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A NOTE ON A SEQUENTIAL PROBABILITY

RATIO TEST
por

M.S. ABU-SALIH

Summary. This is a type of problem

that lies outside the scope of the expo-
nential family. [f the Z; are real valued,

¢ & , 1 U1, ¢ _ |
with density g &xp [= Egg]h(ixui {here hiz!
=1 or O, according as z > 0 or =z g 0},
and where one value of U0 is tested against
another, it is shown that

n
== + ( P -
Ln Rn D gé ‘Zi Un 8.)
l -
where Up= min 2., a is a positive cons-
1€1<n 1 ) ‘
vant. Using this expression it is proved
that for every non-degenerate distribution

of the 2., P(N > n) is exponentially boun
ded, which, of course, implies termination

with probability 1.
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§1. Introduccién. 1In Abu-Salih [1], the follo

wing model was discussed. Z,Zl,ZQ,ec. is a se-
quence of independent identically distributed (iid)
m-vectors, with k-parameter exponential distribu-
tion P. G¥ is a group of transformations of the
form Zn - C(Zn + b), where C€G, G 1is a Lie
group of m X m nonsingular matrices, dim G > 1,
and G 1is closed in the general linear group
GL(m,R); b is an m-vector of reals, and the total
ity of vectors b form an invariant subspace un

der G.

Let P have the density

k

(x) = B(O)h(z) exp ( )
j=1

Z

(1.1) Pe

Ojsj(z))

with respect to Lebesgue measure on the m-dimen-

sional Euclidian space Em, and where Q = (Glz,f
,@k)" belongs to the natural parameter space 2,
and S = (Sl,_vv,sk)‘ 1s a continuously differen-

tiable mapping of E"™ into E

Let U = (U19U2;«.,) be a maximal invariant

ofe
under G” 1in the sample space, and Yy = Y(0)

, , 2
a maximal invariant in Q For given @1,6 € Q
such that Y(@l) i Y(OQ) s, Write u® = (Ul,Uzg
.,Un), and let P'. be its density under

r L 4 ¢
Y0 ) , 1 = 1,2, with respect to some O-finite
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measure. Let

= ' '
(1.2) r P on / P 1n
and
- n "
(1.3) R, = rn(U ) 3

then Rn is the probability ratio at the nth

stage of sampling based on the maximal invariant U.
A sequential probability ratio test (SPRT) based
on {Rn} continues sampling as long as B < Rn< A
(B and A are two fixed stopping bounds), stops
and accepts 61 (resp. 62) the first time that
Rn < B (resp. Rn > A). A SPRT based on {Rn}
will be called in «nvariant SPRT.

The limiting behavior of R_~ is studies in [13
under the assumption that the actual distributicn
belongs to certain family JF, and it 1is proved

that there are three cases:

(i) 1im R_ = «®, ga.e.P,
n-+o

(i1) 1lim R =0, a e.P,

n-—+o
(iii) 1im sup R_ = », a.e.P, or lim inf Rn
n+ro© 0 n+rwo
= 0, a,e, Py
each one corresponding to a subfamily of F. Thisa
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establishes termination with probabilaity 1 of

the (SPRT) based on {Rn} i

The results obtained above form an extension
of those of Wijsman in [2] and [3] in which the
underlying model was assumed to be multivariate

normal. Our methods of proof are closely modeled

on those in [2] and [3]

§2. Sequential probability ratio test based

negative exponential distribution with location

en

P
rameter. It i1s of interest to consider a model s1
miiar to the exponential one, except for a loca-

tion parameter in the function hf{z) of (1.1). We

[t

were unable to reduce this model to the one we hau

summarized 1in the 1introduction Yet, we have

worked a simple examplie for which we obtained an
exponential bound on P(N > n) for any non-dege-

narate distribution P.

Let Z,ZI,ZQ,eca be 11d random variables with
density Pg with respect to Lebesgue measure.
Assume

Z 1 1
(2.1) pe(z) = = h(z-p)exp( o(z u))

where O = (p,0) and h(x) = 1 if x > 0 ,
hi(x) = 0 if x < 0. = {0 = (y,0): - © < p<wo,g>0}

is the parameter space. The joint density of
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(z ,Zn) is given by

1,aoo

(2.2) Pe

...,zn)

[ f% h(z. -u) em[_ -~ z (z. -u)]

o i=1

Q

Test about 0, e.g. Hy: 0 = 01 vs Hl: o = 02 s

where 01 > 02. Consider the group of transla-

tions G acting on the sample space as follows:

1’2’0..

e
1]

g: 2, »Z. + a for

where - < g < «©® agnd gegCG. It is clear that

G leaves the model invariant.

P

Using (2.11) in [1] ((3.3) in [2]) we get

{ 2 2 3 . {
LZdo3) r NZ,gc0c009d
i 4 n 1
1 - g - « caguen
; - § - 3 £ o P }F’ { - N A
i—— exp{- — ) *_z__t‘ﬁ_—x;)}, i h{z +a-uld
: D & P s - 1
) =% e
< ¥ . £ -
“ .

s 1 r i g ) L
f—=exp[- == [ (z;ta-u)] B h{z +a-p)da

0? 1 i=1 i=1

1 %2 1 .
— = exp[- = E (z; -u)]exp[ —m(u u_Jj
n W o n
o, 2 i=1 92

L P

— — exp|[ o ) (=z, -u)]exp[-m— (u- u )J
o? n 4421 o1
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n 1<ign i
94 n [ 1 ?
= (= )"""exp[( =— - =) T (2, -4 )] .
%3 1 9%  g4zq 10D
But R = 1 (zi, +2_), hence from (2.3):
, 04 1
(2.4) 2n R_ = f&n (=)""4+ n Ln ——
n o
2 2
n
1 1 © .
tl=— - =) ) (Z.-U))
g, o, 151 i n

The SPRT mentioned above will continue sam-
rling as long as f&n B < &n R < &n A and, from

(2.4), it continues sampling if

9
(2.5) 2n B +4n —
of
2
g n
, 1 1
Cnin o=+ (== - ==) § (z.-U)
%5 91 9 =1 1
94
<&n A + &n —— ,
(o]
2
where U = min Z;H Let
1£1i<n
o}
Aii(an‘l’lnai)/(a'l*al)
' ' 2 | 2
g _
(2.6) Ay, = ( n A + An gi)/ al i El
2 1 2
o
1 1 1
a=- fn==/(z" = =2)
02 01 0'2
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N

= ( fn =% - gn 0-1-)/(

g o
9y 2 94 2

(a is positive since numerator and denominator have
the same sing). Using (2.5) and (2.6) we continue

sampling as long as:
n
(2.7) A, < } (2. - U_ - a) < A

From now on, we drop the assumption that Z, Zl’

ZQ,C,Q have the density (2.1) and instead consi-

der 21,22,,;f iid random variables with distri-

bution P and denocte the distribution of (Zi,cm

hugzn) also by P. The only restriction we 1im-
pose on P is that it be non-degenerate. Unden
this condations, we Like to estaovlash terminateon,
with probabalaty 1, of the SPRT based on (2.7) and
g4nd exponential bounds on P(N > n) Let

n
. = A < ¥ o( - U - < A}
(2.8) E {A1 1,:’](2L U, a) A,)
and let us compute P(E__ . |E., ,E ). Gaiven E
n n+l 1 n n
Y - = on 3 YO 3 > 1 5 e
with lél(Al U a) d,» supposz Zf“,1 > U s then
n+i
V €« - 1 . = 3 - - z
l;llzl Unfl al dnf ZHVI Un 1
Hence, g«ven E_ and Zo,4 % ., E ,, 1implies
Zn*lx Unx a < D AZ' Al* and, in particular
(2.9) U & + D+ a
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3 < . E
?n t§e other hand, gLvenvEn and 2.1 U,s then E .,
implies that

n+1
oz (Z2g - U q-3) = dy ¢ nlUy- Zpy1)"2
i=1
lies between Al and A2 hence
- < u = - a < A_.-
Ai < D(Un Zn*l) ) dn 2
which implies
(2.10) v -2 _2c<y & il - By
n n n+l noq n

Comparing (2.9) and (2.10) we have: g<{ven E_,

n
then En*l implies
(2.11) g -Lez . <cuUu +1L
n n n+1 n ’
where L = D + 2. Furthermore, given Ei,oaQEn ’
then Eml implies (2.11), and so
(2.12) P(En#i!sl,ECLan)
£ P(U_- Leg < U_ + L|E on g B )
n n+1 n 1? *n
= BlI T T .
Fn+l : o
= B[E[lF IUn,Ei,cao,En]IEI,OUC,En]
n+1
with probability 1, where I is the indicator
n+1L
function of F__, and F__,= {Unw.;< 2,1 ¢ u, + L.} .
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Suppose that the support of 2Z 1is nof contained

in an interval of length 2L, and define

p = sup P(x-L < Z < xt+L); then op < 1. Fur-
-0 ¥ <00
thermore, since le1 is independent of Zl"ﬁ”’zn
and hence independent of Ei,:,.,En and Un’ we have
Ef1, |EjsceesE 5 U = un]
n+1l
= P(u_- Leg < u_ + L|E E_ ,U_ = u_)
n n n+1l n 12 °°°*"n’"n n
= P(u_- Lew < u+ L)< p <1 g
n n n+l n = 3
and therefore,
e[E[1 IBI,V:QQEn,Un]IEI,i El o et

hence (2.12) becomes:

(2.13) P(En*ilsl,k E ) < p <1 for 1,2,
But
P(N>n) = P(B < Rm < A, 1 & mg )
= P(E4E,...E})
- P(Ei)p(22|£1)9(z3|5152) P(E_|Eq B 4

-1 n
P(E,) "t <,

/A

with ¢ > 0, p < 1.

Therefore, we have establcshed an exponenteal
bound on P(N>n), for P weth support not contasn-

1u7
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ed 4n an (nterval of €ength ZL.

The case of bounded support is considered
in the rest of the paper. Without loss of ge-
nerality, we assume that the support of P is

{(0,b). We may do this because we are studying
n

e

(Z, - U - a) which is invariant under

i=1

translations.

CASE 1: ac (0,b). Let § be a positive constant
such that a + 28 < b. Hence
(2.14) P(Z > a + 28 )= p > 0.
et
0 |
m= [=] +1 (D = |Aa,- A, ])
< 2 1
8
v, = min Z.
k i

(s0 Ek 15 the same as Emk from (2.8) )
B, = {zi.> a+28, i = m(k=-1)+1,...,mk}

{v, £ 6 }.

k k

o
1)

“dince § > 0 then

{2.16) P(Z > §) = q, < 1.
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Let

?k §(k-1)
A = ) (Z. -V - a) - (z,-Vv - a) ;
k = 1 k ey 1 k-1
then §k
. (Z.- a) - mV_+ m(k-1)(V -v.)
kK = fem(k-1)#1 1 k =l Tk
mk
P (Z2.- a) - mv, o,
i=m(k-1)+1
since Vk RS vk-l’ Also we have

then E, implies |A | < D.

k-1° k
i1) Gaven A, then BkH

- mé = mé > D , wicch <implies

(2.17) 1) Given E k|

Aimplies Ak+j > 2mé

lAkf1[ > D For 9§ = 1.2, ..

Therefore, g4ven Ek+i and Ak we have for any

iz 1,2,...

(2.18) ka;+1 ampliea Iik*j'1 (-~ denotes comple-

mentation)

(2.19} Ekfj+1 amplies éK*J’l
Now,
(2.20) P(E1£21ep52k )
< P(EkEk+1kv; E2k)
= P(Ek’"”EQkAk) + P(Ekgr.BQkxk)
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E.. A ) + P(A

o? * Ty x’

IA
g}
-~
m
o

1]
hae)
~
tr

mk
k;ooEzkAk) t aqy 5

by (2.16). And

(2.21) P(EkoocEgkAk) = P(ERQOOEQkIAk)P(Ak)

< P(EkoooEleAk) "
because 0 < P(Ak) < 1 for k = 1,2.5- Also

(2.22) P(Ekcc,gzklAk)

s P(EkIAk)P(Ek*llﬂk,Ak)ooQP(EQkIBksEk*iafo
SELPPRCE RN
< P(EklAk)P(Bk*llnk,Ak)JOOP(Bleskga3
cosBppans By
by (2.19). But, since kaj is independent of
Ak and Ek#j=i for 1= 1,0005] then
(2.23) P(Bk*lek, Eyygi> 1 ° 1y000s3)
= B =2 == n =

where p 1is given by (2.14) and so p, < 1.

Using (2.23), (2.22), and (2.21), then (2.20)

¢ & mk 2k

k
becomes: P(EiB 2k) € cq4Py t qy £ ¢, Py s

ge o
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h 2 m
where p, = max(p19 qq) < 1, and cys ©, are
easily determined positive constants. From (2.7)
p— v
P(N>n) = P(A, <RZ(Zi=UV-a) < A,, for v = 1,...,n)
i=1
v
£ P(A1 <L2 (Zi=Uv-a)<fA2, for v = m,2m,..
. i=1
oo 32mK ).

(where k 1is the largest integer such that 2mk<n)

< P(E1333E2k)
< CQ pgk < ccn
where p = p;/m< 1, and « > 0 Hence,
(2,24 P(N > n) < ep., < 0, ¢ 1
CASE 2: a = b
n n n
iZi(z1 - - a) 1éi(21 - U_- b) siéli&i b)

with probability 1.

Let N* be the smallest integer £ for which

% , :
10 then N € N . But Z < b with pro

bability 1, therefore we need to consider A1 <

L

Y (2,- b) € A
1

i=1

0

only.
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Let 8 be a constant, O < 8§ < b, and

m = {% + 1, where d = lAil . Let
?k
— < -
(2.25) E, = {a, 1 (2g-Db) < 0}
i=1
B, = {z.- b < -8, i =m(k-1)+1,...,mk}.
Given Ek-l’ then E, implies
mk m(k-1)

(2.26) |8, = | Y (z.-b) - 1} (z.- b)|

i=1 i=1

mk

= 13 (z,- b)| < d

i=m(k-1)+1

But, B, implies
K

~mk
(2.27) |8 ] = | (z.- b)] >mé >d ,

m(k-1)+1

c v q . T“~fE £ E E

which 1mp}1es Lk—l K and therefore -1Bk
implies Bk' Hence, for k = 2,3,...

(2.28) P(E,|E _4s-.-»Ey) € P(B, |E,_4»---Ey)
- p(B.) =1 - (P(z2<b-8N"=qc<1,
and therefore,

(2.29) P(E ) = P(EI)P(EZIBl)~...P(Ek|5k_1-~

12
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with £ > 0, q < 1.

i \Y)
(2.30) P(N">n) = P(A; < ] (Z,-b) <0, v = 1,...,n)
i=1
m
$ P(A; <] (Z,-b)soO, g =1,2,..
o 1
i=1
..,[n/m})
k n

P(El"°Ek) Scypa <cp ,
where ¢ > 0 (properly defined), and pn = q[n/m]<1,
%*
But N £ N , hence

(2.31) P(N>n) € P(N¥>n) < cp”,

with ¢ > 0, p < 1.

CASE 3: a > b. We observe that Zi - Un - a<b
- a < 0 with probability 1, and hence we have to
terminate sampling with Probability 1 after at

most [-Al/a-b] + 1 steps, when Al is negative.

When A1 is positive, we have termination after

the first observation. This completes the proof.
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