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ON SOME SPACES OF ANALYTIC FUNCTIONS
AND THEIR DUALITY RELATIONS

by
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Abstract: For each 0 < C < +0and 0 < p < +» let Ec,p
be the space of entire functions § such that, for some constant
A0, |[§(2)] < AeClZIP for all z in €. If I 4llc p is the mini-
mun of such constants A, n IC,p is a Banach spaée norm on Ec,p.
Let 0 < B € +» and denote with EB, the inductive limit space
of the Banach spaces E¢,p , 0 ¢ C < B. The topological dual
space of EB, is identified as the space OB,p of analytic func-
tions on the open disk D(0,(Bp)1/P). 1f oB,p is given the to-
pology of uniform convergence on compact sets, its topologi-
cal dual is also identified as EB, . Relations between differ-
ent topologies on the spaces Ep p and Eg’p having their origin
in the duality are also examined.

§1. Introduction. If Q isan open domain of the complex plane
€, 0(Q) is the space of complex analytic functions in Q. We
write 0 instead of 0(C) to denote the space of entire func-
tions. To 0(R) we will give the topology t(0(R)) of uniform
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convergence on compact subsets. This topology is defined by

the seminorms

(1.1) [61¢ = Sup [§(0)]
z€K

when K runs over the compact subset of 2, and it is therefore
a locally convex vector space topology on 0(R) (Horvath [2],
Chap.2,84). If (Kn) is a sequence of compact subsets of @
such that ¢ # K, = K n > 0, and n K = Q, the seminorms

n+1?
| "Kn’ n = 1,2,..., define 1(0(Q)). These are in fact norms.
Moreover,
- | §-alk
B TRt . S
(1.2) 46,9 = T -

n=12" 14| ¢- QIK

is a distance on 0(Q) also defining tT(0(R)). For this distance
0(Q) is a complete metric space, so that 0(Q) is a Frechet
space (Horvath [2], Chap.2,§9). If @ = €, we can take K, =
P(0,n), n > 1.

For each 0 € C < +» and each 0 < p < +, EC,p will be
the space of entire functions ¢ such that for some constant

A >0
clz|P
(1.3} [§(z)] < Ae , ze

hﬁ"c is the minimun of those constants A for which (1.3)

holds then Il "C is a norm on E; P Since

’

(1.4) 18l500,7) < 16lc, pe%F, R >0,

the topology 1, ,p on EC ,p defined by this norm is stronger
than that 1nduced by T(O) Hence, a Cauchy sequence (6n) in

EC for | “C is convergent on compact subsets to an ana-

1yt1c functlon § =0. If ﬂgnlc o ¥ M for all n > 1, then
p

(1.5) 1§(2)| < (emyeClzl

so that fe Ec p* Now, let € > 0, and ng > n be such that
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16, 6l c p € € formmn > n,. Then

16, (2)-6,(2)] < eeCl2I

for m,n > nos and passing to the limit when m » » we obtain

p
1§,(2)-§(2) | < eeCl?l
for n > n . This means that |6 6“C < € for n > n, . Hence
(Eg’p. | “C p) is a Banach space. If C < B then EC,p c EB,p
an

(1.6) I“B,pg lﬂﬂc,p’ ] EEc,p-

Thus, the inclusion maps 4 :E -+ E are continuous
B,C,p" C,p B,p

and the topology of EC p is stronger than the induced topo-

logy from E

B,p"
For 0 < B ¢ +» and 0 < p < += let

(1.7) E = | E
B;p (’,<B C,p

As a vector space, EB, is the inductfue timit of the vector
spaces EC,p’ 0 €< C < B. We will give EB,p the inductive lim-
it topology %B ,p of the Banach space topologies of the q%pvé.
This is the strongest locally convex topology on EB such
that the inclusion maps LB c,p Ee P > EB,p’ 0 <Cc«< B are
continuous. A fundamental system of neighborhoods of 0 for
the topology %B,p is given by the convex, balanced and ab-
sorbing subsets V such that, for all 0 < C < B, VN EC,p is

a neighborhood of 0 in EC p: If E is a locally convex, topo-
logical vector space and T: EB — E is a linear map, then T
is continuos if and only if T B,C,p is continuous for all
0 € C < B. Further information about inductive limit topo-

logies can be found in Horvath [2], Chap.2,§12.

J. Rodriguez [8] has shown that the map

<,>;Ex0—+ T
given by
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(1.8) <¢§,g> := Z n_1r 6(")(0)9(’1)(0)’

n=o °
where E is Ero 1» is a duality braeket (Horvdth [2], Chap.3,
§2). If £* and 0* respectively denote the topological dual
spaces of £ and 0 (Horvath [2], Chap.3, 2), the duality brack-
et <,> allows for the identifications E* = 0 and 0* = E as
vector spaces. He has given interesting applications of the
above duality to the theory of complex differential equations.

The main purpose of this paper is to extend those dual-
ity results to EB, . This we do by means of an appropriate
bracket. The arguments for the general case turn out to be
subtler than those in the case p = 1, B = +», Thorough study
of the topologies originating in the duality is also made.
Applications to complex differential equations are currently
under research and will be the subject of a forthcoming paper.

§2. Basic Results. The following result characterizes the

entire functions in E .
B, p

THEOREM 2.1. Let 0 ¢ C < +o, 0 < p < +», Then, for
6€

C p'
’

IHT n

holds for all n > 1. Conversely, if for some A > 0 and some

n > 1
o/

n/p
(2.2) la,| < A(SR)
holds for n > nos then
§(z) = Zanz
18 an entire function in EB p for all B > C.

Proof. Assume § = EC p* The Cauchy estimates give
’
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P} o.CRP
(2.4) [1/n2 62770 < Ml p=—» R >0, n 20,

and (2.1) follows from this by taking R = (n/pC)1/p for each
n > 1. Assume conversely that (2.2) holds for n 2 ", and let
§ be given by (2.3). Clearly § « 0. If

p
(2.5) Fn(n) 1= ecd /n", >0, nx1,

then Fh(a) = 0 if, and only if, 2 = (n/Cp)1/p. Since

2' i i = o
(2.6) iiﬁ Fo(1) %1@ Fo(n) +oo,

it follows that

P
1/p cpyn/p _ oC1
T = (&P e =
(2.7) Fallgy) ) = ()7 <« 5= (1)
for all o > 0. Therefore
cnP
e
|an|<A—,Ly—l—, noyong.

Let 0 £ C < B and let o = (B/C)1/p, so that o > 1. If z # 0
and 2 = a|z| then

- p p - p
M ¢ A g " clzl™ . . neBlzl’

lanz <

Hence 1-n

C 1 gBlz|P 0
—1—9- ) Z# ’
and this inequality trivialy holds if z = 0. Obviously

n0-1

P
| § a,2"] < aeBlZlP e,
n=o0
for some A' > 0. Therefore
P
[ §(2)| < avBlzl , z<«(C,

1-Vlo
14 oL max{A',AEETT—}. This proves the theorem. A
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REMARK 2.1. Further work shows that under conditions
(2.2) there is a constant M > 0 such that the function

T n
§(z) = ) a z  satisfies
n=o "

(2.8) 1§C)| < M(1+]z|PyeClzl?, 2 e,

where bounds for M can be given in terms of § and C. This is
the best type of estimate we have been able to obtain along

this lines. It does not guaranty that § < E, p*
COROLLARY 2.1. If
(2.9) §(2) = [ apz",

if and only if for some
1,

then § is an entire function in E

B,p
0 < C < B, some A > 0, and some no’z

eCpyn/p
(2.10) la, | < A(%E)

holds for all n 2 oo

REMARK 2.2. If C > 0 2t follows that

(Egﬁ]n/pzn

n

I~ 8

(2.11) 6(z) =

n=1

is an entire function in EB p for all B > C. Let B1 < Bzand

take B, < C < B,. Then §, as given by (2.11), is in EB,,p.

If we had § = EB1,p then for some constant A > 0 and some
n, > 1

eCpyn/p eBypyn/p

()P < ABME, ws g
This is absurd as (C/B1)n/p + o when n » o, It follows that
EB]~P = EBZ'p but EB-l,p # EBZ’p.

Let P be the algebra of polynomials with complex coef-
ficients. Clearly P ¢ EB,p for all 0 < B < +o, 0 < p < +»,
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Since P is dense in 0, the topology of Eg p 18 strictly
’
stronger than the topology induced from 0. The estimate

' 1/
vt ol

holds for all n > 0. This follows from the Taylor develop-
ment of ex, since then

pn P
1 o8y /P2 P" ¢ oPBIZ]

For each o > 1 there is also " > 1 such that

n/p

n n
(2.13) |z "B,p < a (533- »oomxon .

1/n

This follows from (n!/n") < oP/e holding for large n.

THEOREM 2.2. Let § = EB 0 < Bg +®, 0 < p < +», Then
’

the Taylor series

p'

I (1/n2) 60 (02"
n=o
converges to f{ in EB p*
Proof. Assume { « EC p? 0 <C< B, and let o > 1 be
such that aPC < B. The Cauchy estimates give

|1 Bzt < T o, S e
k=n+1 P (a]z])

k=n+1 =n+

7
~
2|
p—
—
o
o
o

so that

T 1 ,(k) k v Lk
2.14 0 o L ]
( ) Ik=§¢+1 gr 6 (0)z Iapc,p <{k=£+1(a) Hﬁllc’p

It follows that

o

(2.15) ] B0, noss,

=n+1
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in E This proves the theorem. a

oPe, p

REMARK 2.3. The proof of the above theorem shows that
if ¢ > 0 and § = EC p then the Maclaurin Series of § conver-

ges to § in EB,p for all B > C.

COROLLARY 2.2. For each 0 < B g +», 0 < p < +o, P is

dense in gB,p'
For each 0 < C, B < +», let

E - t

°8,c,p " C,p B,p

be the linear map
(2.16) og. ¢, p(§) (2)i= §((B/C)!/P2) = f(2)
Since

7 B|z|P

[§(2) | < lﬂﬂc’pe
then

1815, < 16lc , -

so that

leg,c,pl <1 -

On the other hand

=1 1

(2.17) eg,c,p°fc,8,p = 'B,p*  Pc,B,p°"8,C,p 7 C,p

are respectively the identity maps of Eg p and EC p* Then
(2.18) leg c, ol =1

and °8,C,p is a toplinear isomorphism of EC,p onto EB,p'

Clearly

(2.19) pB,C,p(P) = P.
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Now we can state the following corollary of Theorem 2.2:

COROLLARY 2.3. If 0 < C < B < +», the topology on EC p
’
induced from EB p is strictly weaker than the topology of
’
E .
c,p
Proof. Assume the two topologies coincide in EC p.From
’
the proof of the theorem, the Maclaurin series of
§ < EC p converges in EB to 4. Hence, it also converges
’ ’
in EC p to this function. Then, P is dense in EC p Since
’ ’
pB,C,p is a homeomorphism, also P is dense in EB,p . There-

fore Ec p = E which is absurd. &

B, p’

§3. Duality. Let 0 € B < +o, 0 < p < +», and denote with
Dg,, the open disk (0, (Bp) '/P) and with Dy , its closure
(D+m’p = D+w’p = C). Also, OB,p will be the space of ana-
lytic functions in vB,p . Let

~

< ,>:EB,pXOB'p-+ C
be the bilinear map
(3.17) <§,9> := § Lﬂill%f §( 0y ()
n=o (n!)
Since
(3.2) <4, = )P M), <g> = ()P g (),

<,> is non-degenerate, i.e., if <¢,g> = 0 for all g ? OB,p
then § = 0, and also g = 0 if <§,g> = 0 for all § = EB,p
It is also continuous. To prove this last assertion we will
show that the restriction of <,> to Ec,pxos,p, 0 < C < B,

is bounded. This follows at once from (2.12) and the Cauchy

estimates, for if e E g = 0B p and C < R < B then

C,p’

(3.3) |<6,9>] < Mc,plélc'plglgk’p
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where

’

© v 1/p n/

as follows from

w1/ np 1/p e 1/p cV/p
) €5 65) -(5) < 1.
Now let E; and 0; p respectively denote the topological

dual spaces of EB p and OB,p' For each § = EB,p and g = OB,p

’

let T(ﬂ):OB,p-* C and L(g):EB'p-» C be the maps

(3.5) T(§)(®) := <§,9>,L(g) (V) := <¥,g9>

Obviously T(4) and L(g) are linear. For { = EC P’ C < B,
0 dC<R< B, ’
9% Ngip 49

(3.6) Tl = 1L (D] < M gléle, plalp, |
holds. Thus T(§) € og,p, L(g) = E;,p.

THEOREM 3.1. The linear maps T:EB p—+ OB p and
= ’ ’ a
L;OB,p ks EB,p given by (3.5) are 1-1 and onto.-If EB,p and
OB p are respectively given their weak topologies

O(Eg,p'gB,p) and o(Og’p,OB'pL these maps are also continuous.

Proof. For the notion of weak topology, see Horvith
[2], Chap.3,52. That T, Lare 1-1 follows from the non-degen-
eracy of <,> and their continuity results from (3.6). It re-
. * * .
mains to prove that they are onto. Let § =« 0B p and define

) *
(3.7) §(z) := 3 Eﬁ—f%;% ",
n'

n=o

Because of the continuity of 6* there are M > 0 and 0 <R <8B

such that

16°@D] < Mzl o on= 02,
Therefore
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T CRETE Sk
n'

’ n

v
-
-

and thus § = EB,p' Since

* (=<}
(3.8) §°( 1 b,2" = 16"
n=o n=o
if the series is uniformly convergent on compact subsets of
. 4 5V, B n * :
DB . p’ it follows that if g(z) = néob"z = OB,p then { (g)
<f§,9> and thus 5 = T(4).

Now let g = E; . From (2.12) and the continuity of
g*, given 0 < C < B there is MC > 0 such that
1/p
. n n (n!)
lg (z )l < Mclz IC,p < MC —(W
If
o * n
(3.9) 9(z) = ] L&
n=o0 (n!)
from

QILE;%_|1/n R
(nt) /P ¥ 7p

it follows that the series defining g has radius of conver-
gence (Cp)1/p for all 0 < C < B. Hence g e:O B,p" Since the

Taylor series 2 a, 2" of § = EC ,p converges to {§ in EB p’

(3.10) () = I a8 (2" = <40
n=o
and thus g* = L(g). This proves the theorem. A

COROLLARY 3.1. For each 0 < B g += and each 0 < p £ +»,

EB,p i8 a Hausdorff space.

Proof. Assume §(z) = zoa z" # 0 is in EB . Then a, #0
for some n > 0 and therefore L(z")(§) # O. Since z" « 0B "
then g = L(z ) = EB ,p’ so that the sets

u={y=tg, llg"w] < LENOIE
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v=fy ety l1a" W > 7la" (1)

are disjoint open neighborhoods of 0 and § respectively.
Hcen, EB p is a Hausdorff space. A

REMARK 3.1. The above argument also shows that
) is a Hausdorff topology An entirely similar

o(EB p,E; p
’ »
) is also Hausdorff.

argument proves that 0(0B ,p’

COROLLARY 3.2. Let 0 < C < B g +», 0 < p < +», Then,
the topology of EC,p 18 strictly stronger than the induced
topology from EB,p 3 )

Proof. Since the inclusion map LB,C,p:EC,p'* EB,p is
continuous, the induced topology is weaker than IC,p' Assume
they coincide. Since EC, is a Banach-spase and EB,p is Haus-
dorff, it follows that EC p is closed in EB p’ Since

PctE EC,p # E and,P is dense in EB,;’ this is absurd. A

C,p’ B,p

COROLLARY 3.3. Let 0 < C < B. Then, the topology of
EC 18 strictly stronger than the induced topology from

Proof. The induced topology is clearly weaker than the
topology %C,p of %c . Let g be analytic on DC with a sin-
gularity on |z| = (Cp)1/p, and assume the two topologies
coincide on EC p- Since EC p is dense in EB p and L(g) is
continuous on EC p? L(g) has a continuous extension h* to
EB,p- From the theorem there is h = 0g p such that h* = L(h).

But then h = g on vC,p’ which is absurd. A

COROLLARY 3.4. If 0 < C < B < +» then the topology of
EC,p 18 strictly stronger than the induced topology from
E ’
B, p ¥
Proof. The topology of E, p is strictly stronger than
~ ’
the induced topology from Eg p? and the latter is in its own
’

turn stronger than the induced topology from E A

B,p
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Now we will compare different topologies on EB having
their origin in the duality bracket. We recall that if E, F
are vector spaces, a bilinear map

(3.10) B:ExF — (

is called a pairing of E and F. The duality bracket <,> is
a pairing of EB p and 0B p* Let B be a pairing of E and F.
For x= E and y « F ;

(3.11) le o= |B(X:y)l» |y|x 2 IB(x;y)l

Y
are respectively semi-norms on E,F. The topology on E (resp.
on F) defined by the semi-norms | |y’ y « F (resp. | Ix'

x € E) is called the weak topology on E defined by B and is
denoted with o(E,F) (resp. the weak topology on F defined
by B is denoted with o(F;E)). The weak topologies are local-
ly convex, vector space topologies. Let Bp be the set of
bounded subsets of F for o(F;E) (resp. BE of E for o(E,F)).
The locally convex topology on E defined by the family of

seminorms
(3.15) |x|, := sup|B(x,4)|A < B,
yeA

is called the strong topology defined on E by the pairing B
and is denoted with B(E,F). The strong topology B(F,E) on F
is defined by the semi-norms

(3'16) ]ylA s suplB(X:U)l, AE BE'
X €A

For x = E, ye F, let Bx, B respectively denote the
linear maps on F, E given by Bx(z) = B(x,z) and B (z) =
B(z,y). If E', F' are the algebraic dual spaces of E and F
then B* < F' and By e E'. Let T:E » F' and L:F > E' be given
by

(3.17) T(x) := B*, L(y) := B,

If both T and L are 1-1, B is called a duality bracket for
E and F. A locally convex topology Tp on E (resp. Tg on F)
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is said to be compatible with B if L(F) = E*, where E* is

the topological dual of E for T (resp. if T(E) = F*, where
F* in the topological dual of F for TF). Among the locally
convex topologies on E (resp. F) which are compatible with

a duality bracket B there is a strongest, t(E,F), called

the Mackey topology of E for B (resp. t(F,E) is the Mackey
topology of F for B). A locally convex topology Tg on E (resp.
Tg on F) is compatible with B if and only if o(E,F) g TS
T(E,F) (resp. o(F,E) = t(E,F)). The relevant facts about
duality pairings can be found in Horvith [2], which is our

main reference source.

We recall that 7, P denotes the Banach space topology
of EC and TB is the inductive 1limit topology of EB p*
With T(O ) we will denote the topology on 0 of uniform
convergence on compact subsets of D(0, (Bp) /p) and we recall
that T(O ) is a Fréchet and Montel space topology on 0
For the notlon of a Montel space, see Horvath [2], Chap. 3
§9. Both TB'p and T(OB'p) are compatible with the duality
bracket <,>.

Let A be a bounded subset of 0 for 0(0B p’EB ) (Hor-
vath [2], Chap.3 §4). Since T(0g p) 1s compatlble w1th the
pairing <,> it follows from Mackey s theorem (Horvath [2],
Chap.3 §5) that A is bounded (and hence relatively compact)
for T(OB'p). For § = EC,p’ C < B, let

(3.18) l§14 := supl|<§,g9>]
geA

Then, for some constant M' > 0 and C < R < B we have

(3.19) 61, < P |l

Ile,p aeh V500, (or) 1/P)

and since A is bounded for 1(0B p)’ for some constant M > 0

’

depending onlyon Cand A we have

(3.20) L1, < Mlgle -
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It follows that the inclusion maps LB c, p C e E B,p are con-
tinuous if Ec ,p and EB ,p are respectlvely given the topologies

and B(E B,p)' Therefore

‘c,p
(3.21) B(Eg, 05, ) & Tg,p

Hence (Horvath [2], Chap.3,§8),

THEOREM 3.2. The topology T of E B,p coincides with
the strong topology B(EB p’ ) of this space.

~

COROLLARY 3.5. The space EB p is a complete Montel space
for ;B,p‘ ’

Proof. In fact, since OB is a Frechet space, it is
bornological (Horvath [2], Chap 3,87). Hence EB ,p is com-
plete for B(EB p B ) (Hérvath [2], Chap.3,87) and also a

Montel space (Horvath [2], Chap.3,89). A

Also

COROLLARY 3.6. On EB p the topological Tg p? the strong
topology B(EB,p’OB,p) and the Mackey topology T(EN,p’oB,p)

are all identical.

Now observe that, for 0 < B < +w, EB p is subspace of
’

EB,p'

THEOREM 3.4. The topology  Tg
stronger than the induced topology from Tg p of EB p*

of EB,p 18 strictly

Proof. Let Té g be the induced topology. Then T'B pS
~ ' & » ~ ’
IB’p. If B, p 8, p then EB'E would be a Banach space for
8, p But this is absurd, as EB p is Montel's and infinite

’
dimensional. A

REMARK 3.1. The proof of the above theorem shows that

no norm on EB,p can define %B,p‘
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§4. Further Results and Remarks. In section §2 we have shown
that the Maclaurin series of § = EB,p'O £ B #+0, 0 < p < +o,
converges to § for ?B,p‘ So far we have not been able to de-
termine whether the Maclaurin series of §{ = EB, , 0 < B < +»,
converges to § for TB’p, nor whether the set P of complex
polynomials is dense in EB,p' The following results may be

however of some interest.

Let E denote the topolog1ca1 dual of EB and let
| "B p denote the norm of EB p defining its strong topology
B(EB p’EB p)' Let 4: EB o * EB P be the inclusion map. Then<
is continuous, so that its transpose ¢ = t EB — OB,p is
continuous for the topologies o(EB p? EB p) on EB,p and
O(OB,p’EB,P ) on 0g , (Horvdth [2], Chap.3,§12). Furthermore

THEOREM 4.1. The map ¢ <s continuous tf EB p 18 given
the strong topology of | "B i and 0g , its topology (0, p)-

Proof If 6 = EB ? then also §* = EB,p’ so that the
series Z (5 (z"™)/ (n! ) P)z" defines an analytic function

in OB,p Erom (%) (2™ = <o(§%),2"> = § *(z") it follows
that

; " .
(4.1) o(g) = ] Bl
; nzo (nt) p ’

1f 0 < (Rp) /P < (Bp)'/P then, from (2.12),

[} * n
4.2 o(4* < (z),n
CRON CIC il ||n§o—(-f;3—1732 o, .

TR 1 v p n/p
~N TP Y R
p 81/p | *ﬂ*
) BI;BRI;p'é B,p’

oo

which proves the assertion. A

REMARK 4.1. Two forms 5*, g* e E; p define the same
’
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series nzoanzn in 0B p if and only if they coincide on the
set P of complex polinomials. This follows from 6*(zn) =

' 1/p _ *eon
(nt) a, =g (7).

REMARK 4.2. Let Eg*p be the topolog1ca1 b1dual (Horvath
[2], cahp.1,§7) of Eg,p and let ¥ = o . EB p= EB p be the
transpose map of ¢. Then ¥y is the composite map fod of L and
the inclusion map j of Eg, , into its bidual EB P, If EB p
x%’
is given the topology T8, p of the bidual norm | " p’ then
Y is continuous.

THEOREM 4.2. Let (§,) be the sequence of partial sums of
the Maclaurin series of f{ « EB,p' Then the following propo-
sitions are equivalent:

1) The 3equence (6 ) converges to some 6 in ngp for
9(Eg, pr EB, p) -
2) For any § = EB ,p°

(1, mrsP @ = 1 ",
3) For any {‘e EB,p’ E 1/n! 6(“)(0)6 (z") is convergent.

Proof. It is clear that (1) = (2) =¢(3). To show that

(3) = (1) consider 6 as an element of EB P Then
(4.3)  lim §,(6") = Lin §°(4,) = lin 21M'5@%m6(z)
nre N n+ k=0

7 17614 (0)¢* (2P,

=0

and therefore, for some constant C(é*) depending only on 6*,
*

(4.4) 16,061 < c(6").

In view of the Banach-Steinhaus Theorem (Horvath [2], Chap.
1,88),

(4.5) 16,6671 < Mg,

for some constant M > 0, independent on n and 6*. If 5**
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denotes the linear form on £§,p given by

(4.6) 76N = 1 g Pt Eb,
k=0 “°
it follows from (4.5) that
* % * kg ®
(4.7) A IS
% * *

%% * %

so that § € EB,p’ Clearly 6n > § for O(EB,p’EB,p)' A

REMARK 4.3. Now let 0 < B < C < +», The inclusion map
LC BEB p EC P is continuous for Tg,p and Tc LP Hence,
ic, 3 = tt¢c g is also continuous for O(EB p»EB p) and
c(EC p’OC p) (Horvath [2], Chap3,§12), so that §, - ie, 3(5 ~
for o(Ec p’EC p) But 6 + ¢ for o(EC psEC p) Hence
6§ = 4c 3(6 ) for C > B. However, it can not be asserted
that § " = §.

THEOREM 4.3. Let § « 0, and let p > 0 and q be such that
1/p+1/q = 1. Let (6n) be the sequence of partial sums of

the Maclaurin series of . If the serties
(4.8) ) [1/n:]1/q5(")(0)z"
n=o

has radius of convergence R > 0, then, for all B > 0 such
that 1/(p3)1/P <R, §is in Eg , and §, > § in Eg p. If R ==,
the above holds for all B > 0.

Proof. Let C < C' < D < B and assume (pC)1/p > 1/R. Then

for some " and all n > "o

(n) gy 1/
[ P < ey P,

so that if "y is large enough then
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In view of Theorem 2.1, § = Ep p» SO that § = Eg p* From Re-

mark 2.3, we conclude that 6n > ¢ in Eg p - A
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