1. Each of these forces is affected by bubble’s motion in 

porous media. In steady state, dimensional analysis can be performed to provide a more 

generalized methodology to determine which one of these external forces has the most 

dominant impact on the bubble’s motion in porous media. It is accomplished in the following 

steps: 

Dimensional analysis comes from force balance equation which is given by equation 3.12 

2

3 3

1 2

4 4
( ) 2 sin

3 3

g bb b
f b bg

uu
F g R R R

k k


      

 
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  
  (3.12) 

Then, buoyant force is balanced by surface tension and drag force in steady state, its 

expression is given by 
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Where k1 and k2 is related to the medium’s permeability and is expressed by 

2 3

1 2150 (1 )




pd n
k

A n
 (3.10) 
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Then, both sides of equation 5.1 are divided by 
34

sin
3

bR   and multiplied by k1, 
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The left hand side of equation 5.2 can be interpreted as a type of Bond number (Bo) which 

expresses the ratio of gravitational to surface tension force as given by 

 

 
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×

( )gravitational force

surface tention force sin×

f g gk
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 

 


   (5.3) 

The first term on the right hand side of equation 5.2 is Capillary number (Ca) which presents 

the ratio of viscous to surface tension force as given by 

 
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The second term on the right hand side of equation 5.2 is Weber number (We) which defines 

as the ratio of the inertial to surface tension force as given by 

 
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The third term on the right hand side of equation 5.2 is called as Trapping number (Nt) which 

represents the relative medium-specific ease of a bubble to move through the porous medium 

as given by 

     

 
1

3
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
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Substituting and rearranging equation 5.3~6 into equation 5.2 is expressed as 
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Bo Ca We Nt    (5.7) 

Table 5.1 shows the summary of dimensionless numbers. Equation 5.2 can be transformed to 

equation 5.7 and these four dimensionless numbers can be expressed as the function of bubble 

rise velocity, its radius, and the specific properties of porous medium. As mentioned in 

Section 4, a bubble rise velocity can be expressed as the function of a bubble radius in porous 

media, thus these dimensionless numbers can be presented by a function of the equivalent 

bubble radius as presented in Figure 5.1. From Figure 5.1, the Bond number does not change 

with a bubble radius since the increase in the bubble density with decreasing bubble volume is 

not important enough compared to the density of the water that means the bubble movement is 

not affected by the bubble density with this range of bubble volume. Capillary number (Ca) 

and Weber number (We) increases with increasing the bubble radius as shown in Figure 5.1. 

This is explained that the viscous force and the inertial force dominate the surface tension 

force heavily. Compared the Capillary number with Weber number, the viscous force is more 

affected than the inertial force by a bubble movement in porous media. Otherwise, Trapping 

number (Nt) decrease with increasing the bubble radius as seen in Figure 5.1. This indicates 

that the small size of a bubble in porous media can be more easily trapped than the large size 

of a bubble. The higher trapping number means that a bubble can be easily trapped among the 

pore body. Thus, the small size of a bubble has higher possibility of trapping in the pore body 

or the pore throat than the large size of a bubble in porous media. From Figure 5.1, the Bond 

number does not change with a bubble radius since the increase in the bubble density with 

decreasing bubble volume is not important enough compared to the density of the water that 

means the bubble movement is not affected by the bubble density with this range of bubble 

volume. 
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Capillary number (Ca) and Weber number (We) increases with increasing the bubble radius as 

shown in Figure 5.1. This is explained that the viscous force and the inertial force dominate 

the surface tension force heavily. Compared the Capillary number with Weber number, the 

viscous force is more affected than the inertial force by a bubble movement in porous media. 

Otherwise, Trapping number (Nt) decrease with increasing the bubble radius as seen in Figure 

5.1. This indicates that the small size of a bubble in porous media can be more easily trapped 

than the large size of a bubble. The higher trapping number means that a bubble can be easily 

trapped among the pore body. Thus, the small size of a bubble has higher possibility of 

trapping in the pore body or the pore throat than the large size of a bubble in porous media. 

This analysis shows general effect of a bubble movement in porous media.  

 

 

 

Table 5. 1 Summary of dimensionless numbers 

Dimensionless number Definition and expression 

Bond number The ratio of gravitational to surface tension force 
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Weber number The ratio of inertial force to surface tension force 
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Trapping number The relative medium-specific ease of a bubble to move through 

the porous medium 
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Where k1 and k2 is expressed by 
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Figure 5. 1 Dimensionless numbers as a function of the equivalent bubble radius 
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5-1-2 Relationship between the dimensionless numbers and Reynolds number  

Relationship between various dimensionless numbers and Reynolds number can 

provide more specific inspection for a bubble movement in porous media. Reynolds number 

(Re) defines as the ratio of inertial to viscous force and expresses as 

 

 
e

2inertial force

viscous force

×

×

b b f

f

R u
R




   (5.8) 

Variations of the dimensionless numbers (which are Bo, Ca, We, and Nt) with Reynolds 

number (Re) can explain to the effect of individual forces acting on a bubble in porous media 

and are presented in Figure 5.2. As describe before, the Bond number (Bo) is also constant 

with the Reynolds number (Re) because of the density difference between a bubble and water. 

However, A log-log plot of Capillary number (Ca), Weber number (We) and Trapping number 

(Nt) as increasing Reynolds number (Re) indicates different lines with sharp changes at the 

almost same range of Re value. This sharp change in behavior indicates that different types of 

bubble movement are predicted before and after turning point. The critical Re at the turning 

point, calculated with using equation 5.3~6 and 5.8 is about 520 for dp = 4mm. At this point, a 

bubble radius is about 0.18 cm. Thus, the magnitude of inertial force and viscous force of a 

bubble is much smaller than that of surface tension force of a bubble without particle with less 

than 0.18cm which means that small size of a bubble is dominated by surface tension. 

Trapping number (Nt) which is inversely proportional to Rb
3
, is initially almost constant with 

increasing Reynolds number (Re). Thus, in less than 0.18 cm of bubble radius, bubble size is 

insignificant for the Trapping number (Nt). After turning point, Trapping number is gradually 

decreased with increasing Reynolds number (Re) since bubble size is important for the 

Trapping number. Capillary number (Ca) which is proportional to µbub, initially increases with 
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increasing Reynolds number (Re) until the effect of viscous forces against the drag forces 

becomes insignificant at the turning point. Then, Capillary number (Ca) is almost constant as 

increasing Reynolds number (Re) after turning point, thus the effect of viscous forces against 

the drag forces become a significant factor for rising bubble movement in porous media. The 

Weber number (We) which is proportional to ρgub
2
, initially increases with increasing 

Reynolds number (Re) until the effect of inertial forces against the drag forces becomes 

negligible at the turning point. Then, Weber number (We) is also constant as increasing 

Reynolds number (Re) after turning point, thus the effect of inertial forces against the drag 

forces become a important factor for rising bubble movement in porous media. As seen in 

figure 5.2, after the turning point which is larger than 0.18 cm of a bubble radius, the value of 

Capillary number (Ca) is equal to that of Weber number (We) which means that effect of 

viscous force is same as that of inertial force.  
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Figure 5. 2 Variations of dimensionless numbers (which are Bo, Ca, We, and Nt) as increasing 

Reynolds number (Re) 
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5-1-3 Relationship between Bo, Ca, We and Nt 

If each of dimensionless numbers is divided by Trapping number (Nt), we can obtain 

the functional dependence of one dimensionless group in response to orders of magnitude 

changes in another dimensionless group. Dividing equation 5.7 to Trapping number (Nt) is 

given by 

1
Bo Ca We

Nt Nt Nt
    (5.9) 

The first term on the left hand side of equation 5.9 indicates the ratio of Bond number (Bo) to 

total driving force acting on a bubble in porous media. The second term and third term on the 

left hand side of equation 5.9 present the ratio of Capillary number (Ca) and the ratio of 

Weber number (We) to total driving force acting on a bubble in porous media. Thus, Bo/Nt = 

1 means that bubble is trapped among pore body or pore throat. Figure 5.3 shows the ratio of 

dimensionless numbers (which are Bo, Ca, We) to Trapping number (Nt) with Reynolds 

number (Re). As mentioned above, three variables which are Bo/Nt, Ca/Nt, and We/Nt have 

three different lines with sharp changes at the almost same range of Re value which is about 

520. When Rb ≤ 0.18 cm, Re ≤ 520, Bo/Nt is almost constant and a slope of We/Nt to Re is 2 

and a slope of Ca/Nt to Re is 1. Thus, the surface tension is balanced to the gravitational 

forces in bubbles with Rb ≤ 0.18 cm and inertial force is more dominant force than viscous 

force for bubbles with Rb ≤ 0.18. Reversely, When Rb ≥ 0.18 cm, Re ≥ 520, a slope of Bo/Nt 

to Re is 2.6, a slope of We/Nt to Re is 2 and a slope of Ca/Nt to Re is 2. Thus, the 

gravitational force dominates more than the surface tension with Rb ≥ 0.18 cm and the effect 

of inertial force is equal to that of viscous force with Rb ≥ 0.18. 
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Figure 5. 3 The ratio of dimensionless numbers (which are Bo, Ca, We) to Trapping number 

(Nt) with Reynolds number (Re) 
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5-2 DIMENSIONAL ANALYSIS OF THE PARTICLE-BUBBLE UNIT MOVEMENT 

IN POROUS MEDIA 

5-2-1 General description of the modified dimensionless number equations 

As described as Section 4-2, when a particle is attached on a bubble in porous medium, 

dimensional analysis of movement of a bubble without a particle differs from that of motion 

of the particle-bubble unit. Of course, there are Bond number, Capillary number, Weber 

number, and Trapping number in dimensional analysis of the particle-bubble unit movement 

in porous media. Although they need some correction and modification, external forces acting 

on the particle-bubble unit in porous media are similar to external forces acting on bubble 

without a particle such as buoyant force, surface tension force, and drag force. Force balance 

equation for the particle-bubble unit is given by 
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 (3.24) 

This equation is considered by attachment of one single particle on the bubble in porous media. 

If a number of particle is more than one, this equation is changed and modified as following 

below 
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(4.18) 

Dimensional analysis of the particle-bubble unit movement provides the effect of individual 

forces acting on a bubble. It is accomplished in the following steps: 

Dimensional analysis come from force balance equation which is given by equation 4.14 as 

shown above Then, buoyant force acting on the particle-bubble unit is balanced by surface 

tension and drag force acting on the particle-bubble unit  in steady state, its expression is 

rearranged and given by  
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 (5.10) 

Then, both sides of equation 5.10 are divided by 
34

sin
3

bR   and multiplied by k1, it can be 

expressed by 
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 (5.11) 

The first term on the left hand side of equation 5.11 can be interpreted as a type of Bond 

number (Bo) as presented in Table 5.1. 

The second term on the left hand side of equation 5.11 can be expressed by Bond number as 

given by 
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(5.12) 

The third term on the left hand side of equation 5.11 can be also expressed by Bond number as 

given by 
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(5.13) 

The fourth term on the left hand side of equation 5.11 can be expressed by Capillary number 

as shown in Table 5.1. 

The fifth term on the left hand side of equation 5.11 can be interpreted as a type of Weber 

number as presented in Table 5.1. 

The sixth term on the left hand side of equation 5.11 can be expressed by Capillary number as 
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given by 
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(5.14) 

The seventh term on the left hand side of equation 5.11 can be interpreted as a type of 

Trapping number as presented in Table 5.1. 

Substituting equation 5.12~14 into equation 5.11, then its expression is given by 
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(5.15) 

Rearranging equation 5.15 and then dimensional analysis equation for the particle-bubble unit 

in porous media is expressed by 
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 (5.16) 

From equation 5.16, first term on the left hand side of equation 5.16 can be expressed as 

“modified Bond number” which is given by 
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Second term on the left hand side of equation 5.16 is called “modified Capillary number” 

which is given by 
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Third term on the left hand side of equation 5.16 is the Weber number which was expressed 

by equation 5.5. 

Fourth term on the left hand side of equation 5.16 can be expressed as “modified Trapping 

number” which is given by 
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(5.19) 

Substituting equation 5.17~19 into equation 5.16 is given by 

0Bo Ca We Nt       (5.20) 

Table 5.2 shows the summary of modified dimensionless numbers. Equation 5.20 for 

dimensionless number analysis of the particle-bubble unit is similar to equation 5.7 for that of 

a bubble without a particle in porous media. As seen in equation 5.20, these three modified 

dimensionless numbers are related to dimensionless number for a bubble without particle, the 

function of bubble radius, the size of particle, a number of particle and contact angle between 

the particle and bubble. 
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Table 5. 2 Summary of modified dimensionless numbers 

Dimensionless number Definition and expression 

Modified Bond number The ratio of gravitational to surface tension force acting 

on the particle-bubble unit in porous media 
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As seen in equation 5.20, these three modified dimensionless numbers are related to 

dimensionless number for a bubble without particle, the function of bubble radius, the size of 

particle, a number of particle and contact angle between the particle and bubble. Figure 5.4 -

5.8 shows modified dimensionless numbers as a function of the bubble radius when various 

number (100, 500, 1000, 5000, and 10000) of particles are attached.  

Modified dimensionless number profile for the particle-bubble unit is similar to 

dimensionless number profile for a bubble without particle in porous media. Modified 

dimensionless number decrease with increasing the number of particles. As seen in Figures 

5.4 - 5.8, the modified Bond number (Bo
׳
) does not change with a bubble radius as same as 

Bond number does not change.  

The modified Capillary number (Ca
׳
) and Weber number (We) increases with 

increasing the bubble radius as shown in Figures 5.4 - 5.8. This pattern is also same as 

Capillary number (Ca) for movement of a bubble without particle.  

The modified Trapping number (Nt
׳
) decrease with increasing the bubble radius as 

same as Trapping number (Nt) for movement of a bubble without particle. The terminal rise 

velocity’s profile of a bubble without a particle is similar to that of a bubble with various 

attached particles.  

When attached particles on a bubble are increased, all of the modified dimensionless 

numbers except the modified Bond number (Bo
׳
) are decreased. It can be concluded that 

- Increasing attached particles on a bubble does not affect gravitational force acting on 

the particle-bubble unit in porous media.  

- Effect of attached particles on a bubble occurs the movement of the particle-bubble 
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unit in porous media since the modified Capillary number (Ca
׳
) and Weber number 

(We)  is decreased with increasing attached particles.  

When attached particles on a bubble is increased, the modified Trapping number (Nt
׳
) is 

increased which means that attached particles on a bubble affect trapping of the particle-

bubble unit among pore body or pore throat. Difference between the modified Capillary 

number (Ca
׳
) and Weber number (We) is increased with increasing the number of attached 

particles on a bubble in porous media. Thus, the ratio of inertial force to surface tension 

force is more affected than that of viscous force to surface tension force with increasing 

the number of particles. In other words, effect of attached particles on a bubble in porous 

media occurs that inertial force is more sensitive and critical than viscous force for rising 

bubble through pore. 

 

 

 

Figure 5.4  Modified dimensionless numbers as a function of the bubble radius when 100 

particles are attached 
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Figure 5.5  Modified dimensionless numbers as a function of the bubble radius when 500 

particles are attached 
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Figure 5.6  Modified dimensionless numbers as a function of the bubble radius when 10
3
 

particles are attached 
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Figure 5.7  Modified dimensionless numbers as a function of the bubble radius when 5x10
3
 

particles are attached 
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Figure 5.8  Modified dimensionless numbers as a function of the bubble radius when 10
4
 of 

particles are attached 
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5-2-2 Relationship of the modified dimensionless numbers with the effect of 

attached particles 

Figure 5.9 - 5.12 illustrate relationship between the modified dimensionless numbers 

(Bo
׳
, Ca

׳
, We, and Nt

׳
) and the particle-bubble unit with various number of particles (100, 500, 

1000, 5000, and 10000). In figure 5.9, the modified Bond number (Bo
׳
) is increased with 

increasing the radius of the particle-bubble unit in porous media. When attached particles on a 

bubble are increased, the profile of the modified Bond number (Bo
׳
) moves left hand side to 

right hand side which means that the number of particles are increased with decreasing the 

modified Bond number (Bo
׳
). However, the range of the modified Bond number (Bo

׳
) is 10

-10
. 

Thus, as seen in figure 5.4 - 5.8, the modified Bond number (Bo
׳
) does not change with 

increasing a radius of bubble. In figure 5.10, the modified Capillary number (Ca
׳
) and Weber 

number (We) is increased with increasing the bubble’s radius. However, the modified 

Capillary number (Ca
׳
) and Weber number (We) is decreased with increasing attached 

particles on a bubble and the starting points of bubble’s radius are different. On the other hand, 

the modified Trapping number (Nt
׳
) is increased with increasing attached particles on a bubble. 

The starting points of bubble’s radius with 100 particles is 0.122 cm, that of bubble’s radius 

with 500 particles is 0.138 cm, that of bubble’s radius with 1000 particles is 0.153 cm, that of 

bubble’s radius with 5000 particles is 0.225 cm, and that of bubble’s radius with 10,000 

particles is 0.28 cm. As a result, the particle-bubble unit in porous media can be stuck or 

trapped among pore body or pore throat by attachment of particles on a bubble. As mentioned 

previously, relationship between various dimensionless numbers and Reynolds number can 

provide more specific analysis for the particle-bubble unit movement and the effect of 

individual forces acting on the particle-bubble unit in porous media.  
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Figure 5.9 Relationship between modified Bond number (Bo
׳
) and the particle-bubble unit 

with various number of particles (100, 500, 1000, 5000, and 10000) 
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Figure 5.10 Relationship between modified Capillary number (Ca
׳
) and the particle-bubble 

unit with various number of particles (100, 500, 1000, 5000, and 10000) 
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Figure 5.11 Relationship between Weber number (We) and the particle-bubble unit with 

various number of particles (100, 500, 1000, 5000, and 10000) 
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Figure 5.12  Relationship between modified Trapping number (Nt) and the particle-bubble 

unit with various number of particles (100, 500, 1000, 5000, and 10000) 
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5-2-3 Relationship between the modified dimensionless numbers and Reynolds 

number  

Figure 5.13 - 5.17 shows a log-log plot of the modified Bond number (Bo
׳
), the 

modified Capillary number (Ca), Weber number, and the modified Trapping number with a 

function of Reynolds number as increasing attached particles on a bubble. Lines of the 

modified dimensionless number for the particle-bubble unit’s movement have a turning point 

in the same manner of dimensionless number lines for a bubble without particle. In figure 5.13, 

the critical Re at the turning point is about 540 and the particle-bubble unit’s radius at this 

point is about 0.19 cm for a bubble with 100 particles in porous media. Compared with a 

bubble without particle, critical Re and radius of the particle-bubble unit with 100 particles is 

almost similar. In figure 5.14 - 5.17, the critical Re at the turning point is about 601, 670, 1000, 

and 1440  for a bubble with 500, 1000, 5000, and 10000 particles. The particle-bubble unit’s 

radius at this point is about 0.22, 0.25, 0.38 and 0.51cm for a bubble with 500, 1000, 5000, 

and 10000 particles. When attached particles on a bubble in porous media are increased, the 

critical Re at the turning point is increased and the particle-bubble unit’s radius at this point is 

also increased. Thus, the particle-bubble unit’s radius dominated by surface tension at the 

turning point is getting larger since surface tension of a particle adds up that of a bubble in 

porous media. As same as Trapping number (Nt) for a bubble without particle, the modified 

Trapping number (Nt
 ׳
) is also constant with increasing Reynolds number. Thus, insignificant 

radius of the particle-bubble unit is increased with increasing the modified Trapping number 

((Nt
 ׳
) at the turning point. 
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Figure 5.13 Variations of modified dimensionless numbers (Bo׳, Ca׳, We, and Nt׳) as a 

function of Reynolds number (Re) when 100  particles are attached on a bubble 
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Figure 5.14 Variations of modified dimensionless numbers (Bo׳, Ca׳, We, and Nt׳) as a 

function of Reynolds number (Re) when 500  particles are attached on a bubble 
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Figure 5.15 Variations of modified dimensionless numbers (Bo׳, Ca׳, We, and Nt׳) as a 

function of Reynolds number (Re) when 10
3
  particles are attached on a bubble 
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Figure 5.16 Variations of modified dimensionless numbers (Bo׳, Ca׳, We, and Nt׳) as a 

function of Reynolds number (Re) when 5x10
3
  particles are attached on a bubble 
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Figure 5.17 Variations of modified dimensionless numbers (Bo׳, Ca׳, We, and Nt׳) as a 

function of Reynolds number (Re) when 10
4
  particles are attached on a bubble 
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5-2-4 Relationship between Bo
׳
, Ca

׳
, We and Nt

׳
 

As same as the dimensionless analysis for a bubble without a particle, each of the 

modified dimensionless numbers is divided by the modified Trapping number (Nt
׳
), and then 

another dimensionless analysis for predicting the functional dependence of one modified 

dimensionless group in response to orders of magnitude changes in another dimensionless 

group is obtained. Its expression is given by 

' ' '
1

Bo Ca We

Nt Nt Nt
    (5.21) 

The definition of the ratio of the modified dimensionless number for the particle-bubble unit is 

same as that of the ratio of dimensionless number for a bubble without a particle in porous 

media. Thus, the meaning of Bo
׳
/Nt

׳
 = 1 is that the particle-bubble unit might be stuck or 

trapped in porous media.  Figure 5.18 - 5.22 illustrate the ratio of the modified dimensionless 

numbers (Bo
׳
, Ca

׳
, We) to Trapping number (Nt

׳
) with a function of Reynolds number (Re) 

when various numbers of particles are attached on the particle-bubble unit. Each term of 

equation 5.21 has three different lines with sharp changes at same value of Re. When 100 

particles are attached on the particle-bubble unit, the critical Re at the turning point is 540 and 

the particle-bubble unit’s radius at this point is 0.19 cm. When Rb ≤ 0.19 cm, Re ≤ 540, Bo
׳
/Nt

׳
 

is almost constant and a slope of We/ Nt
׳
 to Re is 2 and a slope of Ca

׳
/ Nt

׳
 to Re is 1. Reversely, 

When Rb ≥ 0.19 cm, Re ≥ 540, a slope of Bo
׳
/Nt

׳
to Re is 2.6, a slope of We/ Nt

׳
 to Re is 2 and 

a slope of Ca
׳
/ Nt

׳
 to Re is 2. These values for the particle-bubble unit with 100 particles are 

almost same as for a bubble without a particle. In case of the particle-bubble unit with 500 

particles, the critical Re at the turning point is 601 and the particle-bubble unit’s radius at this  
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Figure 5.18 The ratio of modified dimensionless numbers (Bo
׳
, Ca

׳
, We) to Trapping number 

(Nt
׳
) with Reynolds number (Re) when 100 particles are attached on a bubble 
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Figure 5.19 The ratio of modified dimensionless numbers (Bo
׳
, Ca

׳
, We) to Trapping number 

(Nt
׳
) with Reynolds number (Re) when 500  particles are attached on a bubble 
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Figure 5.20 The ratio of modified dimensionless numbers (Bo
׳
, Ca

׳
, We) to Trapping number 

(Nt
׳
) with Reynolds number (Re) when 10

3
  particles are attached on a bubble 
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Figure 5.21 The ratio of modified dimensionless numbers (Bo
׳
, Ca

׳
, We) to Trapping number 

(Nt
׳
) with Reynolds number (Re) when 5x10

3
  particles are attached on a bubble 
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Figure 5.22 The ratio of modified dimensionless numbers (Bo
׳
, Ca

׳
, We) to Trapping number 

(Nt
׳
) with Reynolds number (Re) when 10

4
  particles are attached on a bubble 
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point is 0.22 cm. When Rb ≤ 0.22 cm, Re ≤ 601, Bo
׳
/Nt

׳
 is almost constant and a slope of We/ 

Nt
׳
 to Re is 2.2 and a slope of Ca

׳
/ Nt

׳
 to Re is 1.3. Reversely, When Rb ≥ 0.22 cm, Re ≥ 601, a 

slope of Bo
׳
/Nt

׳
 to Re is 2, a slope of We/ Nt

׳
 to Re is 2.6 and a slope of Ca

׳
/ Nt

׳
 to Re is 1.8. In 

case of the particle-bubble unit with 1000 particles, the critical Re at the turning point is 670 

and the particle-bubble unit’s radius at this point is 0.25 cm. When Rb ≤ 0.25 cm, Re ≤ 670, 

Bo
׳
/Nt

׳
 is almost constant and a slope of We/ Nt

׳
 to Re is 2.1 and a slope of Ca

׳
/ Nt

׳
 to Re is 1.3. 

Reversely, When Rb ≥ 0.25 cm, Re ≥ 670, a slope of Bo
׳
/Nt

׳
 to Re is 2, a slope of We/ Nt

׳
 to 

Re is 3.1 and a slope of Ca
׳
/ Nt

׳
 to Re is 2.4. 

In case of the particle-bubble unit with 5000 particles, the critical Re at the turning 

point is 1000 and the particle-bubble unit’s radius at this point is 0.38 cm. When Rb ≤ 0.38 cm, 

Re ≤ 1000, Bo
׳
/Nt

׳
 is almost constant and a slope of We/ Nt

׳
 to Re is 2.1 and a slope of Ca

׳
/ Nt

׳
 

to Re is 1.1. Reversely, When Rb ≥ 0.38 cm, Re ≥ 1000, a slope of Bo
׳
/Nt

׳
 to Re is 5, a slope 

of We/ Nt
׳
 to Re is 8 and a slope of Ca

׳
/ Nt

׳
 to Re is 3. In case of the particle-bubble unit with 

10000 particles, the critical Re at the turning point is 1440 and the particle-bubble unit’s 

radius at this point is 0.51 cm. When Rb ≤ 0.51 cm, Re ≤ 1440, Bo
׳
/Nt

׳
 is almost constant and a 

slope of We/ Nt
׳
 to Re is 1.9 and a slope of Ca

׳
/ Nt

׳
 to Re is 1.2. Reversely, When Rb ≥ 0.51 

cm, Re ≥ 1440, a slope of Bo
׳
/Nt

׳
 to Re is 4, a slope of We/ Nt

׳
 to Re is 6 and a slope of Ca

׳
/ 

Nt
׳
 to Re is 2. Table 5.3 indicates summary of a slope of the ratio of the modified 

dimensionless number to Reynolds number with various numbers of attached particle. 

According to table 5.3, before the turning point, the ratio of the modified Bond number to the 

modified Trapping number is almost constant and the range of a slope of Ca
׳
/ Nt

׳
 to Reynolds 

number is 1~1.3 and the range of a slop of  We/ Nt
׳
 to Reynolds number is 1.9~2.2. That 

means small bubble is more affected by attachment of particles on a bubble than large bubble. 
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Table 5. 3 Summary of a slope of the ratio of the modified dimensionless number to Reynolds 

number for a bubble without or with a particle 

 Before the turning point After the turning point 

Number of 

particle 

'
'

Re

Bo
Nt

 

'
'

Re

Ca
Nt

 
'

Re

We
Nt

 

'
'

Re

Bo
Nt

 

'
'

Re

Ca
Nt

 
'

Re

We
Nt

 

0 Constant 1 2 2.5 2.5 2.5 

100 Constant 1 2 2.6 2 2 

500 Constant 1.3 2.2 2 1.8 2.6 

1000 Constant 1.3 2.1 2 2.4 3.1 

5000 Constant 1.1 2.1 5 3 8 

10000 Constant 1.2 1.9 4 2 8 
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6 APPLICATION OF TERMINAL VELOCITY OF A SINGLE BUBBLE WITH 

OR WITHOUT THE PARTICLES IN POROUS MEDIA 

6-1 EFFECT OF THE PROPERTY OF THE PARTICLE DURING THE MOVEMENT 

OF THE PARTICLE-BUBBLE UNIT IN POROUS MEDIA 

In previous Sections 3, 4 and 5, the used parameters of the particle’s properties are 

based on the hydrophobic particle for a rising the particle-bubble unit in porous media. Many 

researchers have classified two different types of particles which are hydrophilic and 

hydrophobic. [Wan et. al., 1994, Wan and Wilson, 1994, Corapcioglu and Choi, 1996] They 

have performed the colloid transport and developed a mathematical model in unsaturated 

porous media. They have different results of hydrophobic and hydrophilic colloid. Thus, in 

our study, we compared the effects of the hydrophilic particle with that of hydrophobic 

particle. 

6-1-1 Definition of hydrophilic and hydrophobic particle 

When a particle is attached on bubble, there are two types of particle attachment 

mechanism. One is the hydrophilic particle’s attachment and the other is the hydrophobic 

particle’s attachment. Definition of the hydrophilic particle is that a particle has an affinity for 

water and that of the hydrophobic particle is that a particle repels water. Figure 6.1 shows a 

diagram of hydrophilic and hydrophobic particle attachment on the bubble. As seen in figure 

6.1, the hydrophilic particle is placed to inside of bubble and the hydrophobic particle is 

placed to outside of bubble. According to Wan et al. [1994], particle surface hydrophobicity is 

one of the most important factors to classify the hydrophilic and hydrophobic particle.  
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Figure 6.1 A schematic diagram of hydrophilic and hydrophobic particle attachment on the 

bubble 
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Thus, they have used “water-air contact angles of particle surfaces to characterize the relative 

hydrophobicity”. In our study, this contact angle is used a main classification factor for the 

hydrophilic and the hydrophobic particle’s attachment on bubble. In figure 6.1, contact angle 

between a particle and bubble is Ө’
 
. If contact angle is changed, ω being the angle indicated 

in figure 6.1 is changed. When ω is π, a particle is completely immersed into a bubble. From 

the data of Wan and Wilson [1994], the contact angle (Ө’) of hydrophilic particle is applied by 

24.7º and that of hydrophobic particle is applied by 77º in our study. In geometry, an angle ω 

is defined by π – (Ө’-γ). Definition of an angle γ is angular inclination of the gas-liquid 

meniscus at three phase contact. An angle γ is indicated in figure 6.1 and is assumed by 30º. 

Therefore, an angle ω of hydrophilic particle is 185.3º and that of hydrophobic particle is 133º. 

Table 6.1 indicates the summary of contact angle between a particle and bubble, an angle γ, 

and an angle ω. This variable is applied to equation 4.24, and then the terminal velocity of the 

particle-bubble in porous media is calculated and simulated. 

 

Table 6. 1 Summary of Ө’
 
between a particle and bubble, an angle γ, and an angle ω 

Particle type Contact angle (Ө
׳
) Angle γ Angle ω 

Hydrophilic particle 24.7º 30º 185.3º 

Hydrophobic particle 77º 30º 133º 

Wan and Wilson [1994] 
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6-1-2 Effect of hydrophilic and hydrophobic particle for the movement of the 

particle-bubble unit in porous media 

Figure 6.2 shows the terminal velocity of the particle-bubble unit in porous media for 

the hydrophilic particle with various particle attachment and figure 6.3 illustrate the terminal 

velocity of the particle-bubble unit in porous media for the hydrophobic particle with various 

particle attachments. As seen in figure 6.2 and figure 6.3, there are big different velocity 

profiles with various particles attachment and starting point of the particle-bubble unit in 

porous media. In hydrophilic particle attachment, the terminal velocity profile of the particle-

bubble unit with less than 1000 particles is similar to that of bubble without particle. The 

terminal velocity of the particle-bubble unit in porous media with 5000 and 10000 particles is 

slower than that of bubble without particle. As mentioned before, starting point of bubble 

radius without particle is 0.119 cm. In attachment of particles on bubble in porous media, that 

of bubble radius with 100 particles is 0.119 cm, that of bubble radius with 500 particles is 

0.122 cm, that of bubble radius with 1000 particles is 0.125 cm, that of bubble radius with 

5000 particles is 0.142 cm, and that of bubble radius with 10,000 particles is 0.16 cm. 

Otherwise, in hydrophobic particle attachment, the terminal velocity profile of the 

particle-bubble unit with 100 particles in porous media is almost same as that of bubble 

without particle in porous media. That of the particle-bubble unit in porous media with over 

500 particle moves to right hand side of graph that means this bubble is much slower than that 

of bubble without particle in porous media. Starting point of bubble radius with 100 particles 

is 0.128 cm, that of bubble radius with 500 particles is 0.152 cm, that of bubble radius with 

1000 particles is 0.179 cm, that of bubble radius with 5000 particles is 0.279 cm, and that of  
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Figure 6.2 The terminal velocity of the particle-bubble unit in porous media for the 

hydrophilic particle with various particles attachment 
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Figure 6.3 The terminal velocity of the particle-bubble unit in porous media for the 

hydrophobic particle with various particles attachment 
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bubble radius with 10,000 particles is 0.347 cm. As these results, the terminal velocity of 

bubble with hydrophobic particle is much slower than that of bubble with hydrophilic particle. 

In other words, effect of hydrophobic particle is much higher than that of hydrophilic particle. 

The force acting on rising bubble with particle consists of buoyant force, drag force, and 

surface tension force. Contact angle between the particle and bubble is related to surface 

tension force. According to Corapcioglu and Choi [1996], the hydrophobic particle has more 

affinity to the air-water interface than to the solid grain and the hydrophilic particle has less 

affinity for both solid grain and the air-water interface. When a bubble with particle goes 

upward in porous media, the sum of surface tension of the hydrophilic particle-bubble unit is 

less affected than that of the hydrophobic particle-bubble unit. As described in Section 3, 

surface tension is key factor of decreasing the terminal rising velocity of a bubble with or 

without particle. Thus, the terminal velocity of a bubble with hydrophilic particle is much 

faster than that of a bubble with hydrophobic particle in porous media and the trapping 

possibility of a bubble with hydrophobic particle is much higher than that of a bubble with 

hydrophilic particle. Figure 6.4 - 6.8 illustrate the comparison between the terminal velocity 

with hydrophilic particle and with hydrophobic particle as increasing the number of particles 

(100, 500, 1000, 5000, 10000). The terminal velocity of a bubble with less than 1000 of 

hydrophilic particles is almost same as that of a bubble without particle. Otherwise, the 

terminal velocity of a bubble with less than 100 of hydrophobic particles is similar to that of a 

bubble without particle. Thus, effect of a bubble with hydrophobic particle is 10 times more 

than that of a bubble with hydrophilic particle. 
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Figure 6.4 Comparison between the terminal velocity with hydrophilic particles and with 

hydrophobic particles when 100 particles are attached on a bubble in porous media 
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Figure 6.5 Comparison between the terminal velocity with hydrophilic particles and with 

hydrophobic particles when 500 particles are attached on a bubble in porous media 
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Figure 6.6 Comparison between the terminal velocity with hydrophilic particles and with 

hydrophobic particles when 10
3
 particles are attached on a bubble in porous media 
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Figure 6.7 Comparison between the terminal velocity with hydrophilic particles and with 

hydrophobic particles when 5x10
3
 particles are attached on a bubble in porous media 
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Figure 6.8 Comparison between the terminal velocity with hydrophilic particles and with 

hydrophobic particles when 10
4
 particles are attached on a bubble in porous media 
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6-2 APPLICATION OF THE TERMINAL VELOCITY OF THE PARTICLE-BUBBLE 

UNIT IN POROUS MEDIA 

 6-2-1 Overview 

The principle of contaminant removal in air sparging technique is based on the mass 

transfer process between air and water phase in a saturated porous media. An air-water mass 

transfer mechanism occurs when an air bubble is injected to the groundwater and gets in touch 

with water. In simple model, it can be assumed that the contaminant is present only as 

dissolved Volatile Organic Compound (VOC) which dose not react with water or with solid 

grains and sorption effects of contaminant with solid grains may be neglected. Therefore, 

molecular diffusion and advection are only processes which are included in this simple model 

occurring in a single bubble movement. When a bubble rise through a porous medium, 

dissolved VOC in groundwater can be moved to a single bubble from the groundwater. This 

contaminated bubble need to be removed or treated by a soil vapor extraction (SVE). This 

Section consists of two parts. The first part of this Section presents a derivation of the 

governing equation of VOC removal concentration in a single bubble. The equation indicates 

the rising of a single bubble containing the VOC in a porous media. This equation is derived 

using mass transfer between immobile water and mobile gas phase in a steady state. Secondly, 

based on the governing equation of VOC removal, effect of various radii of a bubble and 

numbers of particle is performed. 
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6-2-2 Governing equation of VOC removal concentration in a single bubble  

For this simple model, the first step in the derivation of the governing equation of the 

VOC removal rate in the bubble movement needs a review of the physical laws used to build 

the model. The mass transfer model between the bubble and groundwater is derived from the 

mass transfer flux and the rate of mass transfer based on film theory and Henry’s law.  

From fluid mechanics, the mass flux is expressed by 

1 g

b

dm
J

A dt
  (6.1) 

Where Ab is the surface area of a bubble and mg is the mass of VOC in a bubble. 

The mass of VOC in a bubble is the gas concentration of VOC in a bubble multiply by the 

volume of a bubble. Its expression is given by 

g g bm C   (6.2) 

Where Cg is the gas concentration of VOC in a bubble and Vb is the volume of bubble. 

According to the equation 6.1~2, the mass flux of a gas is expressed by 

1 g b

b

dC
J

A dt


  (6.3) 

In this equation, the volume of bubble is constant since a bubble is assumed by incompressible 

fluid, thus equation 6.3 can be expressed by 

g b

b

dC A
J

dt



 (6.3) 
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The rate of mass transfer is expressed by film theory in the form 

J k C   (6.4) 

Where k is a mass transfer coefficient and ΔC is the concentration gradient between a bubble 

and water phase.  

The equilibrium between a bubble and water phase at the interface is expressed by Henry’s 

law in dimensionless form 

g eC HC  (6.5) 

Where H is the dimensionless Henry’s constant and Ce is the equilibrium concentration related 

to solubility of a gas. 

The concentration gradient is expressed by 

0

gC
C C

H
    (6.6) 

Where C0 is initial concentration in water. 

From equation 6.4~6, the rate of mass transfer is given by  

0

gC
J k C

H

 
  

 
 (6.7) 

Substituting equation 6.7 into equation 6.3, its expression is given by 

0

g gb

b

dC CA
k C

dt H

 
  

  
 (6.8) 

Inserting Ab=4πRb
2
, Vb=4/3πRb

3 
to equation 6.3 is given by 

 
2

0 03

4 3

4 3

g gb
g

b b

dC CR k
k C HC C

dt R H HR





 
    

 
 (6.9) 
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The solution of the equation 6.9 will be obtained by the solution of ordinary differential 

equation. Rearranging of the equation 6.9 is given by 

 03

b g

b g

HR dCdx
dt

u k HC C
 


 (6.10) 

Based on this equation, the following three ordinary differential equations are obtained from 

the equation 6.10: 

b b

dx x
dt t

u u
    (6.11) 

 03

b g

g

HR dC
dt

k HC C



 (6.12) 

 03

b g

b g

HR dCdx

u k HC C



 (6.13) 

Integrating the equation 6.12 for the initial condition Cg = 0 at t=0 is given by 

3

0( ) 1 b

k
t

HR

gC t HC e
 

  
 
 

 (6.14) 

Integrating the equation 6.13 for the initial condition Cg = 0 at x=0 is given by 

3

0( ) 1 b b

k x

HR u

gC x HC e
 

  
 
 

 (6.15) 

Equation 6.14 indicates that the gas mass concentration of VOC accumulated inside the 

bubble exponentially increases with time. From this equation, we can predict VOC removal 

amounts with time as increasing a radius of a bubble in porous media. And the change of gas 

mass concentration of VOC accumulated inside the bubble with the different injected depths 
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can be obtained by equation 6.15. 

 

6-2-3 Effect of a bubble’s radius and particle’s numbers for VOC removal by 

using the equation of the terminal rise velocity of a bubble in porous media 

From equation 6.14, Henry’s dimensionless constant (H) and the mass transfer 

coefficient (k) plays an important role in a volatile organic contaminants (VOC) removal in 

porous media. Two factors , H and k, are related to the solubility of VOC, and more gas mass 

concentration of contaminant in a bubble is removed from the groundwater for high Henry’s 

dimensionless constants. The contaminants with higher Henry’s dimensionless constants are 

more soluble than that with lower ones. The equilibrium concentration of VOC is fastest 

achieved for the highest k. Many researchers have studied about the mass transfer coefficient 

(k) in rise phenomena for a single bubble [Leonard and Houghton, 1963, Calderbank and 

Lochiel, 1964]. In our study, Henry’s dimensionless constant (H) and the mass transfer 

coefficient (k) is not considerable factor for VOC removal in porous media.  

In order to predict the effect of a radius of a single bubble in porous media for VOC 

removal, equation 6.14 is used. And it is assumed that Henry’s dimensionless constant (H) is 

0.195 for benzene, the mass transfer coefficient (k) is 3x10
-5

 cm/s for benzene and the initial 

concentration of contaminant is 10 mg/l. These data are represented by Braida and Ong 

[1998]. Figure 6.9 shows VOC removal concentrations with various radii (0.2, 0.3, 0.4, 0.5 

and 0.6 cm) of a single bubble without particle. As seen in figure 6.9, VOC removal 

concentration (mg/l) inside a single bubble is increased with increasing time.  
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Figure 6.9 VOC removal concentrations with various radii of a single bubble without particle 
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The gas mass concentration of contaminant accumulated inside a bubble is increased 

with decreasing the radius of a bubble which means that small bubble is more effective than 

large bubble for VOC removal in porous media. The reason is that the terminal velocity of 

small bubble is slower than that of large bubble. When the terminal velocity of a bubble in 

porous media is slow, the contact time between a bubble and the contaminated water is long. 

Thus, the contact time between a bubble and the contaminated water in small bubble is much 

longer than that in large bubble in porous media. When the contact time is long, the mass 

transfer rate between a bubble and water is high. As a result, small size of a bubble is more 

effective and useful than large size of a bubble in VOC removal mechanism.  

  In order to investigate the effect of numbers of attached particles on the particle-

bubble unit in porous media, equation 6.15 is applied and it is assumed that Henry’s 

dimensionless constant, the mass transfer coefficient and the initial concentration of 

contaminant is same as above and the depth of column is 2m. Figure 6.10 shows VOC 

removal concentration with various numbers of attached particle on the particle-bubble unit 

with Rb=0.4 cm in porous media as increasing the depth. As seen in figure 6.10, VOC removal 

concentration is increased with increasing the numbers of attached particle on a bubble in 

porous media. There is no big difference at less than 1000 of particles on a bubble at 200 cm 

of depth. However, the effect of 5000 and 10000 of particles is noticeable. When a bubble is 

rising up at 200 cm of depth, the VOC removal concentration of the bubble-particle unit with 

less than 1000 of attached particles is about 0.024~5 mg/l. That of a bubble with 5000 

attached particles is 0.032 mg/l. This value is increased by about 25 % of the VOC removal 

concentration of a bubble with less than 1000 of particles. In 10000 of particles attached 

bubble, the VOC removal concentration is 0.052 mg/l and this value is increased by over 2 
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times of ones of a bubble with less than 1000 of particles. As a result, the VOC removal 

concentration of a single bubble with higher numbers of particles is larger than that of ones 

with lower numbers of particles, since the terminal velocity of a bubble with higher numbers 

of attached particles is slower than that of ones with lower numbers of attached particles in 

porous media. This effect of attached particle is similar to that of size of a bubble. The 

terminal velocity of a bubble with lower numbers of attached particles is faster than that of 

ones with higher numbers of attached particles. When the terminal velocity of a bubble is fast, 

the contact time between gas and water phase is little. Thus, the contact time between a bubble 

with lower numbers of attached particles and water phase is much shorter than ones between a 

bubble with higher numbers of attached particles and water phase. When this time is short, the 

mass transfer rate between bubbles with lower numbers of attached particles is lower than 

ones between bubbles with higher numbers of attached particles. 
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Figure 6.10 VOC removal concentration with various numbers of attached particle on a single 

bubble with Rb=0.4 cm as increasing the depth Z (cm) 

 



130 

 

7  SUMMARY AND CONCLUSION 

When a bubble moves upward in porous media, the terminal velocity of an air bubble 

might be changed because of the momentum exchange between air and solid phase and 

between air and water phase. This change of momentum is equal to the sum of external forces 

acting on a bubble in porous media. These external forces are balanced by the buoyant force, 

surface tension, and drag force. After established external forces balance of a bubble in porous 

media, we can obtain the terminal rising velocity of a bubble.  

When a colloidal particle is attached on a bubble in porous media, the sum of external 

forces could be changed by adding external forces acting on the particle-bubble unit. The 

additional forces for the movement of the particle-bubble unit are gravitational force, buoyant 

force, hydrostatic pressure force, capillary force, capillary pressure force, and drag force. 

However, these additional forces are presented by interaction between a bubble and an 

attached particle in porous media. Two of them which are hydrostatic pressure force and 

capillary pressure force are generated by the difference between the excess pressure in the 

bubble and the hydrostatic force. We can neglect these two forces because of our assumption 

which is that sorption process between a bubble and a particle is irreversible and there is no 

detachment on a particle-bubble unit. In the particle-bubble unit’s movement, the buoyant 

force acting on the particle-bubble unit is balanced by gravitational force, surface tension, and 

drag force acting on the particle-bubble unit. Thus, the equation of the particle-bubble unit 

acting on external forces is modified and changed and then we can find the terminal rising 

velocity of the particle-bubble unit in porous media.  

After set up the force balance equation, the terminal rising velocity of a bubble without 
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and with a particle can be obtained. The equation of the terminal velocity has two unknown 

variables which are the velocity and the radius of a bubble in porous media. The other 

variables (such as liquid properties which are density, viscosity, and surface tension of water, 

gas properties which are density, viscosity of gas in a bubble, porous medium properties 

which are porosity and radius of pore throat and the properties of a particle which are density 

and size of a particle) are known parameters. Thus, the solution of the terminal velocity of a 

bubble without and with a particle can be obtained. The conclusions of the terminal velocity 

profile of a bubble without a particle are that: 

- The radius of a bubble determine the bubble rise velocity 

- The terminal velocity of bubble in liquid is faster than that of bubble in porous 

medium because of surface tension. 

- The conclusions of the terminal velocity profile of a bubble with the particles are that: 

- As increased the numbers of attached particle, the terminal velocity profile of the 

particle-bubble unit in porous media is decreased. 

- Attached particle on the bubble in porous media might prevent the movement of a 

bubble in porous media due to surface tension of the particles. 

- Surface tension of the particles is more affected than buoyant force of the particles for 

the particle-bubble’s movement in porous media. 

As the number of attached particle on the particle-bubble unit in porous media is increased, 

the starting point of the radius of the particle-bubble unit in porous media is increased. That 

means a bubble with higher numbers of the particles can be easily trapped than ones with 

lower numbers of the particles. As these results, the presence of the particles in porous media 

might enhance and improve the efficiency of an air sparging system. The effect of solid grain 
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size (dp) is another important factor for a rising bubble in porous media. The terminal velocity 

of a bubble without or with the particles is decreased with decreasing the size of solid grain 

size (dp). The reason is that a bubble is hard to pass through the small size of pore throat and 

needs more driving force such as a buoyant force in porous media.  

 In the dimensionless analysis of a bubble without or with the particles, the Bond 

number is constant with increasing the radius of a bubble because the increase in the density 

of a bubble without or with the particles with decreasing the volume of bubble is not 

significant enough compared to the density of the water. The reason is that the movement of a 

bubble without or with the particles is not affected by the bubble’s density with this range of 

the volume of bubble. In the other side, the Capillary number and Weber number is increased 

with increasing the radius of a bubble. This can be concluded that the viscous and the inertial 

force dominate the surface tension force heavily. Compared the Capillary number with Weber 

number, the viscous force is more affected than the inertial force for the movement of a 

bubble without or with the particles in porous media. Trapping number is decreased with 

increasing the radius of a bubble without or with the particles. This may be explained that a 

small size of a bubble can be more easily trapped that a large size of ones without or with the 

particles in porous media.  

 In relationship between various dimensionless numbers and the Reynolds number, the 

Bond number does not change with the Reynolds number because of a big difference of the 

density of gas and water phase.  However, Capillary number, Weber number and Trapping 

number with increasing the Reynolds number indicates different lines with sharp changes at 

the almost same range of Re value. This sharp change in behavior indicates that different 

types of bubble movement are predicted before and after turning point. At this turning point, 
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the magnitude of inertial force and viscous force of a bubble without or with the particles is 

much smaller than that of surface tension force of a bubble without a particle with less than 

the radius of a bubble at this turning point. Thus, the small size of a bubble without or with the 

particles is dominated by surface tension. In before the turning point, Trapping number is 

initially almost constant with increasing Reynolds number. Thus, bubble size is insignificant 

for the Trapping number. Capillary number initially is increased with increasing Reynolds 

number until the effect of viscous forces against the drag forces becomes insignificant at the 

turning point. Weber number (We) is increased with increasing Reynolds number until the 

effect of inertial forces against the drag forces becomes negligible at this turning point. 

After turning point, Trapping number is gradually decreased with increasing Reynolds number 

(Re) since bubble size is important for the Trapping number. Capillary number is almost 

constant as increasing Reynolds number after turning point, thus the effect of viscous forces 

against the drag forces become a significant factor for rising bubble movement in porous 

media. The value of Capillary number is equal to that of Weber number which means that 

effect of viscous force is same as that of inertial force after the turning point. 

 In the effect of particle for the particle-bubble unit in porous media, the numbers of 

particles are increased with decreasing the modified Bond number. And the modified 

Capillary number and Weber number is decreased with increasing attached particles on a 

bubble. The modified Trapping number is increased with increasing attached particles on a 

bubble. As a result, the particle-bubble unit in porous media can be stuck or trapped among 

pore body or pore throat by attachment of particles on a bubble. 

In the effect of the property of the particle, the terminal rise velocity of a bubble with 

hydrophobic attached particles is much slower than that of ones with hydrophilic attached 
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particles. Based on our simulation, the effect of a bubble with hydrophobic particles is 10 

times more than that of ones with hydrophilic particles. 

The gas mass concentration of contaminant accumulated inside a bubble is increased 

with decreasing the radius of a bubble which means that small bubble is more effective than 

large bubble for VOC removal in porous media. The reason is that the terminal velocity of 

small bubble is slower than that of large bubble. When the terminal velocity of a bubble in 

porous media is slow, the contact time between a bubble and the contaminated water is long. 

Thus, the contact time between a bubble and the contaminated water in small bubble is much 

longer than that in large bubble in porous media. When the contact time is long, the mass 

transfer rate between a bubble and water is high. As a result, small size of a bubble is more 

effective and useful than large size of a bubble in VOC removal mechanism.  

As a result, the VOC removal concentration of a single bubble with higher numbers of 

particles is larger than that of ones with lower numbers of particles, since the terminal velocity 

of a bubble with higher numbers of attached particles is slower than that of ones with lower 

numbers of attached particles in porous media. This effect of attached particle is similar to that 

of size of a bubble. The terminal velocity of a bubble with lower numbers of attached particles 

is faster than that of ones with higher numbers of attached particles. When the terminal 

velocity of a bubble is fast, the contact time between gas and water phase is little. Thus, the 

contact time between a bubble with lower numbers of attached particles and water phase is 

much shorter than ones between a bubble with higher numbers of attached particles and water 

phase. When this time is short, the mass transfer rate between bubbles with lower numbers of 

attached particles is lower than ones between bubbles with higher numbers of attached 

particles. 
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The results of our modeling works indicate that the effect of the colloidal particles 

presented in subsurface is very important for the migration of a discrete bubble in porous 

media. As increased the particles, the terminal velocity of a single bubble in porous media is 

decreased. As decreased the velocity of a bubble, the mass transfer rate of VOC is increased. 

Thus, the efficiency of air sparging may be increased. However, if the colloidal particles are 

one of target contaminant, we need more careful design criteria for air sparging. As increased 

the particles on a bubble, the radius of a bubble should be bigger than the possible trapped 

radius of a bubble.  
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APPENDIX B 

Symbol Meaning 

Σ F Sum of the external forces acting on a bubble 

t Time 

m Mass of a bubble 

ub Rise velocity of bubble 

ubp Velocity of the particle-bubble unit 

ubw Velocity of bubble in liquid 

ρg Density of a gas bubble 

ρf Density of water 

ρp Density of particle 

n Porosity 

CD Drag coefficient in liquid 

Db Bubble diameter 

dp Diameter of solid grain 

α0 Void fraction 

b  Volume of the bubble 

Rb 
Bubble radius 

Rp Particle radius 

Rb_T Trapped bubble radius in porous media 

R
׳
 Equivalent radius of a pore throat 

Fb

 
Buoyant force for bubble 

Fst Surface tension force for bubble 

Fd Drag force for bubble 

Fb
B+P

 Buoyant force for particle-bubble unit 

Fg
B+P

 Gravitational force for particle-bubble unit 

Fst
B+P

 Surface tension force for particle-bubble unit 

Fd 
B+P

 Drag force for particle-bubble unit 

σ Surface tension 
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Ө Contact angle 

R
׳
 Equivalent radius of a pore throat 

dp Diameter of the solid grains 

µb Effective dynamic viscosity of the bubble 

µw Dynamic viscosity of water 

A Correction factor 

Ө’ Contact angle of particle 

γ Angular inclination of the gas-liquid meniscus 

ω π – (Ө’-γ) 

Ab Surface area of a bubble and 

mg Mass of VOC in a bubble. 

Cg Gas concentration of VOC in a bubble 

k Mass transfer coefficient 

ΔC Concentration gradient between a bubble and water phase 

H Dimensionless Henry’s constant 

Ce Equilibrium concentration related to solubility of a gas 

C0 Initial concentration in water 
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