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Abstract 

In the past decades, expansion projects of port facilities in California, USA, have been completed 

by placing hydraulic fills. These loose man-made fills and even their subjacent natural estuarine and 

marine deposits, have shown to be susceptible to liquefaction. The case of study presented in this 

research, the POLB, Pier S, which is located within a few miles of the Newport-Inglewood and the 

Palos Verdes faults, offers a unique opportunity to use advanced constitutive soil models to assess 

liquefaction.  

 

This research is presented to develop the following specific objectives: i) to calibrate constitutive 

model parameters after a compilation of published subsurface investigation reports of the POLB and 

to determine the suitability of these parameters to reproduce laboratory tests following different 

stress paths and shear strain levels; ii) to assess the use of advanced constitutive models like the 

UBC3D-PLM to predict the behavior of the POLB when a seismic event induces liquefaction; iii) to 

provide recommendations related to the resulting permanent deformations and residual strength of 

soils which could compromise the resiliency of the port. To achieve these goals, was used a 

numerical analyses using the UBC3D-PLM soil model to determine the onset of liquefaction and 

estimate ground-induced settlements based on post-liquefaction excess pore water pressure 

dissipation. This work presents the results of boundary value element simulations of cyclic direct 

simple shear, monotonic triaxial compression, numerical simulations of the free-field response and 

of different story structures in the site when an Operating and Contingency Levels Earthquake occur.  

 

In general, it has been observed that the model has certain limitations but is capable to predict the 

onset of liquefaction and the liquefaction-induced settlements after the dissipation of the excess pore 

water pressure. 

 

 

Keywords: Liquefaction, Constitutive Model, Settlement, Numerical analysis. 
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Resumen 

En las últimas décadas, los proyectos de expansión de las instalaciones portuarias en California, 

USA, han sido completados mediante la utilización de rellenos hidráulicos. Estos rellenos artificiales 

sueltos e incluso los depósitos estuarinos y marinos naturales que le subyacen, han demostrado ser 

susceptibles a licuación. El caso de estudio presentado en esta investigación, el POLB, Pier S, que 

se encuentra a pocas millas de las fallas Newport-Inglewood y Palos Verdes, ofrece una oportunidad 

única de usar modelos constitutivos avanzados para evaluar licuación. 

 

Esta investigación es presentada para desarrollar los siguientes objetivos específicos: i) calibrar los 

parámetros del modelo constitutivo luego de una recopilación de las investigaciones del subsuelo 

publicadas del POLB y determinar la idoneidad de estos parámetros para reproducir ensayos de 

laboratorio siguiendo diferentes trayectorias de esfuerzos y niveles de deformaciones por cortante; 

ii) evaluar el uso de modelos constitutivos avanzados como el UBC3D-PLM para predecir el 

comportamiento del POLB cuando un evento sísmicos induzca licuación.; iii) dar recomendaciones 

relacionadas con las deformaciones permanentes y resistencias residuales de los suelos que puedan 

comprometer la capacidad de recuperación del puerto. Para lograr estos objetivos, se utilizó un 

análisis numérico usando el modelo constitutivo UBC3D-PLM para determinar el inicio de licuación 

y estimar los asentamientos inducidos basado en la disipación del exceso de presión de poros 

después de la licuación. Este trabajo presenta los resultados de las simulaciones de cortes directo 

simple, triaxial a compresión, simulaciones numéricas para la respuesta de un campo libre y de 

estructuras con diferentes pisos en el sitio cuando un nivel operacional y de contingencia ocurre.  

 

En general, se ha observado que el modelo tiene ciertas limitaciones pero es capaz de predecir el 

inicio de la licuación y de los asentamientos inducidos por licuación luego de la disipación del 

exceso de presión de poros.  

 

Palabras clave: Licuación, Modelo Constitutivo, Asentamiento, Análisis Numérico.  

 

 



Contents XI 

 

Table of Contents 

Pág. 

 

1. INTRODUCTION .................................................................................................................... 1 

2. TECHNICAL BACKGROUND ON SOIL LIQUEFACTION ........................................... 9 

2.1 Semi-Empirical Approaches for Liquefaction Evaluation ............................................... 12 

2.1.1 Liquefaction Evaluation using Standard Penetration Tests (SPTs) .............................. 15 

2.1.2 Liquefaction Evaluation using Cone Penetration Tests (CPTs) ................................... 18 

2.1.3 Liquefaction Evaluation using Shear Wave Velocities (𝑽𝒔) ........................................ 21 

2.2 Calculation of Liquefaction-induced Ground Surface Settlements using Classical 

Approaches................................................................................................................................... 23 

2.3 Limitations in Liquefaction Assessment and Settlements Evaluation using current Semi-

Empirical Methods ....................................................................................................................... 28 

2.4 UBC3D-PLM Constitutive Soil Model for Numerical Liquefaction Evaluation ............. 28 

2.5 Case Histories in the use of the UBC Model to Evaluate Liquefaction Potential ............ 35 

3. SEISMICITY OF THE PORT OF LONG BEACH ........................................................... 39 

3.1 Site Description of Port of Long Beach ........................................................................... 39 

3.2 Geologic conditions and predominant faults at the POLB ............................................... 40 

3.2.1 Palos Verdes Fault........................................................................................................ 44 

3.2.2 Newport-Inglewood Structural Zone ........................................................................... 45 

3.2.3 Other Faults Present in the Greater Los Angeles Area ................................................ 46 

3.3 Regional Seismicity of the POLB area ............................................................................ 49 

3.4 Subsurface conditions at the POLB, Pier S ...................................................................... 54 

4. SEMI-EMPIRICAL EVALUATION OF THE PORT OF LONG BEACH .................... 61 

4.1 Liquefaction of Port of Long Beach ................................................................................. 61 

4.2 Evaluation of the Liquefaction Susceptibility using Standard Penetration Tests (SPTs). 62 



Contents XII 

 

4.3 Evaluation of the Liquefaction Susceptibility using Cone Penetration Tests (CPTs) ...... 65 

4.4 Evaluation of the Liquefaction Susceptibility using Shear Wave Velocity (𝑽𝒔) ............. 67 

4.5 Settlement Evaluation Due to Liquefaction in POLB ...................................................... 68 

5. NUMERICAL EVALUATION OF THE PORT OF LONG BEACH .............................. 71 

5.1 Description of the Numerical Model in PLAXIS 2D ....................................................... 74 

5.2 Definition of the Constitutive Models used in the Numerical Model .............................. 77 

5.3 Soil Behavior during Cyclic Loading............................................................................... 84 

5.4 Soil Behavior during Monotonic Loading ....................................................................... 93 

5.5 Input Seismic Motions in the Numerical Model .............................................................. 96 

5.6 Calibration of Damping Coefficients ............................................................................... 98 

5.7 Results of the Numerical Analyses .................................................................................. 99 

6. CONCLUSIONS AND RECOMMENDATIONS ............................................................. 125 

6.1 Summary ........................................................................................................................ 125 

6.2 Conclusions .................................................................................................................... 126 

6.3 Recommendations .......................................................................................................... 132 

 

 

 

 

 

 



Contents XIII 

 

List of figures 

Pág. 

 

Fig. 1. Sand Boils generated after the earthquake: a) 1989 Loma Prieta earthquake, and b) 1979 

Imperial Valley earthquake (after NISEE 2016). ............................................................................... 2 

Fig. 2. a) Overturning failures in residential complex in 1964 Niigata earthquake, and 

b) Liquefaction-induced settlement due to loss of bearing capacity in 1999 Kocaeli earthquake 

(after NISEE 2016). ........................................................................................................................... 2 

Fig. 3. a) Lateral spreading causing bridge spans to fall off from its supports during the 1964 

Niigata earthquake, and b) Lateral spreading of waterfront properties during the 1999 Kocaeli 

earthquake (after NISEE 2016). ......................................................................................................... 3 

Fig. 4. Flotation of sewage line during the 2004 Chuetsu earthquake (after NISEE 2016). .............. 4 

Fig. 5. Lower San Fernando Dam Collapse due to San Fernando Earthquake in 1971 (after NISEE 

2016). ................................................................................................................................................. 4 

Fig. 6. CVR as a boundary of contractive and dilative states to assess liquefaction susceptibility 

(Kramer 1996). ................................................................................................................................. 11 

Fig. 7. Shear stress reduction factor relationship (Idriss and Boulanger 2010). .............................. 13 

Fig. 8. Relationship between 𝐶𝑆𝑅 and (𝑁1)60 for clean sands for an earthquake magnitude of 7.5 

(Seed et al. 1985). ............................................................................................................................ 17 

Fig. 9. Summary flowchart of Seed and Idriss (1971) SPT-based method with modifications in the 

workshops by NCEER and NSF (Youd et al. 2002). (Chang et al. 2011). ...................................... 18 

Fig. 10. Curve for the determination of 𝐶𝑅𝑅 from overburden stress-corrected CPT tip resistance, 

𝑞𝑐1𝑁 (after Robertson and Wride 1998). ......................................................................................... 19 

Fig. 11. CPT-Based soil behavior-type chart (after Robertson and Wride 1998). ........................... 20 

Fig. 12. Relationship between liquefaction resistance and overburden stress-corrected 𝑉𝑠 (Youd et 

al. 2002). .......................................................................................................................................... 23 

Fig. 13. Relationship between 𝐶𝑆𝑅. (𝑁1)60 and Volumetric Strain for Saturated Clean Sands and 

earthquake magnitude 7.5 (after Tokimatsu and Seed 1986). .......................................................... 24 



Contents XIV 

 

Fig. 14. Volumetric Strain as a function of 𝐷𝑟, qc1, SPT N-value and FS against Liquefaction (after 

Ishihara and Yoshimine 1992). ........................................................................................................ 25 

Fig. 15. Primary liquefaction-induced displacement mechanisms: (a) volumetric strains caused by 

water flow in response to transient gradients; (b) partial bearing capacity failure as a result of soil 

softening; (c) liquefaction-induced building ratcheting during earthquake loading (Dashti and Bray 

2013). ............................................................................................................................................... 26 

Fig. 16. Normalized foundation settlements versus normalized building width for the 1964 Niigata 

(Japan) and 1990 Luzon (Philippines) earthquakes (Liu and Dobry 1997). .................................... 27 

Fig. 17. Collapse modes for individual piles founded in: a) rock, b) compact sandy soils 

(Madabhushi et al. 2010). ................................................................................................................ 27 

Fig. 18. Projection of the yield surface in the deviatoric plane (Petalas and Galavi 2013). ............ 30 

Fig. 19. Hyperbolic hardening rule of the original UBCSAND model and adopted in the UBC3D-

PLM model (Petalas and Galavi 2013). ........................................................................................... 31 

Fig. 20. Representation of the modified Rowe’s flow rule used in UBC3D-PLM model (Petalas 

and Galavi 2013). ............................................................................................................................. 32 

Fig. 21. Effect of 𝑓𝑎𝑐𝑝𝑜𝑠𝑡 parameter on the horizontal displacement in a quay wall in Kobe 

(Japan) during the Hyogoken-Nambu Earthquake in 1995 (Galavi et al. 2013). ............................. 34 

Fig. 22. Comparison of the predicted development of excess pore water pressure computed with 

the UBC3D-PLM and measured with centrifuge tests (Petalas and Galavi 2013). ......................... 37 

Fig. 23. Comparisons of numerical simulations of loose Syncrude sands subjected to monotonic 

loading using the UBC3D-PLM and UBCSAND models (Petalas and Galavi 2013). .................... 37 

Fig. 24. Horizontal and vertical deformations of the quay-wall using both PLAXIS and FLAC 

(after Tasiopoulou et al. 2015). ........................................................................................................ 38 

Fig. 25. Site location map (after Google Earth 2016). ..................................................................... 39 

Fig. 26. Regional Fault and Physiography Map of the Los Angeles greater area (Earth Mechanics 

Inc. 2006). ........................................................................................................................................ 41 

Fig. 27. Geologic Structure Map of POLB area (Earth Mechanics Inc. 2006). ............................... 42 

Fig. 28. Geological Cross Section A-A’ of POLB area (Earth Mechanics Inc. 2006). ................... 43 

Fig. 29. Geological Cross Section B-B’ of POLB area (Earth Mechanics Inc. 2006). .................... 43 

Fig. 30. Historic records of seismic activity starting from year 1800 for the POLB area within a 

radius of 300 km (after USGS 2016). .............................................................................................. 50 

Fig. 31. Peak ground acceleration hazard for different sources (Earth Mechanics Inc. 2006). ....... 52 

Fig. 32. Recommended firm-ground spectra for: a) OLE and b) CLE conditions with 5% of 

damping (Earth Mechanics Inc. 2006). ............................................................................................ 54 



Contents XV 

 

Fig. 33. Plan view of the POLB area divided in four characteristic subsurface conditions (Zones 

defined by Earth Mechanics Inc. 2006). .......................................................................................... 55 

Fig. 34. Results of shear wave velocities for Pier S located within Zone IV (After Earth Mechanics 

Inc. 2006). ........................................................................................................................................ 55 

Fig. 35. Approximate Location of CPT and SPT soundings (After Geotechnical Professionals Inc. 

2003). ............................................................................................................................................... 56 

Fig. 36. Summary of the field testing program for Pier S located within Zone IV (After 

Geotechnical Professionals Inc. 2003). ............................................................................................ 59 

Fig. 37. Summary of the supplemental geotechnical laboratory testing program for Pier S located 

within Zone IV (After Geotechnical Professionals Inc. 2003). ........................................................ 59 

Fig. 38. Assumed averages from SPT and CPT results. .................................................................. 60 

Fig. 39. Liquefaction hazard zones in green(California Department of Conservation 1999). ......... 62 

Fig. 40. Factor of safety to evaluate liquefaction susceptibility using SPT semi-empirical method 

for the OLE and CLE condition. ...................................................................................................... 64 

Fig. 41. SPT Clean-Sand Base Curve with data points plotted normalized to a magnitude 7.5. ..... 65 

Fig. 42. Factor of safety to evaluate liquefaction susceptibility using CPT semi-empirical method 

for the OLE and CLE condition. ...................................................................................................... 66 

Fig. 43. Cyclic Resistance Ratio, 𝐶𝑅𝑅, vs. tip resistance, 𝑞𝑐1𝑁 with plotted data points. ............. 67 

Fig. 44. Summarized soil profile and parameters to be input in LiquefyPro for the free-field 

settlement calculation under both OLE and CLE conditions. .......................................................... 69 

Fig. 45. Ground settlement evaluation for the OLE and CLE conditions with SPT and CPT data 

following classical approaches. ........................................................................................................ 70 

Fig. 46. Results of the pore pressure ratios and the stress path of the numerical simulations of 

undrained cyclic direct simple shear test obtained with the numerical model for different 𝐷𝑟 values 

a) 42%, b) 57%, c) 74% and d) 81%. ............................................................................................... 89 

Fig. 47. Stress-strain behavior within 15 and 20 cycles of undrained direct simple shear tests 

obtained with the numerical model for 𝐶𝑆𝑅 values of a) 0.085, b) 0.14, c) 0.25 and d) 0.33. ........ 91 

Fig. 48. Cyclic Strength Curve for Unit B compared with other semi-empirical procedures 

(Boulanger and Idriss 2004; Makra 2013; Seed et al. 1985). ........................................................... 92 

Fig. 49. CIU-TXC tests conducted by AP Engineering and Testing, Inc. at the project site. .......... 93 

Fig. 50. Comparison of CIU-TXC test results and numerical simulations using UBC3D-PLM 

model in PLAXIS 2D for different confining pressures: a) σ’c=72 kPa, b) σ’c=143 kPa, 

c) σ’c=239 kPa and d) σ’c=335 kPa. ................................................................................................. 95 

Fig. 51. Input acceleration time histories for the OLE condition (USGS 2016). ............................. 96 



Contents XVI 

 

Fig. 52. Input acceleration time histories for the CLE condition (USGS 2016). ............................. 96 

Fig. 53. Fourier Amplitude for a node at the bottom of the model in PLAXIS 2D for the OLE 

condition: a) Whittier, b) Loma Prieta; and for the CLE condition: c) Loma Prieta, and d) Imperial 

Valley. .............................................................................................................................................. 97 

Fig. 54. Pore water pressure ratio (𝑟𝑢) contours for the OLE condition a) Whittier 1987 and b) 

Loma Prieta 1989. .......................................................................................................................... 101 

Fig. 55. Pore water pressure ratio (𝑟𝑢) contours for the CLE condition a) Imperial Valley 1979 and 

b) Loma Prieta 1989. ...................................................................................................................... 102 

Fig. 56. Pore pressure ratio (𝑟𝑢) through the dynamic time for the Unit B for the OLE and CLE 

conditions a) Whittier 1989 (OLE) and b) Loma Prieta 1989 (OLE) c) Imperial Valley 1979 (CLE) 

and d) Loma Prieta 1989 (CLE). .................................................................................................... 103 

Fig. 57. Development of the pore water pressure ratio (𝑟𝑢) through the Loma Prieta CLE 

earthquake time. ............................................................................................................................. 104 

Fig. 58. Maximum vertical deformation contours for the OLE condition after the pore water 

pressure dissipation a) Whittier 1987 and b) Loma Prieta 1989. ................................................... 106 

Fig. 59. Maximum vertical deformation contours for the CLE condition after the pore pressure 

dissipation a) Imperial Valley 1979 and b) Loma Prieta 1989. ..................................................... 106 

Fig. 60. Ground surface settlements arising from dissipation of excess pore water pressures after 

liquefaction is induced for the OLE and CLE conditions. ............................................................. 107 

Fig. 61. Stress path for a point in the middle of Unit B: a) Whittier 1999 (OLE) and b) Loma Prieta 

1989 (OLE) c) Loma Prieta 1989 (CLE) and d) Imperial Valley 1979 (CLE). ............................. 108 

Fig. 62. Relative shear stress (𝜏𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) contours due to the earthquake motions after pore water 

pressures dissipation stages: a) Whittier 1987 (OLE) and b) Loma Prieta 1989 (CLE). ............... 109 

Fig. 63. Fourier Amplitude at the top ground surface with PLAXIS 2D for the OLE condition a) 

Whittier, b) Loma Prieta and CLE condition c) Loma Prieta and d) Imperial Valley. .................. 110 

Fig. 64. Fourier Amplitude at the top ground surface with DEEPSOIL for the OLE condition a) 

Whittier, b) Loma Prieta and CLE condition c) Loma Prieta and d) Imperial Valley. .................. 110 

Fig. 65. Acceleration response spectra at the top of the ground surface with PLAXIS 2D for the 

OLE and CLE conditions. .............................................................................................................. 112 

Fig. 66. Acceleration response spectra at the top of the ground surface with DEEPSOIL for the 

OLE and CLE conditions. .............................................................................................................. 113 

Fig. 67. Fourier Amplitude for the 2-story structure with a basement level using PLAXIS 2D. .. 114 



Contents XVII 

 

Fig. 68. Development of ground surface settlements versus time as induced during the earthquake 

motion and during the pore water pressure dissipation phase: a) Whittier 1999 (OLE) and b) Loma 

Prieta 1989 (OLE) c) Loma Prieta 1989 (CLE) and d) Imperial Valley 1979 (CLE). ................... 116 

Fig. 69. Pore pressure ratio (𝑟𝑢) contours for a site with a building when subjected to the OLE 

conditions: a) Whittier 1987 and b) Loma Prieta 1989. ................................................................. 117 

Fig. 70. Pore pressure ratio (𝑟𝑢) contours for a site with a building when subjected to the CLE 

conditions: a) Imperial Valley 1979 and b) Loma Prieta 1989. ..................................................... 117 

Fig. 71. Relative shear stress (𝜏𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) contours for a site with a building when subjected to the 

OLE conditions: a) Whittier 1987 and b) Loma Prieta 1989. ........................................................ 118 

Fig. 72. Relative shear stress (𝜏𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) contours for a site with a building when subjected to the 

CLE conditions: a) Imperial Valley 1979 and b) Loma Prieta 1989.............................................. 119 

Fig. 73. Total volumetric strain (ɛv) contours for a site with a building when subjected to the OLE 

conditions: a) Whittier 1987 and b) Loma Prieta 1989. ................................................................. 120 

Fig. 74. Total volumetric strain (ɛv) contours for a site with a building when subjected to the CLE 

conditions: a) Imperial Valley 1979 and b) Loma Prieta 1989. ..................................................... 120 

Fig. 75. Total settlements of different structure types when subjected to the OLE and CLE 

conditions. ...................................................................................................................................... 122 

Fig. 76. Deformation contours for different structure types when subjected to the Loma Prieta OLE 

earthquake: a) 1 story structure, b) 2 story structure, and c) 3 story structure including the basement 

respectively. ................................................................................................................................... 123 

Fig. 77. Deformation contours of hypothetical structure for different times during the Loma Prieta 

OLE earthquake. ............................................................................................................................ 124 

 

 

 

 



Contents XVIII 

 

List of tables 

Pág. 

 

Table 1. Input parameters for the UBC3D-PLM model (after Petalas and Galavi 2013) ............... 35 

Table 2. Summary of seismic source parameters for local faults of POLB (After Earth Mechanics 

Inc. 2006). ........................................................................................................................................ 51 

Table 3. Earthquakes selected for the OLE condition of POLB (After Earth Mechanics Inc. 2006).

 .......................................................................................................................................................... 53 

Table 4. Earthquakes selected for the CLE condition of POLB (After Earth Mechanics Inc. 2006).

 .......................................................................................................................................................... 53 

Table 5. FS Results for OLE condition with SPT Method. ............................................................. 63 

Table 6. FS Results for CLE condition with SPT Method. ............................................................. 63 

Table 7. FS Results for OLE condition with CPT Method. ............................................................ 65 

Table 8. FS Results for CLE condition with CPT Method. ............................................................. 66 

Table 9. FS Results for OLE condition with 𝑉𝑠 Method. ............................................................... 68 

Table 10. FS Results for CLE condition with 𝑉𝑠 Method. .............................................................. 68 

Table 11. Calculation phases used in the numerical model with PLAXIS 2D. ............................... 76 

Table 12. Constitutive Soil Parameters of each Soil layer modeled with UBC3D-PLM. ............... 81 

Table 13. Constitutive Soil Parameters used in HS model. ............................................................. 82 

Table 14. Constitutive soil parameters used for the HS model in Phases 1 and 2 of the numerical 

simulations. ...................................................................................................................................... 83 

Table 15. Linear elastic parameters used for the rock strata in the numerical model. .................... 83 

Table 16. UBC3D-PLM model parameters used for the numerical simulations of undrained cyclic 

DSS tests. ......................................................................................................................................... 86 

Table 17. Scaling Factors for Effect of Earthquake Magnitude on 𝐶𝑆𝑅 Causing Liquefaction 

(After Seed et al. 1985). ................................................................................................................... 87 

Table 18. 𝐶𝑆𝑅 to Reach Liquefaction for different values of the relative density. ......................... 92 



Contents XIX 

 

Table 19. UBC3D-PLM model parameters used for the numerical simulations of monotonic 

CIU- TXC tests for a sample taken at elevation between -15.6 and -17.7 m-MLLW. .................... 94 

Table 20. Predominant frequencies of the earthquakes for OLE and CLE conditions calculated 

with PLAXIS 2D and DEEPSOIL. .................................................................................................. 97 

Table 21. Predominant frequencies of the earthquakes for OLE and CLE conditions. ................. 109 

Table 22. Settlements in “m” for each phase of the numerical simulations of a 2 story structure 

plus a basement on top of the soil profile when subjected to the OLE and CLE earthquake levels.

 ........................................................................................................................................................ 115 

 

 

 



 

1. INTRODUCTION 

Earthquakes cause damage to civil infrastructure and negatively impact communities in the form of 

economic losses or fatalities. Earthquakes can generate landslides, floods, tsunamis or structural 

damages which at times are attributed to soil liquefaction. In the last decade, earthquakes around the 

world killed almost 100,000 people, affected 14 million people and produced losses estimated at 

more than $215 billion (Gu 2008). Over the past 50 years, significant research effort has been made 

to understand the nature, causes and consequences of earthquakes and their potential to damage 

infrastructure. Numerous studies have resulted in the improvement of the predicting capabilities of 

soil model to assess the seismic vulnerability of urban infrastructure. 

 

Loose sands subjected to cyclic loading during an earthquake lead to the generation of excess pore 

water pressure due the transfer of stress from the soil skeleton ti the pore water. If the soil deposit is 

saturated and subjected to rapid loading, this accumulation of water pressure is unable to dissipate 

and results in a reduction in the effective stresses and an associated loss of shear strength and 

stiffness. This phenomenon, known as “liquefaction”, increases the resulting deformations of the soil 

deposit and might cause devastating effects in the existing infrastructure (Boulanger and Idriss 2012; 

Kramer 1996). These effects can result in a collapse or partial collapse of a structure, depending on 

the structure type, foundation and characteristics of the earthquake magnitude. Structural damages 

occur during and after an earthquake because the supporting soil softens or fails due to loss of shear 

strength induced by the large values of excess pore water pressure generated during the earthquake. 

One manifestation of the liquefaction phenomenon that does not involve large displacements serve 

as an indication that liquefaction was induced, are the so-called “sand boils”. These are produced by 

the groundwater flowing towards the surface carrying sand particles. Fig. 1 shows sand boils caused 

in a free field condition during the 1989 Loma Prieta Earthquake in Oakland, California, and the 

1979 Imperial Valley Earthquake in Imperial County, California. 
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Fig. 1. Sand Boils generated after the earthquake: a) 1989 Loma Prieta earthquake, and b) 1979 

Imperial Valley earthquake (after NISEE 2016). 

Structural damages as a product of liquefaction have been documented in numerous case histories 

including settlement of buildings and bridges, foundation failures, lateral spreading of foundations, 

damage and flotation of buried utilities, and failure of retaining walls. Since 1964, when the Good 

Friday earthquake with a magnitude of 9.2 occurred in Alaska and the Niigata earthquake with 

magnitude 7.5 occurred in Japan, cases of liquefaction-induced damages have been recorded in 

greater detail from various earthquakes such as the 1999 Kocaeli (Turkey) earthquake, where soil 

liquefied and caused bearing capacity failures. The loss of bearing capacity can cause building 

foundations to rotate or punch throughout the soil. Fig. 2 shows the damage that the earthquakes 

caused at those sites, including overturning failures of buildings in Niigata and bearing capacity 

failures in Kocaeli. 

 

  

Fig. 2. a) Overturning failures in residential complex in 1964 Niigata earthquake, and 

b) Liquefaction-induced settlement due to loss of bearing capacity in 1999 Kocaeli earthquake 

(after NISEE 2016). 

a) b) 

a) b) 
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One of the most destructive effects of liquefaction is the lateral spreading on foundations. This 

potential failure mechanism is characterized by the incremental displacements during the earthquake 

motion causing lateral movement of the liquefied soil. This type of liquefaction induces large 

settlements and permanent displacements of structures, especially near large bodies of water and 

tend to affect bridges in waterways, dams, buildings in coastal regions, railroad tracks, ports, 

unreinforced pavements, and poorly reinforced building foundations. Fig. 3 shows some of those 

cases where liquefaction caused large displacements. Fig. 3a, shows the lateral spreading of the 

bridge foundations that caused the bridge falls off their supports during the 1964 Niigata earthquake 

and Fig. 3b shows the flow liquefaction-induced structural damage in waterfront buildings during 

the 1999 Kocaeli earthquake. 

 

  

Fig. 3. a) Lateral spreading causing bridge spans to fall off from its supports during the 1964 

Niigata earthquake, and b) Lateral spreading of waterfront properties during the 1999 Kocaeli 

earthquake (after NISEE 2016). 

Liquefaction can also cause severe damage of buried structures, such as large settlements and 

distortions that causes large displacements with respect to their original location. This is also another 

type of bearing capacity failure induced by liquefaction in which buried structures are found near 

the surface because of the large upward seepage forces induced by the earthquake. This is 

particularly critical in urban environments if the failure occurs in buried gas lines, sewers, water 

pipes, and utilities. Fig. 4 shows the failure of a sewage line that has floated up to the surface due to 

buoyant forces generated during the 2004 Chuetsu earthquake. These type of failures can cause fires 

due to breakage of gas pipes. 

 

a) b) 



INTRODUCTION 4 

 

  

Fig. 4. Flotation of sewage line during the 2004 Chuetsu earthquake (after NISEE 2016). 

Flow liquefaction in large masses of earth can occur if a liquefiable layer of soil is present in slopped 

ground such as dams. Retaining systems and earth dams are affected by the liquefaction phenomenon 

and major damage can occur. Flow failures have caused the collapse of earth dams and other slopes 

where liquefaction is driven by the static gravitational forces and can produce very large 

displacements. An example of a retaining system that collapsed was the San Fernando dam in 1971 

as shown in Fig. 5, which resulted in the failure of the upper and lower San Fernando dam. 

 

  

Fig. 5. Lower San Fernando Dam Collapse due to San Fernando Earthquake in 1971 (after NISEE 

2016). 

After the 1964 Niigata and 1971 San Fernando earthquakes, research on the behavior of the 

abovementioned structures when subjected to earthquake loadings is becoming essential to gain deep 

understanding of the liquefaction mechanisms that may cause damage to the existing infrastructure. 

Idriss and Boulanger (2004) discussed that the assessment of liquefaction susceptibility of soils 

needs to be evaluated from several redundant procedures and the success depend on the quality of 

the field data, laboratory tests and index tests for soil characterization. The decisions that can be 
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made regarding ground improvement must not rely only on one method (e.g., only on Cone 

Penetration Tests (CPT) or Standard Penetration Test (SPT)) but in a variety of in situ testing 

methods. In this matter, only a few available design codes provide clearly defined standards on the 

earthquake resistance of soils. Just to cite one of them, the Eurocode 8 in Part 5, presents provisions 

on the design of foundations and retaining structures and presents specifications for soils susceptible 

to liquefaction. An evaluation of the liquefaction potential needs to be performed if the soils are 

located below the water table and below of foundations with extended layers or thick lenses of loose 

sands with or without significant amount of silt or clay particles. The evaluation must include a 

minimum number or either in situ SPTs or CPTs accompanied with sieve analyses performed in the 

laboratory. In this research, and following that recommendation, the liquefaction susceptibility is 

evaluated with semi-empirical methods including both SPT and CPT, and the onset of liquefaction 

is evaluated with boundary value simulations and macro-scale numerical simulations. 

 

The first step in the dynamic analysis of a structure is to perform a ground response analysis of the 

soil deposit taking into account its geological and geotechnical characteristics. The soil has a 

“filtering” effect to the seismic waves such that accelerations at the base of the rock can be amplified 

or reduced as the waves move upward through the different soil layers. When the frequency of the 

earthquake at the ground surface or near the foundation of overlying structures is similar to the 

natural frequencies of the overlying structures, they will oscillate with large amplitudes causing 

distortions, cracking and at times collapse of civil infrastructure. Herein, a site response analysis for 

the specific case of the Port of Long Beach (POLB) located in Los Angeles is developed following 

these steps: i) determination of the geotechnical and groundwater characteristics of the soil deposit 

describing the static and cyclic behavior of soils in boundary value problems; ii) determination of 

the seismic input motions based on previous reported site specific and probabilistic studies; iii) 

determination of the type of numerical and constitutive model to be used in free field response 

analyses of the POLB subsurface conditions subjected to Operating Level (OLE) and Contingency 

Level (CLE) level earthquakes; and iv) evaluation of free field settlements due to excess pore water 

pressure dissipation after the earthquake and behavior of a simplified structure with similar 

frequencies of the dominant earthquake frequencies to analyze the detrimental consequences when 

liquefaction is induced. These steps are of high importance for concluding about the POLB resiliency 

to a seismic event. This study, which is intended to describe the liquefaction potential of the proposed 

site subsurface conditions, actively contributes to encourage future studies and liquefaction 

mitigation efforts recently performed at the POLB. 
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In this study the local soil stratigraphy, material properties, and groundwater table location were 

provided by the POLB authorities prior to the beginning of this study for the particular location of 

Pier S. The characteristics of the input motion regarding duration, peak accelerations, frequency 

content, magnitude, and distance to the source have been extensively studied at the location selected 

for this site specific analysis. The subsurface conditions of the site studied herein were typical for a 

one-dimensional (1D) analysis because in general the bedrock, groundwater conditions and soil 

layers can be generalized to be horizontal without introducing significant errors. Under 1D analyses, 

it is assumed that the seismic waves coincide with shear waves and propagate mostly vertically from 

the bedrock (i.e., seismic waves are bent by successive refractions into a nearly vertical path 

according to Snell’s law of refraction, (PLAXIS 2015)). 

 

The main goal of the proposed numerical analyses is to evaluate the liquefaction potential of the 

POLB site. For this determination, the particle size and shape, gradation and plasticity as well as the 

earthquake magnitude, duration and peak acceleration play an important role. Two different technics 

are used to determine the susceptibility to liquefaction of the propose site. Initially, semi-empirical 

approaches based on the calculation of factors of safety computed as the ratio of cyclic shear stresses 

to cause liquefaction (i.e., Cyclic Resistant Ratio) and equivalent cyclic shear stresses induced by 

the earthquake input motion (i.e., Cyclic Stress Ratio) are considered. Then, numerical models based 

on the dynamic propagation of waves through the continuum soil profile quantifying liquefaction in 

terms of pore water pressure ratios (𝑟𝑢) as the earthquake occurs are employed. 

 

The case of study presented in this research, which is located within a few miles of the San Andreas 

Fault and is also near the Newport-Inglewood and the Palos Verdes faults, offers a unique 

opportunity to use advanced constitutive soil models to answer the following questions when 

evaluating the liquefaction potential of a site: i) are soils susceptible to liquefaction? ii) can 

liquefaction be induced by the earthquake motion under consideration? and iii) what are the potential 

consequences? (Kramer 1996). 

 

This research is presented to develop the following specific objectives: i) to calibrate constitutive 

model parameters after a compilation of published subsurface investigation reports of the POLB and 

to determine the suitability of these parameters to reproduce laboratory tests following different 

stress paths and shear strain levels; ii) to assess the use of advanced constitutive models like the 

UBC3D-PLM to predict the behavior of the POLB when a seismic event induces liquefaction; iii) to 

provide recommendations related to the resulting permanent deformations and residual strength of 
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soils which could compromise the resiliency of the port. To achieve these goals, typical cross 

sections are proposed in the analyses. The input earthquake motion will be determined from 

historical records of earthquakes in the vicinity of the project. The selection of the critical earthquake 

motion is not straightforward and therefore multiple earthquakes will be evaluated. This work 

presents an opportunity for advancing the understanding of the likelihood of liquefaction-induced 

damage on the POLB and contributes to understanding the role of engineering on the resiliency of 

projects of similar nature in urban environments. 

 

To accomplish the proposed goals of this thesis, the document is organized as follows. Chapter 2 

presents a technical background on soil liquefaction and the state-of-the-practice of the different 

triggering semi-empirical approaches used in liquefaction studies. This chapter also presents a 

review of the classical methods developed for the calculation of liquefaction-induced settlements 

that are currently used in the geotechnical practice for the evaluation of earthquakes in free filed 

conditions. The limitations of those methods to assess liquefaction induced-settlements are outlined. 

In this chapter, a description of the constitutive model used in this research, the UBC3D-PLM 

constitutive soil model, is presented. Several case histories are described showing its successful 

application for the evaluation of liquefaction potential of different sites. 

 

Chapter 3 presents the main characteristics of the site object of this research, the POLB, Pier S. The 

subsurface conditions are presented with the information obtained from SPT’s, CPT’s, and 

measurements of shear wave velocities. A summary of the geological conditions and the 

predominant faults present at the POLB area described as an indication of the seismicity of the 

southern California area where the POLB is located. Chapter 4 presents the semi-empirical 

evaluation of liquefaction at the POLB using the criteria based on the field tests available in this 

project. Settlement calculations induced by liquefaction using classical approaches are developed 

for the free field conditions. 

 

Chapter 5 in this document presents the numerical evaluation of the liquefaction of POLB with two-

dimensional analyses performed with the finite element program, PLAXIS 2D. First, a description 

of the simulations process in PLAXIS 2D is presented. Then, the constitutive soil parameters are 

defined and calibrated by simulating undrained direct simple shear tests under cycling loading to 

reproduce the cyclic strength curve of the liquefiable soil deposits. The results of monotonic drained 

triaxial compression tests are also presented to evaluate the model capabilities under static loading. 

The input seismic motions and the calibration of damping coefficients are presented in order to 
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perform the numerical analyses. These analyses are performed for the case of free field conditions 

and parametric studies are presented evaluating hypothetical structures present at the port. The main 

objective of these analyses is to assess the liquefaction-induced settlement and potential damage that 

may compromise the safety and ability of the port to recover after an earthquake (resiliency). Chapter 

6 presents the conclusion and recommendations of this research. 

 

 



 

 
 

2. TECHNICAL BACKGROUND ON SOIL 

LIQUEFACTION  

Liquefaction-induced tilting and settlement of infrastructure, mostly on shallow foundations has 

been extensively documented in the 1964 Niigata (Japan), 1964 Alaska (USA), 1990 Dagupan city 

(Philippines), 1999 Chi-Chi (Taiwan), and 1999 Kocaeli (Turkey) earthquakes (Lu et al. 2011). More 

recently, liquefaction has been observed in the 2010 and 2011 Christchurch earthquakes (New 

Zealand) (Bray et. al. 2013). Numerical modeling can play an important role for the development of 

cost-effective solutions to mitigate possible disruption of function of the existent infrastructure. 

 

Liquefaction is a phenomenon that could lead to detrimental consequences to the infrastructure 

depending upon the subsurface conditions, the magnitude of the earthquake motion and loading 

characteristics and the type, size and importance of the structures present on the site. Idriss and 

Boulanger (2008) studied the consequences of liquefaction in soils, those include but are not limited 

to: i) the loss of shear strength of soils that could lead to slope stability failures, ii) lateral spreading 

phenomenon in relatively flat ground or gentle slopes, and iii) settlement due to reconsolidation of 

liquefied soils after the excess pore water pressures generated by the earthquake are dissipated. These 

three detrimental consequences are linked to the two main manifestations of liquefaction: flow 

liquefaction and cyclic mobility. 

 

The current analytical and numerical tools are not able to accurately account for these factors on the 

determination of the deformations and ground settlements induced by liquefaction. Numerous 

assumptions need to be made in the analysis and only preliminary estimates can be computed 

especially for the calculation of residual strengths. In spite of the numerous efforts made in the past 

in this field, there is not an accurate method or model accepted as a general framework for the 

determination of liquefaction-induced deformations. 
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Liquefaction is typically divided into two main type of associated phenomena and effects: flow 

liquefaction and cyclic softening. Flow liquefaction is mostly concerned about saturated contractive 

soils which can experience very large displacements as a consequence of a seismic motion or a 

monotonic shear loading. In this type of liquefaction, the static shear stress exceeds the residual 

strength of the soil for an undrained flow of a loose sand. On the other hand, the ground deformations 

arising from cyclic softening occur due to a combination of static and cyclic loading. This type of 

liquefaction can further classified as cyclic liquefaction and cyclic mobility. Cyclic liquefaction 

occurs when the cyclic shear stresses exceed the initial static shear stress and produce a stress 

reversal deriving large deformations, otherwise the cyclic mobility the cyclic loads do not allow a 

shear stress reversal and the deformations only accumulate in each cycle of shear stress. An example 

of the manifestation of cyclic mobility is lateral spreading which generally occurs in gently sloping 

ground. Generally, the deformation from cyclic mobility tend to be smaller than those generated by 

flow liquefaction. When the ground is completely flat, the type of liquefaction occurs under very 

small or zero static shear stress present in the soil mass. The majority of the ground movements for 

this case tend to occur during the earthquake but the permanent deformations of the ground are small 

and mostly occur due to settlements associated with the dissipation of excess pore water pressures 

after the earthquake stops (Kramer 1996). These excess pore water pressures, especially in the cyclic 

mobility case, are in the order of magnitude of the initial vertical effective stress (i.e., pore pressure 

ratio close to one) which causes liquefaction of the soil mass. Been and Jefferies (2016) discussed 

that even though cyclic mobility and flow liquefaction differ conceptually mainly in the failure 

mechanism, the generation of excess pore water pressure, soil softening, and loss of strength are 

similar and therefore the existing constitutive soil models hardly differ in their formulation to model 

one phenomenon or the other. 

 

To explain the liquefaction potential of soils, the geologic history and depositional environment play 

a very important role. The geologic features related to the age of soil deposits and hydraulic 

characteristics of the site need to be carefully evaluated to determine the liquefaction potential of 

soils. The depositional environmental has been important in the past because high in situ void ratios 

and associated relative densities, typically found in loose deposits, have been an indicator that the 

soils were deposited from man-made fills, alluvial, fluvial, marine, deltaic or wind-blown 

environments and have shown to be prone to liquefaction. Conversely, older deposits from the 

geologic point of view have shown reduced liquefaction potential. In the site object of study in this 

research, there is a large presence of hydraulic fills and marine deposits. The compaction effort plays 

an important role in the liquefaction potential. Well-compacted fills are less prone to liquefaction 
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than loosely compacted fills which are typical of hydraulic fills which are formed mostly by 

deposition of soil particles that settled into the water with large void ratios. 

 

Thus, a dense soil has less possibility of experiencing liquefaction than a loose soil by the role that 

plays the critical state theory. The void ratio, the confining conditions, and their associated 

contractive or dilative behavior have a strong influence on the occurrence of liquefaction. Dense 

sands are less prone to liquefaction because of their in situ void ratio (e) is located below the critical 

state void ratio (ecs) and negative excess pore water pressure are generated as the soil dilates during 

shearing which tends to increase the effective stress, inhibiting the onset of liquefaction. On the other 

hand, loose soils tend to have contractive behavior during shearing that allows the generation of 

positive excess pore water pressures and thus decreasing the effective stresses. As is shown in Fig. 

6, Casagrande (1936) found that the boundary between loose and dense states of the soil is through 

the Critical Void Ratio Line (CVR) that sets the limit between soils that are susceptible to liquefaction 

or not depending upon the effective confining pressures. 

 

 

Fig. 6. CVR as a boundary of contractive and dilative states to assess liquefaction susceptibility 

(Kramer 1996).  

In addition to the site geology reflected in its stress history, the particle size and gradation 

characteristics are key in their dynamic behavior. Well graded soils present lower changes in volume 

during loading and tend to be less prone than poorly graded ones. The particle shape also matters in 

the problem because rounded particle grains tend to easily adopt a denser configuration than soils 

with angular or subangular particles. This tendency makes soils with rounded particles more prone 

to liquefaction. If the soils are fine grained, the Chinese criteria (Wang 1979) establishes that the 

potential for liquefaction is a function of the particle size, liquid limit, water content, and liquidity 

index. According to such criterion, fine grained soils susceptible to liquefaction are those that have 

the following characteristics: i) fraction finer than 0.005 mm less than 15%; ii) liquid limit less than 

35%; natural water content larger than 90% of the liquid limit; and liquidity index less than 0.75. 
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2.1 Semi-Empirical Approaches for Liquefaction Evaluation 

There are different methods to evaluate the susceptibility to liquefaction in saturated sandy soils. 

Among those methods are the semi-empirical procedures for liquefaction potential proposed by Seed 

and Idriss (1971) and Idriss and Boulanger (2014). The evaluation consists on the calculation of the 

factor of safety against liquefaction as the ratio of the resistance of the soil to liquefaction triggering 

over the demand of cyclic shear stress induced by the earthquake. This factor of safety is calculated 

with the following expression: 

 

𝐹𝑆 =
𝐶𝑅𝑅

𝐶𝑆𝑅
𝑀𝑆𝐹 

 

(1) 

where 𝐶𝑅𝑅 and 𝐶𝑆𝑅 represent the cyclic resistance and cyclic stress ratios and 𝑀𝑆𝐹 represents a 

magnitude scaling factor for earthquake magnitudes different than 7.5. The magnitude of the factor 

of safety varies depending on the code and regulation of the site where the liquefaction potential is 

assessed. For example, the Eurocode 8 recommends a factor of safety against liquefaction larger than 

1.25. 

 

The 𝐶𝑅𝑅 term in the numerator of Eq. (1), referred as the Cyclic Resistance Ratio, is generally 

determined based on in situ testing, being the Standard Penetration Test (SPT) and Cone Penetration 

Test (CPT) the most commonly used in the state of the practice. The denominator in Eq. (1) depends 

on the characteristics of the seismic motion like the peak acceleration induced by the earthquake.  

The 𝐶𝑆𝑅 of a soil deposit may be expressed as: 

 

𝐶𝑆𝑅 =  
𝜏𝑐𝑦𝑐

𝜎′𝑣𝑜
= 0.65

𝑎𝑚𝑎𝑥

𝑔

𝜎𝑣

𝜎′𝑣𝑜
𝑟𝑑 

 

(2) 

where 𝜏𝑐𝑦𝑐 is the average equivalent cyclic shear stress amplitude induced by the earthquake which 

is assumed to have an amplitude of 65% of the peak cyclic shear stress, 𝑎𝑚𝑎𝑥 is the peak horizontal 

acceleration at the ground surface, 𝑔 is the acceleration of gravity, 𝜎𝑣 is the total overburden pressure 

at depth under consideration, 𝜎′𝑣𝑜 is the effective overburden pressure at depth under consideration, 

and 𝑟𝑑 is a stress reduction factor that may be estimated by the following equations (After Seed and 

Idriss 1971): 
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𝑟𝑑 = 1.0 − 0.00765𝑧  𝑓𝑜𝑟 𝑧 ≤ 9.15 𝑚  

𝑟𝑑 = 1.174 − 0.0267𝑧  𝑓𝑜𝑟 9.15 𝑚 ≤ 𝑧 ≤ 23𝑚  

𝑟𝑑 = 0.744 − 0.008𝑧  𝑓𝑜𝑟 23 𝑚 ≤ 𝑧 ≤ 30𝑚  

𝑟𝑑 = 0.5  𝑓𝑜𝑟 𝑧 > 30 𝑚  

 

 

 

(3) 

where 𝑧 is the depth below the ground surface in meters. This coefficient can also be calculated from 

Fig. 7 for different earthquake magnitudes. 

 

 

Fig. 7. Shear stress reduction factor relationship (Idriss and Boulanger 2010). 

Youd et al. (2002) summarized the preferred methods for estimating the peak horizontal acceleration, 

𝑎𝑚𝑎𝑥 for potentially liquefiable soils (in order of preference):  

 

1) Empirical correlations of the 𝑎𝑚𝑎𝑥 with earthquake magnitude, distance from the seismic energy 

source, and local site conditions for the case of sites on bedrock or stiff to moderately stiff soils. The 

authors recommend that the selection of attenuation relationships should be based on factors such as 

region of the country, type of faulting, and site condition.  

 

2) For soft sites and other soil profiles that are not compatible with available attenuation 

relationships, the acceleration may be estimated from local site response analyses. Computer 

programs like SHAKE and DESRA among others, may be used for the calculations. A set of 
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plausible earthquake records should be used in the analysis, including as many as possible from 

earthquakes with similar magnitudes and source distances. 

 

3) The least desirable method for estimating the peak ground acceleration is through amplification 

ratios such as those proposed by Idris (1990, 1991) and Seed et al. (1994).These methods suggest 

multiplying bedrock outcrop motions by factors to estimate surface motions. The authors warned 

that these methods should be used with caution because amplification ratios are influenced by strain 

level, earthquake magnitude, and frequency content. 

 

Youd et al. (2002) also discussed that because liquefaction usually develops at sites where ground 

motion amplification may occur and where sediments soften as excess pore water pressure develops 

reducing motions, the recommended procedure to estimate 𝑎𝑚𝑎𝑥 should be in the absence of pore 

water pressures or onset of liquefaction. In other words, including the site amplification effects but 

neglecting the influence of excess pore water pressure. 

 

Seismologists calculate earthquake magnitude using five different scales: 1) Local or Richter 

magnitude (ML), 2) surface-wave magnitude (MS), 3) short-period body-wave magnitude (mb), 4) 

long-period body-wave magnitude (mB), and 5) moment magnitude (Mw). The preferred and most 

commonly used magnitude for liquefaction studies is the moment magnitude which is the magnitude 

used in the present study. 

 

The input parameters for the seismic demand (𝐶𝑅𝑅) in the factor of safety against liquefaction have 

been traditionally presented for earthquakes magnitudes of 7.5. Therefore, for earthquake levels as 

the proposed in this study, a Magnitude Scaling Factor (𝑀𝑆𝐹) needs to be introduced. Seed and 

Idriss (1982), proposed a 𝑀𝑆𝐹 to estimate an equivalent number of cycles of shear stress developed 

during different magnitude earthquakes. The 𝑀𝑆𝐹 is defined as a function of the moment magnitude 

(𝑀), as follows: 

 

𝑀𝑆𝐹 =
102.24

𝑀2.56
 

 

(4) 

The term 𝑀𝑆𝐹 in Eq. (1) and (4) is used to scale the calculated 𝐶𝑆𝑅 to the reference earthquake with 

a magnitude of 7.5. This factor has to be applied to correct the 𝐶𝑆𝑅 based upon the calculated seismic 
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hazard. This scaling factor was revised and recommended by Youd et al. (2002) to use in engineering 

practice. 

 

Other factors were developed by Seed (1983) to study the influence of large overburden pressures 

and static shear stresses on the computation of the factor of safety against liquefaction. These 

correction factors typically denoted as Kσ and Kα, are mostly used in the liquefaction hazard analyses 

of large structures inducing high overburden pressures and for liquefaction studies involving sloping 

ground like in the case of embankments and dams, which have large initial static shear stress values. 

For liquefaction studies involving horizontal or gently sloping ground, these factors are not necessary 

in the calculation of the liquefaction hazard.  

2.1.1 Liquefaction Evaluation using Standard Penetration Tests (SPTs) 

For the determination of liquefaction potential using the SPT method, a corrected blow count denoted 

as (𝑁1)60 as explained by Kramer (1996), is used to calculate the resistance value from the SPT 

results as follows: 

 

(𝑁1)60 =  𝑁𝑚𝐶𝑁

𝐸𝑚

0.60𝐸𝑓𝑓
 

 

(5) 

where 𝑁𝑚 is the measured penetration resistance, 𝐶𝑁 is an overburden correction factor, 𝐸𝑚 the 

actual free-fall hammer energy, and 𝐸𝑓𝑓 the theoretical free-fall hammer energy. 

 

The overburden pressure correction factor may be calculated using the following expression 

proposed by Liao and Whitman (1986), where the vertical effective stresses need to be input in tons 

per square foot: 

 

𝐶𝑁 =  √
1

𝜎′
𝑣𝑜

 

  

(6) 

For the estimation of the (𝑁1)60, it is assumed that 𝐸𝑚 and 𝐸𝑓𝑓 are both equal to 0.6, which is the 

approximated historical SPT energy for North American practice (Naeim 2001). Correction factors 

have been proposed by various authors to account for different rod lengths, sampling methods, and 

borehole diameters when performing the SPTs.  
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Seed et al. (1985) studied the 𝐶𝑅𝑅 for clean and silty sands for an earthquake magnitude of 7.5 

necessary to determine the minimum cyclic stress ratio at which liquefaction may be caused using 

the corrected penetration resistance (𝑁1)60 as the indicator. Based in this methodology, liquefaction 

is expected to occur when the 𝐶𝑆𝑅 exceeds the 𝐶𝑅𝑅 normalized for an earthquake magnitude of 7.5. 

The 𝐶𝑅𝑅 for clean sands (i.e., sands with less than 5% content of fines) may also be estimated using 

a relationship proposed by Seed et al. (1985), as follows: 

 

𝐶𝑅𝑅7.5 =  
𝑎 + 𝑐𝑥 + 𝑒𝑥2 + 𝑔𝑥3

1 + 𝑏𝑥 + 𝑑𝑥2 + 𝑓𝑥3 + ℎ𝑥4
 

 

(7) 

where the coefficients a through h are shown in a flowchart (see Fig. 9) presented by Chang et al. 

(2011). The variable x represents the equivalent clean sand penetration resistance. For those cases in 

which the content of fines differs from 5%, Seed and Idriss (1971) developed an expression to correct 

the standard penetration resistance (𝑁1)60 for silty sands and calculate an equivalent clean sand 

penetration resistance, (𝑁1)60,𝐹𝐶, as follows: 

 

(𝑁1)60,𝐹𝐶 = 𝛼 + 𝛽(𝑁1)60 

 

(8) 

where α and β are a function of Fine Content (FC) which represents the content of fines of the soil 

obtained from a grain size distribution. 

 

Fig. 8 shows the curve originally proposed by Seed et al. (1985) for the results of the cyclic resistance 

ratio versus the corrected clean sand SPT value (i.e., (𝑁1)60). The figure is a compilation of several 

case histories showing the critical combinations of strength values measured with SPT tests and 

cyclic stress ratios necessary to induce liquefaction. 
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Fig. 8. Relationship between 𝐶𝑆𝑅 and (𝑁1)60 for clean sands for an earthquake magnitude of 7.5 

(Seed et al. 1985). 

Fig. 9 presents a flow chart for the evaluation of soil liquefaction with the method suggested by Seed 

and Idriss (1971). The different steps necessary to calculate the factor of safety against liquefaction, 

summarized as follows: i) calculation of the 𝐶𝑆𝑅 as indicated on the left hand side of the chart, ii) 

computation of the corrected values (𝑁1)60 from the measured SPT blow counts N, iii) computation 

of clean-sand equivalent value of (𝑁1)60,𝐹𝐶  based on the fine content of the soil, iv) estimation of 

𝐶𝑅𝑅7.5 for the soil using the proposed expression, v) adjustment of the earthquake magnitude using 

the 𝑀𝑆𝐹, and vi) calculation of the factor of safety against liquefaction. 
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Fig. 9. Summary flowchart of Seed and Idriss (1971) SPT-based method with modifications in the 

workshops by NCEER and NSF (Youd et al. 2002). (Chang et al. 2011). 

2.1.2 Liquefaction Evaluation using Cone Penetration Tests (CPTs) 

The main advantage of the CPT is the continuous measurement of penetration resistance and friction 

in the soil. This is reflected in a detailed definition of the soil layers, which may be used to determine 

the liquefaction potential of soils along the soil profile. This significantly improves the analysis of 

liquefaction susceptibility compared with other methods based on SPT results. 

 

Fig. 10 provides curves developed by Robertson and Wride (1998) to determine the cyclic resistance 

ratio for sands from the results of CPTs and normalized for an earthquake magnitude of 7.5. The 
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figure is specifically shown for sands with FC≤5% and median grain size (D50) of 0.25 to 2.0 mm. 

The results were developed from CPT data from several case histories as compiled from numerous 

studies. The figure shows with closed symbols, those sites where liquefaction was reached. 

Conversely, the open symbols represent sites where liquefaction was not reached. The limiting 

curves are shown as boundaries where the majority of closed symbols are located above the curve. 

The two green dashed lines show the boundary curves for sands with fines contents of 15 % and 

35 %, respectively. 

 

 

Fig. 10. Curve for the determination of 𝐶𝑅𝑅 from overburden stress-corrected CPT tip resistance, 

𝑞𝑐1𝑁 (after Robertson and Wride 1998). 

To use the curve for soils with fine contents larger than 5%, the following correction of the 

penetration resistance, 𝑞𝑐1𝑁, was developed by Roberson and Wride (1998): 

 

(𝑞𝑐1𝑁)𝑐𝑠 = 𝐾𝑐𝑞𝑐1𝑁 

 

(9) 

where (𝑞𝑐1𝑁)𝑐𝑠 is the equivalent clean sand value of 𝑞𝑐1𝑁 which represents the corrected CPT tip 

resistance calculated as follows:  

 

𝑞𝑐1𝑁 = (
𝑃𝑎

𝜎′
𝑣

)
𝑛

(
𝑞𝑐

𝑃𝑎
) 

 

(10) 

where 𝑃𝑎 is the atmospheric pressure in the same units used for the vertical effective stress, 𝜎′𝑣, 𝑛 is 

an exponent that varies with soil type from 0.5 to 1.0, and 𝑞𝑐 is the field penetration resistance 
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measured at the tip of the cone. A value of n equal to 0.5 is appropriate for clean sands and 1.0 for 

clayey soils. 𝐾𝑐 is a correction factor for grain characteristics and is presented since the CPT responds 

to many factors such as fine content, soil plasticity, mineralogy, soil sensitivity, age and stress history 

(Robertson 2015). 𝐾𝑐 can be determined using the following expression: 

 

for  𝐼𝑐 ≤ 1.64 ;    𝐾𝑐 = 1.0 

 

(11) 

for 𝐼𝑐 > 1.64  ;    𝐾𝑐 = −0.403𝐼𝑐
4 + 5.581𝐼𝑐

3 − 21.63𝐼𝑐
2 + 33.75𝐼𝑐 − 17.88 

 

(12) 

where 𝐼𝑐 can be estimated from Fig. 11. This chart is commonly used to estimate soil stratigraphy 

based on the soil behavior measured with the CPT tip and friction resistances. When the sleeve 

resistance of the CPT test is divided by the effective cone tip resistance, the normalized friction ratio 

is obtained. The CPT friction ratio usually increases with the increase of the content of fines and the 

plasticity in the soil, providing a better indication of the soil type when dealing with fine-grained 

soils or coarse-grained soils with large content of fines. 

 

 

Fig. 11. CPT-Based soil behavior-type chart (after Robertson and Wride 1998). 
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The boundaries between different soil types in Fig. 11 can be approximated by concentric circles 

where their radius is the index 𝐼𝑐. The following equations can be used for the estimation of that 

index: 

 

𝐼𝑐 = [(3.47 − 𝑙𝑜𝑔𝑄)2 + (1.22 + 𝑙𝑜𝑔𝐹)2]0.5 

 

(13) 

where  

 

𝐹 = [𝑓𝑠/(𝑞𝑐 − 𝜎𝑣)]  ×  100 

 

(14) 

and  

 

𝑄 = [
𝑞𝑐 − 𝜎𝑣

𝑃𝑎
] (

𝑃𝑎

𝜎′
𝑣

)
𝑛

 

 

(15) 

In the above equations, 𝑞𝑐 is the measured tip resistance, 𝑓𝑠 is the measured cone sleeve resistance, 

and 𝑃𝑎 is a reference stress of 100 kPa (or 1 atm). Robertson and Wride (1998) suggested that for 

calculating the soil behavior type index, 𝐼𝑐, it is necessary to initially separate different soil types 

(i.e., clays from sands and silts) and then calculating the dimensionless CPT tip resistance 𝑄 from 

Eq. (15) assuming an exponent 𝑛 of 1.0. 

 

The next step to calculate the factor of safety against liquefaction is to obtain the 𝐶𝑅𝑅 normalized 

to an earthquake magnitude of 7.5 as previously shown in Fig. 10. The clean-sand base curve of 

𝐶𝑅𝑅7.5 is commonly approximated with the following equation: 

 

if (𝑞𝑐1𝑁)𝑐𝑠 < 50 𝑀𝑝𝑎            𝐶𝑅𝑅7.5 = 0.833 [
(𝑞𝑐1𝑁)𝑐𝑠

100
] +  0.05 

 

(16) 

if  50 ≤ (𝑞𝑐1𝑁)𝑐𝑠 < 160 𝑀𝑝𝑎     𝐶𝑅𝑅7.5 = 93[(𝑞𝑐1𝑁)𝑐𝑠/100]3 + 0.08 

 

(17) 

2.1.3 Liquefaction Evaluation using Shear Wave Velocities (𝑽𝒔) 

The 𝐶𝑅𝑅7.5 can also be estimated using the shear wave velocities, 𝑉𝑠, as proposed by Andrus and 

Stokoe (2000; 1997). The calculation of the liquefaction resistance using shear wave velocities is 
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advantageous because they represent a basic mechanical property of the soil and are directly related 

to small-strain behavior. Youd et al. (2002) summarized three concerns when the measured 𝑉𝑠 are 

used for liquefaction-resistance evaluations: i) seismic wave velocities are measured at small strains 

whereas the generation of the pore water pressure and the onset of liquefaction typically induce 

medium to large values of strains in the soil mass, ii) seismic testing does not provide direct soil 

samples for classification of soils and identification of nonliquefiable soils like most clayey soils, 

and iii) very thin layers of soils may not be detected in the measurement of the 𝑉𝑠. Thus, other test 

like SPT and CPT are also needed to detect liquefiable layers of weakly cemented soils that may 

have high 𝑉𝑠 values. Actually, the combined application of both CPT and shear velocities to evaluate 

the potential for soil liquefaction is very useful and can be accomplished in a cost-effective way 

using the seismic CPT (Robertson 2015). 

 

To assess the liquefaction resistance, a correction of the penetration resistance to account for 

overburden pressures needs to be applied (Kayen et al. 1992; Robertson et al. 1992; Sykora 1987). 

This correction can be performed as follows:  

 

𝑉𝑠1 = 𝑉𝑠 (
𝑃𝑎

𝜎′
)

0.25

 

 

(18) 

where 𝑉𝑠1 is the shear wave velocity corrected for overburden stress, 𝑃𝑎 is the atmospheric pressure 

taken as 100 kPa, and 𝜎′ is the vertical effective stress in the same units as 𝑃𝑎. The application of the 

previous equation requires a 𝑉𝑠 measured in both the directions of the motion. 

 

Fig. 12 shows typical 𝐶𝑅𝑅 versus 𝑉𝑠 curves to determinate the cyclic resistance ratio. Youd et al. 

(2002) proposed that the best curve for engineering practice is the curve determined by Andrus and 

Stokoe (2000) which was obtained from field performance data of more than 26 earthquakes for 

different sites with clean sands. 
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Fig. 12. Relationship between liquefaction resistance and overburden stress-corrected 𝑉𝑠 (Youd et 

al. 2002). 

2.2 Calculation of Liquefaction-induced Ground Surface 

Settlements using Classical Approaches 

 

Another consequence of liquefaction is the volumetric strain that results from the dissipation of 

excess pore pressures generated during the earthquake in saturated granular soils. In a free-field 

condition, lateral flow or spreading are not common failure conditions, thus, these strains are 

manifested as ground surface settlements. Liquefaction-induced settlements under any structure 

could result in collapse or partial collapse, especially when differential settlements are induced. Lee 

and Albaisa (1974) and Yoshimi et al. (1975) studied the volumetric strains or settlements in 

saturated sands due to dissipation of excess pore pressures developed during laboratory cyclic 

loading. They showed that for a given relative density, the volumetric strains increase with the mean 

grain size of the sand. However, the effects of shear strains were not considered. Tokimatsu and Seed 

(1986) developed a method correlating the SPT N-value, the earthquake magnitude and induced 

cyclic stress ratio with induced volumetric strains in saturated sands subjected to an earthquake 

motion. Later, Ishihara and Yoshimine (1992) developed a similar method correlating the volumetric 

strain with the relative density and the factor of safety of the sand against liquefaction. Their results 

were in accordance with those of Tokimatsu and Seed (1986). 
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These procedures are widely used in the state of practice to predict liquefaction-induced settlements, 

especially in free field conditions. However, they were primarily developed for a single layer and 

not for stratified subsurface conditions. Martin et al. (1991) demonstrated that for stratified soil 

conditions, the SPT-based method of liquefaction evaluation proposed by Seed (1983) and Seed et 

al. (1985) could over-predict or under-predict excess pore water pressures generated in a soil layer. 

Thus, engineering judgment is essential in stratified soil systems to reasonably estimate settlement 

values. 

 

Tokimatsu and Seed (1986) proposed the chart shown in Fig. 13 which shows the variation of the 

volumetric strain with the corrected SPT N-value for any cyclic stress ratio normalized to a 

magnitude 7.5 earthquake. Note in Fig. 13 that the resulting volumetric strains after liquefaction may 

be as high as 2 or 3% for loose to medium sands and even higher for very loose sands. Then, the 

settlement of the soil deposit can be integrated over the depth of the soil profile. This can be 

simplified as multiplying the volumetric strain by the thickness of each layer as follows: 

 

𝑆𝑠𝑎𝑡 = (
𝜀𝑐

100⁄ )𝑑𝑧 

 
(19) 

where 𝑆𝑠𝑎𝑡 is the settlement of the saturated soil, 𝜀𝑐 is the volumetric strain in percentage, and 𝑑𝑧 is 

the thickness of the layer. 

 

 

Fig. 13. Relationship between 𝐶𝑆𝑅. (𝑁1)60 and Volumetric Strain for Saturated Clean Sands and 

earthquake magnitude 7.5 (after Tokimatsu and Seed 1986). 
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Ishihara and Yoshimine (1992) proposed the chart shown in Fig. 14 which uses the factor of safety 

against liquefaction and either the corrected SPT blow count value or corrected CPT tip resistance 

to evaluate volumetric strains in the soil. The settlement of the soil can also be calculated using Eq. 

(19). If the curves in Fig. 14 need to be used in conjunction with cyclic triaxial tests, the axial strain 

(𝜀1), obtained from the triaxial test should be converted to an equivalent shear strain (𝛾) in the simple 

shear test using the following equation: 

 

𝛾𝑚𝑎𝑥 = 1.5𝜀1𝑚𝑎𝑥 

 
(20) 

 

Fig. 14. Volumetric Strain as a function of 𝐷𝑟, qc1, SPT N-value and FS against Liquefaction (after 

Ishihara and Yoshimine 1992). 

The abovementioned methods are based on free field condition and are currently used in practice to 

assess probable liquefaction-induced settlements of buildings. In the case of building with shallow 

foundations, the separation of volumetric- and deviatoric-induced settlements into conceptual 

categories (as shown in Fig. 15) helps to understand the sequence and mechanisms of liquefaction-

induced building movements. Dashti et al. (2013) identified some primary settlement mechanisms 

from centrifuge experiments. Those primary settlements were: i) volumetric type as a result of partial 

drainage during earthquake loading, sedimentation, and consolidation; ii) deviatoric type as a result 
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of partial bearing capacity loss under the static load of the structure; and iii) liquefaction-induced 

building ratcheting.  

 

Fig. 16 shows the relationship between the width of the building and the average foundation 

settlement on liquefying sand based on data from the Niigata and Luzon earthquakes. Although the 

calculation of the seismic response of a shallow foundation on a saturated sand is complicated, Liu 

and Dobry (1997) developed this empirical chart to typify the relationship between the building 

width and ground surface settlements normalized with respect to the thickness of the liquefiable 

layer.  

 

 

(a) 

 

(b) 

 

(c) 

Fig. 15. Primary liquefaction-induced displacement mechanisms: (a) volumetric strains caused by 

water flow in response to transient gradients; (b) partial bearing capacity failure as a result of soil 

softening; (c) liquefaction-induced building ratcheting during earthquake loading (Dashti and Bray 

2013). 
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Fig. 16. Normalized foundation settlements versus normalized building width for the 1964 Niigata 

(Japan) and 1990 Luzon (Philippines) earthquakes (Liu and Dobry 1997). 

For buildings supported on deep foundations in liquefiable sands, Fig. 17 shows different collapse 

mechanisms observed during strong earthquakes. These collapse modes correspond to the buckling 

instability in the cases where the pile reaches very firm soils (e.g., rock foundation) and losses of the 

lateral confinement producing internal hinges due to excessive bending moments (see Fig. 17a). On 

the other hand, when the piles are founded in compact sandy soils, the loss of the lateral load capacity 

produces large vertical deformations causing the collapse of the element (see Fig. 17b). 

 

 

Fig. 17. Collapse modes for individual piles founded in: a) rock, b) compact sandy soils 

(Madabhushi et al. 2010). 
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2.3 Limitations in Liquefaction Assessment and Settlements 

Evaluation using current Semi-Empirical Methods 

The procedures available for evaluating the potential for liquefaction triggering are based on field 

tests as the SPT, CPT and measurements of 𝑉𝑠. These methods are only based in case histories when 

liquefaction already occurred. Additionally, current methods are based on free field conditions, 

ignoring the changes in the static shear stress induced by the structure and the redistribution of excess 

pore water pressures during shaking. These limitations ignore the resulting changes in the amplitude 

and frequency content of the ground motion (Byrne et al. 2004; Dashti 2009; Lopez-Caballero and 

Modaressi Farahmand-Razavi 2008).  

 

The current methods used to estimate the factor of safety against bearing capacity failure of a 

structure using simplified pseudostatic approaches based on total stresses, cannot capture the process 

that triggered failure. Methods as the ones proposed by Tokimatsu and Seed (1986) and Ishihara and 

Yoshimine (1992), assess liquefaction-induced building settlements trying to capture post-

liquefaction reconsolidation settlements in the free field and are not applicable to cases involving 

buildings on shallow or deep foundations. Hence, the evaluation of liquefaction-induced building 

settlement is still subject of study and more research is needed to understand its mechanisms. 

2.4 UBC3D-PLM Constitutive Soil Model for Numerical 

Liquefaction Evaluation 

For the dynamic analyses performed in this research, the UBC3D-PLM constitutive soil model was 

used. This model is a 3-D generalized formulation based on a two-dimensional (2D) model originally 

called UBCSAND model introduced by Puebla et al. (1997) and Beaty and Byrne (1998). Tsegaye 

(2010) developed the first three-dimensional formulation coded as a user defined model in PLAXIS. 

Then, Galavi and Petalas (2013) enhanced the model by introducing a correction in the calculation 

of the plastic multiplier improving the model capabilities, particularly during monotonic loading. 

The formulation of the original UBCSAND model is based on the classical plasticity theory with a 

hyperbolic strain hardening rule based on the Duncan-Chang approach with slight modifications 

introduced by Galavi and Petalas (2013). The UBC3D-PLM model uses a Mohr-Coulomb yielding 

condition in a three-dimensional principal stress space and a modified non-associated plastic 

potential function (Tsegaye 2010) based on the Drucker-Prager´s criterion. 
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The UBC3D-PLM model is an elasto-plastic model capable to develop excess pore water pressures 

and capture the liquefaction phenomenon of soils, particularly the onset of liquefaction due to 

dynamic loading is reasonably captured by the model. As in any elasto-plasticity based model, the 

strains are decomposed in elastic and plastic. In the elastic regime, the behavior is non-linear and 

dependent on the elastic bulk and shear moduli (i.e., 𝐾 and 𝐺, respectively) and is assumed isotropic 

(Petalas and Galavi 2013). These two moduli are stress-dependent and can be determined using the 

following relationships: 

 

𝐾 = 𝐾𝐵
𝑒𝑃𝐴 (

𝑝

𝑃𝐴
)

𝑚𝑒

 

 

(21) 

𝐺 = 𝐾𝐺
𝑒𝑃𝐴 (

𝑝

𝑃𝐴
)

𝑛𝑒

 

 

(22) 

where 𝐾𝐵
𝑒 and 𝐾𝐺

𝑒 represent the bulk and the shear moduli numbers at the atmospheric pressure, 

usually taken as 𝑃𝐴 =100 kPa; 𝑝 is the mean effective stress; and 𝑚𝑒 and 𝑛𝑒 are parameters which 

define the rate of stress dependency of stiffness. 

 

In the model, the plastic behavior is reached when the stress state reaches the yield surface. From 

thereon, irrecoverable deformations occur. The model includes a hardening rule derived from a 

Mohr-Coulomb yielding criterion. It governs the amount of plastic strains developed after the 

mobilization of shear stress.  

 

In order to represent in the model the complexity of the three-dimensional yield surfaces, six 

combinations of principal stresses have been introduced in the model to define the three-dimensional 

principal stress space, which is based on a Mohr-Coulomb failure criterion in terms of the maximum 

and minimum stress components. The function that describes the yield surface in the model is given 

by the following expression: 

 

𝑓𝑚 =
𝜎′

𝑚𝑎𝑥 − 𝜎′
𝑚𝑖𝑛

2
− (

𝜎′
𝑚𝑎𝑥 + 𝜎′

𝑚𝑖𝑛

2
+ 𝑐′ 𝑐𝑜𝑡 𝜙′

𝑝) sin 𝜙𝑚𝑜𝑏 

 

(23) 

where 𝜎′𝑚𝑎𝑥 and 𝜎′𝑚𝑖𝑛 correspond to the maximum and minimum principal effective stresses, the 

term 𝑐′ cot 𝜙′𝑝  defines the point in which the mean effective stress intersects the yield surface and 
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𝜙𝑚𝑜𝑏 is the mobilized friction angle. Fig. 18 shows the projection of the Mohr-Coulomb yielding 

criterion in the π-plane.  

 

The mobilized friction angle can be calculated using the following equation:  

 

sin 𝜙𝑚𝑜𝑏 =
𝜎′1 − 𝜎′3

𝜎′1 + 𝜎′3
=

𝑡𝑚𝑜𝑏

𝑠′
 

 

(24) 

where 𝑡𝑚𝑜𝑏 is the mobilized shear stress and 𝑠′ is the mean effective stress. Further increases of the 

ratio shear to mean effective stresses result in larger plastic strains.  

 

 

Fig. 18. Projection of the yield surface in the deviatoric plane (Petalas and Galavi 2013). 

The hardening rule used in the original version of the UBCSAND model presented by Puebla et al. 

(1997) was reformulated by Tsegaye (2010) in the UBC3D-PLM model using the hyperbolic 

hardening rule proposed by Beaty and Byrne (1998) which is presented schematically in Fig. 19. 

The hardening rule for the UBC3D-PLM model is given as: 

 

𝑑 sin 𝜙𝑚𝑜𝑏 = 1.5𝐾𝐺
𝑝

(
𝑝

𝑝𝐴
)

𝑛𝑝 𝑝𝐴

𝑝
(

sin 𝜙𝑚𝑜𝑏

sin 𝜙𝑝𝑒𝑎𝑘
𝑅𝑓)

2

𝑑𝜆 

 

(25) 

where 𝑛𝑝 is a model parameter to describe the stress dependency of the plastic shear modulus, d𝜆 is 

the plastic strain increment multiplier, 𝜙𝑝𝑒𝑎𝑘 is the peak friction angle, and 𝑅𝑓 is the failure ratio 

which is always taken less than 1 and 𝐾𝐺
𝑝
 is the plastic shear modulus number as defined in Eq. (26).  
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Fig. 19. Hyperbolic hardening rule of the original UBCSAND model and adopted in the UBC3D-

PLM model (Petalas and Galavi 2013). 

 

𝐺𝑝 = 𝐾𝐺
𝑝

𝑃𝐴 (
𝑝

𝑃𝐴
)

𝑛𝑝

 

 

(26) 

In Eq. (26), 𝐺𝑝  represents the plastic shear modulus. The plastic potential function of the model, 

which describes the direction of the development of plastic strains, is based on a Drucker-Prager 

non-associated flow rule and is defined with the following expression (Tsegaye 2010):  

 

𝑔 = 𝑞 − 𝑎(𝑝′ + 𝑐′ cot 𝜙𝑝) 

 

(27) 

where 𝑝′, 𝑞 and the coefficient 𝑎 are given as: 

 

𝑎 =  
√3 sin 𝜓𝑚𝑜𝑏

cos 𝜃 +
sin 𝜃 sin 𝜓

√3

  

 

(28) 

𝑞 = 𝜎1 − 𝜎3 

 

(29) 

𝑝′ =
𝜎′1 + 𝜎′2 + 𝜎′3

2
 

 

(30) 
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where 𝜓 is the dilatancy angle and 𝜃 is the Lode angle equal to 30° because the Drucker-Prager 

surface is fixed in the compression point (Petalas and Galavi 2013) and 𝜎1, 𝜎2, 𝜎3 are the principal 

stresses. 

 

The flow rule of the UBC3D-PLM model is similar to the flow rule originally used in UBCSAND 

model by Puebla (1997) which describes that plastic shear strains do not produce plastic volumetric 

strains based on the Rowe’s stress dilatancy relation as shown in Fig. 20. 

 

 

Fig. 20. Representation of the modified Rowe’s flow rule used in UBC3D-PLM model (Petalas 

and Galavi 2013). 

The relationship between plastic shear strains and plastic volumetric strains is given as follows: 

 

𝑑𝜖𝑣
𝑝

= sin 𝜓𝑚 𝑑𝛾𝑝 

 
(31) 

where  

 

sin 𝜓𝑚 = sin 𝜙𝑚 − sin 𝜙𝑐𝑣 

 
(32) 

Equations (31) and (32) describe the increment of plastic volumetric strains, 𝑑𝜖𝑣
𝑝
, with the increment 

of plastic shear strains, 𝑑𝛾𝑝, affected by the mobilized dilatancy angle 𝜓𝑚. 

 

The model captures the transition to the liquefaction state of the soil by including a secondary yield 

surface that generates less plastic strains than those generated with the primary yield surface. It is 



Technical Background on Soil Liquefaction 33 

 

possible mainly because the primary yield surface uses an anisotropic hardening rule, whereas the 

secondary yield surface uses a kinematic hardening rule (Galavi et al. 2013). For the secondary 

loading, the plastic shear modulus increases with each loading cycle to capture the effect of soil 

densification, which is shown in the following expression: 

 

𝐾𝐺
𝑝

= 𝐾𝐺,𝑝𝑟𝑖𝑚𝑎𝑟𝑦
𝑝

∗ (4 +
𝑛𝑟𝑒𝑣

2
) ∗ ℎ𝑎𝑟𝑑 ∗ 𝑓𝑎𝑐ℎ𝑎𝑟𝑑 

 

(33) 

where 𝑛𝑟𝑒𝑣 is the number of the half cycles generated from the beginning of the test, hard is a factor 

which is used to apply a densification rule for loose soils subjected to cyclic loading, 𝑓𝑎𝑐ℎ𝑎𝑟𝑑 is a 

multiplier factor varying between 0 and 1 which is used to adjust the densification rule, and 

𝐾𝐺,𝑝𝑟𝑖𝑚𝑎𝑟𝑦
𝑝

 is the initial value of 𝐾𝐺
𝑝
 entered for the primary yield surface. 

 

To capture the post-liquefaction behavior of loose granular soils and the stiffness degradation of 

soils, the UBC3D-PLM model incorporates a post liquefaction rule to account for the decrease of 

the plastic shear modulus as a function of the plastic shear strains. This equation is expressed as 

follows: 

 

𝐾𝐺
𝑝

= 𝐾𝐺,𝑝𝑟𝑖𝑚𝑎𝑟𝑦
𝑝

∗ 𝑒min(110𝜀𝑑𝑖𝑙,𝑓𝑎𝑐𝑝𝑜𝑠𝑡) 

 
(34) 

where 𝜀𝑑𝑖𝑙 describes the accumulation of the plastic deviatoric strains generated during dilation of 

the soil and the factor denoted as 𝑓𝑎𝑐𝑝𝑜𝑠𝑡 represents an exponential multiplier that controls the plastic 

behavior of the soil at the post liquefaction state. Previous studies have shown that the larger the 

𝑓𝑎𝑐𝑝𝑜𝑠𝑡 factor, the smaller the plastic strains generated at the end of the earthquake (Galavi et al. 

2013). Fig. 21 shows horizontal displacements of a quay-wall located in Kobe (Japan) (Galavi et al. 

2013) as the Hyogoken-Nambu earthquake 1995 occurred. In the figure, 𝑓𝑎𝑐𝑝𝑜𝑠𝑡 factor was varied 

parametrically to show the relative importance of this factor on the resulting plastic strains and 

associated displacements at the foundation level. 
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Fig. 21. Effect of 𝑓𝑎𝑐𝑝𝑜𝑠𝑡 parameter on the horizontal displacement in a quay wall in Kobe (Japan) 

during the Hyogoken-Nambu Earthquake in 1995 (Galavi et al. 2013). 

The UBC3D-PLM requires the input of 16 constitutive soil parameters calibrated based on 

experimental results from laboratory tests. Table 1 presents a description of the input parameters for 

the constitutive model. The recommended method to define the input parameter is to perform 

laboratory tests that follow a similar stress path that the soil will follow in the field. For earthquake 

engineering applications, especially when dealing with liquefiable soils, undrained cyclic Direct 

Simple Shear (DSS) tests are the best and most common way to obtain constitutive soil parameters. 

Ideally, the soil parameters are calibrated by fitting the model response to the soil response as 

obtained from undrained DSS tests. The parameters are typically calibrated from stress-strain, stress 

paths, and cyclic strength curves of the material under laboratory confining pressures similar to those 

currently present in the field. The input value for (𝑁1)60 is obtained from standard penetration field 

tests. 
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Table 1. Input parameters for the UBC3D-PLM model (after Petalas and Galavi 2013) 

Parameter Description 

𝜙𝑐𝑣 Friction angle at constant volume 

𝜙𝑝 Peak friction angle 

c Cohesion intercept of Mohr-Coulomb envelope 

𝐾𝐵
𝑒 Elastic bulk moduli at the reference pressure (Pa = 100 kPa) 

𝐾𝐺
𝑒 Elastic shear moduli at the reference pressure (Pa = 100 kPa) 

𝐾𝐺
𝑝
 Drained plastic shear modulus 

me Elastic bulk moduli exponent 

ne Elastic shear moduli exponent 

np Plastic shear moduli exponent 

𝑅𝑓 Failure ratio 

σt Tension Cut-off 

𝑓𝑎𝑐ℎ𝑎𝑟𝑑 Densification factor 

(𝑁1)60 Corrected SPT value 

𝑓𝑎𝑐𝑝𝑜𝑠𝑡 Factor for minimum value of the shear moduli 

Pa Reference pressure equal to the atmospheric pressure in kPa 

2.5 Case Histories in the use of the UBC Model to Evaluate 

Liquefaction Potential 

Other case histories on the Niigata 1964 (Japan) and Dagupan City 1990 (Philippines) earthquakes 

have provided in the past details about the seismic performance of structures founded on liquefiable 

sands (Dashti and Bray 2013). For this reason, several centrifuge test were performed by Dashti et 

al. (2010a; b) with the main goal of identifying the mechanisms of liquefaction-induced building 

settlements and assessing the influence of different factors on the building’s response when founded 

on shallow foundations. In that study, the results of the centrifuge testing were later compared with 

the results of numerical simulations based on fully coupled analyses using the UBCSAND 

constitutive soil model coded in the computer program FLAC-2D. The numerical simulations were 

oriented to capture the soil response and the liquefaction-induced building settlement considering 

that most of the procedures available up to that point were based only on free field conditions and 

typically neglect the detrimental effects of liquefaction on structures.  
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Another field of application of numerical and constitutive modeling applied in geotechnical 

earthquake engineering is the response of embankments and earth-fill dams subjected to earthquake 

loading. After the San Fernando 1971 earthquake, which resulted in the failure of the upper and 

lower San Fernando dam, research on the behavior of these type of structures when subjected to 

earthquake loading is becoming essential to gain deep understanding of the liquefaction mechanisms 

that may cause damage to the existing infrastructure. Several researchers, as Seed et al. (1973, 1976, 

1988) Castro et al. (1989), Vasquez-Herrera and Dobry (1988), Olsen and Stark (2001), among 

others, have discussed the most critical aspects associated with flow failures and liquefaction-

induced damage of foundation failures in dams, with significant advances in the field of dam design 

and specifications.  

 

Petalas and Galavi (2013) proposed an improved version of the UBC3D-PLM and made a validation 

of the constitutive model as implemented in PLAXIS with dynamic centrifuge tests. The results of 

the predicted evolution of the excess pore water pressure are shown in Fig. 22 for different depths 

in a cohesionless soil deposit. As shown in the figure and in concordance with Dashti (2012), the 

model is able to predict the onset of liquefaction with more accuracy at low confining stresses. For 

higher stresses, the model predicts the evolution of the pore water pressure much steeper than the 

experimental measurements. This can be explained from the rather limited capability of the model 

in its stress densification rule. 
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Fig. 22. Comparison of the predicted development of excess pore water pressure computed with 

the UBC3D-PLM and measured with centrifuge tests (Petalas and Galavi 2013). 

Also, Galavi et al. (2013) presented a comparison of the UBC3D-PLM, the original 2D UBCSAND 

model, and experimental results of loose Syncrude sands under monotonic triaxial compression 

(TXC) and monotonic direct simple shear (DSS) test conditions. The results are presented in Fig. 

23. The simulation results using both constitutive soil models agree well with experimental results. 

The slight differences between computed values using both models are due to the new features added 

by Petalas and Galavi (2013) in the UBC3D-PLM model. 

 

 

Fig. 23. Comparisons of numerical simulations of loose Syncrude sands subjected to monotonic 

loading using the UBC3D-PLM and UBCSAND models (Petalas and Galavi 2013). 
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More recently, Makra (2013) used the UBC3D-PLM constitutive soil model implemented in the 

finite element software PLAXIS 2D to evaluate the ability of the model to predict the onset of 

liquefaction and post-liquefaction induced deformations applied to the San Fernando dam in 

California. After calibrating constitutive soil parameters from undrained cyclic triaxial tests and 

results of centrifuge tests, and after performing numerical simulations on the San Fernando dam, the 

author concluded that the post-liquefaction behavior cannot be accurately computed with the model. 

However, the onset of liquefaction can be reasonably captured as it is quantified as a reduction in 

the effective stresses in the soil mass in relation to the high pore water pressures developed as the 

earthquake occurs.  

 

The development of the UBC3D-PLM constitutive soil model implemented in PLAXIS 2D is based 

on the UBCSAND model as implemented in FLAC 2D. Several researchers have developed 

comparisons between the results obtained with both models and thus, comparison have been 

presented between the uses of both programs. Tasiapoulou et al. (2015) presented the behavior of a 

multi-block gravity quay-wall comparing the results of both numerical models as coded in PLAXIS 

2D and FLAC. Fig. 24 shows the results of the dynamic analyses using both approaches that resulted 

in similar computed horizontal and vertical deformations. 

 

 

Fig. 24. Horizontal and vertical deformations of the quay-wall using both PLAXIS and FLAC 

(after Tasiopoulou et al. 2015). 

 



 

 
 

3. SEISMICITY OF THE PORT OF LONG 

BEACH 

3.1 Site Description of Port of Long Beach 

The Port of Long Beach (POLB), which is the second busiest seaport in the United States, is located 

near in the east side of the San Pedro Bay in the city of Los Angeles, California as shown in Fig. 25. 

The port is an important transportation center moving a great variety of goods including but not 

limited to clothing, furniture, machinery, and petroleum. This research focuses in the Pier S which 

is a 290 ha area of the POLB located on the eastern half of the bay. Future expansion projects of the 

port are proposed in location of Pier S. The proposed 65 ha expansion would result in the world's 

greenest shipping terminal. This construction includes the development of a wharf and terminal 

infrastructure at Pier S including some buildings and miner structures. Pier S projects future 

improvements to the port's back channel to upgrade navigational safety. 

 

 

Fig. 25. Site location map (after Google Earth 2016). 
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3.2 Geologic conditions and predominant faults at the POLB 

The Los Angeles basin floor is characterized by unconsolidated sediments from the Holocene age 

with the exception of some local formations from the Pleistocene age present in the small hills and 

mesas. Similar characteristics are typical of the POLB subsurface area and immediate offshore areas. 

The Pleistocene materials consists of both non-marine and marine deposits which are commonly 

referred as Lakewood and San Pedro formations which provide firm-ground conditions at the POLB. 

 

As shown in Fig. 26, the POLB is located in the coastal area of Los Angeles in a low-lying plain at 

the south of the Santa Monica Mountains, the Repetto and Puente Hill formations. The figure also 

shows the regional set of faults in the vicinity of the Port of Long Beach. The amount of regional 

faults presents in the area serve as an indication of the potential seismic activity in the port area. 

Most of the surface geological faults such as the Santa Monica, Hollywood, and Whittier faults that 

occur along the basin margins and the Los Angeles region are triggered by the subsurface thrust and 

reverse faults as shown in Fig. 26 with dotted lines. Historically, large magnitude earthquakes 

associated with these geologic structures, like the Whittier 1987 earthquake, have been originated at 

depths between 10 and 15 km (Earth Mechanics Inc. 2006). 

 

The regional geologic structure across the greater Los Angeles area is characterized by the north-

northeasterly compression with displacement rates between 5 and 9 mm per year. Fig. 27 presents 

some of the geological structures near the area of POLB that contribute to the seismicity activity of 

the POLB. This geological structure is related to the tectonic activity in the Long Beach region during 

quaternary times and seems to have occurred along the strike-slip faults of Palos Verdes and 

Newport-Inglewood Structural Zone (NISZ). These two faults represent the main source of seismic 

activity at the location of the POLB. As a result of the deformation along the Newport-Inglewood 

fault, the THUMS-Huntington Beach (THB) fault and the Palos Verdes fault, several folds are 

apparent in the POLB area like the Wilmington and Signal Hill anticlines and the intervening 

Gardena and Harbor-Wilmington synclines. Several north-south trending cross-cutting faults are 

also present such as the Powerline, Harbor Entrance, and Daisy Avenue faults which are currently 

inactive.  

 

Fig. 27 also presents two characteristic geological cross sections (A-A’ and B-B’) which are shown 

to describe the site stratigraphy and geologic structure present in the POLB area. 
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Fig. 26. Regional Fault and Physiography Map of the Los Angeles greater area (Earth Mechanics 

Inc. 2006). 
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Fig. 27. Geologic Structure Map of POLB area (Earth Mechanics Inc. 2006). 

The sections presented in Fig. 28 and Fig. 29, show the fills and miscellaneous superficial sediments 

overlying older sediment deposits from the Pleistocene-age Lakewood Formation which in turn 

overlies the early Pleistocene San Pedro formation. The underlying strata comprise folded and 

faulted Pliocene and Miocene age formations, and the major angular Pico unconformity, between 

the Quaternary and upper Pliocene sediments from the lower Pliocene-Miocene deposits and the 

Catalina Schist basement (Earth Mechanics Inc. 2006). The Pico unconformity indicates that the 
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major folding of the Wilmington Anticline occurred before the Quaternary time. The San Pedro 

Formation overlies marine sediments and sedimentary rocks like the Pico, Repetto and Monterey 

Puente formations. At the same time, these sediments overlie Mesozoic-age crystalline basement 

rocks which are primarily schist metamorphic rocks. Several major folds and faults are shown in the 

figures. The major folds represent the Wilmington and Signal Hill anticlines and the intervening 

Gardena and Harbor-Wilmington synclines, that are the result of the deformation along the NISZ, 

THB and Palos Verdes faults. Inactive numerous minor north-south trending cross-cutting faults are 

also present in the region of the POLB as shown in Fig. 28 and Fig. 29. These include but are not 

limited to the Powerline, Harbor Entrance and Daisy Avenue faults. 

 

 

Fig. 28. Geological Cross Section A-A’ of POLB area (Earth Mechanics Inc. 2006). 

 

Fig. 29. Geological Cross Section B-B’ of POLB area (Earth Mechanics Inc. 2006). 
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A summary of the active faults within the area of Los Angeles that contribute to the high probability 

of occurrence of seismic activity in the POLB area is described in the following sections as presented 

in the Port Wide Motion report by Earth Mechanics Inc. (2006) and the Fault Evaluation Report 

FER-173 by Bryant (1985). 

3.2.1 Palos Verdes Fault 

The Palos Verdes fault as shown previously in Fig. 26 extends through the Port of Los Angeles from 

the east side of the Palos Verdes Peninsula southeasterly to the Lasuen Knoll area offshore and 

northwesterly into the Santa Monica Bay, with a total length of 100 km approximately. Under the 

north part of the San Pedro shelf, the fault zone includes several strands, with the main strand dipping 

west. To the southeast the main fault strand exhibits normal separation and mostly dips east. To the 

southeast near Lasuen Knoll, the fault zone locally dips at a low angle, but elsewhere near this knoll, 

the fault dips steeply. Fisher et al. (2004) explain the observed structural variations as the result of 

changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Onshore, 

the Palos Verdes fault has a northwesterly trend along the northeast margin of the peninsula forming 

a restraining bend in the region just north of the Port of Los Angeles. The fault appears to dip 

southwesterly under the Palos Verdes Hills at a relatively steep angle. Woodring et al. (1946) and 

Zielbauer et al. (1962) show the Palos Verdes fault to be generally coincident with the topographic 

break along the northern and northeast margin of the Palos Verdes Hills but there are many 

interpretations that suggest locations upslope within the Palos Verdes Hills.   

 

Nardin and Henyey (1978),Clark et al. (1987), and Fisher et al. (2004) found little evidence of faults 

displacing strata any younger than Pliocene, and thus Quaternary activity on the northern Palos 

Verdes fault is uncertain. The Palos Verdes fault is predominantly a strike-slip fault but has a small 

vertical component about 10% to 15%. The slip rate of the Palos Verdes fault is based primarily on 

the geophysical and geological studies in the outer harbor of the Port of Los Angeles performed by 

McNeilan et al. (1996). In that study, it was estimated that the horizontal slip rate varied between 

2.0 and 3.5 mm per year with a range of about 2.3 to 3.0 mm per year for the middle- to late- 

Holocene time period. 

 

There are virtually no direct data to constrain the recurrence interval for large earthquakes on the 

Palos Verdes fault. Using the empirical data of Wells and Coppersmith (1994) this fault is capable 

to generate a magnitude 6.8 to 7.4 earthquake. It appears that recurrence intervals for such 
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earthquakes on the Palos Verdes fault would range from a few hundred to a few thousand years. The 

fault rupture scenarios evaluated by McNeilan et al. (1996) ranged from 180 to 630 years for a 

magnitude 6.8 event, 400 to 440 years for a magnitude 7.1 event, 1,000-1,100 years for a magnitude 

7.2 event, and 830 to 1,820 years for a magnitude 7.4 event. Previous seismic hazard analyses for 

the Port of Los Angeles and the Vincent Thomas bridge (Earth Mechanics Inc. 1993, 1995, 2001) 

used recurrence intervals in the middle of the range (i.e., 800-900 years). 

3.2.2 Newport-Inglewood Structural Zone 

The Newport-Inglewood Structural Zone (NISZ), as shown previously in Fig. 26, consists of a 

northwest-southeast trending series of faults and folds forming an alignment of hills in the western 

Los Angeles Basin extending from the Baldwin Hills on the north to Newport Mesa on the south. 

The fault seems to have originated in about late Miocene time but based on relative stratigraphic 

thickness of bedding across the zone, the greatest activity seems to have been post Pliocene 

indicating the fault is rather young. 

 

The NISZ includes several individual faults and other branch faults (as shown in Fig. 26, Fig. 27, 

Fig. 28 and Fig. 29) that have good surface expression as actual fault scarps. These faults are 

relatively linear and narrow along the central part of the zone in the Long Beach-Seal Beach area. 

To the north of Dominguez Hill, the faults are shorter, less continuous, and exhibit a left-stepping 

arrangement with several folds between fault branches. In the south near Costa Mesa and Newport 

Beach, the NISZ extends to about 5 or 6 km where it includes several subparallel faults such as the 

Bolsa, Fairview, and Pelican Hill faults. The NISZ extends offshore to about the Dana Point area. 

To the south, the fault is believed to connect via the Offshore Zone of Deformation near San Onofre 

to the Rose Canyon fault in the San Diego region forming a major structural trend commonly referred 

to as the Santa Monica-Baja Zone of Deformation (SMB). 

 

The NISZ has been hypothesized to be capable of generating a magnitude 7.0 earthquake. This may 

be relatively small as long as the SMB zone but the magnitude is based on the concept that the zone 

consists of shorter discontinuous faults that behave independently. This fault was the source of the 

1993 Long Beach earthquake of magnitude 6.3, but as with the Palos Verdes fault, the history of 

earthquakes on the NISZ is incomplete so it is difficult to predict a maximum earthquake. The 

recurrence interval for the maximum earthquake on the NISZ has the order of a thousand years or 

more (Freeman et al. 1992; Grant et al. 1997; Schell 1991; Shlemon et al. 1995). These studies, using 
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cone penetrometers mostly in the Huntington Beach area, suggested average recurrence intervals of 

about 2,000 to 3,500 years per event.   

 

The rate of fault slip was inferred to be very slow and as suggested by Grant et al. (1997), a minimum 

rate of 0.34 to 0.55 mm per year is plausible but might be higher. Shlemon et al. (1995) estimated a 

rate of 1.5 to 2.5 mm per year. However, most of the deformation within the NISZ seems to have 

occurred within Quaternary time so the rate during more recent times may differ from the long-term 

rate. 

3.2.3 Other Faults Present in the Greater Los Angeles Area 

Other important faults present in the greater Los Angeles area, but not necessarily nearby or passing 

directly through the POLB, include the Cabrillo fault, the Sierra Madre fault, Santa 

Monica/Hollywood fault, San Pedro fault, Elysian Park fold and Thrust Belt, the Puente Hills 

Formation. These faults are briefly described in this section because they can also generate 

significant seismic activity of high importance to the POLB area. There are some minor faults on the 

offshore San Pedro shelf that were detected by various geophysical surveys for local pipelines. These 

features are too small and discontinuous to represent a seismic hazard and therefore are not 

significant for seismic design. An example of this type of feature is the Navy Mole Fault as shown 

previously on Fig. 27. 

 

The Cabrillo fault forms a prominent northeast facing scarp in the San Pedro-Point Fermin area. The 

fault dips about 50° to 70° easterly and trends northwesterly inland for about 7 km (Dibblee 1999; 

Woodring et al. 1946). Southerly from Cabrillo Beach, the fault extends offshore for a distance of 

about 11 km where it seems to merge with the Palos Verdes fault (Fischer et al. 1987; Vedder et al. 

1986). The maximum magnitude and slip rate cannot be estimate due to absence of data. The fault 

is considered to be predominantly a strike-slip fault due to its association with the Palos Verdes fault 

but may also have a normal component of displacement. The fault could produce earthquakes with 

a magnitude of M 6.25 to 6.5. Fischer et al. (1987) estimated a vertical slip rate of 0.4 to 0.7 mm/yr. 

Ward and Valensise (1994) suggest that the Cabrillo fault is a minor feature and has a slip rate of 0.1 

mm/yr, which seems to be a better approximation. 

 

The Sierra Madre fault is one of the major faults in the Los Angeles region and lies along the southern 

margin of the San Gabriel Mountains forming geomorphic features in the Los Angeles area. The 
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fault is primarily a thrust fault that has pushed the ancient igneous and metamorphic rocks of the San 

Gabriel Mountains up and over young Quaternary-age alluvial deposits. The Sierra Madre fault is 

capable of producing earthquakes in the 7.0 to 7.5 magnitude range (Dolan et al. 1995). About 20 

km of the westernmost part of the Sierra Madre fault ruptured the ground surface during the 1971 

San Fernando earthquake that had a magnitude (Mw) of 6.7. Geological studies of the 1971 rupture 

(Bonilla 1973) suggested that a previous rupture had occurred on this fault within the prior few 

hundred years. Recent paleoseismological studies (Rubin et al. 1998) suggested an average slip rate 

of only 0.6 mm/yr and the California Geological Survey used a slip rate of 2.0 mm/yr ±1.0 mm. 

 

One of the main fault systems in the Los Angeles Basin is along the southern edge of the Santa 

Monica Mountains separating Mesozoic plutonic rocks from Tertiary and Quaternary sedimentary 

rocks. The fault system consists of the Santa Monica and Hollywood faults and smaller segments 

such as the Malibu Coast and Potrero faults as previously shown in Fig. 26. Continuation of the fault 

to the west of Santa Monica is uncertain. Earthquake focal mechanisms and local geologic 

relationships suggested reverse faulting with a subordinate left-lateral component. The Santa Monica 

and Hollywood faults have been considered to comprise the major thrust fault that is responsible for 

uplift of the Santa Monica Mountains. However, other researchers have hypothesized that these 

faults are predominantly strike-slip features and that the mountains are underlain by a separate blind 

thrust fault. The California Geological Survey (2003) assumes a slip rate up to about 1.0 mm/yr ± 

0.5 mm. The great length of the fault system suggests that it is capable of generating a large 

earthquake of a magnitude of 7.5 but the discontinuous nature of faulting suggests that faults may 

behave independently and perhaps a smaller maximum earthquake is more appropriate.  

 

The San Pedro fault trends southeasterly from near the base of the Malibu-Santa Monica shelf to 

about Avalon Knoll east of Catalina Island, a distance of about 70 to 80 km. The fault is shown as a 

complicated association of folds. Southeast of the Palos Verdes Peninsula, this fault coincides with 

the western limit of a dense distribution of small magnitude Mw 3 to 5 earthquakes. The slip rate is 

unknown but the similarity of geomorphology, structures and length to the NISZ suggest that they 

are similar features and therefore could have similar slip rates of about 1 mm/yr and similar 

maximum earthquakes. Fault-length/earthquake-magnitude relationships (Wells and Coppersmith 

1994) indicate a maximum earthquake of about M 7.0 to 7.2 but the feature is highly segmented 

indicating smaller magnitudes like M 6.5 to 7.0 are a best estimation. 
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The Elysian Park Fold and Thrust Belt (EPFT) was studied by Shaw and Suppe (1996) who 

suggested a slip rate of 1.7±0.4 mm/yr. This source is capable to generate earthquake magnitudes 

ranging from 6.6 to 7.3 depending on the size of the individual segments and whether the rupture 

occurs independently or together. Oskin et al. (2000) modeled the Upper Elysian Park thrust as 

extending from the Hollywood fault to the Alhambra Wash fault with a slip rate of 0.8 to 2.2 mm/yr 

and magnitude 6.2 to 6.7 earthquakes with recurrence interval in the range of 500 to 1300 years. The 

California Geological Survey suggested that the Upper Elysian Park thrust presents a slip rate of 

about 1.3±0.4 mm/yr.  

 

The Puente Hills Thrust fault system (PHT) is the name currently given to a series of northerly 

dipping subsurface thrust faults (blind thrusts) extending about 40 to 45 km along the eastern margin 

of the Los Angeles Basin. Those faults form an arrangement from the northern Los Angeles Basin 

to the southern part of the Puente Hills as shown in Fig. 26. Shaw and Shearer (1999) found that the 

Puente Hills fault system was capable of generating earthquake magnitudes of about 6.5 to 7.0 and 

had a slip rate of between 0.5 to 2.0 mm/yr. It is believed that the Whittier Narrows earthquake had 

occurred on this system. A prominent active fault of about the same age with abundant surface 

manifestations such as surface faulting and uplifted hills and mesas as well as abundant historical 

earthquake activity. The most recent seismic hazard model by the California Geological Survey 

(2003) used a slip rate of 0.7 ± 0.4 mm/yr.   

 

The THUMS-Huntington Beach (THB) fault was described by Wright (1991) and Truex (1974) as 

a southeast-trending fault extending offshore from the Palos Verdes fault in the Los Angeles Harbor 

area along the southwest flank of the Wilmington Anticline, past the Huntington Beach oil field to 

the Newport Beach area where it converges with the Newport-Inglewood Structural Zone. Edwards 

et al. (2001, 2002, 2003) indicated that the THB fault has been active in Quaternary time (i.e. the 

past 400,000 to 600,000 years) and that the fault is capable of generating large-magnitude 

earthquakes with recurrence intervals on the order of a thousand to several thousand years (Ponti 

2004).  

 

The Compton-Los Alamitos (CLA) trends with several kilometers wide and dips downward at low 

angles to the northeast and extends from the Central Basin detachment to the Torrance-Wilmington 

trend where it becomes a horizontal detachment fault. Folded Pliocene and Quaternary strata indicate 

slip rates of 1.4 mm/yr and is released in large earthquakes. Shaw and Suppe (1996) estimate 

earthquake magnitudes of 6.3 to 6.8 earthquakes on individual ramp segments and magnitude 6.9 to 
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7.3 earthquakes whether segments rupture together. Wells and Coppersmith (1994) estimated an 

earthquake recurrence intervals range from 380 years for single segments to 1300 years for multiple 

segment ruptures.  

 

The Los Alamitos fault is a northwest-southeast trending subsurface fault along the northeast side of 

the NISZ as previously shown in Fig. 26. This fault is not exposed at the surface. The fault extends 

upward from the basement rocks to an elevation of about -90 m and is subparallel to the NISZ from 

at least Seal Beach to Rosecrans. The Los Angeles County Seismic Safety Element (1990) related 

that this fault is potentially active and is capable to generate a maximum earthquake magnitude of 

6.0. The northeastern limit of these events is almost linear and earthquake focal mechanisms indicate 

both normal and right-lateral strike-slip motions. Although there is no documented surface faulting 

or even late-Quaternary displacement, the fault ought to be considered as a potential source of small 

to moderate magnitude earthquakes, similar to other buried faults in the Los Angeles Basin. 

Earthquake magnitudes of 6.0 to 6.5 are appropriate for the maximum earthquake based on the fault's 

length according to the empirical fault-length/earthquake-magnitude relationships of Wells and 

Coppersmith (1994). A slip rate of 0.5 mm/yr had been assumed to this fault. 

3.3 Regional Seismicity of the POLB area 

The southern California area has been historically seismically active as shown in the seismicity map 

presented in Fig. 30 for a radius of 300 km around the POLB. At least 189 earthquakes were 

registered in time record starting from year 1800 until present. The circles represent the occurrence 

of earthquakes with magnitudes greater than Mw=5.0. This figure shows the focal mechanisms for 

the earthquakes, however the seismic activity does not clearly correlate or coincide with the location 

of the surface faults. Ward (1994) suggested that as much as 40% of the tectonic activity in southern 

California is not released on known faults. 
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Fig. 30. Historic records of seismic activity starting from year 1800 for the POLB area within a 

radius of 300 km (after USGS 2016). 

The largest historical earthquake within the Los Angeles basin area was the 1933 Long Beach 

earthquake with a magnitude Mw 6.4. Other seismic events outside of the basin area were the 1971 

San Fernando earthquake with a magnitude (Mw) of 6.7, the 1987 Whittier earthquake with an Mw 

of 5.9 and the Northridge earthquake with an Mw of 6.7. One of the largest earthquakes within a 

radius of 300 km occurred in 1952 in the Grapevine area located 122 km from Los Angeles. A 

moment magnitude of 7.5 was registered.  

 

Hauksson (1987, 1990) analyzed the historical seismicity of Los Angeles basin identifying that: i) 

the majority of the strike-slip events were caused along the NISZ, ii) the reverse mechanisms 

occurred mostly to the north of Palos Verdes Hills, and iii) the normal fault mechanisms occurred in 

the offshore area and along the NISZ. Most of the earthquakes that occur in the geologic structures 

of the Los Angeles Basin are characterized by the tectonic environment grouped in three regimes: a 

contractional tectonic regime, a mixture of contractional and transcurrent structures, and a 

transcurrent regime like strike-slip faults. However, most earthquakes in the area occur within the 

same basic compressional tectonic regime and serve as the base of numerous seismic hazard 

Long Beach 
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analyses. This is because earthquakes are likely to occur on the subsurface faults in the area of Los 

Angeles. 

 

The main sources of seismic activity at the POLB are shown in Table 2. The Palos Verdes and the 

Newport-Inglewood are the most important geologic faults that would potentially cause earthquakes 

in the POLB area. The table summarizes the seismic source parameters for the local faults and their 

behavior in terms of the slip rate, depth, style of faulting (i.e., strike-slip or reverse), and mean 

characteristic earthquakes associated with each source. 

 

Table 2. Summary of seismic source parameters for local faults of POLB (After Earth Mechanics 

Inc. 2006). 

Fault (Map 

Abbreviation) 

Depth to 

Top of 

Fault (km) 

Depth to 

Bottom of 

Fault (km) 

Dip 

(deg) 

Slip Rate 

(mm/yr) 

Mean 

Characteristic 

Earthquake, Mw 

Style of 

Faulting 

Palos Verdes (PV-

PVH, PV-SO) 
0 11 to 18 90 2.0 to 4.0 6.65 to 7.2 Strike-Slip 

Newport-Inglewood 

(NI) 
0 13 to 16 90 0.5 to 1.5 6.7 to 7.2 Strike-Slip 

Cabrillo (CAB) 0 15 to 18 70 0.1 6.25 to 6.5 Strike-Slip 

San Pedro Basin (SPB) 0 15 90 0.5 to 1.0 7.1 to 7.2 Strike-Slip 

Los Alamitos (LAL) 0 15 70 0.25 to 0.5 6.5 Strike-Slip 

Compton Thrust (CT) 0 10 16 0.5 to 1.0 7.1 to 7.2 Reverse 

 

Based on the report by Earth Mechanics Inc. (2006), the earthquake level hazards for the POLB are 

classified in two: The Operating-Level Earthquake (OLE) and Contingency-Level Earthquake (CLE) 

with 72 and 475-year return periods, respectively. These earthquake events were identified as having 

a 50% and 10% probability of exceedance in 50 years, respectively. Such probability was determined 

from a location within Pier T, adjacent to Pier S, which is the subject of study of this research. A 

comparison of the seismic hazard at other sites lead to larger ground motions than at other locations 

in the port area, particularly for the CLE seismic events, as opposed to the OLE event which 

remained basically unchanged regardless of the location along the port. 

 

The POLB wide ground motion report recommends a peak ground acceleration (PGA) for 

geotechnical evaluations for the OLE of 0.21g with a dominant source corresponding to an 
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earthquake magnitude of 6.5 at a distance of 20 km. The PGA for the CLE earthquake is 0.5g with 

the dominant source of magnitude 7.0 at a distance of 4km. The mean hazard for different seismic 

sources at the POLB is shown in Fig. 31. It is evident that the Palos Verdes fault dominates the 

hazard at the POLB. The study concludes that the Palos Verdes and the Newport Inglewood faults, 

poses the dominant seismic hazards at various locations of the POLB, particularly for the CLE case. 

Some other distant faults can be ignored. Also, the POLB soil conditions differ from other ports like 

the Port of Oakland or Port of Los Angeles, in the fact that extremely large site amplification effects 

do not seem plausible for the alluvial deposit geologic environment at the POLB. Site response 

analyses for the ground conditions present at the POLB, should lead to site amplification effects no 

higher than about 35%. 

 

 

Fig. 31. Peak ground acceleration hazard for different sources (Earth Mechanics Inc. 2006). 

Also, the POLB wide ground motion report recommends seven sets of firm-ground time histories 

for the OLE condition with a magnitude ranging from 6 to 7 generated from a near to moderate 

distance events. Table 3 provides the recommended station of measurement based on the distance 

required to simulate short and medium predominant periods for the OLE condition. Similar 

information is presented in Table 4 but for the CLE condition in which magnitudes vary between 

6.5 and 7.5 and the station distances between 0 and 10 km for earthquakes with short predominant 

periods.  
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Table 3. Earthquakes selected for the OLE condition of POLB (After Earth Mechanics Inc. 2006). 

Set Earthquake Magnitude Station 
Distance 

(km) 

1 1989 Loma Prieta 6.9 Saratoga - Aloha Ave. 13 

2 1987 Superstition Hill 6.3 Wildlife Liquefaction Array 24.7 

3 1987 Whittier 6.0 Northridge-Saticoy St 39.8 

4 1979 Imperial Valley 6.5 EC CO Center FF 7.6 

5 1979 Imperial Valley 6.5 Calexico Fire Station 10.6 

6 1992 Erzikan 6.9 Erzikan 2 

7 1994 Northridge 6.7 Century City, LACC 25.7 

 

Table 4. Earthquakes selected for the CLE condition of POLB (After Earth Mechanics Inc. 2006). 

Set Earthquake Magnitude Station 
Distance 

(km) 

1 1999 Hector mine 7.1 Hector 12 

2 1989 Loma Prieta 6.9 Gilory 03 13 

3 1979 Imperial Valley 6.5 Brawley 10 

4 1999 Duzce 7.1 Lamont 1059 4 

5 1992 Erzikan 6.7 Erzikan 4 

6 1940 Imperial Valley 7.0 El Centro 6 

7 1995 Kobe 6.9 Kobe University 1 

 

Fig. 32 shows the suggested horizontal and vertical firm-ground uniform hazard spectra with 5% of 

damping for the OLE and CLE level earthquakes, which correspond to a 72-yr and a 475-yr return 

periods, respectively. 
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a) 

 

b) 

 

Fig. 32. Recommended firm-ground spectra for: a) OLE and b) CLE conditions with 5% of 

damping (Earth Mechanics Inc. 2006). 

3.4 Subsurface conditions at the POLB, Pier S 

The POLB has been constructed on top of natural coastal and man-made land masses creating wide 

variations of ground conditions along the port area. Historically, some of the dredged materials have 

been used for the construction of man-made land masses currently present at the port. Fig. 33 

presents a plan view of the port area which is divided into four areas denoted as Zones I, II, II, and 

IV as suggested in the port-wide ground motion study at the POLB. Information regarding subsurface 

field testing has been provided by the port for Pier S, located within Zone IV. The results of field 

testing corresponding to Standard Penetration Test (SPT), Cone Penetration Test (CPT) and shear 

wave velocity soundings were provided. Fig. 34 shows shear wave velocities inferred from other 

sources of ground investigation like the ROSRINE database (ROSRINE 2001) where geophysical 

testing was performed using seismic analysis of surface wave (SASW) methods. The results are 

presented up to a depth of 30 m, which is defined as firm-ground conditions for Zone IV. 
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Fig. 33. Plan view of the POLB area divided in four characteristic subsurface conditions (Zones 

defined by Earth Mechanics Inc. 2006). 

 

Fig. 34. Results of shear wave velocities for Pier S located within Zone IV (After Earth Mechanics 

Inc. 2006). 
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The predominant frequency of the subsurface conditions at Pier S can be calculated with the 

following equation: 

 

𝑓 =
𝑉𝑆 30

4𝐻
 

 

(35) 

where 𝑉𝑆 30 corresponds to the average shear wave velocity measured through the first 30 m below 

the ground surface and H (= 30 m) is the thickness of the soil layer. For Pier S, using a 𝑉𝑆 30 equal 

to 208 m/s, the predominant frequency is equal to 1.73 Hz (or a period of 0.58 s). 

 

Fig. 35 shows the location of Pier S in the Port of Long Beach. The subsurface conditions of the site 

were investigated using CPT and SPT soundings. Three SPT and ten CPT soundings labeled B101, 

B102, and B103 and C-101 through C-110 were performed at the approximate locations shown in 

the figure. The three SPT borings were drilled by the rotary wash method with a borehole diameter 

of 150 mm and extended up to 40 m below ground level. Six of the CPT soundings (C-101 through 

C-106A) were performed to depths ranging from 37.2 to 38.4 meters below the existing ground 

surface and the remaining four CPT’s (C-107 through C-110) were performed to a depth of 15.2 

meters. All the CPT’s were advanced taking simultaneous measurements of the cone tip resistance, 

side friction resistance, and pore water pressure.  

 

 

Fig. 35. Approximate Location of CPT and SPT soundings (After Geotechnical Professionals Inc. 

2003). 

3 
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Fig. 36 summarizes the results of the field exploration program and shows the assumed soil profile 

for Pier S. The SPT blow counts were corrected for energy ratio, borehole diameter, sampling 

method, rod length and overburden pressure to obtain the (𝑁1)60 values. The definition of the soil 

profile for the POLB, Pier S was based on the records presented in Fig. 36, supplemental 

geotechnical laboratory tests, and the geological information of the area. Fig. 37 summarizes the 

results of index laboratory tests including primary classification based on the USCS, content of fines, 

water content, relative density and total and dry densities  

 

The subsurface soil conditions in Unit A consists mostly of man-made compact fills composed of 

silty to clayey sands borrowed from off-site sources. The SPT’s and CPT’s data is scattered probably 

due to weak and uncompact soils. It was suggested by Earth Mechanics Inc. (2006) that older fills 

are generally weaker than the engineered fills. Even though there is not documentation about the 

extent of the man-made fills, based on the field test results an approximate thickness of 7.5 m from 

the actual ground surface is estimated. The CPT tip resistance in this layer ranges from 2 to 40 MPa 

and SPT N-values from 4 to 50 blows/feet. It represents a relative density between 20 and 90%, 

showing the existence of some weak thin layers within well compacted fills. The natural water 

content of Unit A is between 10 and 30%, increasing through depth, and its total unit weight varies 

between 19 and 21 kN/m3, supporting the hypothesis that this man-made fills are not well compacted. 

Based on laboratory test, an effective friction angle, ∅′= 34° was selected for this man-made fill. 

Based on Kulhawy and Mayne (1990), this value appears to be acceptable for medium-dense 

granular soils (30° ≤ ∅′ ≤ 45°). 

 

Unit A overlies an upper layer of marine-estuarine sediments (Unit B). This layer is primarily 

composed of high compressible and cohesionless soils like silty fine sands with thin layers of silty 

soils. Unit B has a thickness of about 10.5 m extending from the bottom of the man-made fills to -

15 m Mean Lower Low Water (MLLW). CPT tip resistance in this layer ranges from 1 to 10 MPa, 

while SPT N-values vary between 1 and 12 blows/feet. Both test results present random peak values 

due to the presence of some coarse granular materials typically found on natural sedimentary 

deposits. Based on CPT and SPT results, an average relative density of 40% was estimated indicating 

Unit B is a loose stratum. Natural water contents range from 30 to 50% and total unit weights 

between 17 and 19 kN/m3. For this layer an effective friction angle of 34° was selected for this 

deposit based on laboratory tests. Based on Kulhawy and Mayne (1990), this value is according for 

loose granular deposits (28° ≤ ∅′ ≤ 35°). The high water contents found on this layer indicate the 

soils are not consolidated yet under the present stress conditions.  
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Unit C is a dense lower marine/estuarine deposit extending from -15 to -24.5 m MLLW. It is 

composed of dense silty sands with thin layers of very stiff to hard silts. This layer has a medium to 

dense compactness as seen from CPT tip resistance and SPT N-values which scatter due to the 

present of some gravels. Total unit weight varies from 18 to 19 kN/m3 while natural water contents 

range between 18 to 30% decreasing with depth and showing the presence of lightly 

overconsolidated cohesive soils. This layer has an effective friction angle of 30°. 

 

The transition between the Unit A and Unit B is marked by changes in their relative density. The 

upper deposits are more prone to liquefaction than the lower soils. This is also due to the medium to 

high compactness which reduces the liquefaction potential of soils. It is also evident by the transition 

from low N-values in the fine sandy soils, to the increase of the resistance with the appearance of 

coarse sandy soils. These coarse granular non-plastic materials tend to have large permeability, a 

situation in which no liquefaction occurs. Additionally, its high compactness and depth, deriving a 

high confinement, away the possibility of liquefaction in these materials. 

 

Unit D is the Gaspur Formation extending from -24.5 to -34 m MLLW. It is composed of very dense 

medium to coarse grained sands with occasional fine gravels. The high compactness of this layer are 

evidenced by SPT N-values that increase through depth with a range of 20 to 50 blows/feet and CPT 

tip resistances of about 10 to 40 MPa. Based on this, a relative density higher than 80% is estimated. 

The low natural water content in this formation shows that this layer has fully consolidated. Based 

on relative density, a peak effective friction angle of 38° was selected according of those report by 

Kulhawy and Mayne (1990) for dense granular deposits. 
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Fig. 36. Summary of the field testing program for Pier S located within Zone IV (After 

Geotechnical Professionals Inc. 2003).  

 

Fig. 37. Summary of the supplemental geotechnical laboratory testing program for Pier S located 

within Zone IV (After Geotechnical Professionals Inc. 2003).  
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The average phreatic water level was estimated in the field test at +1.8 m MLLW from the actual 

ground surface. The groundwater condition at the site varies as a result of tidal fluctuations, therefore 

the reported water level cannot be interpreted as a permanent condition. 

 

Fig. 38 shows average values of the subsurface investigation testing program used in this research 

for the evaluation of the liquefaction susceptibility for each unit. The average values from SPTs and 

CPTs show similar trends in the behavior of the different subsurface soil layer. These averages were 

statistically obtained as the prorated average value after filtering points with values larger than 9 

times the standard deviation and values lower than 28 times the standard deviation calculated in 

some cases with a quantity up to 12,000 kPa for the tip resistance of CPT’s and a quantity up to 26 

for the blowcount of SPT’s, which is characteristic in sandy soils.  

 

Fig. 38. Assumed averages from SPT and CPT results. 
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4. SEMI-EMPIRICAL EVALUATION OF THE 

PORT OF LONG BEACH 

4.1 Liquefaction of Port of Long Beach 

Based on the geotechnical studies performed on the Pier S of the Port of Long Beach, POLB (2003), 

the site under study was filled in the 1920’s with dredged material in an uncontrolled manner not 

following any soil specification. These hydraulic fills typically consisted of fine to medium grained 

sands that are loose and susceptible to liquefaction during an earthquake. In 2000 and 2001, an 

engineered fill, with a minimum relative compaction of 85%, was placed to raise the surface grade 

in backland areas. These man-made fills, called Unit A herein, are located on top of marine/estuarine 

sediments (Unit B) that were also found to be loose sandy deposits. 

 

The geotechnical engineering report provided by the port for the development of this project 

classifies Unit B and some thin layers of Unit C (lower estuarine or marine deposits) as potentially 

liquefiable material. Their evaluations, based on the simplified procedures presented by NCEER 

(1997), indicated that most cohesionless soils resist liquefaction under the Operating (OLE) 

conditions. However, a few thin soil layers and specifically Unit B would be susceptible to 

liquefaction under larger magnitude earthquakes characteristic of the Contingency (CLE) condition. 

 

Underlying Unit C very dense granular deposits geologically known as the Gaspur Formation are 

found. This formation predominantly consists of medium to coarse grained sands with some fine 

gravels that have high liquefaction resistance.  

 

The California Department of Conservation (1999) developed seismic hazard zones of the city of 

Long Beach as shown in Fig. 39. The figure shows in green the areas of historic occurrence of 

liquefaction or higher potential for liquefaction-induced permanent deformations. It is clearly shown 

in the figure that most of the POLB area is susceptible to liquefaction. 
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Fig. 39. Liquefaction hazard zones in green(California Department of Conservation 1999). 

4.2 Evaluation of the Liquefaction Susceptibility using 

Standard Penetration Tests (SPTs)  

Using the results of the SPT blow counts shown in Fig. 36 and their average presented in Fig. 38, 

the evaluation of the liquefaction susceptibility was made using the semi-empirical method explained 

in Section 2.1.1. Table 5 and Table 6 show the parameters to calculate the factor of safety against 

liquefaction. The table shows that Unit B is a liquefiable soil for both OLE and CLE conditions. The 

FS against liquefaction for Unit A for both earthquake conditions is not shown because the (𝑁1)60,𝑐𝑠 

average value is larger than 30 and thus, liquefaction cannot occur (Youd et al. 2002). The SPT blow 

counts were corrected for energy ratio, borehole diameter, sampling method, rod length and 

overburden pressure. The (𝑁1)60 values had been corrected to equivalent clean sand values, 

Pier S 



Semi-Empirical Evaluation of the Port of Long Beach 63 

 

(𝑁1)60,𝑐𝑠. The cyclic stress ratio (𝐶𝑆𝑅) values were calculated using Eqs. (2) and (3) for earthquake 

magnitudes of 6.5 and 7.0 corresponding to the OLE and CLE earthquake levels with peak ground 

acceleration (PGA) of 0.21 and 0.5 g, respectively. In addition, calculations of the cyclic resistance 

ratio normalized for a magnitude 7.5 earthquake (𝐶𝑅𝑅7.5) and a magnitude scale factor (𝑀𝑆𝐹) were 

performed to determine appropriate values of 𝐶𝑅𝑅 for the proposed earthquake levels. 

 

Table 5. FS Results for OLE condition with SPT Method.  

Sublayer 
Number CN Em/Eff N60 (N1)60 rd (CSR)field MSF 

FC 
(%) α β (N1)60 cs CRR7.5 CRR FSL 

Unit A 1.31 0.60 39 51.23 0.98 0.18 1.44 26.00 4.39 1.12 61.90 - - - 

Unit B 1.02 0.60 8 8.16 0.94 0.21 1.44 20.00 3.61 1.08 12.42 0.13 0.19 0.92 

Unit C 0.60 0.60 30 17.98 0.56 0.14 1.44 46.00 5.00 1.20 26.57 0.31 0.45 3.10 

Unit D 0.48 0.60 45 21.52 0.50 0.13 1.44 27.00 4.48 1.13 28.81 0.37 0.53 4.05 

 

Table 6. FS Results for CLE condition with SPT Method. 

Sublayer 
Number CN Em/Eff N60 (N1)60 rd (CSR)field MSF 

FC 
(%) α β (N1)60 cs CRR7.5 CRR FSL 

Unit A 1.31 0.60 39 51.23 0.98 0.42 1.19 26.00 4.39 1.12 61.90 - - - 

Unit B 1.02 0.60 8 8.16 0.94 0.50 1.19 20.00 3.61 1.08 12.42 0.13 0.16 0.32 

Unit C 0.60 0.60 30 17.98 0.56 0.34 1.19 46.00 5.00 1.20 26.57 0.31 0.37 1.08 

Unit D 0.48 0.60 45 21.52 0.50 0.31 1.19 27.00 4.48 1.13 28.81 0.37 0.44 1.41 

 

Fig. 40 shows the factor of safety against liquefaction based on SPT field data for the OLE and CLE 

earthquake conditions. In the figure, values less than one imply the presence of liquefiable soils. This 

figure suggests that Unit B is susceptible to liquefaction whereas Unit A, C and D have factors of 

safety larger than 1.0 for the OLE condition. Although the bottom of the Unit A has a FS less than 

the unity, this layer is not considered liquefiable due the approximation in the definition of the 

different layers of the soil profile. For the CLE condition, Unit B and the upper portion of Unit C are 

susceptible to liquefaction and the factor of safety against liquefaction is lower than the one evaluated 

for the OLE condition due its higher PGA and earthquake magnitude. 
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Fig. 40. Factor of safety to evaluate liquefaction susceptibility using SPT semi-empirical method 

for the OLE and CLE condition. 

Fig. 41 shows the 𝐶𝑅𝑅 versus (𝑁1)60 curve proposed by Seed et al. (1985) with different points 

representing the calculated 𝐶𝑆𝑅 with the corresponding (𝑁1)60 values for each layer in the POLB, 

Pier S. The figure shows that almost the entire Unit A lies below the 𝐶𝑅𝑅 curve for the OLE 

earthquake magnitude, indicating that liquefaction is not reached. Although some points of Unit C 

are located above the 𝐶𝑅𝑅 curve, it is considered that this unit is not a liquefiable layer because it is 

located at a larger depth with respect to the ground surface which implies large confinement due to 

large overburden pressures (i.e., at 19 m). Conversely, almost the entire Unit B is located above the 

𝐶𝑅𝑅 curve proposed by Seed et al. (1985), which implies a large susceptibility to initiate liquefaction 

under a seismic event corresponding to the OLE condition. The analysis of the liquefaction potential 

based on SPT semi-empirical approaches showed that deep soil deposits are not susceptible to 

liquefaction during the earthquake levels presented here. Hence, only Unit B shown with closed 

symbols in Fig. 41 is considered as the only potentially liquefiable soil for the two earthquake levels 

studied in this research. 
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Fig. 41. SPT Clean-Sand Base Curve with data points plotted normalized to a magnitude 7.5. 

4.3 Evaluation of the Liquefaction Susceptibility using Cone 

Penetration Tests (CPTs) 

Using the results of the CPT shown in Fig. 36 and the average values presented in Fig. 38, the 

evaluation of the liquefaction susceptibility was made using the semi-empirical method explained in 

Section 2.1.2. Table 7 and Table 8 list the calculated FS against liquefaction due to earthquakes 

magnitudes 6.5 and 7.0. Factors of safety less than one were computed for Unit B, which proves one 

more time the likelihood of liquefaction in this soil layer under CLE and OLE conditions. 

 

Table 7. FS Results for OLE condition with CPT Method. 

Sublayer 
Number 

F 
(%) Q CN 

(qc)1 

(Mpa) Ic Kc 
(qc)1cs 

(Mpa) rd (CSR)field MSF CRR7.5 FSL 

Unit A 3.29 149.55 1.64 15.05 2.17 1.59 23.93 0.96 0.132 1.44 1.084 11.81 

Unit B 0.92 36.97 1.13 3.86 2.24 1.77 6.83 0.89 0.159 1.44 0.099 0.89 

Unit C 1.34 110.41 0.61 11.31 1.96 1.25 14.17 0.66 0.132 1.44 0.276 3.02 

Unit D 0.93 140.33 0.50 14.34 1.78 1.09 15.66 0.52 0.105 1.44 0.340 4.66 
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Table 8. FS Results for CLE condition with CPT Method. 

Sublayer 
Number 

F 
(%) Q CN 

(qc)1 

(Mpa) Ic Kc 
(qc)1cs 

(Mpa) rd (CSR)field MSF CRR7.5 FSL 

Unit A 3.29 149.55 1.64 15.05 2.17 1.59 23.93 0.96 0.348 1.19 1.084 3.71 

Unit B 0.92 36.97 1.13 3.86 2.24 1.77 6.83 0.89 0.417 1.19 0.099 0.28 

Unit C 1.34 110.41 0.61 11.31 1.96 1.25 14.17 0.66 0.346 1.19 0.276 0.95 

Unit D 0.93 140.33 0.50 14.34 1.78 1.09 15.66 0.52 0.277 1.19 0.340 1.46 

 

Fig. 42 shows the factor of safety against liquefaction for the OLE and CLE earthquake conditions. 

This figure suggests that for the OLE condition, Unit B and the upper portion of Unit C are 

susceptible to liquefaction, whereas Unit A and D have factors of safety larger than 1.0. For the CLE 

condition, Unit B, the lower portion of Unit A and the upper portion of Unit C are susceptible to 

liquefaction. 

 

Fig. 42. Factor of safety to evaluate liquefaction susceptibility using CPT semi-empirical method 

for the OLE and CLE condition. 

Fig. 43 shows summarized data points of the cyclic resistance ratio for the average values of the 

CPTs. In this figure, liquefaction occurs when the equivalent clean sand value (𝑞𝑐1𝑁) value is less 

than 20. Only the average value computed for layer B plots above the curve proposed by Robertson 

and Wride (1998). This result demonstrates the liquefaction potential of the soils present in this unit. 

The remaining data points indicate low liquefaction potential of those units.  
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Fig. 43. Cyclic Resistance Ratio, 𝐶𝑅𝑅, vs. tip resistance, 𝑞𝑐1𝑁 with plotted data points. 

The FS against liquefaction of the Unit B based on CPT results is similar to the FS calculated with 

the SPT’s. This confirms that only the Unit B (represented with closed symbols in the figure) is 

considered a potentially liquefiable soil under the two earthquake levels (OLE and CLE). Some 

points in the vicinity of Unit B (i.e., lower portion of Unit A and upper portion of Unit C) might 

suggest that those soils are liquefiable under the CLE condition.  

4.4 Evaluation of the Liquefaction Susceptibility using Shear 

Wave Velocity (𝑽𝒔) 

The average shear wave velocity profile presented in Fig. 34 was used to assess the liquefaction of 

soils following Section 2.1.3. Table 9 and Table 10 shows the calculated factor of safety against 

liquefaction which results in agreement with other triggering methods about the liquefaction 

potential of Unit B under the OLE and CLE conditions. The shear waves velocities (𝑉𝑠) values were 

corrected for overburden pressure (𝑉𝑠1). The 𝑉𝑠1 for the Unit A is higher than the maximum 

recommended value of 215 m/s as shown in Fig. 12, and therefore the factor of safety against 
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liquefaction is not presented because liquefaction is not reached. The recommended boundary values 

of 𝑉𝑠 in which liquefaction does not occurs was set as 215 m/s based on the method shown in Fig. 

12. 

 

Table 9. FS Results for OLE condition with 𝑉𝑠 Method.  

Sublayer 
Number 

𝑉𝑠 
(m/s) 

γ 
(kN/m3) 𝑉𝑠1 𝑉𝑠1* rd (CSR)field MSF CRR7.5 FSL 

Unit A 180 19.5 221 215 0.96 0.132 1.44 - - 

Unit B 160 18.1 169 215 0.89 0.159 1.44 0.110 0.99 

Unit C 250 19.1 204 215 0.66 0.132 1.44 0.336 3.67 

Unit D 280 19.7 210 215 0.52 0.105 1.44 0.683 9.36 

 

Table 10. FS Results for CLE condition with 𝑉𝑠 Method. 

Sublayer 
Number 

𝑉𝑠 
(m/s) 

γ 
(kN/m3) 𝑉𝑠1 𝑉𝑠1 ∗ rd (CSR)field MSF CRR7.5 FSL 

Unit A 180 19.5 221 215 0.96 0.348 1.19 - - 

Unit B 160 18.1 169 215 0.89 0.417 1.19 0.110 0.314 

Unit C 250 19.1 204 215 0.66 0.346 1.19 0.336 1.158 

Unit D 280 19.7 210 215 0.52 0.277 1.19 0.683 2.946 

 

The results obtained with this method also show the same trend about the liquefaction potential of 

Unit B under the OLE and CLE earthquake levels. Factors of safety larger than 1.0 were computed 

for Units A, C, and D. It is concluded that Unit B is the only layer susceptible to liquefaction in the 

POLB, Pier S after the assessment of liquefaction susceptibility using semi-empirical procedures 

based on SPT’s, CPT’s, and measurements of 𝑉𝑠. 

4.5 Settlement Evaluation Due to Liquefaction in POLB 

In order to provide recommendations regarding the resulting permanent ground deformations, which 

could compromise the regular operation and resiliency of the port needed after an earthquake event, 

settlements were calculated based on classical semi-empirical methods which were briefly described 

in section 2.2. These settlements were computed for field conditions and are based on the 

computation of the volumetric strains resulting from the earthquake that are integrated to compute 

ground settlement. 
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Using the semi-empirical methods proposed by Tokimatsu and Seed (1986) and Ishihara and 

Yoshimine (1992), settlements were evaluated for the free field condition using the software 

LiquefyPro for both OLE and CLE levels. Fig. 44 shows the relative density, layer thicknesses, and 

factors of safety against liquefaction for each Unit which are required input values to compute 

settlements with both approaches. These values are obtained using the average values of SPT’s and 

CPT’s shown in Fig. 38.  

 

 

Fig. 44. Summarized soil profile and parameters to be input in LiquefyPro for the free-field 

settlement calculation under both OLE and CLE conditions.  

Fig. 45 shows the calculated liquefaction-induced settlements with both methods under the OLE and 

CLE condition. Using the procedure suggested by Tokimatsu and Seed (1986), the calculated ground 

settlements using SPT data were about 24.1 cm for the OLE condition whereas for the CLE condition 

those were approximately 54 cm. On the other hand, the methodology developed by Ishihara and 

Yoshimine (1992) lead to the settlement computations using SPT data in the order of 19.7 and 

75.6 cm for OLE and CLE conditions, respectively. It is believed that settlement calculations using 

the results of CPT methods are more reliable than those obtained using SPTs. Hence, the maximum 

ground settlements computed based on CPT data using the Tokimatsu and Seed (1986) method were 

1.2 and 22.3 cm for the OLE and CLE conditions, respectively. Those settlements were computed 

as 9.8 and 32.2 cm using the Ishihara and Yoshimine (1992) approach. 

 

The above results evidence the potential for liquefaction-induced settlements by both earthquake 

levels. As expected, the analyses showed larger induced settlements for the CLE than the OLE 

condition, which is in agreement with the PGAs induced from each condition. In general, larger 
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maximum vertical deformations were obtained with the methodology proposed by Ishihara and 

Yoshimine (1992) than the approach by Tokimatsu and Seed (1986). It is interesting to note from 

those results the large discrepancies and scatter in the ground settlements obtained with those two 

approaches. This problem of liquefaction-induced ground settlement, even under free field 

conditions, is still a subject of numerous efforts in the geotechnical community and more research is 

needed to improve the predicting capabilities of simplified methods like those that can be readily 

used in current geotechnical earthquake engineering practice. It is important to mention that those 

methods take into account the reduction of the shear strength of the soil caused by liquefaction but 

cannot capture the process as failure occurs. Plasticity-based nonlinear dynamic methods, employed 

for site specific investigation using advanced finite element methods, could be more effective to 

determine liquefaction-induced settlements.  

 

 

Fig. 45. Ground settlement evaluation for the OLE and CLE conditions with SPT and CPT data 

following classical approaches. 
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5. NUMERICAL EVALUATION OF THE PORT 

OF LONG BEACH 

Earthquakes generate waves that propagate from the source at the bedrock level passing to the 

overlying soil layers causing ground surface shaking. In this propagation path, soils act as a filter to 

modify the characteristics of the ground motion from the source to the ground surface. These soil 

effects can be evaluated using three conventional approaches: attenuation relationship approaches, 

soil coefficient approaches or site response analyses. The first two approaches correspond to a 

simplification of the actual soil conditions and are typically performed by classifying the soils into 

one of the standard site conditions as indicated by current regulations and local codes or simply when 

soil coefficients are not available. The site response analyses to evaluate those soil effects is part of 

the goals of this research for the specific soil conditions of the Port of Long Beach (POLB), Pier S. 

 

The modification of the input seismic waves originated from the source due to the abovementioned 

filtering effect is showed in the form of different amplitude, duration and frequency content of the 

ground motion. These characteristics can be evaluated from site-specific ground response analyses. 

The main input in these type of analyses are the soil stratigraphy and topography, soil stiffness and 

strength characteristics, groundwater considerations and information of the earthquake excitation 

which is typically given in terms of acceleration or displacement time histories. The site-specific 

response should be ideally based on a comprehensive site investigation extended to the rock or rock-

like formation (firm ground). The determination of soil parameters must be performed for the 

different soil layers based on monotonic or cyclic loading under laboratory conditions (i.e., cyclic 

triaxial, cyclic direct shear and resonant column tests) and a wide variety of field testing (i.e., cross-

hole and down-hole in situ tests). In this project, the soil parameters were obtained from geotechnical 

field investigation reports performed at the project site. Advanced laboratory soil tests such as cyclic 

triaxial tests with bender element measurements, undrained and drained cyclic direct simple shear 

tests, or centrifuge tests are not available. The geotechnical field exploration report provided 

conventional monotonic isotropically consolidated undrained triaxial compression (CIU-TXC) tests 



Numerical Evaluation of the Port of Long Beach 72 

 

under four different confining pressures which will be used later in this chapter to evaluate the static 

monotonic response of these soils using the proposed constitutive soil parameters. 

 

The numerical models used for liquefaction studies can be briefly classified in total and effective 

stress models. Total stress models, even though they are rather simple and few parameters are 

required, have the main disadvantage that the generation of excess pore water pressure is not 

captured, which is essential to understand soil behavior subjected to cyclic loading and soil 

liquefaction. Soil models like the equivalent linear method that is typically a total stress model, are 

still widely used in practice but because of they are based on an elastic framework, permanent 

deformations of the soil cannot be estimated (Finn et al. 1995). Therefore, the tendency in current 

numerical modeling is the use of effective stress models capable to include soil nonlinearly in the 

stress-strain formulation. In this family of models based on effective stresses, the deformation of the 

soil is obtained with either partially or fully coupled models which link the solid and water phases 

in the overall soil behavior. In dynamic analyses, the effects of deformation of the soil skeleton 

coupled with water pressures are a main concern. Models like DYNAFLOW by Prevost (1981), 

DYNARD by Moriwaki et al. (1988), UBCSAND FLAC model by Byrne et al. (2011), DYSAC2 

by Muraleetharan et al. (1988, 1991) and among others, are examples of those type of models 

(Marcuson W.F. et al. 2007).  

 

For example, DYNAFLOW is a fully coupled numerical model based on nonlinear dynamic analysis 

with multi-yield surfaces capable to include anisotropic and isotropic analyses, and allows the 

dissipation and redistribution of the pore pressures during the application of the motion. DYNARD 

is a numerical model based on the finite difference method that incorporates the cyclic and nonlinear 

behavior of soils through a two-dimensional (2-D) bounding surface model allowing the study of 

soil behavior at large strains. The UBCSAND is a 2-D model based on the plasticity theory with a 

hyperbolic hardening rule, especially accurate to predict the onset of liquefaction in sandy soils. 

DYSCAC2 is used for fully coupled nonlinear dynamic analyses of soils and is based on bounding 

surface plasticity. Some of those and other models are based on classical plasticity theory or more 

advanced developments have been performed with kinematic hardening, multi-yield surface or 

bounding surface plasticity theories. This sophistication in the constitutive relationships have as an 

immediate consequence, the inclusion of a large number of constitutive parameters requiring 

numerous field or laboratory tests for their calibration. At times these tests are not available in some 

geotechnical projects and at times some of these parameters do not have a physical meaning and are 

used mostly as factors calibrated to better match numerical simulations with laboratory tests. 
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In this research, the selection of the constitutive model to study the behavior of soils at the proposed 

site and evaluate liquefaction triggering was based on the following considerations. First, the model 

used had to adequately capture key features of soil behavior regarding shear stress-strain behavior, 

stress dependency, generation of excess pore water pressure under monotonic and cyclic loading, 

and strain softening as the earthquake occurs. The constitutive soil model should at least accurately 

predict the onset of liquefaction. Second, the constitutive model had to be one of easy calibration 

mostly with field data, typically with standard penetration tests (SPTs), cone penetration tests 

(CPTs), or shear wave velocities (𝑉𝑠), which constitute the main source of information at the POLB, 

Pier S. Third, the model must have a successful precedent to the dynamic response of soils as 

obtained from advanced laboratory tests, including cyclic direct simple shear and cyclic triaxial tests. 

Finally, the constitutive model had to be well documented and rich in comparisons with the 

performance of full-scale projects, specifically accurate enough to estimate liquefaction triggering 

in loose soils. In this project, advanced dynamic laboratory soil testing results are not available for 

the proposed site, therefore the “Class A” type predictions proposed herein are performed after the 

calibration of soil parameters with available field data of the proposed site. The selected constitutive 

soil model is the UBC3D-PLM model using correlations and expressions of its constitutive 

parameters obtained mostly from SPT tests. 

 

In the numerical modeling of the liquefaction phenomenon the constitutive model should capture the 

most important features of soil behavior, that based on Kramer (2001) should include: i) nonlinearity 

in shear stress-strain response, ii) hysteretic response under cyclic loading, iii) dependence of low-

strain shear modulus and shear strength on effective confinement, iv) dependence of shear strength 

on Lode angle, v) densification and consolidation of the soil skeleton and associated excess pore 

water pressure build-up due to shear loading, vi) dilation of soil skeleton and associated increase in 

effective confining pressure at large shear strain excursions , vii) attainment of critical void ratio 

state, viii) accumulation of cyclic shear strain under downslope shearing conditions, and ix) 

development of potentially large post-liquefaction volume reduction due to sedimentation. 

 

In dynamic numerical analyses, the definition of the soil model is disputed between two opposing 

ideas. The use of a very simplistic soil model with few constitutive parameters easy to calibrate but 

rather limited in capturing soil behavior and also limited controllability of the behavior by the user. 

On the other hand, the use of constitutive soil models that are more complex offering the possibility 

to capture specific features of soil behavior but because of the large amount of parameters, a very 
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extensive field and laboratory testing database is required in addition to the trial and error calibration 

of some factors that do not have any physical meaning. It has been shown in the past that the 

constitutive soil models UBC3D-PLM and Hardening Soil models not only have shown to 

successfully capture soil behavior under dynamic loading but also have proven to be of easy 

calibration for those cases were limited subsurface and laboratory testing data is available for their 

calibration. The UBC3D-PLM was the model used in this project. 

5.1 Description of the Numerical Model in PLAXIS 2D 

The definition of the numerical model used to study liquefaction at the given site start with an 

adequate definition of the geometry of the model in the finite element program PLAXIS 2D. The 

geometry was obtained from a detailed report of subsurface investigations performed at the POLB, 

Pier S. The information was complemented with the groundwater conditions of the site including the 

location of the groundwater table and information of any presence of groundwater flow at the target 

site. Thereafter, different soil models were evaluated in the preliminary phases from a list of potential 

models that constitute the state-of-the-art of liquefaction studies. For the reasons explained before, 

the model selected to perform the analyses was the UBC3D-PLM model. After the selection of the 

soil model and definition of the site geometry, the input ground motions were selected from site-

specific studies of the local seismicity, major faults, and availability of record motions from nearby 

seismic stations to the proposed site. The finite element mesh was defined based on minimum 

required finite element length criterion obtained from Kuhlemeyer and Lysmer (1973). They 

suggested to take an element size, at least, less or equal than one-eighth of the wavelength of the 

maximum frequency component 𝑓𝑚𝑎𝑥 from the input wave. The average element size can be 

approximated as follows: 

 

 𝐴𝑣𝑔. 𝐸𝑙𝑒𝑚. 𝑆𝑖𝑧𝑒 ≤
𝜆

8
=

𝑉𝑠,𝑚𝑖𝑛

8𝑓𝑚𝑎𝑥
 

 

(36) 

where 𝑉𝑠,𝑚𝑖𝑛 is the lowest wave velocity of the soil. The port wide ground motion study at the POLB 

by Earth Mechanics Inc. (2006) had found that the minimum wave velocity is equal to 167 m/s and 

between the operating and contingency levels the highest frequency component is equal to 3 Hz, 

which leads to an average length of 7.0 m of each element of the mesh. From the program output the 

maximum element size is 3.47 m. 

 



Numerical Evaluation of the Port of Long Beach 75 

 

The model boundary conditions for the groundwater and soils during the static stages were 

determined in the initial phase and a plastic nil-step to allow the generation of the initial stress. 

Thereafter, the same definition was made for the dynamic calculation stages and the post-earthquake 

stages including the damped free vibration and pore water pressure dissipation stages. Finally, the 

definition of the tolerance, time step, and other dynamic control parameters are defined in the 

dynamic calculation stage, which is modeled after the plastic nil step. In the dynamic phase, the 

displacements and small strains were reset from the previous phases and then different models were 

run for several acceleration time histories corresponding to the Operating-Level (OLE) and 

Contingency-Level (CLE) earthquakes and applied at the base of the model. In these simulations, 

the Newmark time integration scheme was used. In this scheme the time step is constant and equal 

to the critical time step during the entire analysis allowing to solve the equilibrium equations of the 

system. The recommendation from PLAXIS 2D is to keep the defaults values for Alpha and Beta 

Newmark as 0.25 and 0.5, respectively. 

 

The site specific response analyses of the POLB, Pier S subjected to an earthquake loading was 

performed assuming horizontally layered soil deposits subjected to vertically propagating shear 

waves. A one-dimensional (1-D) wave propagation analysis was performed with the numerical 

model of the proposed site. This type of analysis is justified for those cases where the soil layers 

extend horizontally to infinity and the layers are relatively horizontal. The input seismic motion was 

composed by waves that propagate vertically which coincide with the actual shear waves propagating 

also in the vertical direction. In the numerical model, four soil layers were defined. Starting from the 

ground surface, the following subsurface conditions were specified in PLAXIS 2D: i) Unit A from 

+3 to -4.5 m Mean Lower Low Water (MLLW) composed of compact fills mostly silty to clayey 

sands ; ii) Unit B from -4.5 to -15 m MLLW composed of mostly silty fine sands; iii) Unit C from -

15 to -24 m MLLW composed of deposits of dense silty sands; iv) Unit D from -24 to -37 m MLLW 

composed of very dense medium to coarse grained sands; and at the bottom of the soil profile a rock-

type layer was included from -37 to -39 m MLLW. The bottom rock layer is assumed to be the firm 

strata having the same characteristics of the outcropping rock where the earthquake signals were 

supposed to be recorded. The water table, modeled using a hydrostatic head, was assumed to be 

located at -1.5 m under the ground surface corresponding to the approximate location obtained from 

the subsurface investigation report. 

 

The type of drainage selected for the analyses corresponded to the “Undrained A” option in PLAXIS 

2D. In this type of drainage condition, the undrained or short-term behavior of the material is 
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characterized by stiffness and strength parameters based on effective stress properties. In this mode 

a large bulk modulus of water is automatically applied to make the soil incompressible and excess 

pore water pressures are computed. The entire soil deposit consists of mostly saturated alluvium 

deposits. In this type of analyses excess pore water pressures are generated but are not fully or 

partially dissipated during the seismic motion because of the short duration of typical earthquakes. 

For the static calculation phases default fixities were applied, which implies normally fixed vertical 

boundaries (i.e., roller supports) on the side and fully fixed conditions in both global directions 

applied at the base. The program includes several possibilities to simulate the boundary conditions 

for dynamic analyses that depend on the reflection or absorption nature of the seismic waves as the 

earthquake occurs. One the sides, tied degrees of freedom were applied as the boundary condition to 

tie the model nodes at the same elevation, assuming that they will have the same horizontal 

displacement resulting from the input earthquake motion (Galavi et al. 2013). Hence, for this 

calculation stage side boundaries of the tied degree of freedom type were applied and a compliant 

base was specified at the bottom of the model in which several earthquake time histories were applied 

as prescribed movements that occur at the bedrock level. Table 11 provides a description of the 

modeling phases included in the numerical analyses that were developed using the stage construction 

interface in PLAXIS 2D. 

 

Table 11. Calculation phases used in the numerical model with PLAXIS 2D. 

Phase 

number 

Phase name Phase description 

1 Initial phase 
Involves the calculation of the initial geometry and the initialization of 

the stress state. The initial soil stresses are obtained using a ko-procedure. 

2 
Plastic nil-

step 

It is a plastic phase included to reset displacements, strains and guarantee 

equilibrium in the computation of the initial stress field. 

3 
Dynamic 

analysis 

Allows to insertion of the shaking motion to the model to obtain the soil 

response and generation of excess pore water pressures 

4 

Dissipation of 

excess pore 

water pressure 

After the earthquake, high pore water pressures are developed. This 

stage is created to allow the drained response of the soil allowing excess 

pore water pressures to dissipate. This stage is not intended to simulate 

the resedimentaion process of the soil in the post-liquefaction stage, 

which is not possible in the most current version of the UBC3D-PLM 

model. 
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5.2 Definition of the Constitutive Models used in the Numerical 

Model 

In this project, the bottom rock layer was modeled with a linear elastic material and the alluvium and 

marine deposits of the remaining soil profile were modeled with the UBC3D-PLM model which is 

a tridimensional version of the UBCSAND model for liquefaction analyses originally proposed by 

Puebla, Byrne and Phillips (1997) and adapted to seismic evaluations by Beaty and Byrne (1998). 

The constitutive model was later implemented in the commercial finite element program PLAXIS 

2D by Tsegaye (2010) called UBC3D-PLM. Petalas and Galavi (2013) developed an improved 

version of the constitutive model in PLAXIS 2D. 

 

Recent advances in soil plasticity have shown that more complicated models have emerged to 

understand the liquefaction behavior of soils. The main challenge has always been on how to apply 

those models in current practice to supersede the more conventional quasi-static or equivalent linear 

methods routinely used in geotechnical practice. The model used for this research stands out as a 

model that perfectly balance both, relatively small number parameters of easy calibration without 

sacrificing accuracy and capturing the main features of dynamic soil behavior. The UBC3D-PLM 

model used in this research project is only available as a user-defined soil model through direct 

request with the PLAXIS sales department. The program uses a dynamic undrained effective stress 

analysis that includes the calculation of the excess pore water pressures generated as the earthquake 

occurs along the numerical time steps. The program and constitutive soil model are capable to 

calculate the onset of liquefaction using the pore pressure ratio (𝑟𝑢) as the main state variable. In this 

constitutive model, and in general in most models that are used to study the liquefaction potential of 

soils, the generation of excess pore water pressure and the computation of shear strains during 

seismic-induced cyclic loading is highly affected by the rotation of principal stresses which has been 

a major problem in the implementation of numerical models dealing with liquefaction. This feature 

is also rather limited in the UBC3D-Model.   

 

This project is intended to study the application of the UBC3D-PLM model to study the liquefaction 

potential of the Port of Long Beach. The soil model has its foundation in the UBCSAND model that 

was originally developed by Puebla et al. (1997) and Beaty and Byrne (1998). In spite of its rather 

complicated formulation, the UBC model in general is a constitutive model that have shown great 

potential for current use in earthquake engineering practice because of the easy calibration with 

limited field or laboratory tests. Both the UBCSAND and the UBC3D-PLM models are effective 
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stress models and use the classical plasticity framework decomposition of strains in elastic and 

plastic, defining the hardening rule in a hyperbolic manner. The main difference between both 

models is that the UBC3D-PLM uses a non-associative Drucker-Prager based plastic potential and 

a three dimensional Mohr-Coulomb yielding criterion. The UBC3D-PLM model has been recently 

improved to include a densification rule that improves the calculation of excess pore water pressures 

during cyclic loading. In the undrained effective stress analyses that are performed in PLAXIS, the 

soil stiffness and pore water pressures are not coupled. However, the results have shown to be 

satisfactory with respect to other programs based on finite differences like FLAC that can perform 

coupled effective stress analyses. Even though their initial and fundamental formulation is the same, 

both soil models mainly differ on their approach to degrade the stiffness of the secondary plastic 

shear modulus which controls the numbers of loading cycles to cause liquefaction (Tasiopoulou et 

al. 2015). Tasiapoulou et al. (2015) presented comparisons of the numerical model results using both 

models coded in PLAXIS 2D and FLAC in relation to the results of seismic centrifuge tests of a 

multi-block gravity quay-wall. The results of the dynamic analyses using both approaches resulted 

in similar horizontal and vertical deformations of the wall with respect to those observed in the 

centrifuge tests. 

 

The parameters for the UBC3D-PLM model should be ideally calibrated from the results of cyclic 

direct simple shear tests or cyclic triaxial tests. Both tests stand out as good representations of the 

stress paths that soils follow in the field during an earthquake. However, the availability of those 

tests for each representative soil layer in the field is rather limited in most geotechnical projects. 

Therefore, different authors have proposed simple correlations with traditional field tests that can be 

used for the calculation of soil parameters, which is one of the compelling reasons for the use of the 

UBC3D-PLM model for this research project. Table 1 lists the 16 constitutive soil parameters 

needed for the UBC3D-PLM model.  

 

In this research, an additional parameter is presented to correlate the relative density of each soil 

with the results of Standard Penetration Tests which are available for the current soil conditions. The 

relationship, originally proposed by Meyerhof (1957), can be shown as follows: 

 

𝐷𝑟 = √
(𝑁1)60

𝐶𝑑
 

 

(37) 
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where 𝐶𝑑 corresponds to a calibration factor originally taken as 46. Recently, other researchers, for 

example Idriss and Boulanger (2008), have shown that this value depends on the type of sand, grain 

size distribution, stress history, and type of deposition. A more realistic range of variation is from 36 

to 60 but the authors have suggested a value of 46 for liquefaction evaluation based on SPT or CPT 

data.  

 

Beaty and Byrne (2011) proposed equations and correlations with corrected clean sand blow count 

values, (𝑁1)60, obtained from SPTs. This was proposed to overcome potential lack of advanced 

laboratory testing for each representative type of soil and instead use the available results of SPTs, 

CPTs and measurement of 𝑉𝑠 to calibrate the soil parameters. This way, the model parameters are 

very easy to determine with conventional geotechnical field tests and becomes attractive for its use 

in current geotechnical engineering practice. These correlations, originally proposed for the 

UBCSAND 904aR model have been revised and implemented on the UBC3D-PLM soil model by 

Makra (2013) and are adopted in this research as a practical way to determine the constitutive 

parameters. The proposed correlations with SPTs are expressed as follows: 

 

𝜙𝑝 = 𝜙𝑐𝑣 +
(𝑁1)60

10
+ 𝑀𝐴𝑋 (0 ,

(𝑁1)60 − 15

5
 ) 

 

(38) 

𝐾𝐺
𝑒 = 21.7 × 20(𝑁1)60

0.3333 

 
(39) 

𝐾𝐵
𝑒 = 0.7𝐾𝐺

𝑒 

 
(40) 

𝐾𝐺
𝑝

= 𝐾𝐺
𝑒(𝑁1)60

2  × 0.003 + 100 

 
(41) 

𝑅𝑓 = 1.1(𝑁1)60
−0.15 

 
(42) 

  

where 𝜙𝑝 represents the peak friction angle, 𝜙𝑐𝑣 is the critical state friction angle which is the friction 

angle at constant volume, 𝐾𝐺
𝑒 and 𝐾𝐵

𝑒 are the elastic shear bulk moduli of the soil, 𝐾𝐺
𝑝
 is the plastic 

shear moduli of the soil and 𝑅𝑓 is the failure ratio. The stress-dependency power values for the bulk 

and shear moduli denoted as 𝑚𝑒, 𝑛𝑒, and 𝑛𝑒 can be assumed as default values 0.5, 0.5 and 0.4, 

respectively. These calibrations suggested default values for the hardening and post-liquefaction 
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factors (i.e., 𝑓𝑎𝑐ℎ𝑎𝑟𝑑 and 𝑓𝑎𝑐𝑝𝑜𝑠𝑡, respectively) taken both as 1.0. However, other researchers like 

Makra (2013) suggested after calibrations with laboratory tests and field observations of the 

performance of the San Fernando Dam after 1971 San Fernando earthquake that those factors are 

0.45 and 0.02, respectively. Those values were originally obtained from Fraser river sand. More 

detailed calibrations using numerical models of cyclic direct simple shear tests for the specific 

conditions of the POLB are presented in the following sections. 

 

The friction angle at constant volume can be determined either with correlations with field tests or 

from the results of static drained triaxial compression tests (or undrained with pore pressure 

measurements). Using the theory of elasticity and manipulating Eq. (40), which represents a relation 

between elastic shear and bulk moduli, would lead to a Poisson ratio of 0.02 which does not a 

plausible value for static calculations. Hardin (1978) and Negussey (1984) presented the strain 

dependency of the Poisson’s ratio in the range of small strains and concluded that the variation is 

between 0 and 0.2. However, in dynamic calculations the soil behavior at small strains is important 

and therefore such a low value of the Poisson’s ratio could be justified. This also justifies the use of 

a different constitutive model for the initial static stress initialization of the numerical model. In this 

research the Hardening Soil model is used to initialize the static stress field and improve the UBC3D-

PLM model deficiencies when dealing with the generation of the initial static shear stresses of the 

soil deposit. Table 12 presents the parameters used in this research for each soil layer modeled with 

the UBC3D-PLM model. 
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Table 12. Constitutive Soil Parameters of each Soil layer modeled with UBC3D-PLM. 

Parameter Unit A Unit B Unit C Unit D 

𝜙𝑐𝑣 (°) 34 34 29.3 30 

𝜙𝑝 (°) 41.50 34.8 30 38.70 

C (kPa) 0 0.00 0 0 

𝐾𝐺
𝑒 1417.96 867.40 1069.37 1469.99 

𝐾𝐺
𝑝
 5311.01 266.54 821.82 6807.56 

𝐾𝐵
𝑒 992.57 607.18 748.56 1028.99 

ne 0.50 0.50 0.50 0.50 

me 0.50 0.50 0.50 0.50 

np 0.40 0.40 0.40 0.40 

𝑅𝑓 0.65 0.81 0.73 0.63 

Pa (kPa) 100.00 100.00 100.00 100.00 

σt (kPa) 0.00 0.00 0.00 0.00 

𝑓𝑎𝑐ℎ𝑎𝑟𝑑 0.45 0.45 0.45 0.45 

(𝑁1)60 35 8 15 39 

𝑓𝑎𝑐𝑝𝑜𝑠𝑡 0.02 0.02 0.02 0.02 

 

As mentioned before, previous research in the use of the UBC3D-PLM model (Makra 2013; Petalas 

and Galavi 2013; Winde 2015) evidenced that the model does not calculate correctly the state initial 

state of stresses and therefore the static shear, which leads to inaccuracies in the results because of 

the dependency between static shear and liquefaction behavior of soils. Therefore, it was necessary 

in the numerical model to initialize the static state of stresses in the soil with a different material 

model capable to determine accurately the static state of stresses. The model selected to initialize the 

static stress field was the Hardening Soil (HS) model that not only has been used in numerous studies 

and case histories in the past, but also is commercially available and easy to calibrate with few field 

and laboratory tests. The HS model has a failure criterion based on Mohr-Coulomb and a multi-yield 

surface with a cap surface for the development of volumetric plastic strains and a shear surface for 

plastic shear strains under the cap. This multi-yield surface model combines two type of flow rules: 

i) an associative flow rule for the cap surface, and ii) a non-associative for the shear surfaces, 

allowing the model to simulate the dilatancy of the soil during the loading phase (Schanz et al. 1999). 

Table 13 presents the HS model soil parameters and a brief description of their physical meaning. 
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Table 13. Constitutive Soil Parameters used in HS model.  

Parameter Description 

ν'ur Poisson’s ratio 

m Power for stress-level dependency of stiffness  

𝐸50
𝑟𝑒𝑓

 Secant stiffness in standard drained triaxial test 

𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 Tangent stiffness for primary oedometer loading 

𝐸𝑢𝑟
𝑟𝑒𝑓

 Unloading/reloading stiffness 

Ф’ Friction angle 

ψ Dilatancy angle 

c'ref Cohesion intercept  

𝑅𝑓 Failure ratio 

Pref Reference pressure equal to the atmospheric 

pressure in kPa 

 

In both models the total unsaturated and saturated unit weights for the Unit A were taken as 20.1 and 

20.8 kN/m3. For the Units B, C, and D both unit weights were taken as 18.1, 18.9 and 19.6 kN/m3, 

respectively. The following assumptions were made for the calibration of the new set of constitutive 

parameters: i) the power coefficient 𝑚 is usually taken as 0.5 for sandy soils, ii) 𝑘𝐺
𝑒  . 𝑝𝑟𝑒𝑓 is close to 

the reference value of the initial shear stiffness 𝐺0
𝑟𝑒𝑓

, iii) the ratio 𝐺0/𝐺𝑢𝑟 is 3, iv) assuming a 

Poisson’s ratio of 0.2, the parameters 𝐸𝑢𝑟, 𝐸𝑜𝑒𝑑, and 𝐸50 are easily calibrated and calculated as 1/3 

of 𝐸𝑢𝑟. 

 

Table 14 presents the parameters used for the initial and static phases of the numerical model 

including also the 𝐾0 values which were computed using the Jaky’s formula (1944).  
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Table 14. Constitutive soil parameters used for the HS model in Phases 1 and 2 of the numerical 

simulations. 

Parameter Unit A Unit B Unit C Unit D 

ν'ur 0.2 0.2 0.2 0.2 

m 0.5 0.5 0.5 0.5 

𝐸50
𝑟𝑒𝑓

 (kPa) 22687.38 13878.38 17109.92 23519.83 

𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 (kPa) 22687.38 13878.38 17109.92 23519.83 

𝐸𝑢𝑟
𝑟𝑒𝑓

 (kPa) 68062.14 41635.13 51329.77 70559.50 

Ф’ (°) 41.5 34.8 31.5 38.7 

Ψ (°) 1 1 1 1 

c'ref (kPa) 0 0 0 0 

K0 0.44 0.44 0.50 0.50 

Rf 0.9 0.9 0.9 0.9 

 

The firm strata or rock formation at the bottom of the soil profile was modeled using a linear elastic 

material under drained conditions. The shear wave velocity at the bottom of the soil profile 

corresponding to the rock-type materials, was assumed to be approximately 1200 m/s. Those values 

are estimates because results of shear wave velocities at depths larger than 25 m are not available in 

this project. This assumption is consistent with other studies like Petalas and Galavi (2013) in which 

shear wave velocities larger than 800 m/s are used as an indication of rock-like formations. Table 

15 lists the parameters used for the bottom rock formation. 

 

Table 15. Linear elastic parameters used for the rock strata in the numerical model. 

Parameter Rock formation 

ν'ur 0.2 

E (kPa) 7.756 x 106 

𝑉𝑠 (m/s) 1200 

γunsat (kN/m3) 22 

γsat (kN/m3) 22 
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5.3 Soil Behavior during Cyclic Loading 

An explanation of the soil behavior using the proposed constitutive model when an element of soil 

is subjected to cyclic loading is explained in this section. Previous research on the use of constitutive 

models to study the dynamic behavior of soils have shown that the calibration should be preferably 

performed with the results laboratory tests of soils under cyclic loading such as direct simple shear 

devices, cyclic triaxial or torsional shear (Beaty and Perlea 2012; Finn et al. 1995; Marcuson W.F. 

et al. 2007). These tests closely resemble the stress paths that the soil follow in the field and therefore 

the results will provide a better match with respect to measured field performance. The objective of 

this section is to determine the most appropriate soil parameters using the UBC3D-PLM model by 

performing numerical analyses of boundary value problems that would fit resistance curves of 

liquefaction obtained from the analyses of different case histories. 

 

Soil stress-strain behavior is characterized by nonlinear behavior and stiffness have shown to be 

stress and strain dependent. Even in a uniform and homogeneous soil deposit, soil stiffness varies 

with depth and decays with the strain level induced by the applied loading. The maximum strain at 

which the soil behavior can be considered purely elastic is very small, approximately in the order of 

1x10-6. Soil stiffness associated with this strain range is indicated as the initial stiffness and its value 

decays by increasing the strain amplitude according to different characteristic curves published for 

different type of soils displaying also known as modulus reduction. 

 

Under dynamic loading, the soil is subjected to shearing cycles, showing not only a nonlinear 

decrease in the soil stiffness but also a dissipative behavior. The hysteretic behavior of soils 

generated during cyclic shear loading consists of a sequence of loading and unloading paths, 

characterized by increasing values of irrecoverable deformations. In general, it has been observed 

that earthquakes induce small strain levels in the soil, that exhibits a high shear stiffness 𝐺0, and that 

stiffness decreases with increasing values of shear strains (𝛾) while the amount of dissipated energy 

by the soil increases. Several cyclic drained direct simple shear (DSS) tests were modeled in PLAXIS 

2D by other researchers (e.g., Beaty and Byrne 1998; Makra 2013; Petalas and Galavi 2013; Puebla 

et al. 1997; Tsegaye 2010). Those results suggested that the UBC3D-PLM model over-damped the 

soil response compared to actual soil behavior because of the linear elastic unloading rule of the 

model with a constant shear modulus equal to 𝐺𝑚𝑎𝑥. These results lead to large areas computed 

inside the hysteretic loop response of the DSS tests. 
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In this section, the parameters for the UBC3D-PLM model were calibrated using boundary value 

element simulations. These parameters will be used in the following chapters for the numerical 

simulations of liquefaction of the Port of Long Beach. The parameters were mainly calibrated from 

existing correlations with SPT with the exception of the densification and post liquefaction factors 

that were obtained from the analyses of soil conditions of Unit B to reproduce published empirical 

cyclic strength curves. Using the proposed numerical parameters, it was demonstrated the 

practicality of using the proposed model and methods to study the onset of soil liquefaction of a 

given site. It is important to mention that even though the model is suitable for the development of 

shear strains arising from cyclic loading, the post-liquefaction behavior is very still very limited. 

This is because the change in volumetric strains during post-liquefaction reconsolidation of sands 

are still difficult to model numerically. In typical plasticity based models, strains are separated into 

elastic and plastic components and the strains generated during post-liquefaction do not belong to 

any of those two types of strains. Thus, constitutive models tend to under predict those strains in 

comparison with laboratory experiments (Boulanger and Ziotopoulou 2015). This topic is still a main 

concern in current state of the practice of soil liquefaction. More recently, Boulanger and 

Ziotopoulou (2015) proposed the PM4Sand model that incorporates calculation of post-shaking 

reconsolidation strains by a pragmatic approach reducing the post-shaking elastic shear and bulk 

moduli which increases the resulting strains and in this way accounting for sedimentation strains 

arising in the post-liquefaction stage. These sedimentation strains represent changes in volume in the 

soil mass when the effective stresses in the soil are very close to zero and excess pore water pressure 

near its maximum possible. 

 

Table 16 lists the parameters used for the numerical simulations of undrained cyclic DSS tests 

performed for Unit B. Those parameters were computed using the correlations proposed by Beaty 

and Byrne (2011) and include the densification factor (𝑓𝑎𝑐ℎ𝑎𝑟𝑑) and post liquefaction factors 

(𝑓𝑎𝑐𝑝𝑜𝑠𝑡), that resulted to be the most appropriate parameters to calibrate the onset and strength of 

soils to liquefaction as tested under undrained DSS conditions. The undrained DSS tests were 

developed using the Soil Test numerical tool embedded in PLAXIS 2D. The soil test conditions were 

generated from general soil test conditions that were manually adjusted to simulate the boundary 

conditions appropriate for Undrained DSS Tests. The results were obtained with a stress-controlled 

numerical simulations by applying the same shear stress in each step with a duration of 0.5 days, 

chosen to have one complete loading cycle in one day. A maximum of 40 loading steps (i.e., 20 
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cycles) for the entire test were used in each simulation to reach the post-liquefaction stage and 

conclude about the model capabilities to capture soil post-liquefaction. 

 

Table 16. UBC3D-PLM model parameters used for the numerical simulations of undrained cyclic 

DSS tests. 

Parameter Unit B 

𝜙𝑐𝑣 (°) 34 

𝜙𝑝 (°) 34.8 

C (kPa) 0.00 

𝐾𝐺
𝑒 867.40 

𝐾𝐺
𝑝
 266.54 

𝐾𝐵
𝑒 607.18 

ne 0.50 

me 0.50 

np 0.40 

𝑅𝑓 0.81 

Pa (kPa) 100.00 

σt (kPa) 0.00 

𝑓𝑎𝑐ℎ𝑎𝑟𝑑 0.45 

(𝑁1)60 8 

𝑓𝑎𝑐𝑝𝑜𝑠𝑡 0.02 

 

In this research, the procedure used for the calibration of the constitutive soil parameters to be used 

in the numerical analyses was to find the most appropriate parameters to reproduce the cyclic 

strength curve of the liquefiable soil deposits as the proposed by Seed et al. (1985) (see Fig. 8). It 

has also been shown by Seed (1985) a relationship between number cycles necessary to induce 

liquefaction in the soil as a function of the cyclic stress ratio (𝐶𝑆𝑅) and the earthquake magnitude. 

Table 17 presents those results in which for a magnitude earthquake of 7.5, liquefaction is reached 

for a total of 15 uniform cycles. Liquefaction is quantified in that study with and excess pore water 

pressure ratio of 100% and shear strain levels of ± 5%. In the numerical simulations of the DSS tests 

presented herein, these values were used as target values necessary to obtain the combination of 𝐶𝑆𝑅 

normalized at 100 kPa and (𝑁1)60 to reach liquefaction at approximately 15 loading cycles. In that 
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case, the input 𝐶𝑆𝑅 will correspond to the Cyclic Resistant Ratio (𝐶𝑅𝑅) and if the parameters 

selected are appropriate, the results will match the curve presented in Fig. 8. Liquefaction in this 

section is defined as the 𝐶𝑆𝑅 to generate a pore pressure ratio of 85% (Beaty and Byrne 2011), which 

has been observed to be a reasonable lower limit for 𝑟𝑢 necessary to cause high generation of excess 

pore water pressures and consequently, significant reduction in the shear strength of soils. 

 

Table 17. Scaling Factors for Effect of Earthquake Magnitude on 𝐶𝑆𝑅 Causing Liquefaction 

(After Seed et al. 1985). 

Earthquake magnitude, M 
Number of representative 

cycles at 0.65 τmax 
Scaling factor for stress ratio 

8-1/2 26 0.89 

7-1/2 15 1 

6-3/4 10 1.13 

6 5-6 1.32 

5-1/4 2-3 1.5 

 

Fig. 46 and Fig. 47, present the results of pore water pressure ratios, stress-strain curves, and stress 

path responses for undrained cyclic direct simple shear tests for different values of 𝐶𝑆𝑅 and relative 

densities calculated with Equation (37). Table 16 shows the final calibrated soil parameters for the 

liquefiable soil deposit for Unit B that were determined as the result of several iterations to obtain a 

reasonable representation of the semi-empirical cyclic strength curves presented by Seed et al. (1985) 

and Idriss and Boulanger (2004). As an additional reference, the results obtained by Makra (2013) 

obtained for Fraser river sand are also presented in the figure. The results are presented for zero 

initial static shear stress ratios and 𝐾0 values of 0.44, which is approximately the 𝐾0 value estimated 

for the liquefiable Unit B in the site. A post-liquefaction factor of 0.02 and a densification factor of 

0.45 were shown to match reasonably well with those proposed by Makra (2013) and are appropriate 

values to reach the conditions shown in the cyclic strength curve. The figures show that liquefaction, 

defined as pore water pressure ratios of 85% or more, is reached approximately at 15 cycles for all 

cases. Fig. 46c corresponding to a relative density of 74% (i.e., about medium-dense sandy soil) 

show that in order to reach liquefaction for those relatively small level of cycles (15), the soil needs 

to be subjected to higher levels of cyclic stress ratios which in that case correspond to a 𝐶𝑆𝑅 of 0.25. 

Conversely, as expected for loose to medium sandy soils with a relative density of about 42%, lower 

levels of cyclic stress ratios are needed to reach liquefaction at a total of 15 cycles. 
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It is important to note that previous research performed on the UBC3D-PLM model of soils subjected 

to in cyclic loading (e.g., Petalas and Galavi (2013) and Makra (2013)) showed that for lower 𝐶𝑆𝑅 

values, characteristic of low values of relative density, the model underestimates the pore water 

pressure ratio in relation to experimental test results. This is particularly valid for low values of 

loading cycles. It is observed from stress paths shown in Fig. 46 that the soil starts to soften and 

through each loading and unloading cycle the spacing between cycles reduces because of the 

activation of the densification rule which was added in the latest version of the model (Petalas and 

Galavi 2013). This densification rule was validated with experimental tests of sands subjected to 

cyclic loading that evidenced some degree of densification before the onset of the liquefaction. This 

soil densification rule improves the accuracy in the predicted evolution of excess pore water 

pressures. From the figure it is also evidenced the activation of the densification rule in the curves 

of pore water pressure ratios versus the number of cycles. Regardless of the 𝐶𝑆𝑅 value, this rule is 

activated at approximately 5 cycles or less. A change of slope in the curves of pore water pressure 

ratios occurs for 𝑟𝑢 values of about 0.5 or less. This change of slope along with the reduction of the 

space between the cycles in the stress path figures for vertical effective stresses of 50 kPa or more, 

serves as an indication of the activation of the densification rule. 
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Fig. 46. Results of the pore pressure ratios and the stress path of the numerical simulations of 

undrained cyclic direct simple shear test obtained with the numerical model for different 𝐷𝑟 values 

a) 42%, b) 57%, c) 74% and d) 81%. 
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The stress strain behavior for each relative density are isolated in Fig. 47. The figure shows the 

ability of the model to progressively increase the shear deformations as the loading cycles occur. In 

the first 15th cycles, during the cyclic mobility stages, the model properly accounts for the 

degradation of the initial shear modulus evidenced by a decrease in the slope of the hysteretic loop. 

This feature generated larger permanent plastic deformations in the soil mass. However, the model 

is rather limited once a pore pressure ratio high enough to induce liquefaction because the model 

does not allow further degradation and softening of the soil and therefore cyclic mobility cannot be 

properly simulated with the UBC3D-PLM model. This is evidenced from Fig. 47 a), b), c) and d) 

that shows that the soil repeats the same loop in the stress-strain curves and therefore the post-

liquefaction behavior of the soil is very uncertain. One possible numerical strategy to avoid this issue 

is applying a very small value, in the order of 10-2, to the post-liquefaction factor in the model 

parameters. Even with those limitations, the model is still valuable to predict the onset of liquefaction 

for the case of loose sands and for dense sands at high 𝐶𝑆𝑅. The results are more reliable for loose 

sands than for medium dense sands as quantified with the relative density because high pore water 

pressures are achieved before the model reaches the yield surface. 
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Fig. 47. Stress-strain behavior within 15 and 20 cycles of undrained direct simple shear tests 

obtained with the numerical model for 𝐶𝑆𝑅 values of a) 0.085, b) 0.14, c) 0.25 and d) 0.33. 
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Table 18 presents a summary table of the undrained cyclic DSS numerical simulations varying 𝐶𝑆𝑅 

and (𝑁1)60 to reach liquefaction at 15 cycles. Those results are plotted in Fig. 48 in relation to other 

studies on cyclic strength curves including Seed et al. (1985), Idriss and Boulanger (2003), and Cetin 

et al. (2004). The figure shows that the undrained cyclic DSS numerical simulations for the Unit B 

at the POLB using the proposed parameters shown in Table 16, reasonably matches the overall trend 

depicted by other studies, only being slightly under predicted for large values of SPTs. Unit B 

presents an average SPT value (𝑁1)60 of approximately 8 (i.e., 𝐷𝑟= 42%), and if the CLE and OLE 

earthquake levels produce a 𝐶𝑆𝑅 of higher than 0.085, liquefaction is very plausible as shown in the 

cyclic strength curve reproduced with the numerical simulations. The approximate match between 

the computed and expected results from other published research for Unit B provides confidence 

that at least in the numerical simulations of boundary value problems, the onset of liquefaction can 

be studied with the UBC3D-PLM. The following chapters will deal with the site-specific application 

and extrapolation of these results to the liquefaction effects in the POLB, Pier S. 

 

Table 18. 𝐶𝑆𝑅 to Reach Liquefaction for different values of the relative density. 

(𝑵𝟏)𝟔𝟎 𝑫𝒓 (%) 𝑪𝑺𝑹 

8 42 0.085 

15 57 0.14 

25 74 0.25 

30 81 0.33 

 

 

Fig. 48. Cyclic Strength Curve for Unit B compared with other semi-empirical procedures 

(Boulanger and Idriss 2004; Makra 2013; Seed et al. 1985). 
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5.4 Soil Behavior during Monotonic Loading 

After the calibration of the soil behavior during cyclic loading using the UBC3D-PLM constitutive 

model, an evaluation of the same soil parameters to reproduce monotonic triaxial compression 

(TXC) tests is presented. Several monotonic isotropically consolidated undrained triaxial 

compression (CIU-TXC) tests with four different confining pressures were obtained from the 

geotechnical investigation reports of the project site. Fig. 49 shows the deviatoric shear stress and 

excess pore water pressure versus axial strain for soil specimens extracted from Shelby tubes from 

the upper portion of Unit C at elevations between -15.6 and -17.7 m-MLLW. Shearing of the soil 

samples under triaxial loading were carried out under strain-controlled conditions at strain rates of 

about 0.01 cm/min. Four samples were tested with different consolidation effective stress (σ’c or σ’3) 

corresponding to 72, 143, 239, and 335 kPa. In situ vertical effective stress were computed as 185.5, 

202.4, 203.8, and 205.2 kPa respectively. 

 

 

 

Fig. 49. CIU-TXC tests conducted by AP Engineering and Testing, Inc. at the project site. 

The results of the monotonic CIU-TXC tests were also simulated using PLAXIS 2D and compared 

with the laboratory results presented before. Table 19 shows the soil parameters used for these 

simulations that were obtained using Eqs. (38) to (42) for an approximate SPT (𝑁1)60 value 11 
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corresponding to the location of the tested soil samples. The same densification and post-liquefaction 

factors were used as those previously used for the cyclic DSS tests, 0.45 and 0.02, respectively. From 

these laboratory tests, a peak friction angle of 30° was determined using a Mohr Coulomb failure 

envelope of the tests and that was the value proposed in these simulations. Fig. 50 shows the results 

of the monotonic CIU-TXC test simulations. 

 

Table 19. UBC3D-PLM model parameters used for the numerical simulations of monotonic 

CIU- TXC tests for a sample taken at elevation between -15.6 and -17.7 m-MLLW. 

Parameter Values for Soil Sample located 

between -15.6 and -17.7 m-MLLW 

with (N1)60= 11 

𝜙𝑐𝑣 (°) 29.3 

𝜙𝑝 (°) 30 

C (kPa) 0.00 

𝐾𝐺
𝑒 964.44 

𝐾𝐺
𝑝
 450.09 

𝐾𝐵
𝑒 675.11 

ne 0.50 

me 0.50 

np 0.40 

𝑅𝑓 0.77 

Pa (kPa) 100.00 

σt (kPa) 0.00 

𝑓𝑎𝑐ℎ𝑎𝑟𝑑 0.45 

(𝑁1)60 11 

𝑓𝑎𝑐𝑝𝑜𝑠𝑡 0.02 
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Fig. 50. Comparison of CIU-TXC test results and numerical simulations using UBC3D-PLM 

model in PLAXIS 2D for different confining pressures: a) σ’c=72 kPa, b) σ’c=143 kPa, 

c) σ’c=239 kPa and d) σ’c=335 kPa. 

It is concluded from the figures that the soil response under monotonic triaxial stress probes as 

obtained from the PLAXIS 2D numerical simulations agree well with the laboratory results. For 

large confining pressures, the numerical simulations with the UBC3D-PLM model showed a better 

match with respect to the experimental values. Larger discrepancies were observed for low confining 

pressures. At the small strain levels (i.e., axial strains less than 1%), the model shows a stiffer 

response in undrained conditions. The soil parameters and the calibration as presented in this section 

will serve as the basis of the finite element simulations of the project site. 
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5.5 Input Seismic Motions in the Numerical Model 

The selected time histories that were applied at the elevation of the firm strata (i.e., rock modeled at 

the bottom of the soil profile assumed to be similar to the properties of the outcropping rock in which 

the seismic motions were recorded) were scaled so that they match the Peak Ground Acceleration 

values reported in the Port of Long Beach Ground Motion report. Those peak ground accelerations 

corresponded approximately to 0.21g for the OLE and 0.50 g for the CLE earthquake levels and 

were characterized by magnitudes Mw of 6.5 and 7.0, respectively. The input time histories of each 

earthquake analyzed in this report are shown in Fig. 51 for the OLE conditions and in Fig. 52 for 

CLE condition.  

 

 

Fig. 51. Input acceleration time histories for the OLE condition (USGS 2016). 

 

Fig. 52. Input acceleration time histories for the CLE condition (USGS 2016). 

Fig. 53 shows the Fourier spectrums in order to obtain the predominant frequency for each 

earthquake motion presented in this research that were computed in PLAXIS 2D and DEEPSOIL by 

applying the Fourier Amplitude of the acceleration time history input. The software DEEPSOIL is 

an equivalent linear and nonlinear seismic site response program to assess the seismic response of 

one-dimensional soil columns in time domain as well as in frequency domain. Those Fourier 
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Amplitude was performed for a point located at the bottom of the model thus is the input predominant 

frequency of each earthquake for the model. Table 20 shows a summary of the predominant 

frequencies of the earthquakes for the OLE and CLE conditions. Both Fourier Amplitude calculated 

with PLAXIS 2D and DEEPSOIL show similar predominant frequencies. The software DEEPSOIL 

is an equivalent linear and nonlinear seismic site response program to assess the seismic response of 

one-dimensional soil columns in time domain as well as in frequency domain.  

 

Table 20. Predominant frequencies of the earthquakes for OLE and CLE conditions calculated 

with PLAXIS 2D and DEEPSOIL. 

Earthquake Input 
Predominant Frequency of the 

Earthquake (Hz), PLAXIS 2D 

Predominant Frequency of the 

Earthquake (Hz), DEEPSOIL 

Whittier OLE 1.69 1.69 

Loma Prieta OLE 0.35 0.35 

Imperial Valley CLE 0.65 0.65 

Loma Prieta CLE 0.51 0.50 

 

 

 

Fig. 53. Fourier Amplitude for a node at the bottom of the model in PLAXIS 2D for the OLE 

condition: a) Whittier, b) Loma Prieta; and for the CLE condition: c) Loma Prieta, and d) Imperial 

Valley. 
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The earthquake time histories, obtained at the outcrop of a nearby rock formation, were modeled 

applying a prescribed displacement at the bottom firm soil strata. It is assumed that the motion 

recorded at the outcrop contains waves of the same amplitude propagating upward and downward 

motions. The input signal is taken as half of the motion using a compliant base and from there the 

time history propagates through the soil only the upward component. In order to apply a compliant 

base, an interface is applied at the bottom of the model, but it is not activated for all calculation 

phases. The strength and stiffness parameters of the interface are taken equal to those of the rock 

stratum. This base is included to absorb the incoming waves and create a node pair that is necessary 

to apply the input motion. In the bottom boundary a value of 0.5 m assigned in the x-direction was 

the main input. In PLAXIS 2D, the dynamic load is given in terms of a dynamic multiplier by 

selecting the acceleration input mode which is given in units of m/s2. To obtain this input motion is 

necessary to multiply the acceleration shown in the Fig. 51 and Fig. 52 by the acceleration of gravity. 

The files used for the input motion were obtained from the USGS and were converted to readable 

earthquake input files in PLAXIS. The drift correction option was selected in the program to correct 

potential drift in the displacement causing final non-null displacements in the signal after the 

earthquake finishes. This typically occurs as a consequence of the integration process of 

accelerations and velocities. 

 

The peak ground acceleration of a given site can be calculated using different procedures. For those 

sites that have soils susceptible to liquefaction, it is preferable to perform site response analyses 

based on different time histories rather than simplified procedures based on site classes and soil 

coefficients. For the analyses presented in this research, the calculations were made based on 4 

earthquakes time histories taken from the recommendations of the Port-Wide Ground Motion study 

for the Port of Long Beach. 

5.6 Calibration of Damping Coefficients 

In this project and using the computational tools and constitutive soil models, the Rayleigh damping 

coefficients associated to small damping ratios for the proposed soil layers are defined. The Rayleigh 

damping formulation is based on the definition of a damping matrix which is a function of the mass 

and stiffness matrices which are modified by the Rayleigh coefficients α and β. The hysteretic 

damping in the soil model used is able to capture damping associated with strains larger than 10-4 to 

10-2%. 
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[𝐶] = 𝛼[𝑀] + 𝛽[𝐾] 

 

(43) 

These two coefficients α and β need to be calibrated with damping ratios and two sets of natural 

frequencies. The damping ratio for numerous applications is typically selected from 0.5 to 2% and 

is assumed to be equal for both target frequencies. These frequencies denoted in the PLAXIS input 

as Target 1 and 2 can be selected following the procedure by Hudson et al. (1994). The authors 

proposed that the first frequency target 1 should be computed as the natural frequency of the entire 

soil layer while the second frequency target 2 should correspond to the nearest odd integer from the 

ratio of the dominant frequency of the input motion at the bedrock or firm strata and the fundamental 

frequency of the entire soil layer. The natural frequency, used as the target 1 is given by the following 

expression: 

 

𝑓 =
𝑉𝑆

4𝐻
 

 

(44) 

Where 𝑉𝑆 and 𝐻 correspond to the shear wave velocity and thickness of the soil layer respectively. 

In this project the shear wave velocity was selected as a weighted average value over the entire soil 

depth. This shear wave velocity was computed based on the site-specific shear wave velocities from 

the subsurface investigation of the site. For an approximate thickness of 30 m and an average shear 

wave velocity of 208 m/s, the natural frequency was determined to be 1.73 Hz. The Fourier 

Amplitude of the input motions analyzed in this project and shown in Table 20, the dominant 

frequency of each earthquake was computed in the same table with PLAXIS 2D and DEEPSOIL. 

The average value of those dominant frequencies are less than 1 Hz. Therefore, the ratio of the 

average dominant frequency of the earthquake motions to the natural frequency of the soil profile 

was equal to 0.57 Hz. Thus the frequency of target 2 is 1 Hz. The physical meaning of these target 

frequencies is that a frequency within that range, the resulting damping turns out to be less than the 

target damping ratio but outside of that range the input signal is overdamped. From the input values 

of the program as described before, the Rayleigh coefficients α and β were computed as 0.118 and 

0.001, respectively. 

5.7 Results of the Numerical Analyses 

In this research, the first step is to present free-field site-specific simulations of the liquefaction 

potential of the soils present at the POLB, Pier S. These results are further developed to include the 
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response analyses of hypothetical infrastructure considering various buildings with several natural 

vibration frequencies. These analyses are presented in order to assess the detrimental settlement 

potential of structures when subjected to seismic forces that are capable to induce liquefaction of the 

subsurface conditions. The main goal of these analyses is to provide recommendations related to the 

resulting permanent deformations and residual strength of soils which could compromise the 

resiliency of the port depending on the magnitude of the earthquake motion. 

 

As mentioned earlier in this report, the liquefaction potential of soils is often expressed using the 

excess pore water pressure ratio defined as 𝑟𝑢. This ratio at a given depth in the soil profile typically 

represents the development of excess pore water pressure in relation to the initial vertical effective 

stress. For the case of the constitutive model used in this research, the ratio 𝑟𝑢 is given as follows: 

 

𝑟𝑢 = 1 −
𝜎′

𝑣

𝜎′
𝑣0

 

 

(45) 

Where 𝜎′𝑣 and 𝜎′𝑣0 are the vertical effective stress at the end of the dynamic calculation and the 

initial vertical effective stress (i.e., prior to the seismic motion). A pore pressure ratio equal to one 

implied that liquefaction occurs which is a manifestation of a drastic reduction of the effective 

stresses of the soil (i.e., the numerator, 𝜎′𝑣, tending to zero). However, it is not necessary to reach a 

perfect 1.0 for 𝑟𝑢 to demonstrate that liquefaction might occur. Beaty and Perlea (2012) suggested 

that liquefaction is reached for pore pressure ratios larger than 85%. Fig. 54 and Fig. 55 show 

different pore pressure ratio contours for all the soil layers and given different time histories for both 

OLE and CLE contingency earthquakes from the free field analyses. It is consistent from the results 

of the numerical simulations that the second soil layer (i.e., Unit B from top to bottom corresponding 

to estuarine and marine deposits) is characterized by high development of excess pore water 

pressures and consequent reduction of vertical effective stresses in the soil of almost zero, reaching 

the liquefiable state of the soil. This soil layer has an approximate relative density computed with 

Eq. (37) of 42%. Based on the cyclic strength curve presented in Fig. 48, a 𝐶𝑅𝑅 value of 0.085 is 

needed to reach liquefaction in the soil. The OLE and CLE level earthquake conditions are capable 

to generate high demands of cyclic stress ratio which are above the cyclic resistance ratios which 

one more time proves the potential of soil liquefaction of these soils, specifically Unit B, when 

subjected to the seismic demands studied in this report.  
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Fig. 54 shows pore water pressure contours for the free field simulations when subjected to the OLE 

conditions. The figure clearly evidences 𝑟𝑢 values of 85% at unit B generated due to the decrease of 

vertical effective stresses induced by the earthquake. Large values of 𝐶𝑆𝑅 induced by the 

earthquakes are needed to reach liquefaction in Units A, C and D that have relative densities of 87, 

57 and 92%, respectively. Even though Unit C is a medium sandy soil, other factors play an 

important role in the liquefaction resistance such as the overburden pressure that implies large initial 

vertical effective stresses making this layer less prone to liquefaction. Even for the CLE condition 

that produced larger 𝐶𝑆𝑅, the 𝐶𝑅𝑅 of those soils due the high relative density avoid the onset of the 

liquefaction. In the OLE condition shown in Fig. 54 , the Loma Prieta earthquake induced larger 

pore water pressure ratios than the Whittier earthquake due the differences between their PGAs and 

frequency content. Fig. 55 presents the same contours but for the CLE earthquake levels. In these 

earthquake conditions, the Loma Prieta earthquake generated less 𝑟𝑢 values that the Imperial Valley 

earthquake. It is observed from the figure that almost the entire Unit B reaches liquefaction because 

of the high levels of excess pore water pressures generated by the CLE earthquake demand.  

 

a) 

 

 

 

b) 

 

 

Fig. 54. Pore water pressure ratio (𝑟𝑢) contours for the OLE condition a) Whittier 1987 and b) 

Loma Prieta 1989. 
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a) 

 

 

b) 

 
Fig. 55. Pore water pressure ratio (𝑟𝑢) contours for the CLE condition a) Imperial Valley 1979 and 

b) Loma Prieta 1989. 

Fig. 56 shows the variation of pore water pressure ratios with time for a point taken in the middle of 

the liquefiable Unit B. The figure presents the results for four different earthquake time histories, 

two for the OLE and two for the CLE earthquake levels. It is observed that 𝑟𝑢 values of 85% or above 

are developed for both conditions at that particular depth in the soil profile. These results of 𝑟𝑢 versus 

dynamic time show how the pore water pressure ratios necessary to induce liquefaction are specific 

of the input motion. It is shown in the figure that for the OLE earthquake levels, Whittier 1987 and 

Loma Prieta 1989, the pore water pressure ratios reach a value higher than 85% at 30 and 8 seconds 

after the earthquake begins, respectively. A similar result is evidenced for the CLE earthquake levels, 

Loma Prieta 1989 and Imperial Valley 1979, in which 𝑟𝑢 values larger than 85% occurs 10 and 19 

seconds, respectively. The initial liquefaction is reached for both conditions at a minimum of 8 

seconds, however there is no general trend on the time that liquefaction is initially induced in the 

soil mass depending on the earthquake. This time is specific of the input earthquake motion at the 

base of the model which justifies the site specific evaluation presented in this research. 
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Fig. 56. Pore pressure ratio (𝑟𝑢) through the dynamic time for the Unit B for the OLE and CLE 

conditions a) Whittier 1989 (OLE) and b) Loma Prieta 1989 (OLE) c) Imperial Valley 1979 (CLE) 

and d) Loma Prieta 1989 (CLE). 

To assess the soil behavior on a free field condition, it is important to identify how is the development 

of the pore water pressure ratios with time for the whole model. Fig. 57 shows the variation of the 

𝑟𝑢 through the Loma Prieta CLE earthquake time. This earthquake was selected because it was found 

to be the one that induced the larger settlements between both OLE and CLE earthquake levels. 

These results relate that at 5 seconds after the earthquakes begins the vertical effective stress was 

reduced 50%. In addition, the figure confirms that liquefaction can be reach at 10 seconds after this 

particular earthquake begins which is a short time. 
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Fig. 57. Development of the pore water pressure ratio (𝑟𝑢) through the Loma Prieta CLE 

earthquake time. 

It is important to emphasize that the numerical simulations presented in this research are performed 

using undrained effective stress parameters. Because of the zero change in volume assumption of 

undrained analyses, the program was able to only accumulate the values of pore pressure rations 𝑟𝑢 

until the end of the shaking motion with negligible vertical deformations arising from the ground 

motion. To avoid this problem, a final phase of pore water pressure dissipation using a consolidation 

stage was included in the numerical model to account for the potential settlements resulting from 

liquefaction, at least those corresponding to the dissipation of excess pore water pressures resulting 

1 second 

𝑟𝑢=0% 

3 seconds 

𝑟𝑢=25% 

5 seconds 

𝑟𝑢=50% 

10 seconds 

𝑟𝑢=85% 
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from the earthquake. It is important to note that those settlements are not intended to capture the 

post-liquefaction behavior of the soil and settlement caused by resedimentation of the soil particles 

post liquefaction. These results are intended to provide an estimate of the permanent deformations 

at the ground surface after the earthquake ends.  

 

The maximum vertical deformation obtained from the free field analyses for the OLE and CLE 

conditions are presented to show the magnitude of those settlements induced during post-liquefaction 

in the Unit B. The results obtained from the simulations with the OLE conditions (see Fig. 58) 

showed a maximum settlement of 18 and 20 mm for the Whittier and Loma Prieta earthquakes, 

respectively. This complete dissipation of excess pore water pressure generated during the cyclic 

loading produced by the earthquake was reached after approximately 10 hours after the earthquake 

event. This result is expected given the high values of hydraulic conductivity characteristic of these 

alluvium deposits. The results for the CLE conditions (see Fig. 59) showed maximum settlements 

of the free field simulations of 32 mm and 29 mm for the Loma Prieta and Imperial Valley 

earthquakes, respectively. The variation of maximum settlements arising from the dissipation of 

excess pore water pressures in the post event situation are combined in Fig. 60 for the free field 

analyses. These results evidence the settlement potential induced by both earthquake levels after 

liquefaction is induced in the soil mass. The figure shows larger consolidation-induced settlements 

for the CLE than the OLE condition, which is in agreement with the PGAs induced from each 

condition. 
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a) 

 

 

 

b) 

 

 

Fig. 58. Maximum vertical deformation contours for the OLE condition after the pore water 

pressure dissipation a) Whittier 1987 and b) Loma Prieta 1989. 

a) 

 

 

b) 

 
Fig. 59. Maximum vertical deformation contours for the CLE condition after the pore pressure 

dissipation a) Imperial Valley 1979 and b) Loma Prieta 1989. 
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Fig. 60. Ground surface settlements arising from dissipation of excess pore water pressures after 

liquefaction is induced for the OLE and CLE conditions. 

The results of the dynamic stress path shear-vertical effective stress are presented in Fig. 61 for a 

point in the middle of the Unit B. The figure presents for the free field condition a stress path that 

resembles the stress path of a cyclic direct simple shear test. This evidences that the way the 

parameters were studied at the elemental scale with numerical simulations of undrained DSS are 

representative of the actual stress conditions that the soils will experience in the free field. In the 

figure an approximate cyclic stress ratio induced by the earthquake is about 0.19 for the OLE and 

0.22 for the CLE which evidences the potential of liquefaction of that soil layer. 

 

As discussed in section 5.3, but now using the stress path of a point in the soil mass located within 

Unit B, the primary loading the soil seems to begin softer until are generated pore water pressures 

that decrease the vertical effective stress leading to the decreased soil stiffness during the contraction 

phase, after that the densification rule is activated, showing a densification behavior before the onset 

of the liquefaction. Not reach a zero value in vertical effective stress indicates, as shown before, that 

𝑟𝑢 does not reach the unit.  
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Fig. 61. Stress path for a point in the middle of Unit B: a) Whittier 1999 (OLE) and b) Loma Prieta 

1989 (OLE) c) Loma Prieta 1989 (CLE) and d) Imperial Valley 1979 (CLE). 

The mobilized shear strength before and after the earthquake can also be used to quantify the 

detrimental effects that liquefaction has in these soil condition. PLAXIS 2D computes the relative 

shear stresses of the soil, as follows: 

 

𝜏𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝜏𝑚𝑜𝑏𝑖𝑙𝑖𝑧𝑒𝑑

𝜏𝑚𝑎𝑥𝑖𝑚𝑢𝑚
 

 

(46) 

where 𝜏𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 represents the relative shear stress ratio that adopts values between 0 and 1. When 

𝜏𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 is equal to one, the soil reached failure based on the Mohr-Coulomb failure criterion 

adopted in the model, which implies that the shear strength of the soil has been fully mobilized. The 

maximum shear stress is defined as: 

 

𝜏𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑐′ +  𝜎′0 tan 𝜙′ 

 

(47) 

Thus, for Unit B and for two different earthquake input motions, Fig. 62 shows for the free field 

analyses for OLE and CLE conditions, that high values of shear strength mobilized in the order of 
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0.7 and above for the majority of the soil profile. Also, Unit B presents larger values close to one 

indicating that the CLE conditions in these analyses are capable to fully mobilize almost the entire 

shear strength of the soil at Unit B. 

 

a) 

 

 

b) 

  

Fig. 62. Relative shear stress (𝜏𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) contours due to the earthquake motions after pore water 

pressures dissipation stages: a) Whittier 1987 (OLE) and b) Loma Prieta 1989 (CLE). 

Fig. 63 and Fig. 64 shows the predominant frequency for each earthquake motion computed with 

PLAXIS 2D and DEEPSOIL applying a Fourier Amplitude of the acceleration time history output 

for a point located at the top of the ground surface. From this figures, it is possible to inform about 

the possible frequencies at the top of the ground surface that could be harmful to any structure 

founded in this site. In Table 21, are shown the summary of predominant frequencies of the 

earthquakes for the OLE and CLE conditions with the objective to compare the results between 

PLAXIS 2D and DEEPSOIL.  

 

Table 21. Predominant frequencies of the earthquakes for OLE and CLE conditions. 

Earthquake 
Frequency of Earthquake (Hz) 

PLAXIS 

Frequency of Earthquake (Hz) 

DEEPSOIL 

Whittier OLE 1.69 1.69 

Loma Prieta OLE 4.46 1.08 

Imperial Valley CLE 1.46 1.08 

Loma Prieta CLE 13.79 0.83 

 



Numerical Evaluation of the Port of Long Beach 110 

 

 

 

Fig. 63. Fourier Amplitude at the top ground surface with PLAXIS 2D for the OLE condition a) 

Whittier, b) Loma Prieta and CLE condition c) Loma Prieta and d) Imperial Valley. 

 

 

 

Fig. 64. Fourier Amplitude at the top ground surface with DEEPSOIL for the OLE condition a) 

Whittier, b) Loma Prieta and CLE condition c) Loma Prieta and d) Imperial Valley. 
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In these analyses, slight differences between the calculated predominant frequencies with PLAXIS 

2D and DEEPSOIL were observed. Probably, these difference were originated by any error in the 

input program. Also, is necessary to know that both software have their differences in the way soil 

damping and stiffness degradation are accounted for in both programs.  

 

To understand all the results obtained for the free field analyses it is possible to take a closer view 

of the acceleration response spectra at the top of the ground surface for both earthquake conditions 

levels. Fig. 65 shows the comparison of the acceleration response spectra obtained in this research 

with PLAXIS 2D and the suggested in the POLB ground motion report. It is observed that the 

acceleration response spectra for the OLE and CLE conditions recommended by the Port Wide 

Ground Motion study POLB by Earth Mechanics Inc (2006) are an envelope for the input histories 

selected for the analyses made in this research. Although, the 1989 Loma Prieta (CLE) has a less 

predominant period than the spectral recommendation, the PGA of the earthquake is under the 

envelope CLE spectrum supporting that the initial response spectral suggested is conservative. The 

short predominant period of the 1987 Loma Prieta (CLE) earthquake was chosen to represent a 

motion with a near focal source to evaluate the seismic response to this condition.  

 

The PGA values of the OLE and CLE condition were determined from the Port Wide Ground Motion 

study POLB (2006) taking into account the different earthquakes sources around the POLB. From 

this assumption, the OLE and CLE conditions start from that recommended PGA value and are near 

to the lower bound and the upper bound respectively of the range of the different spectrums. 
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Fig. 65. Acceleration response spectra at the top of the ground surface with PLAXIS 2D for the 

OLE and CLE conditions. 

With the main objective to validate and check the results from PLAXIS 2D, the acceleration response 

spectrum was calculated with the software DEEPSOIL at the top of the ground. Fig. 66 shows the 

comparison of the of the acceleration response spectra obtained with DEEPSOIL and the suggested 

in the POLB ground motion report. Again, it is observed that the acceleration response spectra 

recommended by the Port Wide Ground motion study of the POLB by Earth Mechanics Inc. (2006) 

are the minimum and maximum boundaries for the OLE and CLE condition respectively, as 

abovementioned. In addition, the behavior of the 1987 Whittier and 1989 Loma Prieta OLE 

earthquakes and the 1979 Imperial Valley CLE earthquake are similar than the spectrums obtained 

from PLAXIS 2D. The 1989 Loma Prieta CLE earthquake has a behavior completely different at top 

of the ground surface, where a shorter predominant period was obtained with PLAXIS 2D and a 

larger with DEEPSOIL.  
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Fig. 66. Acceleration response spectra at the top of the ground surface with DEEPSOIL for the 

OLE and CLE conditions.  

One of the objectives of this research is to assess the detrimental effects that the combination of these 

level earthquakes and soil conditions would have in the functionally of the POLB, Pier S. To achieve 

this goal, it is proposed to numerically simulate the potential post-liquefaction effects in the overall 

response of various types of structures when an earthquake induces liquefaction in the soil deposit. 

At this point it has been shown that the onset of liquefaction of Unit B is not only captured by the 

numerical model and verified with semi-empirical approaches, but also plausible if earthquake levels 

like the ones presented herein occur. Fig. 67 shows the vibration modes of the building. At least, 3 

different vibration modes of the structure can be identified but the natural and principal dominant 

frequency of the building is 1.8 Hz. The building is 8-m tall and consists of a 2 story structure and 

one basement level. In the seismic response analysis, the building needs to be modeled with a 

basement to avoid an over-predict of the total settlements under the building. The structure has a 

footprint of 8 m wide in one direction and a very large magnitude in the perpendicular direction as 

the structure is modeled in plane strain conditions. It was assumed a value of 5 kN/m2 as the weight 

of the floors and the walls. The structure is assumed to founded in shallow foundations. This 

condition was chosen for the hypothetical structure because this is the worst-case scenario for the 

settlements that might be induced by an earthquake. Therefore, any lateral spreading effects or any 

other mechanism inherent to deep foundations are not included in this study. This structure type, 

size, and configuration was selected to approximately match the dominant frequency of about 
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1.72 Hz of the soil profile calculated with Eq. (35) with shear waver velocity approximately equal 

to 208 m/s. 

 

 

Fig. 67. Fourier Amplitude for the 2-story structure with a basement level using PLAXIS 2D. 

Liquefaction-induced settlements caused by the excess pore pressures generated may affect the 

structures founded over saturated granular soils, causing probably a partial or a whole collapse of 

that structure, especially if there is significant differential settlement between adjacent structural 

elements. Table 22 summarizes the maximum vertical deformations obtained at the building base 

resulting from the applied earthquakes for the OLE and CLE conditions. The liquefaction-induced 

deformations and those arising from the dissipation of excess pore water pressures after the 

earthquake are presented for the four earthquakes presented in this research. The results obtained 

from the numerical simulations with the OLE conditions showed a maximum settlement varying 

from 10 to 24 cm for the Whittier and Loma Prieta (OLE) earthquakes, respectively. The results for 

the CLE conditions showed maximum settlements of from 11 to 18 cm for the Loma Prieta (CLE) 

and Imperial Valley earthquakes, respectively. Fig. 68 shows the variation of vertical deformation 

at the ground surface versus time as the earthquake is induced and during the pore water pressure 

dissipation phase. Based on typical hydraulic conductivities of the alluvium deposits characteristics 

of this site, it is only 3 hours after the earthquake that the soil fully dissipates the pore water pressures 

and settlements are generated on top of the ground surface. 

 

Observations from the cases histories proposed by Yoshimi and Tokimatsu (1977); Arulmoli et al. 

(1992); Liu and Dobry (1997); Hausler (2002), of buildings with 2 to 4 stories founded on shallow 

foundations on saturated granular soils suggested that most of the total liquefaction-induced 
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settlements were caused during the earthquake motion with minor contribution arising from 

dissipation of the excess pore water pressure generated during the cyclic loading. This observation 

from numerous case histories is confirmed in this research as shown in Table 22, where the largest 

contribution to the vertical displacements of a four-story structure occurred during the dynamic phase 

and from the post-earthquake consolidation of soils. This consolidation is highly influenced by soil 

resedimentation, which is not captured by the constitutive model used in this research, and in fact is 

a general limitation of any current plasticity-based model for soil liquefaction. More and better 

numerical models to solve these inconsistencies are being proposed in the technical literature with 

very promising results to improve the predicting capabilities in geotechnical engineering when 

dealing with liquefiable soils.   

 

Table 22. Settlements in “m” for each phase of the numerical simulations of a 2 story structure 

plus a basement on top of the soil profile when subjected to the OLE and CLE earthquake levels. 

Type of 

analysis 
Earthquake 

Dynamic Phase (1) 

(m) 

Dissipation of PWP 

Phase (2) (m) 

Total (1) + 

(2), (m) 

Building 

Whittier OLE 0.069 0.031 0.100 

Loma Prieta OLE 0.180 0.056 0.236 

Imperial Valley CLE 0.143 0.041 0.184 

Loma Prieta CLE 0.073 0.041 0.113 
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Fig. 68. Development of ground surface settlements versus time as induced during the earthquake 

motion and during the pore water pressure dissipation phase: a) Whittier 1999 (OLE) and b) Loma 

Prieta 1989 (OLE) c) Loma Prieta 1989 (CLE) and d) Imperial Valley 1979 (CLE). 

Fig. 69 and Fig. 70 present the pore pressure ratio contours at the end of the earthquake for the CLE 

and OLE conditions. These results evidence that almost the entire Unit B reaches 𝑟𝑢values of 85% 

or more for both earthquake levels. The input motions in these analyses are the same as the ones 

used for the free-field analyses, and even though the mechanisms that lead to liquefaction of the soil 

profile are the same, the effects are manifested in a different manner here causing large settlements 

of the structure located on top of the soil profile. In this figure, larger excess pore water pressures 

were generated under the structure than those developed for the free-field case. The presence of a 

structure with these characteristics increases the vertical ground deformations as the weight of the 

structure mobilizes part of the soil shear strength before the earthquake strikes. 
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a) 

 

 

b) 

 
Fig. 69. Pore pressure ratio (𝑟𝑢) contours for a site with a building when subjected to the OLE 

conditions: a) Whittier 1987 and b) Loma Prieta 1989. 

a) 

 

 

b) 

 
 

Fig. 70. Pore pressure ratio (𝑟𝑢) contours for a site with a building when subjected to the CLE 

conditions: a) Imperial Valley 1979 and b) Loma Prieta 1989. 
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Fig. 71 and Fig. 72 present the relative shear stress contours mobilized by both earthquake levels. 

The figures show that for Unit B, the high development of earthquake-induced shear stresses fully 

mobilized the soil shear strength especially in the zones located below the structure. This is 

evidenced with the high relative shear stress values close to or equal to one. Even though Unit A 

also presents high shear stress values, those stresses are not strictly related to soil liquefaction now 

that the pore pressure ratios, as shown in Fig. 69 and Fig. 70, are not large enough to induce 

liquefaction. It is noted that because of the relatively small vertical and confining stresses of that 

surficial soil layer, larger relative shear stresses of the soil are expected. It also noted that the Loma 

Prieta (OLE) earthquake has larger relative shear stress zones equal or close to 1 with respect to 

those developed for the Whittier earthquake, which agrees with the free-field settlements analyses 

presented in this section in which the Loma Prieta (OLE) induced more settlements than the Whittier 

earthquake. A similar trend is shown for the Loma Prieta (CLE) and Imperial Valley earthquakes, 

where the latter mobilized more shear strength than any other earthquake. 

 

a) 

 

 

b) 

 
Fig. 71. Relative shear stress (𝜏𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) contours for a site with a building when subjected to the 

OLE conditions: a) Whittier 1987 and b) Loma Prieta 1989. 
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a) 

 

 

b) 

 
Fig. 72. Relative shear stress (𝜏𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) contours for a site with a building when subjected to the 

CLE conditions: a) Imperial Valley 1979 and b) Loma Prieta 1989. 

Fig. 73 and Fig. 74 shows the total volumetric strain contours for the both earthquake levels. The 

figures show that the largest earthquake-induced volumetric strains occur in the Unit B. However, 

those magnitudes, which are the order of 0.1% are considered small quantities. Therefore, it is 

believed that the contribution of the liquefaction induced-settlements below the buildings does not 

correspond to a purely volumetric strain mechanism but contribute to the total deformations. 
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a) 

 

 

b) 

 
Fig. 73. Total volumetric strain (ɛv) contours for a site with a building when subjected to the OLE 

conditions: a) Whittier 1987 and b) Loma Prieta 1989. 

 

a) 

 

 

b)

 
 

Fig. 74. Total volumetric strain (ɛv) contours for a site with a building when subjected to the CLE 

conditions: a) Imperial Valley 1979 and b) Loma Prieta 1989. 
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To analyze the primary settlement mechanism of the proposed hypothetical structures in shallow 

foundations, different structure configurations were analyzed by varying the amount of stories. The 

analyses were developed for building types with 1, 2 and 3 stories plus a basement level, with the 

objective to assess the effect that the proximity of the predominant frequency of the structure to the 

dominant frequency will have in the liquefaction-induced settlements. Even though, the mechanisms 

showing in this figure do not show any distortion or differential settlement mechanisms, these high 

earthquake demands cause large settlements and could potentially lead to the partial or total collapse 

of the structure. As mentioned by Dashti (2013), there are three main mechanisms identified in the 

deformation of structures in shallow foundations on liquefiable soils: i) the volumetric strains caused 

by the water flow in response to transient gradients, ii) partial bearing capacity failure as a result of 

the soil softening, and iii) settlements-induced building ratcheting during earthquakes loading.  

 

Fig. 75 summarizes the maximum total post-liquefaction settlements computed for different 

earthquakes and varying the number of stories, where a progressive increment of the settlements 

occurred in relation with the number of stories. The results show that the earthquake that induced 

larger settlements for the different structure types was the Loma Prieta (OLE), which is in agreement 

with the previous analyses reported for the free field studies. The earthquake that produced less 

settlements, regardless of the number of stories, resulted to be the Whittier earthquake. The problem 

is dependent on numerous factors, not only the number of stories but the frequency content of the 

input motion, amplification of the seismic waves as they propagate upward through the soil profile, 

the strength and stiffness reduction (softening) of the soil as the earthquake occurs, nonetheless the 

results match what is intuitive in this case. The opposite is shown for the Imperial Valley earthquake. 

This research on the liquefaction effects on structures is still subject of numerous research efforts 

and more research is needed about these effects on buildings and its structural and non-structural 

components. Due to this complexity on the amount of variables involved in this problem, large 

scatter is expected when evaluating settlements with the classical approaches as presented in Section 

4.5. 
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Fig. 75. Total settlements of different structure types when subjected to the OLE and CLE 

conditions. 

The different failure mechanisms proposed by Dashti et al. (2013) are presented in with the Fig. 76 

deformed mesh corresponding to the Loma Prieta OLE earthquake. This type of analysis was 

proposed for 1, 2 and 3 story structure configurations plus a basement. This earthquake was selected 

because it was found to be the one that induced the larger settlements. The computed building 

performance is presented in terms of liquefaction induced-settlements of the building. The 

deformation pattern confirms that the large shear deformations induced by the earthquake result in 

foundation ratcheting and partial bearing capacity failure. This mechanism occurs because of soil 

softening and the type of failure is similar to the primary liquefaction-induced displacement 

mechanism shown in Fig. 15. 
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a)

 
b)  

 
c) 

 
Fig. 76. Deformation contours for different structure types when subjected to the Loma Prieta OLE 

earthquake: a) 1 story structure, b) 2 story structure, and c) 3 story structure including the basement 

respectively. 

Fig. 77 shows the deformations contours through the dynamic time for the Loma Prieta OLE 

earthquake for a 3-story structure including the basement. This figure confirms that the principal 

settlements mechanisms of the building is due the partial or total bearing capacity failure and the 

foundation ratcheting. The application of the Loma Prieta OLE earthquake in the model, results in 

the strength loss of the Unit B that becomes in a punching settlement of the structure after 20 seconds 

of the earthquake begins. Before this punching settlement, shear-induced structural settlements (i.e., 

ratcheting) occurred due the differential horizontal inertial forces between the foundation and the 
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ground that produces that some zones below the building has a compression behavior and other zones 

has a tension behavior. Unit A is a layer with a higher initial relative density that exhibits a greater 

resistance to the seismically induce pore water pressure stiffness degradation, hence, those 

settlements are due the strength loss of the Unit B only. 

 

   

     

   

Fig. 77. Deformation contours of hypothetical structure for different times during the Loma Prieta 

OLE earthquake. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary 

The applicability of the UBC3D-PLM constitutive soil model to predict the onset of liquefaction and 

the post-liquefaction behavior at the Port of Long Beach (POLB), Pier S was presented. A 

characterization of the soils present at the site was completed with the information provided by the 

POLB. The subsurface investigation was mainly composed of Standard Penetration Tests (SPTs) 

and Cone Penetration Tests (CPTs) up to a depth below the ground surface of 38 m. Four layers of 

soil, labeled as “Units” in this research, were identified from the field tests as Units A, B, C, and D. 

The seismicity of the project site and in general for the southern California area was also summarized 

from a comprehensive report (Earth Mechanics Inc. 2006) provided by the POLB. 

 

The liquefaction potential was assessed with different triggering semi-empirical methods to identify 

those soil layers susceptible to liquefaction. One of the main objectives of this research was to 

provide recommendations regarding the permanent ground deformations of soils that could 

compromise the normal operations of the port facility and compromise its resiliency needed after an 

earthquake event. To accomplish that research objective, ground settlements were computed with 

readily available semi-empirical methods for free field conditions. These classical approaches 

consisted on an estimation of the shear stresses and strains induced by the earthquake necessary to 

calculate post-liquefaction-induced volumetric strains, which after integrating over the entire depth, 

would provide estimates of the liquefaction-induced settlements of the site. 

 

The soil parameters for the UBC3D-PLM constitutive soil model were calibrated to determine the 

most appropriate set of parameters. This calibration was performed via numerical analyses of 

boundary value problems that would reproduce other published liquefaction cyclic resistance curves 

such as the proposed by Seed et al. (1985). This calibration was developed modeling undrained 

Direct Simple Shear (DSS) tests using the parameters obtained from published correlations based on 

corrected SPT blowcounts, (𝑁1)60. The ability of the constitutive soil model to capture monotonic 
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isotropically consolidated undrained triaxial compression (CIU-TXC) test responses with the 

proposed parameters was also evaluated. Rayleigh damping coefficients were computed based on 

the natural frequencies of the soil deposit. A total of four different earthquake input motions taken 

from the Port Wide Ground Motion study of the POLB by Earth Mechanics (2006) were used in the 

numerical simulations. The frequency content of each input motion was calculated using PLAXIS 

2D and DEEPSOIL. 

 

Pore water pressure ratios were calculated for the free field conditions to identify potentially 

liquefiable soils. The onset of liquefaction was determined when pore water pressure ratios exceeded 

85%. Thereafter, ground settlements were computed for the free field conditions as the dissipation 

of excess pore water pressures using the selected input time histories corresponding to two 

earthquake levels: Operating and Contingency Level Earthquakes (OLE and CLE, respectively). 

From the free field simulations using PLAXIS 2D and DEEPSOIL, the Fourier Amplitude of the 

outcropping signals was performed to conclude about the frequency content of the earthquake 

motions. Acceleration response spectra was computed for those signals at the top of the model with 

PLAXIS 2D and DEEPSOIL and the results were compared with the acceleration response spectra 

presented in the Port Wide Ground Motion Study of POLB. 

 

Several analyses were performed with different hypothetical structures with one level of basement 

to compute, in light of other published research, the settlements and liquefaction-induced damage 

mechanisms after an earthquake. To obtain post-shaking liquefaction-induced settlements, 1, 2 and 

3-story buildings were evaluated under both earthquake level. These analyses provided insight on 

the different mechanisms of failure of soils and structures when earthquakes of the magnitudes 

considered in this research occur in the project site. These mechanisms were quantified with the 

development of pore water pressure ratios and with the calculation of relative shear stresses 

throughout the soil profile. 

6.2 Conclusions 

Based on the seismicity of the POLB, Pier S site, the following conclusions can be drawn: 

 

 The POLB is located in a zone of very active faults indicating the potential for future seismic 

activity in the area. The Palos Verdes and Newport-Inglewood Structural Zone faults are the 

most important geological structures for the port and are capable to generate earthquake 
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magnitudes from 6.8 to 7.4 and 6.3 to 7.0, respectively. Other active faults slightly farther 

from the port can generate earthquake magnitudes up to 7.5, but with low recurrence periods. 

 At least 189 earthquakes were registered in the last 200 years within a radius of 300 km 

around the POLB with earthquake magnitudes greater than 5. This seismic hazard is grouped 

in two earthquake levels defined as the OLE and CLE with 72 and 475-year return periods, 

respectively. The POLB wide ground motion report recommends a peak ground acceleration 

(PGA) for geotechnical evaluations for the OLE of 0.21g with a dominant source 

corresponding to an earthquake magnitude of 6.5 at a distance of 20 km. The PGA for the 

CLE earthquake is 0.5g with a dominant source of magnitude of 7.0 at a distance of 4 km.  

 

Based on the definition of the subsurface conditions developed at the POLB, Piers S, the following 

conclusions can be drawn: 

 

 The predominant natural frequency of the soil profile was estimated to be 1.73 Hz (or a 

predominant period of 0.58 s) for the first 30 m below the ground surface. This was 

computed with a measured average shear wave velocity (𝑉𝑠) of 208 m/s. 

 The marine-estuarine sediments present in Unit B have a thickness of about 10.5 m. Tip 

resistances measured with CPT probes varied between 1 and 10 MPa and SPT N-values 

ranged from 1 to 12 blows/feet. These are typical variations of highly compressible 

cohesionless soils (Kulhawy and Mayne 1990). Relative densities averaged about 40% 

which is a typical value for loose sands. Natural water contents varied from 30 to 50% 

indicating that this is a normally consolidated soil deposit. Hence, these characteristics make 

this layer susceptible to liquefaction. 

 From the information provided in the geotechnical investigation reports, it was found that 

Unit A is composed of man-made fills of silty to clayey sands and has a relative density 

varying between 20 and 90%. It shows the presence of some weak thin layers of fill within 

recent compacted fills. For this topmost soil layer, natural water contents fluctuated between 

10 and 30%, CPT tip resistances ranged from 2 to 40 MPa, and SPT N-values from 4 to 

50 blows/feet, indicating that this topmost man-made fill is composed of a great variety of 

soils. Unit C is a dense lower marine-estuarine deposit composed mostly of dense silty sands. 

Unit D is known as the Gaspur formation and is composed of very dense coarse sands with 

gravels. These last two layers are present below an elevation of -15 m MLLW and their 

natural water contents decrease with depth. These layers have average relative densities of 
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57 and 80%, respectively and are not susceptible to liquefaction due to their high blowcounts 

and cone tip resistances measured in the field. The large overburden pressures of Units C 

and D and associated large confining stresses, ruled out the possibility of liquefaction of 

these units. 

 

Based on the semi-empirical evaluation of liquefaction triggering and settlements of the POLB, Pier 

S, the following conclusions can be drawn: 

 

 After the assessment of the liquefaction susceptibility based on SPTs, CPTs and 𝑉𝑠 semi-

empirical methods, it was found that Unit B is the only liquefiable layer under both 

earthquake levels (OLE and CLE). For Unit B, the factors of safety against liquefaction for 

the OLE and CLE conditions were computed as 0.89 and 0.28, respectively. These values 

represent a high likelihood of liquefaction to be induced in this soil layer if an earthquake of 

such magnitude strikes the area. Only the upper portion of Unit C and the lower portion of 

Unit A are liquefiable under CLE conditions. SPTs, CPTs and 𝑉𝑠 semi-empirical triggering 

methods are commonly used to predict liquefaction onset of soils, but are not intended to be 

used to draw conclusions or recommendations about post-liquefaction effects. 

 Liquefaction-induced settlements using state-of-the-practice classical approaches were 

evaluated for free-field conditions. Settlements of about 24.1 and 75.6 cm for the OLE and 

CLE conditions, respectively, were computed using the results of SPTs. Using the CPTs, 

settlements of about 9.8 and 32.2 cm were computed for the OLE and CLE conditions, 

respectively. These results evidence the potential liquefaction-induced settlements by both 

earthquake levels. As expected, based on the PGAs of each earthquake, larger settlements 

were computed for the CLE than the OLE condition. 

 The obtained results evidenced large discrepancies and scatter in the calculation of 

liquefaction-induced ground settlements using classical semi-empirical approaches. They 

can take into account the reduction of the shear strength of the soil, but ignore the 

mechanisms that induced shear and volumetric strains. This complicated problem, even 

under free field conditions, is still a subject of numerous efforts in the geotechnical 

community and requires more research to improve the predicting capabilities of simplified 

methods like those that can be readily used in current geotechnical earthquake engineering 

practice. 
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Based on the calibration of constitutive soil parameters under monotonic and cyclic loadings, the 

following conclusions can be drawn: 

 

 The parameters for the UBC3D-PLM constitutive model were obtained using published 

correlations with SPTs. This is a very practical way to determine constitutive soil parameters 

and can be used in current geotechnical earthquake engineering practice. The constitutive 

parameters were calibrated for the Unit B simulating undrained cyclic DSS tests to reach 

liquefaction at 15 uniform cycles as proposed by different researchers. The most sensitive 

parameters were the densification factor, (𝑓𝑎𝑐ℎ𝑎𝑟𝑑) and post liquefaction factors (𝑓𝑎𝑐𝑝𝑜𝑠𝑡), 

that resulted to be the most appropriate parameters to determine the liquefaction onset and 

the cyclic strength of soils based on undrained DSS conditions. A post-liquefaction factor 

of 0.02 and a densification factor of 0.45 were shown to reasonably match the overall trend 

of cyclic strength curves depicted by other studies, only being slightly under predicted for 

large values of SPTs. These simulations provided confidence that at least for the undrained 

DSS boundary value problem, the onset of liquefaction can be studied with the UBC3D-

PLM constitutive soil model. 

 From the simulation of undrained DSS tests, it can be concluded that the results are more 

reliable for loose sands than for medium dense sands because larger pore water pressures 

are achieved for medium dense sands before the model reaches the yield surface. It was 

observed from the undrained DSS stress paths that soil soften at the beginning of the cyclic 

loading and as the number of cycles increase, the space between cycles in the effective stress 

axis becomes smaller. This behavior is attributed to a densification rule coded in the 

constitutive model which is activated in less than 5 cycles. This result is shown to be 

consistent for any cyclic stress ratio. The simulations showed that the model adequately 

degrades the initial shear modulus which is reflected in a decreasing slope of the hysteretic 

loops. When the soil reaches liquefaction, the model does not allow further degradation and 

softening of the soil, and therefore cyclic mobility cannot be adequately simulated with the 

UBC3D-PLM model. Regardless of those limitations associated with this constitutive 

model, it is concluded that the UBC3D-PLM constitutive soil model can be used to 

accurately determine the liquefaction onset of soils. 

 Under monotonic loading, the constitutive soil model showed reasonable match with 

laboratory results, particularly true for large confining pressures. Larger discrepancies were 

observed for low confining pressures. At the small strain levels (i.e., axial strains less than 
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1%), the model showed a stiffer response in undrained conditions with respect to the 

experimental values. 

 

Based on the numerical simulations developed with PLAXIS 2D for the POLB, Pier S, the following 

conclusions can be drawn: 

 

 Four input time histories were selected according with the recommendations of the Port 

Wide Ground Motion study of the POLB (2006). These time histories were analyzed with a 

Fourier Amplitude to obtain the predominant earthquake frequencies. The Fourier 

Amplitude applied to the acceleration time history at the bottom of the model was obtained 

with PLAXIS 2D and DEEPSOIL. The results of both programs reasonably match. It was 

found that those time histories had a dominant frequency less than 2 Hz. The Fourier 

Amplitude calculated with PLAXIS 2D and DEEPSOIL for acceleration time-histories at 

the top of the model showed large differences for two out of the four earthquakes analyzed 

in this research. Those differences are probably due an error in the input parameters. 

Anyway, is important to note that both programs has difference in the way to include 

damping and degradation of the soil stiffness. 

 The acceleration response spectra recommended by the Port Wide Ground Motion study 

POLB (2006) for the CLE condition is an envelope of the response spectra computed with 

the earthquake motions selected in this research. Some differences were observed with the 

1989 Loma Prieta (CLE) earthquake in which a lower predominant period was obtained with 

respect to the spectral recommendation by POLB (2006). The computed PGA of the 

earthquake is shown to be under the CLE response spectrum envelope. The response 

obtained with DEEPSOIL for the OLE earthquakes [Whittier (1987) and Loma Prieta 

(1989)], and for the CLE earthquake [Imperial Valley (1979)] are similar than the spectra 

obtained from PLAXIS 2D. The CLE earthquake [Loma Prieta (1989)] presents dissimilar 

response when analyzing time histories at the ground surface. For that earthquake, a shorter 

predominant period was obtained with PLAXIS 2D than with DEEPSOIL. 

 The numerical simulations showed that Unit B developed pore water pressure ratios larger 

than 85%. These large values cause significant reductions of the vertical effective stresses 

for both earthquake conditions. Relative shear stress values close to one were computed for 

Unit B indicating that the OLE conditions are capable to mobilize 70% of the shear strength 

of the soil. The CLE conditions mobilized almost the entire shear strength for Unit B which 
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evidences how liquefaction mobilizes shear strength causing local failures in the soil mass. 

Small pore water pressure ratios were computed for Units A, C, and D. Thus, liquefaction 

was not reached in those layers. 

 A limitation observed in the UBC3D-PLM constitutive soil model coded in PLAXIS 2D is 

that the program, under an undrained effective stress analysis framework, is only capable to 

develop pore water pressure ratios until the end of the shaking motion causing negligible 

vertical deformations (settlements) under free field conditions. Resedimentation of soils in 

the post-shaking phases are not accurately captured with the constitutive model. In this 

research, a final phase of pore water pressure dissipation (consolidation) was included to 

provide an estimate of the settlements resulting from liquefaction. 

 Analyses of liquefaction-induced settlements for free field condition under OLE and CLE 

earthquake levels showed maximum settlement of 20 and 32 mm, respectively, after 

dissipation of excess pore water pressure generated during the cyclic loading. The results 

showed that complete dissipation of excess pore water pressures was reached in 

approximately 10 hours after the earthquake. 

 Simulations of 1, 2 and 3-story buildings founded on shallow foundations on saturated 

granular soils suggested that most of the total liquefaction-induced settlements were caused 

during the earthquake motion with minor contribution arising from dissipation of the excess 

pore water pressure generated during the cyclic loading. The results showed that the total 

settlements after the dissipation of the excess pore water pressure were reached in 

approximately 3 hours after the earthquake. In addition, larger excess pore water pressures 

were generated under the structure than those developed for the free-field case. The 

simulations showed that for Unit B, the high development of earthquake-induced shear 

stresses fully mobilized the soil shear strength especially in the zones located below the 

structure. 

 The presence of a structure increases the vertical ground deformations as the weight of the 

structure mobilizes part of the soil shear strength before the earthquake strikes. A 

progressive increment of the settlements occurred in relation with the increase in number of 

stories. The results showed that the earthquake that induced larger settlements in the 

buildings was the Loma Prieta (OLE) with values of 14.7, 23.6 and 31.4 cm for 1, 2 and 3-

story buildings, respectively. The Whittier (OLE) earthquake produced less settlement: 5.5, 

10 and 13.4 cm for 1, 2 and 3-story buildings, respectively. 
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 From the building simulations performed with the UBC3D-PLM model in PLAXIS 2D, it 

was observed that the liquefaction-induced settlements of buildings with shallow 

foundations on sandy soils were controlled by different settlements mechanisms. The shear 

strain deformations resulting from the foundations ratcheting and the partial bearing failure 

as result of the soil softening, are considered the two major mechanisms observed for the 

induced building settlements. These liquefaction-induced building settlements occurred 

during the first 20 seconds of the earthquakes, which suggest that volumetric strains during 

the resedimentation stage have a minor contribution to the total building settlements. 

6.3 Recommendations 

 

 Although the calibration performed in this research is valid, it is not based on laboratory 

tests that simulate the dynamic behavior of the soil within the POLB, Pier S. Therefore, it is 

recommended to perform advanced geotechnical laboratory testing (i.e., cyclic triaxial, 

cyclic direct shear, among others) to improve the calibration of the constitutive soil 

parameters used at the POLB, Pier S. 

 The recommendation to build any structure at the POLB, Pier S can be evaluated considering 

different alternatives. First, the use of a compensated mat foundation is not a viable 

alternative. As showed in this research, this type of foundation can generate total or partial 

collapse of any building if differential settlements are presented. Another alternative is to 

improve the characteristics of at least the first 15 m of soil below the ground surface. 

However, it has to be evaluated considering the equipment, materials, execution time and so 

forth, which can significantly increase the final cost of any building. Another option, more 

expensive than a compensated mat foundation but technically effective, is to use a deep 

foundation such as driven piles that pass through the liquefiable soil and reach at least the 

Unit C to support a future structure at the POLB. 

 It is also recommended for further research to assess the seismic response with site-specific 

analyses supplemented with an extensive geotechnical campaign (i.e., field exploration and 

laboratory testing). Any type of structure that the port authority is planning in the area needs 

to accurately define its behavior under shaking events in order to know which would be the 

most appropriate building foundation on liquefiable soils.  

 The classical and semi-empirical methods use in the state-of-the-practice are a fast and easy 

way to reasonably evaluate the factor of safety against liquefaction and liquefaction-induced 
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settlements. Although, the use of more sophisticated numerical methods to study soils 

subjected to dynamic loading is more suitable for sensitive geotechnical projects. This is 

particularly important if predictions regarding liquefaction triggering, post-liquefaction 

behavior, and permanent deformations need to be issued. 

 The main advantages of the UBC3D-PLM constitutive soil model are that its model 

parameters can be reasonably estimated based on SPT values, (𝑁1)60, using readily available 

correlations. Additionally, the model parameters can be easily calibrate based on monotonic 

or cyclic laboratory testing. Further research is needed to find correlations between those 

constitutive parameters and the results of CPT soundings. Taking into account that the model 

cannot accurately predict the post-liquefaction behavior, it is suggested to evaluate this using 

other constitutive soil models, such the PM4SAND and Hypoplasticity models. The 

proposed PM4Sand model incorporates calculation of post-shaking reconsolidation strains 

by reducing the post-shaking elastic shear and bulk moduli which increases the resulting 

strains and the geometric arrangement of the particles. In this way, resedimentation strains 

arising in the post-liquefaction stage are captured. These resedimentation strains represent 

changes in volume within the soil mass when the effective stresses in the soil are very close 

to zero and excess pore water pressures are near their maximum possible. 
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