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Abstract

In this thesis, we tackle some problems concerning the interplay of insurance and
financial risks.

First, we consider an insurance or financial company intending to allocate the risk
capital withheld for its overall investment portfolio among its constituents. Shortly,
we assume that the company computes the risk capital through the Haezendonck–
Goovaerts risk measure, and we establish the unique capital allocation rule consistent
with a RORAR (return on risk-adjusted capital) approach. Besides, we present some
asymptotics and propose a consistent estimator for the capital allocation rule. Finally,
we conduct some numerical studies.

Then, we solve the problem of valuing some mortality-linked derivatives by employ-
ing the utility indifference pricing approach. Succinctly, we suppose that the mortality
risk emanates from a portfolio of life insurance policyholders, whose remaining lifetimes
are modeled as conditionally independent random times. By adapting some results
from credit risk theory, we compute an explicit expression for the utility indifference
price when the derivative is a linear combination of pure endowments. By considering
a more general contingent claim, we use techniques of backward stochastic differential
equations (BSDE) to characterize the indifference price in terms of a solution to a
non-linear BSDE with a non-Lipschitz generator.

Finally, we consider an individual aiming to optimally choose its investment,
consumption, and life insurance purchase strategies in a complete financial market. By
assuming that the optimality criterion is the maximization of the individual’s expected
state-dependent utility, we solve the optimal choice problem in a general setup, which
includes several utility functions employed in the literature.
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Chapter 1

Objectives and outline of the thesis

In this thesis, we analyze quantitatively some insurance and financial risks, whose
interplay impacts the decisions making of a rational economic agent. Specifically, we
first study how an insurance or financial company should allocate the risk capital among
constituents of its overall portfolio. Subsequently, we consider the utility indifference
pricing of some mortality-linked contingent claims. Lastly, we investigate optimal
consumption, investment, and life insurance acquisition strategies for an individual
making rational decisions under a state-dependent utility approach.

In Chapter 2, we consider an insurance or financial company, which aims to manage
aggregate risk. Precisely, we study the problem of allocating economic capital among
constituents of the overall portfolio of the company. To that purpose, we assume that
the company quantifies its risks through the Haezendonck–Goovaerts risk measure,
which is a coherent and law invariant tail-based risk measure. In such a case, we show
that the Haezendonck–Goovaerts risk measure is directionally differentiable, and we
provide a quasi-explicit formula for its directional derivatives. Thus, we derive the
unique capital allocation rule consistent with a RORAC (return on risk-adjusted capital)
criterion, which coincides with the Euler principle. Moreover, we give a consistent
plug-in estimator for the capital allocation rule. Under the regular variation structure,
we study the asymptotic behavior of the capital allocation rule as the confidence level
in the definition of the Haezendonck–Goovaerts risk measure approaches one, which
rewords into regulators’ excessive prudence. To illustrate, we consider the capital
allocation rule under some specific distributional assumptions: elliptical, independent
exponential marginals, and multivariate Pareto.

In Chapter 3, we consider an insurance market where the financial and mortality
risks coexist independently. Specifically, we aim to price some mortality-linked securities.
The financial risk arises from a complete financial market with a finite number of
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securities, whose prices are driven by a Brownian motion. Besides, the mortality risk
emanates from a portfolio of life insurance policyholders, whose remaining lifetimes
are modeled by conditionally independent doubly stochastic random times. Since the
insurance market is not complete, it is not possible to determine a unique price process
for mortality-linked securities only based on the exclusion of arbitrage opportunities.
To value mortality-linked securities, we rely on the utility indifference pricing approach
with an exponential utility function. First, we study the pricing of a claim formed by a
linear combination of pure endowments, and we provide a quasi-explicit formula for the
utility indifference price. Furthermore, we illustrate how the indifference price process
simplifies when the mortality-rates are affine diffusion processes. Then, we follow Hu et
al. (2005) in using techniques of backward stochastic differential equations (BSDE) to
characterize the indifference price process of a general mortality-linked claim in terms
of a solution to a non-linear BSDE with non-Lipschitz generator. Finally, we provide
an example regarding a numerical approximation for the BSDE mentioned above.

In Chapter 4, we consider the problem faced by an individual, which aims to
make optimal decisions about consumption, investment, and life insurance purchase
in a complete Brownian financial market. The role of life insurance is to protect the
individual’s family of eventually an early death. In particular, we assume that the
individual may continuously acquire whole life insurance with minimum and maximum
constraints on the insured sum. Since the classical Merton’s approach for optimal
choice seems not to be consistent with empirical data, we follow Londoño (2009) in
assuming that the individual ranks risky positions conforming to a state-dependent
utility approach. In this context, we solve the optimal choice problem in a general
set-up, which includes several utility functions employed in the literature. To that end,
we adapt the martingale methodology from Karatzas et al. (1987) and Cox and Huang
(1989, 1991). Lastly, we compute the solution for the Black-Scholes model.
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Chapter 2

A capital allocation rule for the
Haezendonck–Goovaerts risk
measure with a power Young
function

2.1 Notation and abbreviations

In the following table, we provide a summary of notation and abbreviations used in
this chapter:

0 the d-dimensional vector with all components being 0
∞ the d-dimensional vector with all components being ∞
1i the d-dimensional vector with the ith component being 1 and the other

components being 0
1A the indicator of an event A
a(q) ∼ b(q) limq↑1

a(q)
b(q) = 1, where f(·) and g(·) are positive functions

B(a,b) the beta function,
∫ 1
0 y

a−1 (1−y)b−1 dy, where a,b > 0
d a positive integer
d= equality in distribution
E mathematical expectation
F 1−F for a distribution function F

F← the generalized inverse of a distribution function F

Γ(a) the gamma function,
∫∞
0 ya−1e−ydy, where a > 0

HG Haezendonck–Goovaerts
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2.2 Introduction

Lk the space of random variables X such that E(|X|k)<∞, where k ≥ 1

∥(x1, . . . ,xd)∥ the Euclidean norm,
(∑d

i=1x
2
i

) 1
2 for (x1, . . . ,xd) ∈ Rd

P probability measure
R (−∞,∞)
R+ [0,∞)
R+ [0,∞]
sd z1 + · · ·+ zd, where (z1, . . . , zd) is a generic vector in Rd+
tA {tx : x ∈ A} for a real number t and a set A⊂ Rd

TVaR Tail Value-at-Risk
x∨y max{x,y}
x∧y min{x,y}
x+ x∨0
z a generic vector in Rd+ with components z1, . . . , zd

2.2 Introduction

Let X1, . . . , Xd represent d≥ 1 random variables in a loss-profit style, which correspond
to d different sub-portfolios constituting the overall portfolio of a financial company.
Accordingly, the company incurs an aggregate loss S =∑d

i=1Xi. By regulation, the
company must set aside some riskless investments for buffering the company portfolio,
which we denominate risk capital. The purpose of the backing is to protect stakeholders
from potential insolvency of the company in adverse situations. While it is pivotal
to determine the risk capital requirement for the aggregate loss S, it is also crucial
to allocate it amongst the associated sub-portfolios X1, . . . , Xd. Indeed, risk capital
allocation is a useful tool for measuring the performance of different sub-portfolios by
determining the return on allocated capital for each sub-portfolio. At the same time,
comparing the performance of sub-portfolios is essential to ensure that the risk capital
is invested efficiently, yielding highest returns on allocated capital.

By the arbitrariness of dependence along the sub-portfolios, the risk capital of
the overall portfolio is typically less than the sum of the risk capitals required to be
withheld for each sub-portfolio separately. Therefore, the capital allocation problem is
a challenge, on which we shall focus throughout this chapter.

In practice, a two-step procedure for determining risk capital allocations is used.
The first stage is to compute ρ(S), where ρ is a particular risk measure, and the second
stage is to allocate the risk capital ρ(S) to the sub-portfolios conforming to some
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2.2 Introduction

mathematical capital allocation rule Λ, such that ρ(S) = ∑d
i=1 Λ(Xi,S). Since the

literature on capital allocation rules and risk measures is extensive, a great variate of
possibilities for implementing the described two-step procedure is available. Thus, to
conduct capital allocation quantitatively, it is crucially important to choose a capital
allocation rule and a risk measure, which are well justified and possess some appealing
properties.

The capital allocation rule. To tackle the capital allocation problem, there are several
approaches in the literature, respectively motivated by arguments from: axiomatic
considerations (see Shapley (1953), Schmeidler (1969), Tijs and Driessen (1986), Denault
(2001), Kalkbrener (2005), and Csóka and Herings (2014)), performance measurement
(see Tasche (2004) and Buch et al. (2011)), market valuation of assets and liabilities
(see Zanjani (2010) and Bauer and Zanjani (2015)), and optimization (see Dhaene
(2003, 2012)).

One of the most prominent methodologies to allocate capital amongst sub-portfolios
is the Euler allocation principle, which assumes directional differentiability of the
underlying risk measure. In this context, the capital allocated to a sub-portfolio is the
derivative of the underlying risk measure of the overall portfolio in the direction of the
sub-portfolio. Interestingly, the Euler allocation principle can be derived from several
perspectives. For instance, by assuming a positively homogeneous risk measure, Tasche
(2004) demonstrates that the unique capital allocation rule suitable for performance
measurement is the Euler principle. Succinctly, let Λ(Xi,S) denote the directional
derivative of the risk measure ρ at S in the direction of Xi, and let RORAC(Xi)
and RORAC(S) denote the returns on allocated capital for the sub-portfolio Xi and
portfolio S, namely, RORAC(Xi) = E (Xi)/Λ(Xi,S) and RORAC(S) = E (S)/ρ(S).
Thus, if the sub-porfolio Xi performs better than the overall portfolio S in the RORAC
metric, then the RORAC of the overall portfolio is increased if one increases slightly in
the direction of Xi.

Furthermore, Kalkbrener (2005) proposes a system of axioms for capital allocation
(linear aggregation, diversification, and continuity) and shows that the Euler principle
is the unique capital allocation rule consistent with this axiomatization when referring
to subadditive and positively homogeneous risk measures; see Denault (2001) for
another argument in favor of the Euler principle, based on cooperative game theory.
In consequence, its appealing economic justifications advocate us to choose the Euler
principle as a sensible capital allocation rule with respect to subadditive and positively
homogeneous risk measures.
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2.2 Introduction

The risk measure. With a sound economic justification, Artzner et al. (1997, 1999)
introduce the family of coherent risk measures through a set of properties (monotonicity,
subadditivity, positive homogeneity, and translation invariance) that according to the
authors any reasonable risk measure should satisfy. In particular, as one of the most
popular coherent risk measures, the Tail Value-at-Risk (TVaR) has been considered as
a practical alternative to the well-known Value-at-Risk (VaR) to remedy its lack of
subadditivity. See for instance Rockafellar and Uryasev (2000, 2002), Acerbi and Tasche
(2002), Tasche (2002), and Scaillet (2004). Recently, aiming to include variability
at the tail when quantifying the risk, Furman et al. (2017) introduce a family of
Gini-type coherent risk measures containing TVaR and develop the corresponding
capital allocation rules.

As a generalization of TVaR, the Haezendonck–Goovaerts (HG) risk measure, which
is defined via a convex Young function and a confidence level parameter, is introduced
by Haezendonck and Goovaerts (1982) and revisited by Goovaerts et al. (2003, 2004);
TVaR corresponds to the simplest Young function, the linear one. Remarkably, the
HG risk measure can be derived from a multiplicative premium principle based on the
economic concept of the certainty equivalent, as we shall see later. Recently, the HG
risk measure has attracted increasing attention; see for instance Bellini and Rosazza
Gianin (2008a, 2008b, 2012), Ahn and Shyamalkumar (2014), Tang and Yang (2014),
and Peng et al. (2015). In particular, Bellini and Rosazza Gianin (2008a) point out
that the HG risk measure is law invariant and coherent.

Furthermore, in the study of the HG risk measure, a power Young function has
often been assumed. See for instance Tang and Yang (2012) and Mao and Hu (2012).
Under the alternative name of higher-order coherent risk measure, Krokhmal (2007)
and Matmoura and Penev (2013) illustrate the advantage of using this risk measure as
a risk criterion in portfolio optimization when compared with the TVaR-based model
and the classical mean-variance model. Moreover, as we shall see later, the HG risk
measure with a power Young function is directionally differentiable. As a consequence,
the Euler allocation principle based on this risk measure is supported by axiomatic and
performance measurement considerations. Thus, the HG risk measure with a power
Young function is a favorable option to complete the two-step procedure for allocating
capital.

In this chapter, we consider a company quantifying risks through the HG risk
measure with a power Young function. In this sense, we solve the question of how to
allocate reasonably the risk capital of a portfolio among its sub-portfolios. To that
end, because of its well-argued justification, we rely on the Euler allocation principle.
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2.3 Main results

Consistently, we prove that the HG risk measure is directionally differentiable and give
a formula for its directional derivatives. By following Kalkbrener (2005), we establish
the unique capital allocation principle satisfying linear aggregation, diversification, and
continuity. We compute the capital allocation rule under some specific distributional
assumptions: elliptical, independent exponential marginals, and multivariate Pareto.
For practical applications, the statistical estimation of risk measures and capital
allocation rules is a key issue; see for instance Jones and Zitikis (2003), Hong and
Liu (2009), Belomestny and Krätschmer (2012), Ahn and Shyamalkumar (2014), and
Dentcheva et al. (2017). Accordingly, we propose a plug-in estimator and prove
its consistency. Under the regular variation structure, we establish the asymptotic
behavior of the capital allocation rule as the confidence level in the definition of the
HG risk measure approaches one; some related works include Asimit et al. (2011), Mao
and Hu (2012), and Tang and Yang (2012, 2014). Finally, we conduct some numerical
studies giving an account of the goodness of our asymptotics and the rapidness of the
convergence of the plug-in estimator.

2.3 Main results

2.3.1 The Haezendonck–Goovaerts risk measure

Let X be a real-valued random variable, representing a risk variable in loss-profit style,
with distribution function F on R. Let φ(·) be a normalized Young function; that
is, φ(·) is a nonnegative and convex function on R+ with φ(0) = 0, φ(1) = 1, and
φ(∞) = ∞. Due to its convexity, the Young function φ(·) is continuous and strictly
increasing on {s ∈ R+ : φ(s)> 0}.

Recall that the Orlicz heart associated with φ(·) is defined as

Lφ0 = {X : E [φ(c |X|)]<∞ for all c > 0} ;

see, e.g., p.77 of Rao and Ren (1991). By the convexity of φ(·), we know that Lφ0 is a
convex set. Thus, for X ∈ Lφ0 , the expectation

E

[
φ

(
(X−x)+

h

)]
,

which frequently appears in the sequel, is finite for every x ∈ R and h > 0.
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2.3 Main results

For a Young function φ(·) and a risk variable X ∈ Lφ0 , let h= h(x,q) be the unique
solution to the equation

E

[
φ

(
(X−x)+

h

)]
= 1− q, q ∈ (0,1) ,

if F (x)> 0 and let h(x,q) = ∞ if F (x) = 0. For q ∈ (0,1) the Haezendonck–Goovaerts
(HG) risk measure for X is defined as

Hq (X) = inf
x∈R

{x+h(x,q)} = x∗+h∗,

where (x∗,h∗) denotes the minimizer. By Proposition 3(b,d) of Bellini and Rosazza
Gianin (2012), the minimizer (x∗,h∗) always exists for all q ∈ (0,1), and it is unique if
φ(·) is strictly convex.

Remark 2.3.1 For a positive random variable Y , define its certainty equivalent by
C(Y ) = φ−1 (E [φ(Y )]); thus, C(Y ) represents the sure amount for which a decision
maker remains indifferent to the risk Y with respect to the loss function φ(·). The
concept of certainty equivalent plays a major role in the economics literature; see for
instance Wilson (1979) and McCord and De Neufville (1986). We understand the
concept of certainty equivalent conforming to a revised setting φ−1 (E [φ(Y )/C(Y )]) = 1.
This understanding still keeps the essence of the concept. We can also change 1 to
φ−1(1 − q) to reflect penalization of the tail risk. To tackle the potential loss X,
the decision maker could withhold the quantity x ∈ R and face the remaining loss
(X−x)+; in this scenario, the certainty equivalent for X is x+h(x,q). Consequently,
by definition, the HG risk measure for the random variable X results from optimizing
the certainty equivalent for X with respect to the initial assignation x. We refer the
reader to Ben–Tal and Teboulle (2007) for another risk measure corresponding to an
optimized certainty equivalent.

For a general Young function, it is usually hard to get an explicit expression for the
HG risk measure. To simplify the study, we follow Tang and Yang (2012) to consider
an important special case with a power Young function φ(x) = xk for some k ≥ 1. In
this case, Lφ0 reduces to the commonly used Lk space. Let X be a non-degenerate
risk variable with X ∈ Lk. Denote by x̂ the essential supremum of X. According to
Theorem 2.1 of Tang and Yang (2012), if k > 1, then the HG risk measure for X is
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2.3 Main results

given by

Hq (X) = inf
x∈R

x+ 1
(1− q)

1
k

(
E
[
(X−x)k+

]) 1
k


= x∗+ 1

(1− q)
1
k

(
E
[
(X−x∗)k+

]) 1
k , q ∈ (0,1) , (2.1)

where the minimizer, x= x∗ ∈ (−∞, x̂), is the unique solution to the equation

(
E
[
(X−x)k−1

+
])k

(
E
[
(X−x)k+

])k−1 = 1− q. (2.2)

If k = 1, then the HG risk measure for X equals to

Hq (X) = inf
x∈R

{
x+ 1

(1− q)E [(X−x)+]
}

(2.3)

= F←(q)+ 1
(1− q)E [(X−F←(q))+] , q ∈ (0,1) , (2.4)

where F← denotes the generalized inverse of the distribution F or equivalently the
VaR of X; see for instance Rockafellar and Uryasev (2000, 2002). Thus, the HG risk
measure is reduced to TVaRq(X), the well-known Tail Value-at-Risk with confidence
level q of X. In light of this, we refer to the parameter q in the definition of the HG
risk measure as the confidence level, even for a general power Young function.

Remark 2.3.2 Since the case k = 1 is considered as a particular case, we discuss the
behavior of equation (2.2) when k ↓ 1. Let X ∈ Lk

′ for some k′ > 1 and x ∈ (−∞, x̂).
By the dominated convergence theorem, we derive

lim
k↓1

E
[
(X−x)k−1

+
]

= lim
k↓1

E
[
(X−x)k−1

+ 1(X>x)
]

= E

[
lim
k↓1

(X−x)k−1
+ 1(X>x)

]
= F̄ (x).

The applicability of the dominated convergence theorem is justified because the random
variable (X −x)k−1

+ is bounded from above by the integrable random variable (X −
x)k′

+ ∨1, for every 1< k ≤ k′. Furthermore, the continuity of Lp spaces with respect to
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2.3 Main results

p implies

lim
k↓1

(
E
[
(X−x)k+

])k−1
= lim

k↓1

((
E
[
(X−x)k+

]) 1
k

)k(k−1)

= 1.

That said, as k ↓ 1, equation (2.2) becomes

F (x) = 1− q, (2.5)

which is consistent with relation (2.4). Indeed, Theorem 10 of Rockafellar and Uryasev
(2002) implies that the infimum in (2.3) is attained for all x satisfying (2.5). Thus,
when X does not put mass at its q-quantile, the HG risk measure is given by relations
(2.1) and (2.2), even in the limit case k = 1.

2.3.2 Capital allocation under the HG risk measure

Let X1, . . . , Xd denote d≥ 1 random variables from Lk for some k ≥ 1, which represent
risk variables in loss-profit style. Hereafter, to avoid repetitive notation, we reserve
the index i to represent a number belonging to the set {1, . . . ,d}. For instance, when
we write “Xi ∈ L1 for every i”, we stand for the long sentence “Xi ∈ L1 for every
i ∈ {1, . . . ,d}”. Also, when we just write “Xi ∈ L1”, we stand for the long sentence
“Xi ∈ L1 for an arbitrary but fixed i ∈ {1, . . . ,d}”.

Let W be the subspace of Lk composed of all linear combinations of X1, . . . , Xd;
we refer to the elements of W as portfolios. For q ∈ (0,1), we define a risk capital
allocation Λ̃q as a function from W ×W to R. For X and S from W , we interpret
Λ̃q (X,S) as the capital allocated from portfolio S to the sub-portfolio X. Accordingly,
Λ̃q should satisfy Λ̃q (S,S) = Hq (S). Furthermore, we follow Kalkbrener (2005) in
requiring that a coherent capital allocation rule Λ̃q satisfies the next properties:

Linear aggregation:
Λ̃q (aX+ bY,S) = aΛ̃q (X,S)+ bΛ̃q (Y,S) ,

for every a,b ∈ R and X,Y,S ∈W .

Diversification:
Λ̃q (X,S) ≤ Λ̃q (S,S) ,

for every X,S ∈W .
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2.3 Main results

Continuity:
lim
t→0

Λ̃q (X,tX+S) = Λ̃q (X,S) ,

for every X,S ∈W .

The axioms that Kalkbrener (2005) imposes are quite intuitive. The first one
guarantees that the sum of the risk capital from the sub-portfolios equals the risk
capital of the overall portfolio, the second one contemplates diversification, and the
third one ensures that small changes to the portfolio only have a limited effect on the
risk capital of its sub-portfolios.

It turns out that existence and uniqueness properties for a coherent capital allocation
rule with respect to Hq are intimately related to the existence of its directional
derivatives. Accordingly, for two random variables X and S from Lk for some k ≥ 1
and q ∈ (0,1), denote by Λq (X,S) the directional derivative of the risk measure Hq at
S in the direction of X, namely,

Λq (X,S) = lim
t→0

Hq (tX+S)−Hq (S)
t

. (2.6)

Our main result below shows the existence of Λq (X,S) and gives an analytical formula
for it. To avoid triviality, assume that S is not degenerate because otherwise, Λq (X,S) =
Hq (X) trivially holds.

Theorem 2.3.1 For some k ≥ 1, let X and S be two random variables from Lk, with
S non-degenerate. If k = 1, further assume that S does not put mass at its q-quantile.
Moreover, let Hq denote the HG risk measure defined in relation (2.1) or (2.4) as the
case may be, where q ∈ (0,1). Then, the directional derivative Λq (X,S) in (2.6) is
well-defined as follows.

(a) When k > 1,

Λq (X,S) =
E
[
X(S−x∗)k−1

+
]

E
[
(S−x∗)k−1

+
] , (2.7)

where x= x∗ is the unique solution to the equation

(
E
[
(S−x)k−1

+
])k

(
E
[
(S−x)k+

])k−1 = 1− q. (2.8)

(b) When k = 1,

Λq (X,S) =
E
[
X1(S>x∗)

]
P (S > x∗) , (2.9)
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where x= x∗ is the unique solution to the equation

P (S > x∗) = 1− q. (2.10)

We first present an elementary result, which will be used in the proof of Theorem
2.3.1.

Lemma 2.3.1 For two random variables from Lk for some k ≥ 1, define the function

f (t) = E
[
(tX+S)k+

]
, t ∈ R.

(a) When k > 1, the function f (t) is continuously differentiable over t ∈ R with

f ′ (t) = kE
[
X (tX+S)k−1

+
]
;

(b) When k = 1, its two-sided derivatives are finite over t ∈ R with

f ′+ (t) = E
[
X1(tX+S>0)

]
+E

[
X1(tX+S=0,X>0)

]
,

f ′− (t) = E
[
X1(tX+S>0)

]
+E

[
X1(tX+S=0,X≤0)

]
.

Proof. First consider the right-hand derivative:

f ′+ (t) = lim
δ↓0

E
[
((t+ δ)X+S)k+

]
−E

[
(tX+S)k+

]
δ

.

For the ease of notation, define Z = tX+S and rewrite the relation above as

f ′+ (t) = lim
δ↓0

E

(δX+Z)k+ −Zk+
δ

 .
Observe that, for any z ∈ R, the function (x+ z)k+ is convex in x∈ R. Thus, for x,z ∈ R
and 0< δ < 1, we have

zk+ − (−x+ z)k+ ≤
(δx+ z)k+ − zk+

δ
≤ (x+ z)k+ − zk+.

This ensures the application of the dominated convergence theorem to derive

f ′+ (t) = E

lim
δ↓0

(δX+Z)k+ −Zk+
δ

 .
12



2.3 Main results

We split the ratio inside the expectation above into four terms

(δX+Z)k+ −Zk+
δ

= I1 (δ)+ I2 (δ)+ I3 (δ)+ I4 (δ) , δ > 0,

conforming to the ranges

(−δX < Z ≤ 0,X > 0) ,
(Z > 0,X > 0) ,
(0< Z ≤ −δX,X ≤ 0) , and
(Z >−δX,X ≤ 0) ,

respectively. Taking δ ↓ 0, the last three terms have almost sure limits as

I2 (δ) = (δX+Z)k −Zk

δ
1(Z>0,X>0) → kXZk−11(Z>0,X>0),

I3 (δ) =
(

−Zk

δ

)
1(0<Z≤−δX,X≤0) → 0,

I4 (δ) = (δX+Z)k −Zk

δ
1(Z>−δX,X≤0) → kXZk−11(Z>0,X≤0).

For the first term

I1 (δ) = (δX+Z)k

δ
1(−δX<Z≤0,X>0),

to derive its almost sure limit as δ ↓ 0, we need to distinguish the cases k > 1 and k = 1.
For k > 1 we have I1 (δ) → 0, while for k = 1 we have

I1 (δ) = δX+Z

δ
1(−δX<Z<0,X>0) +X1(Z=0,X>0) →X1(Z=0,X>0).

Summing up, for k > 1 we obtain

f ′+ (t) = E
[
kXZk−1

+ 1(Z>0,X>0) +kXZk−1
+ 1(Z>0,X≤0)

]
= kE

[
XZk−1

+
]

= kE
[
X (tX+S)k−1

+
]
,

13
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while for k = 1 we obtain

f ′+ (t) = E
[
X1(Z>0,X>0) +X1(Z>0,X≤0) +X1(Z=0,X>0)

]
= E

[
X1(Z>0)

]
+E

[
X1(Z=0,X>0)

]
= E

[
X1(tX+S>0)

]
+E

[
X1(tX+S=0,X>0)

]
.

Next consider the left-hand derivative

f ′− (t) = lim
δ↑0

E
[
((t+ δ)X+S)k+

]
−E

[
(tX+S)k+

]
δ

.

Analogously, with Z = tX+S we split

(δX+Z)k+ −Zk+
δ

, δ < 0,

conforming to the ranges

(0< Z ≤ −δX,X > 0) ,
(Z >−δX,X > 0) ,
(−δX < Z ≤ 0,X ≤ 0) , and
(Z > 0,X ≤ 0) .

Going along the same lines as in the derivation of f ′+, for k > 1 we obtain

f ′− (t) = kE
[
X (tX+S)k−1

+
]
,

while for k = 1 we obtain

f ′− (t) = E
[
X1(tX+S>0)

]
+E

[
X1(tX+S=0,X≤0)

]
.

Thus, we have proved all conclusions of the lemma.

Proof of Theorem 2.3.1. For k > 1, let hq be the convex function defined by

hq (Y ) = 1
(1− q)

1
k

(
E
[
(Y )k+

])1/k
, Y ∈ Lk.
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Let hq (Y ;−X) represent the directional derivative of hq at Y in the direction of −X,
namely,

hq (Y ;−X) = lim
t→0

1
(1− q)

1
k

(
E
[
(t(−X)+Y )k+

])1/k
−
(
E
[
(Y )k+

])1/k

t
.

By Lemma 2.3.1(a), we have

hq (Y ;−X) = 1
(1− q)

1
k

d

dt

(
E
[
(t(−X)+Y )k+

])1/k
∣∣∣∣∣
t=0

=
E
[
−X(Y )k−1

+
]

E
[
(Y )k−1

+
] .

In conclusion, hq is differentiable in the direction of −X. Now we deal with the
differentiability of Hq at S. If x∗ solves equation (2.8), then we have

Hq (t(−X)+S) = inf
x∈R

x+ 1
(1− q)

1
k

(
E
[
(t(−X)+S−x)k+

]) 1
k


≤ x∗+hq (t(−X)+S−x∗) ,

whence,

lim
t↓0

Hq (t(−X)+S)−Hq (S)
t

≤ lim
t↓0

hq (t(−X)+S−x∗)−hq (S−x∗)
t

= hq (S−x∗;−X)

=
E
[
−X(S−x∗)k−1

+
]

E
[
(S−x∗)k−1

+
] .

Since Hq is a convex functional over the normed linear space Lk, by Lemma 3.6.2 of
Niculescu and Persson (2006), we derive

lim
t↓0

Hq (tX+S)−Hq (S)
t

≥ − lim
t↓0

Hq (t(−X)+S)−Hq (S)
t

≥
E
[
X(S−x∗)k−1

+
]

E
[
(S−x∗)k−1

+
] .
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In respect to the left-hand side directional derivative, we obtain

lim
t↑0

Hq (tX+S)−Hq (S)
t

= lim
t↓0

Hq (t(−X)+S)−Hq (S)
(−t)

=
E
[
X(S−x∗)k−1

+
]

E
[
(S−x∗)k−1

+
] .

Thus, we have proved the theorem.

As a consequence of Theorem 3.1 and Theorem 4.3 of Kalkbrener (2005) and
Theorem 2.3.1, we derive the following result.

Corollary 2.3.1 For some k ≥ 1 and q ∈ (0,1), let Λq :W ×W → R be the functional
defined in (2.6). If k = 1, assume that each S ∈ W is deterministic or does not put
mass at its q-quantile. Thus Λq is the unique capital allocation rule concerning Hq,
which satisfies linear aggregation, diversification, and continuity.

Remark 2.3.3 In the case k = 1, Corollary 2.3.1 imposes a restriction on the joint
distribution of the basic risk variables X1, . . . , Xd. Notwithstanding, Λq (·, ·) defines a
linear and diversifying capital allocation rule with respect to TVaR; see Section 5.2 of
Kalkbrener (2005). This capital allocation rule is commonly used in practice, and it is
often preferred to the capital allocation rule based on VaR contributions; see for instance
Kalkbrener et al. (2004). Although (2.9) is quite elegant, its analytical tractability for
generally distributed and possibly dependent X1, . . . , Xd remains seldom feasible. For
analytical expressions of (2.9), we refer the reader to Chiragiev and Landsman (2007),
Dhaene et al. (2008), Ignatieva and Landsman (2019), and Kim and Kim (2019). For
the general case k ≥ 1, in Section 2.4.1, we present some dependence structures over
X1, . . . , Xd which admit quasi-explicit expressions for (2.7) and (2.9). In particular,
Example 2.4.2 and Example 2.4.3 generalize the work of Chiragiev and Landsman
(2007).

Theorem 2.3.1 already gives an algorithm on how to numerically calculate Λq (X,S).
Let (X1,S1), . . . , (Xn,Sn) be a sample of (X,S). A natural candidate for approximating
x∗ would be the unique solution x= x∗n ∈ (−∞,max1≤i≤nSi) to the equation

(
1
n

∑n
i=1(Si−x)k−1

+
)k

(
1
n

∑n
i=1(Si−x)k+

)k−1 = 1− q. (2.11)
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Also, an intuitive candidate for estimating the capital allocation rule Λq (X,S) from
the sample would be

Λ(n)
q =

1
n

∑n
i=1Xi(Si−x∗n)k−1

+
1
n

∑n
i=1(Si−x∗n)k−1

+
. (2.12)

This estimator Λ(n)
q is a strongly consistent estimator of Λq (X,S), i.e., with probability

one
lim
n→∞Λ(n)

q = Λq (X,S) .

In fact, by the strong law of large numbers, for every x ∈ R, it holds almost surely that

lim
n→∞

1
n

n∑
i=1

X+
i (Si−x)k−1

+ = E
[
X+(S−x)k−1

+
]
.

Moreover, from Theorem 1 of Ahn and Shyamalkumar (2014), it holds almost surely
that

lim
n→∞x

∗
n = x∗.

Hence, for every ε > 0,

Ωε =
{
ω ∈ Ω :

∞⋃
m=1

∞⋂
n=m

(|x∗n−x∗| ≤ ε)
}

defines an event with probability one. Restricted to Ωε, we have, almost surely,

limsup
n→∞

1
n

n∑
i=1

X+
i (Si−x∗n)k−1

+ ≤ limsup
n→∞

1
n

n∑
i=1

X+
i (Si−x∗+ ε)k−1

+

= E
[
X+(S−x∗+ ε)k−1

+
]

and

liminf
n→∞

1
n

n∑
i=1

X+
i (Si−x∗n)k−1

+ ≥ liminf
n→∞

1
n

n∑
i=1

X+
i (Si−x∗− ε)k−1

+

= E
[
X+(S−x∗− ε)k−1

+
]
.

Since the function E
[
X+(S−x)k−1

+
]

is continuous in x, it follows that, almost surely,

lim
n→∞

1
n

n∑
i=1

X+
i (Si−x∗n)k−1

+ = E
[
X+(S−x∗)k−1

+
]
.
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The same holds true with each X+
i changed to X−i on the left and X+ changed to X−

on the right. Hence, almost surely,

lim
n→∞

1
n

n∑
i=1

Xi(Si−x∗n)k−1
+ = E

[
X(S−x∗)k−1

+
]
.

Similarly, we have the almost sure convergence

lim
n→∞

1
n

n∑
i=1

(Si−x∗n)k−1
+ = E

[
(S−x∗)k−1

+
]
.

Therefore, it holds almost surely that

lim
n→∞Λ(n)

q (S) =
E
[
X(S−x∗)k−1

+
]

E
[
(S−x∗)k−1

+
] = Λq (X,S) .

2.3.3 Asymptotic behavior

In the current post-financial crisis era, regulators have become excessively prudent in
determining risk capital requirements, which has to a certain extent weaken VaR’s
status. In this sense, the so-called tail-based risk measurement has emerged as an
essential tool for quantifying insurance risks while emphasizing the adverse effect of
low probability but high severity tail events. From Tang and Yang (2012), the HG risk
measure with a power Young function is a tail measure; in this sense, the regulators’
excessive prudence is reflected by q ↑ 1. In this section, by following Asimit et al. (2011),
we study the asymptotic behavior of the capital allocation rule Λq as q ↑ 1.

Now, we introduce the notion of multivariate regular variation. Let (X1, . . . ,Xd) be
a d-dimensional non-negative random vector with marginal distributions F1, . . . , Fd.
The vector (X1, . . . ,Xd) is said to follow a distribution with a multivariate regularly
varying tail if there exist a distribution function F and a limit measure ν not identically
0, such that, as x→ ∞,

1
F (x)

P
((

X1
x
, . . . ,

Xd

x

)
∈ ·
)

v→ ν (·) on Rd+\{0}, (2.13)

where v→ denotes vague convergence. Discussions on vague convergence can be found
in, e.g., Section 3.3.5 of Resnick (2007).
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For every i, we define

ci = lim
x→∞

Fi (x)
F (x)

= ν (1i,∞] .

Due to the nondegeneracy of the limit measure ν, there exists some i such that ci > 0.
Moreover, from relation (2.13), we notice that the limit measure ν is homogeneous.
That is, there exists some 0< α <∞, representing the multivariate regular variation
index, such that ν (tA) = t−αν (A) holds for every Borel set A⊂ Rd+\{0}.

Assumption 2.3.1 Let (X1, . . . ,Xd) be a d-dimensional non-negative random vector
with marginal distributions F1, . . . , Fd, such that (2.13) holds for the auxiliary distri-
bution function F with regularly varying tail of index −α and some nontrivial limit
measure ν. Further, assume that the limit measure ν satisfies ci > 0 for every i.

Define S =∑d
i=1Xi and let FS denote the distribution of S.

Theorem 2.3.2 Let (X1, . . . ,Xd) be a random vector satisfying Assumption 2.3.1.
Further, assume that α> 1 and k ∈ [1,α). By defining Λq (Xi,S) conforming to relation
(2.7) or (2.9) as the case may be, as q ↑ 1, it holds that

Λq (Xi,S) ∼ CiF
← (q) =: Λaq (Xi,S) , (2.14)

where

Ci =
(

(ν (z : sd > 1)B(α−k,k))1−α

(α−k)α−k kk−1

) 1
α

(Ii+ ciB(α−k,k)) ,

Ii =
∫∫

(s>0,0<r≤s+1)
ν (z : zi > r,sd > s+1)drdsk−1,

and B(·, ·) denotes the beta function.

Before proving Theorem 2.3.2, we present the following technical result.

Lemma 2.3.2 Let (X1, . . . ,Xd) be a random vector satisfying Assumption 2.3.1. Fur-
ther, assume that α > 1. Then, for k ∈ (0,α−1), it holds that

lim
x→∞

E
[
Xi(S−x)k+

]
xk+1F (x)

=
∫ ∞

0

∫ ∞
0

ν (z : zi > r,sd > s+1)drdsk (2.15)

lim
x→∞

E
[
(S−x)k+

]
xkF (x)

= kB(α−k,k)ν (z : sd > 1) . (2.16)
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Proof. First, we consider relation (2.15). By Fubini’s theorem, we have

E
[
Xi(S−x)k+

]
= E

[∫ ∞
0

∫ ∞
0

1(Xi>u)1(S−x>v)dudv
k
]

=
∫ ∞

0

∫ ∞
0

P (Xi > u,S−x > v)dudvk.

Letting u= rx and v = sx, we rewrite

E
[
Xi(S−x)k+

]
= xk+1

∫ ∞
0

∫ ∞
0

P (Xi > rx,S > (s+1)x)drdsk.

By the dominated convergence theorem and relation (2.13), we obtain

lim
x→∞

E
[
Xi(S−x)k+

]
xk+1F (x)

=
∫ ∞

0

∫ ∞
0

lim
x→∞

P (Xi > rx,S > (s+1)x)
F (x)

drdsk

=
∫ ∞

0

∫ ∞
0

ν (z : zi > r,sd > s+1)drdsk,

where in order to apply the vague convergence, we use Lemma A.1 of Shi et al. (2017)
to verify that the boundary of the set (z : zi > r,sd > s+1) has mass zero. In the
derivation above, we justify the applicability of the dominated convergence theorem
with the help of Proposition 2.6(ii) of Resnick (2007). In fact, for 0< ε < α−k and
large enough x, we have

P (Xi > rx,S > (s+1)x)
F (x)

≤ 1(s>0,0<r≤s+1)
P (S > (s+1)x)

F (x)
+1(s>0,r>s+1)

P (Xi > rx)
F (x)

≤ C1(s>0,0<r≤s+1)(s+1)−α+ε+C1(s>0,r>s+1)r
−α+ε,

which is clearly integrable with respect to drdsk over R2
+. Now we turn to prove

relation (2.16). As when verifying relation (2.15), we write

E
[
(S−x)k+

]
=

∫ ∞
0

P (S−x > v)dvk

= xk
∫ ∞

0
P (S > (s+1)x)dsk.
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Due to Assumption 2.3.1, it holds that FS (x) ∼ ν (z : sd > 1)F (x). Thus, the domi-
nated convergence theorem implies

lim
x→∞

E
[
(S−x)k+

]
xkF (x)

= lim
x→∞

FS (x)
F (x)

∫ ∞
0

P (S > (s+1)x)
FS (x)

dsk

= ν (z : sd > 1)
∫ ∞

0
lim
x→∞

FS ((s+1)x)dsk
FS (x)

= ν (z : sd > 1)
∫ ∞

0
(s+1)−αdsk,

where the last equality follows because FS is regularly varying with parameter −α. By
changing of variable, we have

∫ ∞
0

(s+1)−αdsk = k
∫ 1

0
yα−k−1 (1−y)k−1 dy

= kB(α−k,k) .

Thus

lim
x→∞

E
[
(S−x)k+

]
xkF (x)

= kB(α−k,k)ν (z : sd > 1) .

Proof of Theorem 2.3.2:
From Lemma 2.2 of Tang and Yang (2012), we have that x∗ → ∞, as q ↑ 1. Thus,

by Theorem 2.3.1 and Lemma 2.3.2, as q ↑ 1,

Λq (Xi,S) =
E
[
Xi(S−x∗)k−1

+
]

E
[
(S−x∗)k−1

+
] ∼ Aix

∗,

where
Ai =

∫∞
0
∫∞
0 ν (z : zi > r,sd > s+1)drdsk−1

(α−k)B(α−k,k)ν (z : sd > 1) .

In addition, by the proof of Theorem 4.1 of Tang and Yang (2012), as q ↑ 1,

x∗ ∼
(

B(α−k,k)
(α−k)−k kk−1

) 1
α

F←S (q) .

Therefore, it follows that

Λq (Xi,S) ∼BiF
←
S (q) , as q ↑ 1,

21



2.3 Main results

where

Bi =
(

(B(α−k,k))1−α

(α−k)α−k kk−1

) 1
α ∫∞

0
∫∞
0 ν (z : zi > r,sd > s+1)drdsk−1

ν (z : sd > 1) .

Moreover, notice that∫ ∞
0

∫ ∞
0

ν (z : zi > r,sd > s+1)drdsk−1

=
(∫∫

(s>0,0<r≤s+1)
+
∫∫

(s>0,r>s+1)

)
ν (z : zi > r,sd > s+1)drdsk−1.

However, by the homogeneity of ν and a change of variable, the second term can be
simplified to∫∫

(s>0,r>s+1)
ν (z : zi > r)drdsk−1 = ν (z : zi > 1)

∫∫
(s>0,r>s+1)

r−αdrdsk−1

= ciB(α−k,k) .

Hence, Bi can be expressed as

Bi =
(

(B(α−k,k))1−α

(α−k)α−k kk−1

) 1
α
(
Ii+ ciB(α−k,k)
ν (z : sd > 1)

)
.

Besides, Assumption 2.3.1 implies that

FS (x) ∼ ν (z : sd > 1)F (x) .

In addition, the functions F and FS are regularly varying with parameter −α, therefore
it holds that

F←S (q) ∼ (ν (z : sd > 1))
1
α F← (q) , as q ↑ 1;

see Proposition 2.6(vi) of Resnick (2007). Then, we have

Λq (Xi,S) ∼ CiF
← (q) ,

where,

Ci =
(

(ν (z : sd > 1)B(α−k,k))1−α

(α−k)α−k kk−1

) 1
α

(Ii+ ciB(α−k,k)) .
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Remark 2.3.4 From Theorem 4.1 of Tang and Yang (2012) along with Proposition
2.6(vi) of Resnick (2007), as q ↑ 1, it holds that

Hq (S) ∼ α

(
ν (z : sd > 1)B(α−k,k)

(α−k)α−kkk−1

) 1
α

F← (q) =:Ha
q (S) .

Moreover, the proof of Theorem 2.3.2 reveals that the asymptotics of the allocated capitals
add up to the asymptotic of the initial aggregate capital, i.e., Ha

q (S) =∑d
i=1 Λaq (Xi,S).

Therefore, the asymptotic formulas should be used hand-in-hand for both the allocated
capital and the aggregate capital.

The computation of the constant Ci is an issue. Now we show two extreme cases
which admit a significant simplification.

The first case is that (X1, . . . ,Xd) exhibits no tail dependence, of which Gaussian
copula is a special case. Then ν is concentrated on the axes only. Consequently, we
have

ν (z : sd > 1) =
d∑
i=1

ci

and

Ii =
∫∫

(s>0,0<r≤s+1)
ν (z : zi > r,sd > s+1)drdsk−1

=
∫∫

(s>0,0<r≤s+1)
ν (z : zi > s+1, zj = 0 for j ̸= i)drdsk−1

=
∫∫

(s>0,0<r≤s+1)
ci (s+1)−α drdsk−1

= ci (α−1)B(α−k,k) .

It gives us a simplified expression for Ci as

Ci = α (B(α−k,k))
1
α

(α−k)1− k
α k

k−1
α

 d∑
i=1

ci


1
α

ci.

The second case is that (X1, . . . ,Xd) is fully dependent, of which the comonotonicity
is a special case. Then ν is concentrated on a straight line, which we denote by

zi =miu, u > 0, for every i,

with m1, . . . , md representing strictly positive constants. In this case, we define
M = ∑d

j=1mj . Clearly, ci =
(
mi
M

)α
ν (z : sd > 1). Then, the integrand of Ii can be
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rewritten as follows:

ν (z : zi > r,sd > s+1) = ν
(

z : sd >
M

mi
r,sd > s+1

)
= ν

(
z : sd >

(
M

mi
r∨ (s+1)

))

=
(
M

mi
r∨ (s+1)

)−α
ν (z : sd > 1) .

Therefore, we have

Ii+ ciB(α−k,k)

=
∫ ∞

0

∫ ∞
0

ν (z : zi > r,sd > s+1)drdsk−1

= ν (z : sd > 1)
(∫∫

(s>0,r>mi
M (s+1))

(
M

mi
r
)−α

drdsk−1

+
∫∫

(s>0,0<r≤mi
M (s+1))

(s+1)−α drdsk−1
)

= ν (z : sd > 1)B(α−k,k)mi

M
+ν (z : sd > 1)mi

M
(α−1)B(α−k,k)

= αB(α−k,k)ν (z : sd > 1)mi

M
.

Hence, we obtain a simplified expression for Ci as

Ci = α (B(α−k,k))
1
α

(α−k)1− k
α k

k−1
α

(ν (z : sd > 1))
1
α
mi

M
.

Alternatively, the constant Ci may be computed numerically. For instance, when
there exists a function fν on (0,∞] such that

ν (z,∞] =
∫

(z,∞]
fν (w)dw, for z ∈ (0,∞] ,

we can use a standard approximation argument to prove that

ν (z : zi > r,sd > s+1) =
∫

(z:zi>x,sd>s+1)
fν (z)dz.

We refer the reader to Example 2.4.4 for a non-extreme case where Theorem 2.3.2
applies.
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2.4 Illustrations

2.4.1 Some examples

First, we discuss how to compute (2.7) and (2.9) by assuming that the joint distribution
of the variables X1, . . . , Xd is elliptical, independent exponential marginals, and
multivariate Pareto.

Example 2.4.1 For a measurable function w : [0,∞) → [0,∞), Furman and Zitikis
(2008a, 2008b) define the w-weighted risk capital allocated from portfolio S to sub-
portfolio X to be

Λ̃w (X,S) = E(Xw(S))
E (w(S)) .

For y ∈ R, define

w(y) =
 (y−x∗)k−1

+ , if k > 1,
1(y>x∗), else if k = 1,

where x∗ is the unique solution to equation (2.8) or (2.10) as the case may be. Then,
it is apparent that Λq (Xi,S) = Λ̃w (Xi,S). Moreover, it is well-known that when
the vector (X1, . . . ,Xd) follows an elliptical distribution, the vector (Xi,S) so does.
Hence, according to Proposition 4.2 of Furman and Zitikis (2008b), Λq (Xi,S) admits
a simplified expression as

Λq (Xi,S) = E (Xi)+C (Xi,S)(Hq (S)−E (S)) ,

where C (Xi,S) is a constant depending on the parameters describing the distribution
of (Xi,S). Therefore, for the elliptical case, our task is reduced to computing Hq (S).

For a real-valued function h(·), we denote by h [λ1, . . . ,λd] the divided difference of
order d with respect to distinct numbers λ1,. . . , λd. Specifically, h [λ1, . . . ,λd] is defined
recursively as follows:

h [λ1] = h(λ1) ,

h [λ1, . . . ,λd] = h [λ2, . . . ,λd]−h [λ1, . . . ,λd−1]
λd−λ1

, d≥ 2.

It is easy to prove that

h [λ1, . . . ,λd] =
d∑
i=1

h(λi)∏
j ̸=i (λi−λj)

. (2.17)
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Even if some of the parameters λ1, . . . , λd are repeated, relation (2.17) makes sense.
For example,

h[λ1,λ1,λ1,λ2,λ2,λ3] = 1
(3−1)!

1
(2−1)!

∂3

∂2λ1∂λ2
h[λ1,λ2,λ3].

Example 2.4.2 Let X1, . . . , Xd denote d ≥ 1 independent and exponentially dis-
tributed random variables, each with a density function

fXi
(y) = λie

−λiy, y > 0.

For k ≥ 1 and λ ̸= λi, we define

h(x,λ) = e−λx

λk
, x > 0,

hi (x,λ) = (k+xλi)
e−λix

λk+1
i (λi−λ)

+ λke−λix−λki e
−λx

λki λ
k (λi−λ)2 , x > 0.

Then it follows that

Λq (Xi,S) = hi (x∗, [λ1, . . . ,λi−1,λi+1, . . . ,λd])
h(x∗, [λ1, . . . ,λd])

, (2.18)

where x= x∗ is the unique solution to the equation

(λ1 · · ·λd)k1−kΓ(k)(−1)d−1h(x, [λ1, . . . ,λd]) = 1− q, (2.19)

and Γ(·) denotes the gamma function.

By definition, to prove relations (2.18) and (2.19), it is sufficient verifying that

E
[
(S−x)k−1

+
]

= (λ1 · · ·λd)Γ(k)(−1)d−1h(x, [λ1, . . . ,λd]) , (2.20)
E
[
Xi (S−x)k−1

+
]

= (λ1 · · ·λd)Γ(k)(−1)d−1hi (x, [λ1, . . . ,λi−1,λi+1, . . . ,λd]) , (2.21)

for every x > 0. First we consider relation (2.20). In this setting, the tail distribution
of the random sum S is given by

P (S > s) = (λ1 · · ·λd)
d∑
i=1

e−λis

λi
∏
j ̸=i (λj −λi)

, s > 0.
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By Fubini’s theorem, we have

E
[
(S−x)k−1

+
]

=
∫ ∞

0
P (S > s+x)dsk−1

= (λ1 · · ·λd)
d∑
i=1

∫∞
0 e−λi(s+x)dsk−1

λi
∏
j ̸=i (λj −λi)

.

Therefore, by integrating, it holds that

E
[
(S−x)k−1

+
]

= (λ1 · · ·λd)Γ(k)
d∑
i=1

e−λix

λki
∏
j ̸=i (λj −λi)

= (λ1 · · ·λd)Γ(k)(−1)d−1h(x, [λ1, . . . ,λd]) .

Now we turn to prove relation (2.21). It is easy to prove that the tail distribution of
the vector (Xi,S) is given by

P (Xi > t,S > s)

= (λ1 · · ·λd)
∑
l ̸=i

1∏
j ̸=l (λj −λl)

(
e−(λi−λl)te−λls

λl
− e−λis

λi

)
, 0< s and 0< t≤ s.

To compute E
[
Xi (S−x)k−1

+
]
, we split it into two terms

E
[
Xi (S−x)k−1

+
]

=
(∫ ∞

0

∫ s+x

0
+
∫ ∞

0

∫ ∞
s+x

)
P (Xi > t,S > s+x)dtdsk−1.

For the first term, we have
∫ ∞

0

∫ s+x

0
P (Xi > t,S > s+x)dtdsk−1

= (λ1 · · ·λd)Γ(k)
∑
l ̸=i

1
λl (λi−λl)

∏
j ̸=l (λj −λl)

(
e−λlx

λk−1
l

− e−λix

λk−1
i

)
− e−λix (k+xλi−1)
λk+1
i

∏
j ̸=l (λj −λl)

.

For the second term, we derive∫ ∞
0

∫ ∞
s+x

P (Xi > t,S > s+x)dtdsk−1

=
∫ ∞

0

∫ ∞
s+x

P (Xi > t,S > t)dtdsk−1

= (λ1 · · ·λd)Γ(k)
∑
l ̸=i

1∏
j ̸=l (λj −λl)

(
1
λl

− 1
λi

)
e−λix

λki
.
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Therefore, by manipulating algebraically, we obtain

E
[
Xi (S−x)k−1

+
]

= (λ1 · · ·λd)Γ(k)
∑
l ̸=i

1∏
j ̸=l,i (λj −λl)

(
λki e
−λlx−λkl e

−λix

λki λ
k
l (λi−λl)2 − (k+xλi)e−λix

λk+1
i (λi−λl)

)

= (λ1 · · ·λd)Γ(k)(−1)d−1hi (x, [λ1, . . . ,λi−1,λi+1, . . . ,λd]) .

Example 2.4.3 Let (X1, . . . ,Xd) denote a d-dimensional random vector following a
multivariate Pareto distribution with parameters σ1, . . . , σd > 0 and α> k≥ 1. Namely,

P (X1 > y1, . . . ,Xd > yd) =
1+

d∑
i=1

yi
σi

−α ,
where yi > 0 for every i. For σ ̸= σi, define

g (x,σ) = (α−k)σd+k−2
(

1+ x

σ

)−(α−k+1)
, x > 0,

gi (x,σ) = −(kσi+xα)σki
σd−2

(σi−σ)

(
1+ x

σi

)−(α−k+1)

−σi
σk+d−1

(σi−σ)2

(
1+ x

σ

)−(α−k)
+σk+1

i

σd−1

(σi−σ)2

(
1+ x

σi

)−(α−k)
, x > 0.

Therefore, it follows that

Λq (Xi,S) = gi (x∗, [σ1, . . . ,σi−1,σi+1, . . . ,σd])
g (x∗, [σ1, . . . ,σd])

, (2.22)

where x= x∗ is the unique solution to the equation

(α−k)k−1k1−kB(α−k,k)(−1)d−1 g (x, [σ1, . . . ,σd]) = 1− q. (2.23)

Clearly, to verify relations (2.22) and (2.23), it suffices to prove that

E
[
(S−x)k−1

+
]

= Γ(k)
Γ(α)Γ(α−k+1)(−1)d−1 g (x, [σ1, . . . ,σd]) , (2.24)

E
[
Xi (S−x)k−1

+
]

= B(α−k,k)(−1)d−1 gi (x, [σ1, . . . ,σi−1,σi+1, . . . ,σd]) , (2.25)

28



2.4 Illustrations

for every x > 0. According to Arnold (2015), the random vector (X1, . . . ,Xd) can be
represented as a proportional mixture of independent and exponentially distributed
random variables. Specifically,

(X1, . . . ,Xd)
d= Z−1 (σ1Y1, . . . ,σdYd) ,

where Z d=Gamma(α,1), and Y1, . . . , Yd are independent standard exponential vari-
ables. Consequently, the random variables X1, . . . , Xd given Z are independent and
exponentially distributed with rates λ1, . . . , λd, where λi = Z

σi
. Let fZ denote the

density of the gamma random variable Z. Notice that

E
[
(S−x)k−1

+
]

=
∫ ∞

0
P (S > s+x)dsk−1

=
∫ ∞

0

(∫ ∞
0

P (S > s+x|Z = z)fZ (z)dz
)
dsk−1, (2.26)

where P (S > s|Z = z) represents the tail distribution of a sum of independent expo-
nential random variables with parameters λ1, . . . , λd. By Fubini’s theorem and the
substitution λi = z

σi
, we derive

E
[
(S−x)k−1

+
]

=
∫ ∞

0

(∫ ∞
0

P (S > s+x|Z = z)dsk−1
)
fZ (z)dz

=
∫ ∞

0
(λ1 · · ·λd)Γ(k)

d∑
i=1

e−λix

λki
∏
j ̸=i (λj −λi)

zα−1e−z

Γ(α) dz

= Γ(k)
Γ(α)Γ(α−k+1)(−1)d−1

d∑
i=1

σd+k−2
i∏

j ̸=i (σj −σi)

(
1+ x

σi

)−(α−k+1)
. (2.27)

By plugging relations (2.26) and (2.27), we obtain relation (2.24). By using the same
argument of conditioning over the values of the random variable Z, relation (2.25)
follows.

Remark 2.4.1 Considering Example 2.4.2 and Example 2.4.3, we point out that the
Orlicz quantile x satisfying equation (2.8) could be negative, see Example 12 of Bellini
and Rosazza Gianin (2012). However, Lemma 2.2 of Tang and Yang (2012) establishes
that x is positive for large enough q.

In the sequel, we discuss an example referring to Theorem 2.3.2.
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Example 2.4.4 Let (X1, . . . ,Xd) denote a d-dimensional random vector following a
multivariate Pareto distribution with parameters σ1, . . . , σd > 0 and α> k; see Example
2.4.3. It is known that (X1, . . . ,Xd) is regularly varying with parameter α. Let ν be
such that relation (2.13) holds with F̄ (x) =

(
1+ x

σ1

)−α
. By employing Theorem 2.3.2,

we have
Λaq (Xi,S) = CiF

← (q) ,

where

(−1)d−1Ci

=


(
(−1)d−1 ga ([σ1, . . . ,σd])

)1−α
B(α−k,k)

(α−k)α−k kk−1


1
α

gai ([σ1, . . . ,σi−1,σi+1, . . . ,σd]) ,

and

ga (σ) = σα+d−1σ−α1 ,

gai (σ) = −α σd−2

(σi−σ)σ
α+1
i σ−α1 − σα+d−1

(σi−σ)2σiσ
−α
1 + σd−1

(σi−σ)2σ
α+1
i σ−α1 .

Now, we provide further details concerning Example 2.4.4. Conforming to Lemma
2.3.2 and its proof, it follows that

Ii+ ciB(α−k,k)

=
(∫∫

(s>0,0<r≤s+1)
+
∫∫

(s>0,r>s+1)

)
ν (z : zi > r,sd > s+1)drdsk−1

=
∫ ∞

0

∫ ∞
0

ν (z : zi > r,sd > s+1)drdsk−1,

and ∫ ∞
0

∫ ∞
0

ν (z : zi > r,sd > s+1)drdsk−1 = lim
x→∞

E
[
Xi(S−x)k−1

+
]

xkF (x)
.

Moreover, by letting gi be the function defined in Example 2.4.3, relation (2.25) implies
that

lim
x→∞

E
[
Xi(S−x)k−1

+
]

xkF (x)
= lim

x→∞
B(α−k,k)(−1)d−1 gi (x, [σ1, . . . ,σi−1,σi+1, . . . ,σd])

xkF (x)
= B(α−k,k)(−1)d−1 gai ([σ1, . . . ,σi−1,σi+1, . . . ,σd]) .
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Summing up, it holds that

Ii+ ciB(α−k,k) = B(α−k,k)(−1)d−1 gai ([σ1, . . . ,σi−1,σi+1, . . . ,σd]) .

By proceeding in a similar manner, we derive

ν (z : sd > 1) = (−1)d−1 ga ([σ1, . . . ,σd]) .

2.4.2 Numerical studies

To numerically illustrate our results, we refer back to Example 2.4.3 with parameters
d= 8 and σi = 50,000(1+ i) for i ∈ {1, . . . ,d}.

First, we investigate the performance of the asymptotic formula (2.14). By Example
2.4.4, we notice that the asymptotic contribution Λaq (Xi,S) is explicit. In addition, to
compute the theoretical contribution Λq (Xi,S), we need to numerically solve equation
(2.23). To that end, we may employ the function uniroot of R; we refer the reader
to the monograph of Kaas et al. (2008) for applications of R to various problems
in actuarial science. With this in mind, we are prepared to numerically compare
Λq (Xi,S) and Λaq (Xi,S). Because of the similarity of behaviors along sub-portfolios,
we only comment the comparison for the first sub-portfolio (i = 1). For k = 1.1, on
the left of Figure 2.1 and Figure 2.2, we compare Λq (Xi,S) and Λaq (Xi,S) by varying
α. Visually, it is apparent that Λaq (Xi,S) → Λq (Xi,S) as q ↑ 1, however, the rate of
convergence decreases as α increases. For α= 1.6, on the right of Figure 2.1 and Figure
2.2, we constrast Λq (Xi,S) and Λaq (Xi,S) by varying k. Again, we graphically confirm
the convergence of the asymptotic allocation Λaq (Xi,S) to the theoretical allocation
Λq (Xi,S). We also point out that the rate of convergence increases as k decreases.

Finally, for q = 0.95, α= 3, and k = 2, Figure 2.3 shows a comparison via simulation
between the capital allocation Λq and the consistent estimator Λ(n)

q provided by relations
(2.11) and (2.12), considering different values of the sample size n.
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Chapter 3

Indifference pricing of
mortality-linked securities

3.1 Notation and abbreviations

In the following table, we provide a summary of notation and abbreviations used in
this chapter:

1 the d-dimensional vector with all components being 1
1A the indicator of an event A
BSDE backward stochastic differential equations
CIR Cox–Ingressol–Ross
d a positive integer
distK (k) infl∈K ∥k − l∥, where K is a closed subset of Rd and k ∈ Rd

E mathematical expectation
E(X|F) conditional expectation of X given F
F∞ ∨t≥0Ft, where {Ft} is a filtration
|I| the cardinality of a finite set I, namely the number of elements in it
In the set {1, . . . ,n}
L∞(F) the space of F -measurable and essentially bounded random variables
MLS mortality-linked securities
n a positive integer

∥(x1, . . . ,xd)∥ the Euclidean norm,
(∑d

i=1x
2
i

) 1
2 for (x1, . . . ,xd) ∈ Rd

P probability measure
P (A|F) conditional probability of A given F
ΠK(k) {l ∈ K : ∥k − l∥ = distK (k)}, where K ⊂ Rd is closed and k ∈ Rd
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R (−∞,∞)
RCLL right continuous with left limits
∨θ∈ΘFθ the smallest sigma-algebra containing every Fθ for θ ∈ Θ
x∧y min{x,y}

3.2 Introduction

Catastrophic mortality events, such as pandemics, wreak havoc on the economy and
society on a large scale despite their low likelihood of happening. For instance, the
1918 influenza pandemic took around 50 million lives. More recently, during the 2009
H1N1 influenza pandemic between 151,700 and 575,400 people perished worldwide.
Concerned with such fatalities, life insurers/reinsurers are continually seeking solutions
to mitigate catastrophic risk.

The uncertainty in future death rates can be divided into two components: the
unsystematic mortality risk, which can be hedged by pooling, and the systematic
mortality risk due to the uncertain development of future mortality rates (for instance
due to a pandemic), which is inherently undiversifiable. As an alternative to traditional
reinsurance, the interplay between the insurance industry and the capital market
provides a vehicle for mitigating systematic mortality risk, namely, through the financial
securitization. Securitization allows off-loading undiversifiable risk from the insurer
and transferring it to the capital market. In particular, the mortality-linked securities
(MLS) have emerged as a way to manage systematic mortality risk. Generally speaking,
MLS are financial products whose payoffs depend on mortality risk. For example,
mortality catastrophe bonds have been employed by some insurance and reinsurance
companies to transfer extreme mortality risks to the capital market (see, e.g., Bauer
and Kramer (2016)).

As the MLS market expands, pricing MLS becomes increasingly important and is
attracting much research attention; see for instance Cairns et al. (2006, 2008) and
Blake et al. (2008). To value an MLS, one essentially needs to specify a mortality
model and to choose a pricing methodology. Because the mortality events are generally
not hedgeable, the MLS market is incomplete. In consequence, it is not possible to set
a unique price for an MLS by relying only on arbitrage considerations. Therefore, the
election of a pricing methodology is imperative.

Various approaches have been developed in the literature to address the incomplete-
ness of the MLS market when pricing. The exploited approaches include: arbitrage
pricing theory (see Milevsky and Promislow (2001), Blanchet-Scalliet et al. (2005),
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and Bayraktar et al. (2009)), probability transform (see Lin and Cox (2005, 2008),
and Chen and Cox (2009)), risk-minimizing strategies (see Dahl and Møller (2006),
Dahl et al. (2008), and Biagini et al. (2017)), and indifference pricing (see Dahl and
Møller (2006), Hainaut and Devolder (2008), and Ludkovski and Young (2008)). We
refer the reader to Bauer et al. (2010) for a comparative study.

In particular, the indifference pricing approach, an extension of the notion of
certainty equivalent to more general and possibly dynamic settings, allows incorporating
risk aversion. Consider an agent facing a contingent claim with payoff C at future time
T > 0. Regardless of the completeness of the market, it is possible to define the utility
indifference price p as the amount at which the agent is indifferent, in the sense that his
expected utility under optimal trading is unchanged, between receiving the price p now
but settling the payoff C at T and neither receiving now nor paying at T something.
Since its first introduction by Hodges and Neuberger (1989), the indifference pricing
approach has been widely studied in the literature of pricing in incomplete markets;
see for instance Davis et al. (1993), Rouge and El Karoui (2000), Hu et al. (2005),
and Carmona (2009).

When employing the approach of utility indifference pricing, the resulting price
has many desirable properties. For example, the price lies in the interval of prices
consistent with no-arbitrage, and the price is non-linear in the number of units of the
contingent claim. Moreover, the construction of an optimal hedge is implicit in the
calculation of the utility indifference price. Interestingly, the value function underlying
the utility indifference price has been linked to backward stochastic differential equations
(BSDE). For instance, working on a Brownian filtration, Hu et al. (2005) characterize
the indifference price process as the unique solution of a BSDE and describe the
corresponding optimal wealth and strategy processes. Other related works include
Rouge and El Karoui (2000), Frittelli (2000a, 2000b), Delbaen et al. (2002), Mania and
Schweizer (2005), Becherer (2006), Jiao et al. (2013), and Kharroubi and Lim (2014).
Consequently, its appealing economic justification and the power of BSDE techniques
advocate us to choose the utility indifference pricing as a sensible methodology to price
MLS.

In practice, the mortality risk emanates from a portfolio of life insurance policyhold-
ers. Therefore, it is pivotal to state a model for the policyholders’ remaining lifetimes.
Nowadays, there is a consensus that the mortality rates, which define the remaining
lifetimes, are stochastic. The recent literature on this topic is abundant and essentially
inspired by credit risk theory; see for instance Milevsky and Promislow (2001), Dahl
(2004), Biffis (2005), Schrager (2006), Cairns et al. (2006), Wills and Sherris (2010),
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Blackburn and Sherris (2013), and Biagini et al. (2017). In parallel with credit risk
modeling, one often assumes that the remaining lifetimes are independent, given the
information on the mortality rates. Moreover, the great majority of the aforementioned
works model mortality rates as affine diffusion processes because of its analytical and
computational tractability. For example, Biagini et al. (2017) model mortality rates as
affine diffusion processes based on Gaussian random fields, which allow capturing the
cross-generational dependency structure of the portfolio.

In this chapter, we consider an insurance market in which financial and mortality
risks coexist. The financial risk arises from a financial market with a finite number of
securities, and the mortality risk emanates from a portfolio of life insurance policy-
holders. Aiming to contemplate systematic and unsystematic mortality risks and to
keep tractability, we assume that the remaining lifetimes are conditionally independent
doubly stochastic random times. It is worthy of mentioning that we do not require the
mortality rates to be affine. By employing the utility indifference pricing approach with
an exponential utility function, we tackle the problem of valuing an MLS, which offers
a payoff C at future time T > 0. In contrast to the related works of Moore and Young
(2003), Jaimungal and Young (2005), Dahl and Møller (2006), Hainaut and Devolder
(2008), and Ludkovski and Young (2008), we consider heterogeneous mortality rates
allowing a portfolio composed of different age cohorts.

First, we consider the pricing of a claim formed by a linear combination of pure
endowments. In this particular case, by using the independence between the financial
and actuarial worlds, we provide a quasi-explicit formula for the utility indifference
price. Here, our mathematical contribution consists of extending some results from
credit risk theory usually referred to in the case of one random time to multiple random
times. Moreover, we present some examples which admit a significant simplification
for the utility indifference price by modeling the marginal mortality-rates as affine
diffusion processes. Affine mortality rate models have been successfully used; see for
instance Biffis (2005), Schrager (2006), Wills and Sherris (2010), and Blackburn and
Sherris (2013).

Then, following Hu et al. (2005), we employ techniques of BSDE to tackle the utility
indifference pricing problem by assuming a general bounded payoff C. Specifically,
we characterize the optimal investment strategy and the optimal value function for
the optimization problem with the solution to a non-linear BSDE with non-Lipschitz
generator. Mathematically speaking, the novelty herein consists of establishing existence
and uniqueness properties for the BSDE characterizing the optimization problem, which
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3.3 Model

is essentially different from that one in Hu et al. (2005) and Becherer (2006) because
the generator contains exponential and quadratic terms for the portfolio process.

3.3 Model

Hereafter, we work on a probability space (Ω,G,P ), which is rich enough to accom-
modate two independent Brownian motions W 1 and W 2 with dimensions d and m,
respectively. All economic activities are assumed to take place on a time horizon
[0,T ], where T > 0. For i ∈ {1,2}, let

{
F i
t

}
be the P -augmentation of the filtration

generated by W i. From now on, the sigma-algebras F1
t and F2

t represent, respectively,
the financial information and the systematic mortality risk information available up to
time t. By construction, the filtrations

{
F1
t

}
and

{
F2
t

}
satisfy the usual conditions

(namely, each of them is right continuous and contains all P -null subsets of G) and so
does {Ft} = {F1

t ∨F2
t } (see Lemma 3.4.1).

3.3.1 Financial market

We consider a financial market consisting of one risk-free asset and d risky assets. As
usual, we assume that the price of the money market process, S̃0 (·), evolves according
to the equation

dS̃0 (t) = S̃0 (t)r (t)dt, t ∈ [0,T ] ,

where r (·) is a risk-free rate process, assumed to be {F1
t }-progressively measurable

and bounded from below. Moreover, we introduce d stocks with prices per share at
time t given by S̃1(t), . . . , S̃d(t) with S̃1(0), . . . , S̃d(0)> 0. The processes S̃1(·), . . . ,
S̃d(·) satisfy the system of stochastic differential equations

dS̃i (t) = S̃i (t)
µ̃i(t)dt+ d∑

j=1
σi,j(t)dW 1

j (t)
 , t ∈ [0,T ] , i ∈ {1, . . . ,d} ,

where µ̃(·) = (µ̃1(·), . . . , µ̃d(·))⊺ and σ(·) = {σi,j(·)}1≤i,j≤d
are

{
F1
t

}
-progressively mea-

surable processes. Assume that µ(·) = µ̃(·)− r (·)1 and σ(·) are uniformly bounded,
and there exists ε > 0 such that

ξ⊺σ(t)σ⊺(t)ξ ≥ ε∥ξ∥2 , ξ ∈ Rd, t ∈ [0,T ] . (3.1)

Due to the condition (3.1), σ(t) has an inverse almost everywhere on [0,T ]×Ω, and
the process θ (·) = (σ (·))−1 µ(·) is uniformly bounded. According to Theorem 1.4.2 of
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Karatzas and Shreve (1998), the financial market is arbitrage-free. In this set-up, the
process θ (·) receives the name of the market price of risk. Furthermore, the invertibility
of the matrix-valued process σ(·) implies that the financial market is complete; see
Section 1.6 of Karatzas and Shreve (1998) for further details.

3.3.2 Mortality rates

We consider a portfolio of n life insurance policyholders whose remaining lifetimes are
modeled by random variables τ1, . . . , τn.

Let γ1(·), . . . , γn(·) be non-negative and {F2
t }-progressively measurable processes,

such that
∫ ·
0 γi(s)ds is strictly increasing and finite for each i ∈ In. Thus, the processes

γ1(·), . . . , γn(·) are driven by the Brownian motion W 2. In addition, let U1, . . . , Un be
independent and uniformly distributed random variables, which are independent of F∞.
In this chapter, we assume that the remaining lifetimes τ1, . . . , τn are conditionally
independent doubly stochastic random times with marginal mortality rate processes
γ1(·), . . . , γn(·), i.e.,

τi = inf
{
t > 0 : e−

∫ t

0 γi(s)ds ≤ Ui

}
, i ∈ In = {1, . . . ,n}. (3.2)

Under this construction, it is apparent that

P (τi = 0) = 0, i ∈ In,

P (τi > t) > 0, t ∈ [0,T ] , i ∈ In,

P (τi = τj) = 0, i, j ∈ In and i ̸= j.

According to relation (3.2), it holds that

P
(
τ1 ≤ t1, . . . , τn ≤ tn|F2

∞
)

=
∏
i∈In

P
(
τi ≤ ti|F2

∞
)
.

Namely, we assume that τ1, . . . , τn are conditionally independent, given the information
F2
∞. Intuitively, if the evolution of all mortality risk factors corresponding to the

filtration
{
F2
t

}
is known, then the random times τ1, . . . , τn are independent. By the

mildness of the assumptions concerning the processes γ1(·), . . . , γn(·), our model allows
the portfolio to be composed of individuals from different age cohorts, whose mortality
rates may be affected by mortality risk factors differently. The idea of constructing
random times through mortality rate processes has been extensively used in credit risk
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3.4 Utility indifference pricing

modeling; see for instance Lando (2009). Besides, authors such as Dalh (2004) and
Biffis (2005) have exploited the tractability of this construction to price some MLS.

For i ∈ In, define Hi(t) = 1(τi≤t) for all t ∈ [0,T ], and let {Hi
t} denote the filtration

generated by Hi(·).

3.3.3 Combined model

We situate in an extended market where derivatives, depending on both financial and
mortality risks, are traded. Concretely, we assume that the information available to
investors at time t∈ [0,T ] is given by the P -augmentation of

{
F1
t ∨F2

t ∨H1
t ∨·· ·∨Hn

t

}
,

which is denoted by {Gt}. In our model, it is worthy to point out that any
{
F1
t

}
-

martingale is a {Gt}-martingale. This is a necessary condition to guarantee that there
are no arbitrage possibilities in the financial market by using {Gt}-adapted strategies;
see for instance Elliott et al. (2000).

Remark 3.3.1 For i ∈ In, let
{
Git
}

denote the P -agumentation of {Ft ∨ Hi
t}. The

process γi(·) is called a
{
Git
}

-martingale intensity process for the random time τi because

H̃i(·) =Hi(·)−
∫ ·∧τi

0
γi(s)ds

is a
{
Git
}
-martingale; see for instance Section 2.5 of Jeanblanc and Rutkowski (2002).

Moreover, due to our construction of the random times τ1,. . . ,τn, it is easy to prove
that H̃i(·) is also a {Gt}-martingale.

3.4 Utility indifference pricing

Suppose an individual facing some liability C̃, whose discounted value is a GT -
measurable and bounded random variable denoted by C. For example, the discounted
value of the liability may have the form

C =
n∑
i=1

Ci1(τi>T ), (3.3)

where C1, . . . , Cn denote F1
T -measurable bounded random variables. In this case, the

insurer pays to the i-th policyholder surviving up to time T an amount C̃i, equivalent
to Ci shares of the cash account.
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3.4 Utility indifference pricing

In this setting, we aim to study the pricing of a contingent claim with discounted
payoff C by considering the financial market in discounted terms. To carry out the
pricing task, since the expanded market is incomplete because mortality events are
generally not hedgeable, we employ the utility indifference approach.

Let t∈ [0,T ] be fixed. Consider an agent, who, starting with a capital x at t, invests
an amount π̃i(u) at any time u∈ [t,T ] in the i-th risky asset, i∈ {1, . . . ,d}. In particular,
we assume that the strategy process π̃ (·) = (π̃1 (·) , . . . , π̃d (·))⊺ is a {Gt}-progressively
measurable and Rd-valued process, such that

∫ T
t ∥π̃⊺ (s)σ (s)∥2 ds < ∞. The wealth

process X̃x,π̃
t (·) accumulating from t, associated with x and π̃(·), satisfies the following

stochastic differential equation

dX̃x,π̃
t (u)

= X̃x,π̃
t (u)r(u)du+ π̃⊺ (u)

(
(µ(u)− r(u)1)du+σ (u)dW 1 (u)

)
, t≤ u≤ T,

whose solution is given by

D0(t,u)X̃x,π̃
t (u)

= x+
∫ u

t
D0(t,s)π̃⊺ (s)

(
(µ̃(s)− r(s)1)ds+σ (s)dW 1 (s)

)
, t≤ u≤ T,

where

D0(t,u) =
(
S̃0 (u)
S̃0 (t)

)−1

, t≤ u≤ T.

We now introduce our financial market in discounted terms. It is easy to see that
the discounted asset prices S1 (·) = S̃1(·)

S̃0(·) , . . . , Sd (·) = S̃d(·)
S̃0(·) satisfy

dSi (t) = Si (t)
µi(t)dt+ d∑

j=1
σi,j(t)dW 1

j (t)
 , t ∈ [0,T ] , i ∈ {1, . . . ,d} ,

where µi(·) denotes the i-th component of the process µ(·). In terms of the discounted
asset prices S1 (·), . . . , Sd (·), the wealth process can be rewritten as

Xx,π
t (u) = x+

∫ u

t
π⊺ (s)

(
µ(s)ds+σ (s)dW 1 (s)

)
(3.4)

= D0(t,u)X̃x,π̃
t (u) , t≤ u≤ T,

where π (·) =D0(t, ·)π̃ (·). To lighten the notation, we suppress from Xx,π
t the indexes

x and t when they equal 0.
Hereafter, we shall work with the financial market in discounted terms.
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3.4 Utility indifference pricing

From now on, we assume that the agent has an exponential utility function. Namely,
there exists α > 0 such that

U (y) = −e−αy, y ∈ R.

We now specify the class of admissible investment strategies, which we shall denote by
A.

Definition 3.4.1 The set of admissible strategies A consists of all
{
F1
t

}
-progressively

measurable processes π (·) with values in a closed subset of Rd, which satisfy

E

(∫ T

0
∥π⊺ (s)σ (s)∥2 ds

)
<∞, (3.5)

as well as {
−e−αX

π(ρ) : ρ is an
{
F1
t

}
-stopping time on [0,T ]

}
(3.6)

is a uniformly integrable family.

By following Ludkovski and Young (2008), we suppose that the strategies in
Definition 3.4.1 are adapted to

{
F1
t

}
. However, in Section 3.4.3, we extend the

definition by requiring the admissible strategies to be adapted to {Gt}.

Remark 3.4.1 When the closed set in Definition 3.4.1 is compact, in our model, the
integrability conditions (3.5) and (3.6) are redundant. See for instance Lemma 1 of
Morlais (2009).

The utility indifference price p(t) is the price at which the agent is indifferent (in the
sense that his expected utility under optimal trading is unchanged) between receiving
the price p(t) at t but paying the liability C at T and neither receiving at t nor paying
at T something. Define

V (t,x,C) = sup
π∈A(t)

E
(
U
(
Xx,π
t (T )−C

)∣∣∣Gt) , (3.7)

where A(t) denotes the set of all restrictions to [t,T ] of the strategies in A. Thus, the
utility indifference price p(t) is the solution to

V (t,x,0) = V (t,x+p(t),C) , t ∈ [0,T ]. (3.8)
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3.4 Utility indifference pricing

In our set-up, we notice that

V (t,x,C) = e−αxV (t,0,C) , t ∈ [0,T ].

Hence, relation (3.8) reduces to

e−αxV (t,0,0) = e−α(x+p(t))V (t,0,C) , t ∈ [0,T ],

whence the indifference price process p(·) can be written as

p(t) = 1
α

log V (t,0,C)
V (t,0,0) , t ∈ [0,T ]. (3.9)

It is apparent that the indifference price process p(·) does not depend on the initial
wealth x. Thus, when computing the value function (3.7), we may set x= 0 without
loss of generality.

3.4.1 Linear combination of pure endowments

In this section, we consider the pricing of a claim whose payout is a linear combination
of pure endowments. That is to say, we assume that

C =
n∑
i=1

ci1(τi>T ), (3.10)

where c1, . . . , cn denote real numbers.
Now, we present an elementary result, which allows rewriting the value function

(3.7) conveniently; see Proposition 1.12 of Aksamit and Jeanblanc (2017).

Lemma 3.4.1 Let {Ft} and
{
F̃t

}
be two right-continuous filtrations such that F∞

and F̃∞ are independent.

(i) For two random variables X ∈ L∞(F∞) and X̃ ∈ L∞(F̃∞),

E
(
XX̃

∣∣∣Ft∨F̃t

)
= E (X|Ft)E

(
X̃
∣∣∣ F̃t

)
, t≥ 0;

(ii) The filtration
{
Ft∨F̃t

}
is right-continuous.
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Let π ∈ A be any admissible strategy. From Lemma 3.4.1, it holds that

E (U (Xπ
t (T )−C)|Gt) = E

(
−e−α(Xπ

t (T )−C)
∣∣∣Gt)

= E
(

−e−αX
π
t (T )

∣∣∣F1
t

)
E
(
eαC

∣∣∣F2
t ∨Ht

)
, t≥ 0.

Therefore, it follows that

V (t,0,C) = sup
π∈A(t)

E (U (Xπ
t (T )−C)|Gt)

= E
(
eαC

∣∣∣F2
t ∨Ht

)
sup

π∈A(t)
E
(

−e−αX
π
t (T )

∣∣∣F1
t

)
. (3.11)

Moreover, from Theorem 7 of Hu et al. (2005), the optimization problem

sup
π∈A(t)

E
(

−e−αX
π
t (T )

∣∣∣F1
t

)

has a solution. In consequence, by using (3.9) and (3.11), the utility indifference price
process p(·) is given by

p(t) = 1
α

log
(
E
(
eα
∑n

i=1 ci1(τi>T )
∣∣∣∣F2

t ∨Ht

))
. (3.12)

That said, we present the main result of this section.

Proposition 3.4.1 Let p(·) denote the utility indifference price process for the con-
tingent claim whose payoff C is given by (3.10). Then

p(t) = q

 n∑
j=1

∑
I⊂In, |I|=j

∏
i∈I

(eαci −1)1(τi>t)E
(
e−
∑

i∈I

∫ T

t
γi(s)ds

∣∣∣∣F2
t

) , (3.13)

where
q(x) = 1

α
log (1+x) .

To prove Proposition 3.4.1, we first present two results frequently cited in the
literature of credit risk in the case n= 1; see for instance Jeanblanc and Rutkowski
(2002).

For ∅ ≠ I ⊂ In, let
{
HI
t

}
=
{
∨i∈IHi

t

}
and let GIt denote the P -agumentation of

Ft∨HI
t .
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Lemma 3.4.2 For ∅ ≠ I ⊂ In, let {It} be a filtration such that It ⊂ GIt for every t≥ 0.
Then {It} ⊂

{
J I
t

}
, where

J I
t = {A ∈ G : ∃B ∈ Ft, A∩ (∩i∈I(τi > t)) =B∩ (∩i∈I(τi > t))} , t≥ 0.

Proof. It is apparent that J I
t is a sub-sigma-algebra of G. Then, to prove that

{It} ⊂
{
J I
t

}
, it is sufficient to verify that {Ft} ⊂

{
J I
t

}
and

{
HI
t

}
⊂
{
J I
t

}
. Namely,

we need to show that: if either A ∈ Ft or A = (∩i∈J(τi ≤ ui)) ∩
(
∩i∈I\J(τi > t)

)
for

some constants ui ≤ t and J ⊂ I, then there exists B ∈ Ft such that A∩(∩i∈I(τi > t)) =
B∩ (∩i∈I(τi > t)). For the first case, we may take B = A, and for the later B = ∅ if
J ̸= ∅ or B = Ω otherwise.

Lemma 3.4.3 Let Y represent any random variable on (Ω,G,P ). Assume that F is
any sub-sigma-algebra of G, ∅ ̸= I ⊂ In, and ti ≥ t for i ∈ I. Then

E
(

1(∩i∈I(τi>ti))Y
∣∣∣F ∨HI

t

)
= 1(∩i∈I{τi>t})

E
(

1(∩i∈I(τi>ti))Y
∣∣∣F)

P (∩i∈I(τi > t)|F) . (3.14)

Proof. To prove relation (3.14), we need to show that

E
(

1CI
t
Y P

(
CIt
∣∣∣F)∣∣∣F ∨HI

t

)
= E

(
1CI

t
E
(

1CI
t
Y
∣∣∣F)∣∣∣F ∨HI

t

)
,

where CIt = ∩i∈I(τi > ti). Namely, we have to verify that for every A ∈ F ∨HI
t∫

A
1CI

t
Y P

(
CIt
∣∣∣F)dP =

∫
A

1CI
t
E
(

1CI
t
Y
∣∣∣F)dP.

From Lemma 3.4.2, we can chooseB ∈ F such thatA∩(∩i∈I(τi > t)) =B∩(∩i∈I(τi > t)).
Thus, we obtain∫

A
1CI

t
Y P

(
CIt
∣∣∣F)dP =

∫
A∩CI

t

Y P
(
CIt
∣∣∣F)dP

=
∫
B

1CI
t
Y P

(
CIt
∣∣∣F)dP

=
∫
B
E(1CI

t
Y
∣∣∣F)P

(
CIt
∣∣∣F)dP

=
∫
B
E
(

1CI
t
E(1CI

t
Y
∣∣∣F)

∣∣∣F)dP
=

∫
B∩CI

t

E(1CI
t
Y
∣∣∣F)dP

=
∫
A

1CI
t
E
(

1CI
t
Y
∣∣∣F)dP.
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So, we have proved the claim.

Proof of Proposition 3.4.1. Let I ⊂ In and ti ≥ t for every i ∈ I. From Lemma
3.4.3, it follows that

P
(

∩i∈I(τi > ti)|F2
t ∨Ht

)
= 1(∩i∈I(τi>t))

P
(

∩i∈I(τi > ti)|F2
t ∨HIn\I

t

)
P
(

∩i∈I(τi > t)|F2
t ∨HIn\I

t

) .

By recalling that the random times τ1, . . . , τn are F2
∞-conditionally independent and

exponentially distributed with mortality rate processes γ1(·), . . . , γn(·), it holds that

P
(

∩i∈I(τi > ti)|F2
t ∨Ht

)
= 1(∩i∈I(τi>t))

P
(

∩i∈I(τi > ti)|F2
t

)
P
(

∩i∈I(τi > t)|F2
t

)
= 1(∩i∈I(τi>t))E

(
e−
∑

i∈I

∫ ti
t
γi(s)ds

∣∣∣∣F2
t

)
. (3.15)

Now, we notice that

eα
∑n

i=1 ci1(τi>T ) =
n∏
i=1

(
1+(eαci −1)1(τi>T )

)

= 1+
n∑
j=1

∑
I⊂In, |I|=j

∏
i∈I

(eαci −1)1(τi>T )

 .
Thus, by taking conditional expectation with respect to the filtration

{
F2
t ∨Ht

}
, we

derive

E
(
eα
∑n

i=1 ci1(τi>T )
∣∣∣∣F2

t ∨Ht

)

= 1+
n∑
j=1

∑
I⊂In, |I|=j

∏
i∈I

(eαci −1)E
∏
i∈I

1(τi>T )

∣∣∣∣∣∣F2
t ∨Ht


= 1+

n∑
j=1

∑
I⊂In, |I|=j

∏
i∈I

(eαci −1)1(τi>t)E
(
e−
∑

i∈I

∫ T

t
γi(s)ds

∣∣∣∣F2
t

) ,
where, the last step is due to relation (3.15). Finally, the intended result follows in
light of relation (3.12).

In Proposition 3.4.1, we assume that the agent chooses investment strategies only
based on the information arising from the financial market, and we suppose that
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financial and actuarial worlds are independent. Accordingly, the indifference price
process p(·), corresponding to the contingent claim with payout C, only depends on
the actuarial information.

To gain some insights into how the dependence among the mortality rate processes
γ1(·), . . . , γn(·) affect the process p(·), we shall study some examples where the condi-
tional expectations appearing in (3.13) admit explicit representations. In particular,
by following Biffis (2005), we model the mortality rate processes γ1(·), . . . , γn(·) as
affine diffusion processes.

Example 3.4.1 (Affine homogeneous intensities) First, we consider a case in
which the policyholders share the same affine mortality rate process. Succinctly, for
i ∈ In, suppose that the mortality rate process γi(·) satisfies

γi(t) = λ(t), t ∈ [0,T ] ,

where λ(·) is an
{
F2
t

}
-adapted affine diffusion process as described in Section A.1. For

I ⊂ In and |I| = j, it follows that

E
(
e−
∑

i∈I

∫ T

t
γi(s)ds

∣∣∣∣F2
t

)
= E

(
e−j

∫ T

t
λ(s)ds

∣∣∣∣F2
t

)
= eψ

j(T−t)+βj(T−t)λ(t),

where ψj(·) and βj(·) are the deterministic functions in the representation (A.2) with
a= j. Then p(·) simplifies to

p(t) = q

 n∑
j=1

eψ
j(T−t)+βj(T−t)λ(t) ∑

I⊂In, |I|=j

∏
i∈I

(eαci −1)1(τi>t)

 .
Example 3.4.2 (Affine heterogeneous intensities) Now, we describe a case in
which the policyholders have heterogeneous but correlated affine mortality rate processes.
Specifically, for i ∈ In, assume that the mortality rate process γi(·) satisfies

γi(t) = λ0(t)+λi(t), t ∈ [0,T ] ,

where λ0(·), λ1(·), . . . , λn(·) are independent
{
F2
t

}
-adapted CIR processes with re-

spective parameters (κ,φ0,ν), . . . , (κ,φn,ν). Expressly, suppose that the Brownian
motion W 2(·) generating the information

{
F2
t

}
has dimension m= n+1 with each

component W 2
i (·) underlying the CIR process λi(·). One may view λ0(·) as a state

variable containing common aspects of mortality rates, and λi(·) as a state variable
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3.4 Utility indifference pricing

governing the idiosyncratic mortality specific to the policyholder i. It is not difficult to
see that the process γi(·) is itself a CIR process with parameters (κ,φ0 +φi,ν). In this
setting, for t ∈ [0,T ], it holds that

p(t)

= q

 n∑
j=1

eψ
j
0(T−t)+βj

0(T−t)λ0(t) ∑
I⊂In, |I|=j

∏
i∈I

(eαci −1)1(τi>t)e
ψi(T−t)+βi(T−t)λi(t)

 ,
where ψ1

0(·), β1
0(·), . . . , ψn0 (·), βn0 (·) and ψ1(·), β1(·), . . . , ψn(·), βn(·) are deterministic

functions. See Section A.2 for further details.

As follows, we discuss a case in which mortality rates do not have an affine structure.

Example 3.4.3 (quadratic-Gaussian heterogeneous intensities) To substanti-
ate the importance of allowing heterogeneous mortality rate processes, we consider a
portfolio consisting of two policyholders, whose mortality rate processes correspond to
the squares of two correlated Ornstein–Uhlenbeck processes with the same parameters.
Specifically, assume that the Brownian motion W 2(·) generating the information

{
F2
t

}
has dimension m= 2, and that γ1(·) and γ2(·) satisfy

γ1(t) = χ2
1(t),

γ2(t) = χ2
2(t),

with

dχ1(t) = κ(φ−χ1(t))dt+νdW 2
1 (t),

dχ2(t) = κ(φ−χ2(t))dt+ν
(
ρdW 2

1 (t)+
√

1−ρ2dW 2
2 (t)

)
,

where κ > 0, ν > 0, φ ∈ R, and ρ ∈ [0,1] are parameters and t varies on [0,T ]. By
construction

E
(
e−
∫ T

0 γ1(s)ds
)

= E
(
e−
∫ T

0 γ2(s)ds
)
,

E
(
e−2

∫ T

0 γ1(s)ds
)

> E2
(
e−
∫ T

0 γ1(s)ds
)
.

Referring to Proposition 3.4.1 with c1, c2 ≥ 0, let pρ(0) represent the indifference price
process at t = 0, where ρ ∈ [0,1] determines the dependence between χ1(·) and χ2(·).
Therefore, it is clear that p0(0) ̸= p1(0). Moreover, according to Corollary 20 from
Albanese and Lawi (2007), p0(0) and p1(0) admit closed-form expressions.
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Fig. 3.1 Indifference price pρ(0) by varying the correlation parameter ρ ∈ [0,1]

For illustrative purpose, we numerically compute pρ(0) by varying ρ ∈ [0,1]. For
the mortality rate processes, we assume the parameters κ= 0.60, ν = 0.06, φ= 0.68,
and T = 10. In addition, by following Buccola (1982), we suppose that the money
is expressed in $1000 units, and we set the absolute risk aversion parameter to be
α= 0.0012. To simulate the processes χ1(·) and χ2(·), we employ the function sde.sim
of R; we refer the reader to Iacus (2009) for further details. The size of the mesh in
the simulation of the processes χ1(·) and χ2(·) is 5000, and the sample size to compute
the expectations appearing in pρ(0) is 5000. By choosing c1 = c2 = 100, we display the
function pρ(0) on Figure 3.1.

3.4.2 An alternative definition of admissibility

By restricting investment strategies conforming to Definition 3.4.1, we rule out arbitrage
opportunities. However, in the mathematical finance literature, there are alternative
ways to define an arbitrage-free financial market. In particular, one often defines
a strategy π(·) to be admissible whenever its associated wealth Xπ(·) is bounded
from below and satisfies an integrability condition; see for instance Section 1.4 of
Karatzas and Shreve (1998). In this case, by considering a more general version of the
payoff given in relation (3.10), we compute the static indifference price p(0) in (3.9).
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3.4 Utility indifference pricing

Specifically, by employing a duality approach, we price a contingent claim whose payoff
C is given by relation (3.3).

Our hypotheses imply that

E

(∫ T

0
∥θ(s)∥2 ds

)
<∞.

Thus, we may define the state-price-density process

H0(t) = Z0(t)
S0(t) , t ∈ [0,T ] ,

where
Z0(t) = exp

(
−
∫ t

0
θ⊺(s)dW 1 (s)− 1

2

∫ t

0
∥θ(s)∥2 ds

)
, t ∈ [0,T ] .

Since θ(·) is bounded, Novikov’s condition implies that the positive local martingale
Z0(·) is a true martingale. In consequence, we define the standard martingale measure
P0 on F1

T by
P0(A) = E(Z0(T )1A), A ∈ F1

T .

In a consistent manner, the expectation operator with respect to P0 is denoted by
E0 (·).

Besides, using the following definition, we stipulate an alternative set of strategies
available to the investor.

Definition 3.4.2 The set of admissible strategies A consists of all
{
F1
t

}
-progressively

measurable and Rd-valued processes π (·) satisfying

E

(∫ T

0
∥π⊺ (s)σ (s)∥2 ds

)
<∞,

as well as
Xπ (t) ≥ b, t ∈ [0,T ],

for some constant b.

For π ∈ A, by relation (3.4), we see that Xπ (·) may be rewritten as

Xπ (t) =
∫ t

0
π⊺ (s)σ (s)dW0 (s) ,

where
W0 (t) = W 1 (t)+

∫ t

0
θ(s)ds, t ∈ [0,T ].
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By Girsanov’s theorem, the process W0 (·) is a Brownian motion under the martingale
measure P0, relative to the filtration

{
F1
t

}
. This implies that Xπ (·) is a local martingale

bounded from below under P0. Then Xπ (·) is a supermartingale by Fatou’s lemma.
Hence, it follows that the strategy π (·) must satisfy the budget constraint

E0 (Xπ (T )) = E (H0 (T )Xπ (T )) ≤ 0. (3.16)

For mathematical convenience, we shall rewrite the analog of the static value
function in (3.7) at t= 0. To that end, let π ∈ A. By partitioning, notice that

E
(
−e−α(Xπ(T )−C)

)
=
∑
I⊂In

E
(

−e−αX
π(T )eα(∑i∈I Ci)1AI 1BI

)
, (3.17)

where

AIT = ∩i∈I(τi > T ),
BI
T = ∩i∈In\I(τi ≤ T ).

Because of the independence between vector the (τ1, . . . , τn) and the filtration
{
F1
t

}
, it

holds that

∑
I⊂In

E
(

−e−αX
π(T )eα(∑i∈I Ci)1AI

T
1BI

T

)

=
∑
I⊂In

E
(

−e−αX
π(T )eα(∑i∈I Ci)

)
P
(
AIT ∩BI

T

)

= E

−e−αX
π(T ) ∑

I⊂In

eα(∑i∈I Ci)P
(
AIT ∩BI

T

) . (3.18)

Therefore, by using relations (3.17) and (3.18), we may rewrite

V (0,C) = sup
π∈A

E
(
−e−α(Xπ(T )−C)

)
= sup

π∈A
E (J (Xπ(T ),ω)) , (3.19)

where

J (y,ω) = −e−αyeαL(ω), (y,ω) ∈ R×Ω,

L(ω) = 1
α

log
∑
I⊂In

eα(∑i∈I Ci(ω))P
(
AIT ∩BI

T

)
, ω ∈ Ω. (3.20)

51
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Thus, V (0,C) is the value function of the optimization problem corresponding to the
state-dependent utility function J(·, ·) and the family of attainable wealths {Xπ(T )}π∈A.

To solve the optimization problem in (3.19), we employ a martingale methodology;
see for instance Chapter 3 of Karatzas and Shreve (1998). To that purpose, we first
present some definitions. Let J ′(·, ·) denote the derivative of J(·, ·) with respect to the
first variable. Moreover, let I(·, ·) denote the inverse of J ′(·, ·) with respect to the first
variable. Thus, it follows that

I (z,ω) = − 1
α

log
(
z

α

)
+L(ω), z > 0, ω ∈ Ω.

In these terms, the convex dual of J(·, ·), which is denoted by J̃(·, ·), can be represented
as

J̃(z,ω) = sup
y
J (y,ω)−yz

= J(I (z,ω) ,ω)− zI (z,ω) , z > 0, ω ∈ Ω. (3.21)

As usual, assume that the random variable H0(T ) has finite entropy, namely,

E (H0(T ) log(H0(T )))<∞.

Therefore, we may define the function

X (z) =E(H0(T )I (zH0(T ),ω)), z > 0.

Under our assumptions, X (z)<∞ for all z > 0. Accordingly, one can easily
prove that the function X (·), which maps (0,∞) onto (−∞,∞), is continuous and
strictly decreasing. Moreover, it holds that X

(
0+
)

= limy→0+ X (y) = ∞ and X (∞) =
limy→∞X (y) = −∞. Let Y (·) denote the inverse of X (·), i.e., Y (·) = X−1 (·).

Now, we are ready to present the main result of this section.

Theorem 3.4.1 Define
ξ∗ = I (Y (0)H0(T ),ω) .

Let π∗ ∈ A be such that Xπ∗ (T ) = ξ∗. Then π∗(·) is optimal for the optimization
problem given in (3.19):

V (0,C) = E

(
−e−α

(
Xπ∗

(T )−C
))

.
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Moreover, for all t ∈ [0,T ], the corresponding wealth and strategy processes are respec-
tively given by

Xπ∗
(t) = (H0 (t))−1E

(
H0(T )ξ∗|F1

t

)
, (3.22)

σ⊺ (t)π∗ (t) = (H0 (t))−1 φ(t)+Xπ∗
(t)θ (t) , (3.23)

where φ(·) is the integrand in the stochastic integral representation

M (t) = x+
∫ t

0
φ⊺ (s)dW 1 (s)

of the martingale
M (t) = E

(
H0(T )ξ∗|F1

t

)
.

To prove Theorem 3.4.1, we first recall a standard result; see for instance Theorem
3.3.5 of Karatzas and Shreve (1998).

Lemma 3.4.4 Let ξ be an F1
T -measurable and bounded from below random variable

such that
E(H0(T )ξ) = 0.

Then there exists a strategy process π ∈ A such that Xπ(T ) = ξ. Moreover, for all
t ∈ [0,T ], the corresponding wealth and strategy processes are respectively given by

Xπ(t) = (H0 (t))−1E
(
H0(T )ξ|F1

t

)
,

σ⊺ (t)π (t) = (H0 (t))−1 φ(t)+Xπ(t)θ (t) ,

where φ(·) is the integrand in the stochastic integral representation

M (t) = x+
∫ t

0
φ⊺ (s)dW 1 (s)

of the martingale
M (t) = E

(
H0(T )ξ|F1

t

)
.

Proof of Theorem 3.4.1. Clearly, the random variable ξ∗ satisfies the budget
constraint

E (H0 (T )ξ∗) = X (Y (0)) = 0. (3.24)

From Lemma 3.4.4, there exists a strategy process π∗ ∈ A such that Xπ∗(T ) = ξ∗. To
prove that π∗(·) is optimal, let π(·) be any strategy in A. By using relation (3.21), we
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obtain

J (ξ∗,ω)−Y (0)H0(T )ξ∗ = J̃(Y (0)H0(T ),ω)
≥ J (Xπ(T ),ω)−Y (0)H0(T )Xπ(T ).

Therefore, it follows that

E (J (ξ∗,ω)) ≥ E (J (Xπ(T ),ω))+Y (0)(E(H0(T )ξ∗)−E(H0(T )Xπ(T )))
≥ E (J (Xπ(T ),ω)) .

The last inequality follows because of relation (3.24) and the budget constraint (3.16)
satisfied by π(·). Finally, the representations in (3.22) and (3.23) also follow by Lemma
3.4.4.

According to relation (3.9), the indifference price p(0) corresponding to the liability
C can be represented as

p(0) = 1
α

log V (0,C)
V (0,0) .

Thus, by computing V (0,0) and V (0,C) with the help of Theorem 3.4.1, we derive the
next result.

Corollary 3.4.1 The indifference price p(0) for the liability C is given by

p(0) = E0 (L(ω)) . (3.25)

Notice that the quasi-explicit pricing formula (3.25) holds even when τ1, . . . , τn
are not conditionally independent. Indeed, it applies provided that the random times
τ1, . . . , τn are independent of the filtration

{
F1
t

}
. In particular, we may choose an

arbitrary dependence structure to the auxiliary random variables U1, . . . ,Un in the
definition of the random times τ1, . . . , τn given by (3.2).

Example 3.4.4 Assume a financial market with one risky asset, that is, d= 1. Here,
the asset price process S1(·) shall represent the market value of an equity fund in which
the policyholders may invest. Let δ > 0 denote the annualized rate at which fees are
deducted from the investment account. Therefore, the account value at time t for the
individual i, denoted by Fi(t), is given by

Fi(t) = Fi(0)S1(t)
S1(0)e

−δt, t ∈ [0,T ].

54
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For an integer m≥ 1, define ∆ = T
m . Furthermore, let t0 = 0< t1 < · · ·< tm = T be the

m-regular partition of the interval [0,T ], i.e., tj = j∆. Suppose that the insurer pays
to the ith policyholder the discounted amountg0

i (Fi(T ))−
m∑
k=1

g1
i (Fi(tk−1))∆

1(τi>T )

−
m∑
j=1

 j∑
k=1

g1
i (Fi(tk−1))

1(tj−1<τi≤tj)∆, (3.26)

where g0
i and g1

i are measurable functions. In such a case, g0
i (Fi(T )) denotes the

amount received by the policyholder when surviving to time T , and ∑j
k=1 g

1
i (Fi(tk−1))

denotes the incurred fees by the policyholder surviving to time tj−1. For instance, let
ai ∈ R and δe > 0. When g0

i (x) = (ai−x)+ and g1
i (x) = δex for x ∈ R, the expression

in (3.26) may represent the payment of a plain-vanilla guaranteed minimum maturity
benefits including fees; see Feng (2014). By slightly modifying the expression (3.20),
the quasi-explicit representation for the static indifference price p(0) from Corollary
3.4.1 holds, when referring to a claim with a payoff given by (3.26). Precisely, we need
to change the subsets indexing the sum in relation (3.20) to incorporate, for every i,
the information about the interval (tji−1, tji ] at which τi belongs whenever τi ≤ T .

3.4.3 General mortality-linked securities

In this section, we consider the pricing of a general claim with a bounded payout C.
By referring to Definition 3.4.1, for the sake of generality, we slighty modify the set of
admissible strategies by asking them only to be {Gt}-adapted.

Definition 3.4.3 The set of admissible strategies A consists of all {Gt}-progressively
measurable processes π (·) with values in a closed subset of Rd, which satisfy

E

(∫ T

0
∥π⊺ (s)σ (s)∥2 ds

)
<∞,

as well as {
−e−αX

π(ρ) : ρ is a {Gt} -stopping time on [0,T ]
}

is a uniformly integrable family.

Instead of providing an explicit expression for the indifference price process, in this
general setting, we deal with the solution of the dynamic optimization problem in (3.7)
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by employing techniques of BSDE. For simplicity, we consider the problem at t= 0 only.
Notwithstanding, we point out that the procedure presented below also gives us the
solution to the dynamic optimization problem in (3.7) by making obvious adjustments.

First, we define some stochastic process spaces:

• S2 denotes the set of {Gt}-adapted RCLL processes Y with E
(
supt∈[0,T ]Y (t)

)
<

∞,

• L∞+ denotes the set of positive {Gt}-adapted and essentially bounded RCLL
processes,

• L2,d(W 1) denotes the set of {Gt}-adapted RCLL processes Z taking values in
Rd with E

(∫ T
0 ∥Z(s)∥2 ds

)
<∞,

• L2,m(W 2) denotes the set of {Gt}-adapted RCLL processes Z taking values in
Rm with E

(∫ T
0 ∥Z(s)∥2 ds

)
<∞,

• L2,n
γ (H) denotes the set of {Gt}-adapted RCLL processes U taking values in Rn

with E
(∑n

i=1
∫ T
0 U2

i (s)γi(s)ds
)
<∞.

To find the value function and an optimal strategy for the optimization problem in
(3.7) at t= 0, by following Hu et al. (2005), we seek a family of stochastic processes
{Rπ}π∈A with the following properties:

(i) Rπ(T ) = −e−α(Xπ(T )−C) for all π ∈ A,

(ii) Rπ(0) =R0 is constant for all π ∈ A,

(iii) Rπ (·) is a supermartingale for all π ∈ A, and there exists π∗ ∈ A such that Rπ∗ (·)
is a martingale.

If {Rπ}π∈A is a family satisfying the aforementioned properties, it follows that

E
(
−e−α(Xπ(T )−C)

)
≤R0 = E

(
−e−α(Xπ∗

(T )−C)
)

= V (0,0,C) ,

whence π∗ is an optimal strategy. To construct such a family, for all t ∈ [0,T ] and
π ∈ A, set

Rπ(t) = −e−α(Xπ(t)−Y (t)), (3.27)

where

(Y,Z1,Z2,U) = (Y,Z1,Z2,U1, . . . ,Un) ∈ S2 ×L2,d(W 1)×L2,m(W 2)×L2,n
γ (H)
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is a solution to the BSDE

Y (t) = C+
∫ T

t
f(s,Z1(s),Z2(s),U(s))ds−

∫ T

t
Z1

⊺(s)dW 1(s)

−
∫ T

t
Z2

⊺(s)dW 2(s)−
n∑
i=1

∫ T

t
Ui(s)dH̃i(s), t ∈ [0,T ] . (3.28)

In these terms, our task consists of finding a function f∗ for which Rπ (·) is a super-
martingale for all π ∈ A and a strategy π∗ ∈ A such that Rπ∗ (·) is a martingale. To
that end, for all π ∈ A, we write Rπ (·) as a function involving a local martingale Mπ (·)
and a bounded variation process Aπ (·). Let π ∈ A. From (3.4) and (3.28), notice that

−α(Xπ(t)−Y (t))

= αY (0)−α
∫ t

0
(f(s)+π⊺ (s)µ(s))ds−α

∫ t

0
(π⊺ (s)σ(s)−Z1

⊺(s))dW 1(s)

+ α
∫ t

0
Z2

⊺(s)dW 2(s)+α
n∑
i=1

∫ t

0
Ui(s)dH̃i(s), t ∈ [0,T ].

Now, for t ∈ [0,T ], define

Aπ (t) =
∫ t

0

(
−αf(s)−απ⊺ (s)µ(s)+ 1

2α
2 ∥(π⊺ (s)σ(s)−Z1

⊺(s))∥2

+1
2α

2 ∥Z2(s)∥2 −
n∑
i=1

(
αUi(s)− eαUi(s) +1

)
γi(s)

)
ds, (3.29)

Mπ (t)

= exp
(

−
∫ t

0
α (π⊺ (s)σ(s)−Z1

⊺(s))dW 1(s)−
∫ t

0

1
2α

2 ∥(π⊺ (s)σ(s)−Z1
⊺(s))∥2 ds

+
∫ t

0
αZ2

⊺(s)dW 2(s)−
∫ t

0

1
2α

2 ∥Z2(s)∥2 ds+
n∑
i=1

∫ t

0
αUi(s)dH̃i(s)

+
n∑
i=1

∫ t

0

(
αUi(s)− eαUi(s) +1

)
γi(s)ds

)
. (3.30)

Thus, Rπ (·) can be written as follows:

Rπ (t) =Rπ (0)Mπ (t)exp(Aπ (t)) , t ∈ [0,T ] .
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If for all π ∈ A the process Aπ (·) is increasing, then the supermartingale condition in
(iii) holds as we shall see later. We can accomplish this requirement by setting

αf∗(t) = min
π∈A

{
−απ⊺µ(t)+ 1

2α
2 ∥π⊺σ(t)−Z1

⊺(t)∥2
}

+ 1
2α

2 ∥Z2(t)∥2 −
n∑
i=1

(
αUi(t)− eαUi(t) +1

)
γi(t), t ∈ [0,T ].

Moreover, by defining

π∗(t) = arg min
π∈A

{
−απ⊺µ(t)+ 1

2α
2 ∥π⊺σ(t)−Z1

⊺(t)∥2
}
, t ∈ [0,T ],

we obtain that Aπ∗ (t) = 1 for all t ∈ [0,T ]. That said, we are left to prove that the
BSDE (3.28) with generator f∗ has a solution, Mπ∗ (·) is a true martingale, and Rπ (·)
is a supermartingale for all π ∈ A. In light of this, we present the main result of this
section.

Theorem 3.4.2 Let K denote the closed set of Definition 3.4.3. Assume that K is
bounded and that γi(·) is uniformly bounded for every i. Then for every C ∈ L∞ (GT ):

(i) There exists a unique solution (Y,Z1,Z2,U) ∈ S2 × L2,d(W 1) × L2,m(W 2) ×
L2,n
γ (H) to the BSDE

Y (t)

= C+
∫ T

t

(
min
π∈A

{
−π⊺µ(s)+ 1

2α∥π⊺σ(s)−Z1
⊺(s)∥2

}

+ 1
2α∥Z2(s)∥2 −

n∑
i=1

1
α

(
αUi(s)− eαUi(s) +1

)
γi(s)

)
ds

−
∫ T

t
Z1

⊺(s)dW 1(s)−
∫ T

t
Z2

⊺(s)dW 2(s)−
n∑
i=1

∫ T

t
Ui(s)dH̃i(s), (3.31)

where t ∈ [0,T ].

(ii) The optimal admissible investment strategy π∗ ∈ A for the utility maximization
problem in (3.7) at t= 0 satisfies

π∗(t) ∈ Πσ⊺(t)K

( 1
α

θ(t)+Z1(t)
)
, t ∈ [0,T ].
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The optimal value function of the optimization problem in (3.7) at t= 0 equals
−eαY (0).

To prove Theorem 3.4.2, we need the following result concerning the stochastic
integral representation of square integrable martingales; see for instance Proposition
5.4 of Jeanblanc and Rutkowski (2002).

Lemma 3.4.5 Let M(·) be a square integrable {Gt}-martingale. Then there are unique
{Gt}-predictable process (Z1,Z2,U) ∈ L2,d(W 1)×L2,m(W 2)×L2,n

γ (H) such that

M (t) =M (0)+
∫ t

0
Z1

⊺(s)dW 1(s)+
∫ t

0
Z2

⊺(s)dW 2(s)+
n∑
i=1

∫ t

0
Ui(s)dH̃i(s).

Proof of Theorem 3.4.2. First, we prove Theorem 3.4.2(i). Consider the following
BSDE

Ŷ (t)

= eαC +
∫ T

t
min
π∈A

{
−απ⊺

(
µ(s)Ŷ (s)+σ(s)Ẑ1(s)

)
+ 1

2α
2 ∥π⊺σ(s)∥2 Ŷ (s)

}
ds

−
∫ T

t
Ẑ1

⊺(s)dW 1(s)−
∫ T

t
Ẑ2

⊺(s)dW 2(s)−
n∑
i=1

∫ T

t
Ûi(s)dH̃i(s), (3.32)

where t ∈ [0,T ]. For all (t,y,z1,z2) ∈ [0,T ] ×R×Rd×Rm, the generator g(·) of the
BSDE (3.32) is

g(t,y,z1,z2) = min
π∈A

{gπ(t,y,z1,z2)} ,

where
gπ(t,y,z1,z2) = −απ⊺ (µ(t)y+σ(t)z1

⊺)+ 1
2α

2 ∥π⊺σ(t)∥2 y.

Referring to the variables y, z1, z2, the function g(·) can be represented as the infimum
of the Lipschitz continuous functions {gπ(·)}π∈A, which have a global Lipschitz constant.
Thus, g(·) is Lipschitz continuous. According to Proposition 3.2 of Becherer (2006)
and Lemma 3.4.5, there exists a unique solution (Ŷ ,Ẑ1,Ẑ2, Û) ∈ S2 × L2,d(W 1) ×
L2,m(W 2)×L2,n

γ (H) to the BSDE (3.32). Besides, by employing a measurable selection
argument, there exists a strategy π̂ ∈ A satisfying

g(t, Ŷ (t),Ẑ1(t),Ẑ2(t)) = gπ̂(t, Ŷ (t),Ẑ1(t),Ẑ2(t)), t ∈ [0,T ] ,
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3.4 Utility indifference pricing

see for instance Lemma 11 of Hu et al. (2005). Therefore, for all t ∈ [0,T ], Ŷ (·) has
the following representation

Ŷ (t) = EQ

(
exp

(
C+

∫ T

t

(
−απ̂⊺(s)µ(s)+ 1

2α
2 ∥π̂⊺(s)σ(s)∥2

)
ds

)∣∣∣∣∣Gt
)
,

where

dQ

dP
= exp

(∫ T

0
−απ̂⊺(s)σ(s)dW 1(s)−

∫ T

0

1
2α

2 ∥π̂⊺(s)σ(s)∥2 ds

)
.

This representation allows us to conclude that Ŷ (·) is strictly positive, bounded from
above, and bounded away from zero. Consequently, Û1(·), . . . , Ûn(·) are bounded
because they constitute the jump part of the bounded process Ŷ (·). For t ∈ [0,T ], we
change the random variables Ŷ (t), Ẑ1(t), Ẑ2(t), Û(t) into

Y (t) = 1
α

log
(
Ŷ (t)

)
,

Z1(t) = 1
α

Ẑ1(t)
Y (t) ,

Z2(t) = 1
α

Ẑ2(t)
Y (t) ,

Ui(t) = 1
α

log
(
Ûi(t)
Y (t−) +1

)
, for all i ∈ In.

By using the Ito formula, we notice that the processes Y (·), Z1(·), Z2(·), U (·) satisfy
the BSDE (3.31). Thus, we have proved Theorem 3.4.2(i).

Now, we turn to prove Theorem 3.4.2(ii). Let π ∈ A. Since Mπ (·) is a positive local
martingale, there exists a sequence of stopping times {ρk}k≥1 with limk→∞ ρk = ∞,
such that Mπ (·∧ρk) is a positive martingale. Also, by the choice of (f∗,π∗), the
process Aπ (·) is increasing. Then Rπ (·∧ρk) is a supermartingale, namely, for every
s≤ t and A ∈ Gs, we have

E (Rπ (t∧ρk)1A) ≤ E (Rπ (s∧ρk)1A) . (3.33)

Besides, from the uniformly integrability of the familly
{
−e−αX

π(ρ) : ρ is a {Gt} -stopping time
}
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3.4 Utility indifference pricing

and the boundeness of Y , we obtain that the family

{Rπ (ρ) : ρ is a {Gt} -stopping time}

is uniformly integrable. Therefore, we can take the limit as k → ∞ in (3.33) to obtain
the supermartingale property of Rπ (·). Finally, we proceed to prove that Rπ∗ (·) is a
martingale. Since Aπ∗ (·) = 0, we have to show that Mπ∗ (·) is a true martingale. To
that purpose, by writing E(X) for the stochastic exponential of a process X, we notice
that

Mπ∗
(t) = E

(
−
∫ t

0
α
(
(π∗)⊺ (s)σ(s)−Z1

⊺(s)
)
dW 1(s)

+
∫ t

0
αZ2

⊺(s)dW 2(s)
n∑
i=1

∫ t

0

(
eαUi(s) −1

)
dH̃i(s)

)
. (3.34)

By Lemma 12 of Hu et al. (2005) and the boundness of U1, . . . , Un, the argument
of the stochastic exponential appearing in (3.34) is a martingale of bounded mean
oscillation (BMO). Then by Kazamaki’s criterion, Mπ∗ (·) is a martingale; see for
instance Kazamaki (2006). Consequently, we get

V (t,0,C) = sup
π∈A(t)

E
(

−e−α(Xπ
t (T )−C)

∣∣∣Gt)
= sup

π∈A(t)
E
(

−e−α(Xπ
t (T )−Y (T ))

∣∣∣Gt)
≤ E

(
−eαY (t)

∣∣∣Gt)
= E

(
−e−α

(
Xπ∗

t (T )−C
)∣∣∣∣∣Gt

)
.

It proves Theorem 3.4.2(ii).

Remark 3.4.2 By referring to Theorem 3.4.2, we point out that the compactness
assumption on K can be removed at the cost of some mathematical complexity. Indeed,
by following Morlais (2009), we may construct a solution (Y,Z1,Z2,U ) to the BSDE
(3.31) as the limit of a sequence of approximating solutions. Specifically, for k ≥ 1,
the k-th approximating solution (Y k,Z1

k,Z2
k,Uk) solves the BSDE (3.31) when the

closed set of Definition 3.4.3 equals K ∩ [−k,k]d. Then we may show that

E

 sup
t∈[0,T ]

∣∣∣Y −Y k
∣∣∣
+

∣∣∣Z1 −Z1
k
∣∣∣
L2,d(W 1)

+
∣∣∣Z2 −Z2

k
∣∣∣
L2,m(W 2)

+
∣∣∣U −Uk

∣∣∣
L2,n

γ (H)
→ 0,
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3.4 Utility indifference pricing

where (Y,Z1,Z2,U ) ∈ L∞×L2,d(W 1)×L2,m(W 2)×L2,n
γ (H) solves the BSDE (3.31).

Example 3.4.5 We aim to describe how to numerically apply Theorem 3.4.2. To that
end, we assume a financial market consisting of one risky asset and an individual
life insurance policy, i.e., d= n= 1. In this setting, we make the following change of
variable in the BSDE (3.31)

Ŷ (t) = eαY (t),

Ẑ1(t) = αY (t)Z1(t),
Ẑ2(t) = αY (t)Z2(t),
Û(t) = Y (t−)

(
eαU(t) −1

)
.

It is not difficult to see that Ŷ (·), Ẑ1(·), Ẑ2(·), Û(·) satisfy

Ŷ (t) = eαC +
∫ T

t
f̂(s, Ŷ (s), Ẑ1(s), Û(s))ds−

∫ T

t
Ẑ1(s)dW 1(s)

−
∫ T

t
Ẑ2(s)dW 2(s)−

∫ T

t
Û(s)dH(s), t ∈ [0,T ] , (3.35)

where

αf̂(t,y,z1,u) = min
π∈A

{
−απ (µ(t)y+σ(t)z1)+ 1

2α
2 (πσ(t))2 y

}
+uγ(t), t ∈ [0,T ].

Moreover, we suppose that the terminal condition Ĉ = eαC has the form

Ĉ = ĉ(X̂(T )),

where ĉ is a measurable function, and X̂(·) solves the following forward stochastic
differential equation (FSDE)

X̂(t) = x+
∫ t

0
g(s,X̂(s))ds+

∫ t

0
h1(s,X̂(s))dW 1(s)

+
∫ t

0
h2(s,X̂(s))dW 2(s)+

∫ t

0
v(s,X̂(s−))dH(s), t ∈ [0,T ] . (3.36)

As usual, we assume regularity conditions on g, h1, h2, and v, ensuring that equation
(3.36) admits a unique solution. By numerically solving the BSDE (3.35) and then
pulling back to the original variables Y (·), Z1(·), Z2(·), U(·), we may approximate
Y (0). From Theorem 1 of Kharroubi and Lim (2015), the solution to the FSDE (3.36)
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X̂(·) can be written as

X̂ (t) = X̂0 (t)1(t<τ) + X̂1 (t, τ)1(τ≤t), t ∈ [0,T ] ,

where X̂0(·) and X̂1(·) solve the following FSDE

X̂1(t,φ) = x+
∫ t

0
g(s,X̂1(s,φ))ds+

∫ t

0
h1(s,X̂1(s,φ))dW 1(s)

+
∫ t

0
h2(s,X̂1(s,φ))dW 2(s)+v(φ,X̂1(φ−,φ))1(φ≤t), (3.37)

X̂0(t) = x+
∫ t

0
g(s,X̂0(s))ds+

∫ t

0
h1(s,X̂0(s))dW 1(s)

+
∫ t

0
h2(s,X̂0(s))dW 2(s), (3.38)

where φ,t ∈ [0,T ]. Also, the process Ŷ (·) can be decomposed as

Ŷ (t) = Ŷ0 (t)1(t<τ) + Ŷ1 (t, τ)1(τ≤t), t ∈ [0,T ] ,

where Ŷ0(·) and Ŷ1(·) solve the following BSDE

Ŷ1 (t,φ) = ĉ(X̂1(T,φ))+
∫ T

t
f̂(s, Ŷ1 (s,φ) , Ẑ1,1(s,φ),0)ds

−
∫ T

t
Ẑ1,1(s,φ)dW 1(s)−

∫ T

t
Ẑ1,2(s,φ)dW 2(s), (3.39)

Ŷ0 (t) = ĉ(X̂0(T ))+
∫ T

t
f̂(s, Ŷ0 (s) , Ẑ0,1(s), Ŷ1 (s,s)− Ŷ0 (s))ds

−
∫ T

t
Ẑ0,1(s)dW 1(s)−

∫ T

t
Ẑ0,2(s)dW 2(s), (3.40)

where 0 ≤ φ ≤ t ≤ T . For an integer m ≥ 1, define ∆ = T
m . Besides, let t0 = 0 <

t1 < · · · < tm = T be the m-regular partition of the interval [0,T ], i.e., ti = i∆. For
φ ∈ [0,T ], define tm(φ) = max{ti : ti ≤ φ}. Now, we consider the typical backward
Euler scheme as a discrete-time approximation to the infinite-dimensional system in
relations (3.37), (3.38), (3.39) and (3.40). On the one hand, the FSDE in (3.37) and
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(3.38) is approximated by means of

X̂m
0 (0) = x,

X̂m
0 (ti+1) = X̂m

0 (ti)+g(ti, X̂0(ti))∆+h1(ti, X̂0(ti))∆W 1
i+1

+ h2(ti, X̂0(ti,φ))∆W 2
i+1;

X̂m
1 (0, tm(φ)) = x+v(0,x)1(tm(φ)=0),

X̂m
1 (ti+1, t

m(φ)) = X̂m
1 (ti, tm(φ))+g(ti, X̂1(ti,φ))∆+h1(ti, X̂1(ti,φ))∆W 1

i+1

+ h2(ti, X̂1(ti,φ))∆W 2
i+1 +v(ti, X̂1(ti,φ))1(tm(φ)=ti+1),

where ∆W 1
i+1 =W 1

i+1 −W 1
i and ∆W 2

i+1 =W 2
i+1 −W 2

i . On the other hand, the BSDE
in (3.39) and (3.40) is approximated as follows:

Ŷ m1 (T,tm(φ)) = ĉ(X̂1(T,φ)),
Ŷ m1 (ti, tm(φ)) = E

(
Ŷ m1 (ti+1, t

m(φ))
∣∣∣Fti

)
+ f̂(ti, Ŷ m1 (ti, tm(φ)) , Ẑm1,1(ti, tm(φ)),0)∆,

Ẑm1,1(ti, tm(φ)) = 1
∆E

(
Ŷ m1 (ti+1, t

m(φ))∆W 1
i+1
∣∣∣Fti

)
,

Ẑm1,2(ti, tm(φ)) = 1
∆E

(
Ŷ m1 (ti+1, t

m(φ))∆W 2
i+1
∣∣∣Fti

)
,

tm(φ) ≤ ti, i= 1, . . . ,m;

Ŷ m0 (T ) = ĉ(X̂0(T )),
Ŷ m0 (ti) = E

(
Ŷ m0 (ti+1)

∣∣∣Fti

)
+ f̂(ti, Ŷ m0 (ti) ,Zm0,1(ti),Y m1 (ti, ti)−Y m0 (ti))∆,

Ẑm0,1(ti) = 1
∆E

(
Ŷ m0 (ti+1)∆W 1

i+1
∣∣∣Fti

)
,

Ẑm0,2(ti) = 1
∆E

(
Ŷ m0 (ti+1)∆W 2

i+1
∣∣∣Fti

)
.

Under some regularity conditions, including the Lipschitzity of generator f̂ , Kharroubi
and Lim (2015) establish the convergence of the described approximation scheme.
However, this scheme is not implementable because the involved conditional expec-
tations have to be estimated. Under the Lipschitz condition, it is known that the
process Ŷ0(·) and Ŷ1(·) can be expressed as functions of X̂0(·) and X̂1(·), respectively.
In consequence, for the estimation purpose, we may employ the method from Gobet
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et al. (2005), based on iterative regressions on function bases, whose coefficients are
evaluated using Monte Carlo simulations.
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Chapter 4

Optimal consumption, investment,
and life insurance purchase: a
state-dependent utility approach

4.1 Notation and abbreviations

In the following table, we provide a summary of notation and abbreviations used in
this chapter:

1 the n-dimensional vector with all components being 1
1A the indicator of an event A
d a positive integer
E mathematical expectation
E(X|F) conditional expectation of X given F
f(T−) limt↑T f(t), where f(·) is a function with left limit at T
ker(σ) the null space of a matrix σ
M⊥ the orthogonal complement of a subspace M
n a positive integer

∥(x1, . . . ,xd)∥ the Euclidean norm,
(∑d

i=1x
2
i

) 1
2 for (x1, . . . ,xd) ∈ Rd

P probability measure
projM the orthogonal projection onto a subspace M
R (−∞,∞)
RCLL right continuous with left limits
∨θ∈ΘFθ the smallest sigma-algebra containing every Fθ for θ ∈ Θ
x∧y min{x,y}
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x∨y max{x,y}
x− −(x∧0)

4.2 Introduction

The problem of optimal consumption and investment for a “small investor,” whose
actions do not influence the market prices, is at the core of portfolio management. The
modern treatment of this problem begins with the seminal work of Merton (1969, 1971).
Expressly, let c(·) and X (·) denote the investor’s consumption and wealth processes,
respectively. In Merton’s model, the investor seeks to maximize

E

(∫ T

0
U1 (s,c(s))dt+U3 (X (T ))

)
,

where T > 0, and U1(·, ·) and U3 (·) represent the individual’s preferences for consump-
tion and terminal wealth, respectively. Assuming HARA (Hyperbolic Absolute Risk
Aversion) utility functions, Merton explicitly solves the optimal choice problem above,
under uncertainty. Subsequently, some authors extend Merton’s work by weakening
the assumptions in terms of the utility functions and the model of asset prices. For
instance, modeling asset prices as semi-martingales, Pliska (1986) decomposes the
optimal choice problem into two sub-problems and uses a martingale technique to solve
them. Moreover, Karatzas et al. (1987) and Cox and Huang (1989) independently
employ martingale techniques for showing how to decompose the Hamilton–Jacobi–
Bellman equation arising from the optimization problem into linear partial differential
equations.

Departing from Merton’s model, some authors have constructed quantitative models
to understand the determinants of life insurance demand for an individual, which
decides under uncertainty. For instance, aiming to include mortality risk, Richard
(1975) generalizes Merton’s work by assuming that the investor’s remaining lifetime
follows an arbitrary but known distribution, which is supported on a bounded interval.
In Richard’s model, the individual may acquire whole life insurance by paying premiums
at the rate p(·) continuously. Specifically, the insurer pays to the policyholder p(t)/λ(t)
in case of death at time t, where λ(·) is a function stipulated in the insurance contract.
In respect to the optimal choice problem, the individual’s objective is to maximize

E
(∫ τ

0
U1 (s,c(s))ds+U2 (τ,Z (τ))

)
,
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where τ ∈ [0,T ] represents the individual’s uncertain lifetime, Z (·) represents the
individual’s legacy process, and U2 (·, ·) represents the individual’s time-dependent
preferences for legacy. By using dynamic programming techniques, Richard (1975)
solves the optimization problem with CRRA (Constant Relative Risk Aversion) utility
functions. Alternatively, Pliska and Ye (2007) develop a model in which the individual’s
remaining lifetime is a random variable supported on the interval (0,∞), and the
constant T represents the retirement time. In this context, the individual’s objective is
to maximize

E

(∫ T∧τ

0
U1 (s,c(s))ds+U2 (Z (τ) , τ)1(τ≤T ) +U3 (X (T ))1(τ>T )

)
.

By relying on the dynamic programming approach, Pliska and Ye find analytical
solutions to the optimization problem with CRRA utility functions.

Since then, several variants of the optimal choice problem have been considered
in the actuarial science literature. See for instance Huang et al. (2008), Nielsen and
Steffensen (2008), Duarte et al. (2011, 2014), Pirvu and Zhang (2012), Shen and Wei
(2014), Guambe and Kufakunesu (2015), and Kronborg and Steffensen (2015). In
particular, Nielsen and Steffensen (2008) and Kronborg and Steffensen (2015) assume
that the individual’s objective is to maximize

E

(∫ T∧τ

0
U1 (s,c(s))ds+U2 (D (τ) , τ)1(τ≤T ) +U3 (X (T ))1(τ>T )

)
,

where D (·) represents the insured sum to be paid if the policyholder dies prematurely,
without taking into account the current wealth at death. Precisely, Nielsen and
Steffensen (2008) derive optimal strategies under minimum and maximum constraints
on the insured sum, and Kronborg and Steffensen (2015) compute optimal strategies
with a surrender option guarantee.

Despite the lots of literature arising from the pioneering Merton’s work, authors
such as Londoño (2009) have pointed out some disadvantages of adopting this model.
To obtain numerical solutions, it is often necessary to solve partial differential equations
numerically. Notwithstanding, numerical methods for partial differential equations are
challenging to implement in high dimensions. Also, the classical Merton’s approach is
not consistent with empirical data. Some authors document this lack of consistency
under the name of several puzzles: the equity premium puzzle (see Mehra and Prescott
(1985)), the risk-free rate puzzle (see Weil (1989)), and the risk aversion puzzle (see
Jackwerth (2000)).
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As an alternative, Londoño (2009) proposes to face the optimal choice problem by
considering state-dependent utilities. In Londoño’s framework, the individual’s utility
functions reflect his preferences for future flows of money, which are valued conforming
to the state of the market (state-dependent). In other words, people tend to value
money conforming to their social and economic context, instead of just looking at
quantitative values. For instance, people appreciate more having enough money to pay
off their debts in recession times than buying luxuries in boom times. In this context,
the individual’s objective is to maximize

E

(∫ T

0
U1 (s,H (s)c(s))dt+U3 (H (T )X (T ))

)
,

where H (·) is the state price density process. By considering the valuation and
arbitrage theory presented in Londoño (2008), Londoño (2009) develops a martingale
methodology to obtain complete solutions to the problem in a quite general setting.

In this work, we situate in a state-complete financial market; see Londoño (2008)
for further details. In addition, we follow Londoño (2009) to consider an agent which
ranks risky positions according to his expected state-dependent utilities. Thus, we
generalize the work of Londoño (2009) by solving the problem of optimal consumption,
investment, and life insurance acquisition. Specifically, we tackle the optimization
problem considered by Nielsen and Steffensen (2008) and Kronborg and Steffensen
(2015). To that purpose, we adopt the martingale methodology of Karatzas et al.
(1987) and Cox and Huang (1989, 1991). We obtain full solutions for the optimal choice
problem under minimum and maximum constrains on the life insurance purchase in a
general set-up, which includes several utility functions employed in the literature.

4.3 Financial market

For the sake of completeness, we state some usual assumptions for financial markets
in which asset prices evolve conforming to a Brownian filtration. Hereafter, we try to
follow as closely as possible the notation in Karatzas and Shreve (1998).

From now on, we work on a probability space (Ω,F ,P ), which accommodates a
d-dimensional Brownian motion W (·) = (W1 (·) , . . . ,Wd (·))⊺. In addition, we suppose
that all economic activity takes place on a finite horizon [0,T ], where T > 0. Let

{
FW
t

}
denote the filtration generated by W (·), and let N represent the P -null subsets of
FW
T . Subsequently, we shall use the augmented filtration {Ft} =

{
FW
t ∨N

}
.
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We introduce a bounded from below risk-free rate process r (·), an n-dimensional
mean rate of return process b(·), an n-dimensional dividend rate process δ (·), and
an (n×d)-matrix-valued volatility process σ (·). In particular, we assume that r (·),
b(·), δ (·), and σ (·) are progressively measurable processes satisfying the integrability
condition ∫ T

0

|r (s)|+∥b(s)∥+∥δ (s)∥+
d∑
i=1

d∑
j=1

σ2
i,j (s)

ds <∞.

As usual, the price of the money market process B (·) evolves conforming to the
equation

dB (t) =B (t)r (t)dt, t ∈ [0,T ] .

As well, we consider n stocks with prices per share S1 (t) , . . . , Sn (t) at time t ∈ [0,T ],
such that S1 (0) , . . . ,Sn (0) > 0. The processes S1 (·) , . . . , Sn (·) are continuous and
strictly positive solutions to the system of stochastic differential equations

dSi (t) = Si (t)
bi (t)dt+ d∑

j=1
σi,j (t)dWj (t)

 , t ∈ [0,T ] , i= 1, . . . ,n.

We refer to the described financial market as M = (r (·) ,b(·) ,δ (·) ,σ (·) ,S(0)), where
S(0) = (S1 (0) , . . . ,Sn (0)).

Given M, define a portfolio process (π0 (·) ,π (·)) = (π0 (·) ,π1 (·) , . . . ,πn (·))⊺ to be
an R×Rn-valued and {Ft}-progressively measurable process such that

∫ T

0
(|π0 (s)+π⊺ (s)1| |r (s)|)ds < ∞,∫ T

0
|π⊺ (s)(b(s)+δ (s)− r (s)1)|ds < ∞, (4.1)∫ T

0
∥π⊺ (s)σ (s)∥2 ds < ∞. (4.2)

Accordingly, define the gains process G(·) associated to (π0 (·) ,π (·)) by

G(t) =
∫ t

0
(π0 (s)+π⊺ (s)1)r (s)ds+

∫ t

0
π⊺ (s)(b(s)+δ (s)− r (s)1)ds

+
∫ t

0
π⊺ (s)σ (s)dW (s) , t ∈ [0,T ] .

(4.3)

In addition, define a cumulative income process {Γ(t) ; 0 ≤ t≤ T} to be a finite-variation
RCLL process, which represents the cumulative wealth received by the investor through-
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out the time interval [0,T ]. Let Γ(·) = Γ+ (·)−Γ− (·) be the representation of Γ(·) as
the difference between its positive and negative variation processes Γ+ (·) and Γ− (·),
respectively.

Following the standard literature, the wealth process X (·) associated with (Γ(·) ,π0 (·) ,π (·))
is

X (t) = Γ(t)+G(t), t ∈ [0,T ] ,

where G(·) is the gains process of (4.3). Also, the portfolio (π0 (·) ,π (·)) is said to be
Γ(·)-financed provided that

X (t) = π0 (t)+π⊺ (t)1, t ∈ [0,T ] .

In particular, the portfolio (π0 (·) ,π (·)) is said to be self-financed whenever Γ(·) = 0.
Apparently, for a Γ(·)-financed portfolio (π0 (·) ,π (·)), the wealth process X (·)

verifies

γ (t)X (t) = Γ(0)+
∫

(0,t]
γ (s)dΓ(s)+

∫ t

0
γ (s)π⊺ (s)σ (s)dW (s)

+
∫ t

0
γ (s)π⊺ (s)(b(s)+δ (s)− r (s)1)ds, t ∈ [0,T ] ,

where γ (·) is defined by
γ (t) = 1

B (t) , t ∈ [0,T ] .

To emphasize that X (·) depends on (Γ(·) ,π (·)), also refer to the wealth process as
Xx,π,Γ (·) provided that Γ(0) = x.

Referring to the financial market M, the market price of risk process θ (·) is
defined as the unique progressively measurable and Rd-valued process θ (·) ∈ ker⊥ (σ (·))
satisfying

(b(t)+δ (t)− r (t)1)−projker(σ⊺(t)) (b(t)+δ (t)− r (t)1) = σ (t)θ (t) , t ∈ [0,T ] .

To make sure that the process θ (·) is progressively measurable, we refer the reader to
Section 1.4 of Karatzas and Shreve (1998). In the sequel, suppose that

∫ T

0
∥θ (s)∥2 ds <∞.
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Therefore, it is possible to define the state price density process as follows:

H0 (t) = γ (t)Z0 (t) , t ∈ [0,T ] , (4.4)

where
Z0 (t) = exp

(
−
∫ t

0
θ⊺ (s)dW (s)− 1

2

∫ t

0
∥θ (s)∥2 ds

)
, t ∈ [0,T ] .

The name “state price density process” is usually given to the process defined by
relation (4.4) when the financial market is standard, see for instance Karatzas and
Shreve (1998). In that case, the process Z0 (·) is a martingale, and Z0 (T ) is indeed a
density. However, in this setting, we allow that E (Z0 (T ))< 1.

4.3.1 State tameness and state arbitrage

In this section, we stipulate our notions of tameness and arbitrage by following Londoño
(2008).

Let Γ(·) be a cumulative income process. Considering a Γ(·)-financed portfolio
process (π0 (·) ,π (·)), it is said that (π0 (·) ,π (·)) is Γ(·)-state-tame provided that the
associated process

H0 (·)X (·)−
∫

(0,·]
H0 (s)dΓ(s)

is uniformly bounded from below. In particular, denominate state-tame to any self-
financed portfolio process (π0 (·) ,π (·)), whose discounted gains process H0 (·)G(·) is
uniformly bounded from bellow. In a financial market M, a state-tame portfolio process
(π0 (·) ,π (·)) is said to be an state-arbitrage opportunity whenever the associated gains
process G(·) satisfies H0 (T )G(T ) ≥ 0 almost surely, and H0 (T )G(T )> 0 with positive
probability. A financial market M in which no such arbitrage opportunities exist is
said to be state-arbitrage-free.

The next theorem is a characterization of the nonexistence of state-arbitrage
opportunities. For a proof, we refer the reader to Londoño (2008).

Theorem 4.3.1 A market M is state-arbitrage-free if and only if the market price of
risk θ (·) satisfies

b(t)+δ (t)− r (t)1 = σ (t)θ (t) , t ∈ [0,T ] . (4.5)
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Remark 4.3.1 Provided that θ (·) satisfies relation (4.5), the wealth process X (·),
associated with (Γ(·) ,π0 (·) ,π (·)), can be rewritten as

H0 (t)X (t) = x+
∫

(0,t]
H0 (s)dΓ(s)

+
∫ t

0
H0 (s)

(
σ (s)⊺π (s)−X (s)θ (s)

)⊺
dW (s) , t ∈ [0,T ] . (4.6)

4.3.2 Completeness of financial markets

We proceed to present our notion of completeness. Let M be a state-arbitrage-free
financial market.

An European state-contingent claim (ESCC), with expiration date T , is any RCLL
process of finite variation Γ(·), such that −

∫
(0,T ]H0 (s)dΓ− (s) is bounded from below

and
E

(∫
(0,T ]

H0 (s)(dΓ− (s)+dΓ+ (s))
)
<∞.

In addition, an European state-contingent claim Γ(·), with expiration date T , is called
attainable if there exists a (−Γ)-state-tame portfolio process π (·) with

Xx,π,−Γ
(
T−

)
= Γ(T )−Γ

(
T−

)
,

where
x= E

(∫
(0,T ]

H0 (s)dΓ(s)
)
.

We say that a financial market M is state-complete if every European state-contingent
claim is attainable.

The next theorem provides a characterization for state-complete financial markets.

Theorem 4.3.2 A financial market M is state-complete if and only if the volatility
matrix σ (t) has maximal rank for Lebesgue a.e. t ∈ [0,T ] almost surely.

Proof of necessity. Let Γ(·) be an European state-contingent claim with expiration
date T > 0. Define

X̃ (t) =H−1
0 (t)E

(∫
(t,T ]

H0 (s)dΓ(s)
∣∣∣∣∣Ft

)
, t ∈ [0,T ] .

Note that X̃
(
T−

)
= Γ(T )−Γ

(
T−

)
. From the standard representation theorem for mar-

tingales as stochastic integrals (see, e.g., Karatzas and Shreve (2012)), there exists an
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{Ft}-progressively measurable and Rd-valued process φ(·) satisfying
∫ T
0 ∥φ(s)∥2 ds <

∞, such that

X̃ (t)H0 (t)+
∫

(0,t]
H0 (s)dΓ(s) = x+

∫ t

0
φ⊺ (s)dW (s) , t ∈ [0,T ] .

Denote by π (·) the unique {Ft}-progressively measurable and Rn-valued process
satisfying

σ⊺ (t)π (t) =H−1
0 (t)φ(t)+ X̃ (t)θ (t) , t ∈ [0,T ] .

The existence and uniqueness of such a process follow from the hypotheses. Also, it is
easy to prove that π (·) verifies (4.1) and (4.2). By defining π0 (·) = X̃ (·)−π⊺ (·)1, we
have

dH0 (t)X̃ (t) = φ⊺ (t)dW (t)−H0 (t)dΓ(t) , t ∈ [0,T ] ,
dZ−1

0 (t) = Z−1
0 (t)

(
θ⊺ (t)dW (t)+∥θ (t)∥2 dt

)
, t ∈ [0,T ] .

Thus, by applying the Itô’s rule to the product Z−1
0 (·)H0 (·)X̃ (·) = γ (·)X̃ (·), we

obtain that X̃ (·) defines a wealth process with associated triple (x,π,−Γ). Because Γ
is an European state-contingent claim,

H0 (·)X̃ (·)+
∫

(0,·]
H0 (s)dΓfv (s)

is uniformly bounded from below. In consequence, every European state-contingent
claim is attainable.

Proof of sufficiency. Let f : Rn×d → Rd be a bounded and Borel-measurable
mapping, such that for every σ ∈Rn×d, f (σ) ∈ ker(σ) and f (σ) ̸= 0 whenever ker(σ) ̸=
{0}. To substantiate the existence of such a function, see Karatzas and Shreve
(1998). Let Ψ(·) be the bounded and progressively measurable process defined by
Ψ(t) = f (σ (t)), for all t ∈ [0,T ]. For an arbitrary but fixed k ∈ {1,2, . . .}, define the
stopping time

τk = inf
{
t :
∫ t

0
Ψ⊺ (s)dW (s) ≤ −k

}
∧T,

and the finite variation process

Γk (t) = 1(t=T )
1

H0 (T )

∫ τk

0
Ψ⊺ (s)dW (s) , t ∈ [0,T ] .

74



4.4 Utility maximization

By definition, Γk (·) is an European state-contingent claim. According to the complete-
ness of the financial market, there exists a (−Γk)-state-tame portfolio process πk (·)
with associated wealth Xk (·) such that

X0,πk,−Γk
k

(
T−

)
= Γk (T )−Γk

(
T−

)
.

From (4.6), for all 0 ≤ t≤ T , it holds that

H0 (t)Xk (t)+
∫

(0,t]
H0 (s)dΓk (s) =

∫ t

0
H0 (s)

(
σ (s)⊺πk (s)−Xk (s)θ (s)

)⊺
dW (s) .

Also, by using that πk (·) finances Γk (T ) ( in a bounded manner), one proves that the
local martingale

∫ t

0
H0 (s)

(
σ (s)⊺πk (s)−Xk (s)θ (s)

)⊺
dW (s)

is a true martingale taking the value H0 (T )Γk (T ) at t= T . Hence,
∫ t

0
H0 (s)

(
σ (s)⊺πk (s)−Xk (s)θ (s)

)⊺
dW (s) =

∫ t∧τk

0
Ψ⊺ (s)dW (s)

=
∫ t

0
1(0,τk] (s)Ψ⊺ (s)dW (s) .

From the uniqueness of the representation theorem for martingales as stochastic
integrals, for Lebesgue a.e. t ∈ [0,T ] almost surely on the set {ω : τk (ω) = T}, we have

Ψ(t) = H0 (t)
(
σ (t)⊺πk (t)−Xk (t)θ (t)

)
∈ ker⊥ (σ (t))∩ker(σ (t))

= {0} .

Finally, by noting that Ω = ∪k≥0 {ω : τk (ω) = T}, we conclude that σ (t) has maximal
rank for Lebesgue a.e. t ∈ [0,T ] almost surely.

4.4 Utility maximization

Let M be a state-arbitrage-free and state-complete financial market.

4.4.1 Model

In this work, we consider an individual whose remaining lifetime is modeled as a non-
negative random variable τ , defined on the probability space (Ω,F ,P ). Furthermore,
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4.4 Utility maximization

we suppose that the individual owns a life insurance policy during the period [0,T ].
Here, T represents the time of retirement decided beforehand by the policyholder.

As concerns the remaining lifetime, assume that τ is independent of the filtration
{Ft} and continuously distributed. Moreover, suppose that the hazard rate of τ , which
is denoted by λ(·), is a positive function on [0,∞) satisfying for some t > 0

∫ t

0
λ(s)ds <∞

and ∫ ∞
0

λ(s)ds= ∞.

In these terms, the survival function F (·) and the density function f (·) associated
with τ can be respectively expressed as

F (t) = P (τ > t) = exp
(

−
∫ t

0
λ(s)ds

)
, t > 0,

f (t) = − d

dt
F (t) = λ(t)exp

(
−
∫ t

0
λ(s)ds

)
, t > 0.

For a technical purpose, assume that λ(t)> 0 for all t ∈ [0,T ].
In respect to the life insurance product, we suppose that the policyholder has a

pension account through which he performs all his financial interactions. Let X (·)
denote the policyholder’s wealth process or reserve process, and let D (·) represent the
insured sum to be paid when the policyholder dies prematurely. The pension company
maintains and invests the reserve, however, the policyholder can continuously choose
his consumption, investment, and sum insured to be paid out upon death before time
T . By selecting D (·), in the case of premature death at time t ∈ [0,T ], the policyholder
agrees to hand over the amount of money X (t)−D (t) to the pension company. Namely,
the pension company keeps the reserve X (t) for themselves and pays out D (t) as life
insurance. Thus, the actuarial risk premium rate to pay for the life insurance D (·) at
time t ∈ [0,T ] is λ(t)(D (t)−X (t)).

To discuss in detail the dynamics of the reserve process X (·), consider the following
definition. From now on, a consumption process c(·), a life insurance process D (·),
and an endowment process ϵ(·) denote non-negative and {Ft}-progressively measurable
processes satisfying

∫ T

0
(c(s)+λ(s)D (s)+ ϵ(s))ds <∞, a.s.
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Assume that the policyholder consumes conforming to a consumption process c(·),
invests conforming to a portfolio process π (·), purchases life insurance conforming to
a life insurance process D (·), and receives continuously an endowment process ϵ(·).
Consequently, the dynamics of the wealth process X (·) at the state alive may be
represented as

dX (t) =(r (t)X (t)+ ϵ(t)− c(t)−λ(t)(D (t)−X (t)))dt
+π⊺ (t)σ (t)(θ (t)dt+dW (t)) , t ∈ [0,T ] .

(4.7)

The unique solution to the stochastic differential equation (4.7) is given by

γλ (t)X (t) = x+
∫

(0,t]
γλ (s)(ϵ(s)− c(s)−λ(s)D (s))ds

+
∫ t

0
γλ (s)π⊺ (s)σ (s)(θ (s)ds+dW (s)) , t ∈ [0,T ] ,

where γλ (·) denotes the actuarial-adjusted discounting process defined by

γλ (t) = F (t)γ (t) , t ∈ [0,T ] .

By using the Itô’s formula, notice that X (·) also satisfies

Hλ
0 (t)X (t) = x+

∫
(0,t]

Hλ
0 (s)(ϵ(s)− c(s)−λ(s)D (s))ds

+
∫ t

0
Hλ

0 (s)
(
σ (s)⊺π (s)−X (s)θ (s)

)⊺
dW (s) , t ∈ [0,T ] ,

where Hλ
0 (·) denotes the actuarial-adjusted state price density process defined by

Hλ
0 (t) = F (t)H0 (t) , t ∈ [0,T ] .

Abusing of notation, let Xx,Γ,π (·) represent hereafter the process in (4.6) by
replacing the short rate process r (·) with the actuarial-adjusted short rate process
r (·)+λ(·), where Γ(·) =

∫ ·
0 (ϵ(s)− c(s)−λ(s)D (s))ds. Apparently, Xx,Γ,π (·) equals

the process X (·) described by relation (4.7).
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4.4.2 Admissibility

Let ϵ(·) be an endowment process such that
∫ T
0 H0 (s)ϵ(s)ds is bounded. Thus, define

xϵ = −E
(∫ τ∧T

0
H0 (s)ϵ(s)ds

)
.

By employing the Fubini–Tonelli theorem, it is easy to see that

xϵ = −E
(∫ T

0
Hλ

0 (s)ϵ(s)ds
)
.

In the following definition, we stipulate the set of strategies available for the
policyholder. Our definition of admissibility is the same as in Nielsen and Steffensen
(2008), Kwak and Lim (2014), and Shen and Wei (2016).

Definition 4.4.1 A consumption/life insurance/portfolio process triple (c,D,π) is
called admissible at x ∈ R and written (c,D,π) ∈ A(x), if Xx,Γ,π (·) satisfies

Xx,Γ,π (t)+E

(∫ T

t

Hλ
0 (s)

Hλ
0 (t)

ϵ(s)ds
∣∣∣∣∣Ft

)
≥ 0, t ∈ [0,T ] , (4.8)

where Γ(·) =
∫ ·
0 (ϵ(s)− c(s)−λ(s)D (s))ds.

According to Definition 4.4.1, the agent is restricted to consumption/life insur-
ance/portfolio strategies such that the balance of the pension account does not drop
below the actuarial value of his future income flows. As Remark 4.4.1 substantiates,
the policyholder’s future income flows equals the conditional expectation appearing in
relation (4.8).

Remark 4.4.1 At first glance, the actuarial value of the agent’s future income flows
at time t ∈ [0,T ] is

E

(∫ τ∧T

t

H0 (s)
H0 (t) ϵ(s)ds

∣∣∣∣∣Ft, τ > t

)
.

Notwithstanding, it holds that

E

(∫ τ∧T

t

H0 (s)
H0 (t) ϵ(s)ds

∣∣∣∣∣Ft, τ > t

)
= E

(∫ T

t

Hλ
0 (s)

Hλ
0 (t)

ϵ(s)ds
∣∣∣∣∣Ft

)
. (4.9)
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In fact, let A ∈ Ft. Due to the independence between the random time τ and the
sigma-algebra FT , the repetitive use of the Fubini–Tonelli theorem implies that

E

(
1(τ>t)1A

∫ τ∧T

t

H0 (s)
H0 (t) ϵ(s)ds

)
= E

(∫ T

t
1(τ>s)1A

H0 (s)
H0 (t) ϵ(s)ds

)

=
∫ T

t
E

(
1(τ>s)1A

H0 (s)
H0 (t) ϵ(s)

)
ds

=
∫ T

t
F (s)E

(
1A
H0 (s)
H0 (t) ϵ(s)

)
ds

= E

(
1A
∫ T

t
F (s)H0 (s)

H0 (t) ϵ(s)ds
)
.

Thus, relation (4.9) follows.

Remark 4.4.2 Let us fix an admissible consumption/life insurance/portfolio process
triple (c,D,π) ∈ A(x). From (4.8), we obtain that the local martingale

Hλ
0 (·)Xx,Γ,π (·)−

∫
(0,·]

Hλ
0 (s)dΓ(s)

is bounded from below, so it is a supermartingale. Indeed, for all t ∈ [0,T ], we have

Hλ
0 (t)Xx,Γ,π (t)−

∫
(0,t]

Hλ
0 (s)dΓ(s)

≥ Hλ
0 (t)Xx,Γ,π (t)−

∫
(0,t]

Hλ
0 (s)ϵ(s)ds

= Hλ
0 (t)Xx,Γ,π (t)+E

(∫ T

t
Hλ

0 (s)ϵ(s)ds
∣∣∣∣∣Ft

)
−E

(∫ T

0
Hλ

0 (s)ϵ(s)ds
∣∣∣∣∣Ft

)

≥ −E
(∫ T

0
Hλ

0 (s)ϵ(s)ds
∣∣∣∣∣Ft

)
.

Hence, it follows that the triple (c,D,π) must satisfy the budget constraint

x≥ E

(∫ T

0
Hλ

0 (s)(c(s)+λ(s)D (s)− ϵ(s))ds+Hλ
0 (T )Xx,Γ,π

(
T−

))
, (4.10)

where Γ(·) =
∫ ·
0 (ϵ(s)− c(s)−λ(s)D (s))ds.

In reference to characterizing admissible strategies, we introduce the following
result, which corresponds to hedging in complete financial markets. The proof of this
result goes along the lines of the proof of Theorem 3.5 in Karatzas and Shreve (1998).
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Proposition 4.4.1 Let ξ be a non-negative and FT -measurable random variable such
that

E
(
Hλ

0 (T )ξ
)
<∞.

Let (c,D) be a consumption/life insurance process pair satisfying

E

(∫ T

0
Hλ

0 (s)dΓ(s)
)

= x > 0,

where
Γ(s) =

∫ ·
0

(c(s)+λ(s)D (s)− ϵ(s))ds+ ξ1(·=T ).

Then, there exists a portfolio process π (·) such that (c,D,π) ∈ A(x) and Xx,π,−Γ
(
T−

)
=

ξ. In particular, for t ∈ [0,T ], the corresponding wealth and portfolio processes are
respectively given by

Xx,π,−Γ (t) =
(
Hλ

0
)−1

(t)E
(∫ T

t
Hλ

0 (s)dΓ(s)
∣∣∣∣∣Ft

)
,

σ⊺ (t)π (t) =
(
Hλ

0
)−1

(t)φ(t)+Xx,π,−Γ (t)θ (t) ,

where φ(·) is the integrand in the stochastic integral representation

M (t) = x+
∫ t

0
φ⊺ (s)dW (s)

of the martingale

M (t) = E

(∫ T

0
Hλ

0 (s)dΓ(s)
∣∣∣∣∣Ft

)
.

Let d : [0,T ] → [0,∞) and d : [0,T ] → [0,∞] be continuous functions such that
d(t) ≤ d(t) , t ∈ [0,T ]. The role of the functions d(·) and d(·) is to impose minimum-
maximum constraints on the life insurance process D(·). Accordingly, the set of
admissible strategies available to the agent modifies to

B (x) =
{
(c,D,π) ∈ A(x) : t ∈ [0,T ] , D (t) ∈

[
d(t) ,d(t)

]}
.

4.4.3 The problem

Now, we introduce a key ingredient in the formulation of the optimization problem
considered in this paper: the concept of utility function.
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Definition 4.4.2 Consider a continuously differentiable function U : (0,∞) → R,
which is strictly increasing and strictly concave with U ′ (∞) = limx→∞U

′ (x) = 0
and U ′

(
0+
)

= limx→0+U ′ (x) = ∞. A function having these properties will be called
utility function.

For every utility function U (·), denote by I (·) the inverse of the derivative U ′ (·).
This function is strictly decreasing and map (0,∞) onto itself with I (∞) = U ′ (∞) = 0
and I

(
0+
)

= U ′
(
0+
)

= ∞. The convex dual of U (·) is the function

Ũ (y) = sup
x∈(0,∞)

{U (x)−xy} , y ∈ R. (4.11)

Evidently, Ũ (·) verifies

Ũ (y) = U (I (y))−yI (y) , y ∈ (0,∞) . (4.12)

Since the agent’s preferences may vary through time, we introduce the notion of
time-dependent utility functions.

Definition 4.4.3 Consider a function U : [0,T ] × (0,∞) → R of class C0,1 on its
domain, such that for every t ∈ [0,T ], U (t, ·) is a utility function in the sense of
Definition 4.4.2. A function fulfilling these properties is called a time-dependent utility
function. For every t ∈ [0,T ], denote by I (t, ·) the inverse of U ′ (t, ·) and by Ũ (t, ·) the
convex dual of U (t, ·).

Definition 4.4.4 Let U1 (·, ·), U2 (·, ·) be two time-dependent utility functions as in
Definition 4.4.3, and let U3 (·) be a utility function as in Definition 4.4.2. If U2 (·, ·) is
non-negative or non-positive, refer to the triple (U1,U2,U3) as a preference structure.

Let (U1,U2,U3) be a preference structure representing the state-dependent attitude
towards the risk of the economic agent. At this point, we are ready to introduce the
optimization problem which we aim to solve.

Problem 4.4.1 Find an optimal triple (c,D,π) ∈ C (x) for the problem

V (x) = sup
(c,D,π)∈C(x)

E

(∫ τ∧T

0
U1 (s,H0 (s)c(s))ds+U2 (τ,H0 (τ)D (τ))1(τ≤T )

+U3
(
H0 (T )Xx,π,Γ

(
T−

))
1(τ>T )

)
,

(4.13)
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where

C (x) =
{

(c,D,π) ∈ B (x) : E
(∫ τ∧T

0
U−1 (s,H0 (s)c(s))ds+U−2 (τ,H0 (τ)D (τ))1(τ≤T )

+U−3
(
H0 (T )Xx,π,Γ

(
T−

)))
1(τ>T ) <∞

}
.

(4.14)

By means of Remark 4.4.3 below, we point out that the value function (4.13) and
the set of admissible solutions (4.14) admit a convenient representation, which allows
to employ a martingale methodology in solving Problem 4.4.1.

Remark 4.4.3 The value function and the set of admissible solutions for Problem
4.4.1 can be equivalently rewritten as follows

V (x) = sup
(c,D,π)∈C(x)

E

(∫ T

0

(
F (s)U1 (s,H0 (s)c(s))+f (s)U2 (s,H0 (s)D (s))

)
ds

+F (T )U3
(
H0 (T )Xx,π,Γ

(
T−

)))
,

(4.15)

C (x) =
{

(c,D,π) ∈ B (x) : E
(∫ T

0

(
F (s)U−1 (s,H0 (s)c(s))+f (s)U−2 (s,H0 (s)D (s))

)
ds

+F (T )U−3
(
H0 (T )Xx,π,Γ

(
T−

)))
<∞

}
.

(4.16)

For mathematical convenience, henceforward, when referring to the value function and
the set of admissible strategies for Problem 4.4.1, we consider its representations given
by relations (4.15) and (4.16), respectively.

To check the validity of the statements in Remark 4.4.3, let (c,D,π) ∈ C (x). To
prove relation (4.15), we show the following equalities

E

(∫ τ∧T

0
U1 (s,H0 (s)c(s))ds

)

= E

(∫ T

0
F (s)U1 (s,H0 (s)c(s))ds

)
, (4.17)
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4.4 Utility maximization

E
(
U2 (τ,H0 (τ)D (τ))1(τ≤T )

)
= E

(∫ T

0
f(s)U2 (s,H0 (s)D (s))ds

)
, (4.18)

E
(
U3
(
H0 (T )Xx,π,Γ

(
T−

))
1(τ>T )

)
= E

(
F (T )U3

(
H0 (T )Xx,π,Γ

(
T−

)))
. (4.19)

To that end, we mainly use the independence between τ and FT along with the
Fubini–Tonelli theorem. In respect to equality (4.17), it is easy to see that

E

(∫ τ∧T

0
U1 (s,H0 (s)c(s))ds

)
= E

(∫ T

0
1(τ>s)U1 (s,H0 (s)c(s))ds

)
.

Moreover, it holds that

E

(∫ T

0
1(τ>s)U1 (s,H0 (s)c(s))ds

)
=

∫ T

0
E
(
1(τ>s)U1 (s,H0 (s)c(s))

)
ds

=
∫ T

0
F (s)E (U1 (s,H0 (s)c(s)))ds

= E

(∫ T

0
F (s)U1 (s,H0 (s)c(s))ds

)
.

Thus, equality (4.17) follows. Besides, by recalling that τ admits the density f(·),
equality (4.18) can be derived as follows

E
(
U2 (τ,H0 (τ)D (τ))1(τ≤T )

)
=

∫ ∞
0

f(s)E
(
U2 (τ,H0 (τ)D (τ))1(τ≤T )

∣∣∣τ = s
)
ds

=
∫ ∞

0
f(s)E

(
U2 (s,H0 (s)D (s))1(s≤T )

)
ds

= E

(∫ T

0
f(s)U2 (s,H0 (s)D (s))ds

)
.

Lastly, equality (4.19) is immediate. Also, the (4.16) follows by using similar reasoning.
Define the function

X (y) = E

(∫ T

0
f (s)

(
H0 (s)d(s)∨

(
I2 (s,y)∧H0 (s)d(s)

))
ds

)

+
∫ T

0
F (s)I1 (s,y)ds+F (T )I3 (y) , y ∈ (0,∞) .
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4.4 Utility maximization

In order to solve Problem 4.4.1, we will need the following technical assumption.

Assumption 4.4.1

(i)
X (y)<∞, y ∈ (0,∞) ,

(ii)

E

(∫ T

0
f (s)U−2

(
s,H0 (s)d(s)

)
ds

)
<∞.

If the Assumption 4.4.1 (i) holds, one can easily prove that the function X (·), which
maps (0,∞) onto itself, is continuous and strictly decreasing. Moreover, X

(
0+
)

=
limy→0+ X (y) = ∞ and X (∞) = limy→∞X (y) = 0. The inverse of the function X (·)
is denoted by Y (·).

By means of Remark 4.4.4, we exhibit sufficient and reasonable conditions under
which Assumption 4.4.1 holds.

Remark 4.4.4 If we assume that the interest rate process is bounded from below by
−η for some η > 0, then we have

E

(∫ T

0
f (s)

(
H0 (s)d(s)∨

(
I2 (s,y)∧H0 (s)d(s)

))
ds

)

≤ E

(∫ T

0
f (s)(H0 (s)d(s)∨ I2 (s,y))ds

)

≤
∫ T

0
f (s)(E (H0 (s))d(s)+ I2 (s,y))ds

≤
∫ T

0
f (s)(eηsE (Z0 (s))d(s)+ I2 (s,y))ds

≤
∫ T

0
f (s)(eηsd(s)+ I2 (s,y))ds.

Consequently, it holds that

X (y) ≤
∫ T

0
(F (s)I1 (s,y)+f (s)(eηsd(s)+ I2 (s,y)))ds+F (T )I3 (y) .

Therefore, by the continuity of f and d, Assumption 4.4.1 (i) holds provided that

∫ T

0
(F (s)I1 (s,y)+f (s)I2 (s,y))ds <∞.
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Obviously, when U2 is positive or d(·) = ∞, Assumption 4.4.1 (ii) holds.

Our main result below shows the existence of an admissible strategy solving Problem
4.4.1 and gives a quasi-explicit formula for it.

Theorem 4.4.1 Suppose that Assumption 4.4.1 holds, and let x > xϵ be given. Define

ŷ = Y (x−xϵ) ,
ĉ(t) = H−1

0 (t)I1 (t, ŷ) ,
D̂ (t) = d(t)∨

(
H−1

0 (t)I2 (t, ŷ)∧d(t)
)
,

ξ̂ = H−1
0 (T )I3 (ŷ) .

Then, there exists a portfolio process π̂(·) such that the triple
(
ĉ, D̂, π̂

)
belongs to the

class C (x) in (4.14) and attains the supremum V (x) in (4.13), i.e.,
(
ĉ, D̂, π̂

)
is optimal

for Problem 4.4.1. Moreover, for every t ∈ [0,T ], the corresponding wealth and portfolio
processes are respectively given by

Xx,π̂,−Γ̂ (t) =
(
Hλ

0
)−1

(t)E
(∫ T

t
Hλ

0 (s)dΓ̂(s)
∣∣∣∣∣Ft

)
, (4.20)

σ⊺ (t) π̂ (t) =
(
Hλ

0
)−1

(t)φ(t)+Xx,π̂,−Γ̂ (t)θ (t) , (4.21)

where
Γ̂(t) =

∫ t

0

(
ĉ(s)+λ(s)D̂ (s)− ϵ(s)

)
ds+ ξ̂1(·=T ),

and φ(·) is the integrand in the stochastic integral representation M (t) =x+
∫ t
0 φ⊺ (s)dW (s)

of the martingale

M (t) = E

(∫ T

0
Hλ

0 (s)dΓ̂(s)
∣∣∣∣∣Ft

)
.

Proof. We divide the proof into two parts. In Part A, we show that
(
ĉ, D̂, π̂

)
belongs

to the class C (x), and we verify the validity of relations (4.20) and (4.21). Then, in
Part B, we prove that

(
ĉ, D̂, π̂

)
attains the supremum in (4.15).

A. Clearly, the triple
(
ĉ, ξ̂, D̂

)
satisfies

E

(∫ T

0
Hλ

0 (s)
(
ĉ(s)+λ(s)D̂ (s)− ϵ(s)

)
ds+Hλ

0 (T ) ξ̂
)

= X (ŷ)+xϵ = x. (4.22)

From Proposition 4.4.1, there exists a portfolio process π̂ (·) such that the triple(
ĉ, D̂, π̂

)
belongs to A(x) and Xx,π̂,−Γ̂

(
T−

)
= ξ̂. By definition, we have that
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4.4 Utility maximization

(
ĉ, D̂, π̂

)
belongs to B (x), accordingly, it only remains to prove that

(
ĉ, D̂, π̂

)
satisfies the integrability condition in (4.16). Let c > 0 and t ∈ [0,T ], from
relations (4.11) and (4.12), we obtain

F (t)(U1 (t,H0 (t) ĉ(t))− ŷH0 (t) ĉ(t)) = F (t) Ũ1 (t, ŷ)
≥ F (t)(U1 (t, c)− ŷc) ,

F (T )
(
U3
(
H0 (T ) ξ̂

)
− ŷH0 (T ) ξ̂

)
= F (T ) Ũ3 (ŷ)
≥ F (T )(U3 (c)− ŷc) .

Hence, by using the continuity of the utility functions, we derive

E

(∫ T

0

(
0∧F (s)U1 (s,H0 (s) ĉ(s))

)
ds+

(
0∧F (T )U3

(
H0 (T ) ξ̂

)))

≥
∫ T

0

(
0∧F (s)U1 (s,c)

)
ds+

(
0∧F (T )U3 (c)

)
− ŷ

(
F (T )+

∫ T

0
F (s)ds

)
c

> −∞.

In consequence, it follows that

E

(∫ T

0
F (s)U−1 (s,H0 (s) ĉ(s))ds+F (T )U−3

(
H0 (T ) ξ̂

))
>−∞. (4.23)

Therefore, relation (4.23) along with Assumption 4.4.1 (ii) enable us to conclude
that

(
ĉ, D̂, π̂

)
is a member of the class C (x). Moreover, relations (4.20) and

(4.21) are immediate consequences of Proposition 4.4.1. This completes the proof
of Part A.

B. Let (c,D,π) be any triple in C (x) with corresponding final wealth ξ. By using
(4.12), we obtain

F (t)(U1 (t,H0 (t) ĉ(t))− ŷH0 (t) ĉ(t))
≥ F (t)(U1 (t,H0 (t)c(t))− ŷH0 (t)c(t)) , (4.24)

F (T )
(
U3
(
H0 (T ) ξ̂

)
− ŷH0 (T ) ξ̂

)
≥ F (T )(U3 (H0 (T )ξ)− ŷH0 (T )ξ) . (4.25)
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Additionally, we notice that

H0 (t)D̂ (t) = I2 (t, ŷ) on
{
H0 (t)d(t) ≤ I2 (t, ŷ) ≤H0 (t)d(t)

}
,

I2 (t, ŷ)<H0 (t)D̂ (t) ≤H0 (t)D (t) on {I2 (t, ŷ)<H0 (t)d(t)} ,
I2 (t, ŷ)>H0 (t)D̂ (t) ≥H0 (t)D (t) on

{
I2 (t, ŷ)>H0 (t)d(t)

}
.

Hence, as the function U2(t,x) − yx is concave down on x ∈ R and attains the
maximum on I2 (t,y), we get

f (t)
(
U2
(
t,H0 (t)D̂ (t)

)
− ŷH0 (t)D̂ (t)

)
≥ f (t)(U2 (t,H0 (t)D (t))− ŷH0 (t)D (t)) . (4.26)

By employing relations (4.24), (4.25), and (4.26), we retrieve

E

(∫ T

0

(
F
λ (s)U1 (s,H0 (s) ĉ(s))+fλ (s)U2

(
s,H0 (s)D̂ (s)

))
ds

+F λ (T )U3
(
H0 (T ) ξ̂

))
≥ E

(∫ T

0

(
F
λ (s)U1 (s,H0 (s)c(s))+fλ (s)U2 (s,H0 (s)D (s))

)
ds

+F λ (T )U3 (H0 (T )ξ)
)

+ ŷE

(∫ T

0
Hλ

0 (s)
(
ĉ(s)+λ(s)D̂ (s)− ϵ(s)

)
ds+Hλ

0 (T ) ξ̂
)

− ŷE

(∫ T

0
Hλ

0 (s)(c(s)+λ(s)D (s)− ϵ(s))ds+Hλ
0 (T )ξ

)

≥ E

(∫ T

0

(
F
λ (s)U1 (s,H0 (s)c(s))+fλ (s)U2 (s,H0 (s)D (s))

)
ds

+F λ (T )U3 (H0 (T )ξ)
)
.

Last inequality follows because of (4.22) and the budget constraint (4.10) satisfied
by (c,D,π). This finishes the proof of Part B.

Example 4.4.1 Consider a case in which the agent does not have constraints on the
life insurance purchase, i.e., d≡ 0 and d̄≡ ∞. Moreover, assume that the parameters
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4.4 Utility maximization

r (·) and ϵ(·) are deterministic functions. For every (t,x) ∈ [0,T ]× (0,∞), let

U1 (t,x) = e−αt
xp

p
,

U2 (t,x) = e−αt
xp

p
,

U3(x) = e−αT
xp

p
,

where p ∈ (−∞,1)\{0} and α > 0. Apparently, for all (t,y) ∈ [0,T ]× (0,∞), it holds
that

I1(t,y) = e
α

p−1 ty
1

p−1 ,

I2(t,y) = e
α

p−1 ty
1

p−1 ,

I3(y) = e
α

p−1T y
1

p−1 .

Furthermore, the auxiliary functions X (·) and Y (·) can be written as

X (y) =
(∫ T

0
(F (s)+f (s))e

α
p−1sds+F (T )e

α
p−1T

)
y

1
p−1 , y ∈ (0,∞) ,

Y (x) =
(

x

X (1)

)p−1
, x ∈ (0,∞) .

It is easy to see that

ĉ(t) = H−1
0 (t)e

α
p−1 t

(
x−xϵ

X (1)

)
,

D̂ (t) = H−1
0 (t)e

α
p−1 t

(
x−xϵ

X (1)

)
,

ξ̂ = H−1
0 (T )e

α
p−1T

(
x−xϵ

X (1)

)
.

As well, the value function V (·) is given by

V (x) = 1
p

(X (1))1−p (x−xϵ)p , x > xϵ.
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4.4 Utility maximization

Since Z0 (·) is a martingale, we derive

M(t) = E

(∫ T

0
Hλ

0 (s)dΓ̂(s)
∣∣∣∣∣Ft

)

= (x−xϵ)−E

(∫ T

0
F (s)γ (s)Z0 (s)ϵ(s)ds

∣∣∣∣∣Ft

)

= (x−xϵ)−Z0 (t)
∫ T

t
F (s)γ (s)ϵ(s)ds−

∫ t

0
F (s)γ (s)Z0 (s)ϵ(s)ds,

which implies

dM(t) = −
∫ T

t
F (s)γ (s)ϵ(s)dZ0 (t)

=
(∫ T

t
F (s)γ (s)ϵ(s)ds

)
Z0 (t)θ⊺ (t)dW (t) .

Therefore, the optimal investment process π̂ (·) admits the following explicit representa-
tion

σ⊺ (t) π̂ (t) =
((
Hλ

0
)−1

(t)
(∫ T

t
F (s)γ (s)ϵ(s)ds

)
Z0 (t)+Xx,π̂,−Γ̂ (t)

)
θ (t) .
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Appendix A

A.1 Affine diffusions

Let (Ω,F ,P ) be a probability space supporting a standard Brownian motion W (·)
whose corresponding natural filtration is denoted by {Ft}. For a subset D ⊂ R, let
ζ :D → R and η :D → R. Consider the following stochastic differential equation

dλ(t) = ζ (λ(t))dt+η (λ(t))dW (t), t ∈ [0,T ] . (A.1)

By assuming some regularity conditions on ζ(·) and η(·), equation (A.1) admits a
unique strong solution λ(·). In particular, if the functions ζ(·) and η2(·) are affine,
namely,

ζ (x) = ζ0 + ζ1x, x ∈D,

η2 (x) = η0 +η1x, x ∈D,

where ζ0, ζ1, η0, η1 are real numbers, then the process λ(·) is called an affine diffusion.
By employing the Itô formula, for any real number a, we have

E
(
e−a

∫ T

t
λ(s)ds

∣∣∣∣Ft

)
= eψ(T−t)+β(T−t)λ(t), (A.2)

where ψ(·) and β(·) are deterministic functions satisfying the following system of
Riccati ordinary differential equations

dψ

dx
(t) = −ζ0β (t)− 1

2η0β
2 (t) , (A.3)

dβ

dx
(t) = −ζ1β (t)− 1

2η1β
2 (t)+a, (A.4)

ψ(T ) = β(T ) = 0. (A.5)
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A.2 Details of Example 3.4.2

In some applications, for instance in Example 3.4.2, we find explicit solutions to the
system. In other cases, we must find solutions numerically. See Duffie et al. (2000) for
a generalization of this model.

A.2 Details of Example 3.4.2

First, we define the Cox–Ingressol–Ross (CIR) process. Let W (·) be a standard
Brownian motion with respect to its natural filtration

{
FW
t

}
. For strictly positive

parameters κ, φ, ν, the CIR process, λ(·), is the unique strong solution to the equation

dλ(t) = κ(φ−λ(t))dt+ν
√
λ(t)dW (t), t ∈ [0,T ] .

To preclude λ(·) taking nonpositive values we take 2κφ≥ ν2. For any positive number
a, as a member of the class of affine processes, the CIR process satisfies

E
(
e−a

∫ T

t
λ(s)ds

∣∣∣∣FW
t

)
= eψ(T−t)+β(T−t)λ(t), (A.6)

where ψ(·) and β(·) are deterministic functions satisfying the system of differential
equations in (A.3)-(A.5). For s ∈ [0,T ], by defining b2 = κ2 +2aν2, it is not difficult to
prove that

ψ (s) = −2κφ
ν2 log

 2be 1
2 (b+κ)s

(b+κ)
(
ebs−1

)
+2b

 ,
β(s) =

2a
(
ebs−1

)
(b+κ)

(
ebs−1

)
+2b

.

Now, we give additional details concerning the formula for the process p(·). Let
I ⊂ In and j = |I|. By the independence of the processes λ0(·), . . . , λn(·), we obtain

E
(
e−
∑

i∈I

∫ T

t
γi(s)ds

∣∣∣∣F2
t

)
= E

e−j ∫ T

t
λ0(s)ds∏

i∈I
e−
∫ T

t
λi(s)ds

∣∣∣∣∣∣F2
t


= E

(
e−j

∫ T

t
λ0(s)ds

∣∣∣∣F2
t

)∏
i∈I

E
(
e−
∫ T

t
λi(s)ds

∣∣∣∣F2
t

)
.

Let ψj0(·), βj0(·) correspond to the functions ψ(·), β(·) appearing in equation (A.6) with
a= j and λ(·) = λ0(·). Similarly, for i ∈ I, associate the functions ψi(·), βi(·) with the
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A.2 Details of Example 3.4.2

functions ψ(·), β(·) appearing in equation (A.6) with a= 1 and λ(·) = λi(·). Then it
holds that

E
(
e−
∑

i∈I

∫ T

t
γi(s)ds

∣∣∣∣F2
t

)
= eψ

j
0(T−t)+βj

0(T−t)λ0(t)∏
i∈I

eψi(T−t)+βi(T−t)λi(t). (A.7)

Finally, by plugging equation (A.7) in (3.13), we obtain the desired explicit formula
for p(·).
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