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ABSTRACT 

A pair of ladder operatora are introduced and uae for aolving 
the radial equation for the hydrogen atom. The energy 
eigenvaluea as well explicit analytic expreaaiona for the 
eigenfunctiona of this particular Kepler problem are obtained 
after aome algebraic manipulation of the operators. 

l. 1 NTRODUCT ION 

Algebraic techniquea for aolving quantum mechanica problema 
have been lmown for a long t:iJne[1-3] and are now atandard 
texbook fare[3-S]. The ~portance of the operator algebra ia 
often illuatrated in the literature and textbooks on quantum 
mechanica by treating the cases of the linear simple harmonic 
oscillator and angular momentum problema[3-10]. Another 
example of an exactly aolvable exerciae in quantum mechanica 
ia the eigenvalue problem correaponding to the radial equation 
for the Coulomb potential. Ita aolution employing ladder 
operatora has received aome attenti on[11-1S]. The reported 
work on thia problem concentratea mainly on the energy 
eigenvalue computation; even thougb formal aolutions of t he 
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eigenfunctiona are found in the literature[11.14-16J, their 
i dentif i cation with the e i genaolutiona expressed in terma of 
Laguerre po lynomial a is not usually explicitly shown. The 
purpose of thia article ia to employ SchrOdinger ' a method of 
factorization[17-1SJ to develop an alternate pair of ladder 
operatora which are particular ly uaeful for comp]ting the 
explicit form of the eigenfunctiona of the hydrogen atom. The 
layout of this paper ia as follows. In Section 11 the ladder 
operators for the radial differential eguation correaponding 
to the hydrogen atom. are introduced. The formal propertiea of 
theae operatora are a lao examined in thea aection. Section 111 
is devoted to the calculation of the eigenvaluea and the 
explicit form of the eigenfunctiona, and finally in Section IV 
some concluding remarka are made. 

2. LADDER OPERATORS FOR THE RADIAL WAVE EQUATION 

The radial differential equation for the nonrelativiatic 
hydrogen atom ia[4] 

(~ ;. -ª-..E..) R + ~ [ e ~ _ 1 (1 + 1) 'ha ] R .. -~ R ( 1) 
dr 2 r dr 'h2 r 2 J.Lr 2 'h2 

where the aymbols have their usual meaning; in particular 1 
deaignates t he orbi t al angular momentum quantum number and 

J.L denote a the reduced masa of the electron-proton BYst em. 

In atomic unita, where J.L =1 , e =1 , and 'h =1, Eq. (1) becomes 

(~ + -ª--.E!.. + -ª-_l(l+l»R = WR 
dr2 r dr r r 2 

(2) 

with H= -2E>O. Becauae of the accidental degeneracy peculiar 
to the Coulomb potential there are different radial functiona 
for distinct valuea of 1 correaponding to the aame energy W. 
Denoting by Rn1 the radial function coreaponding t o Wn and a 
given value of 7 and defining the r adial Hamiltonian operator 

111 by the expreasion 

11 • ~ + -ª....sL+-ª-_lCl+l) 
1 dr2 r dI r r2 (3) 

it ia poaaible to recaat the radial equation (2) in the 
compact form 
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(4) 

I t ia aeen from thia expreaaion that Wn i5 an eigenvalue of 

111 • From the definition ( 3) it followa immediately that 

fI =..E..~ + ~~ + -ª- _ (1+1) (1+2) 
1+1 dz 2 I dI I I 2 

(5) 

fue to the symmetry properly of the Coulomb potential the 

eigenvalue of 111 ia aimultaneously an eigenvalue of 111+1 but 

their eigenfunctions are different. thence 

111+1Rn.l+1 ~ WzrRn.l+l (6) 

He now introduce two operatora 11+ and 11- such that their 

product has the aame eigenfunctions as 111 . The eigenvaluea 

H+ H- of (or for that matter thoae of fi-l1+ ) may differ from 

the eigenvaluea of 111 • He wri te 

fi1+1fi; .. fl1+c(1) 

where C(l) ia a acalar. 

(1) 

The combined operator 111+111; thus has a diatinct eigenvalue 

fo~ each different value of l. i.e . • it ia non-degenerate with 

reapect to 1; this ia the main difference between 111 and the 

combined operator defined by Kq . (1). '!'he reason different 

subacripta are employed for 11- and Ir will be apparent at the 

end of thia aect i on. '!'he two 
opar atora are defined as followa: 

11 d Cl (1) (1) 
1+1 • dz + I +C2 

A , d C~ (l) '1 ' 
H'" • - + ~ . +c, ( ) 

1 dr I 

firat-order differential 

(8) 

(9) 
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Subati tuting the last two expreaaiona above into Kq. (7) and 
equating coefficienta givea relationehipa from which the 
deaired operatora can be obtained. Different ana1ytic forma of 
CO) will give riae to diatinct ladder operatora. For 
inetance, the choicea C(l) = - 1/12 , and C(l) = -1/(1+1)2 lead, 
reapectively, to the aeta of referencea 11 and 13. Now i t can 
be ahown that chooaing C(1)=-1/(1+1)2, the ladder operatora 
generated agree with thoae of Ref.13, namely: 

d 1+2 1 • -+-----
dI I 1+1 

(lOa) 

Il; = -.EL _.1. +_1_ (10b) 
dI I 1+1 

Theae two operatora can be readily computed from Kqa. (8) and 
(9) in conjunction with Kq.(7). 

Subatitution of Kqa. (8) and (9) into Kq. (7) and equating 
coefficienta on both aidea of the resulting equation yield: 

e C = _ 1 
2 4 (1 +1) 2 ' 

(11) 

C2 CJ +C¡ C4 • 2 

To keep the notation uncluttered the argument 1 has been 
omi tted on all the C' a. '!'he 8olution of the syatem of 
equation8 given by (11) i8 

C1 • 1+2, 

Subatitution of theae resulta into Kqa. (8) and (9) y ielda 
Kq8. (10). 

A uaeful additional relationship ia 

11;11;+1 ... 111+1 + C{l} (13) 

It will be ahown next tbat apart from proportionality 
constanta 

(14) 

(15) 
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Multiplying both aidea of Kq. (7) f~ the left with O; and 

acting with the resulting operator on the radial wavefunction 
R.o.l. rendera the expreaion 

0;fI;+10;R1ll • 11; [A1+C(1) J Rnl (16) 

Employing the relllt ionahip (13) in conjunction wiht Kq.(4), 
Kq. (16) developa into 

(111+1 +C( 1)] (O;Rnl > • [W+C(l») (11;RnJ) 

therefore 

01+1 (11;Rnl> - W(11;RnJ) 

1 t ia imporlant to note that thia ia 
eigenvalue equation (6). Kquation 

(17) 

in the form. of the 
( 17) thua aholla 

t bat O; Rnl ia an eigenfunction of fll+1' thua proving Kq. 

(14). Kquation (15) may be proved in a similar manner. 

The mathematical entitiea O; and 111+1 are thua the raiaing 

and lowering operatora of the hydrogen-atom radial 
wavefunctiona R.o.l. and R.o..l.+l., reapectively. 

3. COMPUTATION OF 
E 1 GENFUNCT 1 ONS 

THE ENERGY LEVELS :AND 

'lbe problem under conaideration ia that of finding the 
posaible eigenvaluea of Kq. (2) and the correaponding 
eigenfunctionB. Emp10ying the hyperviria1 theorem[1S.20] it 
can be ahown that for a given value W, the quantity 1 ia 
bounded from above. Deaignating the maximum allowed va1ue of 1 

by 1*, the adder operator 11; when applied to the 

correaponding eigenfunction must give zero: 

1110+Rn.l o - O (18) 

If Rn.l. ia operated on by the caabined operator of Kq. (7) 
with 1=1*, then 

11;0+1 (Al"+Rll.10) • (Al"+C(l·)] Rll.l" lit [W+C(1·)] Rll.l" (19) 

j' 
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The quanti ty wi thin parentheses on the left side of this 
equation vanishes due to cóndi tion (18). Si.nce in this work 
C(l*)= -1/(1*+1)2 it follows fras Kq. (19) tbat 

1 
PI= ---~ 

(1*+1)2 
(20) 

Let n =1* + 1; since K = -Wj2 , we deduce fraa Kq. (20) that 

1 E = - - (21) 
2n 2 

This is the well-known expresaion for the poaaible bound-atate 
energiea of the hydrogen atom, expreaaed in atomic uni ta; the 
quantity n ia the principal quantum number. From the 

definition of 1.11 it is known that the minimum value that 1 

can take on ia zero. Thus for a given value of n 7 1 
encompasaea the range from O to 1* = n-l. 

The radial function Rnl.(r) can now be computed. Consider firat 
Rn.n-1(r ). Kq . (18) with 1* = n - 1 reads : 

1/;_1 Rn ,n-l (x) .. O (22) 

If thia expresa ion ia written out explicitly, one obtaina 

(..s!... - n-1 + l:) R • O 
dr r n n,n-l (23) 

Thia ia a firat-order differential equation having the 
aolution 

(24) 

C being a normalizing factor. 
For every 1 < 1*, Rnl. can be formally obtained by applying 

iteratively the operator 1/- on Rn.n-1; thus 

n-l 

Rnl (x) • ( II lit) Rn,n-l .. H;+1 f/¡+2' • ·11;-2 11;-1 RIl,n-l (25) 
1-1+1 

The radial function Rnl. (r) ahould be expresaed in terma of 
polynomiala. Firat it will be shown that Rnl.(r) may be written 
as followa: 

n-l-l 
Rnl(r) • C(n,1)e-r / n Xl( ~ AJcx k ) 

~ 
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where C(n, l) ia choaen ao as to normalize the radial function 
& 11(1') . Equation (26) may be proved employing the method o.f 
indu~tion, beginning by calculating Rn.n-2. Except for a 
proportionality conatant the following can be written from 
(15) 

(27) 

Employing Eq. (lOa.) with 1 = n - 2 in thia expreaaion yielda 
(C=conatant) 

Rll 11-2" el ( dr
d 

+.E -~1 ) Rll ll-l 
I • I n- ' 

=C(n ,n-2)e- r / nI n- 2 (2n-1) [1 - r ] 
n (n-l) 

In aimilar fashion, if C" deaignatea a new conatant, then 

R el' ( d n-l 1) R 
1l.1l-3= dI +-X - n-2 n,n-a 

(28) 

(29) 

=C(n,n-3) e-r/nx n- J (2n-3) [1 - 2r + 2r
2 

] 
n (n-2) n 2 (n-2 ) (2n-3) 

Aasuming that the eigenaolution Rn1 may be written in the f orm 
given by Kq. (26), we propoae to ahow that Rn. ~-1 may be 
expreaBed as 

n-l 
R11 . 1_1 (X ) .. C(n ,l -l)e-r/nIl-l(~Bk IX ) (30) 

The radial function Rll • 1- 1 i6 uniquely generated from Rn1 

employing the ladder operator 11¡ . We write 

R11.1-1( I ) .. C· fl- R :a C·(.-!i. + l+ l_..!)R 
lnl dI I 1 nl 

11- 1-1 
Rn•1-1 (r) • C(n,l-l) (-E!. + l+l_l:.) {e-r/ ll rl( ~ A j xi)] 

dI I 1 M 
Performing the indicated operationa in the laat expreaaion 
aboye yielda 
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ll-l-l 
Rn,l-l (r) - C(n, 1-1) e-r1llrl-l ([ ~ (j+21 +1) Aj r 1] 

When thia last equation ia Jljt in too form (30) the following 
relationahipa between too old and the new coefficienta are 
achieved: 

Bo • (21 + 1) Aa 

(K-l, ..... ,n-1-1) (31) 

The ansatz (26) has been thua juatified. For completenesa aake 
i t ia next ahown tbat the radial function Rn1 for too bydrogen 
atom obtained above a.greea wi th the one deduced employing the 
wrual power--aeriea BOlution method. It aufficea to ahow tbat 
the coefficienta of too polynomial in (26) are related by the 
following recuraion formula[21] valid for ~-1-1 

A ( ~) k+1+1-n A 
k+l· n (k+l) (k+21+2) k 

(32) 

Note tbat if inatead of r a new meaaure of length p defined 

by (ao = Bobr radiua) 

2z 
(33) . --

nao 

ia employed, (in atomic unita p = 2r/n), the recuraion 

relation would be 

A k+l+1-n A 
k+l· (k+l) (k+21+2) k 

(34) 

The proaf of Eq. (32) can alBO be performed employing too 
method of induction. When 1 = n - 2, too parameter K can take 
on only two valuea : O and l. From too expreaaion wi thin 
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aquare bracketa in Kquation (28) it ia aeen that Ao =1, 
A1 = -1/[n(n-1)], thua 

Ao ~ . ---:--"'---~ 
n(n-l) 

(35) 

which ia juat Kq. (32) with 1 = n - 2 and k = O. Similarly 
when ]=n-3, the three polynomial coefficienta in the 
expreaaion within aquare bracketa in Kq. (29) al80 aatiafy 
the recuraion formula (32). 

Asauming that all coefficienta Aa in the expreaaion for Rn1 
glven by Kq. (26) aatiafy (32), it ia necea8ary to ahow that 
the coefficienta Bk in' Rn.1-1 aatiafy (32) as welL The 
recuraion formula for the coefficienta Bk in the expreaaion 
for Rn.1-1 reads: 

Froa the middle expreaaion of Kq. (31) 

1 1 Bk +1 .. (k+21+2)Ak +1-(n+l)A1 

The ratio of BUcceeding terma ia thua 

= 

. 1 1 
(k+21+2) Ak +1 - (n+l )Ak 

(k+21+1) Ak - ( ! + ~ ) Ak - 1 

(36) 

(37) 

Subetituting in thia expreaaion the relationshipe between the 
coefficienta Aa given by Kq. (32), Kq. (36) ia obtained. Thia 
concludea the proof. 

4. CONCWDING REHARKS 

Employing the a~le and elegant metbod of factorization two 
ladder operatora were conatructed and uaed for aolving the 
radial equation correaponding to a bydrogen-atolll BYatem. The 
poaaible energy atatea of thia BYatem were determined 
employing an alJIoat wholly algebraic procedure involving the 
use of the ladder operatora. : The operatora introduced in thia 
article can be aafely applied to the case 1 = O, in 
contradiatinction to the ladder operatora advocated in Ref.11. 
~ther, their application to the computation of the explicit 
analytic fora of the eigenaolutiona of tbe radial equation for 
the bydrogen atOll appeara to be JDOre conv~nient. The insight 
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gained by tbe student JI8Y be belpful 7 at an advanced level 7 in 
the treatment of tbe creation and annihilation operatora in 
quantumrfield theory. The above features should render this 
article especially uaeful to undergraduate students of 
ph:ysics. 
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