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ABSTRACT

Metrics for Sampling-Based Motion Planning. (December 2007)

Marco Antonio Morales Aguirre, B.S., Universidad Nacional Autónoma de México;

M.S., Universidad Nacional Autónoma de México

Chair of Advisory Committee: Dr. Nancy M. Amato

A motion planner finds a sequence of potential motions for a robot to transit

from an initial to a goal state. To deal with the intractability of this problem, a class

of methods known as sampling-based planners build approximate representations of

potential motions through random sampling. This selective random exploration of

the space has produced many remarkable results, including solving many previously

unsolved problems. Sampling-based planners usually represent the motions as a graph

(e.g., the Probabilistic Roadmap Methods or PRMs), or as a tree (e.g., the Rapidly

exploring Random Tree or RRT). Although many sampling-based planners have been

proposed, we do not know how to select among them because their different sampling

biases make their performance depend on the features of the planning space. More-

over, since a single problem can contain regions with vastly different features, there

may not exist a simple exploration strategy that will perform well in every region.

Unfortunately, we lack quantitative tools to analyze problem features and planners

performance that would enable us to match planners to problems.

We introduce novel metrics for the analysis of problem features and planner

performance at multiple levels: node level, global level, and region level. At the node

level, we evaluate how new samples improve coverage and connectivity of the evolving

model. At the global level, we evaluate how new samples improve the structure of the

model. At the region level, we identify groups or regions that share similar features.

This is a set of general metrics that can be applied in both graph-based and tree-based
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planners. We show several applications for these tools to compare planners, to decide

whether to stop planning or to switch strategies, and to adjust sampling in different

regions of the problem.
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1

CHAPTER I

INTRODUCTION

A motion planner finds a sequence of motions for an object (the robot) to move

from its initial state to a goal state while satisfying any constraints specified on its

motions. Since the motion planning problem is considered intractable [55, 57, 13],

research on heuristic approaches has flourished [5, 29, 50, 51, 2, 10, 64, 31, 8, 34, 23].

These heuristics include sampling-based approaches that have enabled us to address

many important motion planning problems that were previously impractical. Instead

of computing an exact representation of the planning space, the sampling-based ap-

proach samples and tests motions in the space formed by the robot configurations

called configuration space (C-space) [40]. The result is an approximate model that

encodes representative robot motions. This general methodology has extended its

original applications in robotics to diverse areas, such as the study of protein folding

in biology and chemistry [4, 61, 7, 59, 63], virtual prototyping in manufacturing and

mechanical design[6, 14], and the simulation of characters for animation and games

[38, 39].

Much work has been done to improve sampling-based planners, especially on

heuristics to bias sampling towards regions of the space that model highly constrained

robot motions. As a result, there are many sampling-based planners to choose from,

but we do not know how to select among them. The sampling bias of each planner

makes its performance depend on the features of the planning space. Moreover, since

This dissertation follows the style of the IEEE Transactions on Automatic Con-

trol.
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a single problem can contain regions with vastly different features, there may not

exist a simple exploration strategy that will perform well in every region. Unfortu-

nately, we lack quantitative tools that would enable us to match planners to problems

while building a motion model through the analysis of problem features and plan-

ner performance. This lack has recently led researchers to investigate mechanisms to

dynamically adapt the planning strategy to the features discovered in each problem

instance [11, 44, 46, 12, 26, 27, 65]. We need metrics that gather relevant information

about the planning process in order to make effective decisions to adapt the planning

strategy.

Metrics that have been used to compare sampling-based planners typically evalu-

ate computational efficiency [3, 18, 32] such as the number of basic operations needed

to compute the model, or the amount of information used to model the planning

space, or the minimum number of samples to solve a particular set of queries. How-

ever, these metrics provide limited information that would help to dynamically adapt

the planning strategy to each problem instance.

Also, some work has focused on defining properties of the planning space of

problems, called C-Space, such as ε-goodness [28] and (ε, α, β)-expansiveness [25], or

simply expansiveness. The planning space of a problem instance is ε-good if it is

composed of samples that are ε-good, meaning that they can be connected to a set

of samples that cover at least a fraction ε of the volume of the valid space [28] (the

set of configurations that satisfy all the robot constraints). Problem instances that

have ε-good spaces can be easily modeled and a planner has been designed specifically

for such problems [25]. (ε, α, β)-expansiveness is a property for ε-good spaces that

requires that every subset of the valid planning space which is a fraction α of the

volume of the C-Space, can also be connected to a fraction β of the C-Space, and

the larger the values of α and β, the more expansive is the space [25]. Unfortunately,
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these features are not practical to compute for most interesting problems and there

are many important problems which do not satisfy them.

We introduce a set of novel metrics for the analysis of problem features and plan-

ners’ performance during the construction of motion models. Instead of comparing

the model achieved by the planner with the underlying C-Space, which would be

intractable, we propose a set of metrics that provide insight into the ability of the

planner to sustain its learning about problems and into the features of the models

obtained. These metrics operate at multiple levels: node level, global level, and re-

gion level. At the node level, we evaluate how new samples improve the coverage

and connectivity of the model. At the global level, we evaluate how new samples

improve the structure of the model. At the region level, we identify groups or regions

that share similar features. This way we do not measure the success of the planner

in modeling the underlying C-Space, but its effectiveness in increasing its knowledge

about it.

For simplicity, in the presentation of these metrics we assume motion models

where potential robot configurations satisfy a binary validity test. In these models,

robot configurations and potential motions are either valid or invalid. Nevertheless,

extensions for other types of models, such as those that make lazy evaluations of

validity or that use probability functions instead of binary validity tests, are straight-

forward.

We show some applications of these metrics. We identify three phases that plan-

ners go through when building C-Space models: quick learning (rapidly building a

coarse model), model enhancement (refining the model), and learning decay (over-

sampling – most new samples do not provide additional information). We compare

planners to gain insight into their strengths and weaknesses. We measure the amount

of structural improvement of the models to decide whether to stop planning or to
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switch strategies. We propose a strategy to group samples in order to adjust sam-

pling in different regions of the problem.

This work is the result of our continued research. In [44], we proposed a feature-

sensitive motion planner, this was one of the first adaptive planners and one of our

main motivations to investigate metrics to evaluate the planning process. In [46], we

studied and refined two steps of the feature-sensitive motion planner: the subdivision

of the problem, and the integration of partial solutions. In [45], we proposed the first

set of node-level metrics and we identified the different learning stages followed by

sampling-based motion planners. In [65] we developed the first global-level metrics

and we applied them to decide when to finish the planning process and to improve

adaptive learning. In [62], we applied the node-level and global-level metrics to study

a new motion planner. In [42], we developed the first set of region-level metrics to

study sampling-based planners that explore the space incrementally.

This document is organized as follows: chapter II describes the configuration

space (C-Space), and defines some concepts and C-Space properties that will be used

in the rest of this work, it provides an overview on sampling-based motion plan-

ners, then it describes traditional methods to evaluate planners; chapter III briefly

introduces the metrics at the node, global, and region levels; chapter IV describes

the strategy we followed to evaluate the metrics, the planners and problems stud-

ied, and the experimental setup; chapter V describes the node-level metrics in detail;

chapter VI describes the global-level metrics in detail; chapter VII describes the

region-level metrics in detail; chapter VIII shows applications and the experiments

performed to evaluate the metrics at all levels; and chapter IX presents some con-

cluding observations.
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CHAPTER II

SAMPLING-BASED MOTION PLANNING

Sampling-based planners address the intractability of the motion planning problem

[55, 57, 13] by using sampling to build an approximate model of potential robot

motions. These planners are not intended to provide a complete solution, that is, to

find a path or report that none exists. Nevertheless, some sampling-based planners

have been proved to be probabilistically resolution complete [5], meaning that the

probability of finding a path, if one exists, increases with the effort spent searching

for it.

The motion model produced by sampling-based planners is usually represented

as a graph whose vertices represent feasible configurations and whose edges represent

potential transitions or motions between the corresponding configurations. With-

out loss of generality, the techniques discussed here assume that configurations and

potential motions are either valid or invalid. Nevertheless, these techniques can be

extended to other types of models, such as those that make lazy evaluations of motion

validity [9, 48], or those that evaluate potential motions with probability functions

instead of binary validity tests [4].

First, this chapter describes an important abstraction for sampling-based motion

planning called the configuration space (C-Space) and some of its properties that will

be used in further definitions. Second, it provides an overview of different sampling-

based motion planners.
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A. Configuration Space

Configuration space (C-Space) is an abstraction that allows us to apply the same

basic planning framework for every kind of robot [40]. A configuration q encodes

the placement of every component of the robot as a point q = (x1, ..., xd). Each of

the d parameters, or degrees of freedom (DOFs), in q corresponds to an independent

motion ability of the robot (e.g., base translations and rotations, link angles and

displacements, etc.). The set of all the robot configurations in the given problem

instance form the d-dimensional C-Space C [40].

Thus, the motion planning problem consists of finding a valid trajectory in the

C-Space between the start and goal configurations. Unfortunately, any complete

planner, one that finds a path or reports that no such path exists, would need to

compute the entire C-Space. Indeed, there is strong evidence that this will require

exponential time in the number of DOFs of the robot [55, 57, 13].

Let us define some properties related to configurations q and q′ that will be used

in the discussion of sampling-based planners and of the properties of the C-Space in

the following sections. Figure 1 illustrates these definitions in a problem for a point

robot moving in 2-dimensional space.

1. Validity

The boolean function valid(q) is true if q satisfies the constraints of the robot and

problem instance, and false otherwise. The subset of valid configurations in C-Space

is the C-Free space F , and the subset of invalid configurations in C-Space is the C-

Obstacle space O such that C = F ⋃O. Figure 1(b) shows a valid configuration in F

and an invalid configuration in O.
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(a) 2-D problem (b) validity (c) visibility

(d) visible region (e) connectability (f) homotopy

Fig. 1. Validity, visibility, visible region, connectability, and homotopy in (a) the
C-Space of a point robot moving in the plane. (b) A valid configuration in F and an
invalid configuration in O. (c) Visibility with straight-line local planner: a can see b
but it can not see c. (d) The visible region for a, with straight-line local planner, in
light blue. (e) a and c are connectable (τ(a, c) = {a, b, c}). (f) Two homotopy classes
between a and c: τ1 = {a, b, c} and τ2 = {a, b, d, c} can be continuously transformed
into each other; 2. τ3 = {a, e, f, c} cannot be transformed into τ1 nor τ2.

2. Visibility

The boolean function visible(q, q′) is true if some specified method, typically called a

local planner, can produce a path τ consisting of a continuous sequence of adjacent (at

a required resolution) configurations τ = (q1, q2, . . . , qn) where q1 = q, qn = q′, and

valid(qi) = true ∀qi ∈ τ . For example, the straight-line local planner will decide that

q can see q′ if the straight line segment q, q′ is composed only of valid configurations

as shown in Figure 1(c) where configuration a can see configuration b, but it can not

see configuration c. Note that symmetry is determined by the local planner.
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3. Visibility or Covered Region

Based on [49], we define the visibility or covered region for a valid configuration q as

the subset of configurations V isibility(q) = {q′ ∈ F|valid(q′) = true, visible(q, q′) =

true}. Figure 1(d) shows the visibility region for one configuration using the straight-

line local planner.

4. Connectability

Based on [25], we define the boolean function connectable(q, q′) as true if there exists

a trajectory consisting of a sequence of configurations τ(q, q′) = (q1, q2, . . . , qn) where

q1 = q, qn = q′, and visible(qi, qi+1) = true, 1 ≤ i < n. For example, configura-

tions a and c in Figure 1(e) are connectable through τ(a, c) = (a, b, c). Note that

connectability does not imply visibility.

5. Homotopy

A homotopy class H is a set of similar paths between a pair of connectable con-

figurations. Based on [17], we define a homotopy class between q and q′ such that

connectable(q, q′) = true as the set of paths Hq,q′ = {τ1(q, q′), τ2(q, q′), . . . , τh(q, q′)}

where for any two paths τi(q, q
′), τj(q, q

′) ∈ Hq,q′ there exists a continuous deformation

that transforms τi(q, q
′) into τj(q, q

′) such that the validity of all the configurations

in the deformation remains the same. Thus, for any pair of connectable configura-

tions there may be more than one homotopy class. In Figure 1(f), there are two

homotopy classes between configurations a and c: the pathways τ1(a, c) = (a, b, c)

and τ2(a, c) = (a, b, d, c) can be transformed into each other without passing through

obstacles, so they belong to one homotopy class, whereas τ3(a, c) = (a, e, f, c) cannot

be transformed into τ1(a, c) nor τ2(a, c), so it belongs to another homotopy class.
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B. Sampling-Based Motion Planning Techniques

Since it is intractable to explicitly compute the C-Space in order to completely solve

a motion planning instance, we can use randomized algorithms to find approximate

solutions [47]. Sampling-Based Motion Planners approximate the connectivity of the

valid C-Space by sampling configurations and searching for valid trajectories between

them. In particular, we can often determine whether a configuration is valid or not

quite efficiently (e.g., by performing a collision detection test in the workspace), and

this is also the basic operation in visibility tests.

Sampling-Based Motion Planners trade completeness for efficiency by pursuing

the weaker condition of probabilistic resolution completeness [5]. Under this condi-

tion, the probability of finding a path increases with the effort spent searching for

it. However, the planner is not guaranteed to terminate when there is no path. In

fact, the density, complexity, and distribution of the obstacles reduces the probability

of sampling configurations or making connections in some regions of the C-Space.

This is the case of the narrow passage problem where relatively open areas are con-

nected by a small-volume passage that runs through a dense and complex area. Many

sampling-based planners have been developed with different bias strategies intended

to sample more configurations that are likely to lie inside narrow passages.

In general, sampling-based planners produce motion models that consist of a

subset V of configurations selected from the C-Free F and a subset E of pairs of

configurations selected among all the visible configuration pairs V × V to form a

motion graph M = (V,E).

The metrics introduced in this work assume that valid(q) = true, ∀q ∈ V and

that visible(q, q′) = true, ∀(q, q′) ∈ E, but these concepts can be extended to cover

other cases (such as the lazy methods described below) as explained briefly in chapter
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III.

We can classify sampling-based planners based on their strategy for exploring

the C-Space. Roadmap-based planners make a global exploration of the space.

Incrementally-exploring planners start from one or two configurations and explore

the space incrementally from these initial configurations. Adaptive planners dynam-

ically adjust the planning strategy or parameters based on features discovered while

sampling the space. A brief discussion of these classes of sampling-based planners

follows.

1. Roadmap-Based Planners

Roadmap-based planners [29, 50, 51], or Probabilistic Roadmap Methods (PRMs),

build a C-Space model in two main steps: node generation and node connection. Node

generation consists of randomly sampling configurations, testing for visibility between

them, and keeping the valid ones as roadmap vertices. Edge generation consists

of selecting pairs of nearby configurations, testing them with a local planner, and

keeping the valid transitions as roadmap edges. The resulting roadmap represents the

connectivity of the C-Space and can be queried as many times as needed. Additional

steps can be performed to refine the roadmap, such as connection attempts focused

on joining roadmap components using incrementally-exploring methods [43, 1].

The most researched aspect of roadmap-based planners is the node generation.

The main focus has been to improve the chances to produce samples inside the narrow

passages. Some of the node generation techniques include the following:

• Basic-PRM [29], the original Probabilistic Roadmap Method, samples config-

urations in the C-Space with a uniform distribution retaining those that are

valid.
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• OBPRM [2], the obstacle-based PRM generates invalid configurations and

pushes them in random directions to generate valid configurations around the

boundaries of C-Obstacles.

• Gauss-PRM [10] performs uniform sampling to produce valid samples within

distance d from invalid samples. Valid samples have a gaussian distribution

around obstacle boundaries.

• Bridge-Test [22] performs uniform sampling to produce valid configurations, or

bridges, between pairs of invalid samples separated a distance d.

• MAPRM [64] performs uniform sampling and retracts every valid and invalid

configuration towards the medial axis of the free space. Although MAPRM can

be implemented practically only for rigid bodies in three-dimensional space, an

approximate version has performed well for high-dof problems [37].

• The Visibility Roadmap [31] performs uniform sampling and adds each valid

new sample to the roadmap only when the new sample is not visible from any

other node in the roadmap or when it is visible from at least two nodes in

different components of the roadmap. The number of nodes in the roadmap

is minimized, but as new nodes are added, the cost of connection evaluations

increases.

It is worth noting that some of these techniques achieve their bias by selecting

uniformly sampled configurations that satisfy the properties of interest (e.g., Gauss-

PRM and the visibility roadmap) while others manipulate configurations in order

to satisfy the properties of interest (e.g., OBPRM and MAPRM ).

The selection of pairs of nodes that will be tested for connection allows us to

limit the number of costly feasibility tests. Among the pair selection strategies we
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have the following:

• k-closest [29] is the most common strategy. For each node, it selects the k-

closest nodes to attempt connections.

• Components [2] selects pairs of nodes in different roadmap components.

In order to select pairs of nodes, we may need to evaluate distances between

configurations. Common distance metrics include Euclidean, Minkowski, Manhattan,

and scaled Euclidean [3, 52].

The test for visibility between a pair of nodes (v, v′) is performed by the local

planner, with successful tests resulting in edges. Edge weights are usually a distance

estimation based on the number of steps interpolated by the local planner. Perhaps

the most commonly used local planner is the straight-line planner which examines the

configurations along a straight line that is interpolated between v and v′ at a given

resolution. There are other local planners, such as those based on the A* search or

the rotate-at-s local planner [3] which separates translational and rotational motions

into piecewise straight lines.

Some roadmap-based techniques defer some or all validations for configurations

and potential motions until after vertex and edge generation.

• Lazy PRM [9] tests nodes for validity and it initially places edges for all

selected pairs without validating them for visibility. Edges are tested only at

query time when the shortest path in the roadmap is found. Invalid edges are

removed from the roadmap and the search is repeated until a valid path is found

or until the start and the goal lie in different roadmap components.

• Fuzzy PRM [48] tests nodes, then it weights the edges with an estimation of

the probability of the pair of nodes to be visible. When a query is made, the
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path with the highest probability of being valid is selected and its edges are

validated and updated as needed. This process may change the probability of

the edges to represent valid connections.

• C-PRM [60] allows for partial or full validation of nodes and edges. Then, par-

ticular constraints can be defined at the query time, such as clearance, smooth-

ness, potential, or ranges in the DOFs. Nodes and edges that do not satisfy the

required constraints are removed from the roadmap.

2. Incrementally-Exploring Planners

Incrementally-Exploring planners explore the space to find new samples following

some strategy to expand the model [5, 8, 41, 35, 23]. They usually root a tree at each

valid configuration of some set (typically the start and goal) and then they expand

the trees in increments. At each increment, they select a growth site among nodes in

the model and they explore the vicinity of each growth site to expand the model. The

incremental exploration of the space makes some incremental planners particularly

well-suited for problems with differential constraints (kino-dynamic motion planning).

Among the incremental planners we have the following:

• RPP [5], the Randomized Path Planner is the earliest sampling-based planner.

It selects the vertex with the smallest value for a potential function or a ran-

domly picked ancestor if the selected vertex is a local minima, then it explores

in a random walk towards smaller potentials until reaching the goal or finding

a local minimum from where it performs some Brownian motions to try to es-

cape. The potential function used is based on an estimation of the distance to

the goal.

• The Ariadne’s Clew Algorithm [8, 41] selects a trajectory that minimizes



14

the distance between the goal and the last valid configuration in the trajectory,

then it spreads new nodes that are reachable from the nodes in the trajectory.

The new nodes are selected such that they maximize the distance between

every node and the last node in the trajectory. Selection and exploration are

performed through genetic algorithms.

• RRT [35, 30], the Rapidly-Exploring Random Tree, initially had two versions:

RRT -Expand [35] selects as growth sites the nearest node to a random configu-

ration x, then it explores by walking in the direction of x a maximum distance

d; RRT -Connect [30] selects nodes in an RRT -Expand way from one of two

trees (one rooted at the start and another rooted at the goal), then it explores

in an RRT -Expand way and it tries connections to the other tree. Trees al-

ternate turns for node selection. RRTs iteratively break Voronoi regions of

the explored areas into smaller Voronoi regions. They have been applied for

single-query problems [30] and in kino-dynamic motion planning [34, 36].

• EST [23], the Expansive-Spaces Tree, favors selection of isolated nodes, then it

explores by randomly sampling in the vicinity of isolated areas. This approach

has been extended to kino-dynamic motion planning [24].

• Ray Shooting [21] selects a random node from either of two trees (one rooted

at the start and the other rooted at the goal), then explores towards the other

tree by shooting a random ray that “bounces” in a random direction every time

it hits an obstacle while adding “bouncing” nodes to the tree. Variants of this

approach have been tried to refine roadmaps [29, 43].
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3. Adaptive Planners

Despite all efforts, there is no simple, general sampling-based motion planning strat-

egy that performs well in every problem instance. Instead, we have many sampling-

based planners to choose from, but we do not know how to select among them. This

has led to the development of adaptive strategies that dynamically adapt the plan-

ning strategy to the features discovered while sampling the C-Space [11, 44, 46, 12,

26, 27, 65]. In order to make decisions, adaptive planners need metrics to evaluate

the performance of the planning process over time and in the different areas of the

C-Space.
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CHAPTER III

NEW METRICS FOR SAMPLING-BASED PLANNERS

Traditional planner evaluation based on computational efficiency is insufficient to

allow us to address several challenges in motion planning. We need better criteria

to choose among the many available planners and to make decisions in adaptive

planning. Also, since planners make approximate models of representative motions,

we need metrics that allow us to look into the types of motions modeled for each

problem.

This chapter discusses the properties of C-Space that give insight into the plan-

ning process and into the quality of motion models. Then, it introduces the metrics

focus of this work. Finally, it briefly discusses mechanisms to extend these metrics to

models that are not based on binary validity tests.

A. Traditional Evaluation of Planners

Traditionally, the evaluation of planners has relied on metrics that evaluate compu-

tational efficiency (e.g., [3, 18, 32, 33]). These metrics include the number of basic

operations (tipically collision detections as validity tests) and time needed to com-

pute the model, the amount of information needed to model the planning space, the

minimum number of samples to solve a particular set of queries. However, these

metrics provide limited information about the planning process that would help to

dynamically adapt the planning strategy to each problem instance.

In particular, evaluating the ability of the model to solve a particular set of

witness queries between user-specified start and goal configurations in interesting

problems is very common. Under this evaluation, a successful planner solves more
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(a) (b) (c)

Fig. 2. Witness queries between “witness” configurations 1 and 2. (a) Only witness
1 is connected to the model, there has not been found any path between witnesses.
(b) Both witnesses are connected to the model, one path between them has been
found. (c) Both witnesses are connected to the model, two paths between them have
been found. The witness evaluation does not make a distinction between case (b),
with only one pathway between witnesses, and case (c), with two pathways between
witnesses.

witness queries as shown in Figure 2. Unfortunately, this is not necessarily a good

evaluation metric because it cannot evaluate paths in different homotopy classes, it

can only tell us if the model can solve the queries between a specific set of config-

urations, and it cannot be automatically adapted to different problems. Moreover,

witness queries depend heavily on the understanding of the problem by the user to

place the witness configurations. For example, if configuration 2 in Figure 2(b) were

slightly to the left, the evaluation would produce very different results.

As more planners appear, we need better criteria to choose among them. Re-

search on the qualitative aspects of the models and C-Space provides us with insight

into the ability of planners to solve different kinds of problems. Reachability analy-

sis evaluates different PRM -based planners by exhaustively comparing the coverage

they achieve with the underlying C-Space [19]. We also know that a problem whose

configurations can be connected to a set of samples that cover at least a fraction ε

of the volume of the valid space is considered to be ε-good [28] and it can be easily

modeled. In addition, ε-good spaces where every subset of the C-Space, a fraction α
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of the volume of the C-Space, can be connected to a fraction β of the C-Space, are

considered to be (ε, α, β)-expansive, or simply expansive. The larger the values of α

and β the more expansive is the space and the easier it is to model it [25] (e.g., with

the EST planner).

Unfortunately, reachability analysis has only been possible in simple problems

with few DOFs. Similarly, ε-goodness and (ε, α, β)-expansiveness are not practical to

compute for most interesting problems and there are many problems which do not

satisfy them. As a result, the witness query evaluation is still the most commonly

used.

B. New Node, Region, and Global Metrics for Sampling-Based Planners

Sampling-based motion planning is facing new challenges. The diversity of planners

and of the features in problem instances has led researchers to develop adaptive

planners that require powerful, flexible, efficient, and general evaluation methods

to make effective decisions in order to build better C-Space models. Also, motion

planning has extended its applications to aid in the study of motions from robotics to

other disciplines (e.g., to model and understand motions of molecules in biology and

biochemistry). These new applications need effective methods to evaluate the types

of motions involved in the processes modeled.

Planners build models whose representation of the properties of the C-Space is

reflected on their ability to solve general motion queries. The coverage, connectiv-

ity, and topology are properties of the C-Space that planners capture with different

accuracy levels depending on their sampling bias and on the features of the motion

planning instance. Computing these properties would be tantamount to the unfeasi-

ble computation of the C-Space. Nevertheless, we can define metrics that give insight
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into the changes of the representation of coverage, connectivity, and topology during

model construction.

Next, we define coverage, connectivity, and topology, and we provide a high-level

overview of the strategy introduced in this work to evaluate them.

1. Coverage

The coverage of a set of configurations Q = {q1, . . . , qn} is the union of their visibility

or covered regions:

Coverage(Q) =
n⋃

i=1

V isibility(qi) (3.1)

In an ideal representation of coverage, every valid configuration in the C-Free F

should be visible from and can see at least one vertex in V .

2. Connectivity

A connected component CC of the C-Free F is a set of configurations:

CC = {q1, q2, . . . , qk|∀(q, q′) ∈ CC, connectable(q, q′) = true} (3.2)

and its coverage is the set of configurations in CC: Coverage(CC) =
⋃k

i=1 qi. Thus,

the C-Free F consists of m components F =
⋃m

i=1CCi.

In an ideal representation of connectivity, every valid motion between configura-

tions q and q′ should have a corresponding path in M between vertices v and v′ such

that visible(q, v) = visible(v′, q′) = true. Good coverage is a precondition for good

connectivity.
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3. Topology

The set of Homotopy classes or similar paths between every pair of connectable con-

figurations in the C-Free F represents all the potential motions.

In an ideal representation of topology, each component CC ∈ F should have a

corresponding graph component CCm and for every homotopy class H ∈ F there

should be at least one graph path τm ∈ H. Good coverage and connectivity are

preconditions for good topology.

4. Estimating the Evolution of Planner Learning Ability

Instead of computing the connectivity, coverage, and topology of a C-Space model, we

propose to estimate the ongoing learning achieved during its construction. This can

be achieved by extracting metrics that approximate changes in coverage, connectivity,

and topology of the model at multiple levels: node level, global level, and region level.

These approximate metrics can be applied to any sampling-based motion planner and

do not depend on the dimensionality of the problem.

• Node-Level Metrics — Enable the measurement of ongoing changes in cover-

age and connectivity due to each new node and its connections. These metrics

can be applied to the analysis and comparison of the learning mechanisms of

different planning strategies.

• Global-Level Metrics — Enable the measurement of ongoing changes to the

global structure of the model that reflects its coverage, connectivity, and topol-

ogy. These metrics can be applied to evaluate the global progress of sampling

to decide when to switch planners or when to stop planning.
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• Region-Level Metrics — Enable the identification of groups or regions in the

model that share similar features. Metrics at this intermediate level between the

node-level and the global-level can be applied to identify the important regions

of a problem and to adjust sampling in each discovered region.

These metrics are intended to be used in conjunction. Each type of metric

provides insight into a separate aspect of the planning process. Together, they allow us

to make decisions regarding when and where to use a planner, and to compare models

obtained with different sampling-based planners. The following chapters provide a

more detailed discussion of these issues.

5. Extensions to Other Types of C-Space Models

In order to apply the metrics introduced here to models that are not based on binary

validity tests we need to extend the definitions of validity, visibility, visibility region,

connectability, and homotopy.

For example, in the case of models that use probability functions to evaluate con-

figurations and potential motions [4], we can redefine them as follows: valid(q) ∈ [0, 1]

becomes the probability that q is valid; visible(q, q′) ∈ [0, 1] becomes the probability

of the transition from q to q′; the visibility region V isibility(q, t) = {q′|valid(q′) >=

t, visible(q, q′) >= t}, for a given threshold t; connectable(q, q′) ∈ [0, 1] becomes

the minimum conditional probability of going from q to q′ through the edges in a

path between q and q′; and, the homotopy class becomes the set of paths Hq,q′ =

{τ1, τ2, . . . , τh} between q and q′ such that connectable(q, q′) > t and that for any two

paths τi, τj ∈ H there is a continuous deformation that transforms τi into τj such

connectable(q, q′) > t for the whole transformation and for all q ∈ τi, valid(q) >= t.

The new definitions are generalizations of the original definitions that are still valid for
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the cases described in this dissertation. The node-level, global-level, and region-level

metrics described here would need to use these new definitions.

In the case of models that make lazy evaluations of motion validity [9, 48], we

can also make lazy evaluations of the metrics described here.
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CHAPTER IV

EVALUATION STRATEGY

We are interested in the learning process at the node, global, and region levels ex-

hibited by different planners when modeling different problems. In particular, we

are interested in the learning process followed by planners when building a C-Space

model, in their ability to improve their representation of coverage, connectivity, and

topology evaluated through node-level, global-level, and region-level metrics, and in

the potential applications of these metrics to improve planning.

This chapter describes the problem instances and planners that we will use to

illustrate the metrics that are discussed in detail in the subsequent chapters. It also

provides details of the experimental setup for evaluating the metrics.

A. Planners

Throughout this work we study several roadmap-based and incrementally-exploring

planners. Choosing a diverse set of planners allows us to apply and observe the

metrics in different situations to assess their effectiveness in capturing the different

processes followed by each planner.

Our implementation of the PRM framework works in an incremental fashion.

Every new node in the roadmap is tried for connections to the k-closest nodes already

in the roadmap (with k = 20, unless otherwise noted) using the straight-line local

planner with binary search (unless otherwise noted). The distance metrics employed

was scaled Euclidean with 50% weight for translational DOFs and 50% weight for

rotational DOFs (unless otherwise noted). The resolution for the local planner was

automatically computed for each problem based on its bounding box. One node was
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generated per iteration (for a maximum of ten attempts). We study the following

node generation strategies for roadmap-based PRM planners that are described in

Section II.B.1: Basic-PRM [29], OBPRM [2], Gauss-PRM [10], MAPRM [64], and

Bridge-Test [22].

The set of roadmap-based planners evaluated represents bias mechanisms that

allow us to observe diverse cases. The baseline among PRMs is Basic-PRM with its

uniform sampling. OBPRM and Gauss-PRM have the same goal of sampling more

densely around obstacles, but they do it differently, OBPRM by manipulating samples

and Gauss-PRM by filtering them. Our implementation of OBPRM generates a

random configuration, if it lies in C-Free it pushes it towards a C-Obstacle, otherwise

it pushes it towards C-Free. MAPRM and Bridge-Test have the same goal of sampling

between obstacles, but they also do it differently, MAPRM by manipulating samples

and Bridge-Test by filtering them. Our implementation of MAPRM is based on an

approximation of the clearance and penetration depth to set the retraction direction

of configurations towards the medial axis of C-Free.

We implemented a general framework for incremental planning as described in

[42]: a growth site is selected in each iteration to explore the surrounding area ac-

cording to the rules of each method. We study the following incrementally-exploring

planners that are described in Section II.B.2: RPP [5], RRT -Expand [35], EST [23],

and RRT -Connect [30].

The set of incremental planners evaluated have exploration rules that allow us

to observe diverse cases. The baseline among incremental planners is RPP the first

sampling-based planner, which biases the exploration towards the goal with a sim-

ple strategy. RRT -Expand and EST have the same goal of expanding the volume

explored by the planner. RRT -Connect and RPP are both goal-biased and are ap-

plicable to single-query problems.
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B. Motion Planning Problems

Throughout this work we apply planners and evaluate metrics for several instances

of the motion planning problem. These are a diverse set of problems with different

densities of C-Obstacles, open spaces and narrow passages. The motion planning

instances evaluated are the following:

• The rigid-maze problem (Figure 3), has a 6-DOF rigid-body robot that should

pass through a series of tunnels with some dead-ends from the top to the bottom.

This problem is interesting because its C-Space resembles the workspace, it has

two clear free areas, the tunnels form a long and narrow passage with dead ends,

and the obstacle occupies the majority of the planning space. Translational-

DOF ranges are: x [-8,7], y [-16.5,16.5], and z [-9,11]. Rotational DOFs are not

bounded.

• The rigid-windows problem (Figure 4) has a 3-DOF translational rigid-body

cube robot that should pass through any of the four windows in the wall that

splits the environment into two halves. This problem is interesting because it

has four different pathways from one side to the other and finding one is not

enough to achieve the best model. From left to right, the first window is 1.5

times as long as the robot, the second window is 1.75 times as long as the robot,

the third window is 2.5 times as long as the robot, and the fourth window is

3.5 times as long as the robot. The width of the wall is the same as the length

of the robot. Translational-DOF ranges are: x [-10,6], y [-0.5,0.5], and z [-2.0,

2.0]. Rotational DOFs are not bounded.

• The rigid-hook problem (Figure 5) has a 6-DOF rigid-body hook robot that

should pass through the narrow openings in the two walls that divide the envi-
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(a) solid view (b) wire view

(c) robot close-up

Fig. 3. Problem: rigid-maze. (a) solid view. (b) wire-view shows the internal
tunnels. (c) close-up view of the robot.

Fig. 4. Problem: rigid-windows. The robot has 3 translational degrees of freedom.
Four pathways of different sizes allow the robot to cross from the front to the back.
The start and goal configurations are at each side of the leftmost wall.
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Fig. 5. Problem: rigid-hook. In order to get through the passages, the 6-DOF robot
needs to perform translations and rotations.

ronment into three chambers from one side to the other side of the environment.

This is an interesting and difficult problem that requires simultaneous transla-

tional and rotational motions. Translational-DOF ranges are: x [-100,100], y

[-100,100], and z [-400,200]. Rotational DOFs are not bounded.

• The rigid-walls problem (Figure 6) has a 6-DOF rigid-body box robot that

should pass through the small openings (slightly larger than the robot) in the

walls that divide the environment into five chambers from one side to the other

side. This problem has a C-Space that is similar to its workspace, with four nar-

row passages and open spaces in between. Incremental planners increase their

coverage in stages as they find their way through the passages. Translational-

DOF ranges are: x [0,4], y [0,4], and z [-5,14]. Rotational DOFs are not

bounded.

• The serial-hook-5 problem (Figure 7) has five links that form a ten-DOF artic-

ulated robot that should pass through the opening in the wall that divides the
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Fig. 6. Problem: rigid-walls. Incremental planners find their in increments as they
find their way through narrow passages.

environment into two chambers from one side to the other side of the environ-

ment. This is an articulated version of the rigid-hook problem that has a higher

number of DOFs than the other problems. Translational-DOF ranges are: x [-

100,100], y [-100,100], and z [-400,200]. Rotational DOFs are not bounded.

• The serial-spring-98 problem (Figure 8) has ninety eight links that form a 103-

DOF articulated robot whose start and goal configurations resemble springs of

different widths. The robot should pass above a wall that divides the environ-

ment into two areas folding and unfolding. The high number of DOFs makes this

problem much harder than any of the other problems discussed. Translational-

DOF ranges are: x [-500,500], y [-500,500], and z [-500,500]. Rotational DOFs

are not bounded.

C. Experimental Setup

All the experiments were performed in individual processors of the IBM HPC cluster

1600 of Texas A&M University. This cluster runs the 64-bit version of AIX (version

5.3), and it has 40 p5-575 nodes, each with 16 Power5+ processors at 1.9 GHz and
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Fig. 7. Problem: serial-hook-5. The 10-DOF robot can fold and unfold to get
through the opening that divides the environment. This is a variation of the rigid-
hook problem.

Fig. 8. Problem: serial-spring-98. The 103-DOF robot folds and unfolds to get
above the wall that divides the environment.
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32 GBytes of DDR2 DRAM in a shared-memory configuration (SMP). This resource

was used for over 600 hours including trial runs and the final experiments shown in

this work.

All the techniques were implemented in C++ within the Parasol Lab Motion

Planning Library. Validity was evaluated using the RAPID collision detection package

[20].

Executions are split into subsets, or bins, of n consecutive iterations to gather

statistics and evaluate performance. Times were tracked individually for model gener-

ation (node generation and connection in roadmap-based planners, and expansion in

incrementally-exploring planners), metrics computation (node-level, global-level, and

region-level), witness-query evaluation, and input/output (to store C-Space models).

As mentioned previously, we evaluated the following roadmap-based planners:

Basic-PRM, OBPRM, Gauss-PRM, MAPRM, and Bridge-Test. Also, we evaluated

the following incrementally-exploring planners: RRT -Expand, EST, RRT -Connect,

and RPP. All these planners are described in detail in chapter II. For each planner, we

used the parameters that yielded the best performance for each method and problem

in preliminary experiments. We applied each planner to an instance of the problem

eight times using different seeds for the random number generator, and then we

aggregated statistics of the eight runs.

In Section V.A, we evaluate the error with different approximation levels that

can be specified in some of the node-level metrics. We executed all the planners in

all the problems up to sixteen different times. We noted that even with four different

runs we obtained standard deviations smaller than 5%.

In Section VI.A, we illustrate the global-level metrics with the application of

Basic-PRM on the simple rigid-windows problem which can be solved through mul-

tiple pathways. The planner was executed ten times, and we showed one of the



31

executions that illustrates better the identification of multiple pathways. Here, the

node-level metrics were computed every bin with an expansion threshold of 0.5 and

neighbor-probability test for all connections, the global-level metrics were computed

every 10 bins, witness queries were performed every bin. Since the structural changes

happen at the initial iterations, we only show metrics for the first 200 nodes.

In chapters V, VI, and VII we show the application of the different metrics to eval-

uate the planners and problems described above. In the roadmap-based Gauss-PRM

and Bridge-Test planners, we used the same value for the d parameter for each prob-

lem: d = 10 in the rigid-hook problem and in the rigid-maze problem; d = 2.16 in the

serial-hook-5 problem, and d = 0.2 in the rigid-walls problem. In the incrementally-

exploring RRT -Expand and RRT -Connect planners, we used the same value for the

q parameter for each problem: q = 0.06 in the rigid-walls problem, and q = 0.04 in

the rigid-hook and in the serial-hook-5 problems. In the incrementally-exploring EST

planner we used the following parameters: neighborhood radius q = 0.04 and number

of neighbors to evaluate density k = 5 in the rigid-walls problem; and q = 0.08 and

k = 5 in the rigid-hook and serial-hook-5 problems. In the incrementally-exploring

RPP planner we used the following parameters: step size q = .05, maximum escape

trials t = 20 in the rigid-walls problem; and q = 0.02, and t = 10 in the rigid-hook

and serial-hook-5 problems. Each planner was applied 16 times to each problem to

gather the metrics. The metrics were computed every 20 bins.
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CHAPTER V

NODE-LEVEL METRICS

Metrics at the node level allow the estimation of changes in coverage and connectivity

of the model with the addition of each new node. We can estimate the type and

quantity of improvements in the model due to new nodes based on structural changes

of the model and on an estimation of the local visibility of the new node. Node-level

metrics provide local information around the nodes in the model, but they do not

provide information about global coverage, distribution of samples or topology.

A. Type and Amount of Improvement Produced by a New Node

Given a model M , a planner adds a valid sampled configuration v and a selected

subset of its valid connections producing the model M ′. This operation changes the

connectivity and coverage of the original model M in exactly one of the following

ways:

1. cc-create — v lies outside the coverage region of all the components in M as

seen in Figure 9(c). A new component CC with v as its only node is created.

The coverage of M increases by the coverage of v and the connectivity and

topology improve due to the new component.

2. cc-merge — v lies inside the overlapping coverage region of more than one

component of M as seen in Figure 9(d). As a consequence, the components

and their coverage regions merge, reducing the number of components. The

coverage of M increases only by the coverage of v and its connectivity and

topology improve due to the new pathways found.
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(a) no samples (b) visibility (c) cc-create

(d) cc-merge (e) cc-expand (f) cc-oversample

Fig. 9. Classification of new nodes when modeling the C-Space of a point robot
moving in the plane shown in (a). (b) The first sample in the model with its visibility
region. (c) A new sample lying outside the visibility region of any other sample
creates another component with its own visibility region. (d) A new sample lying in
the overlap of the visibility region of two components allows to merge them. (e) A new
sample lying inside the visibility region of one component expanding its visibility: cc-
expand. (f) A new sample lying inside the visibility region of one component without
changing its visibility: cc-oversample.

3. cc-expand — v lies inside the coverage of exactly one component of M and it

increases the coverage of the component as seen in Figure 9(e). The coverage of

M increases but the connectivity of M remains constant. The amount of model

improvement in this case is the increase in coverage.

4. cc-oversample — v falls inside the coverage of exactly one component CC in

M as seen in Figure 9(f). The coverage and connectivity of M remain constant.

Three of these cases improve the representation of the coverage and/or the con-

nectivity of the model: cc-create, cc-merge, and cc-expand. The fourth case, cc-
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oversample, does not represent an improvement of the model as will be shown in our

experimental studies. cc-expand and cc-oversample nodes occur very frequently while

cc-create and cc-merge nodes are much less frequent. In particular, roadmap-based

planners may produce cc-create nodes in hard to reach areas and cc-merge nodes when

paths between disconnected components are found. Also, incremental planners only

produce cc-create nodes when starting a tree and cc-merge nodes when connecting

trees or finding a connection to the goal.

In order to accurately classify the nodes, we need to estimate their visibility

region. This is unfeasible to compute because it would be as hard as computing the

C-Space around the node. However, as we will see, reasonable approximations can

be computed efficiently using only local information.

In this work we discuss only one of the many ways in which node classification

can be implemented. A node that increases the number of roadmap components is

a cc-create node as shown in Figure 10(b). A node that causes a reduction in the

number of components in the roadmap is a cc-merge node as shown in Figure 10(c). In

order to distinguish cc-expand and cc-oversample nodes, we compute the expansion

ratio E(v) for the node v as follows: a node v that connects to a node v′ in the

roadmap, but cannot be connected to a percentage Ev,v′ of v′’s neighbors produces

an expansion in the proportion of Ev,v′ as shown in Figure 10(d). We call Ev,v′ the

amount of expansion of v with respect to v′. The expansion ratio E(v) for the node

v is the maximum of the expansions produced for all the nodes v′ connected from v.

A threshold Et is used to distinguish between cc-expand and cc-oversample nodes so

that a node is cc-expand if E(v) >= Et, otherwise it is cc-oversample. Most nodes of

our preliminary experiments showed an E(v) either close to 0.0 or close to 1.0, so we

decided to use a Et = 0.5 in the rest of this work. This way the node v in Figs. 10

(d) and (e) are cc-expand while the node v in (f) is cc-oversample.
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(a) M before new node (b) cc-create (c) cc-merge

(d) 100% expansion (e) 50% expansion (f) 0% expansion

Fig. 10. An implementation of classification of new nodes. (a) State of M before
a new node is added. (b) New node increases the number of components: cc-create.
(c) New node reduces the number of components: cc-merge. (d) New node v cannot
connect to any neighbor of v′: cc-expand. (e) New node v cannot connect to 50% of
the neighbors of v′: cc-expand for Et = 0.5. (f) New node v can connect to all the
neighbors of v′: cc-oversample.
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The computation of the expansion ratio Ev,v′ to distinguish between cc-expand

nodes and cc-oversample incorporates the successes and failures in the connection

attempts from the new node v to the neighbors of the connecting node v′ tried by the

planner. However, the planner may have not selected some of the neighbors of v′ for

connection from v. We try these additional connections with probability p. This way,

when p = 1 we attempt to connect v to all the neighbors of v′, resulting in the best

approximation, and when p = 0 we only use the connections tried by the planner,

resulting in reduced accuracy. In addition, we stop trying additional connections when

the number of connections achieved is larger than Et times the number of neighbors

of v′ and larger than Et times the number of connections attempted because at that

moment we have enough information to decide whether Ev,v′ >= Et.

Node classification in roadmap-based planners can be done even with low values

of p to get correct results. Figure 11 shows the absolute error in the classification

of cc-expand nodes in multiple runs of roadmap-based planners on the rigid-maze

problem for several values of p with respect to a full test p = 1.0. We show results for

Gauss-PRM and OBPRM, and we also evaluated Basic-PRM (with similar trends

as Gauss-PRM but with smaller errors), MAPRM (with similar trends as Gauss-

PRM but with smaller errors) and in Bridge-Test (with similar trends as OBPRM ).

The highest error happened in OBPRM and Bridge-Test whose nodes had much

fewer neighbors than Basic-PRM, Gauss-PRM, and MAPRM which were heavily

connected. Nevertheless, the quality of the evaluation remains reasonable even for

OBPRM and Bridge-Test.

The overhead of the expansion test in roadmap-based planners is reasonable

for low values of p. Table II shows the average computation times for modeling

the problems, and the overhead for node-level metrics using different values of p. We

notice that the overhead in Basic-PRM, Gauss-PRM, and MAPRM was considerably
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(a)

(b)

Fig. 11. Absolute error in the classification of cc-expand nodes for different approx-
imations (p = 0.0 no additional connection test, p = 0.1, and p = 0.5) with respect
to a full test (p = 1.0) vs. nodes in the model for roadmap-based planners applied to
the rigid-maze problem. (a) Gauss-PRM. (b) OBPRM. Each line represents statis-
tics from four different runs with standard deviations are below 5% before 1000 nodes
in all the experiments. Basic-PRM and MAPRM are similar to Gauss-PRM, and
Bridge-Test is similar to OBPRM. Overheads are shown in Table II.
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high due to the unnecessary extra connections attempted. This overhead can still be

reduced by making p the inverse of the number of neighbors of v. This will reduce

the number of tests for nodes that are already heavily connected and are more likely

to be cc-oversample.

Node classification in incremental planners should be done with high values of

p to get correct results. Figure 12 shows the absolute error in the classification of

cc-expand nodes in multiple runs of incremental planners on the rigid-maze problem

for several values of p with respect to a full test p = 1.0. We show results for RPP

and RRT -Expand, and we also evaluated EST and RRT -Connect which show similar

trends as RPP and RRT -Expand. The high error for low values of p is due to the small

number of neighbors for most nodes in models produced with incremental planners.

This increases the impact on the accuracy of the expansion test for each disregarded

node.

The overhead of the expansion test in incremental planners is reasonable even

for high values of p. In Table II we notice that, except from RPP, the overhead of

node-level metrics is smaller than the modeling time even for p = 1.0. This is mostly

because of the small number of neighbors of each node which limits the number of

extra connection attempts.

The errors and the overhead indicate that we can have a good evaluation at a

low cost by making additional connection tests only to a small number of neighbors

(the planners evaluated tried to connect every node to its k neighbors with k =

20). Also, we can use a small value of p in roadmap-based planners to make the

classification affordable while in incremental planners we should use high values of p

without incurring on excessive costs.
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(a)

(b)

Fig. 12. Absolute error in the classification of cc-expand nodes for different approx-
imations (p = 0.0 no additional connection test, p = 0.1, and p = 0.5) with respect
to a full test (p = 1.0) vs. nodes in the model for incremental planners applied to
the rigid-maze problem. (a) RPP. (b) RRT -Expand. Each line represents statistics
from four different runs with standard deviations are below 5% before 1000 nodes in
all the experiments. EST shows error amounts in between RPP and RRT -Expand,
and RRT -Connect is similar to RRT -Expand. Overheads are shown in Table II.
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B. Population Distribution of Node Types

The population of each of the different node types as model construction progresses

reflects the ability of the planner to improve its knowledge about the C-Space of the

problem being modeled. For example, a growing percentage of new cc-oversample

nodes as the growth of the other types stalls or drops is a good indication that the

chances of further improving the model using the same strategy are diminishing. A

given population is the proportion of the corresponding type of nodes with respect

to the total number of nodes accumulated at a given time. Also, we should notice

that node types in incremental planners may show a big amount of cc-oversample

nodes when they are exploring the open spaces (where samples are easy to connect)

and many cc-expand nodes when they are exploring dense areas (where samples are

harder to connect). Figures 13 and 14 illustrate how the population of cc-create, cc-

merge, cc-expand, and cc-oversample nodes change when modeling the serial-hook-5

problem with individual executions of the roadmap-based planner Basic-PRM and of

the incremental planner RPP. We can notice how the distribution changes differently

for each planner and that most changes occur at the initial iterations. Figure 14(a)

shows the average of eight independent runs of Basic-PRM with the nodes axis in

logarithmic scale to see better the initial iterations, and Figure 14(b) shows the stan-

dard deviation of the distributions in logarithmic scale for both axes. All the sampling

strategies studied show similar trends in the distribution of the type of nodes they

produce (more results can be found in [45]).

We can identify different stages in the learning process that will be discussed in

more detail in chapter VIII. These stages correspond to the way each of the node

types change as new nodes are added into the model. We can notice that most of the

changes happen in the initial iterations, then they reach a stable value for some time
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(a)

(b)

Fig. 13. Population distribution of node types produced by individual instances of
planners when modeling the serial-hook-5 problem. (a) Basic-PRM. (b) RPP.
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(a)

(b)

Fig. 14. Population distribution of node types produced by eight instances of Basic-
PRM when modeling the serial-hook-5 problem. (a) Average populations with nodes
in logarithmic scale to better see evolution in initial iterations. (b) Standard deviation
of populations with both nodes and proportion of nodes shown in logarithmic scale,
the standard deviations for all node types fall below 10% before 50 nodes.
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until the cc-oversample nodes begin a steady increase as seen in Figure 14 (a).

The standard deviations of all the node types fall below 0.1 at less than 100 nodes,

and below 0.05 at less than 300 nodes. This indicates that the population distribution

is very similar in different executions and that we only need a few hundred nodes to

be able to make fair classifications in this type of environment.

C. Visibility Around Growth Sites

Every time that the planner selects a node g to attempt to connect to another node

g′, the resulting success or failure is new knowledge that can be used to estimate the

visibility around g. We call g a growth site. When the local planner employed in the

connection attempt is bidirectional, both g and g′ are growth sites. In problems with

non-holonomic constraints that are usually addressed with incrementally-exploring

planners the local planner is usually not bidirectional and only g is considered a

growth site.

The visibility around a growth site g can be computed by keeping track of the

number of its growth attempts ag, and the number of its successful growths sg. We

define the visibility ratio of g, Vg = sg/ag. Vg is updated every time g is selected for

growth as shown in Figure 15. The more growth attempts from g, the better is the

quality of the estimation of Vg.

When the visibility ratio stabilizes at some value, it can be used in several ways.

One application is to identify highly constrained regions where nodes have low visibil-

ity as will be discussed in chapter VII. For example, in incrementally-expanding plan-

ners most growth sites should have a similar number of growth attempts if the model is

expanding uniformly. Or, in RRTs, sites that are repeatedly selected for growth, but

their Voronoi region fails to shrink will have a number of growth attempts larger than
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(a) (b) (c)

Fig. 15. Visibility ratio of growth sites a, c, and e as they are added to the model
and connected with a bidirectional local planner. (a) new node a is added, Va = 2/3.
(b) new node c is added Vc = 0/3, the visibility of a needs to be updated Va = 2/4.
(c) new node e is added Ve = 3/3, the visibility of a needs to be updated Va = 3/5.

TABLE I

Visibility of Growth Sites in serial-hook-5

Growth Sites Visibility Range Vg

Planner 5000 nodes [0, 1/3) [1/3, 2/3) [2/3, 1]

RPP 97% 31% 13% 53%

RRT -Connect 83% 12% 11% 60%

average. Table I shows the proportion of growth sites used when modeling the serial-

hook-5 environment with the incremental planners RPP and RRT -Connect after 5000

nodes and the proportion of their growth sites in the ranges [0, 1/3), [1/3, 2/3), and

[2/3, 1]. We notice that some nodes are not used as growth sites and that the visibility

ratio of growth sites have different trends in different planners. The later will be used

to identify regions as discussed in chapter VII.
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D. Overhead of Node-Level Metrics

Node-Level metrics incur in reasonable overheads. Table II shows the average time for

computing node-level metrics for different roadmap-based and incremental planners

on the rigid-maze problem. The planners were run sixteen times (four for each value

of the probability of neighbor visibility tests for the computation of expansion p) and

their times averaged. The node-level metrics times shown include the computation

of node types which are the most expensive, and the estimation of visibility around

growth sites.

The overhead for the computation of the expansion ratio needed to distinguish

between cc-expand and cc-oversample nodes is higher in heavily connected problems.

One potential optimization is to make the value of p be inversely proportional to the

number of neighbors in order to reduce the number of tests in nodes that are already

heavily connected and are more likely to be cc-oversample. Also, we can use a low

p in roadmap-based planners without affecting the accuracy of the evaluation. In

contrast, we need to use a high p in incremental planners, but this is not as expensive

in this type of planners.
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TABLE II

Node-Level Metrics Overhead in rigid-maze

Modeling Average Overhead [s]

Planner (3000 nodes) p = 0.0 p = 0.1 p = 0.5 p = 1.0

Basic-PRM 791.6 132.6 2,441.9 3,560.4 3,668.9

OBPRM 518.6 71.0 265.1 499.1 569.9

Gauss-PRM 639.8 110.7 898.5 1,403.8 1,347.6

MAPRM 299.2 122.2 653.3 948.7 920.6

Bridge-Test 5,607.4 75.8 267.7 468.6 524.1

RPP 68.2 187.9 200.1 211.39 279.88

EST 201.8 60.5 60.6 63.5 67.0

RRT -Expand 294.8 50.2 53.0 55.1 60.9

RRT -Connect 266.3 50.0 51.2 54.1 57.1
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CHAPTER VI

GLOBAL-LEVEL METRICS

Metrics at the global level allow us to estimate the changes in the topology of the

model due to the addition of new nodes by analyzing the structure of the model

graph. In particular, we can estimate improvements in the topology represented in

the model graph through approximations of graph statistics related to components

and pathway lengths. Global-level metrics can be analyzed for sets of one or more

new nodes and connections.

A. Changes in Motion Pathways Produced by New Nodes

Given a model M , a planner adds a valid sampled configuration v and a selected

subset of its valid connections producing the model M ′. This operation changes

the homotopy classes or motion pathways of the original model M . As shown in

Figure 16, improvements due to new nodes and connections make the number of

components in the model and the number of pathways between any two nodes reflect

better the structure of the underlying C-Space. Unfortunately, it would be unfeasible

to compute the number of pathways between every pair of nodes in M . Alternatively,

we can analyze the changes in the structure of M that are often caused by changes

in its internal pathways.

Some informative features of the model graph include the number of connected

components, the diameter of the graph components, and the total weight of the

minimum-spanning tree. Below, we discuss the number and diameter of components.

• Number of components — When the number of components in M ap-
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(a) (b) (c)

Fig. 16. Global changes in model topology resulting from new nodes and connec-
tions. (a) State of M before adding new nodes, in the C-Space there is one component
and two homotopy classes, or distinct pathways, between a and b; in contrast, the
model has three components and no pathway between a and b. (b) Two new nodes
and their connections improve the topology of the model to have one component and
one homotopy class between a and b. (c) one more node and its connections improve
the topology of the model to have one component and two homotopy classes between
a and b.

proaches the number of components of the underlying C-Space, the topology of

the model improves. This metric is maintained directly in the graph.

• Diameter of components — The diameter of a graph G in M is the length

of the shortest path between the most eccentric nodes in G. This metric allows

us to trace the changes in some important subsets of motion pathways repre-

sented in M . We keep track of the sum of the diameters (sum-diameter) of

all the components as an approximation of the structural changes happening in

the whole model, and the diameter of the largest component (max-diameter)

which in many problems represents most motion pathways. We have found that

tracking these features allows us to capture the most dramatic changes in the

model.

As will be shown shortly, the max-diameter and sum-diameter have their most

dramatic changes at the initial iterations of sampling and they stabilize when the

model does not have many more structural improvements. In problems with only one
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connected component in the free space, these two diameters will stabilize around the

same value.

The accurate computation of the diameter is not efficient for our needs. For

dense graphs, the all-pairs-shortest-path problem (and thus the diameter problem)

can be computed in time O(M(n) log n) where M(n) is the time to multiply two n×n

matrices of small integers [58]. Matrix multiplication takes time O(n2.376) [15].

Fortunately, there are efficient approximate algorithms to compute the diameter

of a graph. In particular, we use the algorithm presented in [16] that employs Breadth

First Search (which takes time O(|E|+ |V |) for a graph with edges E and vertices V )

to determine a tight bound on the diameter for graphs with no induced cycle greater

than k that is no worse than the diameter of the graph minus bk/2c. Since we estimate

overall changes in diameters rather than in their actual value, this approximation is

sufficient for our needs.

In order to illustrate these global-level metrics, we keep track of the number of

components, the max-diameter and sum-diameter during one execution of the Basic-

PRM planner to model the rigid-windows problem. In order to show better the

evolution of the pathways in the model we limited the rotational degrees of freedom

so that the start and goal have always the same orientation so that there is only one

main pathway through each of the windows. Thus, this problem has at least four clear

distinct pathways through each of its windows whose widths range from 1.5 times the

width of the robot to 3.5 times the width of the robot as shown in Table III. We also

introduced a witness-query evaluation to compare it to the node-level and global-level

metrics discussed in this dissertation: the start and the goal have the same relative

position with respect to the wall and close to window 1.

The largest changes in the components correspond to the generation of the nodes

that enable a pathway through each window as shown in Figure 17 and Table III.
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(a)

(b)

Fig. 17. Evolution of global-level metrics for one instance of Basic-PRM on the
rigid-windows problem. (a) Number of components. (b) sum-diameter and max-
diameter correlate to new pathways found through the windows and on each side
of the wall. (c) Population distribution of node types, learning stages correlate to
changes in diameters. The witness query solved at 9 nodes is marked on both plots.
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TABLE III

Basic-PRM on rigid-windows. Robot Width = 1

Window 1 2 3 4

Width 1.50 1.75 2.50 3.50

Nodes to Model Passage 156 71 53 11

The initial nodes are connected in two components accounted for in the sum-

diameter and max-diameter. When node 11 is generated, the first edge through

window 4 appears and the two components merge into one making the sum-diameter

and max-diameter increase and join for the rest of the process. When node 53 is

generated, the first edge through window 3 appears corresponding to a big drop in

the diameters measures. When node 71 is generated, the first edge through window

2 appears corresponding to the latest big drop in the diameters. When node 156

is generated, the first edge through window 1 appears corresponding to the last,

although very small, reduction in the diameters. It is worth noting that by the time

that a passage through window 1 is found, most of the pathways have been refined,

and although the reduction in diameter caused by this specific edge is very small

these global-level metrics are able to capture it. The few other noticeable changes in

the diameter measures correspond to pathway refinements on either side of the wall.

The witness query was solved at node 11. The path found is actually the longest

one through window 4 instead of the shortest one that goes through window 1 and

that is only possible after 156 nodes. This shows one of the reasons why the use

of witness queries is a poor evaluation metric for problems with multiple pathways

between important configurations because witness queries cannot identify the different
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Fig. 18. Population distribution of node types for one instance of Basic-PRM
on the rigid-windows problem. This distribution corresponds to the same instance
discussed in Figure 17.

homotopy classes for the pathways in the problem. On the other hand, the changes

in the structure captured by the global-metrics discussed here capture some of the

changes in homotopy classes for the pathways in the problem.

We also gathered the population distribution of node types as shown in Figure 18.

We can notice that the biggest changes in the population distribution of nodes cor-

responds with the largest changes in the diameters that happen before node 50 when

both the diameter and the node types start to stabilize. We can also notice that

after around node 75, the cc-oversample nodes start rising and the diameter has only

small changes. These events correspond to the learning stages that were mentioned

in Section V.B and that will be discussed in detail in chapter VIII.

Incrementally-exploring planners will usually not represent the multiple homo-

topy classes or pathways between pairs of configurations because they do not allow

cycles in their models. Nevertheless, their diameters expand while they increase their
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coverage of the C-Space just as roadmap-based planners do. This allows us to apply

the same global-level metrics in both types of planners as we will show in chapter VIII.

B. Detection of Relative Change of Global-Level Metrics

It is likely that the changes caused by sets of successive nodes in the structure of the

model are more meaningful than those caused by a single sample. In order to study

this, we group sets of recent nodes into bins of n consecutive nodes and then, for a

given feature A, we compute the average rate of change of A at bin i relative to the

k previous bins as follows:

∆(i, k)A =
k−1∑
j=0

∣∣∣∣∣A(i− j)− A(i− j − 1)

A(i− j − 1)

∣∣∣∣∣ (6.1)

A change at bin i has a sustained effect in the computation of ∆ for the k

consecutive bins. This sustained effect allows us to evaluate changes not only with

respect to the previous bin, but with respect to the previous k bins. This gives us a

sliding window of k bins where we can monitor the planner’s ability in gaining more

knowledge about feature A. A reduction in the speed at which the planner gains

information about several features, such as the max-diameter and sum-diameter,

eventually leads those features to converge around some value, which corresponds to

∆(i, k)A get closer and closer to 0. We can detect this by testing whether ∆(i, k)A

has fallen bellow a small threshold. When this happens we can either decide to stop

planning or switch strategies as in [65].

The size of the bin n allows the user to specify the number of samples to consider

before the next evaluation of feature A. Bins should be large enough so we can capture

statistically significant changes and small enough so that the overhead can be kept

low. In our experiments we obtained consistent results with bins that vary from 20
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to 50 nodes.

The size of the sliding window k allows the user to specify the number of evalu-

ations of feature A to consider when making decisions. As discussed before, most of

the changes occur in the initial iterations, and later changes are smaller in magnitude

and less frequent. Thus, it would be convenient to start with a relatively low k and

increase it over time. However, here we only discuss a constant window size. In our

experiments we obtained consistent results with sliding windows that vary from 4 to

8 bins.

We evaluate the rate of change of max-diameter and sum-diameter to identify

structural changes in the same instance of Basic-PRM on the rigid-windows problem

discussed before. First, we evaluate at every node (bin size n = 1) and we compute

∆(i, k = 1)max−diameter and ∆(i, k = 1)sum−diameter with respect to the previous bin

(window size k = 1) as shown in Figure 19. We note that there are spikes at the nodes

that cause structural changes as seen in Figure 17(b) and Table III. Second, we in-

crease the window size to compute ∆(i, k = 4)max−diameter and ∆(i, k = 4)sum−diameter

with respect to the previous 4 bins (window size k = 4). We can see in Figure 20(a)

that the detected changes at each bin are averaged for the following 4 bins, but since

n is too small the changes oscillate and do not stabilize. Last, we keep the same win-

dow size k = 4 to compute ∆(i, k = 4)max−diameter and ∆(i, k = 4)sum−diameter, but we

increase the bin size to n = 10. As we see in Figure 20(b) both ∆(i, k = 4)max−diameter

and ∆(i, k = 4)sum−diameter are smoother. We also show when three different thresh-

olds are met for both k = 4, n = 1 and k = 4, n = 10 and we see that they happen

when the diameter is closer to stabilization for k = 4, n = 10.
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Fig. 19. Rate of change of max-diameter and sum-diameter for the same instance of
Basic-PRM on the rigid-windows problem discussed in Figure 17. Size of bins n = 1,
only changes in each bin are considered.

C. Overhead of Global-Level Metrics

The overhead of global-level metrics is very low in comparison to the time to model

the problems. Table IV shows the average time for computing global-level metrics

every twenty nodes for different roadmap-based and incremental planners executed

sixteen times on the rigid-maze problem.

The overhead of global-level metrics is similar for all planners because it depends

more on the structure of the graphs, although this is influenced by the planning

strategy. Incremental planners incur slightly smaller costs because their models are

trees with fewer edges than those produced with roadmap-based planners.
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(a)

(b)

Fig. 20. Average rate of change of max-diameter and sum-diameter for the same
instance of Basic-PRM on the rigid-windows problem discussed in Figure 19. (a)
Size of bins n = 1, averaged bins k = 4. (b) Size of bins n = 10, averaged bins k = 8.
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TABLE IV

Global-Level Metrics Overhead in rigid-maze

Modeling Average Overhead

Planner (3000 nodes) [s] %

Basic-PRM 791.6 18.7 2.4

OBPRM 518.6 11.9 2.3

Gauss-PRM 639.8 15.8 2.5

MAPRM 299.2 17.0 4.3

Bridge-Test 5,607.4 12.2 0.2

RPP 68.2 0.3 0.5

EST 201.8 1.6 0.8

RRT -Expand 294.8 2.7 0.9

RRT -Connect 266.3 2.7 1.0
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CHAPTER VII

REGION-LEVEL METRICS

Metrics at the region level allow us to identify distinct sections of C-Space. A region

is a set of configurations generated by the planner that are similar with respect to

features of interest computed at the node and global levels. For example, we can define

regions based on the visibility around nodes: configurations close to the obstacles have

a lower visibility than those that are far from obstacles.

Regions allow us to analyze the information gained by the planner in order to

evaluate the spatial performance of planners, to adapt the planning strategy to take

advantage of the features of the regions by assigning well-suited planners or changing

planner parameters. For example, we can identify the degrees of freedom that are

restricted in highly-constrained regions to bias local planners. Also, we can evaluate

the complexity of the region to decide whether more sampling is required by tracking

the population distribution of node types or the ratio of valid to non-valid configura-

tions. Moreover, we can monitor the structural changes in the subgraphs inside each

region to decide when to stop planning in each region or when to re-evaluate specific

regions.

A. Region Construction

A region is a set of configurations used in the construction of the model M that

are similar with respect to a given set of features A = A1, A2, ..., An according to

some clustering strategy. Both, nodes in M and configurations that were used in the

generation of nodes without being stored as nodes in M , can be considered to define

regions, although here, we only consider nodes in M . If the distance metric used for
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clustering is based on the configuration distances, then the configurations inside each

region may be spatially close-by, but if the distance metric is based on some other

feature, then they may be sparsely distributed in the C-Space.

1. Features

The only requirement for clustering features is that they should be based on intrinsic

information of the node, such as the configuration parameters, or in local information

around each node, such as the visibility ratio. This way each region is formed using

only local information, but the collection of regions provides global information about

the problem. The distance metric used in the clustering is the difference between

feature values for scalar features, and the Euclidean distance for vectors.

2. Clustering Strategies

There are many potential clustering strategies that depend on the application. We

discuss axis-aligned regions, simple-feature regions, and coverage regions.

a. Axis-Aligned Regions

Axis-aligned regions split some configuration parameter at some value to make two

adjacent regions that incorporate the nodes within range. This simple strategy is

a generalization of the one we applied in our machine learning approach to feature-

sensitive motion planning [44, 46]. The configuration parameter to split and the

value at which to split is chosen based on how diverse the samples are as explained

in two subdivision strategies below.

An axis-aligned subdivision strategy based on gaps selects the configuration pa-

rameter with the largest gap of valid configurations and splits it at the middle of the

gap. The goal of this strategy is to group samples at different sides of obstacles.
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An axis-aligned subdivision strategy based on information gain to group sam-

ples at different sides of obstacles splits the planning space in a similar way as the

decision-tree machine learning algorithm C4.5 [53, 54]. Information gain is computed

for several prospective partitions and the one that best separates nodes into two homo-

geneous regions is selected. Information gain is defined in terms of entropy, a feature

that measures the diversity of a set relative to a c-wise classification, in the case of a

2-wise classification for the set S with a proportion of valid configurations pv and a pro-

portion of invalid configurations pi it is defined as Entropy(S) = −pv log2 pv−pilog2pi.

Intuitively, a region has higher entropy when the proportion of valid and invalid config-

urations is similar, and it has lower entropy when there is a bias towards either valid or

invalid configurations. The information gain of splitting the region S in parameter D

through the pointm into two subregions SD,1 at the left of m and SD,2 at the right ofm

is Gain(S,D,m) = Entropy(S)− (|SD,1|Entropy(SD,1) + |SD,2|Entropy(SD,2))|S|−1.

These naive axis-aligned strategies can identify distinct regions of the space to

assign planners in [46], however, they are limited because they depend on the number

of DOFs of the robot and because it is not likely that complex C-Spaces can be

properly subdivided in axis-aligned regions.

b. Simple-Feature Regions

Simple-feature regions cluster nodes with a naive strategy that splits the values of

the feature evenly to make a region for low values, a region for medium values, and a

region for large values. When applying this strategy using the visibility of the nodes,

we can identify regions with different levels of complexity as seen in Figure 21 which

shows the 1000-node model produced by Basic-PRM in the rigid-maze problem and

the regions for low, medium, and high visibility and in Figure 22 which shows the

1000-node model produced by OBPRM in the same problem and the corresponding
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(a) (b) (c) (d)

Fig. 21. Visibility regions in a model produced by Basic-PRM in the rigid-
maze problem. (a) 1000-node model. (b) Low-visibility region: visibility < 1/3.
(c) Medium-visibility region: 1/3 <= visibility < 2/3. (d) High-visibility region:
2/3 <= visibility.

visibility regions. We can see that the regions capture the areas with different com-

plexities in the problem. They also show the very different sampling distributions

produced by Basic-PRM and OBPRM. One potential application of this strategy is

to focus powerful planners in low-visibility regions and find representative nodes of

high-visibility regions that reduce the size of the model.

c. Coverage Regions

Coverage regions cluster nodes inside the local neighborhood of growth sites as the

planner increases its coverage of the C-Space. These regions allow us to monitor

the rate at which planners increase their coverage in unexplored regions. When a

new node lies within a pre-defined radius r away from the center of the region, it is

incorporated into the region. Growth sites, nodes that are selected for connection

to other nodes, are treated in a special way: when a new growth site cannot be

incorporated into any previously existing region, a new region centered at the new
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(a) (b) (c) (d)

Fig. 22. Visibility regions in a model produced by OBPRM in the rigid-maze
problem. (a) 1000-node model. (b) Low-visibility region: visibility < 1/3. (c)
Medium-visibility region: 1/3 <= visibility < 2/3. (d) High-visibility region:
2/3 <= visibility.

growth site is created and nodes within the local neighborhood are incorporated.

There is no limit on the number of regions of which a node can be part. Limiting the

creation of regions around growth sites is particularly useful in incremental planners

because the regions allow us to track the sampling distribution over time. The union

of all the coverage regions represents the coverage of the C-Space achieved by the

planner at a resolution defined by the radius of the regions r. This radius can be

defined based on the resolution parameters of the problem. In incremental planners

we found it convenient to make it slightly larger than the expansion increment, so

that each region incorporates at least two nodes without being excessively large.

A planner is more efficient in increasing its coverage when new growth sites are

able to create new coverage regions. We can estimate this efficiency by computing the

coverage rate: the ratio of the number of coverage regions to the number of growth

sites. A high value corresponds to the exploration of new areas, whereas a low value

corresponds to exploration of areas previously explored.
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3. Frequency of Region Updates

In order to keep the overhead of region computation low, we update them with the

same frequency as we compute global changes by grouping sets of recent nodes into

bins of n consecutive nodes.

4. Region Statistics

In addition to providing a spatial partitioning of the samples, regions allow us to

aggregate additional statistics that may be useful to improve sampling. Some of

these statistics include:

• Entropy as described earlier and used in [46]. This feature can also be applied

in a similar way to the visibility to identify regions that are close to the surface

of the C-obstacles and that are more likely to need additional sampling as in

[56] or as a way of measuring the learning achieved in the model as in [11].

• Variability of the DOF parameters. In low-visibility regions the DOF param-

eters with the smallest variability are very constrained, but parameters with

higher variability are not. This information can be used to guide local planners

towards DOF parameters with higher variability.

• Diameters in subgraphs formed by nodes and edges in the region. This feature

allows us to monitor the changes in the pathways represented in each region in

order to make decisions such as biasing the sampling towards regions with more

changes.

The evolution of region statistics provides insight into the sampling distribution

and pinpoints areas where special kinds of sampling can be applied. When we are

only interested in recent events, we can aggregate statistics bin-wise for recent nodes.
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For example, a sustained high percentage of successful growths and high visibility in

recent nodes indicates that the areas being covered are mostly free.

B. Overhead of Region-Level Metrics

The overhead of region-level metrics is very low compared to the time to model

the problems. Table V shows the average time for computing region-level metrics

using the naive clustering strategy every twenty nodes for different roadmap-based

planners and incremental planners executed sixteen times on the rigid-maze problem.

The overhead is similar for all planners because it depends on the number of nodes

in the problem and on the clustering strategy more than on the method to produce

nodes.
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TABLE V

Region-Level Metrics Overhead in rigid-maze

Modeling Average Overhead

Planner (3000 nodes) [s] %

Basic-PRM 791.6 5.9 0.7

OBPRM 518.6 6.1 1.2

Gauss-PRM 639.8 6.0 0.9

MAPRM 299.2 6.0 1.5

Bridge-Test 5,607.4 5.9 0.1

RPP 68.2 0.8 1.1

EST 201.8 2.7 1.3

RRT -Expand 294.8 5.4 1.8

RRT -Connect 266.3 5.3 2.0
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CHAPTER VIII

APPLICATIONS AND EXPERIMENTS

We apply the metrics to different problems to investigate several questions about

the planning process. First, we study the similarities in the metrics in the modeling

process of different planners by looking at their node-level and global-level metrics to

identify the stages of the planning process. Second, we discuss how the identification

of learning stages can be applied to make decisions about which planners to use.

Third, we study the evolution of regions over time, and we use them to compare the

coverage achieved by different planners. We also discuss other uses for the regions to

influence planning. Fourth, we apply node-level, global-level, and region-level features

to compare planners.

A. Learning Process of Planners

We study the evolution of the metrics at the node and global levels during the mod-

eling process.

1. Evolution of the Node-Level Metrics

Planners show three stages in the evolution of the node-level metrics: 1) all node

types have their largest changes; 2) there is a temporal stabilization in all node

types; 3) there is a slight, but steady increase of cc-oversample nodes. We show the

average population distribution of node types produced by the roadmap-based Basic-

PRM (Figure 23), OBPRM (Figure 24(a)), and Gauss-PRM (Figure 24(b)) when

applied to the rigid-maze problem. The distributions in MAPRM were similar to

Gauss-PRM and the distributions in Bridge-Test were between OBPRM and Gauss-
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Fig. 23. Average population distribution of node types produced by the roadmap-
based Basic-PRM planner on the rigid-maze problem. 4 runs of 3000 nodes.

PRM. Figure 25 shows the average population distribution of node types produced by

the incrementally-exploring RPP, and RRT -Connect when applied to the rigid-walls

problem.

Different roadmap-based planners have very distinct profiles of node type distri-

butions. On the other hand, all incrementally-exploring planners have very similar

profiles because they produce many cc-oversample nodes before they can reach the

cc-expand nodes in low visibility regions. Also, the distributions produced by each

planner change in different problems as we will see later in Sections VIII.D and VIII.E.

In this problem, OBPRM showed the highest proportion of cc-expand nodes,

while Basic-PRM had the lowest. The dominant proportion of cc-oversample nodes

generated by Basic-PRM is due to its uniform sampling that gets most of its nodes in

the open spaces where they are very easy to connect. In contrast, OBPRM produces

nodes inside the narrow passage which are not as easy to connect to each other and

represent larger expansions. Gauss-PRM is in between Basic-PRM and OBPRM
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(a)

(b)

Fig. 24. Average population distribution of node types produced by different
roadmap-based planners on the rigid-maze problem. (a) OBPRM. (b) Gauss-PRM.
4 runs of 3000 nodes for each planner.
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because, although it tries to get nodes in the narrow passages, it does it from uniformly

sampled nodes which is not as effective as the OBPRM strategy which makes them

based on configurations in collision.

Node types in incremental planners may show a big amount of cc-oversample

nodes when they are exploring the open spaces and many cc-expand nodes when they

are exploring dense areas. In this problem, both RPP and RRT -Connect produce a

big amount of cc-oversample nodes because both of them started sampling from the

open spaces where most nodes are easy to connect. RPPnever makes it through the

passages and keeps producing cc-oversample nodes. By the time when RRT -Connect

finds the narrow passage and it starts generating cc-expand nodes, the cc-oversample

nodes it has already generated dominate the population distribution of node types.

All the planners achieve a similar node population in multiple runs as can be

noticed in their small standard deviation before a couple hundreds of nodes or much

earlier for some planners. Table VI shows the number of nodes after which the

standard deviation of the node population distribution falls bellow 0.10 and 0.05

for multiple runs of Basic-PRM, OBPRM, Gauss-PRM, MAPRM, and Bridge-Test

on the rigid-maze problem. Similarly, Table VII shows the corresponding standard

deviation for runs of RPP, EST, RRT -Expand, and RRT -Connect on the rigid-walls

problem.

2. Evolution of the Global-Level Metrics

The planners also show three stages in the evolution of global-level metrics: 1) the

diameter measures have their largest changes when the main components form; 2) the

diameter measures undergo many smaller changes, in roadmap-based planners these

changes correspond to large components joining together, and in incremental planners

they correspond to a reduction in coverage expansion; 3) changes in the diameter
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(a)

(b)

Fig. 25. Average population distribution of node types produced by different
incremental planners on the rigid-walls problem. (a) RPP. (b) RRT -Connect. 8 runs
of 3000 nodes were run for each planner.
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TABLE VI

Population Distribution of Nodes in rigid-maze. Deviation

Nodes for Standard Deviation

Planner < 0.10 < 0.05

Basic-PRM 10 20

OBPRM 40 80

Gauss-PRM 35 220

MAPRM 25 70

Bridge-Test 60 180

TABLE VII

Population Distribution of Nodes in rigid-walls. Deviation

Nodes for Standard Deviation

Planner < 0.10 < 0.05

RPP 25 30

EST 10 15

RRT -Expand 10 20

RRT -Connect 10 15
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Fig. 26. Average max-diameter and sum-diameter of models produced by Basic-
PRM on the rigid-maze problem. 4 runs of 3000 nodes.

measures reduce their frequency fluctuating around a more stable value, in roadmap-

based planners these changes correspond to improvements in the internal pathways

of the components and in incremental planners they correspond to extensions in

currently existing pathways. We show the average max-diameter and sum-diameter

of models produced by Basic-PRM (Figure 26), OBPRM (Figure 27(a)), and Gauss-

PRM (Figure 27(b)) applied to the rigid-maze problem. The diameters in MAPRM

had similar trends as those in Gauss-PRM, and the diameters in Bridge-Test had

diameters similar in magnitude to Gauss-PRM with a stabilization closer to that of

Basic-PRM. Also, we show the average max-diameter and sum-diameter of models

produced by RPP (Figure 28(a)), RRT -Connect (Figure 28(b)), and EST (Figure 29)

when applied to the rigid-walls problem. The diameters in RRT -Expand show similar

trends to those of RRT -Connect, but with a slower growth for the only component

growing. The stair-like growth of RPP happens because of its random expansion,

many times from nodes that will not produce any structural expansion.
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(a)

(b)

Fig. 27. Average max-diameter and sum-diameter of models produced by different
planners on the rigid-maze problem. (a) OBPRM. (b) Gauss-PRM. 4 runs of 3000
nodes for each planner.
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(a)

(b)

Fig. 28. Average max-diameter and sum-diameter of models produced by different
planners on the rigid-maze problem. (a) RPP. (b) RRT -Connect. 8 runs of 3000
nodes for each planner.
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Fig. 29. Average max-diameter and sum-diameter of models produced by EST on
the rigid-maze problem. (a) RPP. (b) RRT -Connect. 8 runs of 3000 nodes.

The standard deviations take many more samples to get to a lower value at

the global level (Figures 30 and 31 for the roadmap-based planners on the rigid-

maze and Figures 32 and 33 for the incremental planners on the rigid-walls) than

at the node level (Table VI for the roadmap-based planners on the rigid-maze and

Table VII for the incremental planners on the rigid-walls). This is mostly due to the

higher variance in the ability of planners to find the right samples to find their way

through the passages that connect the main components of the problem instance.

The standard deviation of Basic-PRM is still at a high value at 3000 nodes because

only half of the executions managed to stabilize their diameters for a single large

component. Nevertheless, these variances go down when most planners have reached

a stable value for the components when the planners are only modeling pathways

that are internal to the components. The max-diameter is more unstable than the

sum-diameter, but the combined use of both allows us to identify significant changes

in the structure as a whole and in the biggest component of the model. Among
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Fig. 30. Standard deviation of max-diameter and sum-diameter of models produced
by the roadmap-based Basic-PRM planners on the rigid-maze problem. 4 runs of
3000 nodes.

the incremental planners, only RPP shows the highest standard deviation after 3000

nodes.

B. Stages of the Learning Process of Planners

As noticed in node-level and global-level metrics, we can identify three stages in

the learning process. These three stages correspond to the ability of the planners

to increase their knowledge about coverage, connectivity, and topology of C-Free,

the subset of valid configurations of the problem. We call these three stages: quick

learning, model enhancement, and learning decay.

1. Quick learning — Coverage, connectivity, and topology of the model are

quickly improved: cc-create nodes start off high and quickly decline in an ex-

ponential drop; in roadmap-based planners, cc-merge nodes peak briefly to get

down to low values as cc-create nodes; cc-expand and cc-oversample nodes start

a continuous growth. At the end of this stage, the planner has reached most of

its potential coverage.
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(a)

(b)

Fig. 31. Standard deviation of max-diameter and sum-diameter of models produced
by different roadmap-based planners on the rigid-maze problem. (a) OBPRM. (b)
Gauss-PRM. 4 runs of 3000 nodes for each planner.
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(a)

(b)

Fig. 32. Standard deviation of max-diameter and sum-diameter of models produced
by different incremental planners on the rigid-walls problem. (a) RPP. (b) RRT -
Connect. 8 runs of 3000 nodes for each planner.
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(a)

(b)

Fig. 33. Standard deviation of max-diameter and sum-diameter of models produced
by different incremental planners on the rigid-walls problem. (a) EST. (b) RRT -
Expand. 8 runs of 3000 nodes for each planner.
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2. Model enhancement — Coverage of the model still improves, but at a slower

rate. Connectivity and topology are still undergoing significant changes. The

reduction in the rate of learning is because it takes more effort to find the key

samples that join together the main pathways than to cover the space. The rate

of change in all node types reduces while cc-expand nodes slowly get closer to

its highest values. The diameter measures also approach a stable value. At the

end of this stage, the planner has reached most of its potential connectivity and

topology.

3. Learning decay — Coverage, connectivity, and topology of the model change

at a higher expense, although unexplored areas are still likely to be found. cc-

expand nodes gradually decline; cc-oversample nodes gradually increase. Fre-

quency of changes in diameters slows down.

1. How Stage Transitions Can Be Detected?

In our experiments we noticed trends in multiple runs of node-level and global-level

metrics that help us to identify the transitions between planning stages. Metrics

at the node level have a very low standard deviation at the beginning of the model

enhancement stage, their most dramatic changes decrease sooner than the metrics

at the global level. We are mostly interested in identifying the start of the learning

decay when the current planning strategy reduces its chances to make significant

improvements in the model. We notice that at the beginning of the learning decay

stage, metrics at the global level have significantly smaller changes and, also, they

have a low standard deviation. Figures 34 and 35 show the means of the change

in max-diameter and sum-diameter of models produced by different roadmap-based

planners applied to the rigid-maze problem.
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Fig. 34. Average change in max-diameter and sum-diameter of models produced
by the roadmap-based Basic-PRM planner on the rigid-maze problem. The moment
when the rate of change of both diameters fall below three thresholds (thg = 0.1,
tmd < 0.05, and tlw < 0.02) for individual runs is shown with dots over the nodes
axis. 4 runs of 3000 nodes.

The boundary between the stages is fuzzy rather than sharp. During the quick

learning stage the changes in diameter measures are more dramatic starting in values

even larger than 1.0, and quickly declining to values around 0.1. During the model

enhancement stage the changes in diameters are much smaller between 0.15 and 0.02.

During the model enhancement stage, the diameters have very small changes, most

of the time below 0.05. Figures 34 and 35 mark the nodes where individual runs have

changes below thg < 0.1, tmd < 0.05, and tlw < 0.02. We notice that tmd < 0.05

happens around the end of the model enhancement stage and tlw < 0.02 happens

around the beginning of the learning decay stage.

Incremental planners also allow the use of the diameter measures to mark the

start of the learning decay stage of planning. Figures 36 and 37 show the average

change in max-diameter and sum-diameter of models produced by incremental plan-
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(a)

(b)

Fig. 35. Average change in max-diameter and sum-diameter of models produced by
different roadmap-based planners on the rigid-maze problem. The moment when the
rate of change of both diameters fall below three thresholds (thg = 0.1, tmd < 0.05, and
tlw < 0.02) for individual runs is shown with dots over the nodes axis. (a) OBPRM.
(b) Gauss-PRM. 4 runs of 3000 nodes for each planner.
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Fig. 36. Average change in max-diameter and sum-diameter of models produced
by the incremental RRT -Connect planner on the rigid-walls problem. The moment
when the rate of change of both diameters fall below three thresholds (thg = 0.1,
tmd < 0.05, and tlw < 0.02) for individual runs is shown with dots over the nodes
axis. 8 runs of 3000 nodes.

ners applied to the rigid-walls problem and the nodes where the diameters’ change in

individual runs fall below thg < 0.1, tmd < 0.05, and tlw < 0.02. Similarly to roadmap-

based planners, tmd < 0.05 happens close to the end of the model enhancement stage

and tlw < 0.02 happens close to the beginning of the learning decay stage.

2. What Can Be Done When Learning Decay Starts?

One important practical issue in sampling-based planners is to determine how large

a roadmap is needed to model a motion planning instance. This issue has been

traditionally approached through a time-consuming trial-and-error process which fre-

quently results in model sizes larger than needed. Although during the learning decay

stage the planner is still potentially able to find samples that improve the model,

these samples are found at increasing costs. We can stop planning or switch sampling
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(a)

(b)

Fig. 37. Average change in max-diameter and sum-diameter of models produced
by different incremental planners on the rigid-walls problem. The moment when the
rate of change of both diameters fall below three thresholds (thg = 0.1, tmd < 0.05,
and tlw < 0.02) for individual runs is shown with dots over the nodes axis. (a) EST.
(b) RRT -Expand. 8 runs of 3000 nodes for each planner.
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strategies by evaluating global-level metrics to detect the learning decay stage as we

did in the Incremental Map Generation (IMG) method [65].

IMG constructs C-Space models iteratively. In each iteration, a group of nodes

and connections are sampled and added to the model. Then, a set of evaluations

are performed to determine whether a different sampling strategy can be used or if

model construction can be stopped. At the core of the evaluation are the diameter

global-level metrics which determine if the model is at the start of the learning decay

as an indication of diminished improvements. This is when planning can be stopped

or a different strategy can be tried. The desired rate of change in global-level metrics

can be adjusted to essentially specify the duration of the learning decay desired.

Roadmap-based planners, incrementally-exploring planners and adaptive plan-

ners can be easily incorporated into the IMG framework, as we did with all the plan-

ners discussed in this work and with the Hybrid PRM planner [26]. More information

can be found in [65].

C. Distribution of Nodes in the C-Space

We identify distinct regions of the C-Space found by different planners by building

groups of nodes based on their local information accessed through node-level metrics.

1. What Is the Population Distribution of Regions for Different Planners?

We identify regions with low, medium and high visibility in different planners. The

three stages of learning are reflected in the region-level metrics as can be seen in

Figures 38 and 39 which show the average population distribution of visibility re-

gions in models produced by Basic-PRM, OBPRM, and Gauss-PRM when applied

to the rigid-maze problem. Basic-PRM is unable to produce a significant amount
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Fig. 38. Average population distribution of visibility regions in models produced by
the roadmap-based Basic-PRM planner on the rigid-maze problem. 4 runs of 3000
nodes.

of low-visibility nodes. On the other hand OBPRM produces more high-visibility

and medium-visibility nodes. Gauss-PRM is between the two. The population of

visibility regions in MAPRM (not shown) is similar to Gauss-PRM, partially because

nodes inside narrow passages produced by MAPRM have higher visibility than those

produced by other strategies. The population of visibility regions in Bridge-Test (not

shown) is similar to OBPRM.

Visibility regions in incrementally exploring planners also depend on their sam-

pling distribution. Figure 40 shows the average population distribution of visibility

regions in models produced by RPP, and RRT -Connect when applied to the rigid-

walls problem. We notice that both methods have about 40% of high-visibility nodes.

In addition, RPP visibility groups amount for about 100% of the nodes, meaning that

most nodes are used as growth sites. In contrast, RRT -Connect only uses about 70%

of the nodes as growth sites, with about 10% with medium visibility and less than
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(a)

(b)

Fig. 39. Average population distribution of visibility regions in models produced by
different planners on the rigid-maze problem. (a) OBPRM. (b) Gauss-PRM. 4 runs
of 3000 nodes for each planner.
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TABLE VIII

Population Distribution of Visibility Regions in rigid-maze. Deviation

Nodes for Standard Deviation

Planner < 0.10 < 0.05

Basic-PRM 30 80

OBPRM 55 150

Gauss-PRM 30 140

MAPRM 200 240

Bridge-Test 80 210

15% with low-visibility. Although RPP produces many more low-visibility nodes,

they are likely to be local minima which produce other low-visibility nodes while try-

ing to escape. In contrast, the Voronoi-region reduction of the RRT methods allows

them to increase coverage in a more uniform way and to find low-visibility nodes in

wider areas of the space. RRT -Expand and EST has similar trends as RRT -Connect,

with less medium-visibility and low-visibility nodes.

The variability of the population distribution of regions across runs is very low

as can be seen in Table VIII and in Table IX. These tables show the number of nodes

after which the standard deviation of the population in all the regions falls below

0.10 and 0.05 for roadmap-based planners (Table VIII) and incremental planners

(Table IX).
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(a)

(b)

Fig. 40. Average population distribution of visibility regions in models produced
by different incremental planners on the rigid-walls problem. (a) RPP. (b) RRT -
Connect. 8 runs of 3000 nodes for each planner.
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TABLE IX

Population Distribution of Visibility Regions in rigid-walls. Deviation

Nodes for Standard Deviation

Planner < 0.10 < 0.05

RPP 15 189

EST 10 40

RRT -Expand 25 166

RRT -Connect 20 108

2. How Effective Are Planners in Biasing towards Highly-Constrained Regions?

Planners that bias their sampling of configurations and motions towards highly con-

strained regions are more likely to find motions through narrow passages of the space.

Figure 41 shows the subgraphs of the low-visibility regions (visibility < 1/3) in in-

dividual runs of Basic-PRM, OBPRM, and Gauss-PRM at 2000 nodes, long after

global-level metrics have stabilized. Most low-visibility nodes are inside the narrow

passages, but Basic-PRM nodes are few and badly distributed, Gauss-PRM nodes

are more and better distributed in the passage, and OBPRM nodes are much better

distributed in the narrow passage. It is worth noting that the low visibility nodes

generated by OBPRM and Gauss-PRM outside of the passage might have a higher

visibility if there were more nodes in the open space to connect them more easily.

3. How Do Coverage Regions Evolve in Incremental Planners?

We evaluate the coverage rate of the RRT -Expand, EST, RRT -Connect, and RPP

incremental planners when applied to the rigid-maze, and rigid-walls problems as
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(a) (b) (c)

Fig. 41. Distribution of low-visibility nodes (visibility < 1/3) in models produced
by one run of different planners on the rigid-maze problem after global-level metrics
have converged. (a) Basic-PRM. (b) OBPRM. (c) Gauss-PRM.

shown in Figure 42. We also evaluated the number of samples that each planner

needed to produce a node whose positional DOFs lie in the same workspace chamber

as the goal configuration (note that this does not imply that the goal is reachable)

as shown in Table X. All the planners started their search at the start configuration.

The goal-biased RRT -Connect and RPP were provided the goal configuration. Region

radius was defined as 15% larger than the expansion step used by the planner.

RRT -Expand and EST have very similar expansion philosophies, they try to

expand towards unexplored areas of the C-Space. Nevertheless, RRT -Expand has

a much higher coverage rate than EST. This is because RRT -Expand is biased to-

wards the biggest unexplored Voronoi regions whereas EST is biased towards regions

with fewer nodes regardless of whether they have been explored or not. Among the

goal-biased planners, RRT -Connect is better than RPP, but RPP has a very good
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TABLE X

Number of Samples Needed for Planners to Get to Goal Region

Problem Method Samples to Goal Region

rigid-walls RRT -Expand 1000

EST 1400

RRT -Connect 500

RPP 2300

rigid-maze RRT -Expand 5800

EST failed

RRT -Connect 700

RPP 1800

performance and is able to make its way through the chambers.

4. How Can We Adapt Planning Based on Region Complexity?

Identifying highly constrained regions allow us to adapt the sampling strategy based

on the complexity of the distinct regions of the problem, with additional sampling in

low-visibility regions and scarcer sampling in high-visibility regions.

We can use the different regions to dynamically adapt sampling. For exam-

ple, Figure 43 shows the 2000-node model produced when running RRT -Connect

on the rigid-walls problem. We can see the low-visibility nodes that are close to

C-obstacles and inside narrow passages. These low-visibility nodes are good candi-

dates to strengthen the sampling bias when the global-level metrics indicate that the

learning decay has started, or when the coverage growth is stalled.
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(a)

(b)

Fig. 42. Coverage rate of incremental planners RRT -Expand, EST, RRT -Connect,
and RPPwhen mapping two problems. (a) rigid-walls. (b) rigid-maze, EST is close
to 0 most of the time.
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(a) (b)

(c) (d)

Fig. 43. Visibility regions in a model produced by RRT -Connect in the rigid-
walls problem. (a) 2000-node model. (b) Low-visibility region: visibility < 1/3.
(c) Medium-visibility region: 1/3 <= visibility < 2/3. (d) High-visibility region:
2/3 <= visibility.

D. Comparison of Metrics at the Start of Learning Decay for Different Roadmap-

Based Planners

We compare planners at the time of the start of the learning decay stage that we detect

using the global-level metrics described above. We compute the population distribu-

tion for node types produced by Basic-PRM, OBPRM, MAPRM, Gauss-PRM, and

Bridge-Test applied to the rigid-maze (Figure 44), rigid-hook (Figure 45), and serial-

hook-5 (Figure 46) problems. We also show the number of nodes, modeling time,

max-diameter, sum-diameter, and percentage of witness queries solved at the time of

the start of the learning decay stage in Table XI for the rigid-maze problem, Table XII

for the rigid-hook problem, and Table XIII for the serial-hook-5 problem.

In the rigid-maze and in the rigid-hook problems, Basic-PRM produces mostly

cc-oversample nodes. In contrast, OBPRM produces many cc-expand nodes. MAPRM

produces many more cc-expand nodes than Basic-PRM, but it also produces many cc-

oversample nodes because of its bias that creates many close-by nodes that are easy to

connect locally, it may be possible to filter some of these nodes without affecting the

quality of the model. Gauss-PRM has medium quality nodes. Bridge-Test produces
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Fig. 44. Average population distribution of node types produced by different
planners on the rigid-maze problem at the beginning of the learning decay stage.

TABLE XI

Planners at Start of Learning Decay on rigid-maze

Modeling Diameters Witness

Problem Nodes Time [s] max sum %

Basic-PRM 610 171 226 624 0

OBPRM 1,955 311 648 700 100

MAPRM 810 96 600 610 100

Gauss-PRM 1,300 265 612 631 100

Bridge-Test 3,000 5,666 1,155 1774 100
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Fig. 45. Average population distribution of node types produced by different
planners on the rigid-hook problem at the beginning of the learning decay stage.

many cc-expand nodes but at a very high price (one order of magnitude as large as

all the other methods). We also notice that in the rigid-maze problem, Basic-PRM

and Bridge-Test reach a max-diameter that is still far from the sum-diameter when

all the other planners managed to make them very similar. In the rigid-hook problem

only OBPRM was able to do the same.

In the serial-hook-5 problem, Basic-PRM surprisingly produces many cc-expand

nodes, but later well into the learning decay the cc-oversample nodes take over. We

can also notice that Basic-PRM is the one whose max-diameter is the smallest among

all planners. OBPRM MAPRM, and Gauss-PRM also produce many cc-expand

nodes with Gauss-PRM being the one with the largest proportion, but with MAPRM

and OBPRM having their max-diameter being the closest to the sum-diameter which

reflects better the C-Space of this problem with one large component dominating the

problem. Bridge-Test produces the smallest number of cc-expand nodes and it is also
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TABLE XII

Planners at Start of Learning Decay on rigid-hook

Modeling Diameters Witness

Problem Nodes Time [s] max sum %

Basic-PRM 2558 87 57 158 0

OBPRM 1998 42 144 147 100

MAPRM 2100 74 85 263 0

Gauss-PRM 2963 543 177 250 60

Bridge-Test 2048 1618 169 200 100

the most expensive.

E. Metrics in High-DOF Problems

In this Section we analyze the RRT -Connect planner when mapping the high-DOF

serial-spring-98 problem with the metrics introduced in this work. Our results il-

lustrate the power of the metrics to characterize the planning process in high-DOF

problems just as in the low-DOF problems discussed in previous sections. We let the

planner keep running even after the two growing trees join together to evaluate the

ability of the planner to keep learning about the problem.

Node-level metrics (Figure 47) show that RRT -Connect stabilizes at about 60%

of cc-oversample nodes and about 40% of cc create nodes. This indicates that the

problem has many hard to connect areas, but still it needed a big percentage of nodes

to get there. We also see that the learning decay stage started after a few hundreds

of nodes.
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Fig. 46. Average population distribution of node types produced by different
planners on the serial-hook-5 problem at the beginning of the learning decay stage.

TABLE XIII

Planners at Start of Learning Decay on serial-hook-5

Modeling Diameters Witness

Problem Nodes Time [s] max sum %

Basic-PRM 1430 479 324 550 30

OBPRM 1750 437 471 578 80

MAPRM 1478 606 478 591 60

Gauss-PRM 1473 585 356 545 30

Bridge-Test 1600 2748 529 711 60
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Fig. 47. Population distribution of node types produced by RRT -Connect when
modeling the serial-spring-98 problem.

Global-level metrics (Figure 48) confirm that the learning decay stage is starting

after a few hundreds of nodes. The trees join together at about 400 nodes, shown

by the diameter measures joining together as well. Although the witness query can

be solved at this point in time, the planner is still able to keep learning about the

problem. The points shown in Figure 48(b) at about 800 nodes and 1200 nodes show

the moment when the rate of change of both diameters fall below thresholds thg = 0.1,

tmd < 0.05, and tlw < 0.02. These points are when we would stop planning or switch

strategies.

Region-Level metrics (Figure 49) show that the planner finds many low-visibility

regions and very few high-visibility regions.
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(a)

(b)

Fig. 48. Evolution of global-level metrics for one instance of RRT -Connect on
the serial-spring-98 problem. (a) max-diameter and sum-diameter. (b) changes in
max-diameter and sum-diameter (also shown, the moment when the rate of change
of both diameters fall below thresholds thg = 0.1, tmd < 0.05, and tlw < 0.02).
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(a)

(b) (c)

Fig. 49. Regions found in the serial-spring-98 problem with RRT -Connect (at about
400 nodes when the expanding trees join together). (a) Population distribution of
visibility regions. (d) Low-visibility region at 400 nodes. (c) High-visibility region at
400 nodes.
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CHAPTER IX

CONCLUSIONS

Motion planning is an intractable problem that can be approached through methods

that build an approximate model of potential motions through random sampling.

This technique can be applied to many types of robots as long as appropriate func-

tions to evaluate potential robot configurations and motions can be defined. This

flexibility allows us to address applications for planning and studying motions in

many areas such as robotics, biology and chemistry, manufacturing and mechanical

design, animation of characters, and video games.

Although there have been intensive efforts to take advantage of geometric features

of the obstacles and the robot that are likely to favor a better exploration of the areas

of the C-Space that are more challenging, these efforts have not yet produced a planner

that is best suited for every case. In fact, we do not know how to choose among the

many planners available for each particular instance of the motion planning problem.

This has motivated recent efforts in adaptive planning to evaluate features discovered

during the exploration of the C-Space in order to dynamically adapt the planning

strategy.

This research contributes to this problem by proposing metrics that allow us to

evaluate the features discovered by sampling-based motion planners that correlate

with three important properties of the C-Space: coverage, connectivity, and topol-

ogy. In order evaluate different aspects of these properties we discussed the validity,

visibility, covered region, connectability and homotopy in C-Space. A direct measure-

ment of these features is tantamount to the unfeasible computation of the C-Space.

Instead, the metrics discussed here measure features that correlate with the ability of
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the planner to sustain its learning about the C-Space properties mentioned. In our

discussion we assumed models where samples and connections are tested with binary

validity tests. Nevertheless, we briefly discussed potential ways to address other types

of models such as those that use potential evaluations of motions.

In the description of the metrics and their applications we applied roadmap-

based and incrementally-exploring planners to several instances of the motion plan-

ning problem. The roadmap-based planners discussed were Basic-PRM, OBPRM,

Gauss-PRM, Bridge-Test, and MAPRM. The incrementally-exploring planners dis-

cussed were RRT -Expand, RRT -Connect, RPP, and EST. The motion planning in-

stances have a variety of densities and difficulty.

The metrics operate at multiple levels: node level, global level, and region level.

At the node level, they allow us to measure the contributions of nodes and connections

to the coverage and connectivity of the model and the local features around them. At

the global level, they allow us to measure the transformations on the global structure

of the model that lead to improvements in topology, and therefore in coverage and

connectivity. At the region level, they allow us to identify regions composed by

groups of nodes that share similar node and global level metrics. The joint use of

these metrics enables us to understand better sampling-based planners to improve

the process.

At the node level, we defined different types of nodes: cc-create, cc-merge, cc-

expand, and cc-oversample. The first three types represent significant improvements

at this level, while the later does not. We defined an affordable approximation to

estimate node types in both roadmap-based and incrementally-exploring planners.

Also, we defined a mechanism to estimate the visibility around growth sites whose only

additional cost is to maintain the number of growth attempts and successful growths

for each node. We learned that all planners show a very low standard deviation for
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multiple runs after just a few nodes in the model. This indicates that each planner

has a consistent sampling mechanism for each problem.

At the global level, we estimated the structural changes that the model is un-

dergoing and the homotopy classes, or pathways, represented in it by measuring an

approximation of the diameter of components. The overhead spent in these metrics

is very low and the accuracy of the approximation is sufficient for our needs. We also

defined a mechanism to quantify the rate of change in global structure and to detect

when this rate slows down.

At the region level, we grouped samples into regions using basic clustering strate-

gies based on their node-level metrics. These regions have many applications, for

example to identify the samples that have high constraints and have higher chances

to be inside narrow passages.

These metrics only rely on indirect measurements that do not depend on the

dimensionality of the problem in contrast with reachability-based evaluations that

directly compare the connectivity and coverage of the resulting motion models with

the underlying C-Space [19]. They can be used in addition to time evaluations as in

[3, 18, 32].

We identified three stages of the learning process that planners go through: quick

learning, model enhancement, and learning decay. By detecting transitions between

the stages we can decide when to stop sampling or change strategies. Through-

out these stages, roadmap-based planners had clear distinctions in node types, and

incrementally-exploring planners’ node types were more similar. Roadmap-based

planners also showed a faster stabilization in global-level metrics than the incrementally-

exploring planners which have a more gradual stabilization due to their orderly ex-

pansion.

We showed we can identify different types of regions in the C-Space in order to
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monitor the evolution of the sampling distribution and to spatially adapt planning

based on the complexity of the regions. We used the global-level metrics to stop

planning or to change strategies when the rate of change indicates that the learning

decay stage has started.

We discussed a strategy to make comparative evaluations of planners based on

our multi-level metrics that gives insight into qualitative features of the problem. We

compared the speed of coverage change in incrementally-exploring planners in some

problems where RRT -Expand covers the space faster than EST and RRT -Connect

was faster than RPP. We also compared the node types achieved by roadmap-based

planners at the start of the learning decay stage. In two cases, OBPRM had more

cc-expand nodes than the other planners, but in another case it had fewer such nodes

than Basic-PRM, Gauss-PRM, and MAPRM. It is clear that performance varies with

the features of the problem.

We studied a high-DOF problem to show how the metrics allow us to characterize

the planning process in these complex cases just as in the low-DOF problems.

The main potential applications of these metrics are in adaptive planning to

make better decisions to match planners to problems and in adapting the exploration

of the C-Space to the information obtained while sampling.
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