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Boundedness in third order nonlinear
differential equations with bounded delay
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Se presenta un teorema que incluye condiciones suficientes para el
acotamiento de soluciones de una cierta clase de ecuaciones difer-
enciales no lineales de tercer orden con un retardo constante. Nue-
stros resultados extienden un resultado reciente de Omeike (2009).
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A theorem is presented which includes sufficient conditions for the
boundedness of solutions of a certain class of third order nonlinear
differential equations with a constant delay. Our result extends a
recent result by Omeike (2009).
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1 Introduction

A problem of considerable interest in qualitative theory of ordinary dif-
ferential equations of higher order, with or without delay, is the deter-
mination of the boundedness of solutions. In the last three decades,
specially in recent years, some authors dealt with the problem for vari-
ous nonlinear delay differential equations of third order. In particular, we
refer readers to the papers of Afuwape and Omeike [2], Sinha [4], Teju-
mola and Tchegnani [5], Tunç [6, 7, 8, 9, 10, 11, 12, 13, 14], Zhu [15], and
the references therein for some results achieved on the boundedness of
solutions of certain nonlinear delay differential equations of third order.
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In the meantime Omeike, in 2009, [3] considered the following nonlin-
ear differential equation of third order, with a constant deviating argu-
ment r,

d3x

dt3
(t) + a(t)

d2x

dt2
(t) + b(t) g

(
dx

dt
(t)

)
+ c(t)h(x(t− r)) = p(t) .

Omeike discussed the stability and boundedness of solutions of this equa-
tion when p(t) = 0 and p(t) 6= 0.

In this paper, instead of the above equation, we consider the follow-
ing non–autonomous differential equation of third order with a constant
deviating argument, r, given by:

d3x

dt3
(t) + a(t)ψ

(
dx

dt
(t)

)
d2x

dt2
(t) + b(t) g

(
dx

dt
(t)

)

+c(t)h(x(t− r)

= p

(
t, x(t), x(t− r),

dx

dt
(t),

dx

dt
(t− r),

d2x

dt2
(t)

)
, (1)

whose associated system is

dx

dt
(t) = y(t) ,

dy

dt
(t) = z(t) ,

dz

dt
(t) = −a(t)ψ(y(t)) z(t)− b(t) g(y(t))− c(t)h(x(t))

+c(t)
∫ t

t−r

dh

dt
(x(s)) y(s) ds

+p(t, x(t), x(t− r), y(t), y(t− r), z(t)) , (2)

where r is a positive constant; the functions a(t), b(t), c(t), ψ(y), g(y),
h(x) and p depend only on the arguments displayed explicitly; t ∈ R+,
R+ = [0,∞). The functions a(t), b(t), c(t), ψ(y), g(y), h(x) and p are
assumed to be continuous for their respective arguments on R+, R+, R+,
R , R, R and R+ × R5, respectively; g(0) = 0, h(0) = 0; the derivatives
da
dt (t),

db
dt (t),

dc
dt (t) and dh

dx(x) exist and are continuous. It should be noted
that the continuity of the functions a(t), b(t), c(t), ψ(y), g(y), h(x) and
p guarantees the existence of the solution of equation (1). Besides, it is
assumed that the functions ψ(y), g(y), h(x) and p(t, x, x(t − r), y, y(t−
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r), z) satisfy a Lipschitz condition in x, y, z, x(t− r) and y(t− r). Hence
the solution is unique. Finally, all solutions considered are supposed to be
real valued and throughout the paper x(t), y(t) and z(t) are abbreviated
as x, y and z, respectively.

The motivation of this paper has come from the result by Omeike
[3, Theorem 2] and the papers mentioned above. Our purpose here is to
extend the result established by Omeike [3, Theorem 2] to the preced-
ing non–autonomous differential equation with the deviating argument
r for the boundedness of all solutions. Clearly, the equation discussed in
Omeike [3, Theorem 2] is a special case of our equation, equation (1).

2 Main result

We prove the following theorem.

Theorem. In addition to the basic assumptions imposed on the func-
tions a(t), b(t), c(t), ψ(y), g(y), h(x) and p, let us assume that there exist
positive constants δ(0), δ1, δ2, a, b, c, α and L such that the following
conditions hold:

i.

h(x)
x

≥ δ(0) , x 6= 0 ,

dh

dx
(x) ≤ c ,

g(y)
y

≥ b , y 6= 0 ,

ψ(y) ≥ 1 ,

ii.

0 < a ≤ a(t) ≤ L ,

0 < δ1 ≤ c(t) ≤ b(t) ≤ L ,

−L ≤ dc

dt
(t) ≤ db

dt
(t) ≤ 0 ,

1
2
da

dt
(t) ≤ δ2 < δ1(b− αc) ,

b

c
> α >

1
a
,
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iii.
|p(t, x, x(t− r), y, y(t− r), z)| ≤ q(t) ,

where q ∈ L1(0,∞), L1(0,∞) is the space of Lebesgue integrable func-
tions. Then, there exists a finite positive constant K such that the solu-
tion x(t) of equation (1) defined by the initial function

x(t) = φ(t) ,
dx

dt
(t) =

dφ

dt
(t) ,

d2x

dt2
(t) =

d2φ

dt2
(t) ,

satisfies

|x(t)| ≤
√
K ,∣∣∣∣

dx

dt
(t)

∣∣∣∣ ≤
√
K ,

∣∣∣∣
d2x

dt2
(t)

∣∣∣∣ ≤
√
K ,

for all t ≥ t(0), where φ ∈ C2([t(0)− r, t(0)],R), provided that

r < min
{

2δ5
(2 + α)Lc

,
2(αa− 1)
Lα c

}
.

Proof. We define a Lyapunov functional V = V (t, x(t), y(t), z(t)) by

2V (t, x(t), y(t), z(t)) = α z2 + 2 y z + 2α b(t)
∫ y

0
g(η) dη

+2 a(t)
∫ y

0
ψ(η) η dη + 2α c(t)h(x)

+2 c(t)
∫ x

0
h(s) ds

+λ
∫ 0

−r

∫ t

t+s
y2(θ) dθ ds , (3)

where λ is a positive constant which will be determined later in the proof.
By the assumptions a(t) > 0 and ψ(y) ≥ 1, from (3) we have
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2V (t, x(t), y(t), z(t)) ≥ α z2 + 2 y z

+2α b(t)
∫ y

0
g(η) dη + a(t) y2

+2α c(t)h(x) y + 2 c(t)
∫ x

0
h(s) ds

+λ
∫ 0

−r

∫ t

t+s
y2(θ) dθ ds . (4)

Taking into account the assumptions of the theorem and the discus-
sion in Omeike [3, Theorem 2], from (4) one can conclude that

V (t, x(t), y(t), z(t)) ≥ δ0δ1δ4
2

x2 +
δ3
4
y2 +

δ3
4
z2

+λ
∫ 0

−r

∫ t

t+s
y2(θ) dθ ds

≥ D1

(
x2 + y2 + z2

)
, (5)

for some positive constants δ0, δ1, δ3 and δ4, where

D1 = min
{

1
2
δ0 δ1 δ4,

1
4
δ3

}
.

For the time derivative of the Lyapunov functional V (t, x(t), y(t),
z(t)), along a trajectory of the system (2), we have

dV

dt
=

dc

dt
(t)

∫ x

0
h(s) ds+ α

db

dt
(t)

∫ y

0
g(η) dη

+α
dc

dt
(t)h(x) y +

da

dt
(t)

∫ y

0
ψ(η) η dη

−
[
b(t)

g(y)
y

− α c(t)
dh

dt
(x)− λ r

]
y2

− [αa(t)ψ(y)− 1] z2 + c(t) y
∫ t

t−r

dh

dx
(x(s)) y(s) ds

+α c(t) z
∫ t

t−r

dh

dx
(x(s)) y(s) ds− λ

∫ t

t−r
y2(s) ds

+(y + α z) p(t, x, x(t− r), y, y(t− r), z) . (6)

Hence, subject to the assumptions of the theorem, from Omeike [3,
Theorem 1], it follows that
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dc

dt
(t)

∫ x

0
h(s) ds+ α

db

dt
(t)

∫ y

0
g(η) dη + α

dc

dt
(t)h(x) y ≤ 0 .

Applying the assumptions of the theorem and the inequality 2 |mn| ≤
m2 + n2, we obtain the following inequalities:

[
b(t)

g(y)
y

− α c(t)
dh

dx
(x)− λ r

]
y2 ≥ (

b2(t)− α c2(t)− λ r
)
y2

= c(t)
(
b2(t)
c(t)

− α c

)
y2

−λ r y2

≥ δ1 (b− α c) y2 − λ r y2

= δ1

(
b− α c− 1

δ1
λ r

)
y2 ,

da

dt
(t)

∫ y

0
ψ(η) η dη −

(
b(t)

g(y)
y

− α c(t)
dh

dx
(x)− λ r

)
y2

≤ 1
2
da

dt
(t) y2 −

(
b(t)

g(y)
y

− α c(t)
dh

dx
(x)− λ r

)
y2

≤ δ2 y
2 − δ1

(
b− α c− 1

δ1
λ r

)
y2

= − [−δ2 + δ1 (b− α c)− λ r] y2

= − (δ5 − λ r) y2 ,

δ5 = −δ2 + δ1 (b− α c) > 0 ,

(αa(t)ψ(y)− 1) z2 ≥ (αa− 1) z2 ,

c(t) y
∫ t

t−r

dh

dx
(x(s)) y(s) ds ≤ 1

2
Lc r y2 +

1
2
Lc

∫ t

t−r
y2(s) ds ,

α c(t) z
∫ t

t−r

dh

dx
(x(s)) y(s) ds ≤ 1

2
Lα c r z2 +

1
2
Lα c

∫ t

t−r
y2(s) ds ,
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(y + α z) p(t, x, x(t− r), y, y(t− r), z)
≤ |y + α z| |p(t, x, x(t− r), y, y(t− r), z)|
≤ (|y|+ α |z|) q(t)
≤ (

1 + α+ y2 + α z2
)
q(t)

≤ (1 + α) q(t) +D2

(
y2 + z2

)
q(t)

≤ (1 + α) q(t) +
D2

D1
V (t, x(t), y(t), z(t)) q(t) ,

where D2 = max{1, α}.
The replacement of the preceding inequalities in (6) gives

dV

dt
(t, x(t), y(t), z(t)) ≤ −

[
δ5 − (λ+

1
2
Lc) r

]
y2

−
[
(αa− 1)− 1

2
Lα c r

]
z2

+(1 + α) q(t)

+
D2

D1
V (t, x(t), y(t), z(t)) q(t)

+
[
1
2

(1 + α)Lc− λ

] ∫ t

t−r
y2(s) ds .

Choose λ = 1
2(1 + α)Lc. Hence,

dV

dt
(t, x(t), y(t), z(t)) ≤ −

[
δ5 − 1

2
(2 + α)Lc r

]
y2

−
[
(αa− 1)− 1

2
Lα c r

]
z2

+(1 + α) q(t)

+
D2

D1
V (t, x(t), y(t), z(t)) q(t) .

The last inequality implies

dV

dt
(t, x(t), y(t), z(t)) ≤ −D3 y

2 −D4 z
2 + (1 + α) q(t)

+
D2

D1
V (t, x(t), y(t), z(t)) q(t) ,
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for some positive constants D3 and D4, provided that

r < min
{

2δ5
(2 + α)Lc

,
2(αa− 1)
Lα c

}
.

Thus, we have

dV

dt
(t, x(t), y(t), z(t)) ≤ (1 + α) q(t)

+
D2

D1
V (t, x(t), y(t), z(t)) q(t) .

Integrating the last inequality from 0 to t, using the assumption q ∈
L1(0,∞) and the Gronwall–Reid–Bellman inequality (see Ahmad and
Rama Mohana Rao [1]), we obtain

V (t, x(t), y(t), z(t)) ≤ V (0, x(0), y(0), z(0))

+(1 + α)
∫ t

0
q(s) ds

+
D2

D1

∫ t

0
V (s, xs, ys, zs) q(s) ds

≤ {V (0, x(0), y(0), z(0)) + (1 + α)A}

× exp
(
D2

D1

∫ t

0
q(s) ds

)

= K1 <∞ , (7)

where

K1 = {V (0, x(0), y(0), z(0)) + (1 + α)A} exp
(
D2

D1
A

)
,

is a constant and A =
∫∞
0 q(s)ds.

Hence, the inequalities (5) and (7) together imply that

x2(t) + y2(t) + z2(t) ≤ 1
D1

V (t, x(t), y(t), z(t)) ≤ K ,

where K = 1
D1
K1 . As a result, for solutions of the system (2), we can

conclude that
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|x(t)| ≤
√
K ,

|y(t)| ≤
√
K ,

|z(t)| ≤
√
K ,

for all t ≥ 0. That is,

|x(t)| ≤
√
K ,∣∣∣∣

dx

dt
(t)

∣∣∣∣ ≤
√
K ,

∣∣∣∣
d2x

dt2
(t)

∣∣∣∣ ≤
√
K ,

for all t ≥ 0. This shows boundedness of all solutions of equation (1).
The proof of the theorem is now complete.
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