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Resumen

En este trabajo analizamos la seguridad de construcciones criptográficas cúbicas con respecto

a la debilidad del rango. Detallamos cómo extender la idea de campo grande de cuadrático a

cúbico, y mostramos que la misma cáıda de rango ocurre. Extendemos el problema de rango

mı́nimo y proponemos un algoritmo para resolverlo en este contexto. Mostramos que para

rango bajo fijo, la complejidad es incluso más baja que en el caso cuadrático. Sin embargo,

el rando de un polinomio cúbico en n variables puede ser más grande que n, y en este caso

el algoritmo es muy ineficiente. Mostramos que el rango del diferencial no es necesariamente

más pequeño, lo cual vuelve inútil esta ĺınea de ataque si el rango es lo suficientemente gran-

de. Similarmente, el ataque algebráico es exponencial en el rango, y por lo tanto es inútil

para rango alto.

Palabras clave: criptograf́ıa de clave pública / criptograf́ıa multivariada, polinomios

cúbicos, rango tensorial, rango mı́nimo.

Abstract

In this work we analyze the security of cubic cryptographic constructions with respect to

rank weakness. We detail how to extend the big field idea from quadratic to cubic, and show

that the same rank defect occurs. We extend the min-rank problem and propose an algorithm

to solve it in this setting. We show that for fixed small rank, the complexity is even lower

than for the quadratic case. However, the rank of a cubic polynomial in n variables can be

larger than n, and in this case the algorithm is very inefficient. We show that the rank of

the differential is not necessarily smaller, rendering this line of attack useless if the rank is

large enough. Similarly, the algebraic attack is exponential in the rank, thus useless for high

rank.

Keywords: public-key cryptography / multivariate cryptography, cubic polynomials,

tensor rank, min-rank
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Introduction

Motivation

A few words on Cryptography

In naive words, a cryptosystem is an algorithm or algorithms that allow two users to share

secret information in the possible presence of a malicious third party, in such a way that they

are the only ones capable of seeing and manipulating this information. The first idea that

may come to our minds involve symmetric cryptosystems, where both parties need to have a

common shared secret key and they use that key to both encrypt and decrypt information.

This kind of cryptosystems impose a big problem, which is the process of agreeing on a

common key. If the parties are able to establish a shared secret key securely, why do not

they simply share the secret information in the same way? In historical contexts, this key was

established in a secure channel like a personal meeting, or a secure line, and this key was used

for some time. This may seem to work, but whenever the key must be replaced, the whole

complicated process of establishing the key must be repeated. Moreover, communication

today is performed between parties anywhere in the world, so a different approach is needed.

A new type of cryptosystems evade this issue. In asymmetric or public key cryptosystems,

we don’t have only one key but we have two keys per user, a private key which only the

user knows and a public key which is accessible by everyone. Whenever user A wants to send

a message to user B, he encrypts the message using B’s public key and user B decrypts it

using her private key. The well known RSA cryptosystem is a public key cryptosystem.

Post-Quantum Cryptography and MPKC

To introduce what post-quantum cryptography is, consider the cryptosystem RSA. It is

widely accepted that computers today cannot factor big integers into primes in an efficient

manner. This is crucial to the security of RSA since, if one is able to factor large integers

into primes, then one is able to find RSA private keys and therefore the cryptosystem is

broken. However, quantum computers can perform this task in polynomial time so when

these computers appear RSA will not be secure anymore. Moreover, the Diffie-Hellman

key exchange protocol and many other cryptographic primitives widely used today will be

useless once quantum computers appear [Shor, 1999]. This means that, in order to mantain

our communications secure, we need new cryptosystems whose security is based on problems
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that can not be solved neither by classical computers nor by quantum computers.

There are many problems that we can rely on to build quantum secure cryptosystems

[Bernstein et al., 2008]. The one of interest to us is that of finding the solutions of a quadra-

tic multivariate polynomial system over a finite field, whose associated decisional problem

is NP-complete [Garey and Johnson, 1990], and public key cryptosystems whose security is

based on the computational difficulty of solving this problem are within the field of Mul-

tivariate Public Key Cryptography (MPKC) [Ding et al., 2006]. In these systems the

public key is usually a tuple of multivariate quadratic polynomials and encryption is perfor-

med by evaluating those polynomials at the desired message, thus, being able to solve this

system (set equal to some constants) gives us the ability to find secret messages.

Groebner Bases

Given an ideal I of a polynomial ring F[x1, ..., xn], where F is a field, a Groebner basis of I

is a particular finite generating set of I that has some special and useful properties. In the

context of multivariate polynomial rings, a basis for a polynomial ideal is a generating set of

such. This fact, along the name of the thesis advisor of Bruno Buchberger, the developer of

the theory [Buchberger, 1965], gives the name to Groebner bases. Such basis can be used to

solve many algebraic geometry and computational algebra problems, but the most important

for MPKC is that it allows to find the zeros of polynomial systems quite efficiently.

A Groebner basis can be computed from any given finite basis and there has been a lot of

work in developing more efficients algorithms to accomplish this. However, as we pointed

out before, solving a system of polynomial equations over a finite field is known to be a

hard computational problem so finding a Groebner basis is a hard computational problem

by itself.

Recall that cryptosystems developed within the frame of multivariate public key crypto-

graphy (MPKC) can be broken if one is able to solve certain system of polynomial equa-

tions, therefore, finding a Groebner basis of the ideal generated by those polynomials is a

critical step for breaking such cryptosystems. As mentioned before, finding a Groebner basis

is not an easy task in the general case, however, the polynomial equations that arise from

MPKC cryptosystems are far from being general because of the necessity of leaving a trap-

door for the legitimate user (the private key). Studying then the complexity of Groebner

bases algorithms for the polynomial equations that arise from a particular cryptosystem has

become critical for the security of such, and a better understanding of the factors affecting

the computation has became imperative. A usual way to measure this complexity is to look

at some intrinsic properties of the polynomial system known as the degree of regularity

and the falling degree, which we will explain in detail.

The importance of tensor theory within this field becomes apparent once we consider the fact

that tensors are a natural generation of matrices, and allow for a general treatment in the

case of higher dimensions. Moreover, especially relevant for cryptography is the existence
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of problems whose computational complexity is too hard for modern computers, so that

secure schemes can be built. It is surprising that many simple problems regarding tensors of

dimension higher than two are provably hard in the worst case, and with a thorough analysis

it may be possible to argue that some of these problems are also hard in the average case.

This would provide a new source of hard computational problems that could be used to build

cryptographic primitives

Min-Rank Problem

The min-rank problem (MR) is, given k m × n matrices and a target rank r, to determine

whether there exists a linear combination of the matrices of rank less or equal to r. Alt-

hough NP-complete in its general setting, there are efficient algorithms to solve it for certain

parameters. Indeed, Kipnis and Shamir modeled an attack on the HFE system as an MR

problem and were able to break it. Since then, other multivariate public key schemes (MPK)

have been subject to similar attacks. Rank defects also lead to other weakness such as a

fixed degree of regularity in the algebraic attack on HFE [Ding and Hodges, 2011].

The importance of the rank itself, and the prevalence of MR as an attack technique in MPK

suggest a more central role as the underlying problem that supports security. For example,

we can think of HFE as a way to construct low rank quadratic polynomials. Their low

rank allows inversion, but it is insecure because the same low rank is preserved as a linear

combination of the public key which can be efficiently solved through the Kipnis-Shamir

modeling (KS) of MR.

Although the MR problem is stated for two-dimensional matrices, it can be naturally exten-

ded to d-dimensional matrices. It is particularly interesting to analyze it for three-dimensional

matrices, since rank problems become much harder there. For example, simply determining

the rank of a matrix is difficult for three-dimensional matrices, and it is not even known the

maximum possible rank a matrix may have (see e.g. [Hillar and Lim, 2013a]).

Three-dimensional matrices lead to cubic polynomials. They are less common than quadratic

polynomials in MPKs for two reasons. First, they are larger thus less efficient than quadratics.

But more important, if f is cubic, its differential Dfa(x) := f(x+a)−f(x)−f(a) is a quadra-

tic map that preserves some of the properties of f . Thus, it is possible to extend rank analysis

techniques from quadratics to cubics targeting the differential, c.f. [Moody et al., 2017]. Yet

one important question remains open: Is this a general property of any cubic map that

dooms any such construction? In this thesis we address this question, by taking a general

perspective not focused on a particular construction.

Main Contributions

In order to close the knowledge gap, we gather the appropriate literature to frame the

discussion of the rank of cubic polynomials. We use the language of tensors that allows for
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very natural extensions of key concepts from two to d-dimensional matrices.

We extend the MR problem to three-dimensional matrices and we propose two ways to solve

it, which naturally extend the KS modeling. Interestingly, if the rank is small, the complexity

is even lower than for the quadratic case. However, the rank of a cubic polynomial in n

variables can be larger than n, and in this case the attack is very inefficient.

Our results can be summarized as follows.

A generalization of the Min-Rank problem to the 3-dimensional case and an algorithm

to solve it

Applications of the cubic Min-Rank problem to Multivariate Public Key Cryptography

A new multivariate encryption scheme whose security arguments the point developed

above

We also discuss the relevance of two other typical lines of attack for MPK in the context of

cubic low rank polynomials, namely the algebraic and differential attacks. We show that the

rank of the differential is not necessarily much smaller than the rank of the cubic polynomial,

rendering this line of attack inefficient if the rank is large enough. Similarly, the algebraic

attack is exponential in the rank, thus useless for high rank.

Although our approach is general, we provide a detailed example. We show how to efficiently

construct cubic polynomials over a finite field from a weight three polynomial over a field

extension, extending the so called big field idea. And then, we show that the rank is preserved

by this construction in the sense that, a low rank core polynomial leads to a set of cubic

polynomials with a low rank linear combination.

Part of the work presented in this thesis has been published and presented at the PQCry-

pto conference, in April 2018 [Baena et al., 2018], with the coauthors John Baena, Daniel

Cabarcas, Karan Kathuria and Javier Verbel. The goal of this thesis is to extend that work.

Outline of the Document

This document is divided in three parts. In Part I we introduce all the necessary background

for the treatment of the forthcoming sections. This includes tensor theory but also some

algebraic geometry and Gröbner bases.

In Part II we discuss the main computational problem considered in this work: the Min-Rank

problem. We introduce the Min-Rank problem in its original quadratic form and discuss

some of the approaches for its solution considered in the literature. Then we discuss its

generalization to the cubic case by using the theory introduced in the first part, and we

show how to approach this computational problem in this new setting.

Finally, in Part III we show the applications of the cubic Min-Rank problem to MPKC,

including our novel encryption scheme HiRaC.
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1. Algebraic Preliminaries

1.1. Basic Algebraic Structures

An abelian group is a non-empty set G equipped with some commutative, associative ope-

ration + and with an element 0 ∈ G such that for all a ∈ G : a + 0 = a. A commutative

ring R is a set with two different operations +, ·, such that for all a, b, c ∈ G it holds that

a · (b + c) = a · b + a · c and (R,+) and (R, ·) are groups. The identity of the product (·)
is denoted by 1. Finally, a field is a commutative ring F with the property that for every

nonzero a ∈ F there exists an element a−1 ∈ F such that a · a−1 = 1. In this work we focus

solely on finite fields, i.e., fields with a finite number of elements. In the next section we

describe particular properties of finite fields.

1.2. Finite Fields and Field Extensions

Let p be a prime and let Fp denote the ring of integers modulo p. It is easy to show that

this is in fact a field. We denote by Fp[x] the ring of polynomials in the variable x with

coefficients in Fp. This is a ring under usual polynomial addition and multiplication. Notice

that Fp is naturally embedded in Fp[x] as the subring of constant polynomials.

Let h(x) be a polynomial in Fp[x]. We say that h(x) is irreducible if it is not divisible

by a polynomial of degree strictly smaller than deg(h). We define the ideal generated by

h(x), denoted by (h(x)), as the subset of Fp[x] given by the polynomial multiples of h(x).

It can be shown than in fact this is a subring that is closed under multiplication by any

polynomial. The quotient ring of Fp[x] and (h(x)), denoted by Fp[x]/(h(x)), is defined as the

set of equivalence classes of Fp[x] under the relation f(x) ∼ g(x) if and only if h(x) divides

f(x)− g(x). For practical purposes this can be regarded as the set of polynomials in Fp[x] of

degree strictly less than deg(h), with addition and multiplication performed modulo h(x).

Using the fact that Fp[x] is a principal ideal domain it is easy to prove that (h(x)) is a maximal

ideal if h(x) is an irreducible polynomial, and therefore the quotient ring Fp[x]/(h(x)) is in

fact a field, which we denote by Fpn , where n = deg(h). This field, as the name suggests, has

pn elements. Moreover, it is isomorphic as a vector space to Fnp = (Fp)n via the mapping that

sends a polynomial of the degree at most deg(h)− 1 to the vector holding its coefficients.
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1.3. Vector Spaces

The only vector spaces we will be concerned with in this work are finite-dimensional vector

spaces, therefore, we will not need a general treatment of such. Let F be a field. The vector

space Fn is the additive group of vectors of length n, under point-wise addition. We also

denote by Fn×m the vector space of matrices over F of dimensions n × m, and to extract

the entry in position (i, j) we write A[i, j], or sometimes Ai,j. Additionally, the i-th row of a

matrix A (as a row vector) is denoted by A[i, ·], and similarly A[·, j] for the j-th column (as

a column vector).

Vectors are denoted by bold letters, e.g. u,v, and they are treated as column vectors by

default unless stated otherwise. The vector ei denotes the i-th canonical vector, i.e. the vector

whose only non-zero entry is the i-th one, which is equal to 1. The i-th entry of a vector u is

denoted by u[i], but sometimes we also use the non-bold version of the corresponding letter

with subscript i: ui.

A three dimensional matrix of dimensions n ×m × ` is an array of elements in F indexed

by tuples (i, j, k), where 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ k ≤ `. Notice that this is a natural

extension of the usual (bidimensional) matrices. The vector space of these three-dimensional

matrices is denoted, not surprisingly, by Fn×m×`, and the entry indexed by (i, j, k) in a matrix

A ∈ Fn×m×` will be denoted by A[i, j, k]. We denote by A[i, ·, ·] the two-dimensional matrix

whose entry (j, k) is given by A[i, j, k], and similarly for A[·, j, ·] and A[·, ·, k].

1.3.1. Rank of a Matrix

We recall the definitions of the rank of a matrix A ∈ Fn×m. The following are equivalent

definitions for rank(A):

Dimension of image: The dimension of the image of the linear map f : Fm → Fn given by

f(x) = Ax

Column rank: The maximal number of linearly independent columns of A

Row rank: The maximal number of linearly independent rows of A

Rank-Nullity Theorem rank(A) = m− dim(K), where K is the kernel of A (i.e. the vector

space formed by u ∈ Fm such that Au = 0)

Determinantal rank: The largest order of any non-zero minor in A

Factorization Rank The minumum number r such that A can be factored as A = CF where

C ∈ Fn×r and F ∈ Fr×m.

Tensor rank: The minumum number r such that A can be written as A =
∑r

i=1 uiv
ᵀ
i , where

ui ∈ Fn×1 and vi ∈ Fm×1.
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Of particular interest to us is the last definition, since it is the one that is more naturally

generalized to matrices of larger dimensions.

1.4. Polynomial Rings

During the rest of this document we assume that F is a finite field of characteristic not 2 nor

3.

We denote by F[x] the ring of univariate polynomials in x with coefficients in F. Also, if

x = (x1, . . . , xn), we denote by F[x] the ring of multivariate polynomials in the variables

x1, . . . , xn with coefficients in F. A non-zero polynomial in F[x] has degree d if each of its

monomials xα1
1 · · ·xαn

n satisfies α1 + · · ·+ αn ≤ d, and moreover, it is called homogeneous of

degree d if equality holds for all monomials.

In this work we will be mostly dealing with quadratic and cubic polynomials, meaning that

they have degree 2 and 3 respectively. Also, we will focus in homogeneous polynomials,

although many of the arguments extend for the affine (i.e. non-homogeneous) case as well.

Any quadratic homogeneous polynomial f(x) ∈ F[x] has the form f(x) =
∑n

i,j=1 ai,jxixj.

This expression can be written as f(x) = xᵀAx, where A ∈ Fn×n is defined by A[i, j] = ai,j.

We will have more to say about the properties of this matrix in Section 2.3.

1.5. Lifting Polynomials

In this section we explore the relations between polynomial rings over different fields F and

K, where K is a field extension of F. These results will be useful in the context of Multivariate

Public Key Cryptography, where we construct encryption schemes using the so-called Lifting

Idea, which involves polynomial rings over several fields and transformations among them.

1.5.1. Frobenius Powers

Let K be a field extension of F, where F is a finite field of characteristic q. Recall that every

finite group with t elements satisfies xt = e for all x in the group, where e is the identity

of such. If F is a field, then every nonzero element of F admits a multiplicative inverse and

therefore F∗ := F \ {0} is a multiplicative group with identity 1. Since every finite field has

qn elements where q is its characteristic, we conclude that xq
n−1 = 1 for all x ∈ F∗, and

therefore xq
n

= x for all x ∈ F. In particular, xq = x for all x ∈ Fq (these are the so-called

Field Equations).

Recall that F is a field extension of Fq and therefore a Fq-vector space, the following is a

very important proposition.

Proposition 1.5.1. The function F → F defined by x 7→ xq is a Fq-linear transformation,

that is, (ax+ z)q = axq + zq for all a ∈ Fq, x, z ∈ F.
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This linear transformation is known as a Frobenius Transformation, and its importance will

become clearer in the next few sections.

Linear Combinations of Frobenius Powers

Consider a field extension K of F of degree n. So far we have seen that every element in

α ∈ K can be written as α = b0 + b1y
1 + · · ·+ bn−1y

n−1, and this defines the bijective F-linear

transformation

φ : K −→ Fn

b0 + b1y
1 + · · ·+ bn−1y

n−1 7−→ (b0, b1, . . . , bn−1).

We know that the Frobenius transformationX 7→ Xq forX ∈ K is an F-linear transformation

and therefore so is every polynomial of the form

F(X) =
n−1∑
i=0

αiX
qi , (1-1)

implying that the composition φ ◦ F ◦ φ−1 : Fn → Fn is F-linear as well, that is, it is given

by n polynomials, each one homogeneous of degree 1. On the other hand, one can show that

if F : Fn → Fn is a linear transformation, then F(X) = φ−1 ◦F ◦φ(X) has the shape above.

In fact, let α = b0 + b1y
1 + · · ·+ bn−1y

n−1 ∈ K, then for each i = 0, . . . , n− 1 it is clear that

αq
i

= b0 + b1 (y1)
qi

+ · · ·+ bn−1 (yn−1)
qi

(since bqi = bi), and therefore
α

αq

αq
2

...

αq
n−1

 =


y0 y1 · · · yn−2 yn−1

(y0)q
1

(y1)q
1 · · · (yn−2)q

1
(yn−1)q

1

(y0)q
2

(y1)q
2 · · · (yn−2)q

2
(yn−1)q

2

...
...

. . .
...

...

(y0)q
n−1

(y1)q
n−1 · · · (yn−2)q

n−1
(yn−1)q

n−1




b0

b1

b2

...

bn−1

 .

Since φ(α) = [b0, b1, . . . , bn−1]ᵀ, we have that

α = ∆ · φ(α) (1-2)

where α is the vector [α, αq, αq
2
, . . . , αq

n−1
]ᵀ and ∆ is the matrix involving y’s above. It is

easy to see that ∆ is invertible [Lidl and Niederreiter, 1997] and therefore ∆−1 ·α = φ(α). If

M ∈ Fn×n is the matrix representing the linear transformation F , then F ◦φ(α) = M ·∆−1 ·α
and therefore φ−1 ◦ F ◦ φ(α) is the dot product between the vectors [y0, y1, . . . , yn−1]ᵀ and

M ·∆−1 ·α, which clearly has the shape in Equation (1-1).

We will generalize this result in the following.
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1.5.2. Correspondence of Polynomials

Given a nonzero natural number b, any other nonzero natural number a can be written

uniquely as a = c1b
0 + c2b

1 + · · ·+ c`b
`−1 where 0 ≤ ci < b for all i. We say that (c1, . . . , c`)

is the expansion of a in base b, and we refer to d =
∑`

i=1 ci as the b−Hamming weight of

a. In order to extend the definition we define the b−Hamming weight of a = 0 to be 0. To

illustrate the concept, a has q−Hamming weight 2 if and only if it has the form a = qi + qj.

Definition. The weight of a monomial Xa ∈ K[X] is the q−Hamming weight of a. A

polynomial F(X) ∈ K[X] is said to be homogeneous of weight d if all of its monomials have

weight d, and it is said to have weight d if all of its monomials have weight at most d.

We aim to prove the following theorem, which will be the heart of what we will develop next.

Recall our notation R := F[x1, . . . , xn].

Theorem 1.5.2. (Correspondence of Polynomials). Let d ≥ 0 be an integer, let K[X]d
denote the set of homogeneous polynomials in K[X] of weight d and let (Rd)

n = Rn
d denote

the set of all functions F : Fn → Fn where each coordinate is a homogeneous polynomial in

F[x1, . . . , xn] of degree d, these sets are naturally F-vector spaces. The following is a well-

defined bijective linear transformation

Drp : K[X]d −→ Rn
d

F 7−→ φ ◦ F ◦ φ−1.

whose inverse is

Lft : Rn
d −→ K[X]d

F 7−→ φ−1 ◦ F ◦ φ.

Before we get into the proof of this theorem, we will need the following lemmas.

Lemma 1.5.3. Let K = F[y]/〈g(y)〉 where g(y) = yn + an−1y
n−1 + · · · + a1y

1 + a0 is an

irreducible polynomial over F. Let

C =


0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

...

0 0 · · · 1 −an−1

 ,

then for any α ∈ K we have that φ (αyj) = Cj · φ(α).
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Demostración. It suffices to show the result for j = 1 since the general case follows from an

iteration of this case. Let α = b0 + b1y
1 + · · ·+ bn−1y

n−1 ∈ K, then

α · y = b0y + b1y
2 + · · ·+ bn−2y

n−1 + bn−1y
n

= b0y + b1y
2 + · · ·+ bn−2y

n−1 + bn−1(−an−1y
n−1 − · · · − a1y

1 − a0)

= −a0bn−1 + (b0 − bn−1a1)y1 + · · · + (bn−2 − bn−1an−1)yn−1

hence φ(α · y) = [−a0bn−1, b0 − bn−1a1, . . . , bn−2 − bn−1an−1]ᵀ, which is the same as C · φ(α)

since φ(α) = [b0, b1, . . . , bn−1]ᵀ.

Lemma 1.5.4. Let Q(X),F(X) ∈ K[X] where F has the shape in equation (1-1). We

already know that in this case φ ◦ F ◦ φ−1 is given by n homogeneous degree 1 polynomials

p1, . . . , pn ∈ R. Then, for all X ∈ K we have that

φ (F(X) · Q(X)) =
n∑
i=1

pi (φ(X)) · Ci−1 · φ (Q(X))

Demostración. Let x = φ(X), hence

F(X) = F
(
φ−1(x)

)
= φ−1

(
φ ◦ F ◦ φ−1(x)

)
= φ−1 ([p1(x), p2(x), . . . , pn(x)]ᵀ) = p1(x) + p2(x)y + · · · + pn(x)yn−1

and therefore, since pi(x) ∈ F, due to the previous lemma we have that

φ (F(X) · Q(X)) = φ
(
p1(x)Q(X) + p2(x)yQ(X) + · · ·+ pn(x)yn−1Q(X)

)
= p1(x)φ (Q(X)) + p2(x)φ (yQ(X)) + · · ·+ pn(x)φ

(
yn−1Q(X)

)
= p1(x)φ (Q(X)) + p2(x)CQ(X) + · · ·+ pn(x)Cn−1Q(X)

=
n∑
i=1

pi (φ(X)) · Ci−1 · φ (Q(X)) .

Proof of Theorem 1.5.2. We begin with the proof that this function is well defined by proving

that for every monomial F(X) = Xa ∈ K[X]d it holds that Drp (F) ∈ Rn
d . Clearly, this is

enough since lemma 1.5.3 ensures that this is true for terms αXa and therefore it is true

for any homogeneous polynomial of weight d since Drp is a composition operation so it is

additively homomorphic. The claim is clear for d = 0 since in this case a = 0 and therefore

the polynomial F(X) = α is constant, as well as Drp(F) ∈ Rn
0 . Let’s assume the claim holds

for d and let’s prove it holds for d+ 1 as well. Since a has weight d+ 1 it can be written as

a = b+ qi where b has weight d so F(X) = Xa = XqiXb. By lemma 1.5.4 with Q(X) = Xb

we have that

φ (F(X)) = φ
(
XqiQ(X)

)
=

n∑
i=1

pi (φ(X)) · Ci−1 · φ (Q(X))
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where each pi is a homogeneous degree 1 polynomial, therefore

Drp (F) (x) = φ ◦
(
F
(
φ−1(x)

))
=

n∑
i=1

pi
(
φ
(
φ−1(x)

))
· Ci−1 · φ

(
Q
(
φ−1(x)

))
=

n∑
i=1

pi
(
φ
(
φ−1(x)

))
· Ci−1 · φ

(
Q
(
φ−1(x)

))
=

n∑
i=1

pi (x) · Ci−1 · Drp (Q) (x),

but using the induction hypothesis we see that Drp (Q) (x) is a vector with n homogeneous

polynomials of degree d, so Drp (F) (x) is a vector with n homogeneous polynomials of degree

d+ 1.

Proving that Drp is bijective is not a problem now. Let F ∈ Rn
d , then F = φ−1 ◦ F ◦ φ is a

polynomial in K[X] (every function K → K is a polynomial function), which we can write

as

F =
d′∑
`=0

F`

where each F` ∈ K[X] is homogeneous of weight `. Due to what we have proved, Drp (F`) ∈
Rn
` for each `, since

F = Drp (F) =
d′∑
`=0

Drp (F`)

and F ∈ Rn
d , we conclude that F` = 0 for all ` 6= d and F = Fd ∈ K[X]d. This shows that

F 7→ φ−1 ◦ F ◦ φ is the inverse of Drp.

1.5.3. Computation of Liftings and Droppings in the Quadratic Case

The results from the previous section show that given any polynomial system F of degree d

over K, we can obtain a univariate polynomial of weight d over F by computing Lft(F ), and

viceversa by using Drp. The proof of this fact we gave was not constructive. However, for

computational purposes it is useful to have a more direct way for computing Drp (F) from

F and Drp−1(F ) from F . In this section we provide expressions for achieving this in the

quadratic case. This is well known due to its applications in MPKC, and we dedicate this

section to this matter. In Section 6.1.1 we provide similar formulas for the cubic setting.

Let p(x1, . . . , xn) ∈ R be a quadratic polynomial, then p has the form

p(x1, . . . , xn) =
n∑

i,j=1

aijxixj +
n∑
i=1

bixi + c

and therefore can be written as

p(x1, . . . , xn) = xᵀAx +Bx + c

where x = [x1, . . . , xn]ᵀ, A ∈ Fn×n is the matrix [aij]ij and B ∈ F1×n is the matrix [bi]1i.
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It is interesting that we can have the same sort of representation with polynomials in K[X]

having weight at most 2. These have the shape

F(X) =
n∑

i,j=1

αijX
qi−1+qj−1

+
n∑
i=1

βiX
qi−1

+ γ

and therefore can be written as

F(X) = XᵀMX +NX + γ

where X = [Xq0
, . . . , Xqn−1

]ᵀ, M ∈ Kn×n is the matrix [αij]ij and N ∈ K1×n is the matrix

[βi]1i.

For the following we need to recall the invertible matrix

∆ =


y0 y1 · · · yn−2 yn−1

(y0)q
1

(y1)q
1 · · · (yn−2)q

1
(yn−1)q

1

(y0)q
2

(y1)q
2 · · · (yn−2)q

2
(yn−1)q

2

...
...

. . .
...

...

(y0)q
n−1

(y1)q
n−1 · · · (yn−2)q

n−1
(yn−1)q

n−1


which satisfies

X = ∆ · φ(X).

Computation of Drp (F) from F

Let F(X) ∈ K[X] be a polynomial with weight at most 2 given by

F(X) = XᵀMX +NX + γ,

we will find an explicit description of the dropping Drp (F) in terms of the matrices M and

N . If x = φ(X), we have that

F
(
φ−1(x)

)
= F(X) = XᵀMX +NX + γ

= (∆ · φ(X))ᵀM (∆ · φ(X)) + N (∆ · φ(X)) + γ = xᵀ∆ᵀM∆x + N∆x + γ.

By factoring each yi from the matrices ∆ᵀM∆ and N∆, we can write

∆ᵀM∆ =
n∑
i=1

yi−1Ai

and

N∆ =
n∑
i=1

yi−1Bi
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where Ai ∈ Fn×n and Bi ∈ F1×n, and therefore, if γ = c1 + c2y + · · ·+ cny
n−1

F ◦ φ−1(x) = xᵀ

(
n∑
i=1

yi−1Ai

)
x +

(
n∑
i=1

yi−1Bi

)
x +

n∑
i=1

ciy
i−1

=
n∑
i=1

yi−1 (xᵀAix +Bix + ci) .

Since for all i and particular x1, . . . , xn ∈ F we have that xᵀAix +Bix + ci ∈ F, we conclude

by the definition of φ that

Drp (F) (x) = φ ◦ F ◦ φ−1(x) = [xᵀA1x +B1x + c1, . . . ,x
ᵀAnx +Bnx + cn]ᵀ

Computation of Lft(F ) from F

Let F : Fn → Fn given by n quadratic polynomials p1, . . . , pn ∈ R, where each polynomial is

written as

p(x1, . . . , xn) = xᵀAix +Bix + ci

where Ai ∈ Fn×n and Bi ∈ F1×n. We define γ = c1 + c2y+ · · ·+ cny
n−1 ∈ K and the matrices

M ∈ Kn×n, N ∈ K1×n as

M = (∆ᵀ)−1

(
n∑
i=1

yi−1Ai

)
∆−1

and

N =

(
n∑
i=1

yi−1Bi

)
∆−1.

By reverting the steps in the previous section we can see that Lft(F ) is given by

Lft (F ) (X) = φ−1 ◦ F ◦ φ(X) = XᵀMX +NX + γ.



2. Tensor Theory

2.1. Tensor Product

In this section we introduce the language of tensors, which will be our main object of study

in the subsequent chapters. Tensor theory can be developed from a very abstract perspective.

However, since we are using only finite fields and finitely dimensional vector spaces, we find

it more fruitful for our purposes to take a more explicit but less general approach.

We begin by defining an operation between two vectors u ∈ Fn and v ∈ Fm, which we denote

by u ⊗ v, and gives as a result a matrix in Fn×m whose entry (i, j) is given by ui · uj, i.e.

(u⊗ v)[i, j] = u[i] · v[j]. We refer to this operation as the tensor product of u and v.1 It is

easy to check that this operation can be seen also as u⊗ v = uvᵀ.

Similarly, given u ∈ Fn, v ∈ Fm and w ∈ F`, we can define u ⊗ v ⊗ w to be the three-

dimensional matrix in Fn×m×` whose entry indexed by (i, j, k) is given by ui · vj · wk, i.e.,

(u⊗ v ⊗w)[i, j, k] = u[i] · v[j] ·w[k].

Tensor theory is an exciting branch of mathematics with many applications to physics,

chemistry, and engineering. Moreover, cryptography has also benefited from tensor theory.

For example, in [Schulman, 2012] a new encryption scheme is proposed using the properties

of cubic tensors (unfortunately, such a scheme turns out to be vulnerable to a Min-Rank

attack). Also, more generally, all the multivariate schemes can be considered as tensor-

based, since multivariate polynomials are ultimately some type of tensors (as we will see

in Section 2.3). Additionally, a very recent and interesting application of tensor theory to

Indistinguishability Obfuscation (iO) has been introduced [Gentry and Jutla, 2018]. Such a

primitive has proven to be very hard to construct. In plain terms, iO allows programs to be

obfuscated so that they can be executed on arbitrary data without revealing the internals

of the program itself. The fact that iO can be realized from tensor theory only shows how

powerful the tensor problems can be, and how useful they could be for cryptography.

1 It would be more adequate to call it Kronecker product, since the tensor product is technically reserved

to an operation between vector spaces. However, for simplicity we will keep the term tensor product to

denote the operation between vectors (and as we will see soon, between matrices)
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2.2. Rank for Three-Dimensional Matrices

Recall that the rank of a matrix A ∈ Fn×m can be defined as the minimum number of

summands r required to write A as

A =
r∑
i=1

uiv
ᵀ
i ,

where ui ∈ Fn and vi ∈ Fm for all i = 1, . . . , r. Keeping in mind that uiv
ᵀ
i = ui⊗vi, we can

easily generalize this to the three-dimensional case (and in fact, to any dimension) by letting

the rank of a three-dimensional matrix A ∈ Fn×m×` be the minimum number of summands

r required to write A as

A =
r∑
i=1

ui ⊗ vi ⊗wi,

where ui ∈ Fn, vi ∈ Fm and wi ∈ F` for all i = 1, . . . , r. Similarly to the bidimensional case,

We denote this number by rank(A).

And important remark is that rank(A) is always finite, and in fact it is upper bounded by

n2. To see this, begin by noticing that we can always write

A =
∑
i,j,k

A[i, j, k] · (ei ⊗ ej ⊗ ek) =
∑
i

ei ⊗

(∑
j,k

A[i, j, k] · (ej ⊗ ek)

)
.

Now, each bidimensional matrix
∑

j,k A[i, j, k] · (ej ⊗ ek) has rank at most n and therefore

can be written as
∑n

`=1 ui` ⊗ vi`, which means that we can write

A =
∑
i,`

ei ⊗ ui` ⊗ vi`.

Since this summation has at most n2 summands, we conclude that rank(A) ≤ n2.

And interesting fact is that many of the computational problems related to the concept

of rank that are trivial in the bidimensional setting become much harder in the three-

dimensional one. Below we illustrate some examples.

Computing the rank of a bidimensional matrix is simple using Guass-Jordan reduction

and reading the rank from the number of non-zero rows. In the three-dimensional

setting computing the rank is a much harder task, since it essentially involves solving

a minimization problem. In fact, it can be shown that this problem is NP-complete

[H̊astad, 1990]. Moreover, to the best of our knowledge, there are no efficient algorithms

in the average for computing such rank.

In particular, constructing a cubic matrix of a desired rank is not an easy task. This will

become a problem for us in Section 4.3.2, where we show experimental data about the

rank of some special matrices. We overcome this issue by using some characterizations

of rank which are much easier to deal with.
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We know that a matrix in Fn×n can have rank at most n, and moreover, this maximum

is attainable (for instance by the identity matrix). However, determining the maximal

rank attainable by a cubic matrix is a hard, open problem. We have shown above that

this maximum is at most n2, However, it is quite surprising that this maximum is in

fact strictly smaller than n2. The best that is known is that the largest rank attainable

by a matrix in Fn×n×n lies between (1/3)n2 and (3/4)n2 (see [Howell, 1978, Theorem

7] for a proof of these bounds, and [Bläser, 2014] for some explicit constructions of

high-rank tensors).

There are many other problems over tensors which turn out to be computationally

hard. See [Hillar and Lim, 2013b] for a good compendium on some of these problems.

As we saw in Section 1.3.1, there are many characterizations for the rank of a matrix in

Fn×n, some of them being more useful in certain contexts than others. However, after our

discussion on the hardness of some computational problems on cubic tensor rank, it should

not be a surprise that obtaining characterizations for the rank in the cubic setting is a much

harder task. Below we will enunciate some of the characterizations that will be useful for us

in upcoming sections.

We begin with this characterization of rank for cubic matrices, which will be important

when we provide a generalization of the Kipnis-Shamir modeling for the Min-Rank problem

in Section 4.2.2 (for a proof, see e.g. [Landsberg, 2012]).

Theorem 2.2.1. Given a three-dimensional matrix A ∈ Fn×m×`, the rank of A is the mini-

mal number r of rank one matrices S1, . . . , Sr ∈ Fm×`, such that, for all slices A[i, ·, ·] of A,

A[i, ·, ·] ∈ span(S1, . . . , Sr).

Another useful characterization of rank is the one given by the Kruskal rank. The Kruskal

rank of a matrix with columns u1, . . . ,um, denoted by KRank(u1, . . . ,um), is defined as the

maximum integer k such that any subset of {u1, . . . ,um} of size k is linearly independent.

The following theorem is a particular case of the known Kruskal’s theorem [Kruskal, 1977,

Shmuel, 2016].

Theorem 2.2.2. Let F be a finite field, u1, . . . ,ur ∈ U and t1, . . . , tr ∈ F. Suppose that

A =
∑r

i=1 tiui ⊗ ui ⊗ ui and that 2r + 2 ≤ KRank(t1u1, . . . , trur) + 2 · KRank(u1, . . . ,ur).

Then rank(A) = r.

Finally, it is important to remark that some properties of the quadratric rank still holds in

the cubic setting. A particular property that will be very relevant for us when we study the

Min-Rank attack in the cubic setting in Chapter 6 is that the cubic rank is invariant under

invertible linear transformations. However, to make this more precise we need the machinery

of trilinear forms, which will not be developed until we reach Section 2.3.2.
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2.2.1. Symmetric Rank

Another useful notion is the concept of symmetric rank.

Definition. Let S ∈ Fn×n×n be a three-dimensional symmetric matrix.2 We define the

symmetric rank of S as the minimum number of summands s required to write S as

S =
s∑
i=1

tiui ⊗ ui ⊗ ui,

where ui ∈ Fn, ti ∈ F. If such decomposition does not exist, this number is defined to be∞.

We denote this number by SRank(S).

It is clear by the definitions of rank and symmetric rank that for every symmetric matrix

A ∈ Fn×n×n it holds that rank(A) ≤ SRank(A). It can be shown that these two numbers

coincide in a number of cases, but not always [Comon et al., 2008].

The following proposition gives us a sufficient condition over F to guarantee that for all

symmetric matrices in Fn×n×n the symmetric rank is finite. A more general result is shown

in [Shmuel and gorzata Stawiska, 2013, Proposition 7.2].

Proposition 2.2.3. Let F be a finite field with |F| ≥ 3. Then each three-dimensional sym-

metric matrix S ∈ Fn×n×n can be written as S =
∑s

i=1 tiui ⊗ ui ⊗ ui, where ui ∈ Fn and

ti ∈ F.

2.3. Bilinear and Trilinear Maps

2.3.1. Bilinear Maps

A bilinear map B : Fn × Fn → F is a map that is linear in each argument, that is, B(x0 +

λx1,y) = B(x0,y) +λB(x1,y) for all x0,x1,y ∈ Fn and λ ∈ F, and similarly for the second

coordinate. It is easy to check that if we define the matrix A ∈ Fn×n by A[i, j] = B(ei, ej),

then for all x,y ∈ Fn it holds that

B(x,y) = xᵀAy, (2-1)

which is a more compact representation of B.

We see that a bilinear map can be represented by a matrix B ∈ Fn×n, and it is easy to see

that one bilinear map can come from only one matrix, i.e. bilinear maps and matrices in

Fn×n are in a one-to-one correspondence. To see why this is the case simply notice that if

two matrices can give rise to the same bilinear form, i.e. xᵀA0y = xᵀA1y for all x,y ∈ Fn,

2A cubic symmetric matrix is a matrix that is invariant under any permutation of its indexes. A more

precise definition will be given in Section 2.3.2
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then xᵀ(A0 − A1)y = 0. This implies that the matrix A0 − A1 represents the null bilinear

map, but only the zero matrix can represent such map since any non-zero entry A[i, j] yields

a non-zero value B(ei, ej) = A[i, j] 6= 0.

Given a bilinear map B we can obtain a quadratic homogeneous polynomial f(x) ∈ F[x] by

defining f(x) := B(x,x). In particular, f can be expressed as f(x) = xᵀAx for some matrix

A ∈ Fn×n. Moreover, as we saw in Section 1.4, every such polynomial can be represented in

such way. Nevertheless, unlike the case of bilinear maps, different matrices A can give rise to

the same quadratic polynomial. For instance, if A′ ∈ Fn×n is skew-symmetric, meaning that

A′[i, j] = −A′[j, i] for all i, j, it can be seen that A+A′ represents the same quadratic poly-

nomial as A. In fact, the converse holds: A0 and A1 represent the same quadratic polynomial

if and only if A0 − A1 is an skew-symmetric matrix. In particular, A and AT represent the

same quadratic polynomial.

Even though the quadratic polynomials are not in one-to-one correspondence with matrices in

Fn×n, we can obtain such correspondence by restricting Fn×n. Let Sn×n ⊆ Fn×n denote the set

of symmetric matrices, we claim that Sn×n is in one-to-one correspondence with the quadratic

homogeneous polynomials in F[x]. To prove this we just need to show two things. First, that

every quadratic polynomial f(x) can be written as xᵀAx where A ∈ Sn×n, and secondly that

such representation is unique. To see the first fact let us begin by writting f(x) = xᵀA′x,

where A′ ∈ Fn×n (not necessarily symmetric). Define A = 1
2
(A′ + A′ᵀ) (recall that we are

in characteristic not 2 nor 3), then A is symmetric and xᵀAx = 1
2
(xᵀA′x + xᵀA′ᵀx) =

1
2
(f(x) + f(x)) = f(x). To prove the second claim simply notice that if A,A′ are symmetric

matrices then A− A′ cannot be skew-symmetric unless A = A′, so two different symmetric

matrices cannot represent the same quadratic polynomial.

Let R2 denote the set of quadratic homogeneous polynomials in F[x]. Also, let us say that

a bilinear map B is symmetric if for all a,b ∈ Fn it holds that B(a,b) = B(b, a), which is

equivalent to the unique matrix representing B being symmetric. We have seen that R2 is in

correspondence with Sn×n, and the latter is in correspondence with the symmetric bilinear

maps. Given a polynomial f(x) ∈ R2, we can get the corresponding matrix A ∈ Sn×n by

letting A[i, j] = 1
2
fi,j if i 6= j, and A[i, j] = fi,j when i = j, where fi,j ∈ F is the coefficient of

xixj in f . Then, to get the corresponding symmetric bilinear map we can define B(x,y) =

xᵀAy. Interestingly, there is a more direct way of getting this map from the polynomial f :

The symmetric bilinear map B can be computed as B(x,y) := 1
2

(f(x + y)− f(x)− f(y)).

This obervation will prove to be useful when we consider the differential of the polynomial

f .

2.3.2. Trilinear Maps

Once we have the background from Bilinear Maps, extending these to Trilinear Maps is not

very difficult. A trilinear map T : Fn×Fn×Fn → F is a map that is linear in each argument.

Similar to the bilinear case, there is a way to write it as some product related to the values of
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T on the canonical vectors. However, since in three dimensions there is no concept of matrix

multiplication as such, we must take a slightly different approach. T can be written as

T (x,y, z) =
∑

i,j,k∈[n]

xiyjzk · αi,j,k

where αi,j,k := T (ei, ej, ek). Therefore, T can be represented by means of the matrix A ∈
Fn×n×n such that A[i, j, k] = αi,j,k and this representation is unique.

Given a trilinear form T we can obtain a homogeneous cubic polynomial f(x) ∈ F[x] defined

as f(x) := T (x,x,x). Just like in the bilinear case, many different matrices can give rise

to the same polynomial. However, unlike the bilinear case, two matrices represent the same

polynomial if their difference is skew-symmetric but the reverse direction is not necessarily

true. The definition for skew-symmetric in the three-dimensional case is much trickier, and

it forces us to introduce some concepts before we dive into it.

Let Π` denote the set of permutations in the set {1, 2, 3}. Given π ∈ Π3 and A ∈ Fn×n×n, we

write π(A) to denote the matrix in Fn×n×n resulting of permuting the indexes of A according

to π, i.e. π(A)[i, j, k] = A[π(i, j, k)]. We then say that A is skew-symmetric if π(A) =

(−1)sign(π)A for all permutations π ∈ Π3, where sign(π) is the sign of the permutation π.

Notice that this naturally extends the concept of skew-symmetry for bidimensional matrices.

Now we show that A and A′ represent the same cubic polynomial if A − A′ is skew-

symmetric. For this it suffices to show that if B is skew-symmetric then B represents

the null polynomial. Let B ∈ Fn×n×n. The coefficient of xixjxk in the polynomial repre-

sented by B is given by
∑

π∈Π3
B[π(i, j, k)]. If B is skew-symmetric, then it holds that

B[π(i, j, k)] = (−1)sign(π)B[i, j, k], so this coefficient is given by B[i, j, k]
∑

π∈Π3
(−1)sign(π). It

is easy to check then via a group-theoretic argument that this coefficient equals 0,3 so the

matrix B represents is the null polynomial.

An important observation is that once we restrict to symmetric matrices, the representation

of a cubic polynomial via a matrix is unique. A matrix A ∈ Fn×n×n is symmetric if π(A) = A

for all π ∈ Π3. A bit more explicitly, A is symmetric if

A[i, j, k] = A[i, k, j] = A[j, i, k] = A[k, i, j] = A[j, k, i] = A[k, j, i]

for all i, j, k. We denote by Sn×n×n the subset of Fn×n×n formed by the symmetric matrices.

To prove that any cubic homogeneous polynomial is representable in a unique manner by a

symmetric matrix in Sn×n×n, we consider an arbitrary such polynomial f(x) =
∑

i,j,k fi,j,kxixjxk.

If we define the matrix A′ such that A′[i, j, k] = fi,j,k, we see that the associated trilinear

form gives rise to the polynomial f . However, A′ might not be symmetric. To turn A′ into a

symmetric matrix representing the same cubic polynomial we define A = 1
3!

(∑
π∈Π3

π(A′)
)
.

It is easy to see that this matrix is symmetric and that it represents the same cubic poly-

nomial. Finally, the fact that the difference of two different symmetric matrices cannot be

skew-symmetric implies that this representation is unique.

3 One way to see this is recalling that exactly half of the elements in Πn have sign +1, while the other half

has sign −1
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As a note, observe that rank(A) ≤ 3! · (rank(A′)) since each π(A′) has the same rank as A′

and A is the sum of 3! such matrices.

We have shown that in analogy to the bilinear case, the polynomials in R3 are in a one-

to-one correspondence with Sn×n×n, which in turn are in one-to-one correspondence with

the symmetric trilinear maps, defined simply as the trilinears map for which the underlying

matrix is symmetric. An important fact is that given a homogeneous polynomial f of degree

3 we can obtain the corresponding symmetric trilinear form by defining

T (x,y, z) =
1

3!
(f(x + y + z)− f(y + z)− f(x + z)

− f(x + y) + f(x) + f(y) + f(z)). (2-2)

For a cubic homogeneous polynomial f ∈ F[x], we define its rank, denoted by rank(f), as

the rank of the corresponding three-dimensional symmetric matrix.

2.4. Rank is Invariant under Invertible Linear

Transformations

Let S ∈ Fn×n be an invertible matrix, and let A ∈ Fn×n×n. Consider T as the trilinear map

associated to A. If we regard S as a function Fn → Fn, we then can define the function

T ′ : Fn × Fn × Fn → F given by T ′(x,y, z) = T (Sx, Sy, Sz). It can be easily seen that T ′ is

a trilinear form and therefore it has a matrix A′ ∈ Fn×n×n associated to it. In this section

we will prove that rank(A) = rank(A′). This is a natural generalization of the fact that for

quadratic matrices multiplication by an invertible matrix does not change the rank.

We begin by noticing that it suffices to show that rank(A′) ≤ rank(A) since the reverse

inequality can be obtained by applying the same argument and considering S−1 instead.

Let r = rank(A) and write A as A =
∑r

`=1 u` ⊗ v` ⊗ w`. A simple calculation shows that

A′ =
∑r

`=1 Su` ⊗ Sv` ⊗ Sw`, which concludes the claim.
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In this chapter we introduce the Min-Rank problem in its quadratic version. This compu-

tational problem was introduced by Buss et al. [Buss et al., 1999] in the context of linear

algebra and proved its NP-completeness.

Many applications of this problem to cryptography have been seen throughout the years.

A zero-knowledge proof system was devised in [Courtois, 2001], and many modern cons-

tructions of code-based schemes using the rank metric have a relation with the Min-Rank

problem (see for example [Gaborit et al., ]). However, it can be said that its major appli-

cations lie in the domain of cryptanalysis of multivariate public key cryptosystems. The

Min-Rank problem in the context of multivariate cryptography first appeared as part of an

attack against the HFE cryptosystem by Kipnis and Shamir [Kipnis and Shamir, 1999a].

Some generalizations of this attack have been seen during the subsequent years, like the

generalization to Multi-HFE [Bettale et al., 2013a] or ZHFE [Cabarcas et al., 2017], among

others.

The last aforementioned applications will be explored in a bit more detail in Section 5.3. For

now we will restrict ourselves to exploring the problem from a purely algebraic perspective,

and we will discuss some algorithms that can lead to its solution.

3.1. Basic Definitions

The Min-Rank problem is defined as follows.1

(Quadratic) Min-Rank problem, decisional version

Given positive integers n, r, k, and matrices M1, . . . ,Mk ∈ Fn×n, determine whether

there exist λ1, . . . , λk ∈ F such that the rank of
∑k

i=1 λiMi is less than or equal to r.

It can be shown that this problem is NP-complete (see for example [Hillar and Lim, 2013b]).

A bit more precisely, this means that, unless the computational classes P and NP are

equal, there is no polynomial-time algorithm that can solve this problem for any choice of

parameters. However, this does not rule out the existence of some algorithms that can solve

this problem for specific parameters. In fact, we will discuss below some algorithms that

have a reasonable performance when the rank r is small enough.

1 We restrict ourselves to the scenario in which the matrices are square, even though the problem can be

defined for more general rectangular matrices
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We will be mostly dealing with the search version of this problem, stated below.

(Quadratic) Min-Rank problem, search version

Given positive integers n, r, k, and matrices M1, . . . ,Mk ∈ Fn×n, find λ1, . . . , λk ∈ F
such that the rank of

∑k
i=1 λiMi is less than or equal to r, if they exist.

3.2. Some Algorithms

The basic approach to solve the (search) Min-Rank problem is to regard each coefficient λi
as an unknown and then use the fact that the rank of

∑k
i=1 λiMi must be smaller than r

coupled with some characterization of rank to derive some equations whose solution yield

the desired coefficients. These equations will be multivariate polynomials, and solving this

type of equations is not necessarily an easier task at all. However, different approaches yield

different set of parameters for these equations, which may be efficiently solvable in some

specific scenarios.

To distinguish between the actual solutions λi ∈ F and the variables used to set up the

systems of equations, we write A =
∑k

i=1 tiMi where each ti is a variable, so that each entry

of A lies in the polynomial ring F[t1, . . . , tk].

3.2.1. The Kipnis-Shamir Algorithm

We know from the rank-nullity characterization of rank that rank(A) ≤ r if and only if

the dimension of its right kernel is at least n − r. This is equivalent to the existence of

n− r linearly independent vectors in the kernel of A, which by taking the appropriate linear

combinations can be assumed to have the form of the columns of the following matrix

K =



1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

y11 y12 · · · y1,n−r

y21 y22 · · · y2,n−r
...

...
. . .

...

yr1 yr2 · · · yr,n−r


(3-1)

where the y’s are unknowns/variables.

Since these vectors are in the kernel of A, this gives rise to the matrix equation A ·K = 0,

which can be translated (by looking at each entry) to n · (n− r) quadratic equations in the

t’s and y’s, for a total of k + r · (n− r) variables.
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3.2.2. Guessing Kernel Vectors

As with any system of equations, it is possible to guess some variables in (3-1) and solve

for the others. Because of the structure of this system, it is particularly appealing to guess

kernel vectors (i.e. the yi,j variables) and solve the resulting linear system in the ti varia-

bles, as proposed in [Goubin and Courtois, 2000] (in fact, since the linear system is very

overdetermined, it is enough to guess k/n kernel vectors). The complexity of such attack is

dominated by the guessing part and depends on the probability of a correct guess. A tight

bound on this probability can be significantly improved by understanding the structure of

the solution space, e.g. by exploiting the interlinked kernel structure [Yang and Chen, 2005]

or by using the subspace differential invariant structure [Moody et al., 2014].

3.2.3. Minors Modeling

In [Faugère et al., 2008], Faugère et al. introduced the minors method approach to solve the

Min-Rank problem and in [Bettale et al., 2013b] they improved the MinRank attack on HFE

using this modeling. This approach uses the characterization of rank using the minors: the

rank of A is at most r if and only if every minor of size r + 1 is zero (recall that a minor of

size ` of a matrix is the determinant of an `× ` submatrix obtained by taking a subset of `

rows and ` columns).

By applying this characterization to the matrix A as defined above, we can derive one

equation for each minor by setting it equal to zero. Each of these equations is homogeneous

of degree r + 1, and the number of (r + 1)-minors in A is
(
n
r+1

)2
.

3.2.4. Using Tensor Decomposition

Recall that the rank of A ∈ Fn×n can be defined as the minimum number r such that we can

write A as A =
∑r

i=1 uiv
ᵀ
i . Treating each entry of each ui,vi as variables, we get a quadratic

system of n2 equations and 2 · r · n+ k variables.

3.2.5. Using the Factorization Rank

Recall that rank(A) can be defined as the minumum number r such that A can be factored as

A = C ·F where C ∈ Fn×r and F ∈ Fr×n. By column-reducing the matrix C it is possible to

assume that the upper r×r block of C is the identity matrix. We can then let the coefficients

of C and F be unkowns and solve the matrix equation A = C · F .

If A ∈ Fn×n is symmetric then the decomposition boils down to A = RᵀSR where R ∈ Fr×n

and S ∈ Fr×r is an invertible matrix.



4. Cubic Min-Rank Problem

In the previous chapter we focused on the Min-Rank problem in its quadratic version. As

we will see in Section 5.3, this is an important tool in the analysis of some multivariate

cryptographic schemes.

However, it is natural to wonder if this computational problem also makes sense in the cubic

case. In this chapter we show a natural extension of this problem to the three-dimensional

setting by using our generalized definition of rank for these type of matrices from Section

2.2. Then we introduce some algorithms to solve this problem.

We will see in Section 6 some applications of this problem to the cryptanalysis of multivariate

public key cryptosystems. The main takeaway is that shifting from a quadratic setting to a

cubic one does not rule out completely the possibility of an attack involving the Min-Rank

problem.

4.1. Basic Definitions

The three-dimensional Min-Rank problem is defined as follows.

Three-Dimensional Min-Rank problem, decisional version

Given positive integers n, r, k, and matrices M1, . . . ,Mk ∈ Fn×n×n, determine whether

there exist λ1, . . . , λk ∈ F such that the rank of
∑k

i=1 λiMi is less than or equal to r.

It can also be shown that this problem is NP-complete (See for example [Hillar and Lim, 2013b]).

Just like in the quadratic case, we will be mostly dealing with the search version of this

problem:

Three-Dimensional Min-Rank problem, search version

Given positive integers n, r, k, and matrices M1, . . . ,Mk ∈ Fn×n×n, find λ1, . . . , λk ∈ F
such that the rank of

∑k
i=1 λiMi is less than or equal to r, if they exist.

4.2. Solving the Three-Dimensional Min-Rank Problem

Our approach for solving the three-dimensional min-rank problem is essentially the same we

took in Section 3.2 for the quadratic version of the problem: we consider each unknown λi
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as a variable ti and then use some equivalent definitions of cubic rank to obtain a system of

equations. However, the problem in this setting is that such characterizations are scarce and

also not very friendly computational-wise.

4.2.1. Using the Tensor-Rank Definition

The first natural approach is to use the definition of cubic rank directly. This is akin to

the algorithm we provided in Section 3.2.4. Let A = t1M1 + · · · + tkMk, where the ti’s are

variables (so each entry of A is a linear polynomial in the ti’s). We know by the definition

of rank that rank(A) ≤ r if and only if there exist ui,vi,wi ∈ Fn for i = 1, . . . , r such that

A =
∑r

i=1 ui ⊗ vi ⊗ wi. By regarding each ui,vi,wi as a vector of unknowns we obtain a

system of n3 cubic equations. The total number of variables is 3 · n · r + k.

4.2.2. A Generalization of the Kipnis-Shamir Modeling

We know from Theorem 2.2.1 that A is of rank r, if and only if, there exist rank one

matrices S1, . . . , Sr ∈ Fn×n, such that, for i = 1, . . . , n, A[i, ·, ·] ∈ span(S1, . . . , Sr). Since

each Si matrix is of rank one, we can write it as Si = uiv
T
i for some vectors ui,vi ∈ Fn.

Considering the entries of the ui’s, vi’s, and the linear combination coefficients as variables

yields a cubic system of n3 equations in r(2n) + rn+ k = 3rn+ k variables

r∑
j=1

αijujv
T
j = A[i, ·, ·], for i = 1, . . . , n. (4-1)

To the best of our knowledge, the complexity of solving a system such as (4-1) has not been

studied. It can be seen as a multi-homogeneous system of multi-degree (1, 1, 1, 1), i.e. a tetra-

linear system, and assuming some notion of tetra-regularity, analyze it using the techniques

in [Faugère et al., 2011]. It should be noticed that the techniques in [Faugère et al., 2011] do

not address the semi-regularity inherent to such an overdetermined system. Alternatively, the

techniques in [Bardet et al., 2005] could be used to establish the asymptotic behavior of an

upper bound of the degree of regularity based on the semi-regularity assumption. Although a

complete asymptotic analysis is outside the scope of this thesis, Table 4-1 shows the growth

of such bound for selected parameters.

4.2.3. Improvement of KS for r � n

If r � n we can do much better. In that case, for most such rank r matrices A, the

first r slices A[1, ·, ·], . . . , A[r, ·, ·] are linearly independent. In this case, span(S1, . . . , Sr) =

span(A[1, ·, ·], . . . , A[r, ·, ·]). Then, for i = r + 1, . . . , n, A[i, ·, ·] ∈ span(A[1, ·, ·], . . . , A[r, ·, ·]).
Considering the coefficients of the linear combinations as variables yields a system of n2(n−r)
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n r vars eqns d-reg cpx

10 10 310 1000 67 699

11 11 374 1331 74 798

12 12 444 1728 81 899

13 13 520 2197 89 1010

14 14 602 2744 97 1123

15 15 690 3375 105 1240

Tabla 4-1.: Complexity of MR by KS modeling for cubic system. For different values of n, KS

yields a cubic system of n3 equations in (3r + 1)n variables (assuming k = n). The

d-reg column gives the degree of regularity for such a semi-regular system without

field equations. The complexity column, gives the log base 2 of
(
vars+d−1

d

)2,8
.

quadratic equations in (n− r)r + k variables

r∑
j=1

αijA[j, ·, ·] = A[i, ·, ·], for i = r + 1, . . . , n. (4-2)

Notice that the converse is not necessarily true. A solution to the system in (4-2) does

not necessarily implies the existence of the rank one Si matrices, neither that A has rank

r. However, this is a very overdetermined system, hence a solution is very unlikely, unless

indeed A has rank r.

The system in (4-2) has O(n3) quadratic equations in O(n) variables. Since the number

of degree two monomials is O(n2) the system can be solved by relinearization at degree 2,

which reduces to solving a O(n2) square matrix. Notice that this is much faster than the

KS approach in the two-dimensional case since in this case we have many more equations.

This is very surprising, since it essentially says that the Min-Rank problem becomes easier

in degree 3 if the rank is small enough.

4.3. Slices and Differentials

It is reasonable to wonder if a cubic instance of the Min-Rank problem can be transformed

into a quadratic instance, for which the algorithms from Section 3 can be applied. One way to

achieve this is by taking the slices M`[i, ·, ·] of each matrix in the instance. In this section we

explore how viable this approach is by first showing that it is directly related to the concept

of the differential of a polynomial. Then we show that in general this differential does not

necessarily preserve the rank from the original instance, which will render this approach

useless for most of the cases.
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4.3.1. Relation between Slices and Differentials

Let A ∈ Fn×n×n be a symmetric matrix and let f(x) ∈ F[x] be the homogeneous cubic

polynomial represented by A, i.e. f(x) =
∑

i,j,k A[i, j, k] · xixjxk. We begin by showing that

the slices A[i, ·, ·] have a direct relation with the differential of f . Such differential is defined

by Daf(x) := f(x + a)− f(x)− f(a).

In general, if f is a cubic homogeneous polynomial, then Daf(x) is a quadratic polynomial in

x, but not necessarily homogeneous. Let us write Daf(x) = g(x)+h(x) where g is quadratic

homogeneous and h is linear.1 On the other hand, consider the symmetric matrix A′ ∈ Fn×n

representing the polynomial g(x). As we saw in Section 2.3.1, the symmetric bilinear map

B(x,y) associated to A′ can be computed as B(x,y) = 1
2
(g(x+y)−g(x)−g(y)). Moreover,

using the fact that g(x) = Daf(x) − h(x) and that h(x) is linear, it can be obtained that

B(x,y) = 1
2
(Daf(x + y) − Daf(x) − Daf(y)). Finally, by unfolding the definition of the

differential in terms of f , we see that

B(x,y) =
1

2
(f(x + y + a)− f(x + y)− f(x + a)− f(y + a) + f(x) + f(y) + f(a)).

On the other hand, if T (x,y, a) is the trilinear form associated to the matrix A, we know

from Section 2.3.2 that T can be computed from f as

T (x,y, a) =
1

3!
(f(x + y + a)− f(x + y)− f(x + a)− f(y + a) + f(x) + f(y) + f(a)).

By joining these two expressions we obtain that B(x,y) = 3 · T (x,y, a). When transla-

ting this in terms of slices, keeping in mind that A[i, j, k] = T (ei, ej, ek), we obtain that

A[i, j, k] = 1
3
B(ei, ej). In other words, this means that the bidimensional matrix repre-

senting the quadratic homogeneous part of the differential of f at a = ek is precisely

the slice A[·, ·, k] up to a factor of 3. For the general case a ∈ Fn we simply notice that

Daf(x) =
∑n

i=1 aiDeif(x), so the matrix representing the quadratic homogeneous part of

Daf(x) is given by
∑n

k=1 ak · A[·, ·, k].

Notice that in the previous argument we used the fact that A was symmetric to argue that

A was the matrix representing the symmetric trilinear form T . For a general A, we would

have that 1
3!

(∑
π∈Π3

π(A)
)

is the actual symmetric matrix representing the trilinear form T ,

so the argument would be applied to this matrix instead.

4.3.2. Rank of the Differential

Assume that A ∈ Fn×n×n is a symmetric matrix. From the previous section we see that

the rank of the quadratic part of the differential of a cubic polynomial f at a is the rank

of
∑n

k=1 ak · A[·, ·, k]. Moreover, the latter has rank upper-bounded by rank(A). This holds

1 The free coefficient of Daf(x) must be equal to 0 since Daf(0) = f(0 + a)− f(0)− f(a) = 0
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since, if A =
∑rank(A)

`=1 u` ⊗ v` ⊗w`, then

n∑
k=1

akA[·, ·, k] =
n∑
k=1

ak

rank(A)∑
`=1

(u` ⊗ v`) ·w`[k] =

rank(A)∑
`=1

(u` ⊗ v`) ·

(
n∑
k=1

akw`[k]

)
.

All in all, we conclude that the rank of the differential is upper-bounded by the rank of

A, so taking the differential cannot increase the rank. This shows that a good strategy for

solving the three-dimensional Min-Rank problem when r � n is taking the differential of

each of the matrices of the instance and solving the resulting quadratic min-rank problem

(however, recall from Section 4.2.3 that in this case it is more efficient to run directly on the

cubic instance). Nevertheless, this is prohibitive if r is close to or greater than n, and if the

differential happens to have a rank close to this. It is natural to ask then if this is the case:

Is the rank of the differential much smaller than the rank of the original three-dimensional

matrix? In what is left of the section we will answer this question heuristically by showing

experimental results that indicate that in general the rank of the differential tends to stay

close to the original rank. This shows that in general, transforming a cubic instance of the

min-rank problem into a quadratic one by applying the differential does not necessarily yield

an easier computational problem.

Lower Bound for the Rank of the Differentials

The first thing to note is that a general good lower bound cannot be provided, since there

are cubic matrices for which the rank of the differential drops by an order of a square root.

For example, let A′ ∈ Fr×r×r be a matrix of maximal rank. As we saw in Section 2.2, it

is known that the rank of such a matrix is of the order O(r2). Then, consider the matrix

A ∈ Fn×n×n given by A[i, j, k] = A′[i, j, k] if i, j, k ≤ r, and 0 otherwise. It can be seen

that rank(A) = rank(A′) = O(r2). However, a slice of A is just a matrix with only an r × r
non-zero block in the upper-left corner, so its rank is upper-bounded by r. As we will see in

Section 6.3, this is precisely the situation in the cryptosystem HFE, and this is the reason

why this encryption scheme, even in its cubic form, is vulnerable to a quadratic Min-Rank

attack.

Given the above, our analysis must be probabilistic, in the sense that we should consider

the average case instead of the worst case. Therefore, we formulate our question as follows:

given a random homogeneous cubic polynomial f ∈ F[x] of rank r, we want to estimate the

rank of the quadratic part of its differential Daf(x) = f(x + a)− f(x)− f(a).

The first and main problem that we face in our analysis is: given an integer r, how can we

generate random homogeneous cubic polynomials of rank r? Or equivalently, how can we

generate random symmetric three-dimensional matrices of rank r? To address these ques-

tions, we use the concept of symmetric rank. We then choose random polynomials and use

Kruskal’s theorem to guarantee that those polynomials have certain symmetric rank.
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By Proposition 2.2.3, if |F| ≥ 3, any homogeneous cubic polynomial f can be written as∑k
i=1 tiui(x)ui(x)ui(x), where each ui(x) is a homogeneous linear polynomial and k de-

pends on f . Furthermore, the symmetric rank of a homogeneous cubic f ∈ F[x], denoted by

SRank(f) and defined as the symmetric rank of its symmetric matrix representation, does

exist.

The symmetric rank is a good parameter to consider because it is a bound for the rank of

the differential.

Proposition 4.3.1. Let f ∈ F[x] be a homogeneous cubic polynomial. If g is the quadratic

homogeneous part of Dfa(x), then rank(g) ≤ SRank(f).

Demostración. If f can be written as f(x) =
∑r

i=1 tiui(x)ui(x)ui(x), then for any a ∈ Fn

the quadratic part of Dfa(x) is
∑r

i=1 3tiui(a)ui(x)ui(x).

Let U = Fn. Clearly, each symmetric matrix A ∈ Fn×n×n with symmetric rank r can be

written as a sum of exactly r terms of the form tu⊗ u⊗ u, where t ∈ F− {0} and u ∈ U .

Let Sr be the function which outputs A =
∑r

i=1 tiui ⊗ ui ⊗ ui, for ti ∈ F− {0} and ui ∈ U .

By Proposition 2.2.3, if |F| ≥ 3, then each symmetric matrix A ∈ Fn×n×n with symmetric

rank equal to r is in the codomain of Sr. But some symmetric matrices having symmetric

rank less than r can also be there.

Now we will use Theorem 2.2.2 to argue that if ti ∈ F−{0} and ui ∈ U are chosen uniformly

at random, then with high probability the corresponding output A of Sr has symmetric rank

equal to r. Moreover, by Kruskal’s theorem with high probability rank(A) = SRank(A). The

argument is as follows. Suppose 2 ≤ r ≤ n. If u1, . . . ,ur ∈ U are chosen uniformly at random,

then with high probability a matrix with columns u1, ...,ur has full rank. If a matrix with

columns u1, . . . ,ur ∈ U is full rank, then KRank(u1, . . . ,ur) = r and KRank(t1u1, . . . , trur) =

r, for any t1, . . . , tr ∈ F−{0}. In this case, by Theorem 2.2.2 the corresponding output A of

Sr is such that rank(A) = SRank(A) = r.

We experimentally analyze the behavior of the rank of the differential of a polynomial that

is the output of Sr2 . The experimental results are shown in Figure 4-1, where each curve

represents the percentage of times that a rank is obtained, over 100,000 iterations.
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Figura 4-1.: For different values of q, CubicRank, and n, a polynomial f is chosen according to

SCubicRank, the rank(Dfa) is computed for a random a ∈ Fn. Each graph represents

the percentage of times that a particular value rank(Dfa) is obtained over 100,000

iterations.
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5. Multivariate Public Key Cryptography

In this chapter we introduce basic ideas from Multivariate Public Key Cryptography, in-

cluding basic constructions and examples. This will give the necessary context to the New

Alternatives we propose later on in this work.

5.1. Preliminaries on Cryptography

We consider it appropriate to give a context on the general problem that is being addressed

with MPKC, which is allowing a secret communication between two parties (usually referred

as Alice and Bob).

In this section, we exhibit the problem of secret communication and the solution from Public

Key Cryptography. We stress that we are going to keep an informal speech during this section,

and we refer the reader to formal definitions when needed.

5.1.1. Public Key Cryptography

Suppose that Alice have a message m and she wants Bob to learn this message while

guaranteeing that no one but Bob will be able to do so.

To solve this problem, suppose we have a function P such that

1. P is one-to-one1

2. P is very easy to evaluate for Alice (and in general for anyone who wishes to send a

message to Bob)

3. P is not easy to invert for anybody who simply knows P

4. Bob possesses some secret information that allows him to efficiently invert this

function2

The first three properties ensure that P is a One-way Function, and the last one that it is

a Trapdoor Function. See [Katz and Lindell, 2007] for details on these concepts.

1we will see that many of our constructions satisfy a more relaxed condition which can be stated as being

“few-to-one”, that is, every element in the range of the function has “few” preimages.
2from the properties it can be seen that necessarily this secret information cannot be found from P since

in this case, anyone with access to this function would be able to invert just like Bob.
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Alice

m

Bob

c

m = P−1 (c)

P(m) = c

Figura 5-1.: Protocol that allows Alice send her message to Bob securely

What Alice can do in order to solve her issue is evaluating m at P , obtaining P(m). Then

she can send this value to Bob, due to our assumptions about P , no one is able to learn m

from this value. Once Bob receives this value, he can use his secret information to invert the

function and therefore finding m. Figure 5-1 pictures this idea.

We now introduce some notation common in Cryptography

The function P described above, along with all other information necessary to evaluate

it are often referred to as the Public Key, since this is “public” for anyone who wishes

to send a message to Bob3;

The secret information possessed by Bob is the Secret Key;

Every possible message m in the domain of P is called a Plaintext, and every element

of the range of this function is known as a Ciphertext;

Encryption is the act of evaluating the function P and Decryption is the act of

inverting it.

The general way in which these trapdoor functions are constructed is by means of a procedure

Gen that takes the secret information sk and outputs the correspondent trapdoor function

P that can be inverted with the secret key sk. It is clear that the procedure Gen cannot be

invertible because in this case one would be able to recover the secret information from the

function, therefore violating its properties.

Example. (RSA) Consider two large prime numbers p and q, e some positive integer and

d such that ed ≡ 1 mód φ(N) with N = pq, where φ is the Euler’s totient function. With

this setting basic number theory can show that for every integer m between 0 and n− 1 we

have that

(me)d ≡ med ≡ m1 mód N.

3if you are familiar with cryptography, then you probably regard the public key as some parameter pk

which is fed to a function Encpk(·); here we regard the public key P as this function itself, which is an

equivalent and more convenient approach



5.2 Multivariate Public Key Cryptosystems 37

Let P be the function that takes m and raise it to the e-th power and takes modulo N . It is

widely assumed that computing m mód N from P(m) is a difficult task without additional

information, but as we have seen, we can achieve this by having knowledge of d since we

simply compute m ≡ P(m)d mód N . If we keep d secret, then only someone with this

information will be able to decrypt; moreover, we found d by means of p and q, so at the end

what must be kept secret is the prime factorization of N , so the security of this cryptosystem

heavily relies on the problem of factoring large numbers. See [Shoup, 2005] for details on this

cryptosystem.

5.1.2. Post-Quantum Cryptography

The development of Quantum-Computers is a very big research field with a lot of investment,

and expert estimate that within the next two decades these computers could be built. This

may seem like good news, but this is a concern for the security of communications.

The RSA example we saw before is not merely a theoretical Public Key Cryptosystem,

many of our communications today actually use this cryptosystem to ensure privacy. As we

noticed there, an attacker would be able to learn the secret information if he can factor large

numbers into primes. Even though this is widely believed to be a hard problem in a classical

computers, an algorithm for quantum-computers developed by Peter Shor [Shor, 1999] can

perform this task in only polynomial time.

The latter shows that cryptosystems based on problems like factoring (or finding discrete

logarithms, which is another widely used technique and can be also broken with Shor’s

algorithm) will not be secure in the near future, hence, we need to develop new schemes

whose security rely on different problems that cannot be solved efficiently even by a quantum

computer. One of these problems is the MQ-problem, related to polynomial system solving.

We will discuss this in detail.

5.2. Multivariate Public Key Cryptosystems

During the rest of this work F will denote a finite field with q elements (q a prime number)

and K will denote a field extension of F of degree n. We denote by R≤d the set of polynomials

in R = F[x1, . . . , xn] of degree at most d. Elements in R≤2 are known as quadratic polyno-

mials. A function F : Fn → Fm is called a regular function if it is given by m multivariate

polynomials (actually, one can easily prove that every function Fn → Fm is regular once we

impose the relations xqi = xi, see [Escudero, 2016]), and it is quadratic if each component is

a quadratic polynomial.

Consider the following computational problem.

MQ Problem Let f1, . . . , fn ∈ R be quadratic multivariate polynomials chosen uniformly
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at random. Find (a1, . . . , an) ∈ Fn, if there is any, such that for all i = 1, . . . , n

fi(a1, . . . , an) = 0.

There are many reasons to believe that this problem is hard, even for quantum compu-

ters. From the theoretical point of view, it has been proved that the problem of deci-

ding whether or not a given polynomial system has a solution or not is NP-complete

[Garey and Johnson, 1990]. This is valuable since we do not expect NP to be equal to P

even in the quantum model of computation. However, there may be NP-complete problems

whose difficulty in the average case is not that hard. Nonetheless, this is not the case with the

MQ problem since there are not known better techniques for polynomial systems over finite

fields than the general ones we illustrated in the introduction which make use of Groebner

bases. It can be shown that for random systems this approach has an expected exponential

complexity in n (see for example [Spaenlehauer, 2012]). Moreover, nowadays there are no

known polynomial-time quantum algorithms to solve the problem.

This problem will be the starting point for us to build the so-called Multivariate Public Key

Cryptosystems. For these schemes, the trapdoor function is a function P : Fn → Fm where

each coordinate is given by a polynomial, and the secret key is some secret information

allowing us to invert this function.

Assumption Given F : Fn → Fn defined by n quadratic polynomials chosen uniformly at

random and given c in the range of F , it is difficult to find a ∈ Fn such that F (a) = c.

Remark. To find such a one must solve the system of equations p1(x) = c1, . . . , pn(x) = cn,

where the pi’s are the quadratic polynomials defining F and c = (c1, . . . , cn). By defining

the quadratic polynomials qi(x) := pi(x)− ci, this is the same as solving the system q1(x) =

0, . . . , qn(x) = 0. This may look the same as the MQ problem, but the difference here is that

the qi’s are not chosen at random. For instance, we know a priori that the system possesses at

least one solution, which is not the general case in the MQ problem. However, experimental

evidence shows that it does not hurt to assume that the latter problem is difficult too, which

is the assumption we need to make in order to build our trapdoor functions.

What we have so far is that if we pick a random function from the set of all quadratic regular

functions Fn → Fn, the chances are that this function is not easy to invert. Moreover, another

reasonable assumption is that regular functions Fn → Fn chosen at random are very likely

to be “few-to-one”.

In order to construct trapdoor functions, we only need to describe a generation procedure

Gen that picks some secret information and outputs a regular quadratic function which looks

like random and is easy to invert using this secret information.

In what follows we describe the generation procedure that outputs regular functions easy

to invert with the secret information. Notwithstanding, there is not a known way today we
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can ensure that these functions are easy to invert only if the secret information is possessed

(which is the property we need on a trapdoor function). In fact, for many constructions

today either the generation procedure is invertible (that is, the secret information can be

recovered from the regular function) or the behavior of the resulting regular functions is not

like that of random ones, resulting in easier to invert functions.

As a final note, we extend our constructions to trapdoor functions Fn → Fm, where m

may be different from n. The observation is that m must be at least n since otherwise our

functions would not be “few-to-one”. On the other hand, if m is very large with respect to

n, theory developed in [Bardet, 2004] shows that our systems may be easier to solve, yet it

is not harmful if m = O(n).

Also, note that although the assumption is stated for quadratic polynomials, it can be easily

generalized for degree d ≥ 2 polynomials without loss on the hardness. Given this, we will

not restrict ourselves to quadratic polynomials in the exposition of the general constructions.

5.2.1. First Reduction: Bipolar Construction

Definition. Given a regular function F : Fn → Fm, invertible linear transformations S :

Fn → Fn and T : Fm → Fm, we define the bipolar construction of F, S and T as the regular

function P : Fn → Fm given by P = T ◦ F ◦ S.

It can be easily seen that if each polynomial in F has degree d, then each polynomial in P

also has degree d.

Assume now that we have a regular function F : Fn → Fm with the following property: Any

equation F (x1, . . . , xn) = (c1, . . . , cn) where (c1, . . . , cn) ∈ F (Fn) can be efficiently solved4.

Clearly, F would not serve as a public key itself since anyone is able to invert it. However,

we can create a MPK Cryptosystem from F by choosing uniformly at random two linear

transformations S : Fn → Fn and T : Fm → Fm and considering P = T ◦ F ◦ S, the bipolar

construction of F, S and T . The idea with this construction is that S mixes the variables and

T mixes the equations, therefore hiding the structure of the function F . Figure 5-2 shows

how the process works.

An important property of this construction is that someone who knows F , S and T can easily

invert any equation of the form P (x1, . . . , xn) = (c1, . . . , cn) where (c1, . . . , cn) ∈ P (Fn) since

P−1 = S−1 ◦ F−1 ◦ T−1 and we are assuming that F is easy to invert (here, we must notice

that T−1(c1, . . . , cn) ∈ F (Fn)). Therefore, it makes sense to consider F, S and T as secret

information and P as the public information. From the security point of view, we want to

make sure that someone who simply sees P is not able to recover F, S and T , which is some

kind of “factoring problem” for mappings. This problem is assumed to be hard in general, and

4We restrict ourselves to only inverting the function where there is indeed a preimage of the element

involved. This makes sense since we only want to decrypt valid ciphertexts. Some of the cryptosystems

we will encounter only allow us to invert in this situation, and they would fail to decrypt if a non-valid

ciphertext is asked for decryption
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
x1

x2

...

xn

 Linear transformation S

(Mixes the variables)


∑

s1ixi∑
s2ixi
...∑
snixi


Regular function F

(Evaluate at the polynomials)
f1 (
∑

xi, . . . ,
∑

xi)

f2 (
∑

xi, . . . ,
∑

xi)
...

fm (
∑

xi, . . . ,
∑

xi)

 L. transformation T

(Mixes the polynomials)


∑

fj (
∑

xi, . . . ,
∑

xi)∑
fj (
∑

xi, . . . ,
∑

xi)
...∑

fj (
∑

xi, . . . ,
∑

xi)


Figura 5-2.: Construction of MPK Cryptosystems from easy-to-invert regular functions

is closely related to the Jacobian conjecture on Invertible Polynomial Maps. Unfortunately,

there may be some F ’s for which this problem is not difficult, and this may lead to attacks

like the Min-Rank attack.

An important concern is that we cannot ensure that the only way to invert the function P is

by making use of F , S and T . For instance, if F is linear then P is linear as well, and then of

course everyone can invert the function P without having any knowledge of F , S nor T . It

is clear that one would not take F to be linear for this construction, but deeper conditions

can be found, for example, F is easy to invert if it has a low falling degree since Lazard’s

algorithm finishes at an early stage, however, bipolar constructions inherit the falling degree

from F and hence P would be easy to invert for anyone as well (see [Escudero, 2016] for

the details on this). The precise requirement for F so that the bipolar construction P is not

easy to invert is not clear. In fact, many of the defeated MPK Cryptosystems are in such a

status due to the fact that the function P has a low falling degree and therefore it is easy to

invert.

In any case, in many scenarios this can be assumed to be a hard problem and therefore

it makes sense to look at easy-to-invert regular functions F : Fn → Fm to build trapdoor

functions by doing the Bipolar Construction, and now we focus on the problem of finding

such F ’s. We stress that we do not know yet a sufficient condition on F that guarantees that

the bipolar construction is difficult to factorize, or more generally, to invert.

5.2.2. Second Reduction: Lifting Idea

According to the previous section, now we need to focus on building regular functions F :

Fn → Fm that are easy to invert. The method we will use for this is known as the lifting

idea, and involves an extension field of F and univariate polynomials over this extension.

Consider a field extension K of F of degree n, and consider φ : K → Fn to be the natural
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linear transformation between these vector spaces (see Chapter 1 for more details on this).

Recall our notation R := F[x1, . . . , xn]. Given a nonzero natural number b, any other nonzero

natural number a can be written uniquely as a = c1b
0 + c2b

1 + · · ·+ c`b
`−1 where 0 ≤ ci < b

for all i. We say that (c1, . . . , c`) is the expansion of a in base b, and we refer to d =
∑`

i=1 ci
as the b−Hamming weight of a. In order to extend the definition we define the b−Hamming

weight of a = 0 to be 0. As an example, notice that a has q−Hamming weight 2 if and only

if it has the form a = qi + qj.

Definition. The weight of a monomial Xa ∈ K[X] is the q−Hamming weight of a. A

polynomial F(X) ∈ K[X] is said to be homogeneous of weight d if all of its monomials have

weight d, and it is said to have weight d if all of its monomials have weight at most d.

The importance of the concept of weight is that it corresponds to degree on multivariate

polynomials under what we call Lifting and Droppings, as we can see in the following theorem.

Theorem 5.2.1. (Correspondence of Polynomials, restated). Let d ≥ 0 be an integer,

let K[X]d denote the set of homogeneous polynomials in K[X] of weight d and let (Rd)
n =

Rn
d denote the set of all functions F : Fn → Fn where each coordinate is a homogeneous

polynomial in F[x1, . . . , xn] of degree d, these sets are naturally F-vector spaces. The following

is a well-defined bijective linear transformation

Drp : K[X]d −→ Rn
d

F 7−→ φ ◦ F ◦ φ−1.

whose inverse is

Lft : Rn
d −→ K[X]d

F 7−→ φ−1 ◦ F ◦ φ.

The proof of this theorem can be found in Section 1.5.2.

The names Lft (lifting) and Drp (dropping) arise from the following commutative diagram,

which illustrates the correspondence.

K F // K
φ
��

Drp(F)

��

Lft(F )

OO

Fn F //

φ−1

OO

Fn

Clearly, F is invertible if and only if F is, so we can focus now on finding easy-to-invert uni-

variate polynomials F(X) ∈ K[X] with weight at most d. Even though this correspondence

exists for degree higher than 2, it has been used so far only for the quadratic case. Section

1.5.3 shows that this procedure can be done very efficiently.
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5.2.3. General Construction

To sum up, we describe the general procedure to build a trapdoor function P : Fn → Fm

where m = tn.

1. Choose some secret invertible linear transformations S, T1, . . . , Tt : Fn → Fn.

2. Find t univariate polynomials F1, . . . ,Ft ∈ K[X] having weight at most d such that the

system of equations (F1(X) = Y1, . . . ,Ft(X) = Yt) where Yi ∈ Fi(K) can be efficiently

solved.

3. The trapdoor function is P : Fn → Fm given by P = (P1, . . . , Pt) with Pi = Ti ◦
Drp (F) ◦ S.

This construction is depicted in Figure 5-3.

So far we have considered degree d polynomials, with d ≥ 2; however, many of the cons-

tructions so far involve only quadratic polynomials. This makes sense due to the following

considerations.

There are
(
n+d−1

d

)
= O(nd) monomials of degree d, so we need O(mnd) elements from

the field F to store m polynomials in R of degree d. If d = 2 then this is a manageable

size, by raising d to a much larger value one gets sizes beyond practical applications.5

In order for this construction to be efficient one needs to be able to compute Drp(F)

from F in an efficient manner. This is well known in the quadratic case, as we described

in Section 1.5.3.

K (F1,...,Ft)
// Kt

φ×···×φ
��

Fn S //

Trapdoor Function

33Fn (Drp(F1),...,Drp(Ft))
//

φ−1

OO

(Fn)t
T1×···×Tt // Fm

Figura 5-3.: General Construction of Multivariate Trapdoor Functions

5.3. Examples: HFE and ZHFE

We now discuss two examples of MPK Cryptosystems: Hidden Field Equations (HFE)

and ZHFE. The former was proposed by Patarin in 1996 [Patarin and Goubin, 1997], and

was a good alternative until Kipnis and Shamir proposed the so-called Min-Rank attack

5Nevertheless, d = 3 is still manageable, which is the starting point for our contributions in the next section.
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[Kipnis and Shamir, 1999b]. It was a theoretical attack back then, but subsequent work by

L. Perret et al [Bettale et al., 2013a] improved this attack for any set of practical parameters.

On the other hand, ZHFE was proposed as an alternative to avoid the Min-Rank attack.

It was presented in 2014 by Porras et al. [Porras et al., 2015] and it was well received by

the MPKC community for its new and creative idea. Unfortunately, it had efficiency issues

in its very beginning. Almost one year after its release, an improvement on the efficiency

of ZHFE and a security analysis based in the min-rank were published [Baena et al., 2016,

Perlner and Smith-Tone, 2016]. Although the former gave a hope on the future of ZHFE as a

usable primitive, the latter showed a weakness on the cryptosystem that led to the necessity

of reformulating it.

5.3.1. HFE

Recall that we need to find polynomials F1(X), . . . ,Ft(X) ∈ K[X] which are, in conjunction,

easy to invert. In finite fields, just like in the field of real numbers, we have algorithms that

can efficiently find the roots of a given univariate polynomial if its degree is small enough

(e.g. Berlekamp and Cantor-Zassenhaus algorithms, see [Lidl and Niederreiter, 1997]). Given

this, it is natural to consider low degree polynomials since these are easily invertible.

Definition

In HFE, the core function is given by a low degree polynomial of weight two. More precisely,

fix a parameter D and consider a polynomial of the form

F(X) =
∑

qi+qj≤D

αijX
qi+qj

(for illustrative reasons we assume F is homogeneous). If D is low enough, this function is

easy to invert. The trapdoor function is built then by choosing some secret invertible linear

transformations S, T : Fn → Fn and computing P = T ◦ φ ◦ F ◦ φ−1 ◦ S.

Security Analysis

The HFE Cryptosystem has a vulnerability against what is known as a Min-Rank attack.

This attack reduces the problem of finding the secret key6 to the Min-Rank problem. Since

we will encounter the same type of attack in the next chapter when we generalize it to the

cubic setting, it is worth to see the most relevant aspects of it.

6 In fact, an equivalent secret key is recovered, which is a secret key that may not be the one used originally

to create the given public key, but that also works for decryption. This will not matter much for our

discussion.
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We begin by writing the polynomial F as

F(X) =
(
Xq0

Xq1 · · · Xqn−1)


∗ · · · ∗ 0 · · · 0
...

. . .
...

...
. . .

...

∗ · · · ∗ 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 0 · · · 0




Xq0

Xq1

...

Xqn−1



where only the r × r square on the top left of this matrix is nonzero (r = blogqDc). This

should look familiar to the representation of quadratic forms in several variables but using

the “variables” Xqi instead (recall that Xqn = X for any particular X ∈ K, so we only need

to consider these powers up to Xqn−1
). Let us denote the matrix in the middle by M ∈ Kn×n.

Notice that M has a low rank r (since D is small, by construction).

Now, recall from Section 1.5.3 that if Ai ∈ Fn×n is the quadratic matrix representing the

i-th component of Drp(F) = φ ◦ F ◦ φ−1, then ∆ᵀM∆ =
∑n

i=1 y
i−1Ai. Moreover, it is

easy to check that the effect of composing with the matrix S ∈ Fn×n from the right gives

φ ◦ F ◦ φ−1 ◦ S = (∆S)ᵀM(∆S).7 Finally, the matrix Pi representing the i-th component of

P = T ◦ φ ◦ F ◦ φ−1 ◦ S is given by Pi =
∑n

j=1 T [i, j] · (SᵀAjS).

As an important consequence, we see that the following relation holds

(∆S)ᵀM(∆S) =
n∑
i=1

λiPi, (5-1)

where (λ1, . . . , λn) = (y0, . . . , yn−1)T−1. This holds since

n∑
i=1

λiPi =
n∑
i=1

λi

(
n∑
j=1

T [i, j] · (SᵀAjS)

)
=
∑
j

SᵀAjS
∑
i

λiT [i, j] =
∑
j

yj−1SᵀAjS.

The important observation about Equation (5-1) is that the left-hand side (and therefore, the

right-hand side) has the same rank as M , which is at most r and that has to be low in order to

keep decryption efficient. This gives an instance of the Min-Rank problem that can be tackled

using the techniques from Chapter 3. The first negative implication of this property is that

the trapdoor functions from HFE are distinguishable from random regular functions, which

is undesirable. Secondly, this attack allows an attacker to find the coefficients λ1, . . . , λn and

it turns out that this is enough to build an equivalent secret key (for the details see for

example [Bettale et al., 2013b]).

7This follows from the fact that composing a quadratic polynomial represented by a matrix A with a linear

transformation S gives again a quadratic polynomial represented by SᵀAS
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5.3.2. ZHFE

It is worth mentioning ZHFE, which appeared in the literature as an alternative to overcome

the Min-Rank attack. The basic construction for the core polynomial is as follows. Just like

in HFE, we begin by fixing a small parameter D that will allow us to invert. Then we look for

scalars α1, . . . , α2n, β1, . . . , β2n ∈ K and two weight 2 polynomials F(X) and F̃(X) satisfying

that the polynomial

Ψ(X) = X
(
α1F q

0

+ · · ·+ αnF q
n−1

+ β1F̃ q
0

+ · · ·+ βnF̃ q
n−1
)

+

Xq
(
αn+1F q

0

+ · · ·+ α2nF q
n−1

+ βn+1F̃ q
0

+ · · ·+ β2nF̃ q
n−1
)
,

has low degree D (it is important to note that a weight two polynomial raised to a Frobenius

power qi is again weight 2). These are obtained by solving sparse linear systems of equations

(see [Baena et al., 2016] for more details on this). Our central function will be G = (F , F̃).

To invert this function, suppose we are given (Y0, Y1) ∈ G(K), we want to find X such that

G(X) = (Y0, Y1), that is, F(X) = Y0 and F̃(X) = Y1. Clearly, such X will also satisfy the

low degree polynomial equation

Ψ(X) = X
(
α1Y0 + · · ·+ αnY

qn−1

0 + β1Y1 + · · ·+ βnY
qn−1

1

)
+

Xq
(
αn+1Y0 + · · ·+ α2nY

qn−1

0 + βn+1Y1 + · · ·+ β2nY
qn−1

1

)
.

which we can solve, finding therefore the preimages of (Y0, Y1).

Security Analysis

Write

Ψ = X
[
L0

(
F, F̃

)]
︸ ︷︷ ︸

Ψ0

+Xq
[
L1

(
F, F̃

)]
︸ ︷︷ ︸

Ψ1

.

and recall that there are no terms of degree higher than D in Ψ. However, many of these

terms come either from Ψ0 or Ψ1 (not both!). From this observation it can be seen that the

matrices representing the quadratic forms L0

(
F, F̃

)
and L1

(
F, F̃

)
have the following shape

∗ ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ . . . ∗
∗ ∗ ∗ ∗

...
. . .

∗ ∗ ∗ ∗
∗
...

∗


,



∗ ∗ ∗ ∗ ∗ . . . ∗
∗ ∗ ∗ . . . ∗
∗ ∗ ∗ ∗

...
. . .

∗ ∗ ∗ ∗
∗
...

∗


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where each block on the top-left is r × r, with r = dlogqDe. Hence, these matrices have a

low rank of r + 1. This may seem as the attack on HFE, but the main difference is that

the low rank is possessed by L0 and L1, not F and F̃ . However, it has been discovered that

this is not a barrier for a similar attack to that on HFE [Perlner and Smith-Tone, 2016,

Cabarcas et al., 2017], and this cryptosystem is unfortunately insecure.



6. Rank Analysis of Cubic Polynomials

6.1. Min-Rank Analysis for Cubic Big Field Constructions

As we pointed out in Section 5.2, the Big Field Idea has been a basis to propose quadratic

multivariate encryption schemes for decades. Nevertheless, Theorem 1.5.2 is not restricted

to any particular degree, which means that this approach works to generate polynomials of

any degree, in particular degree 3. In this section we show that if the central map is a low

rank cubic polynomial, then, as in the quadratic case, there must exists a low-rank linear

combination of the polynomials of the public key. In particular, we obtain an instance of the

cubic Min-Rank problem which can be solved using the techniques presented in Section 4.2.

6.1.1. Big Field Idea for Cubic Polynomials

Let F ∈ K[X] be a homogeneous weight 3 polynomial given by

F(X) =
∑

1≤i,j,k≤n

αi,j,kX
qi−1+qj−1+qk−1

and S, T ∈ Fn×n invertible matrices. Our first goal is to give an explicit expression for the

multivariate cubic polynomials of the composition T ◦φ◦F◦φ−1◦S. We begin by representing

the map F as F(X) = T (X,X,X) where X = (Xq0
, . . . , Xqn−1

)ᵀ and T : Kn×Kn×Kn → K
is the trilinear form given by

T (β, δ,γ) =
∑

1≤i,j,k≤n

αi,j,k · (βiδjγk).

Let A be the three-dimensional matrix whose entry (i, j, k) is given by αi,j,k, and assume

without loss of generality that the matrix A is symmetric (otherwise we can take the matrix

whose (i, j, k) entry is given by 1
3!
· (A[i, j, k] + A[i, k, j] + A[j, i, k] + A[j, k, i] + A[k, i, j] +

A[k, j, i]), which represents the same trilinear form T ).

Let T ′ : Kn×Kn×Kn → K be the trilinear form given by T ′(β, δ,γ) = T (∆Sβ,∆Sδ,∆Sγ),

then we can write this trilinear form as

T ′(β, δ,γ) =
∑

1≤i,j,k≤n

α′i,j,k · (βiδjγk)

where α′i,j,k = T ′(ei, ej, ek) = T (∆Sei,∆Sej,∆Sek).
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Let A′ be the three-dimensional matrix whose entry (i, j, k) is given by α′i,j,k. Notice that

this is the cubic version of the matrix (∆S)ᵀA(∆S) in Equation 5-1 from Section 5.3. It is

easy to see that the matrix A′ is symmetric since the matrix A is.

Let a ∈ Fn and let α = φ−1(Sa), we know that Frob(α) = ∆ · φ(α) = ∆S · a and therefore

F ◦ φ−1(Sa) = F(α) = T (Frob(α),Frob(α),Frob(α)) = T (∆S · a,∆S · a,∆S · a)

= T ′(a, a, a) =
∑

1≤i,j,k≤n

α′i,j,k · (aiajak).

Let R1, . . . , Rn ∈ Fn×n×n be three-dimensional symmetric matrices such that A′ = y0 ·R1 +

y1 ·R2 + · · ·+ yn−1 ·Rn, where y0, y1 . . . yn−1 is the basis of K over F. Then

F ◦ φ−1 ◦ S(a) =
∑

1≤i,j,k≤n

α′i,j,k · (aiajak)

=
∑

1≤i,j,k≤n

(
n∑
`=1

y`−1R`[i, j, k]

)
· (aiajak)

=
n∑
`=1

y`−1

( ∑
1≤i,j,k≤n

R`[i, j, k] · (aiajak)

)
︸ ︷︷ ︸

t`

.

Since t` ∈ F, we obtain that φ◦F ◦φ−1◦S(a) = (t1, . . . , t`)
ᵀ, therefore, each cubic polynomial

in the composition φ ◦F ◦ φ−1 ◦S is given by f`(x) =
∑

1≤i,j,k≤nR`[i, j, k] · (xixjxk). Finally,

when we apply the transformation T we obtain that each cubic polynomial in the composition

P = T ◦ φ ◦ F ◦ φ−1 ◦ S is given by

p`(x) =
∑

1≤i,j,k≤n

(
n∑
t=1

T [`, t] ·Rt[i, j, k]

)
· (xixjxk).

As a conclusion, if we let A` be the matrix whose entry (i, j, k) is given by
∑n

t=1 T [`, t] ·
Rt[i, j, k] then we obtain that this is the symmetric matrix corresponding to the `-th polyno-

mial in P . In particular, this shows we can compute efficiently the composition T◦φ◦F◦φ−1◦S
from S, T and F .

6.1.2. Existence of Low Rank Linear Combination

Let us continue with the same setting as before, and let r be the rank of A, which in particular

means that A can be written as
∑r

`=1 u` ⊗ v` ⊗ w`. Suppose that r � n. In this section

we prove that there exists a low-rank linear combination of the three-dimensional matrices

representing the composition P , and in Section 4.2 we showed how to find such combination.

Recall that the matrix A′ was defined as A′[i, j, k] = T (∆Sei,∆Sej,∆Sek). We claim that

the rank of this matrix is at most the rank of A. We show this by exhibiting vectors
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u′`,v
′
`,w

′
` ∈ Kn such that A′ =

∑r
`=1 u′` ⊗ v′` ⊗ w′`. Let M be the matrix ∆S, we define

u′` =
∑n

i=1 u`[i] ·M [i, ·], v′` =
∑n

i=1 v`[i] ·M [i, ·] and w′` =
∑n

i=1 w`[i] ·M [i, ·], then

A′[i′, j′, k′]

= T ′(Mei′ ,Mej′ ,Mek′)

=
∑

1≤i,j,k≤n

A[i, j, k] ·
(
(Mei′)[i] · (Mej′)[j] · (Mek′)[k]

)
=

∑
1≤i,j,k≤n

(
r∑
`=1

u`[i] · v`[j] ·w`[k]

)(
(M [i, ·]ei′) · (M [j, ·]ej′) · (M [k, ·]ek′)

)
=

r∑
`=1

∑
1≤i,j,k≤n

(
u`[i]M [i, ·]ei′

)(
v`[j]M [j, ·]ej′

)(
w`[k]M [k, ·]ek′

)
=

r∑
`=1

(
n∑
i=1

u`[i]M [i, ·]ei′
)(

n∑
j=1

v`[j]M [j, ·]ej′
)(

n∑
k=1

w`[k]M [k, ·]ek′
)

=
r∑
`=1

[(u′`) ei′ ] [(v′`) ej′ ] [(w′`) ek′ ]

=
r∑
`=1

u′`[i
′] · v′`[j′] ·w′`[k′].

From this we conclude that A′ =
∑r

`=1 u′` ⊗ v′` ⊗w′` and hence rank(A′) ≤ r.

Now let (λ1, . . . , λn) = (y0, . . . , yn−1) · T−1, then

n∑
i=1

λiAi =
n∑
i=1

λi

(
n∑
j=1

T [i, j] ·Rj

)
=

n∑
j=1

Rj

n∑
i=1

T [i, j] · λi =
n∑
j=1

Rj · yj−1 = A′.

This shows that there is a linear combination of the matrices representing the public key

whose result is a low rank three-dimensional matrix. This yields directly an instance of

the cubic Min-Rank problem which can be solved for instance with the extension of the

Kipnis-Shamir modeling presented in Section 4.2.2. As we mentioned before, this is by itself

a weakness of the scheme, as it allows distinguishing public keys from random polynomial

systems and also has implications on the degree of regularity of the system, as stated in

Section 6.2. Moreover, the coefficients we have obtained here carry the same information

about the secret key as those in the original (quadratic) Min-Rank attack, and this can be

used in a similar way to construct equivalent keys.

6.2. Direct Algebraic Attack

The direct algebraic attack, or simply the direct attack, refers to the case when an attacker

aims to find the plaintext associated with a ciphertext (c1, . . . , cn) directly from the public
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multivariate equations p1 = c1, . . . , pn = cn, without the knowledge of any other information

of the system. In almost all the cases, the most efficient way to perform this attack is to

compute a Gröbner basis of the ideal I generated by the multivariate polynomials p1 −
c1, . . . , pn − cn.

Gröbner bases have played an important role not only in multivariate cryptography, but also

in coding theory and lattices [Alvarez-Barrientos et al., 2016, Aliasgari et al., 2011]. There is

a general consensus that when computing a Gröbner basis over a finite field, one of the most

efficient ways to do it is to use the F4 or F5 algorithms [Faugère, 1999, Faugère, 2002]. In a

recent work [Makarim and Stevens, 2017], the authors used their M4GB algorithm to solve

some of Fukuoka’s MQ challenges within 11 days. The complexity of all these algorithms

depends on the degree of regularity of the system. Since the degree of regularity is hard to de-

termine, it is usually approximated by its first fall degree, defined as the first degree at which

non-trivial relations between the polynomials p1, . . . , pn occur. For a more thorough survey

of the complexity of computing Gröbner bases and an analysis of the different parameters

used to study it, see [Escudero, 2016].

We now want to derive an upper bound for the first fall degree of the system. Before we do

that, we need the following definition.

Definition. The LRank of a homogeneous λ ∈ F[x1, . . . , xn] is the smallest integer s such

that there exist linear homogeneous µ1, . . . , µs ∈ F[x1, . . . , xn] with λ contained in the algebra

F[µ1, . . . , µs].

Hodges et al. [Hodges et al., 2014] proved that for a scheme with core polynomial of weight

3, its first fall degree Dff(p1, . . . , pn) is bounded by

Dff(p1, . . . , pn) ≤ LRank(P0)(q − 1) + 5

2
.

Here P0 is the homogeneous part of highest degree of the core polynomial F seen as an

element of the graded algebra K[X0, . . . , Xn−1]/
(
Xq

0 , . . . , X
q
n−1

)
, where Xi corresponds to

Xqi , for i = 0, . . . , n− 1. In our case

P0 =
∑

1≤i,j,k≤n

αi,j,kXi−1Xj−1Xk−1.

If we take αijk uniformly at random, then with high probability LRank(P0) ≤ rank(P0), so

Dff(p1, . . . , pn) ≤ rank(F)(q − 1) + 5

2
, (6-1)

since rank(P0) = rank(F).

In addition, in [Hodges et al., 2014] the authors show that if degF = D, then rank(F) ≤
blogq(D − 2)c+ 1, and hence

Dff(p1, . . . , pn) ≤
(q − 1)blogq(D − 2)c+ 4 + q

2
. (6-2)
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We now want to experimentally study the tightness of the bound (6-2), as they did in

[Hodges et al., 2014] for different parameters1. In Table 6-1 we present some of the results

obtained for different values of the parameters q, n and t, where t is the smallest integer

such that D ≤ qt − 1. The value B corresponds to the bound given by equation (6-2), and

Dff is the first fall degree of the system for each choice of the parameters, which is read

from Magma’s verbose output. All the polynomials used in the attack were built as it was

explained in Section 6.1.1, and for all cases we have included the field equations, i.e., xqi −xi
for i = 1, . . . , n.

q t n B Dff

5 3 8 8 8

5 3 9 8 8

5 3 10 8 8

5 4 8 10 9

5 4 9 10 9

5 4 10 10 10

5 5 8 12 9

5 5 9 12 9

5 5 10 12 10

q t n B Dff

7 3 8 11 10

7 3 9 11 10

7 3 10 11 10

7 4 8 14 10

7 4 9 14 11

7 4 10 14 12

7 5 8 17 10

7 5 9 17 11

7 5 10 17 12

q t n B Dff

11 3 8 17 13

11 3 9 17 14

11 3 10 17 15

11 4 8 22 13

11 4 9 22 14

11 4 10 22 15

11 5 8 27 13

11 5 9 27 14

11 5 10 27 15

q t n B Dff

17 3 8 26 17

17 3 9 26 18

17 3 10 26 18

17 4 8 34 17

17 4 9 34 18

17 4 10 34 18

17 5 8 42 17

17 5 9 42 18

17 5 10 42 18

Tabla 6-1.: Experimental results to study the tightness of the bound for Dff given by (6-2),

for different choices of the parameters q, t and n. The value of Dff is read from

Magma’s verbose output.

We notice that the bound given by (6-2) is very tight for small values of q and t, and that it

starts to widen considerably as q increases, and with a smaller pace as t increases. We also

observe that for fixed q and t, the bound gets tighter as n increases. It is very clear that the

bound needs to be improved for larger values of q.

On the other hand, the complexity of finding a Groebner basis G for the ideal I is bounded

by

O

((
n+Dff

Dff

)ω)
,

where 2 ≤ ω ≤ 3 is the linear algebra constant. When n grows to infinity, the complexity 2

becomes O
(
nωDff

)
. Therefore, according to the bound in (6-1), the complexity of finding G

is bounded by

O
(
nω

rank(F)(q−1)+5
2

)
.

1Table 1 in [Hodges et al., 2014] do not include the values for the parameters we are interested in, so we

constructed our own version of it.
2Notice that we are using an upper bound to estimate the complexity. This is a customary usage for this

kind of attacks. In practice, it has been observed [Spaenlehauer, 2012] that, on average, this bound is not

too far from the actual complexity.
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Thus, if q and rank(F) are constant, then the complexity of finding G is polynomial in the

number of variables n. We also observe that the complexity is exponential in rank(F).

6.3. Example: HFE Cubic

Here we present the natural generalization of the HFE cryptosystem discussed in Section

5.3. This is a natural scheme to which our new Min-Rank attack might apply. The secret

key consist of two invertible matrices S, T ∈ Fn×n and a univariate polynomial F ∈ K[X] of

the form

F(X) =
∑

1≤i,j,k≤r

αi,j,kX
qi−1+qj−1+qk−1

,

where αi,j,k ∈ K. Notice that the degree of this polynomial is at most 3qr−1. Due to Theorem

1.5.2 we have that the composition F = φ ◦ F ◦ φ−1 : Fn → Fn can be expressed as

evaluation of n homogeneous cubic polynomials f1, . . . , fn ∈ F[x1, . . . , xn]. Therefore the

composition T ◦F ◦S = T ◦φ ◦F ◦φ−1 ◦S can also be seen as evaluation of n homogeneous

cubic polynomials p1, . . . , pn ∈ F[x1, . . . , xn]. These polynomials constitute the public key.

Encryption and decryption is performed just as in HFE, which is possible since (as we did

there) we take r to be small enough so that the polynomial F is easy to invert.

Min-Rank Analysis

Let A be the three-dimensional matrix whose entry (i, j, k) is equal to αi,j,k if i, j, k ≤ r, and

0 otherwise. As we have done before, we can assume, without loss of generality, that this

matrix is symmetric. To see that our Min-Rank attack applies to this scheme, we only need

to show that the three-dimensional matrix A has low rank. We claim that the matrix A has

rank at most (3/4)r2. This can be seen since the rank of the matrix A is the same as the

rank of the matrix A′ ∈ Fr×r×r defined by A′[i, j, k] = A[i, j, k], and the latter is bounded by

(3/4)r2, as seen in Section 2.2.

It is important to remark that we considered this attack just as an example and it is not by

any means the most efficient attack on this scheme. For instance, this scheme counts with a

structural weakness: when the differential is applied the rank drops from O(r2) to r. As we

saw in Section 4.3.2, this is not a typical behavior, and it only happens due to the underlying

structure of the matrix involved.



7. HiRaC: High Rank Cryptosystem

In this chapter we present a new proposal for a Multivariate Public Key Encryption Scheme.

We call it HiRaC, standing for High Rank Cryptosystem. HiRaC uses cubic polynomials, and

its name is motivated from the apparent fact that our scheme has a high rank and therefore

is not vulnerable directly to the attacks sketched in the previous chapter.

Many of the constructions seen so far in MPKC use quadratic polynomials. This makes sense

since our assumptions say that these systems are difficult to solve, and from a theoretical

point of view every polynomial system can be made quadratic by adding enough equations

and renaming monomials. Another advantage of considering these systems is that it takes

O(mn2) elements from the field F to store m quadratic polynomials, which is a reasonable

number.

Our contribution is related to the use of cubic polynomials instead of quadratic. This will give

us more flexibility but we will need O(mn3) elements from F to store m of these polynomials.

However, this number is still manageable, and the possible advantages of using these may

overcome the bottlenecks.

7.1. Description of HiRaC

Let q be a prime number greater than 3, n a positive integer, F a finite field of size q and K
a field extension of F of degree n. For our trapdoor function we will need a small parameter

r which we will use for inverting the central function.

To build the central function, we begin by picking completely at random a weight 2 poly-

nomial F ∈ K[X]. We also choose at random for each j = 0, . . . , r, a q-weight 1 polynomial

Mj ∈ K[X] and a weight 3 polynomial G(X) ∈ K[X] whose biggest power is 3qr. As usual,

we choose two invertible linear transformations S, T : Fn → Fn. Finally, we consider the

weight 3 polynomial H : K→ K given by

H(X) =
r∑
j=0

XqjMj (F ′(X)) + G(X) (7-1)

where F ′ = F ◦ φ−1 ◦ S−1 ◦ φ.

The trapdoor function is then P : Fn → F2n given by

P = (φ ◦ F ◦ φ−1, T ◦ φ ◦ H ◦ φ−1 ◦ S),
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while the secret information is (F ,Mi,G,H, S, T ).

We refer to G as the noise, since it is intended to hide the structure
∑
XqjMj (F ′(X)).

Remark. Since F is chosen completely at random, we do not need to apply the linear

transformation T at the end. In addition to this, one may apply S on the right to F and

by doing so one can use F directly on equation (7-1) rather than F ′. However, we keep

the construction in this fashion to stress that the left part of the public key is completely

random.

To invert P we proceed as follows. Suppose that we are given c = (c1, . . . , c2n) in the range

of P , and we want to solve the simultaneous equations F (φ−1(x)) = Z1, H (φ−1(Sx)) = Z2

where Z1 = φ−1(c1, . . . , cn) and Z2 = φ−1 ◦T−1(cn+1, . . . , c2n). By setting X = φ−1(Sx), this

is the same as F ′ (X) = Z1 and H (X) = Z2. Any solution to this system will also satisfy

the polynomial equation

Z2 =
r∑
j=0

XqjMj (Z1) + G(X),

and the parameter r is chosen small enough so that this equation can be solved.

In Table 7-1 we can see the timings for the key generation process using this idea given the

secret key, along with encryption and decryption times for several sets of parameters.

7.2. Min-Rank Analysis

Now we apply our framework to analyze the vulnerability of our scheme with respect to the

Min-Rank attack. More specifically, we explore the viability of performing the attack on the

composition T ◦ φ ◦ H ◦ φ−1 ◦ S. In order to achieve this, we must find an upper bound on

the rank of the symmetric matrix representing the polynomial H.

From equation (7-1) we can write H(X) as

H(X) =
r∑
t=1

Xqt−1 · Ft(X)

where Ft ∈ K[X] is some weight 2 polynomial. We can write this as H(X) = T (x,x,x)

where x = (Xq0
, . . . , Xqn−1

)ᵀ and T : Kn ×Kn ×Kn → K is the trilinear form given by

T (β, δ,γ) =
r∑
t=1

βt · Tt(δ,γ)

with Ft(X) = Tt(x,x). Assume without loss of generality that each Tt is symmetric. Notice

that T is not symmetric in general. To obtain the symmetric trilinear form associated to H
we compute

1

3!
(T (β, δ,γ) + T (β,γ, δ) + T (δ,β,γ) + T (δ,γ,β) + T (γ,β, δ) + T (γ, δ,β)) .
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However, since each Tt is symmetric, any permutation of the two last inputs do not change

the trilinear form, which leaves us with

1

3
(T (β, δ,γ) + T (δ,β,γ) + T (γ,β, δ)) .

As a conclusion, the rank of H is at most three times the rank of T . Now we claim the

latter rank is at most r ·n. Let Tt be the two-dimensional matrix associated with the bilinear

form Tt. Assuming that Tt has full rank, we can write Tt =
∑n

`=1 v
(t)
` ⊗w

(t)
` , then the matrix

associated to T is given by

A =
r∑
t=1

et ⊗

(
n∑
`=1

v
(t)
` ⊗w

(t)
`

)
=

r∑
t=1

n∑
`=1

et ⊗ v
(t)
` ⊗w

(t)
` ,

which has rank at most r · n.

We conclude that the rank of the polynomial H is at most 3 · r · n. It is important to notice

that if r = O(1), then this rank is not asymptotically maximal since 3 · r · n = O(n) and we

know that the maximal rank for the given dimensions is O(n2). In particular, there is indeed

a rank defect, meaning that our central map has a rank that is not maximal. However, if the

rank happens to be close to O(n) then all the approaches to the underlying cubic Min-Rank

problem become inefficient as their complexity using Gröbner bases is exponential (see for

example [Escudero, 2016] or [Spaenlehauer, 2012]).

The above argument shows that the overall structure of the scheme does not imply a low rank.

However, since we have not provided a lower bound, the rank of the central map could still

be low due to some other structural weakness. We have run extensive experiments that seem

to indicate this is not the case: We generated several HiRaC instances and considered the

differential of the central polynomial. We calculated then its rank (recall that the differential

of a cubic polynomial is a quadratic polynomial), and in all of our experiments we found

that this rank was n. Since, as we saw in Section 4.3.2, the rank of the differential is less

than or equal to the rank of the original polynomial, it follows that our central map has, for

the experiments executed, rank greater than n.

Finally, we stress out that this argument does not rule out any structural attack like the one

we showed at the end of Section 6.3, or like the one found in ZHFE.
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q n r
Plaintext space

size ≈
Degree of

G(X)

Public key

generation [s]
Encryption [s] Decryption [s]

2 50 5 250 96 3.424 0.024 0.019

2 50 6 250 192 3.804 0.024 0.038

2 50 7 250 384 4.194 0.026 0.107

2 50 8 250 768 4.640 0.027 0.254

2 50 9 250 1536 5.387 0.026 0.629

2 50 10 250 3072 5.480 0.028 2.847

2 100 3 2100 24 27.110 0.131 0.017

2 100 4 2100 48 30.757 0.132 0.034

2 100 5 2100 96 34.153 0.132 0.081

2 150 3 2150 24 124.268 0.402 0.038

2 150 4 2150 48 135.726 0.392 0.070

2 150 5 2150 96 142.668 0.398 0.144

3 31 3 250 81 1.114 0.030 0.074

3 31 4 250 243 1.340 0.032 0.384

3 31 5 250 729 1.293 0.032 2.078

3 31 6 250 2187 1.453 0.032 7.214

3 63 2 2100 27 10.274 0.238 0.034

3 63 3 2100 81 11.650 0.238 0.168

3 63 4 2100 243 12.788 0.236 0.834

3 63 5 2100 729 14.080 0.240 4.516

3 94 2 2150 27 65.796 1.838 0.128

3 94 3 2150 81 73.036 1.836 0.542

3 94 4 2150 243 79.340 1.834 2.886

5 21 2 250 75 0.254 0.006 0.026

5 21 3 250 375 0.358 0.006 0.288

5 21 4 250 1875 0.370 0.004 3.812

5 43 2 2100 75 4.588 0.070 0.436

5 43 3 2100 375 5.305 0.068 3.852

5 43 4 2100 1875 6.000 0.070 28.940

5 64 2 2150 75 8.236 0.356 0.248

5 64 3 2150 375 10.010 0.354 3.068

5 64 4 2150 1875 11.735 0.352 37.242

7 17 2 250 147 0.162 0.004 0.132

7 17 3 250 1029 0.200 0.004 1.844

7 17 4 250 7203 0.200 0.005 19.275

7 35 2 2100 147 1.155 0.040 0.225

7 35 3 2100 1029 1.370 0.040 4.850

7 35 4 2100 7203 1.605 0.035 50.460

7 53 2 2150 147 11.675 0.135 1.760

7 53 3 2150 1029 13.230 0.140 22.545

11 14 2 250 363 0.090 0.010 0.415

11 14 3 250 3993 0.085 0.005 7.440

11 29 2 2100 363 1.125 0.025 1.460

11 29 3 2100 3993 1.325 0.025 29.570

11 43 2 2150 363 5.635 0.080 3.665

11 43 3 2150 3993 6.550 0.080 81.060

17 12 2 250 867 0.055 0.000 0.990

17 12 3 250 14739 0.040 0.005 27.680

17 24 2 2100 867 0.390 0.010 3.840

17 24 3 2100 14739 0.475 0.015 87.375

17 36 2 2150 867 1.875 0.075 10.375

Tabla 7-1.: Experiments of Public Key generation, encryption and decryption, for different

values of q, n and r



Bibliograf́ıa

[Aliasgari et al., 2011] Aliasgari, M., Sadeghi, M. R., and Panario, D. (2011). Gröbner Ba-
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bases of bihomogeneous ideals generated by polynomials of bidegree (1,1): Algorithms and

complexity. Journal of Symbolic Computation, 46(4):406 – 437.

[Faugère et al., 2008] Faugère, J.-C., Levy-dit Vehel, F., and Perret, L. (2008). Crypta-

nalysis of Minrank. In Advances in Cryptology – CRYPTO 2008, pages 280–296, Berlin,

Heidelberg. Springer Berlin Heidelberg.

[Gaborit et al., ] Gaborit, P., Ruatta, O., Schrek, J., Tillich, J.-P., and Zémor, G. Rank

based cryptography: a credible post-quantum alternative to classical cryptography.

[Garey and Johnson, 1990] Garey, M. R. and Johnson, D. S. (1990). Computers and Intrac-

tability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,

NY, USA.

[Gentry and Jutla, 2018] Gentry, C. and Jutla, C. S. (2018). Obfuscation using tensor pro-

ducts. Cryptology ePrint Archive, Report 2018/756. https://eprint.iacr.org/2018/

756.

[Goubin and Courtois, 2000] Goubin, L. and Courtois, N. T. (2000). Cryptanalysis of the

TTM Cryptosystem, pages 44–57. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Hillar and Lim, 2013a] Hillar, C. J. and Lim, L.-H. (2013a). Most Tensor Problems are

NP-Hard. J. ACM, 60(6):45:1–45:39.

[Hillar and Lim, 2013b] Hillar, C. J. and Lim, L.-H. (2013b). Most tensor problems are

np-hard. J. ACM, 60(6):45:1–45:39.

[Hodges et al., 2014] Hodges, T. J., Petit, C., and Schlather, J. (2014). First Fall Degree

and Weil Descent. Finite Fields Appl., 30:155–177.

[Howell, 1978] Howell, T. D. (1978). Global properties of tensor rank. Linear Algebra and

its Applications, 22(Supplement C):9 – 23.

[H̊astad, 1990] H̊astad, J. (1990). Tensor rank is np-complete. Journal of Algorithms,

11(4):644 – 654.

[Katz and Lindell, 2007] Katz, J. and Lindell, Y. (2007). Introduction to Modern Crypto-

graphy (Chapman & Hall/Crc Cryptography and Network Security Series). Chapman &

Hall/CRC.

[Kipnis and Shamir, 1999a] Kipnis, A. and Shamir, A. (1999a). Cryptanalysis of the HFE

Public Key Cryptosystem by Relinearization, pages 19–30. Springer Berlin Heidelberg,

Berlin, Heidelberg.

https://eprint.iacr.org/2018/756
https://eprint.iacr.org/2018/756


60 Bibliograf́ıa

[Kipnis and Shamir, 1999b] Kipnis, A. and Shamir, A. (1999b). Cryptanalysis of the HFE

public key cryptosystem by relinearization. In Advances in cryptology—CRYPTO ’99

(Santa Barbara, CA), volume 1666 of Lecture Notes in Computer Science, pages 19–30.

Springer, Berlin.

[Kruskal, 1977] Kruskal, J. B. (1977). Three-way arrays: rank and uniqueness of trilinear

decompositions, with application to arithmetic complexity and statistics. Linear Algebra

and its Applications, 18(2):95 – 138.

[Landsberg, 2012] Landsberg, J. M. (2012). Tensors: geometry and applications, volume 128

of Graduate Studies in Mathematics. American Mathematical Society.

[Lidl and Niederreiter, 1997] Lidl, R. and Niederreiter, H. (1997). Finite fields / Rudolf Lidl,

Harald Niederreiter ; foreword by P.M. Cohn. Cambridge University Press Cambridge ;

New York, 2nd ed. edition.

[Makarim and Stevens, 2017] Makarim, R. H. and Stevens, M. (2017). M4GB: An Efficient
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