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ON SOME SPACES OF ANALYTIC FUNCTIONS
AND THEIR DUALITY RELATIONS

by

*Jairo A. CHARRIS and Ruth S. HUERFANO

Abstract: For each 0 ~ C < +"" and 0 < p < +"" let Ee p
be the space of entire functions 6 such that, for some constant
A ~ 0, 16(z)1 .. Ae.ClzIP for all Z in e. If 11611e P is the mini-
mun of such constants A, " Ic,p is a Banach spa~e norm on Ee,p.
Let 0 < B , +"" and denote with tB p the inductive limit space
of the B~ach spaces Ee,p , 0 ~ e'< B. The topological dual
space of EB p is identified as the space 0B p of analytic func-
tions on th~ open disk V(O,(Bp)l/P). If 0B,P is given the to-
pology of uniform convergence 0D compact sets, its topologi-
cal dual is also identified as EB p' R~lations between differ-
ent topologies on the spaces EC p'and EB p having their origin
in the duality are also examinea. '

§1. Introduction. If n isan open domain of the complex plane
[, O(n) is the space of complex analytic functions in n. We
write 0 instead of O([) to denote the space of entire func-

tions. To O(n) we will give the topology .(O(n)) of uniform
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eonvepgenee on eompaet subsets. This topology is defined by
the seminorms

(1.1) Sup 16(x)!
ZEI(

when K runs over the compact subset of n, and it is therefore
a locally convex vector space topology on O(n) (Horvfith [2J,
Chap.2,§4). If (Kn) is a sequence of compact subsets of n
such that ~ ~ Kn ~ ~ +1' n ~ 0, and n K = n, the seminorms

n n=o nI ~Kn' n = 1,2, ..., define Y(O(n)). These are in fact norms.
Moreover,

(1 .2) d(6,g)

is a distance on O(n) also defining y(O(Q)). For this distance
o(n) is a complete metric space, so that O(n) is a Fpeehet

spaee (Horvfith [2J, Chap.2,§9). If n = [, we can take Kn =
V(O,n), n ~ 1.

For each ° ~ C < +00 and each ° < p < +00, EC,p will be
the space of entire functions 6 such that for some constant
A ~ °
(1 .3)

clzlP
16(z)I~Ae. , ze:[.

If li~llc,p
holds then

(1 .4)

is the minimun of those constants A for which (1.3)
II ~C,p is a norm on EC,p' Since

16~V(0,R) ~ 161 e.CRP R > 0,C, P ,

the topology Ye,p on Ee,p defined by this norm is stronger
than that induced by yeO). Hence, a Cauchy sequence (6n) in
Ee for ~ ~e is convergent on compact subsets to an ana-

, p ,p
lytic function 6 e: O. If ~6 Ic ,M for all n ~ 1, thenn ,p

(1.5) l6(z)1 ~ (l+M)e.C!zIP

so that 6£ Ee,p' Now, let c > 0, and no 9- n be such that
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16n-6mlc,p ~ £ for m,n ~ no' Then

16n(z)-6m(z)! ~ £/lzIP

for m,n > no' and passing to the limit when m + 00 we obtain

for n ~ n • This means that 16 -6~c ~ £ for n ~ no' Henceo n ,p
(EC,p' I ~C,p) is a Banach space. If C , B then EC,p ~ EB,p
and

(1 .6) 16~B,p' 161Ic,p' 6 e: EC •, p

Thus, the inclusion maps 1.. : E -+ E are continuousB,C,p C,p B,p
and the topology of E is stronger than the induced topo-C,p
logy from EB,p'

For 0 < B , +00 and 0 < p < +00 let

(1 • 7) E B,p U Ec.<B C,p

As a vector space, E is the inductive Zimit of the vectorB,p
spaces EC,p' 0 , C < B. We will give EB,p the inductive Zim-

it topoZogy TB,p of the Banach space topologies 0: the EC,p'~'
This is the strongest locally convex topology on fB such- ,p
that the inclusion maps 1..B C EC + EB ' 0 ~ C < B, are"p,p ,p
continuous. A fundamental system of neighborhoods of 0 for
the topology TB is given by the convex, balanced and ab-, p
sorbing subsets V such that, for all 0 , C < B, V n EC is, p
a neighborhood of 0 in EC,p: If E is a locally convex, topo-
logical vector space and T:EB -+ E is a linear map, then T,p-is continuos if and only if To1..B C is continuous for all, ,p
o , C < B. Further information about inductive limit topo-
logies can be found in Horvath [2], Chap.2,§12.

J. Rodriguez [8] has shown that the map

< , > : ExO -+ a:
given by
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(1 . 8)
00

<6,g>.- ~ ~ 6(n)(O)g(n)(O),
n=o

where E is £+00 l' is a duality braeket (Horvath [2J, Chap.3,
§2). If E* and'O* respectively denote the topological dual
spaces of E and 0 (Horvath [2], Chap.3, 2), the duality brack-
et <,> allows for the identifications E* = 0 and 0* = E as
vector spaces. He has given interesting applications of the
above duality to the theory of complex differential equations.

The main purpose of this paper is to extend those dual-
ity results to EB . This we do by means of an appropriate,p
bracket. The arguments for the general case turn out to be
subtler than those in the case p = 1, B = +00. Thorough study
of the topologies originating in the duality is also made.
Applications to complex differential equations are currently
under research and will be the subject of a forthcoming paper.

§2. Basic Results. The following result characterizes the
entire functions in EB .,p

THEOREM 2.1. Let 0 ~ C < +00, 0 < p < +00. Then, for

6 e: EC ', P

holps for all n ~ 1. Conversely, if for some A ~ 0 and some

n ~ 1o

(2.2) I I A(c:p)n/p
an ~ "

holds for n ~ no' then
00

is an entire function in EB for all B > C.
, P

Proof. Assume 6 e: EC • The Cauchy estimates give,p
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(2.4) R > 0, YL ~ 0,

and (2.1) follows from this by taking R = (YLlpC) lip for each
YL ? 1. Assume conversely that (2.2) holds for YL ~ YLo and let
6 be given by (2.3). Clearly 6 EO. If

(2.5) J[. > 0, YL ~ 1,

then F~ (J[.) o if, and only if, J[. = (YL/Cp) liP. Since

(2.6) lim F~(J[.) = lim F (J[.) = +~,J[.+~" J[.+o YL

it follows that

(2.7) F ((..!!:... ) lip)
YL Cp F (J[.)YL

for all J[. > O. Therefore

Let 0 ~ C < B and let a = (BIC)l/p, so that a > 1. If z F 0
and J[. = alzl then

YL -YL aPClzlP -YL BlzlPI a. z I -s A a e = Aa e ,YL

Hence
z 'I 0,

and this inequality trivialy holds if z O. Obviously

for some A' ~ O. Therefore

l6Cz)1 ~ A"eB!zIP , Z &: 0:,

l-YLo
if A" ~ max{A' ,A~}. This proves the theorem. &a- I
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REMARK 2.1. Further work shows that under conditions
(Z.Z) there is a constant M > 0 such that the function
6(z) = r a zl'! satisfies

1'1=0 1'1

(Z.8) Z e:: a:,

where bounds for M can be given in terms of 6 and C. This is
the best type of estimate we have been able to obtain along
this lines. It does not guaranty that 6 -= EC •,r

COROLLARY 2.1. If

(Z.9) Hz)

then 6 is an entire funation in E if and only if for someB,p
o < C < B, some A ~ 0, and some 1'10 ~ 1,

(Z.10)

holds for all 1'1 ~ 1'10'

REMARK 2.2. If C > 0 it follows that

(Z.ll) Hz)

is an entire function in EB for all B > C. Let B1 < BZ and, p
take B1 < C < BZ' Then 6, as given by (Z.l1), is in EBZ'p·
If we had 6 E EB1,P then for some constant A > 0 and some
no ~ 1

This is absurd as
EB1'P S EBZ'p but

It follows that

Let P be the algebra of polynomials with complex coef-
ficients. Clearly P £ EB,p for all 0 < B < +00, 0 < P < +00.
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Since P is dense in 0, the topology of fB is strictly,P
stronger than the topology induced from O. The e st.i ma t e

(2.12)

holds for all n > O. This follows from the Taylor develop-
ment of eX, since then

For each a > 1 there is also n ~ such thata

(2.13)

This follows from (n!/nn)1/n ~ aP/e holding for la'ge n.

the Taylor series
THEOREM 2.2. Let 6 E fB ' 0 < B ~ +00, 0 < P < +~.Then, P

00

L (1/n!)6(n)(O)zn
n=o

converges to 6 in fB .
, P

Proof. A~sume 6 E fC ' 0 < C < B, and let a > 1 be
P , Psuch that a C < B. The Cauchy estImates give

00 00 aPC!zIP
I L 1/k!6(k)(O)zk, ~ L 161c e k Izlk

k=n+ 1 k=n+ 1 ' P (a I z I )

so that

(2.14)

It follows that

(2.15) n-+oo,
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in f P . This proves the theorem. &
a C,p

REMARK 2.3.

if C > 0 and 6 e:

ges to 6 in fB , P

The proof
fC then,p
for all B > C.

of the above theorem shows that
the Maclaurin Series of 6 conver-

COROLLARY 2.2. For each 0 < B ~ +00, 0 < P < +00, P is-dense in fB •
, P

For each 0 < C, B < +00, let

P :f -4 fB,C,p C,p B,p

be the linear map

(2.16) Hz)

Since

16 (z) I

then

so that
IPB C I ~ 1 ., , p

On the other hand

(2.17) P °P = 1B,C,p C,B,p B,p' pop = 1C,B,p B,C,p C,p

are respectively the identity maps of f B,p and fC . Then, p

(2.18)

and PB C is a toplinear isomorphism of f onto fB ., , p C, p ,p
Clearly

(2.19) P.
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Now we can state the following corollary of Theorem 2.2:

COROLLARY 2.3. If 0 < e < B < +00, the topology on

induced from fB,p is strictly weaker than the topology

fe,p'
Proof. Assume the two topologies coincide in fe .From, p

the proof of the theorem, the Maclaurin series of
6 E fe,p converges in EB,p to 6. Hence, it also converges
in Ee,p to this function. Then, P is dense in fe,p Since
PB e p is a homeomorphism, also P is dense in fB There-, , ,p
fore Ee,p EB,p' which is absurd. •

E e,p
of

§3. Dual;ty. Let 0 ~ B < +00, 0 < P < +00, and denote with
VB the open disk V(O,(Bp) lip) and with VB its closure

-' p , P(V+oo P = V+oo = a). Also, 0B will be the space of ana-
"p ,p

lytic functions in VB . Let, p

be the bilinear map
00

(11!)l/p 6(11)(0)g(I1)(0)
(11!)2(3.17) < 6, g> I

11=0

Since

(3.2)

<,> is non-degenerate, i.e., if <6,g> = 0 for all 9 EO_ B,p
then 6 = 0, and also 9 = 0 if <6,g> = 0 for all 6 E fB ., P
It is also continueus. To prove this last assertion we will
show that the restriction of <,> to fC xOB ' 0 < e < B,, P , P
is bounded. This follows at once from (2.12) and the Cauchy
estimates, for if 6 E fe,p' 9 E 0B,p and e < R < B then

(3.3)
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where
(3.4)

as follows from

-lit litNow let fB and 0B respectively denote the topological
, p - , pdual spaces of fB and 0B . For each 6 -= fB and g E: 0B,p,p ,p,p

let T(6) :OB -+- a; and L(g) :fB ->- a; be the maps,p ,p

(3.5) T(6)(<P) := <6,<P>,L(g)(lji) := <lji,g>

Obviously T(6) and L(g) are linear. For 6 E fC ' C < B,, P
g E 0B and C < R < B,, P

(3.6)

lit -litholds. Thus T(6) E 0B,p' L(g) E fB,p'

THEOREM 3.1. The linear maps T:EB -+ 0B and
- ' p , p

L:OB + fB given by (3.5) are 1-1 and onto. If fB and
lit ' P , P , P

0B are respectively given their weak topologies
, p

a(E;,p,tB,p) and a(0:,p,OB,p1 these maps are also continuous.

Proof. For the notion of weak topology, see Horvath
[2], Chap.3,12. That T, Lare 1-1 follows from the non-degen-
eracy of <,> and their continuity results from (3.6). It re-

lit litmains to prove that they are onto. Let 6 -= 0B,p and define
00

(3.7) Hz) .- 2
n=o

litBecause of the continuity of 6 there are M > 0 and 0 < R < B
such that

n = 0,1,2, ...

Therefore
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M (Rp) nl p

(n!) 1/p
« M (~) nip
'" n '

n 9 1,

and thus 6 E EB,p' Since

(3.8)

if the series is uniformly convergent on compact subsets of
VB ' it follows that if g(z) = r b zn E 0B then 6*(g)

, p * n=o n ,p
<6,g> and thus 6 = T(6)·

* Now let g* E E;,p' From (2.12) and the continuity of
9 , given 0 < C < B there is MC > 0 such that

Ig*(zn)1 ~ I nl (n~)1/p
MC z C,p 'li> MC (Cp)nlp

If
00 * (z ") n9 z z

(n!)l/p
(3.9) 9 (z) L

n=o

from

Ig*(Zn) 11/n 1/n 1
(n!) lip ~ MC (Cp) lip

it follows that the series
gence ?(Cp)1/p for all 0 <

00 nTaylor series I a z of 6
n=O n

defining 9 has radius of conver-
C < B. Hence 9 e: 0B . Since the,p -
E EC converges to 6 in EB ', p , p

00

(3.10) *9 (6) = '\ * nLag (z ) = <6,g>,
n=o n

*and thus 9 L(g). This proves the theorem. •

COROLLARY 3.1. For each 0 < B ~ +00 and each 0 < p ~ +00,

E is a Hausdorff space.B,p 00

Proof. Assume 6(z) = L a zn # 0 is in EB . Then a f. 0n=o n ,p n
for some Yl ~ 0 and therefore L(zYl)(6) f. O. Since zYl e: 0B

* Yl * ,Pthen 9 = L(z ) E EB ' so that the sets, p

~ * 1 *U = {y e: tB,p Ilg (y)\ < 71g (6)1},
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v = f Y * 1 *e: fB,p l l s (Y)I > zig (6)1}

are disjoint open neighborhoods of 0 and 6 respectively.
Hcen, fB is a Hausdorff space. A

, P

REMARK 3.1. The above argument also shows that
o(EB ,EB* ) is a Hausdorff topology. An entirely similar

,p ,p *argument proves that o(OB ,OB ) is also Hausdorff.,p ,p

COROLLARY 3.2. Let

the topology of fe is.,. , P
topology fpom fB .,p

Proof. Since the inclusion map

o < e < B ~ +00, 0 < P < +00. Then,

stpictly stpongep than the induced

they coincide. Since fe , p
dorff, it follows that fe.,. ,p
P s fe,p' fe,p 1 fB,p and P

.,. .,.

i ·f - f isB,e,p· e,p B,p
continuous, the induced topology is weaker than Te . Assume.,.,p

is a Banach-space and fB is Haus-.,. , p
is closed in fB . Since.,. ,p
is dense in fB,p' this is absurd.A

COROLLARY 3.3. Let 0 < e < B. Then, the topology of

is stpictly stpongep than the induced topology fpomte,p
fB ., p

Proof. The induced topology is clearly weaker than the
topology/Te,p of Ee . Let g be analytic on Ve with a sin-

,p 1/ ,pgularityon Izi = (ep) P, and assume the two topologies
coincide on fe,p. Since Ee,p is dense in fB,P and L(g) is
continuous on fe,p, L(g) has a continuous extension h* to
EB,p. From the theorem there is h e: 0B,p such that h* = L(h).
But then h = g on Ve,p' which is absurd. A

COROLLARY 3.4. If 0 < e < B < +00 then the topology of

fe,p is stpictly stpongep than the induced topology fpom

fB ., p

Proof. The topology o~ Ee,p is strictly stronger than
the induced topology from fB,p' and the latter is in its own
turn stronger than the induced topology from fB,p. A
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Now we will compare different topologies on EB having,p
their origin in the duality bracket. We recall that if E, F
are vector spaces, a bilinear map

(3.10) B : ExF -- a:

is called a pairing of E and F. The duality bracket <,> is
a pairing of fB and 0 Let B be a pairing of E and F., P B, p'
For x e: f and y e: F

(3.11) Ix1y := IB(x,y)l, IY1x:= IB(x,y)1

are respectively semi-norms on E,F. The topology on E (resp.
on F) defined by the semi -no rms I Iy' Y e: F (r esp , I Ix'
x ~ E) is called the weak topology on E defined by B and is
denoted with o(E,F) (resp. the weak topology on F defined
by B is denoted with o(F;E)). The weak topologies are local-
ly convex, vector space topologies. Let BF be the set of
bounded subsets of F for o(F;E) (resp. BE of E for o(E,F)).
The locally convex topology on E defined by the family of
seminorms

(3.15)

is called the strong topology defined on E by the palrlng B
and is denoted with 8(E,F). The strong topology 8(F,E) on F
is defined by the semi-norms

IYIA:= sUPIB(x,Y)I, Ae: BE'
x€A

For x e: E, s « F, let BX, By respectively denote the
linear maps on F, E given by BX(z) = B(x,z) and By(z)
B(z,y). If E', F' are the algebraic dual spaces of E and F
thenBxe: F' andB e:E'. LetT:E+F' andL:F+E' be giveny

(3.16)

by

(3.17) T(x) := BX, L(y) := By'

If both T and L are 1-1, B is called a duality bracket for

E and F. A locally convex topology TE on E Crespo TF on F)
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is said to be compatibZe with B if L(F) = E*, where E* is
*the topological dual of E for TE (resp. if T(E) = F , where

F* in the topological dual of F for TF). Among the locally
convex topologies on E (resp. F) which are compatible with
a duality bracket B there is a strongest, T(E,F), called
the ~ackey topoZogb of E for B (resp. T(F,E) is the Mackey
topology of F for B). A locally convex topology TE on E (resp.
TF on F) is compatible with B if and only if a(E,F) S TE ~
T(E,F) (resp. a(F,E) S TF S T(E,F)). The relevant facts about
duality pairings can be found in Horvath [2], which is our
main reference source.

We recall that TC denotes the Banach space topology
-,p -of EC,p and TB,p is the inductive limit topology of EB,p'

With T(OB ) we will denote the topology on 0B of uniform
,p 1/ ,pconvergence on compact subsets of V(O,(Bp) p) and we recall

that T(OB,p) is a Frechet and Montel space topology on 0B,p'
For the notion of a Montel space, see Horvath [2J, Chap.3
§9. Both TB,p and T(OB,p) are compatible with the duality
bracket <,>.

Let A be a bounded subset of 0B,p for a(OB,p,EB,p) (Hor-
vath [2], Chap.3 §4). Since T(OB ) is compatible with the, p
pairing <,> it follows from Mackey's theorem (Horvath [2],
Chap.3 §S) that A is bounded (and hence relatively compact)
forT(OB ).For6e:EC ,C<B,let,p ,p

(3.1~) sup/<6,g>1
ge:A

Then, for some constant M' > 0 and C < R < B we have

(3.19) 161A ~ M'161c p sup Ig/I.;;( )l/p), g£A v 0, (pR

and since A is bounded for T(OB ), for some constant M > 0,p
depending only on C and A we have

(3.20)
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It follows that the inclusion maps lB C ~:EC - ES are con-_ "/,,,p,p
tinuous if EC and EB are respectively given the topologies

- , p , p
'c and B(EB ,OS ,). Therefore, p , p , p

(3.21)

Hence (Horvath [2], Chap.3,§8),

THEOREM 3.2. The topology iB of ES aoinaides with- ,p,p
the strong topology B(EB ,OB ) of this spaae.,p ,p

COROLLARY 3.5. The spaae E is a aomplete Montel spaaes,p
for 'B,p'

Proof. In fact, since 0S,p is a Frechet space, it is
bornological (Horvath [2], Chap.3,§7). Hence ES is com-- ,p
plete for B(ES,p;OS,p) (Horvath [2], Chap.3,§7) and also a
Montel space (Horvath [2], Chap.3,§9) .•

Also

COROLLARY 3.6. On fB n the topologiaal iB ' the strong
_ 'J~ ,p-

topology B(EB ,OS ) and the Maakey topology ,(EN ,OS ),p ,p ,p ,p
are all identiaal.

Now observe that, for 0 < B < +00, E is subspace ofS,p

THEOREM 3.4. The topology TB of fB is striatly,p ,p
stronger than the induaed topology from 'S,p of EB,p'

Proof. Let ,s' be the induced topology. Then ,IB ~,p - ,p
iB • If 'B' • 'B then EB would be a Banach space for,p ,p,p ,e
TB,p' But this is absurd, as EB,p is Montel's and infinite
dimensional. •

REMARK 3.1. The proof of the above theorem shows that
no norm on ES can define iB •, P , P
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§4. Further Results and Remarks. In section §2 we have shown
that the Maclaurin series of 0 e: fB,p' a ~ B ~ +00, a < p < +00,

converges to 0 for TB . So far we have not been able to de-, p
termine whether the Maclaurin series of 6 e: EB ' a < B < +00,

, P
converges to 6 for TB ' nor whether the set P of complex, p
polynomials is dense in EB,p' The following results may be
however of some interest.

*Let EB denote the topological dual of EB and let* ,p ,p
1 IIB,p denote the no:m of Ea,p defining its strong topology
B(E~,p,EB,P)' Let i:EB,p + EB,p be the inclusion map. Theni
is continuous, so that its transp~se ~ = ti:E~,~-+ 0B,p is
continu~us for the topologies a(EB,p,EB,p) on EB,p and
a(OB,p,EB,p) on 0B,P (Horvath [2J, Chap.3,§12). Furthermore

THEOREM 4.1. The map ¢ is continuous if E~ P is given
* 'the strong topoZogy of II II B, P and 0B, pits topoZogy T (OB,p)'

* * * -*pro~f. If 6 e: EB n then also 0 E EB,p' so that the
series L (6*(z»)/(»:)~/P)z» defines an analytic function

»=0 * * *in 0B,p' From ¢Co ) (z») = <¢e6 ) ,z»> = 6 (z») it follows
that

00
»z .(4.1) I»=0

If a < (Rp)1/p < (Bp)1/p then, from (2.12),

(4.2).
00 * »* II \' 0 (z ) »1h(6)io ~ L l/pz VR,p »=0(»:) R,p

which proves the assertion. !

* *REMARK 4.1. Two forms 0 , 9 e: E* define the sameB,p
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00

series ~ anzn in 0B p if and only if they coincide on the
1'1-0 ,

set P of complex polinomials. This follows from 6*(zn)
(n~)l/Pan = g*(zn).

REMARK 4.2. Let ES*p be the topological bidual (Horvath
, t - **[2], Cahp.1,§7) of EB,p and let ~ = ~:EB,p- EB,p be the

transpose map of ~. Then ~ is the composite map joi of i ~
the inclusion map j of EB p into its bidual E;*p' If E~*p**' , ** 'is given the topology TB,p of the bidual norm I ~B,p' then
~ is continuous.

THEOREM 4.2. Let (61'1) be

the MacLaurin series of 6'£
sitions are equivalent:
1) The sequence (61'1) converges to some 6** in

** *C1(EB,p,EB£,p)'*
2) For any 6 £ EB,p ,

the sequence of partial sums of

EB,p' Then the following propo-

**EB,p for

6*( 'f J-6(n)(0)zn) IJ-6(n) (O)6*(zn).
1'1=0 n. 00 1'1=01'1·

3) For any 6*E E~,p' n~ 1/n!6(n)(0)6*(zn) is convergent.

Proof. It is clear that (1) ~(2) ~(3). To show that
**(3) ~ (1) consider 61'1as an element of ES,p' Then

(4.3) * 1'1= lim 6 (6 ) = lim L 11k!
1'1-+00 1'1 1'1-+00k=0

I1/k~6(k)(0)6*(zk),
k=o

and therefore, for some constant C(6*) depending only on 6*,

(4.4)

In view of the Banach-Steinhaus Theorem (Horvath [2], Chap.
1,§8),

(4.5)

for some constant M > 0, independent on 1'1and 6*. If 6**
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denotes the * given bylinear form on EB,p

00
J-6 ( k.) (0) 6* ( z k.) ,(4.6) 6**(() = I

k.=o

it follows from (4.5) that

(4.7) 16**(6*)1 ~ MI6*1;,p ,

so that 6** E** Clearly ** ** * AE: B, p. 6n -+ 6 for a(EB, p,EB, p).

REMARK 4.3. Now let 0 < B < e < +00. The inclusion map
le,B:EB,p + Ee,p is continuous for TB,p and Te,p. Hence,
Je,B = ttie,B is also continuous for a(Es:p,EB,P) and
acEc*p,Oc p) (Horvath [2J, Chap3,§12), so that 6n + i c B(6**)

, **' *' *'for a(Ee p,Ee p). But 6 + 6 for a(Ee p,Ee p). Hence
, ** r n "6 = Je B(6 ) for e > B. However, it can not be asserted

~*that 6 = 6·

THEOREM 4.3. Let 6 € 0, and let p > 0 and q be such that

lip + 11 q = 1. Let (6n) be the sequence of partial sums of
the Maclaurin series of 6. If the series

(4.8) I[1/n~Jl/q6(n)(O)zn
n=o

has radius of convergence R > 0, then, for all B > 0 such

that l/(pB)l/p<R, 6is in EB,p and 6n + 6 in EB,p. If R = 00,

the above holds for all B > O.
Proof. Let C < C' < V < B and assume (pC)l/P > l/R. Then

for some no and all n ~ no

so that if n is large enough theno
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In view of Theorem 2.1, 6 L EV,p' so that 6 L EB,p. From Re-
mark 2.3, we conclude that 6n .....6 in EB,p .•
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