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1 Introduction

In this paper we analyze situations where the observations are associated with

the beta distribution. A random variable with beta distribution, defined in

equation (1), could represent random variation of a probability, fraction or

prevalence, for example. Thus, this distribution has many applications in

areas as finantial sciences or social sciences as education, where the random

variables are continuous in a bounded interval which is isomorphic to the

interval [0, 1]. To mention an example, in studies of the quality of education,

a number between 0 and 5 (or any other positive integer bounds) is assigned

as a measure of performance in the evaluation of school subjects as math,

language, arts, natural sciences or any other scholar areas. In these cases,

the measure assigned to each student can be expressed as a number between

zero and one. Thus, it can be assumed that the level of student performance

is a random variable with beta distribution.

The beta p, q distribution function, defined by equation (1) can be re-

parametrized as a function of the mean and the so called dispersion parameter

as in equation (4) or as function of the mean and variance. This charac-

terizations of the beta distribution can be more appropriate. In the first

re-parametrization, making ϕ = p+ q we can see that p = µϕ, q = ϕ(1− µ)

and σ2 = µ(1−µ)
ϕ+1

. In this case, ϕ can be interpreted as a precision parame-

ter in the sense that, for fixed values of µ, larger values of ϕ correspond to

smaller values of the variance of Y . This reparametrization that is presented

in Ferrari and Cribari-Neto (2004), has already appeared in the literature,

for example in Jorgensen (1997) or in Cepeda (2001, pg 63).

In this case, the mean and dispersion parameters can be modeled as func-
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tions of explanatory variables. To cite a few examples, the educational level

of mothers could influence the students school performance, the land con-

centration can be explained by random variables associated with social and

political facts or the proportion of income spent monthly could be explained

by the number of persons in the household. At the same time we can assume

that the precision parameter changes as a function of the same or other ran-

dom variables. With these ideas, Bayesian regression, with joint modeling

of the mean and dispersion parameters, was initially proposed by Cepeda

(2001, pg. 63), in the framework of joint modeling of parameters in the bi-

parametric exponential family (see Cepeda and Gamerman 2001, 2005). In

a later paper, Ferrari and Cribari-Neto (2004) proposed classical beta re-

gression models, assuming that the dispersion parameter is constant through

the rank of the explanatory variables. Further works have been published

by Smithson and Verkuilen (2006), Simas et al. (2010) and, Cepeda-Cuervo

and Achcar (2010a), the latter proposing nonlinear beta regression in the con-

text of Double Generalized Nonlinear Models. This last model is extended

in Cepeda et al (2011) and Cepeda and Nuñez-Anton (2011) where spatial

correlation is assumed.

This paper summarizes the beta regression models, with joint modeling of

the mean and precision parameters, and the Bayesian methodology proposed

by Cepeda (2001) and Cepeda and Gamerman (2005) to fit these models.

This Bayesian methodology is implemented and applied in the development

of simulated and applied studies.

The rest of the paper is organized as follows. In section 2 general con-

cepts about the beta distribution is presented. Section 3 presents the joint
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mean and precision beta regression models. Section 4 presents the Bayesian

methodology proposed to fit the beta regression models. Section 5 includes

simulations studies and section 6 includes an application of the percentage

of income expended in food.

2 The beta distribution

A random variable Y has beta distribution if its density function is given by

f(y|p, q) = Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1I(0,1)(y) (1)

where p > 0, q > 0, Γ(.) denotes the gamma function and I(0,1)(y) the

indicator function in the open interval (0, 1). The mean and variance of Y ,

µ = E(Y ) and σ2 = V ar(Y ), are given by

µ =
p

p+ q
(2)

σ2 =
p q

(p+ q)2(p+ q + 1)
(3)

Many random variables can be assumed to have beta distribution. For ex-

ample, the income inequality or the land distribution when it is measured

using the Gini index proposed by Atkinson(1970) and the performance of the

students in subjects as mathematics, natural sciences or literature. In the

last case, if the performance X takes values in the interval (a, b), the random

variable Y = (X−a)/(b−a) can be assumed to have beta distribution. This

performance can be explained by household socioeconomic variables, that

have fundamental impact on the cognitive achievement of students. For ex-

ample, the level of student achievement is closely related to educational levels

4



of their parents and the number of hours devoted to study a subject. Thus,

the beta regression model could be appropriate to explain the behavior of the

school performance as a function of associated factors. In these applications

however, the reparametrization of the beta distribution given in (4) can be

more appropriate. In the first one, doing ϕ = p+ q we can see that p = µϕ,

q = ϕ(1−µ) and σ2 = µ(1−µ)
ϕ+1

. In this case, ϕ can be interpreted as a precision

parameter in the sense that, for fixed values of µ, larger values of ϕ corre-

spond to smaller values of the variance of Y . This reparametrization that is

presented in Ferrari and Cribari-Neto (2004), had already appeared in the

literature, for example in Jorgensen (1997) or in Cepeda (2001). With this

reparametrization, the density of the beta distribution (1) can be rewritten

as

f(y|α, β) = Γ(ϕ)

Γ(µϕ)Γ((1− µ)ϕ)
yµϕ−1(1− y)(1−µ)ϕ−1I(0,1)(y) (4)

In this case, the mean and dispersion parameters can be modeled as func-

tion of explanatory variables, for example, as was proposed in Cepeda(2001),

given that changes in the precision parameter can be explained by explana-

tory variables, such as mothers educational level in the case of the student’s

school performance.

The beta distribution given in (1) can also be reparametrized as a function

of the mean and variance, with

p =
(1− µ)µ2 − µσ2

σ2
(5)

q =
(1− µ)[µ− µ2 − σ2]

σ2
(6)
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Although writing (1) as a function of µ and σ2 can result in a complex ex-

pression, joint modeling of the mean and variance can be easily achieved

applying the Bayesian methodology proposed in Cepeda(2001) and Cepeda

and Gamerman (2005). Sometimes the joint modeling of the mean and vari-

ance could be more appropriate than the joint modeling of the mean and the

so called precision parameter, given that the parameters of the regression

models would be more easily interpreted.

3 Joint modeling in beta regression

With the reparametrization of the beta distribution as a function of µ and

ϕ we can define a double generalized beta regression model as is proposed

in Cepeda (2001) and in Cepeda and Gamerman (2005). In that research

work the joint modeling of the mean and dispersion parameters in the beta

regression model and a Bayesian methodology to fit the parameters of the

proposed model, was defined. In a more general frame, for example they

assume a random sample Yi ∼ Beta(pi, qi), i = 1, 2, . . . , n, where both, the

mean and the precision parameter, are not constant for all observations and

are modeled as regression models. That is,

logit(µi) = xt
iβ (7)

log(ϕi) = ztiγ

where β = (β0, β1, ..., βk) and γ = (γ0, γ1, . . . , γp) are the vectors of the

mean and dispersion regression models and, xi and zi are the vectors of

the mean and dispersion explanatory variables, at the i-th observation, re-

spectively. In a later paper, Ferrari and Cribari-Neto (2004) proposed the

6



same reparametrization of the beta distribution, that is µ = p/(p + q) and

ϕ = p+q. In that paper, they assumed that g(µi) = xt
iβ, where g is a strictly

monotonic and twice differentiable real valued link function, defined on (0, 1),

assuming that the dispersion parameter is constat through the range of the

explanatory variables. Although they consider many possible link functions,

in the applications they take the logit link function, given that the mean can

be interpreted as a function of the odds ratio. The joint beta regression mod-

els proposed by Cepeda(2001), was later studied by Smithson and Verkuilen

(2006) and then by Simas et al. (2010). At the same time a nonlinear beta

regression was proposed by Cepeda and Achcar (2010), assuming the model

µi =
β0

1+β1 exp(β2xi)
(8)

log(ϕi) = zi
tγ (9)

in the context of Double Generalized Nonlinear Models (Cepeda and Gamer-

man, 2005). This model was applied to the schooling rate data analysis in

Colombia, for the period ranging from 1991 to 2003.

4 Bayesian methodology

To implement a Bayesian approach to estimate the parameters of the model

(7) we need to specify prior distributions for the parameters of the model. For

simplicity, we assume independent normal prior distributions given by β ∼

N(b,B) and γ ∼ N(g,G) where b,B,g,G are given by the researcher, based

on prior knowledge. Thus, if L(β,γ| data) denotes the likelihood function

and p(β,γ) the joint prior distribution, the posterior distribution is given by
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π(β,γ| data) ∝ L(β,γ| data)p(β,γ). Given that the posterior distribution

π(β,γ| data) is analytically intractable and it is not easy to generate samples

from it, Cepeda(2001) proposed to sample these parameters using an iterative

alternating process, that is, sampling β and γ from the posterior conditional

distributions π(β|γ, data) and π(γ|β, data), respectively. But given that

these distributions are analytically intractable, the Bayesian methodology

proposed in Cepeda (2001) Cepeda and Gamerman (2001), in which it is

necessary to build normal transition kernels, is applied. Specifically, to fit

the beta regression models where h(µ) = Xβ and g(τ) = Zγ, where τ = ϕ (or

τ = σ2), we build working variables to approximate h(µ) and g(τ) around

the current values of µ and τ , respectively. Given that E(yi) = µi and h

has Taylor representation in some neighborhood of µi = h−1(x
′
iβ), to obtain

the posterior samples of β, we define the working variable as the first order

Taylor approximation

h(yi) ≈ h(µi) + h′(µi)(yi − µi) = ỹi. (10)

This new random variable has E(ỹi) = x
′
iβ and V ar(ỹi) = [h′(µi)]

2V ar(yi).

Thus, if β(c) and γ(c) are the current values of β and γ, the appropriate

working observation variable (10), defined to build the transition kernel to

get samples of β, can be rewritten as

ỹi = x
′

iβ
(c) + h′[h−1(x

′

iβ
(c))][yi − h−1(x

′

iβ
(c))], for i = 1, 2, ..., n, (11)

and its associated working observational variance as

σ̃2
i = {h′[h−1(x

′

iβ
(c))]}2V ar(yi). (12)

8



Thus, assuming that (11) has normal distribution and given the normal

conditional prior distribution β|γ ∼ N(b, B), the normal transition kernel

Q1 is given by the posterior distribution obtained from the combination of

the prior distribution with the working observation model ỹi ∼ N(xiβ, σ̃
2
i ).

This is,

Q1(β|β̂, γ̂) = N(b∗ ,B∗), (13)

where

b∗ = B∗(B−1b+X
′
Σ−1Ỹ )

B∗ = (B−1 +X
′
Σ−1X)−1

with Σ a diagonal matrix with diagonal entries σ̃2
i , i = 1, 2, ..., n. Thus, the

values of β from the posterior distribution sample of π(β,γ) are proposed

from the transition kernel (13).

To obtain posterior samples of γ, a kernel transition function is built

assuming that there exists a random variable ti such that E(ti) = τi, where

τi = g−1(z
′
iγ). The working observational variable ŷi is given by the first

order Taylor approximation of g(ti)

g(ti) = g(τi) + g′(τi)(ti − τi) = ŷi, i = 1, . . . , n. (14)

Thus, E(ŷi) = z
′
iγ and V ar(ŷi) = [g′(µi)]

2V ar(ti). In consequence, if β(c)

and γ(c) are the current values of β and γ, the working observational variables

(14) can be rewritten as

ŷi = z
′

iγ
(c) + g′[g−1(z

′

iγ
(c))][ti − h−1(z

′

iγ
(c))], for i = 1, 2, ..., n, (15)
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and their associated observational working variances as

σ̂2
i = {g′[g−1(z

′

iγ
(c))]}2V ar(ti). (16)

Assuming that the observational working variables (15) have independent

normal distributions and given that the conditional prior distribution is given

by γ|β ∼ N(g,G), the normal transition kernel to obtain the posterior sam-

ples is given by the posterior distribution obtained from the combination of

the prior distribution with the working observational models ŷi ∼ N(z
′
iγ, σ̂

2
i ),

i = 1, . . . , n. This is,

Q2(γ|γ̂, β̂) = N(g∗ ,G∗), (17)

where

g∗ = G∗(G−1g + Z
′
Ψ−1Ỹ ),

G∗ = (G−1 + Z
′
Ψ−1Z)−1

with Ψ a diagonal matrix with entries σ̂2
i for i = 1, 2, ..., n. From the transi-

tion kernel Q2, samples of the posterior distribution π(β,γ) are proposed.

With the transition kernels given by (13) and (17), the parameters vector

(β,γ)
′
is updated as follows:

1. Begin the chain interactions counter j = 1 and give initial values

(β0,γ0) to (β,γ)
′
.

2. Move the vector β to a new value ψ generated from the proposed

density Q1(β
(j−1), .).
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3. Calculate the acceptance probability of movement α(β(j−1), ψ) . If

the movement is accepted, then β(j) = ψ. If it is not accepted, then

β(j) = β(j−1).

For the acceptance of the movement an observation u is drawn from

the uniform distribution U(0, 1). If α(β(j−1), ψ) < u the movement is

accepted. Otherwise, the movement is rejected.

4. Move the vector γ to a new value ψ, generated from the proposed

density Q2(γ
j−1, .).

5. Calculate the acceptance probability of movement α(γ(j−1), ψ). If the

movement is accepted, then γ(j) = ψ. If it is not accepted, then γ(j) =

γ(j−1).

6. Finally, change the counter from j to j+1 and go to 2 until a specified

number of draws. If convergence has not been reached, the number of

draws should be incremented until convergence is achieved.

In the case where the data come from the beta distribution, Yi ∼ B(pi, qi),

i = 1, 2, . . . , n, with mean and precision models given by (7), the working

observational variable associated with the mean is obtained from (11), with

ti = Yi, and the working observational variable associated with the precision

model is obtained from (15) with ti =
(pi+qi)

2

pi
Yi. These working observational

variables are given by:

1. For Yi ∼ B(pi, qi), the mean µi = pi/(pi + qi) can be modeled as

logit(µi) = x
′
iβ and pi + qi can be modeled as log(pi + qi) = z

′
iγ.
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Then the appropriate working observational variable defined to build

the transition kernel to get samples of β is

ỹi = x
′

iβ
(c) +

yi − µ
(c)
i

(µ
(c)
i )(1− µ

(c)
i )

, i = 1, 2, ..., n,

where µ(c) and β(c) are the current values of µ and β.

2. For ϕi = pi + qi, we propose the model τi = exp(ziγ). In this case,

given that E(ti) = pi + qi for ti =
(pi+qi)

2

pi
Yi, the working observational

variable obtained from (15) is

Ỹi = z
′

iγ
(c) +

(p
(c)
i +q

(c)
i )2

p
(c)
i

Yi − (p
(c)
i + q

(c)
i )

p
(c)
i + q

(c)
i

,

= z
′

iγ
(c) +

Yi

µ
(c)
i

− 1, i = 1, 2, ..., n. (18)

The normal transition kernels are given by the posterior distributions

obtained from the combination of the prior distributions with the working

observational models given by the working observational variables as in equa-

tions (13) and (17).

5 Simulation studies

In this section we include the results of two simulation studies in which we

analyze the performance of the Bayesian methodology proposed to fit the

joint modeling of the mean and precision parameters in the beta regression

models. In both cases 40 values of two independent explanatory variables X

and Z were generated from the uniform distribution U(0, 20). With these
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data, denoted by xi and zi, i = 1, . . . , n, respectively, the mean and preci-

sion parameters of the beta distribution were generated from the mean and

precision models

logit(µi) = β0 + β1xi and (19)

log(ϕi) = γ0 + γ1zi (20)

respectively, where the true parameter values are given in each of the simu-

lations. Then, values of the interest variable Y were generated from the beta

distribution B(µi, ϕi).

5.1 First simulation

To apply Bayesian methodology, normal prior distributions of the formN(a, 10kI)

were assigned to the mean and dispersion parameters, where I stands for the

2 × 2 identity matrix, a = (0, 0) and k = 4. The number k = 4 was chosen

to impose large prior variances but, as we have checked in our analysis, in-

creasing this value to larger orders of magnitude made no effective difference

in the estimation process. Larger values could have also been used leading

to very small changes in the posterior distributions.

With the data generated assuming the true parameter values (t.v) given

in Table (5.1), the posterior summary of the parameters obtained using the

usual MCMC algorithms, implemented in MatLab software, is given in Table

(5.1), where B.E. denote the Bayesian parameter estimates and s.d their cor-

responding standard deviation. The estimates were obtained with a sample

of size 400 obtained after a burn-in period of 6000 steps with a sampling gap
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of size 10. In the Table (5.1) we can see that the estimates are close to the

corresponding true values, that are at less than one standard deviation from

their estimates.

Mean model Precision model

Parameters β0 β1 γ0 γ1

t.v. 0.75 -0.055 0.15 -0.04

B.E. 0.437 -0.047 0.017 -0.046

s.d. 0.410 0.036 0.303 0.025

Table 1: Posterior parameter estimates, first simulation.

Figure 5.1 includes the chains and the histograms of the posterior sam-

ples. Although the chains are shown from iteration 6000, in general, they

showed a small transient period, indicating a good performance of the pro-

posed Bayesian methodology. The horizontal line in the graphs of the chains

represent the true parameter values. The histograms seem to show that the

posterior samples of the parameters come from normal distributions.

5.2 Second simulation

The second simulated study was developed assuming the mean and variance

models given by (19) and (20). With the same prior distribution as in the

first simulated study and with the data set generated with the true parameter

values given in Table (5.2), samples of the posterior parameter distribution

are obtained using usual MCMC algorithm. The posterior parameter esti-

mates and their respective standard deviation, obtained with a sample of size
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Figure 1: Chains and histograms of the posterior samples.

400 obtained after a burn-in period of 6000 steps with a sampling gap of size

10 are given in Table (5.2). As in the first simulation, we can see that the

estimates are close to the corresponding true values, that are at less than one

standard deviation from their estimates.

Mean model variance model

Parameters β0 β1 γ0 γ1

t.v. 0.450 -0.035 -0.350 0.025

B.e. 0.465 -0.056 -0.356 0.043

s.d 0.416 0.036 0.310 0.026

Table 2: Posterior parameter estimates, second simulation.

Figure 6 includes the chains and histograms of the posterior samples.

In all cases, many chains were simulated starting at different initial values,

which converged to the same values after a short transition period. Thus, the
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chains exhibit the same qualitative behavior, providing a rough indication of

stationarity. For these models, the estimates of the precision parameters

(and their respective standard deviation) are in Table 5.2.
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Figure 2: Chains and histograms of the posterior samples.

6 Application

In this section we present the results of the analysis of a data set which

consists of 38 households in a large U.S. city, taken from Griffiths et al.

(1993, Table 15.4). The interest variable is the proportion of the income

spent on food, and the explanatory variables are the level of income INC

and the number of persons in the household NUM . Although this data

set was analyzed using beta regression models assuming constant precision

parameter, in this case, we assume a joint modeling of the mean and precision

parameters. Thus, we initially assume the models given by equation (21).
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logit(µ) = β0 + β1INC + β2NUM (21)

log(ϕ) = γ0 + γ1INC + γ2NUM

Assuming normal prior distribution N(a, 104I), where I stands for the

3 × 3 identity matrix, a = (0, 0, 0), the parameter estimates and the corre-

sponding standard deviations, obtained using the usual MCMC algorithms,

are given in Table 6. This estimate were obtained from a posterior sample

obtained after a burning of 5000 steps with a sampling gap of size 10. Table

(6) includes the parameters estimation of two models, where θ̂ denotes the

sample posterior mean of the parameters. The first one with all explanatory

variables, as in equation (21). The second one without the random variable

INC in the precision model, given that the standard deviation associated

with γ̂1 seems to show that this parameter is not statistically different from

zero.

Mean model Precision model

Parameters β0 β1 β2 γ0 γ1 γ2

θ̂ -0.7404 -0.0093 0.0978 4.6529 0.0048 -0.3593

s.d. 0.2074 0.0031 0.0411 0.7840 0.0123 0.2113

θ̂ -0.7582 -0.0091 0.1021 4.8428 .... -0.3500

s.d. 0.2091 0.0030 0.0386 0.4936 ..... 0.1298

Table 3: Parameters estimation.

The BIC value of the model where all the variables are included in the

mean and precision models is BIC = −118.2793. When we consider the same
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model for the mean but only including number of persons in the household

NUM in the precision model, the BIC value is given by BIC = −118.8582. If

the joint beta regression model with mean model given by (21) and precision

regression model only with INC as explanatory is considered, the BIC value

is given by BIC = −82.6356. Thus, according to the BIC values, the best

model to fit this households data is which include INC and NUM in the

mean model and NUM in the precision models, given that it has the least

BIC value.
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Figure 3: Estimates mean parameters.

To compare with the results obtained by Ferrari and Cribari-Neto (2004)

applying classical methodology, we also fit the beta regression model with

constant precision parameter ϕ. The Bayesian parameter estimates and the

classical parameter estimates are given in Table 6. In the case of the Bayesian

beta regresion the BIC value is given by BIC = −82.2636

We also notice that there is agreement between classical and bayesian

parameter estimation. Thus, as in Ferrari and Cribari (2004) a negative re-
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Parameters β0 β1 β2 ϕ

Classical Estimates -0.62255 -0.01230 0.11846 35.60975

d.s 0.22385 0.00304 0.03534 8.07960

Bayesian Estimates -0.6237 -0.0124 0.1190 32.8666

d.s 0.2357 0.0033 0.0379 7.1815

Table 4: Clasical and Bayesian parameters estimation.

lationship between the mean response (proportion of income spent on food)

and the level of income, and a positive relationship between the mean re-

sponse and the number of persons in the household.

7 Conclusion

This paper presents a join mean and dispersion models proposed by Cepeda

(2001) and the Bayesian methodology proposed to develop posterior param-

eter inferences of the parameters. The studies with simulated and real data

sets indicate good performance of the proposed Bayesian methodology, show-

ing the agreement between true and estimates values, in the case of the sim-

ulated study, and between Bayesian and classical estimates, in the case of

real data set analysis.

Some extension of the models and the methodologies included in this

paper can be proposed. In the theoretical framework, join modeling of the

mean and precision parameter, as regression models, can be proposed in a

bivariate beta distribution, defined using copulas functions. In this case, the
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posterior samples of the regression can be obtained as in this paper and a

proposal to get samples of the association parameter can be developed using,

for example, a random walk.
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