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ABSTRACT

Finding Conserved Patterns in Biological Sequences, Networks and Genomes.

(December 2007)

Qingwu Yang, B.S., Peking University

Chair of Advisory Committee: Dr. Sing-Hoi Sze

Biological patterns are widely used for identifying biologically interesting regions

within macromolecules, classifying biological objects, predicting functions and study-

ing evolution. Good pattern finding algorithms will help biologists to formulate and

validate hypotheses in an attempt to obtain important insights into the complex

mechanisms of living things.

In this dissertation, we aim to improve and develop algorithms for five biological

pattern finding problems. For the multiple sequence alignment problem, we propose

an alternative formulation in which a final alignment is obtained by preserving pair-

wise alignments specified by edges of a given tree. In contrast with traditional NP-

hard formulations, our preserving alignment formulation can be solved in polynomial

time without using a heuristic, while having very good accuracy.

For the path matching problem, we take advantage of the linearity of the query

path to reduce the problem to finding a longest weighted path in a directed acyclic

graph. We can find k paths with top scores in a network from the query path in

polynomial time. As many biological pathways are not linear, our graph matching

approach allows a non-linear graph query to be given. Our graph matching for-

mulation overcomes the common weakness of previous approaches that there is no

guarantee on the quality of the results.

For the gene cluster finding problem, we investigate a formulation based on con-
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straining the overall size of a cluster and develop statistical significance estimates that

allow direct comparisons of clusters of different sizes. We explore both a restricted

version which requires that orthologous genes are strictly ordered within each cluster,

and the unrestricted problem that allows paralogous genes within a genome and clus-

ters that may not appear in every genome. We solve the first problem in polynomial

time and develop practical exact algorithms for the second one.

In the gene cluster querying problem, based on a querying strategy, we propose

an efficient approach for investigating clustering of related genes across multiple

genomes for a given gene cluster. By analyzing gene clustering in 400 bacterial

genomes, we show that our algorithm is efficient enough to study gene clusters across

hundreds of genomes.
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CHAPTER I

INTRODUCTION

A. Motivation

Biological patterns are widely used for identifying biologically interesting regions

within macromolecules, classifying biological objects, predicting functions and study-

ing evolution. Biological patterns can be, among others, a short chain of similar

amino acid or nucleotide residues appearing in several protein or nucleic acid se-

quences, a metabolic pathway existing in different organisms, a subgraph appearing

in several biological networks, or a cluster of homologous genes occurring in multi-

ple genomes. Occurrences of a pattern in the biological pattern finding problem are

often not identical, but have high similarity that can be defined by various scoring

schemes. Pattern finding is one of the most fundamental problems in computational

biology and algorithms for finding different patterns are among the most frequently

used computational tools. Good pattern finding algorithms will help biologists to

formulate and validate hypotheses in an attempt to obtain important insights into

the complex mechanisms of living things.

The pattern finding problem is usually addressed in two directions: (1) given

several related biological samples, identify possible common patterns; (2) given a

pattern instance, search for all possible occurrences within biological objects. In this

study, the first direction is referred to as the pattern identification problem, while

the latter as the pattern matching problem. Both directions have been extensively

studied. The pattern identification problems include multiple sequence alignment

(Sze, et al., 2006), motif finding (Sze, et al., 2004; Wang, et al., 2006), gene cluster

This dissertation follows the style of Journal of Computational Biology.
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finding (Heber and Stoye, 2001a), and so on. Some of the pattern matching problems

are string pattern matching (Jonassen, et al., 1995), path matching (Kelly, et al.,

2003), and graph matching (Yang and Sze, 2007).

We aim to improve existing algorithms and develop new algorithms for biological

pattern finding problems. Specifically, we will address the following biological pat-

tern finding problems: (i) The multiple sequence alignment problem; (ii) The path

matching problem; (iii) The graph matching problem; (iv) The gene cluster finding

problem; (v) The gene cluster querying problem. Problems (i) and (iv) are pat-

tern identification problems, while (ii), (iii) and (v) are pattern matching problems.

Our basic strategy is to transform biological pattern finding problems into computer

science problems. The problems will then be solved by computational approaches.

B. Outline and Our Contribution

This chapter provides an overview of the dissertation, including the motivation of

this research and the overall idea of our approach and contributions. The rest of

the dissertation covers the above-mentioned five biological pattern finding problems.

Since these problems are different in nature, they are stated specifically in four

chapters and each chapter is self-contained. Path matching and graph matching are

studied in Chapter III. Multiple sequence alignment, gene cluster finding and gene

cluster querying are studied in Chapters II, IV and V, respectively. In each chapter,

one or two pattern finding problems are introduced, pertinent previous research in

the field is surveyed, our motivation and research design is discussed, then results

and findings from applying our new algorithms to real-world biological problems are

reported. Specifically, the rest of the dissertation is organized as follows.

In Chapter II, we propose an alternative formulation of multiple alignment based
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on the idea of finding a multiple alignment of k sequences which preserves k−1 pair-

wise alignments as specified by edges of a given tree. By using pairwise alignments

that incorporate consistency information from other sequences, we show that it is

possible to obtain very good accuracy with the preserving alignment formulation. We

show that a reasonable objective function to use is to find the shortest preserving

alignment, and, by a reduction to a graph-theoretic problem, that the problem of

finding the shortest preserving multiple alignment can be solved in polynomial time.

We demonstrate the success of this approach on three sets of benchmark multiple

alignments by using consistency-based pairwise alignments from the first stage of

two of the best performing progressive alignment algorithms TCoffee and ProbCons,

and replace the second heuristic progressive step of these algorithms by the exact

preserving alignment step. We apply this strategy to TCoffee and show that our

approach outperforms TCoffee on two of the three test sets. The most important

advantage of the preserving alignment formulation is that we are certain that we can

solve the problem in polynomial time without using a heuristic.

In Chapter III, we develop algorithms for the following path matching and graph

matching problems: (i) given a query path p and a graph G, find a path p′ that is

most similar to p in G; (ii) given a query graph G0 and a graph G, find a graph

G0
′ that is most similar to G0 in G. In these problems, p and G0 represent a given

substructure of interest to a biologist, and G represents a large network in which

the biologist desires to find a related substructure. These algorithms allow the study

of common substructures in biological networks in order to understand how these

networks evolve both within and between organisms. We reduce the path matching

problem to finding a longest weighted path in a directed acyclic graph and show that

the problem of finding top k suboptimal paths can be solved in polynomial time. This

is in contrast with most previous approaches that used exponential time algorithms
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to find simple paths which are practical only when the paths are short. We reduce

the graph matching problem to finding highest scoring subgraphs in a graph and give

an exact algorithm to solve the problem when the query graph G0 is of moderate

size. This eliminates the need for less accurate heuristic or randomized algorithms.

We show that our algorithms are able to extract biologically meaningful pathways

from protein interaction networks in the DIP database and metabolic networks in

the KEGG database.

In Chapter IV, we develop algorithms for solving the gene cluster finding prob-

lem. The most popular approaches require only that the distance between adjacent

genes in a cluster to be small, and thus can return extremely large clusters even

when the distance allowed is small. We investigate a different formulation based on

constraining the overall size of a cluster and develop statistical significance estimates

that allow direct comparisons of clusters of different sizes. Since the problem is NP-

hard, we first consider a restricted version which requires that orthologous genes are

strictly ordered within each cluster and show that it can be solved in polynomial

time. We then develop practical exact algorithms for the unrestricted problem that

allow paralogous genes within a genome and clusters that may not appear in every

genome. In order to represent multiple functions of a gene due to different domains,

we consider a general model in which a gene is allowed to appear in more than one

orthologous group. We show that our algorithms can discover biologically relevant

gene clusters in a set of four bacterial genomes Bacillus subtilis, Streptococcus pyo-

genes, Streptococcus pneumoniae and Clostridium acetobutylicum, and a set of four

yeast genomes Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces

mikatae and Saccharomyces bayanus.

The gene cluster querying problem is addressed in Chapter V. We propose an ef-

ficient approach for investigating clustering of related genes across multiple genomes
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given a known gene cluster. Although existing algorithms are available that can

identify gene clusters across two or more genomes, very few algorithms are efficient

enough to study gene clusters across hundreds of genomes. We observe that a query-

ing strategy can be used to analyze gene clusters across a large number of genomes

and develop an efficient algorithm to identify all related clusters on a genome from

a given query cluster. We use this algorithm to study gene clustering in 400 bacte-

rial genomes by starting from a well-characterized list of operons in Escherichia coli

K12 and perform comparative analysis of operon occurrences, gene orientations and

rearrangements both within and across clusters.

Finally, in Chapter VI, we give our conclusion and discuss some future directions.
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CHAPTER II

A POLYNOMIAL TIME SOLVABLE FORMULATION OF MULTIPLE

SEQUENCE ALIGNMENT1

A. Introduction

The goal of the multiple alignment problem is to bring similar regions from differ-

ent sequences as closely together as possible, with applications in diverse types of

biosequence analysis (Taylor 1987; Carillo and Lipman 1988; Thompson et al. 1994;

Gotoh, 1996; Morgenstern et al. 1996; Stoye 1998; Notredame et al. 2000; Lee et al.

2002; Edgar 2004; Van Walle et al. 2004; Do et al. 2005). Since traditional mul-

tiple alignment formulations are NP-hard (Just 2001), it is unreasonable to expect

that one will ever be able to find an efficient approach that always returns an op-

timal alignment. The best known exact algorithm employs dynamic programming

techniques with time complexity O(nk) (Carillo and Lipman 1988), where n is the

maximum sequence length and k is the number of sequences, and thus is useful only

when k is small. Stoye (1998) proposed a divide-and-conquer heuristic to limit the

search space by subdividing the input sequences into shorter segments, but it is not

efficient enough for large-scale applications.

The inherent difficulty of the multiple alignment problem leads naturally to the

development of heuristic approaches. Among the most successful of these are pro-

gressive approaches, which combine the given sequences in some order to obtain a

multiple alignment (Feng and Doolittle 1987; Thompson et al. 1994; Notredame et al.

1Part of the data reported in this chapter is reprinted with permission from “A
Polynomial Time Solvable Formulation of Multiple Sequence Alignment” by Sze,
S.-H., Lu, Y. and Yang, Q., 2006, Journal of Computational Biology, 13, 309-319.
Copyright 2006 by Mary Ann Liebert Inc.
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2000; Edgar, 2004; Do et al. 2005). These heuristics are often coupled with iterative

refinement of the initial multiple alignment to obtain improved performance (Gotoh

1996; Edgar 2004; Do et al. 2005). Alternatively, other non-progressive approaches

assemble a final multiple alignment from short alignments of local similarities (Mor-

genstern et al. 1996; Van Walle et al. 2004). Although in most cases, a scoring

scheme and an accompanying objective function can be defined for these heuristics,

it is often unclear how close the final alignment is to the optimal. Some efforts have

been spent to develop approximation algorithms for multiple alignment with guar-

anteed performance bound, but the theoretical bound is usually too weak to reflect

the actual performance (Gusfield 1993).

We propose an alternative formulation of multiple alignment that is solvable in

polynomial time. Such a formulation is very important as it makes it possible to

know what the alignment means and also ensures that the optimal solution can be

found. Instead of employing objective functions that are very difficult to optimize,

the formulation is based on the idea of finding a multiple alignment of k sequences

which preserves k − 1 pairwise alignments as specified by edges of a given tree.

In particular, one can use the optimum spanning tree that includes the best k − 1

pairwise alignments covering all the sequences. Although it is well known that such a

preserving alignment always exists (Feng and Doolittle 1987; Gusfield 1993; Pevzner

2000), it did not become a mainstream method for multiple alignment since it seems

that a lot of information is lost from ignoring pairwise similarities outside the tree.

The preserving alignment approach can be seen as a restricted version of a

broader class of consistency-based approaches, which aim to maximize the consis-

tency between the resulting multiple alignment and a given set of pairwise align-

ments on aligned residue pairs (Kececioglu 1993; Notredame et al. 1998). A distinct

advantage of these consistency-based approaches is that once the pairwise alignments
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are fixed, the multiple alignment follows logically without the need to define a mul-

tiple alignment score (Notredame et al. 1998). Since the pairwise alignments are not

restricted to be on a tree in this more general formulation, they can be conflicting

and thus the objective function is likely to be more accurate, but it is also likely to

be intractable to optimize. In another direction, by incorporating consistency infor-

mation from other sequences when computing individual pairwise alignments, these

consistency-based pairwise alignments have been successfully used in the pairwise

stage of progressive approaches to give some of the best performing multiple align-

ment approaches to date (Notredame et al. 2000; Edgar 2004; Do et al. 2005). By

employing these consistency-based pairwise alignments, we will show that it is possi-

ble to obtain very good accuracy even with the more restrictive preserving alignment

formulation. Other studies that made use of the notion of consistency include Gotoh

(1990) and Vingron and Argo (1991).

A complication with the preserving alignment formulation is that there may be

many multiple alignments which preserve the given k − 1 pairwise alignments and

previous studies did not suggest how to choose among them. Ideally, one would like

to maximize the similarity level over all columns. However, many of the objective

functions that attempt to exploit these similarities are likely to be intractable to

optimize. One natural way that allows us to develop a tractable approach is to find

the shortest preserving multiple alignment with the smallest number of columns,

corresponding to adding as few gaps as possible while preserving the pairwise align-

ments along the tree edges. Without being able to control the similarity level in each

individual column, this formulation discourages gaps (similar to other traditional

formulations) while making sure that the resulting multiple alignment resembles the

given pairwise alignments. One important advantage of the preserving alignment

formulation is that once the tree and the pairwise alignments are fixed, no additional
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parameters or a scoring scheme for multiple alignment are needed. This makes it

possible to use any tree or pairwise alignments directly from other approaches, in-

cluding ones that have made use of structural information. Similar ideas of utilizing

structural pairwise alignments have been proposed by a few studies (O’Sullivan et al.

2004; Van Walle et al. 2004).

We will show, by a reduction to a graph-theoretic problem, that the problem of

finding the shortest preserving multiple alignment can be solved in polynomial time,

and, by using consistency-based pairwise alignments, that the accuracy of this exact

approach is comparable to the best heuristic multiple alignment approaches on three

sets of benchmark multiple alignments from Thompson et al. (1999), Edgar (2004)

and Van Walle et al. (2004), thus justifying the use of the proposed polynomial time

formulation over other NP-hard formulations. In particular, we reduce the multiple

alignment problem to finding a topological partial ordering in a directed acyclic graph

where each vertex represents a partially aligned column and unordered vertices are

allowed to share the same label. The label assigned to each vertex from the ordering

specifies its position in the multiple alignment and the ordering itself represents a

preserving multiple alignment.

B. Problem Formulation

Let S = {s1, . . . , sk} be a given set of sequences. Assume that we are given a tree

T with k vertices where each vertex of T is labeled by a distinct sequence and each

edge (i, j) of T represents a pair of sequences si and sj, and we are also given a

pairwise alignment Pij between sequences si and sj for each edge (i, j) of T . A

multiple alignment M of S is said to preserve all the k − 1 pairwise alignments on

T if for each edge (i, j) of T , the induced pairwise alignment on sequences si and
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sj is the same as Pij when the columns containing only gap characters are removed.

Since the tree T specifies pairwise alignments that can be simultaneously preserved,

it is obvious that such a preserving multiple alignment M always exists (Feng and

Doolittle 1987; Gusfield 1993; Pevzner 2000). Likewise, a multiple alignment M of

S is said to preserve all matches and mismatches (or just the matches) in the k − 1

pairwise alignments on T if for each edge (i, j) of T , each column containing a match

or a mismatch (or just a match) has to stay in the same column in M . We formulate

the multiple alignment problem as follows: given a tree T and a pairwise alignment

Pij for each edge (i, j) of T , find a preserving multiple alignment M with the smallest

number of columns.

The simplest way to obtain pairwise alignments is by applying standard tech-

niques, including global (Needleman and Wunsch 1970) and local (Smith and Wa-

terman 1981) approaches, or a combination of these approaches. However, we found

that it is often better to use other kinds of pairwise alignments such as those that have

incorporated consistency information from other sequences. These consistency-based

pairwise alignments can be obtained from the pairwise stage of a few progressive ap-

proaches (Notredame et al. 2000; Do et al. 2005). From these pairwise alignments,

one reasonable tree T to use is an optimum spanning tree on the complete graph Ck

where each vertex is labeled by a distinct sequence and each edge (i, j) is labeled

by the score of Pij, which can either be the pairwise alignment score of Pij or other

scores given by the approach generating the pairwise alignments. To compute the

optimum spanning tree from Ck, Prim’s algorithm can be used which has time com-

plexity O(k2 log k) (Cormen et al. 2001). Alternatively, one can use a star tree with

a central vertex and k − 1 leaves (Gusfield 1993; Pevzner 2000). Although compu-

tational results show that using a star tree works well when all the given sequences

are closely related, it does not give very good performance when none of the given
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sequences can act as the center, such as when there is more than one cluster of closely

related sequences. In contrast, by using a general tree, it is possible to utilize the

best non-conflicting pairwise alignments.

Note that the tree used here represents each sequence as a vertex, which is

different from the phylogenetic tree (Morrison 1996) or the guide tree (Thompson

et al. 1999) used in traditional progressive approaches in which sequences are repre-

sented only at the leaves. As a result, only alignments between sequences are needed

in the preserving alignment formulation, which is similar to the comparisons made

between sequences during the greedy extension step of the multiple alignment al-

gorithm of Taylor (1987) and Taylor (1988), while progressive approaches need to

consider alignments between alignments (Altschul and Lipman 1989). However, it

is possible to make use of a phylogenetic tree when one is given. Instead of using

pairwise alignment scores, we can use the distances between sequences si and sj on

the phylogenetic tree to compute an optimum spanning tree. In this case, we only

need to compute k − 1 pairwise alignments along the spanning tree.

C. Exact Algorithm

For simplicity of analysis, assume that each of the input sequences is of the same

length n. Given a tree T and a pairwise alignment Pij for each edge (i, j) of T ,

we give an algorithm to solve the shortest preserving multiple alignment problem in

linear time by two successive graph reductions. Gusfield (1993) gave an algorithm

to solve the problem in the important special case when the given tree is a star. We

first consider preserving only the matches and mismatches instead of entire pairwise

alignments. We will show that this strategy also preserves the indel columns under

normal situations. Let sij be the letter at the jth position of sequence si. The first
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reduction constructs an undirected graph G = (V, E) as follows (see Figure 1(a)–(d)):

Let V = {vij}, where vij represents the jth position of sequence si, and

E = {{vip, vjq} | (i, j) ∈ T and (sip, sjq) is a match or a mismatch column

in Pij}.

Intuitively, E contains all the match and mismatch columns within the pairwise

alignments along the edges of T , and thus specifies exactly all the preservation con-

straints. The observation below follows directly from T being a tree and Pij being

pairwise alignments.

Proposition 1. Each connected component C in G is a tree and contains at most

one vertex from each sequence si.

To obtain a preserving multiple alignment, letters within each connected com-

ponent in G must be put into the same column. On the other hand, we are free

to put two different connected components in the same column as long as they do

not contain vertices from the same sequence. Also, when assigning components to

different columns to obtain a multiple alignment, the order of the letters within each

sequence must be maintained. To represent these constraints precisely, the second

reduction constructs a directed graph G′ = (V ′, E ′) from G as follows (see Figure 1(e)

for a transitively reduced version of G′):

Let V ′ be the set of all connected components C in G and let s(C) be the

set of sequences that the vertices in C reside. Connect a component C1

to another component C2 by a directed edge in E ′ if s(C1) ∩ s(C2) 6= φ

and for every sequence si ∈ s(C1)∩s(C2) shared by C1 and C2, the vertex

vip in C1 appears before the vertex viq in C2 (i.e., p < q). (1)

Note that two connected components that contain vertices from the same se-

quence are strictly ordered and thus will be connected by an edge (in one of the
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Fig. 1. Illustration of the exact algorithm. (a) Set of sequences S. (b) Tree T . (c)

Pairwise alignments P12 and P13. (d) Undirected graph G constructed from

S, T , P12 and P13. (e) Directed graph G′ (transitively reduced) constructed

from G by taking connected components in G as vertices. Labels of vertices

in G′ are assigned by the topological partial ordering algorithm. (f) Shortest

preserving alignment by interpreting labels as columns.
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directions), since if there are two vertices vip and vjq in C1 and two vertices vir

and vjs in C2 with p < r, then we must have q < s. The reasoning is as fol-

lows. Let vip = u1, . . . , ut = vjq be the unique path between vip and vjq in C1 and

vir = w1, . . . , wt = vjs be the unique path between vir and vjs in C2. For 1 ≤ l < t,

since ul and wl are on the same sequence, the adjacent pairs (ul, ul+1) and (wl, wl+1)

represent two match or mismatch columns within one single pairwise alignment.

The fact that p < r and q ≥ s contradicts with these being columns in the pairwise

alignments. A more elaborate argument gives the following.

Proposition 2. G′ is a directed acyclic graph.

Proof Let C1, . . . , Ct be a cycle in G′. Then there exist sequences si1, . . . , sit such

that vi1p1
is in C1 and vi1q1

is in C2 with p1 < q1, vi2p2
is in C2 and vi2q2

is in C3 with

p2 < q2, and so on, until finally, vitpt
is in Ct and vitqt

is in C1 with pt < qt. Between

these vertices, there is a unique path vi1q1
, . . . , vi2p2

on C2, vi2q2
, . . . , vi3p3

on C3, and

so on, until finally, vitqt
, . . . , vi1p1

on C1. Thus the cycle can be represented by the

path vi1p1

j
→ vi1q1

w
→ vi2p2

j
→ vi2q2

w
→ · · ·

w
→ vitpt

j
→ vitqt

w
→ vi1p1

, where
j
→ denotes a

jump to a later connected component on the same sequence, and
w
→ denotes walking

along the tree edges in T within a connected component which visits each sequence

at most once. On this path, whenever a sequence s is visited again, the position

of visit on s must increase, since a jump increases the position of visit on the same

sequence from pl to ql, at least one jump has to occur before s is visited again, and

whenever a walk moves from s to another sequence t along a tree edge in T , the only

way to return to s is through t along the same edge in T . Walking along T this way

with no increase in the position of visit on s when s is revisited contradicts the given

pairwise alignments. In particular, this is true for sequence si1 , a contradiction to

the above cycle which keeps the position of visit on si1 at p1. �
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Since the primary purpose of G′ is to specify ordering constraints, a transitively

reduced version of G′ suffices (see Figure 1(e)). Instead of performing the transitive

reduction step, such a graph G′ can be obtained directly from G by requiring further

that there exists a sequence si such that p + 1 = q in (1). This reduces the number

of edges in G′ substantially and we will be using this definition in what follows.

The above results suggest that a multiple alignment can be obtained by finding a

topological partial ordering in G′.

Definition 3. A topological partial ordering of a directed acyclic graph G′ = (V ′, E ′)

is an assignment of an integer label l(v) to each vertex v ∈ V ′ such that for each edge

(u, v) ∈ E ′, l(u) < l(v).

Since it is possible that two vertices are assigned the same label, the result is not

necessarily a total order (a total order corresponds to a topological sorting (Knuth

1997)). Without loss of generality, assume that the labels are consecutive integers

from 1 to m. From a given graph G′, there are many ways to realize such an ordering.

For each fixed ordering, a multiple alignment can be obtained by putting each letter

within a connected component C in G (C is a vertex in G′) in column l(C) and filling

other unassigned spaces by gap characters (see Figure 1(f)). The set of all possible

ways to do this represents the solution space of all preserving alignments.

Proposition 4. Each topological partial ordering of G′ specifies a multiple alignment

preserving all matches and mismatches in the k − 1 pairwise alignments on T .

By making additional assumptions, it is possible to ensure that the resulting

multiple alignment preserves the given pairwise alignments entirely, which includes

the indel columns in addition to the match and the mismatch columns, without
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requiring an algorithm change. The observation below follows directly from the con-

straints imposed on the placement of gap characters between two match or mismatch

columns that must be preserved and are separated only by indel columns.

Proposition 5. If for each pairwise alignment Pij on T , there do not exist two

adjacent indel columns (without match or mismatch columns in between) such that

the gap character is on sequence si in column l and on sequence sj in column l−1 or

l+1, then each topological partial ordering G′ specifies a multiple alignment preserving

the k − 1 pairwise alignments on T .

It is very rare to be given pairwise alignments that violate the condition given in

Proposition 5, and thus in most cases the resulting multiple alignment also preserves

the given pairwise alignments entirely. In the other direction, one can relax the

constraints by requiring only the match columns (or the columns with a positive score

with respect to a given substitution matrix) to be preserved, which can be achieved

by allowing only edges representing these columns to be added to G. Computational

results show that simply finding the shortest preserving multiple alignment in this

case does not give very good performance since the flexibility in the placements of

the resulting smaller connected components in G becomes excessive. The following

observation completes the reduction.

Proposition 6. A topological partial ordering of G′ that uses the smallest number

of labels specifies a shortest preserving multiple alignment.

Since edges in G correspond to match or mismatch columns in the given k − 1

pairwise alignments along the given tree T and each pairwise alignment is of length

O(n), there are O(kn) vertices and edges in G. Thus there are O(kn) connected

components in G which make the vertices in G′. These connected components can

be obtained in O(kn) time by a depth-first search on G. In the simplest case,
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each connected component in G is of size one (which represents one position on a

single sequence), and edges in G′ are constructed between components that represent

adjacent positions within the same sequence, resulting in a total of O(kn) edges in G′.

The graph G′ in any other case with larger connected components can be obtained

from this simplest case by merging the corresponding vertices and collapsing each

resulting multi-edge into a single edge, and thus the number of edges in G′ is O(kn)

in all cases. To find a topological partial ordering that uses the smallest number of

labels in G′, an algorithm very similar to the standard topological sorting algorithm

(Knuth 1997) can be used: initially, all vertices are unmarked. Repeatedly find

an unmarked vertex v with all its incoming vertices marked. Set the label of v to

be one plus the maximum label among all its incoming vertices and mark v (see

Figure 1(f)). If a count is kept in each vertex representing the number of remaining

unmarked incoming vertices, the algorithm can be implemented in time linear in the

number of edges in G′. Thus, with appropriate data structures, the overall time

complexity of the entire procedure is O(kn), which is linear in the input size. If it is

not important to obtain a totally ordered multiple alignment, it is possible to return

the graph G′ directly as a partially ordered multiple alignment, which is similar in

concept but different in structure to the notion of partial order multiple alignment

proposed in Lee et al. (2002). In this case, there is no need to define any objective

function.

D. Performance

We evaluate the accuracy of the preserving alignment algorithm (PSAlign) on three

sets of benchmark multiple alignments: BAliBASE from Thompson et al. (1999),

PREFAB from Edgar (2004), and SABmark from Van Walle et al. (2004). We com-
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pare our performance to TCoffee (Notredame et al. 2000) and ProbCons (Do et al.

2005), which are currently considered to be among the best multiple alignment algo-

rithms. To make fair comparisons, we compare our performance (PSAlign[TCoffee])

to TCoffee when pairwise alignments from TCoffee are used and we compare our per-

formance (PSAlign[ProbCons]) to ProbCons when pairwise alignments from Prob-

Cons are used. For TCoffee, we use pairwise alignments computed from the ex-

tended library that have incorporated consistency information from other sequences

(Notredame et al. 2000). For ProbCons, we use pairwise alignments computed after

consistency transformation (Do et al. 2005). All these pairwise alignments incor-

porate consistency information from other sequences and it has been shown that

this significantly improves the quality of the pairwise alignments with respect to

the overall consistency. We then compute an optimum spanning tree from these

consistency-based pairwise alignments using pairwise scores given by the two algo-

rithms (normalized by the length of each pairwise alignment) and apply the preserv-

ing alignment step. Since our main goal is to show that the heuristic progressive step

of these approaches can be replaced by the exact preserving alignment step, we com-

pare to a variant of ProbCons with no iterative refinements. We also compare our

performance (without performing further refinements) to ProbCons with iterative

refinements.

Following Thompson et al. (1999), two score measures are used to evaluate the

accuracy of each algorithm in finding the core blocks in BAliBASE (which are anno-

tated regions that can be reliably aligned): the sum-of-pairs score (SPS) measures

how well an algorithm can align pairs of residues within the same column correctly,

while the column score (CS) measures how well an algorithm can align entire columns

correctly. For PREFAB, we follow Edgar (2004) and use the Q score, which has the

same meaning as SPS used in BAliBASE. For SABmark, we define the Q score for
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each test case as the average Q score over all pairs of reference sequences. For both

PREFAB and SABmark, the reference alignments are based on pairwise compar-

isons and thus the CS score is not applicable. For each test set, we compare average

accuracy over meaningful subsets and use the Wilcoxon matched-pairs signed-ranks

test (Wilcoxon 1947) to check if there are significant performance differences with

p = 0.05 as cutoff. Note that in the preserving alignment computation, the shortest

solution is not necessarily unique and we simply report an arbitrary one.

Tables I, II and III show performance comparisons of the various algorithms

on BAliBASE, PREFAB and SABmark respectively. A general trend was that

ProbCons tends to perform better than TCoffee, whether PSAlign is used or not.

When we consider the ability of PSAlign[TCoffee] to replace TCoffee and the ability

of PSAlign[ProbCons] to replace ProbCons, PSAlign was a much better replace-

ment when used in conjunction with TCoffee than with ProbCons and the only case

where PSAlign[TCoffee] is worse than TCoffee was in reference 4 of BAliBASE. Also,

PSAlign was a better replacement when used on SABmark than on BAliBASE, but

PSAlign[ProbCons] was not an adequate replacement when used on PREFAB.

On BAliBASE, when compared to TCoffee and ProbCons(ir = 0) that do not

perform iterative refinements, PSAlign had better accuracy on references 1V1 and

5, but this was offset by worse accuracy on references 3 and 4. Although there

were no noticeable differences in the overall accuracy, the Wilcoxon matched-pairs

test revealed that ProbCons(ir = 0) performed better than PSAlign[ProbCons] in the

SPS score with p = 0.02. The differences in all the other cases on the overall accuracy

were insignificant with TCoffee or in the CS score. We did not apply the Wilcoxon

test to any of the subsets of BAliBASE due to their small sizes. When compared

to ProbCons(ir = 100) that performs iterative refinements, PSAlign[ProbCons] still

maintained better accuracy on reference 5, but it no longer had better accuracy on
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Table I. Average SPS and CS scores (in %) on BAliBASE 2.01. Reference 1 is further

subdivided into three subsets: V1 (< 25% identity), V2 (20%–40% iden-

tity) and V3 (> 35% identity). Comparisons are made between TCoffee

1.37 and PSAlign utilizing TCoffee pairwise alignments (PSAlign[TCoffee])

and between ProbCons 1.10 and PSAlign utilizing ProbCons pairwise

alignments (PSAlign[ProbCons]). No iterative refinements are performed

for ProbCons(ir = 0). Default parameters are used otherwise, with

ProbCons(ir = 100) performing 100 rounds of iterative refinements.

SPS 1V1 1V2 1V3 1 (Overall) 2 3 4 5 Overall

TCoffee 64.1 95.2 98.5 87.6 93.5 78.6 93.9 96.0 89.1

PSAlign[TCoffee] 67.3 95.1 98.4 88.4 93.6 78.5 89.1 97.3 89.2

ProbCons(ir = 0) 69.1 96.6 98.5 89.5 94.2 84.0 90.8 97.4 90.6

ProbCons(ir = 100) 74.5 96.8 98.5 91.1 94.2 84.0 93.7 97.4 91.8

PSAlign[ProbCons] 71.5 96.6 98.4 90.1 94.0 80.9 90.1 98.0 90.7

CS 1V1 1V2 1V3 1 (Overall) 2 3 4 5 Overall

TCoffee 41.5 90.9 96.8 79.1 58.4 50.9 80.4 90.3 74.4

PSAlign[TCoffee] 47.3 90.6 96.5 80.5 58.3 54.8 68.4 90.0 74.5

ProbCons(ir = 0) 49.6 93.4 96.9 82.3 61.6 63.5 72.1 89.3 77.1

ProbCons(ir = 100) 59.6 94.0 96.9 85.3 61.6 63.5 81.1 89.3 79.6

PSAlign[ProbCons] 55.8 93.5 96.6 84.0 61.7 52.2 69.7 93.6 77.2
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Table II. Average Q scores (in %) on PREFAB 4.0. Each subset includes all structure

pairs with identity within the specified range.

0%–20% 20%–40% 40%–70% 70%–100% Overall

TCoffee 49.2 82.9 93.8 95.1 66.5

PSAlign[TCoffee] 51.0 84.6 95.2 97.9 68.3

ProbCons(ir = 0) 55.6 87.2 95.4 97.3 71.7

ProbCons(ir = 100) 55.6 87.2 95.4 97.3 71.7

PSAlign[ProbCons] 52.1 85.2 93.0 94.2 68.8

Table III. Average Q scores (in %) on SABmark 1.65. The FP variant of the two

subsets includes false positive sequences.

Superfamily Superfamily-FP Twilight Twilight-FP Overall

TCoffee 52.9 45.6 23.7 17.0 39.8

PSAlign[TCoffee] 54.8 54.1 25.8 25.4 45.0

ProbCons(ir = 0) 56.7 52.5 28.6 23.0 45.2

ProbCons(ir = 100) 57.1 53.2 29.3 24.0 45.8

PSAlign[ProbCons] 56.1 53.6 28.1 25.1 45.6
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reference 1V1. The Wilcoxon test revealed that ProbCons(ir = 100) had significantly

better overall accuracy than PSAlign[ProbCons] in both the SPS and the CS scores

with p < 0.001, which was mainly due to large accuracy improvements on references

1V1 and 4 from iterative refinements (no noticeable improvements were observed on

the other references).

On PREFAB, PSAlign[TCoffee] had better accuracy than TCoffee in all five

categories and these improvements were significant with p < 0.001 for the subsets

with 0% to 20% identity, with 20% to 40% identity, with 70% to 100% identity, and for

the entire set. On the other hand, ProbCons(ir = 0) performed significantly better

than PSAlign[ProbCons] in all five categories with p < 0.001, while no noticeable

improvements were observed with ProbCons(ir = 100) over ProbCons(ir = 0).

On SABmark, PSAlign[TCoffee] showed highly significant improvements over

TCoffee with p < 0.001 in all five categories. However, on the Superfamily and Twi-

light subsets, ProbCons(ir = 0) performed significantly better than PSAlign[ProbCons]

(with p < 0.001 for the Superfamily subset and p = 0.03 for the Twilight subset).

The situation was reversed on the Superfamily-FP and Twilight-FP subsets when

PSAlign[ProbCons] performed significantly better than ProbCons(ir = 0) (with

p = 0.01 for the Superfamily-FP subset and p < 0.001 for the Twilight-FP subset),

while the difference between ProbCons(ir = 0) and PSAlign[ProbCons] on the overall

accuracy was insignificant. Although ProbCons(ir = 100) further increased the per-

formance differences from PSAlign[ProbCons] on the Superfamily and Twilight sub-

sets to p < 0.001 in both cases, PSAlign[ProbCons] was able to maintain significantly

better accuracy than ProbCons(ir = 100) on the Twilight-FP subset with p < 0.001

while having insignificant difference in accuracy on the Superfamily-FP subset. Al-

though ProbCons(ir = 100) performed significantly better than PSAlign[ProbCons]

on the overall accuracy with p = 0.003, one important advantage of PSAlign is that
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it had a much smaller accuracy decrease when either the Superfamily or Twilight

subset is replaced by its FP variant with false positive sequences.

Overall, PSAlign[TCoffee] performed at least as well as TCoffee on BAliBASE

and was much better than TCoffee on PREFAB and SABmark. When compared to

ProbCons(ir = 0), PSAlign[ProbCons] achieved similar or better accuracy on BAl-

iBASE and SABmark, but did not perform as well on PREFAB. When compared

to ProbCons(ir = 100), PSAlign[ProbCons] achieved similar or better accuracy on

many sub-categories even without further refinements, but had worse overall accu-

racy. These results did not lead to a conclusive statement that shows that using

PSAlign has a definite advantage or disadvantage, and thus it is hard to predict

whether there will be significant accuracy differences if we replace the heuristic pro-

gressive step of some given multiple alignment algorithm by the exact preserving

alignment step. Nevertheless, the most important advantage of the preserving align-

ment formulation is that we are certain that we can solve the problem in polynomial

time without using a heuristic. Since the time complexity is dominated by the com-

putations of the pairwise alignments, the preserving alignment step does not add

much to the running time. What we actually observe was at most a two times slow-

down when PSAlign was used to replace TCoffee or ProbCons, due to the need to

compute all consistency-based pairwise alignments to obtain the optimum spanning

tree.

E. Discussion

The proposed multiple alignment formulation divides the multiple alignment problem

into two subproblems. The first subproblem requires the computation of pairwise

alignments and a tree, which can be defined systematically so that optimal solutions
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can be computed in polynomial time. For example, one can use a technique similar

to that used in Notredame et al. (2000) to compute consistency-based pairwise align-

ments based on comparisons of three sequences so that each of them can be computed

in O(kn2) time. It is especially important to obtain high quality pairwise alignments

in this stage, since we found that good accuracy cannot be obtained when simple

non-consistency-based pairwise alignments are used. This was confirmed by a much

bigger decrease in accuracy and a much worse performance of PSAlign[ProbCons] in

most cases as compared to ProbCons(ir = 0) when the consistency transformation

in ProbCons was disabled (Table IV). The second stage computes a shortest pre-

serving multiple alignment from this information, which can be used to replace the

progressive step of any approach in which unified pairwise alignments are available

before the progressive step, or as a second step to construct multiple alignments for

algorithms that only produce a set of pairwise alignments from the given sequences

(Heger et al. 2003; Van Walle et al. 2004), without requiring additional parameters.

The graph-theoretic technique employed allows further extensions to consider

more general models of pairwise similarity. In its full generality, all we need from

each pairwise comparison is an ordered list of non-intersecting connections (repre-

senting matches or mismatches) that reflect significant pairwise similarities. With

these inputs, the preserving alignment approach naturally returns either local or in-

complete multiple alignments. To further improve accuracy, it is possible to consider

formulations other than finding the shortest solution, although many of these objec-

tive functions may be intractable to optimize. One possible strategy is to employ

various heuristics to find a preserving alignment from G′ that tries to assign related

connected components in G to the same column as much as possible. Other direc-

tions include improving the quality of the pairwise alignments and devising strategies

to perform iterative refinements (Gotoh 1996; Edgar 2004; Do et al. 2005) after the
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Table IV. Performance of ProbCons(ir = 0) and PSAlign[ProbCons] when consis-

tency transformation in ProbCons is disabled. Both algorithms use ordi-

nary pairwise alignments instead of consistency-based pairwise alignments.

(a) Average SPS and CS scores (in %) on BAliBASE 2.01. (b) Average Q

scores (in %) on PREFAB 4.0. (c) Average Q scores (in %) on SABmark

1.65.

(a) BAliBASE

SPS 1V1 1V2 1V3 1 (Overall) 2 3 4 5 Overall

ProbCons(ir = 0) 63.2 95.5 98.3 87.4 93.3 82.4 88.6 94.7 88.7

PSAlign[ProbCons] 65.2 93.3 97.1 86.7 90.8 76.6 85.2 93.0 86.9

CS 1V1 1V2 1V3 1 (Overall) 2 3 4 5 Overall

ProbCons(ir = 0) 42.7 91.1 96.5 79.4 56.4 50.9 64.7 81.2 72.1

PSAlign[ProbCons] 44.6 86.7 94.1 77.4 47.7 44.5 57.1 80.6 68.3

(b) PREFAB

0%–20% 20%–40% 40%–70% 70%–100% Overall

ProbCons(ir = 0) 52.6 85.1 95.5 97.6 69.4

PSAlign[ProbCons] 41.5 80.0 92.2 96.0 61.4

(c) SABmark

Superfamily Superfamily-FP Twilight Twilight-FP Overall

ProbCons(ir = 0) 54.8 50.5 26.3 20.3 43.1

PSAlign[ProbCons] 51.5 50.8 24.3 23.0 42.2
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preserving multiple alignment is obtained.
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CHAPTER III

PATH MATCHING AND GRAPH MATCHING IN BIOLOGICAL NETWORKS1

A. Introduction

As recent advances in experimental design produce a large amount of data to describe

biological interactions at a genome scale, these data are increasingly being deposited

into biological databases. These interaction networks include, among others, protein

interaction networks (Kelley et al. 2003; Koyutürk et al. 2006; Scott et al. 2006),

metabolic networks (Dandekar et al. 1999; Ogata et al. 2000; Tohsato et al. 2000;

Koyutürk et al. 2004), gene regulatory networks (Akutsu et al. 1998), and signal

transduction networks (Steffen et al. 2002). Since there is strong evidence that

conserved interaction pathways exist across organisms (Kelley et al. 2003), efficient

algorithms to analyze common pathways in these networks will contribute a lot

to the understanding of these networks. The most common representation of these

networks is a graph in which vertices represent biological entities and edges represent

interactions between them. With this representation, one can look for the presence

of special substructures in these graphs to answer various questions. By studying

paths in these graphs, one can investigate the properties of pathways and their

relationships, and by finding similar subgraphs in these graphs, one can search for

network motifs and study common substructures embedded in these networks.

We study the following path matching and graph matching problems: (i) given

a query path p and a graph G, find a path p′ that is most similar to p in G; (ii)

1Part of the data reported in this chapter is reprinted with permission from “Path
matching and graph matching in biological networks” by Yang, Q. and Sze, S.-H.,
2007, Journal of Computational Biology, 14, 56-67. Copyright 2007 by Mary Ann
Liebert Inc.
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given a query graph G0 and a graph G, find a graph G0
′ that is most similar to G0

in G. In these problems, p and G0 specify a given biological substructure, and G

represents a large network in which each vertex is labeled by a gene, a protein, an

enzyme or a chemical compound. While path matching allows the study of individual

linear paths or chains, graph matching allows the study of entire non-linear pathways

or functional modules. Efficient algorithms for these problems will allow biologists

to study evolutionary mechanisms such as pathway conservation, duplication and

specialization. To achieve this, one important strategy is to start from a given

pathway of interest and find related pathways within the same organism (Kelley

et al. 2003). This is especially useful for studying organisms such as yeast that are

believed to have undergone whole-genome duplications (Wolfe and Shields 1997).

Another strategy is to start from a given pathway of interest in a well characterized

organism such as yeast, and find related pathways in less studied organisms such as

C. elegans or D. melanogaster (Kelley et al. 2003). By comparing the similarities

and differences in the returned pathways, it is possible to evaluate various hypotheses

concerning evolution. It is also possible to predict unknown functions or interactions

from the results (Sharan et al. 2005).

Instead of solving the path matching problem directly, most previous approaches

addressed the more general problem of finding common paths from two or more

biological networks without a given query. To solve the problem of finding similar

paths in two graphs, Kelley et al. (2003) constructed a combined graph from the

two given graphs so that each vertex in the combined graph represents a pair of

related vertices, one from each of the two given graphs, and each pathway alignment

is represented as a simple path in the combined graph. They proposed a randomized

algorithm to find high scoring simple paths by imposing acyclic edge orientations.

Their formulation includes the path matching problem as a special case when one of
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the two graphs is a linear path. However, due to the exponential time complexity,

their technique is practical only when the paths are short. Scott et al. (2006) proposed

an improved randomized algorithm based on the color coding technique (Alon et al.

1995) and was able to find simple paths of length around 10, but its exponential time

complexity makes it impractical to identify even slightly longer paths. While such

general approaches allow the simultaneous study of many conserved pathways on a

genome scale, it is both more sensitive and more efficient to make use of the given

query to guide the search when it is available.

We observe that the difficulty stems from the presence of cycles in the given

graphs. To avoid substantial repetitions of vertices in a path, the problem of finding

similar paths in two graphs was reduced to the NP-hard problem of finding high

scoring simple paths of a given length l in a combined graph (Kelley et al. 2003). It

was necessary to require that paths be simple in the combined graph since highly

repeating non-simple paths that do not have biological meaning often concentrate

around cycles of large weight and have much better scores than other simple paths.

Note that the simple path requirement was imposed only on the combined graph

in Kelley et al. (2003) and it is still possible to have repeated vertices in some of

the returned paths within each of the two given graphs, but this does not create

problems since such repeated occurrences should be infrequent.

Since one of the given graphs is a path in the path matching problem, we take

advantage of its linearity to reduce the problem to finding a longest weighted path

in a directed acyclic graph, which is a much easier problem since it also corresponds

to a shortest path problem. This is possible since for each vertex v in the query path

p, we can group together all vertices in G that are related to v and choose at most

one vertex from each group to form a path. Since it is well known that the problem

of finding k shortest paths in a directed graph can be solved in polynomial time (Fox
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1975; Eppstein 1998), the problem of finding top k suboptimal paths in G given a

query path p can be solved in polynomial time.

Although it is possible that a vertex in G may appear multiple times in different

groups, these repeated occurrences should not be extensive unless the vertices in

p are all very similar. Such limited repeated occurrences are biologically useful in

identifying multiple roles of a vertex. There are many known examples of such multi-

functional genes or proteins that have multiple roles within a pathway. Figure 2(a)

shows part of the citric acid cycle in which two different enzymes each participate in

two consecutive steps of the pathway. Figure 2(b) shows a more complicated example

in which two distinct regions of the same protein participate in two non-consecutive

steps of the pathway. In general, such multi-domain enzymes that have more than

one functionality within a pathway have been shown to be quite common (Teichmann

et al. 2001). By allowing repeating occurrences in the returned paths, our algorithm

allows automatic discovery of such complex mechanisms. This is in contrast with

previous algorithms in Kelley et al. (2003) and Scott et al. (2006) in which these

repeating occurrences were not considered explicitly due to the restriction of finding

simple paths in the combined graph. We will show that this flexibility does not lead

to excessive repeats in the returned paths and such repeats occur naturally in the

returned paths when multi-functionality is possible.

Although the path matching problem adequately models linear interaction chains,

many biological pathways are not linear and may consist of multiple interacting com-

ponents. We model this complexity in the graph matching problem by allowing a

non-linear graph query to be given. However, the problem becomes much more

difficult to solve and no efficient exact algorithms have been developed before. To

solve the problem of finding similar subgraphs in two graphs, Koyutürk et al. (2006)

generalized the notion of alignment to include non-linear structures and proposed
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Citrate

cis-Aconitate

aconitase

Isocitrate

aconitase

Oxalosuccinate

isocitrate
dehydrogenase

alpha-Ketoglutarate

isocitrate
dehydrogenase

(a)

Aspartate

beta-Aspartyl-phosphate

aspartate
kinase

beta-Aspartate-semialdehyde

beta-aspartate
semialdehyde
dehydrogenase

Homoserine

homoserine
dehydrogenase

(b)

Fig. 2. Examples of pathways in which the same enzyme has multiple roles. (a) Part of

the citric acid cycle in which each of the two enzymes aconitase and isocitrate

dehydrogenase has two different functions. (b) Pathway converting aspartate

to homoserine in plants and bacteria. Aspartate kinase and homoserine dehy-

drogenase are the same protein within the pathway but are named differently

to reflect that the functions are carried out by two distinct regions of the same

polypeptide chain (Paris et al. 2003).
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a greedy heuristic to find high scoring network alignments. Sharan et al. (2005)

developed heuristic algorithms for finding network alignments in multiple species.

Scott et al. (2006) used the color coding technique (Alon et al. 1995) to develop

randomized algorithms for finding specialized common substructures such as trees

and series-parallel graphs. One common weakness of these approaches is that there

is no absolute guarantee on the quality of the results since some of the highest scor-

ing structures may be missed. In our graph matching formulation, since the query

graph G0 usually corresponds to a small functional module, we can similarly take

advantage of groupings of related vertices in G for each vertex in G0 to develop exact

algorithms for the graph matching problem.

Software programs implementing these techniques, i.e. PathMatch and Graph-

Match, are freely available online at http://faculty.cs.tamu.edu/shsze/pathmatch

and http://faculty.cs.tamu.edu/shsze/graphmatch, respectively.

B. Polynomial Time Algorithm for Path Matching

We formulate the path matching problem as follows: given a query path p =

p1p2 · · · pn, a graph G = (V, E), and for each pi, a set of correspondences Vi =

{vi1, vi2, . . . , vi,ti} defining vertices in V that can be associated with pi, find a path p′

in G that aligns best to p (see Figure 3). We define a path alignment between p and p′

in the usual way by treating each aligned column that contains an associated vertex

pair as a match, each aligned column that contains a non-associated vertex pair as a

mismatch, and other columns as indels. To score a path alignment, we assume that

a similarity-based score sij is given for each associating vertex pair (pi, vij) that will

serve as the match score. We also assume that mismatches and indels are penalized

by the same amount ∆. To avoid an exceedingly large number of mismatches or
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indels between matches, we follow the approach in Kelley et al. (2003) to impose an

upper limit m on the number of mismatches or indels allowed between two matches

in a path alignment.

To solve the path matching problem, we construct a directed graph G′ = (V ′, E ′)

as follows (see Figure 3): let V ′ =
⋃n

i=1
Vi ∪ {s, t}, where Vi denotes the correspon-

dence list for pi with each vij ∈ Vi treated as a distinct vertex with weight sij , and

s and t are two additional vertices with zero weight denoting the source and sink

of a path in G′ respectively. Intuitively, each vij represents a match with pi in a

path alignment and vertices in Vi form level i of G′ with s at level 0 and t at level

n + 1. Let m be the maximum number of mismatches or indels allowed between two

matches in a path alignment. We add directed edges to G′ as follows:

For each pair of vertices vij and vi+d,l satisfying 0 < d ≤ m + 1, compute

the length of the shortest path d′ from vij to vi+d,l in G, and construct a

directed edge from vij to vi+d,l if d′ ≤ m + 1. Add a directed edge from

s to each vij and from each vij to t.

Each edge (vij , vi+d,l) represents that it is always possible to find a path from vij

to vi+d,l in G so that there are a total of at most m mismatches or indels between

the matches (pi, vij) and (pi+d, vi+d,l). To impose mismatch and indel penalties, if

∆ ≤ 0 represents both the mismatch and indel penalty, set the weight of each edge

(vij , vi+d,l) to (max(d, d′)− 1)∆, the weight of each edge (s, vij) to (i− 1)∆, and the

weight of each edge (vij, t) to (n − i)∆. The above construction reduces the path

matching problem to finding a path p′ from s to t in G′ with the maximum sum of

vertex and edge weights.

In the above construction, while the given graph G can either be undirected or

directed, G′ is always a directed graph. Although some vertices in G′ can represent
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p G G′

b

f

i

p1

g

p2

a

c

p3

h

d

p4

e

v11 ≡ a v12 ≡ g

v33 ≡ h

v21 ≡ e

v31 ≡ a

v41 ≡ d

v32 ≡ c

v42 ≡ e

Fig. 3. Illustration of the construction of G′ from a given path p and an undirected

graph G in the PathMatch algorithm. Dashed lines indicate vertex correspon-

dences and the equivalence sign within each vertex of G′ indicates the vertex

it represents in G. In this example, at most m = 1 mismatches or indels are

allowed between two matches in a path alignment. For clarity, the source ver-

tex s and the sink vertex t are omitted and vertex and edge weights are not

shown in G′. There is an edge from s to each vertex vij in G′ and from each

vertex vij in G′ to t (not shown).
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the same vertex in G, they are considered to be distinct in G′. It is important

to retain these repeated occurrences since it is not necessarily true that the most

similar genes or proteins participate in related pathways (Kelley et al. 2003; Sharan

et al. 2005). In the edge construction procedure of G′, there is no need to consider

connecting vij with vi+d,l when d > m+1, since in order to satisfy the upper limit m,

the corresponding path must contain at least one match and this path has already

been included in G′ through another vertex that represents the match. Likewise, we

can assume that each edge in G′ (with d ≤ m + 1) represents only mismatches and

indels since a path with matches has already been included elsewhere. To make the

problem easier to solve, an important restriction has been made to treat mismatches

and indels in exactly the same way, including their use in the definition of m and

the requirement that they must be assigned the same penalty score. It is unclear

whether the problem can still be solved in polynomial time if we use more general

scoring schemes, such as when different penalties are used for different mismatches,

when the mismatch penalty is different from the indel penalty, or when an affine

gap penalty model (Altschul and Erickson 1986) is used, since the computation of

shortest paths may no longer be adequate.

The above procedure requires the computation of shortest paths between pairs

of vertices, which can be accomplished in two ways: either a single-pair shortest path

algorithm can be applied for each pair, which takes O(|E|+ |V | log |V |) time for each

pair if the Dijkstra’s algorithm is used with Fibonacci heaps, or an all-pairs shortest

path algorithm can be used to preprocess G before path queries are applied, which

takes O(|V |3) time for the entire input graph G if the Floyd-Warshall algorithm is

used (Cormen et al. 2001). This latter option is especially suitable for biological data

since G usually represents a known network.

When we assume that each edge in G′ represents only mismatches and indels
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and ignore different variations of mismatches or indels that can appear in a path, we

can find a set of k highest scoring paths in G′ by reducing the problem to finding k

shortest paths from s to t in the following modified graph with edge weights only:

first negate all the vertex and edge weights in G′, then move each vertex weight into

all its outgoing edges by changing each w(u, v) to w(u)+w(u, v) and setting w(v) = 0

for all vertices v. Note that the modified graph may have negative edge weights.

The problem of finding k shortest paths between two vertices in a directed

graph G′ = (V ′, E ′) (not necessarily acyclic but without negative edge weights) is

well known to be solvable in polynomial time (Lawler 1972; Fox 1975). Eppstein

(1998) gave two algorithms that are based on creating an implicit representation

first: the basic algorithm takes O(|E ′| + |V ′| log |V ′| + k log k) time to create an

implicit representation and is simple enough to implement, while the full algorithm

computes a different implicit representation with an improved time complexity of

O(|E ′|+ |V ′| log |V ′|+k) but may be difficult to implement in practice. It then takes

O(log i) time to find the ith path from the implicit representation.

Since our graph is acyclic and all paths must be simple, negative edge weights

do not pose any problems. We started with an implementation of the basic algo-

rithm (Jiménez and Marzal 2003) and modified it to allow negative edge weights by

replacing the Dijkstra’s algorithm (Cormen et al. 2001), which was used to compute

a shortest path tree during an intermediate step, by an algorithm that recursively

determines the tree edge to a vertex v after the tree edges to all the incoming ver-

tices of v are obtained. Although this reduces the time complexity of computing

a shortest path tree from O(|E ′| + |V ′| log |V ′|) to O(|E ′|), it does not change the

time complexity of the basic algorithm. Although we did not implement the full

algorithm, the above replacement of the Dijkstra’s algorithm results in a reduction

in time complexity of computing the implicit representation in the full algorithm
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to O(|E ′| + |V ′| + k), making it optimal if we ignore the output of paths. Either

algorithm can be used to solve the path matching problem in polynomial time.

C. Exact Algorithm for Graph Matching

We formulate the graph matching problem as follows: given a query graph G0 =

(V0, E0), a graph G = (V, E), and for each vi ∈ V0, a set of correspondences

Vi = {vi1, vi2, . . . , vi,ti} defining vertices in V that can be associated with vi, find

a graph G0
′ in G that aligns best to G0. Note that the above graphs can either be

undirected or directed, and we use the notation that a directed graph is connected if

its underlying undirected graph is connected. We define a graph alignment between

G0 and G0
′ by assuming that G0 has its vertex set V0 partitioned into two subsets

V +

0 and V −
0 , where V +

0 contains all vertices vi ∈ V0 that form an association (vi, vij)

with one vertex vij in G0
′, and V −

0 contains all other vertices in V0 that do not have

such an association. In order to preserve the structure of G0 in G0
′, we require that

for each pair of associations (vi, vij) and (vk, vkl) with (vi, vk) ∈ E0 (representing ad-

jacent matches in G0), the number of (indel) vertices between vij and vkl in G0
′ is at

most m, where m is a given parameter. We further require that the subgraph induced

by V +
0 in G0 is connected so that G0

′ is also connected. To score a graph alignment,

we assume that a similarity-based score sij is given for each associating vertex pair

(vi, vij) that will serve as the match score. We penalize each non-associated vertex

in V −
0 by ∆0 and each indel vertex in G0

′ by ∆1. Note that our formulation ignores

mismatches for simplicity and it is different from the notion of network alignment in

Koyutürk et al. (2006) and Sharan et al. (2005).

To solve the graph matching problem, we enumerate all connected induced sub-

graphs of G0, with each of them representing one way to obtain V +

0 from V0. This is
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possible since the query graph G0 represents a small functional module and is much

smaller than the full interaction network G of an organism. We grow an initially

empty subgraph W one vertex at a time by adding each vertex v ∈ V0\W such that

the subgraph G0[W ∪ {v}] induced by W ∪ {v} is connected. To avoid repeatedly

generating each connected induced subgraph of G0 many times, we represent a con-

nected induced subgraph with |W | vertices as a path of length |W | in a tree T that

contains these |W | vertices in sorted order from the root and mark the last vertex

on this path (see Figure 4). Whenever a new subgraph is generated, we check if

it has already been represented in T in O(|V0|) time. If so, the entire subtree for

that search branch is pruned. Otherwise, we add the subgraph to T by creating new

vertices if necessary. Since there are at most 2|V0| distinct induced subgraphs, the

number of vertices in T is at most O(2|V0||V0|) with each vertex occupying O(|V0|)

memory for storing each potential next vertex in V0, and the algorithm has worst

case time complexity O(2|V0||V0|
2). The algorithm is thus practical even for |V0| as

large as 20, which is sufficient to represent most functional modules. In reality, G0 is

usually a sparse graph and we can replace the 2|V0| term above by the total number

of connected induced subgraphs in G0, which is usually much smaller than 2|V0|.

To enumerate all solution graphs G0
′, we construct a graph G′ = (V ′, E ′) as

follows:

Let V ′ =
⋃|V0|

i=1
Vi, where Vi denotes the correspondence list for each vi ∈

V0. For each vij ∈ Vi and vkl ∈ Vk, add an edge (vij , vkl) to E ′ if (vi, vk) ∈

E0 and the length of the shortest path from vij to vkl in G is at most

m + 1.

Given V +
0 = {vp1

, . . . , vps
}, a valid solution is represented as a set of vertices {vp1,q1

,

. . ., vps,qs
}, one from each correspondence list of vpi

, such that whenever we have
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Algorithm GraphMatch(W ,W ′) {

for each vi ∈ V0\W do {

if G0[W ∪ {vi}] is connected and is not in T then {

V +
0 ←W ∪ {vi};

for each vij ∈ Vi do {

if W ′ ∪ {vij} is a valid solution of V +
0 then {

record W ′ ∪ {vij} and compute its score;

GraphMatch(W ∪ {vi},W
′ ∪ {vij}); } }

add G0[W ∪ {vi}] to T ; } } }

Fig. 4. Illustration of the exact graph matching algorithm. Tree T represents each

connected induced subgraph of G0 (which acts as a possible V +

0 ) as a path

from the root with the last vertex marked by a star. Algorithm GraphMatch

is applied with W = W ′ = φ initially.
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(vpj
, vpk

) ∈ E0 for some (j, k), it must be true that (vpj ,qj
, vpk,qk

) ∈ E ′. We integrate

both the enumerations of V +

0 and the valid solutions together into a single depth-first

search that grows both sets at the same time to avoid repeating the procedure for each

V +
0 separately (see Figure 4). This search is practical as long as the correspondence

lists are not particularly large. Since only the top k solutions are of interest, we only

keep the current top k solutions at any given time and use the score of the current

kth solution as a lower bound to prune a search branch whenever this score can never

be reached along that branch.

D. Application to Protein Interaction Networks

We represent a protein interaction network from DIP (Xenarios et al. 2000) by an

undirected graph G in which each vertex represents a protein and each edge represents

interactions between two proteins, where G can have thousands of vertices and tens

of thousands of edges. For each protein in a query, we use BLAST (Altschul et al.

1990) to locate similar proteins in G and establish a correspondence if the resulting

E-value is below a cutoff (Kelley et al. 2003). A similarity-based score for matches

can then be defined as the minus-log E-value, which is a positive number and is

almost the same as the minus-log P-value for the cutoff values we use (Karlin and

Altschul 1990). Following Kelley et al. (2003), one way to easily visualize a set of

solutions is to combine them to form a larger graph: a vertex or an edge appears

in this graph whenever it appears in one of the solutions, with each edge replaced

by its corresponding shortest path in G. Note that some suboptimal solutions may

become the same after this procedure since a path alignment or a graph alignment

may be represented more than once.

Figure 5 shows the result of applying PathMatch to query the protein inter-
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Fig. 5. Result of using PathMatch to query the protein interaction network of S. cere-

visiae with a pathway from H. pylori. The left represents the query pathway

from H. pylori, and the right shows the result from yeast, formed by combining

the top ten suboptimal path alignments into a graph. The result contains a set

of path alignments in which each yeast protein in an oval has correspondence

to the H. pylori protein on the same row (matches) and other proteins not

in ovals are mismatches or indels. At most m = 1 mismatches or indels are

allowed between two matches in a path alignment. The BLAST E-value cutoff

for matches is 10−5 and the match score is −ln(E-value). The mismatch and

indel penalty ∆ is five times the ln E-value cutoff, which is a negative number.
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action network of S. cerevisiae with a pathway from H. pylori . This H. pylori

pathway was returned as a hit when Kelley et al. (2003) searched for conserved

pathways between the two networks and they reported three pathways from yeast

that align with it (Figure 2b, Kelley et al. 2003): Rpl2ap· · ·Has1p· · ·Tsa1p—Sse1p,

Rpl2ap· · ·Has1p· · ·Tsa2p, and Rpl2ap· · ·Has1p· · ·Ssq1p, where a dotted line de-

notes a mismatch or an indel between two matching proteins and a solid line denotes

direct interaction between two matching proteins. All these yeast pathways were

also found by PathMatch. In addition, PathMatch found many others among the

top suboptimal paths. A search in PIR (Barker et al. 2000) revealed that most

matching proteins on the same row in Figure 5 share the same function: HP1316,

Rpl2ap and Rml2p belong to the L2 family of ribosomal proteins; HP0247, Dbp10p,

Has1p, Mak5p and Rok1p are ATP-dependent RNA helicases (some of them are pu-

tative); Tsa2p and Tsa1p are antioxidant proteins; while HP0109, Ssz1p, Ecm10p,

Sse1p, Ssq1p and Kar2p either belong to the heat shock protein 70 family or are

homologs. Thus, many of the yeast pathways found are likely to play similar roles

as the given H. pylori pathway.

To test the ability of PathMatch to analyze related paths in the same organism,

we query the protein interaction network of S. cerevisiae with the mitogen-activated

protein (MAP) kinase cascade in the mating-pheromone response pathway of S.

cerevisiae (Gustin et al. 1998) in order to find other MAP kinase cascades in yeast

(Figure 6). This cascade is identical to the one in the filamentation/invasion pathway

except that Fus3p is replaced by Kss1p (Gustin et al. 1998). The top results include

known MAP kinase cascades of the cell integrity pathway (with two variants) and the

high osmolarity growth pathway, in which the correspondences between the MAPKK,

MAPK and MAP kinases are all correct (Gustin et al. 1998).

To demonstrate the ability of PathMatch to analyze long paths from a well
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Fus3p

Query

Bck1p

Mkk1p Mkk2p

Slt2p

Ssk2p

Pbs2p

Hog1p

Top Results

Fig. 6. Top results of using PathMatch to query the protein interaction network of

S. cerevisiae with a pathway from S. cerevisiae. Vertices that appear in the

query (Ste11p, Ste7p and Fus3p) and Kss1p (which is very similar to Fus3p)

are removed from the interaction network before the search. Notations and

settings are the same as in Figure 5, except that only the top three suboptimal

path alignments are shown and the BLAST E-value cutoff for matches is 10−2.

characterized organism, we extracted the longer mating-pheromone response pathway

from the protein interaction network of S. cerevisiae (Gustin et al. 1998), which

contains the MAP kinase cascade in our previous query. Figure 7 shows the result

of using PathMatch to query the protein interaction networks of C. elegans and

D. melanogaster with this pathway. Most notably, around the yeast MAP kinase

module, the corresponding proteins all share similar functions: Ste11p, Ste7p, mig-

15, Pak-PB and Mekk1-PA all belong to the serine/threonine protein kinase family;

while Fus3p, mpk-1 and ERKA are all MAP kinases (Gustin et al. 1998; Stein et al.

2001; The Flybase Consortium 1996). Similar to Ste11p, Ste7p and Fus3p that work

together in a MAP kinase cascade, Pak-PB, Mekk1-PA and ERKA work together

in a transforming growth factor pathway (Luettich and Schmidt 2003). Only two

repeating occurrences were found: mig-15, which indicates that Ste11p and Ste7p

play very similar roles; and CG12045, which has hits in two distinct regions in the

results of BLAST from Ste12p and Mat1ap, suggesting potential multi-functionality.

We have also performed the same query on the protein interaction networks of H.
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CG12045 Nup214

CG12045 CG1893

D. melanogaster

Fig. 7. Top results of using PathMatch to query the protein interaction networks

of C. elegans and D. melanogaster with a long pathway from S. cerevisiae.

Notations and settings are the same as in Figure 6. Indels are omitted and

indicated by dashed edges.

pylori and E. coli (data not shown). The scores of the top paths (sum of minus-log

E-value of matches plus the mismatch and indel penalties) were of the order 101,

which, when compared to the previous top scores of the order 103 on the networks of

C. elegans and D. melanogaster , are largely insignificant. This is consistent with the

fact that there are no known MAP kinase pathways in bacteria (Chang and Stewart

1998).

Figure 8 shows the result of using GraphMatch to query the same networks with

a related functional module from Spirin and Mirny (2003). Substantial correspon-
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dences are found around the MAP kinase module: Mkk1p, Mkk2p, sek-1 and lic-PA

are all MAPK kinases; while Fus3p, Kss1p and mpk-1 and ERKA are all MAP ki-

nases (Gustin et al. 1998; Stein et al. 2001; The Flybase Consortium 1996). The

repeated occurrences of sek-1, lic-PA, mpk-1 and ERKA are due to significant sim-

ilarities in the yeast proteins: Mkk1p and Mkk2p are functionally redundant, while

Fus3p can be replaced by Kss1p to obtain the filamentation/invasion pathway from

the almost identical mating-pheromone response pathway that has a different activa-

tion mechanism (Gustin et al. 1998). In addition, Hsc82p, daf-21 and Hsp83 are all

heat shock proteins (Barker et al. 2000). There were also some hypothetical proteins

with unknown function in the results. This indicates a potential use of PathMatch

and GraphMatch to predict function of unknown proteins through their interaction

networks.

E. Application to Metabolic Networks

We represent a metabolic network by a directed graph with two types of vertices: a

compound vertex represents a chemical compound while a reaction vertex represents

each reaction involving one enzyme with potentially multiple substrates and prod-

ucts. For each reaction vertex, a directed edge is created from each of its substrates

and to each of its products. An enzyme may occur many times as distinct vertices

with each of them representing one reaction and a pathway is represented by an

ordered list of vertices of alternate types. A reversible reaction is modeled by two

vertices, one for each direction of the reaction. Unlike many previous approaches that

only use enzymes to characterize pathways (Dandekar et al. 1999; Ogata et al. 2000;

Tohsato et al. 2000; Koyutürk et al. 2004), our model follows the more accurate rep-

resentation in biological databases (Goto et al. 1997) and allows both enzymes and
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Fig. 8. Result of using GraphMatch to query the protein interaction networks of C. el-

egans and D. melanogaster with a S. cerevisiae functional module from Spirin

and Mirny (2003) that is related to the query pathway in Figure 7. Only the

top result is shown with associating vertices drawn in the same relative posi-

tions. Solid edges indicate no indels between the matches while dashed edges

indicate one indel (at most m = 1 indels are allowed along each edge). The

BLAST E-value cutoff for matches is 10−2 and the match score is −ln(E-value).

The non-associated vertex penalty ∆0 and the indel penalty ∆1 are −7.0 and

−0.2 respectively (|∆1| is set to be small relative to |∆0| to allow for many

indels).
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substrates to be included via their interactions in reactions (which doubles the path

length that needs to be handled). To establish vertex correspondences for enzymes,

we follow the information content approach in Tohsato et al. (2000) utilizing simi-

larity between EC numbers of enzymes but with a slight difference: we also impose

a match cutoff and treat mismatches in the same way as indels. To establish vertex

correspondences for compounds, we use the SIMCOMP package from Hattori et al.

(2003) and impose a score cutoff for matches. We set the match score for enzymes

to the information content value based on proximity of EC numbers and the match

score for compounds to zero (thus only utilizing a similarity cutoff for compounds).

Figure 9 shows the result of using PathMatch to query a combined network of

glycolysis, gluconeogenesis, the citrate cycle and the glyoxylate metabolism in E.

coli constructed from the KEGG database (Goto et al. 1997), which contains 199

vertices (with 117 reaction vertices including 55 unique enzymes and 82 compound

vertices) and 270 directed edges, with a pathway from the propanoate metabolism

constructed from KEGG (Goto et al. 1997) and EcoCyc (Karp et al. 2002). The result

pathways are mainly involved in transforming acetate into succinate or oxaloacetate.

In particular, the top result pathway that transforms acetate into succinate had a

high resemblance to the query pathway that transforms propionate into succinate,

with substantial similarities between corresponding enzymes and compounds. It has

been observed that these two sets of pathways might have evolved from a common

origin by enzyme (and pathway) duplications (Gerike et al. 1998). Figure 10 shows

the result of using GraphMatch to query the same network with a tree-like network

containing part of the α-aminoadipic pathway in T.thermophilus (Kobashi et al.

1999). The result lied in a region that partially overlaps with the previous result in

Figure 9 and again had substantial similarities between corresponding enzymes and

compounds. This is consistent with the hypothesis from Nishida et al. (1999) that
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Fig. 9. Top results of using PathMatch to query a combined network of glycolysis,

gluconeogenesis, the citrate cycle and the glyoxylate metabolism in E. coli

with a pathway from the propanoate metabolism. Notations are the same

as in Figures 7 and 8. Each reaction vertex is labeled by the EC number

of the enzyme involved (the same enzyme does not have to come from the

same reaction), while each compound vertex is labeled by the name of the

compound. At most m = 2 mismatches or indels are allowed between two

matches. The information content cutoff for enzymes is set so that a match

of two enzymes is guaranteed when the first two parts of their EC numbers

are the same. The score cutoff for compound similarity is 0.5. Only the

information content value for enzymes contributes to the match score. The

mismatch and indel penalty ∆ is set to an information content value of −1.0.
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Fig. 10. Top result of using GraphMatch to query a combined network of glycolysis,

gluconeogenesis, the citrate cycle and the glyoxylate metabolism in E. coli

with part of the α-aminoadipic pathway in T. thermophilus. Notations are

the same as in Figures 7 and 8. Each reaction vertex is labeled by the EC

number of the enzyme involved (the same enzyme does not have to come

from the same reaction), while each compound vertex is labeled by the name

of the compound. At most m = 2 mismatches or indels are allowed between

two matches. The information content cutoff for enzymes is set so that a

match of two enzymes is guaranteed when the first two parts of their EC

numbers are the same. The score cutoff for compound similarity is 0.5. Only

the information content value for enzymes contributes to the match score.

The non-associated vertex penalty ∆0 is −1.0, while the indel penalty ∆1 is

−0.1.
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the two pathways might be evolutionarily related.

F. Discussion

We have shown that PathMatch and GraphMatch are able to find meaningful path-

ways from biological networks. Due to the polynomial time complexity, PathMatch

is generally very fast, taking only seconds to minutes to process a query on a net-

work G with thousands of vertices and tens of thousands of edges when all shortest

paths in G were pre-computed, while GraphMatch has exponential time complexity

in the worst case and can take many hours in some cases depending on the sizes of

the graphs and the parameter settings, which can be adjusted to obtain reasonably

sized correspondence lists. Nevertheless, the model employed by GraphMatch has

more expressive power and can return more accurate results that are appropriately

constrained. For protein interaction networks, since the false positive rate of edges

can be quite high (Deane et al. 2002; Deng et al. 2002; Steffen et al. 2002; Scott

et al. 2006), it may be desirable to incorporate edge reliability into the score. This

can be done in a similar way as in Kelley et al. (2003) and Sharan et al. (2005).

To further improve the model for metabolic networks, one needs to investigate how

to combine enzyme and compound similarities into a single score. To compute the

statistical significance of a path alignment or a graph alignment, one can follow the

idea in Kelley et al. (2003) to compare the score of a solution to the scores of random

alignments between the query and the input graph G. It is also possible to use other

methods besides BLAST or information content, such as using expression data and

gene ontology annotations, to establish vertex correspondences (Sharan et al. 2005).
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CHAPTER IV

IDENTIFYING GENE CLUSTERS OF CONSTRAINED SIZES IN MULTIPLE

GENOMES

A. Introduction

With the increased availability of complete genome sequences, there has been con-

siderable interest to study genome evolution by investigating the clustering of sets

of orthologous genes among multiple genomes. There are many attempts to identify

conserved clusters of genes through different formulations of gene clusters. Fujibuchi

et al. (2000) employed graph-theoretic techniques to detect conserved gene clusters

in multiple genomes by identifying highly connected structures in a graph. Uno and

Yagiura (2000) represented sets of genes as permutations and developed algorithms

to find common intervals within these permutations that represent gene clusters,

while Heber and Stoye (2001a,2001b) generalized this model to compare more than

two genomes. Vandepoele et al. (2002) and Calabrese et al. (2003) restricted their

attention to identify almost colinear regions of similarities in two genomes. Berg-

eron et al. (2002) and Luc et al. (2003) allowed intervening genes to appear between

genes in a cluster and proposed polynomial time algorithms that allow more than two

genomes to be analyzed. Didier (2003) and Schmidt and Stoye (2004) generalized the

common interval formulation to allow for the inclusion of paralogous genes within

a genome by representing sets of genes as sequences rather than permutations and

proposed efficient algorithms to find conserved clusters. Eres et al. (2004) suggested

a general notion of permutation pattern discovery and developed algorithms to iden-

tify maximal clusters that do not allow intervening genes. He and Goldwasser (2005)

developed an algorithm that allows both intervening genes and paralogous genes in
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their formulation. Rahmann and Klau (2006) reduced the problem to an integer

linear programming problem that represents common intervals with errors. Parida

(2007) generalized the notion of permutation patterns to allow both intervening genes

and paralogous genes.

When intervening genes are allowed, the most popular approaches require only

that the distance between adjacent genes in a cluster to be small (Bergeron et al.

2002; Luc et al. 2003; He and Goldwasser 2005; Parida 2007), and thus can return

extremely large clusters even when the distance allowed is small. We investigate

a different formulation of gene clusters which requires that the distance between

any pair of genes within a cluster to be small (Hoberman et al. 2004), thus placing

a constraint on the overall cluster size. To illustrate how this approach can find

different clusters, we run HomologyTeams (He and Goldwasser 2005) on two bacterial

genomes Streptococcus pyogenes and Streptococcus pneumoniae while requiring that

the distance between adjacent genes in a cluster to be at most 25,000 base pairs. The

largest cluster found contains 131 genes that are within a region of 566 genes in S.

pyogenes and 584 genes in S. pneumoniae. This cluster has an e-value of 1.1×1067 in

our formulation and thus will not be found by our approach. Instead, our approach

finds a much smaller cluster with an e-value of 2.5 × 10−6 that contains 61 genes

within a shorter region of 208 genes.

By reducing from the clique problem (Garey and Johnson 1979), we show that

the problem is NP-hard when multiple genomes are given, thus it is unlikely that the

problem can be solved in polynomial time. Nevertheless, we show that a restricted

version which requires that orthologous genes are strictly ordered within each cluster

can be solved in polynomial time. This simplified model is suitable for finding clusters

in regions with a small number of gene rearrangements, after which a detailed analysis

can be performed in the localized area. We then consider the unrestricted problem
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and develop practical exact algorithms that allow paralogous genes within a genome

and clusters that may not appear in every genome.

Since a protein may have more than one function determined by different do-

mains, we allow a gene to appear in more than one orthologous group, which is bio-

logically more accurate as an increasing number of genes are assigned to more than

one group in the COG database (Tatusov et al. 1997). For example, in Clostridium

acetobutylicum, the gene gltA belongs to three COGs that correspond to distinct

domains glut synthase, GltS FMN and gltb C with different functions. We test our

algorithms on a set of four bacterial genomes Bacillus subtilis, Streptococcus pyo-

genes, Streptococcus pneumoniae and Clostridium acetobutylicum, and a set of four

yeast genomes Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces

mikatae and Saccharomyces bayanus. We show that the clusters with the best sta-

tistical significances correspond to biologically relevant gene clusters.

A software program (GCFinder) and a list of gene clusters found on the bacterial

and the yeast genomes are available at http://faculty.cs.tamu.edu/shsze/gcfinder.

B. Problem Formulation

Let C = {c1, . . . , ck} be a set of k chromosomes, one from each genome under consid-

eration. These chromosomes can either be all linear or all circular. We first assume

that each gene appears in each sequence exactly once that represents orthologs of

each other without allowing paralogous copies. We represent each gene by a number

(while ignoring its orientation) so that the same number represents the same gene

(or an orthologous gene) in different genomes and each chromosome ci is represented

by a sequence of gene numbers. With this assumption, the length of each sequence is

the same and each sequence represents a permutation of the same set of genes. This
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representation is similar to the ones used in Uno and Yagiura (2000) and Heber and

Stoye (2001a,2001b).

Let G = {g1, . . . , gn} be the set of n genes that appear in each chromosome.

Denote the position of gene g on chromosome ci by pi(g), which is the index of g in

the sequence of genes on ci (on circular chromosomes, it is interpreted in a circular

fashion). Note that this definition considers each gene as a basic unit instead of each

base pair. Given a parameter d, we can think of each subset G′ of G with |G′| ≤ d as

a potential gene cluster. Let G′ = {g′
1, . . . , g

′
d′} ⊆ G with d′ genes in the cluster. We

say that G′ appears in ci if |pi(g
′
r)− pi(g

′
s)| < d for all pairs of genes g′

r and g′
s in G′.

Thus, in order for G′ to appear in ci, all its genes have to be within a region of size

at most d on ci. To evaluate the statistical significance of G′, we assume that each

permutation is equally likely to occur. The probability of G′ appearing in a linear

chromosome with n genes was given in Durand and Sankoff (2003) as

p(n, d, d′) =

(

(n− d)

(

d− 1

d′ − 1

)

+

(

d

d′

)) /(

n

d′

)

. (4.1)

On a circular chromosome, we consider d ≤ n/2 and this probability is given by

p(n, d, d′) = n

(

d− 1

d′ − 1

)/(

n

d′

)

. (4.2)

Suppose that G′ appears in k′ chromosomes. We define the p-value of G′ to be the

probability of G′ appearing in at least k′ out of k chromosomes and it was given in

Durand and Sankoff (2003) as

p(k, k′, n, d, d′) =
k

∑

i=k′

(

k

i

)

p(n, d, d′)i(1− p(n, d, d′))k−i. (4.3)

We estimate the e-value of G′ by
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e(k, k′, n, d, d′) =

(

n

d′

)

p(k, k′, n, d, d′). (4.4)

For each fixed d, we are interested in finding all maximal clusters G′ with e-value

below a cutoff, where a cluster G′ is maximal if there does not exist another cluster

G′′ such that G′′ ⊃ G′ and G′′ appears in the same set of chromosomes.

We now generalize the model to allow different paralogous copies of a gene to

be assigned the same gene number and remove the requirement that each gene must

appear in every chromosome. Each chromosome ci is no longer represented by a

permutation but by a sequence of gene numbers, possibly of different lengths, that

allows some gene numbers to appear more than once. This representation is similar

to the ones used in Didier (2003) and Schmidt and Stoye (2004). Bergeron et al.

(2002), Luc et al. (2003) and He and Goldwasser (2005) used a slightly different

notation to represent a gene that does not appear in every chromosome by a star

symbol, while we use a gene number to represent each gene, including the ones that

do not appear in every chromosome, since these genes can also appear in a gene

cluster in our formulation.

A gene cluster G′ that appears in k′ chromosomes is represented by k lists

P ′
1, . . . , P

′
k, with k′ of these lists non-empty and each list P ′

i containing a set of

positions on ci, which together specify all the positions of genes that are in G′. To

ensure that all genes in G′ are clustered within a region of size at most d on each

chromosome ci for which P ′
i is non-empty, we require that each gene number that

appears in G′ must appear at least once in each of the k′ non-empty lists P ′
i , and

within each non-empty P ′
i , |r − s| < d for any pair of positions r, s ∈ P ′

i . Note that

in this definition, it is possible that a gene in G′ may have other homologous copies

outside G′. For each fixed d, we are interested in finding all maximal clusters G′ with
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e-value below a cutoff, where a cluster G′ is maximal if there does not exist another

cluster G′′ with position lists P ′′
1 , . . . , P ′′

k such that P ′′
i ⊇ P ′

i for all i with 1 ≤ i ≤ k.

To obtain approximate significance estimates, we use the original e-value formula and

replace d′ and n by the following averages: d′ =
∑

P ′

i 6=∅ |P
′
i |/k

′ and n =
∑k

i=1
|ci|/k.

To further allow a gene to appear in more than one orthologous group, we allow

multiple gene numbers to appear at the same position that correspond to the same

gene. Each P ′
i now contains a set of (gene number, position) pairs and d′ becomes

the average number of distinct positions among all non-empty P ′
i .

C. Problem Hardness

When the order of genes within a cluster is not constrained, we show that the problem

is hard even in the simplest case when each gene appears in each chromosome exactly

once and each position contains only one gene number.

Theorem 1. Given k sequences of gene numbers, each representing a linear chromo-

some, and a parameter d denoting the maximum length of a region that can contain

a gene cluster, the problem of finding a gene cluster of size d′ ≥ 2 that appears in

every sequence is NP-hard.

Proof. We reduce from the clique problem (Garey and Johnson 1979). Let

G = (V, E) be an undirected graph and let V = {v1, . . . , vd}. We construct a gene

cluster problem from G as follows. Let V ′ = {v′
1, . . . , v

′
d} and let V ∪V ′ be the set of

genes. We construct a set of 3d gene sequences, each of length 2d, by defining three

groups si, s′i and s′′i , with 1 ≤ i ≤ d, as follows (see Figure 11):

si = vi

⊙d−|Nvi
|−1

j=1 v′
j

⊙

vj∈Nvi
vj

⊙

vj∈V −{vi}−Nvi
vj

⊙d

j=d−|Nvi
| v

′
j

s′i = v′
i

⊙d

j=1
vj

⊙

j 6=i v
′
j

s′′i = v′
i

⊙

j 6=i
v′

j

⊙d

j=1
vj
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s′3 = ( 3′ 1 2 3 4 1′ 2′ 4′ )
s′
4

= ( 4′ 1 2 3 4 1′ 2′ 3′ )

Group 2

s′′
1

= ( 1′ 2′ 3′ 4′ 1 2 3 4 )
s′′2 = ( 2′ 1′ 3′ 4′ 1 2 3 4 )
s′′
3

= ( 3′ 1′ 2′ 4′ 1 2 3 4 )
s′′
4

= ( 4′ 1′ 2′ 3′ 1 2 3 4 )

Group 3

Fig. 11. Illustration of the reduction from the clique problem with d = 4 in the proof

of NP-hardness of the unordered gene cluster problem, where i represents

the original vertices in V and i′ represents the additions to obtain the set of

genes.
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where
⊙

c v represents the concatenation of all v that satisfy the condition c in

increasing index order and Nv = {u ∈ V | (u, v) ∈ E} represents the set of all

neighbors of a vertex v in G. Note that group 1 encodes G, while groups 2 and 3

ensure that a gene cluster of size at least two does not contain any genes in V ′.

Consider a clique C of size d′ ≥ 2 in G. All vertices in C appear in the first d

positions of sequences si for which vi ∈ C. These vertices appear together between

the genes in V ′ in sequences si for which vi /∈ C and in sequences s′i and s′′i . Thus the

distance between these vertices must be less than d in all the 3d gene sequences and

they form a gene cluster. Conversely, consider a gene cluster of size d′ ≥ 2. Since it

has to appear in all the 3d gene sequences, sequences s′i and s′′i prevent any genes in

V ′ to be included. The cluster must form a clique in G, since otherwise, there exist

two genes vi and vj in the cluster with (vi, vj) /∈ E and they are at least distance d

apart in sequences si and sj, a contradiction. �

It is easy to see that the problem is of a similar difficulty on circular chromosomes

and it is at least as hard (if not harder) when paralogous genes are allowed, when

a gene cluster does not need to appear in every chromosome, or when some of the

positions contain more than one gene number.

D. Finding Ordered Clusters

Since it is not likely that the unconstrained problem can be solved in polynomial

time, we consider a restricted version which requires that a cluster appears in every

input chromosome, none of the genes appear in more than one orthologous group and

orthologous genes are strictly ordered within each cluster without allowing paralogous

copies. In Figure 12, we describe an algorithm that finds an optimal cluster with
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Algorithm OrderedClusters ({c1, . . . , ck},d) {

G ← empty;

for each gene g that appears in all k chromosomes do {

for i← 1 to k do {

Wi ← window of size d starting from g on ci; }

construct a directed graph G = (V, E), where V is the set of genes that

appear in every Wi, and (g1, g2) ∈ E if g1 is before g2 in each Wi;

P ← longest path (g1, · · · , gd′) in G;

add P to G; } }

Fig. 12. Algorithm OrderedClusters to find a set of ordered gene clusters that include

a maximal cluster with the lowest e-value when paralogous copies of genes

are not allowed and none of the genes appear in more than one orthologous

group. G is the set of clusters returned with each cluster represented by an

ordered list of genes that appear in each of the k given chromosomes and are

colinear among all chromosomes.

the lowest e-value. The idea is to start from each gene g that appears in every given

chromosome and find all genes that are less than distance d to the right of g in

every chromosome. Then construct a directed acyclic graph G with g and all these

genes as vertices in which edges represent strict ordering of two genes within every

chromosome. An optimal cluster that starts from g is represented by a longest path

in G, which can be found by a procedure similar to topological sorting (Cormen

et al. 2001). It is easy to see that an optimal cluster with the lowest e-value must be

among one of the longest paths. Figure 13 illustrates one iteration of the algorithm

on a small example. Note that windows cannot go beyond the right boundary on a

linear chromosome, but they can wrap around on a circular chromosome.
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c1 = ( 1 2 3 4 5 6 7 8 9 )

c2 = ( 7 1 4 5 2 3 8 9 6 )

c3 = ( 9 7 8 5 1 2 3 6 4 )

PSfrag replaements12341223341314 1 2 3 4
Fig. 13. Illustration of the construction of a directed graph G in the OrderedClusters

algorithm when g = 1 and d = 5. Genes that appear in all windows Wi on

each chromosome ci are enclosed in boxes. G is shown to the right of the

chromosomes. The longest path (1, 2, 3) is added to G.

To evaluate the time complexity, since each cluster must appear in every chro-

mosome, it suffices to consider each pair of genes that are less than distance d apart

on chromosome c1 in order to determine all vertices and edges of G for each gene g

(see Figures 12 and 13). Since there are a total of nd such pairs to consider over all g,

it takes O(knd) time to determine the ordering relationships between all pairs. For

each gene g, since |Wi| ≤ d, we have |V | ≤ d and |E| ≤ d2, and it takes O(d) time

and O(d2) time respectively to determine V and E from the above relationships. It

then takes O(d2) time to find a longest path in each G and O(k+d) time to compute

its e-value. Thus the overall time complexity is O(nd(k + d)).

To obtain additional clusters that are not related to the optimal cluster, we mask

the genes in the optimal cluster and rerun the algorithm to obtain the next cluster.

Alternatively, for l > 1, we can find top l clusters in one run by finding l longest paths

in each directed acyclic graph G, which is well known to be solvable in polynomial

time (Lawler 1972; Fox 1975). In particular, we can use the basic algorithm in

Eppstein (1998) to create an implicit representation of the l longest paths from the

starting gene g to each other vertex in G in O(|E|+ |V | log |V |+ l|V | log l) time and

use O(i) time to obtain the ith path from the representation for each G.
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E. Finding Unordered Clusters

We now consider the more difficult problem when the order of genes within a cluster

is not constrained and paralogous copies of genes are allowed. We first assume that

a gene cluster must appear in each of the k given chromosomes. In Figure 14, we

describe an algorithm that always guarantees that all maximal clusters are included

in the results. The idea is to start with each window of size d on chromosome c1 and

find the locations of all occurrences of its gene numbers in the other chromosomes.

We form windows of size d on each chromosome that contain these occurrences and

intersect them, k windows at a time with one from each chromosome, to obtain a list

of candidate gene clusters G′ each containing a list of gene numbers. The positions of

the genes in each cluster G′ are recovered by investigating how the intersection was

originally obtained. It is easy to see that all maximal clusters that appear in each

of the k given chromosomes must be included in the results, but it is possible that

some non-maximal clusters are also included. Figure 15 illustrates the algorithm on

a small example.

To evaluate the time complexity, let t be the maximum number of paralogous

copies allowed for a gene within a chromosome and let D be the maximum number

of gene numbers within a window of size d (D can be larger than d when some genes

appear in more than one orthologous group). For a given window W1 (see Figures 14

and 15), since |G1| ≤ D and |Gij| ≤ D, we have |Pi| ≤ tD and it takes O(ktD2)

time to construct all Gij. Also, there are a total of at most (tD)k−1 intersections to

perform with each taking O(kD) time. Since there are O(n) windows of size d on

chromosome c1, the overall time complexity is O(knD(tD)k−1).

To allow for clusters that do not appear in every chromosome, for each i > 1 we

add an extra universal set Gi0 containing all possible gene numbers and change the
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Algorithm UnorderedClusters ({c1, . . . , ck},d) {

G ← empty;

for each window W1 of size d on chromosome c1 do {

G1 ← set of gene numbers in W1;

for i← 2 to k do {

Pi ← set of positions on chromosome ci in which gene numbers in G1

appear;

for j ← 1 to |Pi| do {

Wj ← window of size d starting from the jth position in Pi on ci;

Gij ← set of gene numbers in Wj that appear in G1; } }

for each tuple (j2, . . . , jk) with 1 ≤ ji ≤ |Pi| do {

add G′ = G1 ∩ (
⋂k

i=2
Giji

) to G; } } }

Fig. 14. Algorithm UnorderedClusters to find a set of unordered gene clusters that in-

clude all maximal clusters when paralogous genes are allowed while requiring

that each cluster appears in each of the k given chromosomes. G is the set of

clusters returned with each cluster G′ represented by a list of gene numbers.

c1 = ( 1 2 3 4 5 6 6 7 8 9 ) G1 = {1, 2, 3}
c2 = ( 9 5 2 3 6 1 4 2 8 7 9 ) G21 = {2, 3}, G22 = {1, 3}, G23 = {1, 2}, G24 = {2}
c3 = ( 4 8 4 7 8 8 1 8 2 ) G31 = {1, 2}, G32 = {2}

G′

1
= G1 ∩G21 ∩G31 = {2} G′

4
= G1 ∩G22 ∩G32 = {} G′

7
= G1 ∩G24 ∩G31 = {2}

G′

2
= G1 ∩G21 ∩G32 = {2} G′

5
= G1 ∩G23 ∩G31 = {1, 2} G′

8
= G1 ∩G24 ∩G32 = {2}

G′

3 = G1 ∩G22 ∩G31 = {1} G′

6 = G1 ∩G23 ∩G32 = {2}

Fig. 15. Illustration of the UnorderedClusters algorithm when d = 3. On chromosome

c1, the window W1 under consideration is enclosed in a box. The occurrences

of the gene numbers in W1 in chromosomes c2 and c3 are enclosed in boxes.

The set of returned clusters is G = {G′
1, . . . , G

′
8}.
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range of ji in Figure 14 to 0 ≤ ji ≤ |Pi|. Since Gi0 has no effect on an intersection,

a cluster that does not appear in chromosome ci can be obtained by an intersection

that includes Gi0. Note that the addition of Gi0 is only for convenience of explanation

and nothing needs to be done when intersecting with Gi0. After this modification,

the total number of intersections is at most (tD + 1)k−1, which is still O((tD)k−1).

To remove the restriction that a cluster must appear in chromosome c1, we run the

algorithm k times, each time with chromosome set {ci, . . . , ck}, for 1 ≤ i ≤ k. This

change increases the time complexity of the entire algorithm by at most a factor of

k, resulting in an overall time complexity of O(k2nD(tD)k−1), with no increase in

the exponential part.

To compute the e-value for each of the candidate clusters, since k, n and d are

fixed in a particular run, we preprocess and store all values of e(k, k′, n, d, d′) for

different combinations of k′ and d′ so that each e-value can be obtained in constant

time. The preprocessing can be completed in polynomial time and thus takes neg-

ligible time. Since not many clusters remain after applying the e-value cutoff, it

is easy to remove non-maximal clusters from the truncated list and this also takes

negligible time. Although the overall time complexity is exponential, O((tD)k−1) is

much better than O(nk−1) when tD is small relative to n. In this case, our time

complexity is better than the O(nk) time complexity obtained in He and Goldwasser

(2005) when their algorithm is applied to k chromosomes with a different formulation

of gene clusters.

We next describe a few improvements that do not change the worst case time

complexity but will significantly improve the running time in practice while still guar-

anteeing that no maximal clusters are missed. The simplest such improvement is to

remove each Gij that satisfies Gij ⊂ Gij′ for some j 6= j′ from among Gi1, . . . , Gi|Pi|

before intersection. This step does not increase the time complexity since it can be
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included easily while constructing the sets. The second improvement takes advan-

tage of significant overlaps among windows W1 on chromosome c1. Except for the

leftmost window, each window contains at most one new position p when compared

to the overlapping window that is immediately to its left. For each such window, it

suffices to consider only those Gij that contain a gene number at position p during

intersection, since other clusters that do not contain a gene number at position p are

already included.

F. Application to Bacterial Genomes

We test our algorithm (GCFinder) on a set of four circular bacterial genomes, in-

cluding B. subtilis, S. pyogenes, S. pneumoniae and C. acetobutylicum from the

COG database (Tatusov et al. 1997). For genes that have the same COG number,

those that are on different genomes are considered orthologs while those that are

on the same genome are considered paralogs. We first test the unrestricted version

of GCFinder that does not impose gene order restriction within a cluster. We ran

GCFinder over 1 ≤ d ≤ 50 and found all maximal gene clusters. We examined

clusters with low e-values that appear in all the four genomes. Note that there are

also many other clusters that have low e-values but do not appear in all the four

genomes.

The cluster with the lowest e-value (2.8× 10−131) consists of a highly conserved

superoperon containing ribosomal proteins and two conserved genes adenylate kinase

and initiation factor IF-1 (Figure 16(a)). Except for some intervening genes, the

genes in the cluster are perfectly ordered. The superoperon consists of S10, spc and

alpha operons. The S10 operon includes genes rpsJ, rplW, rplB, rpsS, rpsC, rplP

and rpsQ. The spc operon includes genes rplX, rplE, rpsN, rplF, rplR, rpsE, rpmD,
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Bsu

Spy

Spn

CacR

(a)

Bsu

SpyR

SpnR

Cac

(b)

Bsu

SpyR

Spn

Cac

(c)

Bsu

SpyR

Spn

Cac

(d)

Bsu

Spy

SpnR

CacR

(e)

Fig. 16. Top five gene clusters found by GCFinder that appears in all genomes on

four bacteria B. subtilis (Bsu), S. pyogenes M1 GAS (Spy), S. pneumoniae

TIGR4 (Spn), and C. acetobutylicum (Cac). A sequence of genes are shown

from each genome on each row. Filled circles denote genes in a cluster, while

hollow circles denote intervening genes. Genes that are in the same COG are

connected by lines. Some of the sequences are shown in reversed orientation

(denoted by the superscript R) to reduce the number of crossover lines. (a)

S10-spc-alpha superoperon. (b) prpC-prkC operon. (c) atp operon. (d)

nusA-infB operon. (e) Oligopeptide ABC transporter system.

rplO and secY. The alpha operon contains genes rpmJ, rpsM, rpsK, rpoA and rplQ.

Except for secY and rpoA, all genes in these operons encode ribosomal proteins.

The S10-spc-alpha superoperon is among a few regions with extremely conserved

gene order in bacterial genomes (Coenye and Vandamme 2005).

The cluster with the second lowest e-value (3.7×10−39) contains genes gmk, yloH,

priA, fmt, yloM, prpC and prkC in B. subtilis (Figure 16(b)). The corresponding

genes from the other genomes are either orthologs or are predicted to have similar

functions. Although prpC and prkC have different physiological roles, Iwanicki et al.

(2005) showed that they are in the same operon.
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The cluster with the third lowest e-value (1.7× 10−37) contains the atp operon

that includes genes atpD, atpG, atpA, atpH, atpF and atpE, which consists of sub-

units of the F1Fo ATP synthase (Figure 16(c)). The F1Fo ATP synthase is an

enzyme complex that is important in the free energy metabolism in almost all cells

(Koebmann et al. 2000) and is found extensively in bacteria (Das and Ljungdahl

2003).

The cluster with the fourth lowest e-value (1.7 × 10−37) contains components

of the nusA-infB operon that includes genes ylxS, nusA, ylxR, ylxQ, infB and rbfA

in B. subtilis (Figure 16(d)), which was studied in Shazand et al. (1993). The

corresponding genes from the other genomes are either orthologs or are predicted to

have similar functions.

The cluster with the fifth lowest e-value (1.2×10−33) consists of operons from the

oligopeptide ABC transporter system. Multiple paralogous operons were found in B.

subtilis and C. acetobutylicum that are separated by intervening genes (Figure 16(e)).

In B. subtilis, components of the app operon (Koide and Hoch 1994), including genes

appD, appF, appB and appC with one intervening gene between appB and appC, and

components of the opp operon (Steiner and Malke 2001), including genes oppB, oppC,

oppD and oppF, were found. In C. acetobutylicum, components of the opp operon

were found in addition to two other blocks CAC3635, CAC3636, CAC3637, CAC3638

and CAC3641, CAC3642, CAC3643, CAC3644. These operons are associated with

components of the opp operon in S. pyogenes, and with components of the ami

operon (Alloing et al. 1990) in S. pneumoniae, including genes amiC, amiD, amiE

and amiF. The app operon in B. subtilis does not have conserved gene order. Each

of these operons includes four components of the five-component oligopeptide ABC

transporter system, including two ATPases and two permeases.

We found another cluster with an e-value of 1.5× 10−20 that contains a paralog
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Bsu

Spy

SpnR

CacR

(a)

Bsu

Spy

Spn

Cac

(b)

Fig. 17. Two gene clusters found by GCFinder on four bacteria B. subtilis (Bsu),

S. pyogenes M1 GAS (Spy), S. pneumoniae TIGR4 (Spn), and C. aceto-

butylicum (Cac) that have low e-values and many intervening genes. (a)

ihk-irr system. (b) pur operon.

with unconserved gene order and many intervening genes (Figure 17(a)). The cluster

contains five COGs, with two of them containing putative histidine kinases and

response regulators which are related to signal transduction. In particular, the two

genes ihk and irr in S. pyogenes constitute a two-component gene regulatory system

that is essential for its survival (Voyich et al. 2003). We also found a conserved

cluster containing genes purE, purF, purM and purD with an e-value of 2.1× 10−15

and many intervening genes, in which all genes are involved in the purine pathway

(Figure 17(b)). All genes except purE are in the same order in the cluster, with

variable number of intervening genes between them. This pur operon was studied in

Overbeek et al. (1999).

We were also able to find gene clusters in which some genes appear in more

than one orthologous group. Figure 18(a) shows a gene cluster with an e-value of

8.7 × 10−14 that contains three genes fruR, fruK and fruA, which were shown to

form an operon in S. citri (Gaurivaud et al. 2000). The gene fruA was assigned

two COG numbers except in C. acetobutylicum, where there are two different genes.
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Bsu

Spy

Spn

Cac

(a)
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(b)

Fig. 18. Two gene clusters found by GCFinder on four bacteria B. subtilis (Bsu),

S. pyogenes M1 GAS (Spy), S. pneumoniae TIGR4 (Spn), and C. aceto-

butylicum (Cac) that have low e-values in which some genes appear in two

orthologous groups, with one connected by solid lines and the other connected

by dashed lines. (a) fru operon. (b) Glutamine ABC transporter system.

Figure 18(b) shows a gene cluster with an e-value of 8.7× 10−14 that contains three

COGs which form the glutamine ABC transporter system. In B. subtilis and S.

pneumoniae, there are four genes glnQ, glnH, glnM and glnP (Caldwell et al. 2001),

while in S. pyogenes and C. acetobutylicum, there are only two genes.

We then apply the restricted version of GCFinder which requires that none of

the genes appear in more than one orthologous group and orthologous genes are

strictly ordered within each cluster without allowing paralogous copies. We split

each COG that has paralogs into potentially more than one orthologous group, by

finding a group of genes, one from each genome, that has the best sum of pairwise

BLAST log e-values (Altschul et al. 1990), then removing the genes in this group and

repeating the process. In the S10-spc-alpha superoperon, the gene adenylate kinase

was excluded due to splitting of its COG during paralog removal. The paralog

with unconserved gene order was excluded from the ihk-irr system, while purE was

excluded from the pur operon. To obtain the results, it was necessary to reverse
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the orientation of some of the chromosomes. The oligopeptide ABC transporter

system cluster was completely missed. Thus, although this version of GCFinder

is much faster and is able to find clusters in regions with a small number of gene

rearrangements, the unrestricted version is still needed in other cases.

G. Application to Yeast Genomes

each gene can only appear in one orthologous group due to the way the orthologous

groups were generated in Kellis et al. (2003) allow arbitrary windows possible for two

species e-value cutoff 10−10 surprising study of evolution 1 ≤ d ≤ 50 pair of yeasts

all d further analysis for unordered clusters running time

We apply the unrestricted version of GCFinder on four yeast genomes, including

S. cerevisiae, S. paradoxus, S. mikatae and S. bayanus. While the complete genome

sequences were used for S. cerevisiae, scaffolds were used for the other yeasts, and

the orthologous groups were from Kellis et al. (2003). Figure 19 shows the top gene

cluster that appears in all genomes with an e-value of 4.1× 10−95. In S. cerevisiae,

the segment that contains this cluster is located on chromosome 13 between genes

YML068W and YML035C. Except for some intervening genes and paralogs, the

genes in the cluster are perfectly ordered. We use p-values from the GO term finder in

the Saccharomyces Genome Database (SGD, Cherry et al. 1998) to evaluate whether

genes within this cluster tend to have related functions. Although there are not

many common hits in the Molecular Function Ontology, 26 of the 31 genes in the S.

cerevisiae cluster have common parent GO term “cellular physiological process” in

the Biological Process Ontology with a p-value of 0.02, while 22 genes are annotated

to the GO term “organelle” in the Cellular Component Ontology with a p-value of

0.04. We also found the gene cluster that appears in all genomes in Figure 1 of Kellis
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Scer

SparR

Smik

SbayR

Fig. 19. Top gene cluster found by GCFinder that appears in all genomes on four

yeasts S. cerevisiae (Scer), S. paradoxus (Spar), S. mikatae (Smik), and S.

bayanus (Sbay).

et al. (2003) with an e-value of 4.4× 10−74 with minor differences. For both of these

clusters, the restricted version of GCFinder found almost identical structures with

paralogous copies omitted.

H. Discussion

We have developed two algorithms: the first finds colinear clusters that appear in

all input chromosomes without allowing paralogous genes and is very fast, taking

only seconds to minutes to process a set of chromosomes with thousands of genes.

When the number of chromosomes k is not very large, it is also possible to relax the

requirement to allow a colinear cluster to appear in an arbitrary number of input

chromosomes with each chromosome in either one of the two orientations, with a total

of 3k combinations to check. The second is an exact algorithm for the unrestricted

problem that guarantees that all maximal unordered clusters with the lowest e-values

are found while allowing paralogous genes and clusters that appear in an arbitrary

number of input chromosomes. Although it has exponential time complexity and can

take hours or days to process a small set of chromosomes, the unrestricted model

allows a much wider range of clusters to be identified.

There are other existing software implementations that use different models to
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predict conserved gene clusters, including FISH (Calabrese et al. 2003), GeneTeams

(Bergeron et al. 2002; Luc et al. 2003), HomologyTeams (He and Goldwasser 2005),

a generalized version of GeneTeams and HomologyTeams that does not require that

a cluster appears in every input chromosome (Kim et al. 2005), and DomainTeams

(Pasek et al. 2005). FISH uses a general model to establish correspondences between

segments on two chromosomes that may not simply be genes, but imposes an al-

most colinear ordering of pairwise homologous regions. DomainTeams is a variant of

GeneTeams that considers each domain as a unit rather than each gene, while the

other algorithms allow multiple genomes and use a gene proximity parameter that

restricts the number of intervening genes between adjacent genes in a cluster, which

is different from the constraint used in our algorithm GCFinder that restricts the

overall cluster size. GeneTeams further requires that there are no paralogous gene

copies within a genome, while HomologyTeams uses the number of base pairs as the

distance between genes in a cluster instead of using the number of intervening genes.

Among these algorithms, FISH, HomologyTeams and GCFinder are the only ones

that can provide statistical significance estimates, while the other algorithms report

the clusters in no particular order, making it hard to evaluate whether a cluster is

significant or not.

The clusters returned by GCFinder are, in most cases, similar to the ones re-

turned by these algorithms. Due to its different formulation, GCFinder can identify

clusters that are not found by these algorithms and is thus complementary to these

algorithms. One advantage of GCFinder is that it considers the biologically more

accurate model in which a gene is allowed to appear in more than one orthologous

group that reflects its multiple functions due to different domains. The ability of

GCFinder to provide statistical significance estimates while allowing clusters that

may not appear in every genome is very important for biologists to identify the most
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important clusters. Note that other than using COG (Tatusov et al. 1997) or the

method in Kellis et al. (2003), there are other ways to establish orthologous and

paralogous correspondences (Fujibuchi et al. 2000; Remm et al. 2001; Vandepoele

et al. 2002; Calabrese et al. 2003; Luc et al. 2003). To improve the accuracy of the

statistical significance estimates, more elaborate estimates that were developed in

Durand and Sankoff (2003) can be used.
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CHAPTER V

GENE CLUSTER QUERYING

A. Introduction

In bacteria, one of the main mechanisms to facilitate control of gene expression is

the organization of genes into operons, in which a number of algorithms are available

for their predictions (Salgado et al., 2000; Price et al., 2005; Che et al., 2006). An

important strategy to study operons and their evolution is to investigate clustering

of related genes within localized regions across multiple bacterial genomes. Since

operon structures can be altered by genome rearrangements (Coenye and Vandamme,

2005), it is important to allow the investigation of unrestricted gene clusters that

may not correspond to single operons across bacterial genomes. Although existing

algorithms are available that can identify gene clusters across two or more genomes,

including FISH (Calabrese et al., 2003), GeneTeams (Bergeron et al., 2002; Luc et al.,

2003), HomologyTeams (He and Goldwasser, 2005), and a generalized algorithm

of GeneTeams and HomologyTeams in Kim et al. (2005), very few algorithms are

efficient enough to study gene clusters across hundreds of genomes.

To overcome this difficulty, Lee and Sonnhammer (2003) first analyzed each

genome separately by identifying clusters of genes that belong to the same metabolic

pathway and then compared the results across a large number of genomes. One

drawback of such a strategy is that it is not possible to utilize comparative data

during the initial analysis. We observe that the following querying strategy can be

used to analyze gene clusters across a large number of genomes. Suppose that a

list of clusters is given on one of the genomes. For each given cluster Q, first find

the locations of all the related genes on each chromosome c. By considering c as a
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sequence of genes, the distribution of related genes within any window on c can be

modeled by the hypergeometric distribution. The list of windows in c with e-values

below a cutoff then give rise to a list of clusters on c. An important advantage of such

a querying strategy is that it is possible to obtain very high accuracy by choosing

initial clusters that have been experimentally confirmed. It is also more sensitive

than general-purpose algorithms that do not assume that an initial list of clusters is

given, since some of the orthologous genes that belong to a cluster may not appear

frequent enough in multiple genomes in order to be detected by these algorithms.

In this paper, we study gene clustering in 400 bacterial genomes by starting from

a well-characterized list of operons in Escherichia coli K12. We first validate our al-

gorithm by performing queries within its own genome. We then perform comparative

analysis of operon occurrences among bacterial groups and study gene orientations

within predicted clusters. We also study distributions of rearrangements, both within

and across clusters. We show that our algorithm is well suited for analyzing gene

clusters across a large number of genomes.

A software program implementing the algorithm (GCQuery) and supplementary

data are available at http://faculty.cs.tamu.edu/shsze/gcquery.

B. Methods

We represent each chromosome c by an ordered sequence of genes (g1, g2, . . . , gn).

Given a query cluster Q, our algorithm GCQuery first identifies the set of all related

genes on c. This defines a subsequence c′ = (g′
1, g

′
2, . . . , g

′
n′) of c. We think of each

substring (g′
j , g

′
j+1, . . . , g

′
j+k′−1) on c′ between the jth gene and the (j +k′−1)th gene

as a potential gene cluster that spans the window (gi, gi+1, . . . , gi+k−1) on c between

the ith gene and the (i + k − 1)th gene, where gi = g′
j and gi+k−1 = g′

j+k′−1 (see
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Figures 20 and 21). The probability of finding such a cluster of size at least k′ is

given by the hypergeometric distribution as

p(n, n′, k, k′) =

k
∑

i=k′

(

n′

i

)(

n− n′

k − i

)/(

n

k

)

. (5.1)

The expected number of such clusters that span a window of length k on c is given

by the e-value

e(n, n′, k, k′) = (n− k + 1)p(n, n′, k, k′). (5.2)

Note that windows cannot extend beyond the right end on a linear chromosome (see

Figures 20 and 21), but they can wrap around on a circular chromosome. Since n

and n′ are fixed, we precompute and store all the O(n) binomial coefficients. For

fixed k′, p(n, n′, k, k′) can then be obtained from p(n, n′, k, k′ − 1) in constant time,

and it takes O(n2) time and space to obtain all the possible e-values. Since each

cluster (g′
j, g

′
j+1, . . . , g

′
j+k′−1

) can be obtained from the previous one in constant time

by removing g′
j−1 and adding g′

j+k′−1
, the time complexity of the algorithm is O(n2).

We use the above algorithm to study the organization of bacterial gene clusters

by starting from a list of 123 E. coli K12 operons that are experimentally vali-

dated and contain at least four genes from the RegulonDB database (Huerta et al.,

1998), with protein sequences from the MG1655 strain of E. coli K12 (Blattner

et al., 1997). We analyze related clusters in 400 completely sequenced bacterial

genomes with taxonomy information (Wheeler et al., 2000; see Supplementary Fig-

ure S1 for all results). We follow the classification approach on the NCBI web site

(http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and divide the genomes into 18

groups (Table V left). While E. coli K12 belongs to the Gammaproteobacteria class,

Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacte-
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Algorithm GCQuery(Q,c) {

c′ ← subsequence (g′
1, g

′
2, . . . , g

′
n′) of c = (g1, g2, . . . , gn) such that each g′

i

is related to at least one gene in Q;

for k′ ← 1 to n′ do {

for j ← 1 to n′ − k′ + 1 do {

compute e(n, n′, k, k′) of the cluster (g′
j, g

′
j+1, . . . , g

′
j+k′−1) on c′

that spans the window (gi, gi+1, . . . , gi+k−1) on c,

where gi = g′
j and gi+k−1 = g′

j+k′−1
; } } }

Fig. 20. Algorithm GCQuery to find all related gene clusters on a linear chromosome

c from a query cluster Q.

Q =

c = g1 g4 g6 n = 6

c′ = g′1 g′
2 g′

3 n′ = 3

Cluster 1 g2 g3 k = 2 k′ = 2

Cluster 2 g3 g5 k = 3 k′ = 2

Cluster 3 g2 g3 g5 k = 4 k′ = 3

q1 q2

g5

q3

g3

q4

g2

Fig. 21. Illustration of all clusters of size greater than one on a linear chromosome c

from a query cluster Q. Dashed lines denote related genes. It is possible that

each gene in Q can be related to more than one gene in c and vice versa.



77

Table V. Number of genomes in each group (#) and the minimum, maximum and

overall percentage under four categories in each group. The minimum and

maximum percentages are computed over all genomes in each group, while

the overall percentage is computed by dividing the number of entries that

satisfy the condition within a category by the total number of entries con-

sidered. For each pair of E. coli K12 operon and bacterial genome, only one

significant cluster (if it exists) with the lowest e-value is considered. The

four categories are as follows (see the main text for details). (a) Percentage

of occurrences of operons that are significant. (b) Percentage of significant

clusters in which all genes share the same orientation. (c) Percentage of

conserved neighboring gene pairs within significant clusters. (d) Percentage

of conserved neighboring cluster pairs.

(a) (b) (c) (d)
Occurrence Gene Gene Operon

rate orientation neighbors neighbors
Group # Min Max All Min Max All Min Max All Min Max All

Acidobacteria 1 22.0 22.0 22.0 96.3 96.3 96.3 90.4 90.4 90.4 22.2 22.2 22.2
Actinobacteria 34 8.9 27.6 18.5 70.6 100.0 83.2 81.1 98.1 87.6 11.1 54.5 21.0
Alphaproteobacteria 52 4.9 42.3 19.8 63.5 100.0 86.0 78.2 100.0 87.3 7.7 66.7 20.7
Betaproteobacteria 36 17.1 49.6 33.9 79.5 100.0 91.9 89.3 96.4 93.2 8.0 33.3 16.8
Gammaproteobacteria 98 13.0 100.0 45.8 81.1 100.0 94.8 88.6 99.8 96.6 6.1 94.8 43.0
Deltaproteobacteria 14 10.6 31.7 23.5 68.6 100.0 88.1 86.1 98.4 90.5 8.0 38.5 14.6
Epsilonproteobacteria 11 9.8 19.5 14.1 70.6 100.0 93.2 82.4 92.6 86.8 8.7 35.7 18.8
Aquificae 1 8.1 8.1 8.1 90.0 90.0 90.0 82.0 82.0 82.0 10.0 10.0 10.0
Bacteroidetes/Chlorobi 10 8.1 17.9 15.0 90.0 100.0 97.3 80.2 95.7 88.5 18.8 52.9 29.3
Chlamydiae/Verrucomicrobia 11 8.1 15.4 10.3 90.0 100.0 92.8 89.4 98.0 96.2 15.8 38.5 30.2
Chloroflexi 2 13.8 15.4 14.6 73.7 88.2 80.6 89.0 91.7 90.3 10.5 11.8 11.1
Cyanobacteria 19 7.3 16.3 9.5 60.0 100.0 79.6 83.3 100.0 90.4 9.1 50.0 33.0
Deinococcus-Thermus 4 12.2 15.4 13.4 81.2 100.0 89.4 85.1 89.3 86.7 25.0 42.1 33.3
Firmicutes 95 2.4 31.7 14.8 64.0 100.0 92.0 79.9 100.0 90.5 7.7 87.5 23.4
Fusobacteria 1 12.2 12.2 12.2 93.3 93.3 93.3 91.2 91.2 91.2 13.3 13.3 13.3
Planctomycetes 1 11.4 11.4 11.4 100.0 100.0 100.0 89.8 89.8 89.8 14.3 14.3 14.3
Spirochaetes 9 6.5 13.0 10.5 80.0 100.0 94.0 93.0 100.0 96.5 13.3 50.0 28.3
Thermotogae 1 16.3 16.3 16.3 90.0 90.0 90.0 87.1 87.1 87.1 40.0 40.0 40.0

Total 400 2.4 100.0 24.9 60.0 100.0 91.3 78.2 100.0 93.1 6.1 94.8 31.0
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ria Epsilonproteobacteria belong to the Proteobacteria phylum. The largest group

contains 98 bacterial genomes, while seven groups contain four or less genomes. We

consider a gene in a query cluster to be related to a gene in a genome if their protein-

protein BLAST e-value is less than 10−5 when the set of all genes in the genome is

used as a database (Altschul et al., 1990). We consider a predicted cluster to be

significant if its e-value from the GCQuery algorithm is less than 10−5. Note that a

predicted cluster does not necessarily correspond to a single operon since the orienta-

tions of genes within the cluster may not be the same and there may be intervening

genes in the cluster.

C. Results

1. Gene clusters on E. coli K12

To validate our algorithm, we consider each of the 123 E. coli K12 operons and

apply GCQuery within its own genome to find significant clusters (see Supplementary

Figure S2 for complete results). All operons were found in their entirety except for

the thrLABC operon, which is involved in threonine biosynthesis (Cossart et al.,

1981). The gene thrL was missing since its protein consists of 21 amino acids and

is thus difficult to detect with a low e-value. Within E. coli K-12, a few sets of

homologous gene clusters were found, including operons narGHJI and narZYWV,

which encode the alpha, beta, delta and gamma units of nitrate reductase 1 and

nitrate reductase 2 respectively (Blasco et al., 1990). Both operons were found when

starting from either operon.

The four-component operon fixABCX of the anaerobic carnitine metabolism

consists of fixA, fixB, fixC and fixX (Walt and Kahn, 2002). The putative five-

component operon ydiQRST-fadK contains ydiQ, ydiR, ydiS, ydiT and fadK. The
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proteins fixA, fixB, fixC and fixX have high sequence similarity with ydiQ, ydiR,

ydiS and ydiT respectively (Campbell et al., 2003). When fixABCX is used as a

query, both fixABCX and a cluster containing ydiQ, ydiR, ydiS and ydiT were found.

When ydiQRST-fadK is used as a query, both ydiQRST-fadK and fixABCX were

found.

In the query results from the type 1 fimbrial operon fimAICDFGH (Lane et al.,

2007), in addition to itself, two additional clusters were found, including ycbQR-

SUVF with e-value 1.49 × 10−11 and yfcPSTUV with e-value 1.31 × 10−8 (Fig-

ure 22). Although the genes within these two clusters are of unknown function,

the clusters strongly resemble the two predicted transcription units ycbRSTUVF

and yfcOPQRSTU in Moreno-Hagelsieb and Collado-Vides (2002). This shows that

GCQuery can be used to search for potential new operons or gene clusters.

2. Comparative analysis of bacterial groups

We study the distribution of occurrences of the 123 E. coli K12 operons in 18 bacterial

groups. We define the occurrence rate in a genome to be the percentage of E. coli

K12 operons that have a significant predicted cluster in the genome. We define

the overall occurrence rate in a group of genomes to be the percentage of pairs

of operon and genome in the group that have significant occurrences. Table V(a)

shows the minimum, maximum and overall occurrence rates within each group (see

Supplementary Table S1 for detailed results). In Mycoplasma mobile 163K, only

three operons (2.4%) had significant occurrences. In fact, these three operons were

the only operons that occurred in all the 400 bacterial genomes (see below). In E.

coli W3110, all the operons had significant occurrences, which is not surprising since

it is also one of the E. coli K12 strains. In addition to E. coli K12 strains, six other

E. coli strains are completely sequenced in our data set, including E. coli 536, E. coli
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Fig. 22. Query results from the fimAICDFGH operon and their positions on the E.

coli K12 genome. Genes within the clusters are represented by filled arrows

while intervening genes are represented by hollow arrows.
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APEC O1, E. coli CFT073, E. coli O157:H7 EDL933, E. coli O157:H7 str. Sakai

and E. coli UTI89. The occurrence rates for these six E. coli strains were 90.2%,

90.2%, 91.1%, 94.3%, 95.1% and 90.2% respectively, which indicate that only a small

number of E. coli operons are not conserved during evolution. The overall occurrence

rate in the 400 bacterial genomes was 24.9%. Only two groups had overall occurrence

rate over 24.9%. The highest was the group Gammaproteobacteria, to which E. coli

K12 belongs, with overall occurrence rate 45.8%. The variations in occurrence rates

within the group were very high, ranging from 13.0% to 100.0%. Another group was

Betaproteobacteria, with overall occurrence rate 33.9%.

3. Comparative analysis of operon occurrences

We study occurrences of the 123 E. coli K12 operons in the 400 bacterial genomes.

Overall, 104 operons (84.6%) had occurrences in less than half of the 400 bacterial

genomes (Figure 23; see Supplementary Table S2 for detailed results). Only three

operons (2.4%) had occurrences in all the 400 bacterial genomes, including S10, spc

and alpha, which have high similarity among bacterial genomes (Watanabe et al.,

1997). Coenye and Vandamme (2005) studied the organization of these operons in 99

bacterial genomes and found that many bacterial genomes miss ribosomal proteins

that appear in E. coli.

In the S10 operon, S10, L3, L4, L23, L2, S19, L22, S3, L16, L29 and S17

encode ribosomal proteins. While S3 and L16 occurred within significant clusters in

all the 400 bacterial genomes, the occurrence rates of S10, L3, L4, L2, S19, L22 and

S17 were all over 97%. The genes L23 and L29 were much less conservative with

occurrence rates 63.2% and 62.8% respectively (Figure 24 left; see Supplementary

Table S3 for detailed results). The smallest significant cluster found contains four

consecutive genes in Silicibacter pomeroyi DSS-3 with e-value 1.4× 10−7, which are
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Fig. 23. Distribution of the occurrence rate of the 123 E. coli K12 operons in the 400

bacterial genomes.

orthologs of S10, L3, L4 and L23. In S. pomeroyi DSS-3, a cluster of seven genes

was also found with e-value 1.8×10−13, which are orthologs of the rest of the operon.

Interestingly, these two fragments together were similar to the operon, but there were

1077 intervening genes between them.

In the spc operon, L14, L24, L5, S14, S8, L6, L18, S5, L30, L15 and L36 encode

ribosomal proteins, while secY encodes a preprotein translocase membrane subunit.

Only S8 occurred within significant clusters in all the 400 bacterial genomes, while

the occurrence rates of L14, L24, L5, S14, S8, L6, L18, S5 and secY were all over

98%. The genes L30, L36 and L15 were much less conservative with occurrence

rates 78.8%, 67.0% and 38.2% respectively (Figure 24 middle; see Supplementary

Table S4 for detailed results).

The alpha operon consists of S13, S11, S4, rpoA and L17. While the three

genes S11, rpoA and L17 occurred within significant clusters in all the 400 bacterial
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Fig. 24. Distribution of the occurrence rate of genes within significant clusters in S10,

spc and alpha operons in the 400 bacterial genomes.

genomes, the occurrence rates of S13 and S4 were 99.5% and 55.2% respectively

(Figure 24 right; see Supplementary Table S5 for detailed results). The smallest

significant cluster found contains three genes in Magnetospirillum magneticum AMB-

1 with e-value 1.2 × 10−6, which are orthologs of S11, rpoA and L17. Significant

clusters in other bacterial genomes contain at least four genes.

The operon with the lowest occurrence rate (1.5%) in the 400 bacterial genomes

was the frl operon, whose genes are mainly involved in frutoselysine related metabolism

(Wiame and Van Schaftingen, 2004). The operon occurred in six bacterial genomes

only, including E. coli O157:H7 EDL933 with e-value 4.9 × 10−8, E. coli O157:H7

str. Sakai with e-value 5.1 × 10−8, E. coli W3110 with e-value 1.4 × 10−7, Shigella

boydii Sb227 with e-value 7.0× 10−8, Shigella sonnei Ss046 with e-value 7.6× 10−8

and Clostridium acetobutylicum ATCC 824 with e-value 7.4 × 10−6. The first five
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genomes belong to Gammaproteobacteria, while C. acetobutylicum ATCC 824 be-

longs to Firmicutes (see Supplementary Table S6 for detailed results).

The above results indicate that although very few E. coli K12 operons are shared

by all the 400 bacterial genomes, the counterparts of most operons can be found in

many bacteria. The GCQuery algorithm allows the evaluation of various hypotheses

concerning evolution and conservation of gene clusters.

4. Gene orientations within clusters

One of the most important characteristics of an operon is that all genes are tran-

scribed in the same direction. Although the GCQuery algorithm does not require

that genes in a cluster must all have the same orientation, the fact that all genes

within a predicted cluster have the same orientation provides additional evidence

that it is probably an operon.

We study the distribution of gene orientations within these clusters. With the

requirement that at most one significant cluster with the lowest e-value is considered

for each pair of E. coli K12 operon and bacterial genome, there were a total of 12231

significant clusters. We define the percentage of clusters in which all genes share the

same orientation in a genome only among these significant clusters. We define the

overall percentage in a group of genomes to be the percentage over all significant

clusters in the group of genomes. Within 91.3% of the 12231 clusters, all genes share

the same orientation (Table V(b); see Supplementary Table S7 for detailed results).

Within 13 groups (72.2%), one or more bacterial genomes had clusters in which

all genes share the same orientation. In fact, in 93 bacterial genomes (23.3%), all

clusters contain only one gene orientation.

Among the bacterial genomes, Synechococcus sp. CC9311 had the lowest per-

centage (60.0%) of clusters that contain only one gene orientation. While there
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were a total of ten predicted clusters in Synechococcus sp. CC9311, four of them

had genes with different orientations. The operon atpIBEFHAGDC consists of nine

genes that are subunits of ATP synthases (Kasimoglu et al., 1996). In Synechococcus

sp. CC9311, the predicted cluster consists of six genes that are separated into two

parts with 26 intervening genes between them, with homologs of atpD and atpC in

a different orientation from the other genes that are homologs of atpB, atpH, atpA

and atpG. The operon nuoABCEFGHIJKLMN encodes the subunits of an NADH

dehydrogenase (Archer and Elliott, 1995). In Synechococcus sp. CC9311, a smaller

cluster of four genes was found that are separated into two parts, with the first part

containing homologs of nuoH and nuoK, the second part containing homologs of

nuoL and nuoM, and each part in a different orientation. The operon cyoABCDE

encodes the cytochrome o oxidase complex (Cotter et al., 1990). In Synechococcus

sp. CC9311, a cluster of four genes was found that include homologs of cyoA, cyoB,

cyoC and cyoE, with the homolog of cyoE in a different orientation from the other

genes. The operon moaABCDE consists of genes that are involved in molybdopterin

synthesis (Tao et al., 2005). In Synechococcus sp. CC9311, a cluster of four genes was

found that include homologs of moaA, moaC, moaE and moaB in the given order,

with homologs of moaE and moaA in a different orientation from homologs of moaC

and moaB.

We are also interested in the effect of varying the BLAST e-value cutoff that

defines related genes on gene orientations. As the cutoff decreases from 10−5 to 10−60,

the total number of related genes decreases and the overall percentage of clusters that

contain only one gene orientation increases from 91.3% to 98.3% (Figure 25). This

shows that a more stringent requirement can affect the results.
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Fig. 25. Percentage of clusters in which all genes share the same orientation for dif-

ferent BLAST e-value cutoffs.

5. Rearrangements within clusters

In addition to common gene orientations, the spatial arrangement of genes within

bacterial operons is important for function, expression and regulation of these genes

(Itoh et al., 1999; Tamames, 2001). We study the distribution of gene order within

the 12231 clusters described above. For a given pair of E. coli K12 operon Q and

predicted cluster C and a set of correspondences with each of them linking a gene

in Q to a related gene in C, we obtain a subset of one-to-one corresponding pairs

of links as follows: if there are more than one link for a gene in Q, only retain the

one with the lowest BLAST e-value. After this step, if there are more than one link

for a related gene in C, only retain the one with the lowest BLAST e-value. In the

remaining set of k genes in Q and k related genes in C, assign a label from +1 to

+k to each gene in Q according to the order of genes in E. coli K12, then assign the
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Fig. 26. Distribution of the percentage of conserved neighboring gene pairs over all

clusters.

corresponding label for each related gene in C, while giving it a ‘+’ direction if the

related gene is on the forward strand within the cluster and a ‘−’ direction if the

related gene is on the reverse strand within the cluster. The sequence of k genes in C

then corresponds to a signed permutation, in which each neighboring gene pair in C

with labels l1 and l2 is considered to be a breakpoint if l1 and l2 are not consecutive,

that is, |l1 − l2| 6= 1 (Kececioglu and Sankoff, 1995). We define the percentage of

conserved neighboring gene pairs to be the total number of neighboring gene pairs

that are not breakpoints divided by k− 1 (which is the total number of neighboring

gene pairs), and use it to evaluate the degree of conservation of gene order. Among

the 12231 clusters, 83.0% of them had perfectly conserved neighboring gene pairs

(Figure 26), which means that the gene order within E. coli K12 and the gene order

within each cluster are the same either in the forward or in the reverse direction.
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When more than one pair of operon and predicted cluster are considered to-

gether, we define the overall percentage of conserved neighboring gene pairs to be

the total number of neighboring gene pairs that are not breakpoints over all pairs

of operon and predicted cluster divided by the total number of neighboring gene

pairs over all pairs of operon and predicted cluster. Table V(c) shows that the

conservation of neighboring gene pairs was in general very high (see Supplemen-

tary Table S8 for detailed results). Among all the neighboring gene pairs, 93.1% of

them were conserved. Only four groups had overall percentage over 93.1%, including

Gammaproteobacteria (96.6%), Spirochaetes (96.5%), Chlamydiae/Verrucomicrobia

(96.2%) and Betaproteobacteria (93.2%). Among the bacterial genomes, Sinorhizo-

bium meliloti 1021 had the lowest overall percentage (78.2%), with 13 clusters having

non-conserved neighboring gene pairs among a total of 28 clusters.

Although gene order within operons can be unstable (Itoh et al., 1999), our

results on gene orientation and gene order indicate that predicted clusters tend to

contain only one gene orientation and the gene order tends to be conserved.

6. Rearrangements across clusters

While most previous approaches in analyzing genome rearrangements consider each

gene as a basic unit (Kececioglu and Sankoff, 1995), we study genome rearrange-

ments also at the level of gene clusters. For each bacterial genome, we collect at

most one significant cluster with the lowest e-value for each E. coli K12 operon.

For each chromosome c, we assign a label from 1 to k for each operon that has a

significant cluster on c according to the order of operons in E. coli K12. Then as-

sign the corresponding label to each significant cluster on c according to the starting

position of the window that the cluster occupies. If the starting window positions

of two clusters are the same, then the clusters are ordered according to the ending
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window positions. Since our results indicated that none of the predicted clusters

from different operons occupy exactly the same window, this always breaks a tie.

The sequence of k clusters on c then corresponds to an unsigned permutation in

which each neighboring cluster pair on c with labels l1 and l2 is considered to be

a breakpoint if l1 and l2 are not consecutive, that is, |l1 − l2| 6= 1 (Kececioglu and

Sankoff, 1995). We define the percentage of conserved neighboring cluster pairs to

be the total number of neighboring cluster pairs that are not breakpoints divided by

k (which is the total number of neighboring cluster pairs on a circular chromosome).

When more than one chromosome are considered together, we define the overall

percentage of conserved neighboring cluster pairs to be the total number of neighbor-

ing cluster pairs that are not breakpoints over all chromosomes divided by the total

number of neighboring cluster pairs over all chromosomes. Among all the neighbor-

ing cluster pairs, only 31.0% of them were conserved (Table V(d); see Supplementary

Table S9 for detailed results). Among all groups, Gammaproteobacteria, to which

E. coli K12 belongs, had the highest overall percentage (43.0%). The percentage

was the highest in E. coli O157:H7 EDL933 (94.8%), which belongs to Gammapro-

teobacteria, with six non-conserved neighboring cluster pairs among a total of 116

neighboring cluster pairs. Interestingly, Psychrobacter cryohalolentis K5, which had

the lowest percentage (6.1%), is also in this group.

When compared to rearrangements within clusters, our results indicate that

large-scale rearrangements at the level of clusters are much more pronounced, al-

though the degree of conservation can still be very high among closely related bac-

terial genomes.
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D. Discussion

We have demonstrated that our querying strategy is well suited for analyzing gene

clusters across a large number of genomes. Due to the speed of the algorithm, we

were able to obtain all the results on 400 bacterial genomes in less than one day. Since

the algorithm does not make any assumptions on the orientation or the density of

genes within clusters and only requires that genes in a significant cluster are closer

together than expected by chance, it can also be used for analyzing gene clusters

on higher organisms such as yeast. Other than using BLAST to establish relations

between genes or proteins, it is also possible to use other methods such as COG

(Tatusov et al., 1997) or Inparanoid (Remm et al., 2001) to identify related genes

that are orthologs or paralogs.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this dissertation, we improve and develop algorithms for five biological pattern

finding problems. For the multiple sequence alignment problem, we propose an

alternative formulation in which a final alignment is obtained by preserving pairwise

alignments specified by edges of a given tree. In contrast with traditional NP-hard

formulations, our preserving alignment formulation can be solved in polynomial time

without using a heuristic while having very good accuracy. Such a formulation is

very important as it makes it possible to know what the alignment means and also

ensures that the optimal solution can be found. In order to align k sequences, a

tree of k nodes is required to determine the set of pairwise alignments that are to

be preserved in the final alignment. Sometimes only some of the sequence pairs are

required to be preserved, or multiple trees or graphs that represent the relationships

among sequences are given. For future work, it may be interesting to develop efficient

algorithms to solve such more general preserving alignment problems.

For the path matching problem, we take advantage of the linearity of the query

path to reduce the problem to finding a longest weighted path in a directed acyclic

graph. By using known algorithms for the k-shortest path problem, we can find

k paths with top scores in a network from the query path in polynomial time. By

allowing a vertex to appear multiple times in the results, our formulation is more con-

sistent to biological facts and is also biologically useful in identifying multiple roles

of a vertex. In our method, the length of the query path will not be a limiting factor

and this is in contrast with most previous approaches that used exponential time al-

gorithms to find simple paths which are practical only when the paths are short. As

many biological pathways are not linear and may consist of multiple interacting com-
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ponents, our graph matching approach allows a non-linear graph query to be given.

By leveraging the observation that the query graph usually corresponds to a small

functional module, our graph matching formulation overcomes the common weak-

ness of previous approaches that there is no guarantee on the quality of the results.

We notice that considerable research efforts have recently been devoted to exploring

conserved pathways and functional modules in biological networks. However, these

pathways or modules are often found based on sequence similarity between corre-

sponding biological objects. The sequence similarity-oriented models emphasize the

biological objects by labeling the vertices and using the similarity between them, but

ignore the importance of interactions between objects by treating all edges equally.

Since the models miss important components implied in biological interactions, what

are found are not functionally conserved paths. For future work, it is of interest to

investigate an approach that is able to find functionally similar paths or subgraphs

for a given query path or query graph. One noticeable advantage is that the new

approach will be able to find functionally similar pathways or modules from both

the parallel evolution and the convergent evolution point of view, which are ignored

by current approaches.

For the gene cluster finding problem, we investigate a formulation based on

constraining the overall size of a cluster and develop statistical significance estimates

that allow direct comparisons of clusters of different sizes. We prove that the problem

is NP-hard when multiple genomes are given. We explore both a restricted version

which requires that orthologous genes are strictly ordered within each cluster, and

the unrestricted problem that allows paralogous genes within a genome and clusters

that may not appear in every genome. We solve the first problem in polynomial time

and develop practical exact algorithms for the second one. In our model, a gene is

allowed to appear in more than one orthologous group and this is consistent with
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the biological fact that many known genes have multiple functions due to different

domains. Our approach is also able to provide statistical significance estimates while

allowing clusters that may not appear in every genome.

In the gene cluster querying problem, based on a querying strategy, we propose

an efficient approach for investigating clustering of related genes across multiple

genomes for a given gene cluster. By analyzing gene clustering in 400 bacterial

genomes, we show that our algorithm is efficient enough to study gene clusters across

hundreds of genomes.

As more and more genomes have been sequenced, it is desirable to have an

approach that can solve the gene cluster finding problem efficiently and identify

clustering of sets of homologous genes among multiple genomes. For future work, it

is possible to combine our ideas for finding and querying problems of gene clusters

and develop an efficient two-phase algorithm for the gene cluster finding problem as

follows. In phase one, a small set of representative genomes are chosen and an existing

algorithm is used to identify all common gene clusters among these chromosomes. In

phase two, our gene cluster querying algorithm is used to query the clusters found

above against the rest of the genomes. Since all common clusters should be found in

phase one, this two-phase approach will not miss any significant results.
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