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Abstract

Multi-cell converters have been developed to overcome shortcomings in usual switching devices.
The control systems in multi-cell converters have two main purposes: balance the voltages between
the switches and regulate the load current to a desired value. In this work, a PWM digital control
is applied to a three-cell buck converter. The circuit analysis was carried out by using discrete time
modeling in the form of Poincaré map. Numerical simulations obtained from the mathematical
model show that the system can undergo nonlinear phenomena in the form of bifurcations. This
was confirmed with software to simulate circuits. Different kinds of behaviors are detected by
varying some design parameters. Fixed points were found and orbital stability analysis was made.
These results helped to validate bifurcation diagrams by recognizing the first bifurcation. Two and
three dimensional bifurcation diagrams were also obtained. An approximation of the Poincaré map
method was used as well, one and two dimensional bifurcation diagrams were obtained using it. It
was also applied in the stability analysis of the fixed points.

Keywords: Discrete time model; bifurcations; multi-cell; converters; Digital PWM
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Resumen

Los convertidores multicelulares se han desarrollado con el fin de mejorar las deficiencias exis-
tentes en los dispositivos de conmutación que son usados normalmente. El control en sistemas
multi-celulares tiene dos propósitos principales: equilibrar las tensiones entre los switches y reg-
ular la corriente en la carga a un valor deseado. En este estudio, se utiliza un controlador digital
con PWM para un convertidor buck de tres celdas.El análisis del circuito se hizo con modelado en
tiempo discreto utilizando mapas de Poincaré. Se obtuvieron simulaciones numéricas usando el
modelo matemático, estas muestran que el sistema puede presentar fenómenos no lineales en forma
de bifurcaciones. este hecho se confirmó con un software simulador de circuitos. Varios tipos de
comportamientos se pueden detectar al variar algunos parámetros de diseño. Se encontraron pun-
tos fijos y se hizo un análisis de estabilidad de las órbitas periódicas. Estos resultados validaron
los diagramas de bifurcación al detectar la primera bifurcación. Diagramas de bifurcación de dos y
tres dimensional fueron obtenidos. Se utilizó también un método en el cual hay una aproximación
para el método de Poincaré, de este método se obtuvieron diagramas de una y dos dimensiones.
Este método también se utilizó para hacer el análisis de estabilidad de los puntos fijos.

Palabras clave: Modelado en tiempo discreto; bifurcaciones; multi-celda; convertidores; PWM Digi-
tal.
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1 Introduction

Power electronics is interdisciplinary in nature and widely used in the industry. Its evolution has
been incredible, the first devices which used mercury arc valves can be compared to the ones used
nowadays. In the latest years, the power electronic field has been growing with the purpose of
ensuring better use of existing capacity in the devices improving the efficiency. Applications in
power systems often use DC-DC converters to maintain a specific voltage no matter the voltage of
the battery, they are also used for electronic isolation and power factor correction.

Nowadays converters are used everywhere. Depending on the kind of converter, they can be found
in different electrical devices: AC-DC that are used in the ones connected to the mains, change the
alternating current to direct current and also voltage level if needed. The DC-AC converter work
is to charge a DC battery when the main is available, but if the main is not working an inverter is
used to produce AC electricity at mains voltage from the DC battery. AC-AC converters change
the voltage level or frequency in alternating current and the DC-DC converters are used to main-
tain the voltage at the output, no matter the voltage of the battery, also used for electronic isolation
and power factor correction.

The electronic converters need switching components to accomplish their purpose. Their pres-
ence make the system piecewise-smooth. The mathematical expressions that describe the circuit
are constantly changing. The current and voltages change their values as well; as a result of this,
complex dynamics like subharmonics, bifurcation and chaos are registered. Many of the studies
related to power electronic DC-DC converters, specially the ones related to Buck converter, men-
tion bifurcations and chaos, also the PWM control technique. This technique is non lineal because
of the switching but is a traditional control strategy and very popular in the industry.

The system is modeled in discrete time in order to make a better study of the phenomena in the
buck converter. This technique allows the reconstruction of the system behavior using Poincaré
maps and also, it is used to make stability analysis of the fixed points.

The first non linear dynamic studies related to switched power electronic DC-DC converters were
done by Hamill and Jeffries [1]. In this study, the operation in detail of a first order converter,
bifurcation and chaotic dynamic is analyzed when controlling with PWM. Later on [2], it was
studied the chaotic behavior for second order buck converters controlled by PWM.
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Many researchers have contributed with their studies related to electronic power converters: A
converter whose switches are changed by time-averaged models [3], The effect of the parameters
in the circuit behavior analysis obtained through bifurcation diagrams and parameter mapping [4].
One-periodic and two-periodic orbits which cross the voltage ramp once per cycle and by charac-
teristic multipliers, including as well a stability study [5]. Second order DC-DC Boost converter
under current programmed control with and without voltage feedback [6]. The study field started
growing with even more contributions such as the possibility of using local transversal Lyapunov
exponents for characterization of chaotic systems synchronization [7].

The most important contribution to this area was Di Bernardo’s work [8] [9], in which proposes
and proves a new discrete application for bifurcation and chaos analysis in DC-DC converters con-
trolled by PWM. Other studies that complement and have been developed, are related to border
collision bifurcations for a current feedback-controlled buck converter [10], Charactersitic multi-
pliers of a periodic orbit computed analytically to obtain the values for smooth and non-smooth
bifurcations [11], two-parameter bifurcation diagrams acquired through computer simulations in
which the results obtained with the simulation were compared to the ones that were obtained with
the physical model [12].

Due to this mentioned studies, this research field is continuosly changing and getting wider. Many
contributions give continuity to the related topics and research lines included in the power elec-
tronic field. There are international articles, theses and many other researches that show how
the theory has evolved. The Fixed-frequency quasi-sliding control algorithm based on switching
surface zero averaged dynamics (ZAD), was applied to the design of a Buck-based inverter and
was implemented in a laboratory prototype by means of a field programmable gate array (FPGA),
in [13]. A study by Angulo [14], used FPIC and ZAD techniques as chaos transition based on the
Poincaré application, and control design for chaotic operation was compared to TDAS technique,
gave as a result a shorter circuit response and lower error signal. Also, the experimental results
proved non-linear phenomena and stability limits. Another studies contributed to other parts of the
field, Switched systems theory was deeply studied and it is registered in [15], Non linear dynamic
analysis in multi-cell converters became a topic of interest [16].

Numerous studies related to multi-cell converters have been done. These helped understand the
new converters configuration behavior. One of the first studies was developed by Gateau et al. [17].
Here, there are exposed different approaches to represent these systems mathematically. The tech-
niques are compared and to conclude the study, it was stated the average value model was the most
optimal choice because it allows to obtain, in a very accurate way, the system dynamic behavior.
This technique also allows to make the analysis as good and efficient as possible, through studying
the stability of limit cycles with discrete time modeling.

Some other reported studies are related to the use of discrete time modeling for multi-cell DC-DC
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converters [18], the dynamics and stability analysis for the two-cell Buck converter for high and
medium voltage applications [19], the use of FPIC control to widen the stability zone in two-cell
buck converters [20] and to stabilize it [21]. And alternative control methods for four-level three-
cell DC-DC buck converter [22].

In order to study these circuits behavior, it is important to understand the non linear dynamics that
are registered in non linear systems; even when the reported studies include an explanation of the
dynamics on the treated converter configuration, there are some studies [23] [24] that help under-
stand the phenomenon and explain the terminology used in the analysis.

The content of this thesis is related to the three-cell buck converter controlled by a digital PWM.
The main objective is to analyze the dynamic behavior of this specific converter by using accurate
mathematical simulation and an appropriate modeling of the observed phenomena. The control
is done using digital PWM, which is a contribution to the research field. This is a non-studied
way to control this specific converter configuration. It is exposed, explained and analyzed. This
analysis includes: develop and evaluation of the mathematical state space, analysis of the effect
of the system parameters, one and two dimensional bifurcation diagrams validation, the obtaining
of fixed points and conclusions related to stability analysis and comparing results with the system
simulation.

Being a mathematical process, it is important to have an efficient algorithm. The implemented
algorithm allows to obtain results without waiting too much. The usage of the discrete time mod-
eling as circuit reconstruction method and by taking advantage of the digital control, the general
process to describe the system is simple and accurate. The poincaré maps of periodic orbits are
also studied, including stability analysis.

Chapter two contains the system explanation in general, how it works, the different configurations
that the circuit can take, the possible switches state and how to obtain the equations that rule vari-
ables behavior. Chapter three contains the explanation related to the used control technique, the
saturation function and the discrete time modeling implemented in the algorithm. Chapter four
contains the state space analysis: a reference circuit is taken, the results obtained with this pa-
rameter configuration are compared to the results obtained for the system with different parameter
values; the inductor, capacitors and resistance values are changed and the analysis of the circuit
response is carried out for different current feedback coefficients. In chapter five, the obtained
bifurcation diagrams are analyzed in order to observe and come up with a conclusion related to the
circuit behavior when using certain parameter values, as well as an analysis of the nonlinear dy-
namics presented. Chapter six, exposes two parameter bifurcations which allow to make a deeper
analysis of the periodicity per parameters combination.

All the algorithm results are compared to simulations made with PSIM software. All proves and
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simulations were made with values that power electronic converters take when they are imple-
mented in practice.



2 System description

2.1 Three-cell DC-DC buck converter

Figure 2-1: Three-cell buck converter with a capacitor in parallel with the load

Let us consider the three-cell DC-DC buck converter in figure 2.1. This circuit works with three
branches formed by a switch ui and the respective diode Di, where index i is used to differentiate
the three cells with each other ( i = 1, 2, 3). They are enumerated from right to left. The three cell
buck converter also has an inductor L and a constant input voltage Vin.

When ui is ON, Di must be OFF and vice versa; this means, that the circuit changes its structure
when some conditions on the state variables or time happen. Its behavior is described by eight
different systems. Each cell is controlled by an output signal si; when si is equal to 1 (ON), the
switch is conducting and the diode Di blocks the current and when si is equal to 0 (OFF), which
means that the switch acts like an open circuit but the diode Di lets the current flow.

The circuit in the figure 2.1 has a flying capacitor Cf in parallel to the resistor. This capacitor
prevents the ripple of the output voltage from being big. Because of this, the output voltage can
be considered constant. In the mathematical analysis, the three-cell DC-DC buck converter can
be considered without this filtering capacitor in parallel with the load (see fig. 2.1), because it is
not necessary. It is enough to control the inductor current, the output voltage can be controlled
with the current control and measured in the load. The switching process is done using feedback
coefficients [21].
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Figure 2-2: Three-cell buck conventer used for the study

All the linear time invariant equations are given in the form ẋ = Akx+Bk. x is the vector of state
variables, Ak is the system matrix and Bk is the input vector. The components of these matrices
and vectors are R, L, C1, C2 and VIN , which are the system parameters and k defines the active
configuration (k = 1, 2, ...,M), where M is the total number of configurations per period.

The system and input matrices for each configuration are obtained using kirchhoff laws:

• Configuration 1 (ON,ON,ON)
In this configuration, the inductor L is charged and the charges in C1 and C2 are maintained.

A1 =

 −R
L

0 0

0 0 0

0 0 0

 ; B1 =

 V in
L

0

0



• Configuration 2 (ON,ON,OFF)
During this configuration, L is charged, C1 charge is maintained and C2 is discharged.

A2 =

 −R
L

0 1
L

0 0 0
−1
C2

0 0

 ; B2 =

 0

0

0
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• Configuration 3 (ON,OFF,OFF)
The inductor L is discharged, C1 is discharged and C2 charge is maintained.

A3 =

 −R
L

1
L

0
−1
C1

0 0

0 0 0

 ; B3 =

 0

0

0



• Configuration 4 (OFF,OFF,OFF)
During this configuration, L is discharged, the capacitors C1 and C2 charge is maintained.

A4 =

 −R
L

0 0

0 0 0

0 0 0

 ; B4 =

 0

0

0



• Configuration 5 (OFF,ON,ON)
During this configuration, L is charged, C1 charge is charged and C2 charge is maintained.

A5 =

 −R
L

−1
L

0
1
C1

0 0

0 0 0

 ; B5 =

 V in
L

0

0



• Configuration 6 (OFF,OFF,ON)
During this configuration, L is discharged, C1 charge is maintained and C2 is charged.

A6 =

 −R
L

0 −1
L

0 0 0
1
C2

0 0

 ; B6 =

 V in
L

0

0
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• Configuration 7 (OFF,ON,OFF)
During this configuration, L is discharged, C1 is charged and C2 is discharged.

A7 =

 −R
L

−1
L

1
L

1
C1

0 0
−1
C2

0 0

 ; B7 =

 0

0

0



• Configuration 8 (ON,OFF,ON)
During this configuration, L is charged, C1 is discharge and C2 is charged.

A8 =

 −R
L

1
L

−1
L

−1
C1

0 0
1
C2

0 0

 ; B8 =

 V in
L

0

0



To obtain an accurate study of the three-cell DC-DC buck converter, a systematic nonlinear discrete
time model is presented. The main objective is to observe the complex behavior that this system
can have. This model will have the general matrices A and B given by:

A =

 −R
L

−1
L

(u2 − u1) −1
L

(u3 − u2)
1
C1

(u2 − u1) 0 0
1
C2

(u3 − u2) 0 0

 ; B =

 Vin
L
u3

0

0

 (2-1)

where ui is the binary command signal for the switches ui and they are given by:

ui =

{
1 if si is closed (ON)

0 if si is open (OFF )
(2-2)

The main advantage of this structure is the fact that the floating capacitors allow to distribute the
voltage across the blocking switches. The voltage in any blocking switch ui is given by the differ-
ence between the capacitors Ci y Ci−1, and this value is known as the cell voltage. The specified
cell is know by the suffix i [16].
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2.2 Digital PWM control

This buck converter configuration has three cells which are controlled by three PWM signals.
These signals have to be phase shifted 2π/3 between each other. The phase shift can be chosen
freely, but if they are phase shifted 2π/p, where p is the total number of cells, it is possible to cancel
harmonics that might appear [25].

The control objective is to drive the system to a periodic orbit with a fixed frequency in steady
state, with a desired average value for the state variables. In this multi-cell converters without fly-
ing capacitor in paralell to the load, the purpose is to control the inductor current with the purpose
to make it achieve the value given by the reference signal Iref . The voltage in capacitor C1 must
be 1/3 of the input voltage VIN and the voltage in capacitor C2 must be 2/3 of the same input
voltage VIN . This technique will allow to reduce the stress in the switches and to obtain voltage
balance and duty cycles as similar as it is possible.

Digital control is used for this study because of the advantages it has. Just to name some of them:
insensitivity to noise and programmability [26]. In order to describe the converter behavior, an
algorithm is created using the mathematical equations that describe the circuit. The non linear sys-
tem is obtained using discrete time modeling. This model takes into account the natural saturations
of the PWM duty cycle, this explanation is detailed after the control signals explanation.

There are many strategies to control the system. The one used in this study, is based on propor-
tional feedback control. In the control signals, there are three different feedback coefficients ki,
kv1 and kv3 . One feedback coefficient for each variable, which multiply their respective variable
error signal. The control signals si that are:

s1 = ki(iREF − iL)− kv1(13VIN − VC1)

s2 = ki(iREF − iL)

s3 = ki(iREF − iL)− kv3(23VIN − VC2)

(2-3)

For these signals, the current in the inductor and voltages in capacitors are sampled through time
when each period starts. This value is saved and compared to the reference value given for the
corresponding variable. The error signal is obtained. This control receives the name of Digital
PWM control due to the use of digital ”sample and hold” structures to maintain the control signal
values until the end of the period.

Each control signal si is compared to a PWM or sawtooth function. In total, there are three saw-
tooth functions. Each one is phase shifted 2π/3 with respect to each other, where 3 is the number
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of cells. This settled phase shift helps to prevent the appearance of harmonics.

The sawtooth functions are given by:

h1(t) = (Vu − Vl) tT mod 1

h2(t) = (Vu − Vl)
t−T

3

T
mod 1

h3(t) = (Vu − Vl)
t− 2T

3

T
mod 1

(2-4)

where Vu and Vl are the upper and lower values that the sawtooth functions take. In this case, Vu
= 1 V and Vl = 0 V . t is the exact moment of time in which the signal is sampled and T is the
period of the sawtooth.
The control works this way: if sk is greater than hk, then the switch is ON and vice versa.

The duty cycles are directly proportional and equal to the control signal si values. To be more
specific, it depends if they are bigger or lower than the corresponding PWM. The sawtooth func-
tions amplitude is 1 V , being upper value is 1 V . The duty cycle coincides with the value of
the correspondent control signal at the beginning of each period. The bigger the value the control
signal registers, the bigger the duty cycle that corresponds to that control signal is.

di = si (2-5)

If the control signal si takes a value between 0 and 1, the duty cycle for that period will take the
same value. But if the control signal value is equal or higher than 1, or if it is lower or equal to 0,
there will not be a change in the state of the corresponding switch in that period, and a saturation
function is applied to narrow the duty cycles. A new di function is given by:

di = sat(si) =
1

2
(1 + |si| − |si − 1|) (2-6)

The duty cycles expressions are given by:
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d1 = sat
[
ki(Iref − x1)− kv1(13Vin − x2)

]
d2 = sat [ki(Iref − x1)]
d3 = sat

[
ki(Iref − x1) + kv3(

2
3
Vin − x3)

] (2-7)

Every time there is a switch in one of the semiconductors, the circuit changes its configuration and
also the equations that describe the system change.

This saturation signals are applied to the general matrices A and B (3-2), which used to have the
switches positions instead of the duty cycles. The new matrices are given by:

A =

 −R
L

−1
L

(d2 − d1) −1
L

(d3 − d2)
1
C1

(d2 − d1) 0 0
1
C2

(d3 − d2) 0 0

 ; B =

 Vin
L
d3

0

0

 (2-8)
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3.1 Discrete time modeling - Open loop

Discontinuous Piecewise Affine (DPWA) periodically driven systems is a term introduced by El
Aroudi et al. [27]. The three cell buck converter is a DPWA system characterized by a finite num-
ber of affine dynamical models together with some switching conditions to change from one model
to another. As a result, there is a state of space partitioning into different cells which are described
by a different affine equation. When the switch action changes the system configuration due to
the discontinuity of the vector field, smoothness is lost when the boundary is crossed; this event is
called non smoothness sets or switching manifolds [27].

To obtain the matrices A1 and B1 at the start moment t = 0, the initial values of the switches ui
are replaced in the general A and B matrices in eq. (2-8). These values depend on the initial con-
ditions of the variables, see eq. (2-2). Once the matrices are obtained, the given initial conditions
have to be organized in a vector x0 and must be replaced in x. The procedure consists on solving
an arrange of ordinary differential equations with a given initial point. The equation (3-1) is used
to describe the system.

ẋ = Akx+Bk (3-1)

where x ∈ RN , is the vector of state variables and N represent the amount of variables to control,
for this case, N = 3. Ak ∈ RN×N and Bk ∈ RN×1 are the system matrices and vectors during
each phase. Each phase is determined by the switching action and the components are the system
parameters. k takes values between 1 to 6, the length of k depends on the switches saturation (if
they are saturated k < 6, if they are not saturated k = 6) and it indicates the maximum number
of configurations per period. The matrices A and B depend on the switches ui state between
nT + tk−1 and nT + tk. The systems can be described by these equations:
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ẋ = A1x+B1 for nT ≤ t < nT + t1
ẋ = A2x+B2 for nT + t1 ≤ t < nT + t2
ẋ = A3x+B3 for nT + t2 ≤ t < nT + t3
ẋ = A4x+B4 for nT + t3 ≤ t < nT + t4
ẋ = A5x+B5 for nT + t4 ≤ t < nT + t5
ẋ = A5x+B6 for nT + t5 ≤ t < (n+ 1)T

(3-2)

During each subinterval, the equations are time invariant and the solution can be obtained by [27]:

x(t) = eAk(t−t0)x0 +

t∫
t0

eAkαBkdα (3-3)

where to is the initial time [28].

The mapping that makes the relation between the state variables xn at the beginning of an entire
cycle and xn+1, is based on stroboscopic sampling at the beginning of each period. The following
expression is obtained:

xn+1 = P (xn) (3-4)

3.1.1 The open loop discrete time model in the Three-cell buck
converter

In this study, the values taken for the parameters are given by: Vin = 1200 V , capacitance
C1 = 22 µF , capacitance C2 = 22 µF , inductance L = 1 mH , load resistance R = 10 Ω,
switching period selected is T = 25 µs. The lower and upper voltages of the repetitive saw-
tooth signals are Vl = 0 V and Vu = 1 V . The feedback coefficients are taken as follows
kv1 = kv3 = 0.01 and ki = 0.05.
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For these values, once the circuit response stabilizes, the circuit duty cycles obtaineded are be-
tween 33 % and 66 % . Following this logic, as the duty cycle depends on the control signals, it
means that they take values between 0.33 V and 0.66 V. This hypothesis can be confirmed with the
figures shown in chapter 4.

The pattern of the configuration that rules each period lies on the duty cycles. This particularity is
presented because of the digital PWM control, which by maintains the first value each variable take
per period until the end of it. The system variables change their values as time goes on, but these
new values are neglected for the control signals but they are taken into account when a switching
actions occurs and a as a result, there is a configuration change. Each time there is a new configura-
tion, the last value the system variables took, is taken as initial condition for the same variable in the
new configuration analysis. For these parameter values, the next pattern appears in the steady state.

Conf 8 → Conf 3 → Conf 2 → Conf 7 → Conf 5 → Conf 6

For this pattern, the switched model that describes the three-cell buck converter is:

ẋ = A8x+B8 for nT ≤ t ≤ nT + t1
ẋ = A3x+B3 for nT + t1 ≤ t ≤ nT + t2
ẋ = A2x+B2 for nT + t2 ≤ t ≤ nT + t3
ẋ = A7x+B7 for nT + t3 ≤ t ≤ nT + t4
ẋ = A5x+B5 for nT + t4 ≤ t ≤ nT + t5
ẋ = A6x+B6 for nT + t5 ≤ t ≤ (n+ 1)T

where the corresponding A and B matrices are given by the same ones in section 2.1.

These configurations are by using eq. (3-3). The variable values are obtained and taken as the
initial values for the following equation.
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3.2 Discrete time modeling - Closed loop

3.2.1 Simplified dimensionless discrete time model

Let iL,k be the inductor current, VC1,k and VC2,k be the voltage in capacitor 1 and the voltage
in capacitor 2 respectively at time instant kT . If rectilinear waveforms are assumed for the state
variables, the following approximate model is obtained:

 iL,k+1

VC1,k+1

VC2,k+1

 =

 1− RT
L

−T
L

(d2 − d1) −T
L

(d3 − d2)
T
C1

(d2 − d1) 1 0
T
C2

(d2 − d1) 0 1


 iL,k
VC1,k

VC2,k

+

 VINT
L
d3

0

0

 (3-5)

In practical DC-DC power electronics converters, it is always true that the switching period is
smaller than the time constants of the circuit in such a way that the matrix exponential eAt can
be linearized [28]. It has been shown in [18] [28] that eAt ≈ I + At can be used to obtain PWL
trajectories [21]. Using this approximation and neglecting second and higher terms, it is possible
to obtain the simple approximated model in equation (3-5).mThis approximation helps to improve
the computational time spent for calculations, which is an improvement if the idea is to make more
complex analysis such as bifurcation diagrams.

In order to simplify the model, dimensionless variables and parameters are considered: the cur-
rent is scaled by the maximum current available in the circuit (given by Imax = Vin/R) and the
voltages are scaled to the maximum voltage in the circuit which is the input voltage Vin. Time is
normalized by the switching period T , which is the same of the PWM.

The changes for the variables and parameters are given by the following mathematical relations:

Parameters → δL =
RT

L
; δC1 =

T

RC1

; δC2 =
T

RC2

(3-6)

V ariables → x1,k =
RiL,k
VIN

; x2,k =
VC1

VIN
; x3,k =

VC2

VIN
(3-7)
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After this changes take place, the following dimensionless model is obtained:

 x1(n+1)

x2(n+1)

x3(n+1)

 =

 1− δL −δL(d2 − d1) −δL(d3 − d2)
δC1(d2 − d1) 1 0

δC2(d2 − d1) 0 1


 x1,k
x2,k
x3,k

+

 δLd3
0

0

 (3-8)

Reducing the ripple through the load and the voltage ripple across the capacitor would improve the
results. The ripple is reduced when the circuit parameters are able to satisfy δL << 1, δC1 << 1

and δC2 << 1. The system new dimensionless variables are x1,k = RiL,k/VIN , x2,k = VC2,k/VIN
and x3,k = VC3,k/VIN . For the values taken the new dimensionless parameters values are:

δL = 0.25 ; δC1 = δC2 = 0.1136 (3-9)

The expression of the dimensionless duty cycles in the kth cycle is given by:

d1,k = sat
[
k1(IR − x1,k)− k2(13 − x2,k)

]
d2,k = sat [k1(IR − x1,k)]
d3,k = sat

[
k1(IR − x1,k) + k3(

2
3
− x3,k)

] (3-10)

Where IR = Iref (R/VIN), k1 = ki(VIN/R), k2 = kV 1VIN and k3 = kv3VIN . In a matrix form,
these duty cycles can be written as:

di,k =

 d1,k
d2,k
d3,k

 = sat

 k1 −k2 0

k1 0 0

k1 0 k3

 IR − x1,k
1
3
− x2,k

2
3
− x3,k

 (3-11)

Now, to obtain the closed-loop non-linear map that describes the three-cell buck converter, eq.
(3-11) must be substituted in eq. (3-8). Notice that this model is only linear when d1, d2 and d3
are saturated. Due to this saturation, the closed-loop function is piecewise smooth and is described



3.3 Poincaré maps 17

by the next equation array:

xk+1 =


A1xk +B1 if F1(x2,k) > x1,k
Adxk +Bd if F1(x2,k) < x1,k < F0(x2,k)

A0xk if F0(x2,k) < x1,k

(3-12)

where

Ad =

 1− δL −δL(du2,k − du1,k) −δL(du3,k − du2,k)
δC1(du2,k − du1,k) 1 0

δC2(du2,k − du1,k) 0 1


A1 =

 1− δL 0 0

0 1 0

0 0 1

 B1 =

 δL
0

0


Bd =

 δLdu3,k
0

0

 A0 = A1

(3-13)

And the reference limits are given by:

F1(x2,k) = IR + k3
k1

(
2
3
− x3,k

)
F0(x2,k) = IR − k2

k1

(
1
3
− x2,k

) (3-14)

3.3 Poincaré maps

3.3.1 Existence conditions of periodic orbits

In a system with M different configurations, there are different types of periodic orbits, but only
one of them is desired from a practical point of view. The most interesting periodic orbit in an en-
gineering point of view, is the one that happens after the switching through the M configurations
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per cycle [27].

Definition. A periodic orbit that is characterized by M and only M different configurations during
one switching cycle is called M-modal periodic orbit. A M -modal periodic orbit x∗(t) will exist
if there exists a vector (t1, t2, ..., tM−1) such that the following conditions hold [27]:

1. x∗(kT ) = x∗((k + 1)T )∀k = 1, ...,M

2. ẋ∗(t) = Akx
∗(t) +Bk for t ∈ (tk−1, tk)∀k = 1, ...,M .

When the system has a stable behavior, there are periodic orbits that satisfy these conditions.

3.3.2 Poincaré map of periodic orbits

As mentioned in a prior study by El Aroudi et al. [16], the usefulness of the poincaré map P re-
sults from the fact that its fixed points X∗ correspond to periodic orbits x∗ of the continuous
time switched system and that the stability properties are the same for both of them. The piece-
wise affine character of the system allows to obtain the fixed points of P in terms of time instants
tk [27] [16].

ϕk(t, xk−1) = φk(t)xk−1 + ψ(t)Bk (3-15)

where:

φk(t) = eAt (3-16)

The expression for ψ(t) depends on the characteristics of the A matrix. If A matrix is invertible,
ψ(t) is given by :

ψ(t) = A−1(φk(t)− 1) (3-17)
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and in general, ψ(t) is given by the following expression:

ψ(t) =

t∫
0

eAαdα (3-18)

Where 1 is the identity matrix with appropriate dimension. If A is singular, using time series
expansion the next expression is obtained:

ψ(t) = (1t+
At2

2
+
A2t3

6
+ ...+

Aktk+1

(k + 1)!
+ ...) (3-19)

In the three-cell buck converter, the A matrices for all configurations are singular, which means
the equation (3-17) can not be used. In order to describe the system behavior from the beginning
of the period until the end of it, it is necessary to use the poincaré map expression. The expression
for P can be written as [27]:

P (xn, t) = φ(t)xn + ψ(t) (3-20)

where t is a column vector that has the time durations for each configuration and φ(t) is defined
by:

φ(t) =
1∏

k=M

φk(tk) (3-21)

For the three-cell buck converter, φ(t) is given by the following expression:

φ(t) = eA6(t6−t5)eA5(t5−t4)eA7(t4−t3)eA2(t3−t2)eA3(t2−t1)eA8t1 (3-22)
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where the matrices Aconf and Bconf are the ones in section 2.1, which depend on the configuration
active in the moment of the analysis. t1, t2, t3, t4, t5, t6 are part of the switching moments vector
given by τ . This vector depends on the duty cycles of the switches. When the system operates in
closed loop, the τ vector indicates when there is a crossing between the ramp and the respective
control signal. For open loop, this switching instants are previously given [27].

The general expression for ψ(τ) is given by:

ψ(t) =
M−1∑
j=1

j+1∏
k=M

φk(tk)ψj(tj)Bj + ψM(tM)BM (3-23)

for the three-cell buck converter, the ψ(t) expression is

ψ(t) = eA6(t6−t5)eA5(t5−t4)eA7(t4−t3)eA2(t3−t2)eA3(t2−t1)
t1∫
0

eA8αB8dα + . . .

. . .+ eA6(t6−t5)eA5(t5−t4)eA7(t4−t3)eA2(t3−t2)
t2∫
t1

eA3αB3dα + . . .

. . .+ eA6(t6−t5)eA5(t5−t4)eA7(t4−t3)
t3∫
t2

eA2αB2dα + . . .

. . .+ eA6(t6−t5)eA5(t5−t4)
t4∫
t3

eA7αB7dα + eA6(t6−t5)
t5∫
t4

eA5αB5dα +
t6∫
t5

eA6αB6dα

(3-24)

3.3.3 Poincaré map of the open-loop and closed-loop system

As mentioned before, in open loop systems, the switching instants are already known, they are
given a priori because of the duty cycle. The change of configurations appears in a fixed pattern
each period once the circuit stabilizes. Eq. (3-1) can also be expressed as follows:

x(t) = ϕk(t, x0) (3-25)
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Figure 3-1: Partitioning of the state space into different cells

where x0 is an arbitrary initial condition.

If the system changes its structure from configuration Confk to configuration Confk+1
, there is also

a change in the function that describes it. The trajectory between these two functions is given by
ϕk. It starts with the initial condition xk−1 on a surface

∑
k−1, this surface reaches

∑
k at time

moment tk measured by the difference between the kth−1 cycle until k-th cycle. The manifold to
come depends on the actual one and all the variables values defined by the exact moment when the
switching action takes place. In other words,

∑
k are switching manifolds given by fixed switch-

ing moments. Each switching cycle, the local maps Pk are obtained this way:

P1 : Σ0 → Σ1

xn → x(t1) := ϕ1(t1, xn)

P2 : Σ1 → Σ2

x(t1)→ x(t2) := ϕ2(t2 − t1, x(t1))

P3 : Σ2 → Σ3

x(t2)→ x(t3) := ϕ3(t3 − t2, x(t2))
...
PM : ΣM−1 → ΣM

x(tM−1)→ xn+1 := ϕM(T − tM−1, x(tM−1))

(3-26)

where tk(k = 1, 2, ...,M−1) is a vector of configuration switching moments in time. The poincaré
map from

∑
0 to

∑
0 is defined by the composition of the M different local mapping Pk:

P : Σ0 → Σ0

P : PM ◦ PM−1 ◦ · · ·P1
(3-27)
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xn → xn+1 := P (τ, xn) = ϕM(T − tM−1, ϕM−1(tM−1 − tM−2, ϕM−2(· · · ))) (3-28)

P : xn → xn+1

P : eA6(t6−t5)(eA5(t5−t4)(eA7(t4−t3)(eA2(t3−t2)(eA3(t2−t1)(eA8t1xo +
t1∫
0

eA8αB8dα) + · · ·

· · ·+
t2∫
t1

eA3αB3dα) +
t3∫
t2

eA2αB2dα) +
t4∫
t3

eA7αB7dα) +
t5∫
t4

eA5αB5dα) +
t6∫
t5

eA6αB6dα

(3-29)

where τ = tk = (t1, t2, ..., tM−1)
t is the configuration switching moments vector. In this analysis,

it is considered that the switching is due to the existence of a T-periodic function, so for open loop
systems, there can be only nominal periodic orbits with period T . Equilibrium points are possi-
ble, only in case the system remains blocked in some configuration and no switching involved [27].

The interest now is centered then in M -modal periodic orbits. If this kind of orbits exist in the
circuit, the fixed time durations have to be already known, so the associated periodic orbit can
be computed. In order to find the time durations, it is necessary to solve a set of transcendental
equations that compare the repetitive sawtooth function and the control signals.

The stability for this case is a local issue, but in open-loop stability is global. If the switching
function σk defining the switching manifolds

∑
k can be written as the difference between a state

dependent function sk(x) and a time dependent T-periodic function hk(t) [16], i.e:

Σk = {x ∈ Rn/σk(t, x) := sk(x)− hk(t) = 0} (3-30)

The sk functions can take any form because these are the product between feedback coefficients
and the variable error signals. In this study, we have three control functions: s1, s2 and s3 and
three T-periodic functions h1, h2 and h3. Every time si signal and hi ramp cross with each
other, a switching moment σk is registered. Each ramp hi crosses the respective si control signal
twice per period. This is the reason why the subindex i in the control signals si and the ramps hi
is changed by the subindex k in equation (3-30).
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In the case of digital controller, the only value that cares is the first one each control signal take at
the beginning of each period. This value is maintained until this actual period ends. Once the time
moments in which these intersections take place are found, it is possible to get stationary average
values and desired switching period T for the state variables.

σ(X∗, τ ∗), which must be equal to zero, is defined as follows:

σ(τ ∗, X∗) =

 Ki(Iref − iL)−Kv1(
1
3
VIN − VC1)− h1(tn(1))

Ki(Iref − iL)− h2(tn(2))
Ki(Iref − iL)−Kv3(

2
3
VIN − VC2)− h3(tn(3))

 (3-31)

where the t suffix n depends on the duty cycle in steady state: If it is between 0 % and 33 %
n = [1, 2, 3], if duty cycle between 33 % and 66 % n = [3, 1, 2] and if duty cycle between 66 %
and 100 % n = [2, 3, 1].

X∗ is given by equation (3-32) which is explained in the next subsection. A root finding algorithm
should be applied to equation (3-31) to obtain τ ∗ = (t∗1, t

∗
2, t

∗
3). For this study it was used the

fsolve Matlab function.

3.3.4 Fixed points

A fixed point of P is a point X∗ in the state space for which we have X∗ = P (X∗, τ ∗). Using the
expression for P , X∗ can be expressed in terms of the vector of steady state time durations τ ∗,
corresponding to the fixed points X∗, and matrices φ, ψ evaluated at τ ∗. For open-loop systems,
the time durations vector is already given so the next equation is used to obtain it [27] [16].

X∗(τ ∗) = (1− φ(τ ∗))−1ψ(τ ∗) (3-32)

It is important to notice that the fixed point and its associated M-modal periodic orbit exists and its
unique whenever the inverse in equation (3-32) exist, i.e. if the matrix (1 − φ(τ ∗)) is not singu-
lar, only one solution for the switching equations may exist and there will be just one fixed point,
open-loop system would be linear.
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For the closed-loop case, once the root finding algorithm is applied for equation (3-31) and the
vector of intersections in time is obtained, the fixed points can be found with equation (3-32).
The root finding algorithm will make sure the intersections between control signals and ramps are
made, the duty cycles are obtained when forcing the system to have the same variable values for
the (n+ 1)T than for nT . Once this duty cycles are obtained, must be applied to equation (3-31)
and the vector τ will be obtained.

3.3.5 Orbital stability analysis

The stability of periodic orbits x∗ is the same as it is for fixed points X∗ of the map P . This can
be investigated with the Jacobian matrix DP of the map P . This matrix reveals the effect that
very small perturbations near the fixed point X∗ have at the end of the same cycle. The fixed point
and the periodic solution will be stable if the eigenvalues of DP lie inside the unit circle.

As the system is piecewise affine time invariant, it is possible to obtain the DP in closed form in
terms of tk. In open-loop, as the time moments are previously given in a fixed pattern, DP can be
expressed as the product of the Jacobian matrix of each local map. Differentiating equation (3-20)
with respect to the discrete state variables xn, the Jacobian matrix DP can be obtained as:

DP = φ(τ) =
1∏

k=M

φk(tk) (3-33)

The asymptotic stability of the system will be assured if each affine configuration is asymptotically
stable , which means that if all the matrices Ak have their eigenvalues in the left side of the com-
plex plane, all the eigenvalues of φ(τ) will be inside the unit circle [27] [16].

In order to perform the orbital stability analysis for the closed-loop, let us consider the values for
the parameters given in section 3.2:

With this parameters a stable behavior is obtained and the switching sequence can be expressed as
follows:

Co1 → Co2 → Co3 → Co4 → Co5 → Co6 (3-34)
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corresponding to (u1, u2, u3) = (1, 0, 1), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1) and giving a
rise to a 6-modal periodic orbit in the stationary state.

In order to analyze the stability of this orbit, the local behavior of the map P in its vicinity must
be studied. The expression of the Jacobian matrix is modified by the presence of terms containing
the derivative of the vector of switching instants τ with respect to the vector of the discrete state
variables xn. The expression for the Jacobian matrix in closed-loop systems is:

DP = φ(t) +
δP

δdi

δdi
δxn

(3-35)

If the open-loop system is stable, the second term in the new Jacobian matrix equation is the one
that introduces instability in the system. By adjusting the parameters and making them as small as
they can be, it is possible to solve this problem for the closed-loop system.

There is another method which consist on replacing all the duty cycles di equivalents, directly into
the Poincaré map P expression in equation (3-20). As a result, the Poincaré map expression will
depend now on the variables and the Jacobian matrix can be now obtained easier by using the next
expression:

DP =
δP

δx
(3-36)

From here, it is possible to work either with the normal model given by the matrices A and B

(equation (2-8)) or the dimensionless model (equation (3-8)). In order to make the calculations a
little bit simpler, an approximation is done. This approximation is explained next:

Poincaré map approximation

In this section, an approximation for the Poincaré map expression is taken in order to make it
piece-wise linear [21] [28] [29]. This approximation is shown in the following equation :

eAt ≈ I + At (3-37)
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which means the new Poincaré expression is given by:

xn+1 = (I + AT )xn +BT (3-38)

The main purpose of using this approximation is to simplify the discrete time model. By doing
this, the period orbits stability analysis is also simplified because this way, it is much more simple
to do the mathematical calculations related to stability.

When the new Poincaré expression in equation (3-38) is used, there are changes in the figures ob-
tained. The approximation is good enough to be used in order to detect the first bifurcation.

In order to do the analysis that corresponds to the approximated model and to obtain the Jacobian
matrix, the A and B matrices in equations (2-8) are taken. These matrices depend on the duty
cycles d1, d2 and d3.

As mentioned before, one of the methods to obtain the Jacobian matrix, consists on replacing the
equivalent of the duty cycles equations (2-7), which depend on the variables in the vector x, into
the A and B matrices. Then, replace these new matrices into the poincaré map approximation
equation in (3-38).

To obtain the Jacobian matrix, it is necessary to define the new P expression. Using equation
(3-26), the next affirmation can be done:

P = xn+1 =

 x1,n+1

x2,n+1

x3,n+1

 (3-39)

This new expression will depend only on the variables, which in this case will be called x1, x2
and x3, and are part of the variable vector x. As the whole new poincaré map expression depend
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on x, the Jacobian matrix can be obtained applying equation (3-36).

DP =
δP

δxn
=


δx1,n+1

δx1,n

δx1,n+1

δx2,n

δx1,n+1

δx3,n
δx2,n+1

δx1,n

δx2,n+1

δx2,n

δx2,n+1

δx3,n
δx3,n+1

δx1,n

δx3,n+1

δx2,n

δx3,n+1

δx3,n

 (3-40)

The variables values are replaced by the fixed points X∗, which are obtained with equations (3-32).
They vary depending on the parameters values, which in this case will be ki.

DP =


1− VinTki

L
− RT

L
kv1x2T
L
− Tkv1(

vin
3

−x2)
L

kv3x3T
L
− Vinkv3T

L
− Tkv3(

2vin
3

−x3)
L

Tkv1(
Vin
3

−x2)
C1

1− kv1x1T
C1

0
Tkv3(

2vin
3

−x3)
C2

0 1− kv3x1T
C2

 (3-41)

Then, the eigenvalues λ of the matrix obtained are obtained using the following expression:

det(DP − λ1) = 0 (3-42)

A sufficient condition for stability is that all the eigenvalues λ lie inside the unitary circle [21].
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In the electronic converters field, it is important to analyze the circuit variables behavior through
time. It allows to understand how the parameters changes affect the circuit. They are the ones that
define the dynamic system state.

There is always an initial state for the variables. The next variables values depend on the last values
and so on. The most common thing to do, is to fix zero as the initial condition; even though, the
system stabilization time depends on the initial conditions set: if the variables are close to the ref-
erence value, the system control will make the system stabilize sooner than if the initial conditions
were far or zero.

In order to fulfill the requirements to obtain almost no ripple in the voltage of the capacitors and
current in the inductor, the following values for the circuit elements were taken. Besides this, these
parameter values make the system control response more efficient. The dimensionless parameters
given in the expressions in eq. (3-6) , have elements which take the values specified as follows:

R = 10Ω

L = 1mH

C1 = C2 = 22µF

VIN = 1200V.

(4-1)

The circuit with this parameter values will be called for now on reference circuit in order to make
the analysis more organized.

There are other parameters that can modify the behavior on the circuit by changing their magni-
tude, these are the feedback coefficients kv1, kv2 and ki. The main reason to change them is to
compare the system response, and also to see which are the best values for each one in order the
system behavior is stable.

The feedback coefficient values taken for the reference circuit analysis were:
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kv1 = kv2 = 0.01 ki = 0.05 (4-2)

Using the control signals (2-3) and the feedback coefficient adjusted to the values previously set,
the control response shown in figure 4-1 is obtained with the algorithm made in MATLAB.

Figure 4-1: Control response - Algorithm

Figure 4-1 is compared to one obtained with PSIM simulator in figure 4-2. Both graphics show the
same control response, they are similar, take the same time to stabilize in the same value, which is
0,44 V. This value is also the switches duty cycle for the reference circuit after transient.

In both figures 4-1 and 4-2, there is a saturation function and it is the one that makes the control
signal to be 1 or 0 when they take values higher than 1 or lower than 0. The new signal take the
upper or lower value depending on the case.

The variable values obtained with the Matlab algorithm for this same parameters are the ones in
figure 4-3. They can be compared to the ones in figure 4-4, which are the ones obtained with the
simulation software PSIM. Both graphics are similar, the transient takes the same time, the dif-
ference is that the MATLAB algorithm just plot the first value each variable takes per period and
PSIM has registered all the values the variables take through time.
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Figure 4-2: Control response - PSIM

Figure 4-3: Variables behavior - Algorithm

In both figures 4-3 and 4-4, it is possible to see how the control works. The capacitors voltage ref-
erence is achieved and even when the current reaches a value lower than the one expected which
is 60 A, the circuit has a stable behavior.

In order to explain in a more complete way the circuit behavior, the system answer when the pa-
rameter values change are shown and analyzed in the following section.
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Figure 4-4: Variables behavior - PSIM

4.1 Change in resistor value

When there is a change in the resistor value, and this one is decreased, it can be observed that the
lower the resistor value goes, the lower the value the control signals take when stabilizing. If the
values taken by the control signals get lower, the duty cycles present the same reaction because
this one is equal to the time the switch remains in ON state. This means that the control signal will
be higher than the respective ramp for longer.

Figure 4-5: Change in control signals when R is decreased.
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Changes in the control signals most of the times mean changes in the variable values. In this case,
the variables are affected just a little, the values change but the voltages error signals do not. The
current changes its behavior: when the resistor value is smaller, the transient is now bigger, the
reference is not reached either. It still exist an error signal but this one is smaller.

In the figures 4-5 and 4-6 are the images that supports the information given above. Both figures
obtained with the algorithm developed in MATLAB with a resistor value R=5Ω.

Figure 4-6: Change in variables when R is decreased.

If the resistor value is increased, the control signals stabilize in higher values. If the resistor takes
a value that is greater, the circuit control may take too long to stabilize the system, the transient
part will be too big, and if this value is very high, then it may never get stable. Some of the control
signals will not be able to obtain a value between 0 and 1 and they will be continuously trying to
get closer to 1 until eventually they do it. When some of the control signals sk are higher than 1,
their duty cycles are 1, which means that are all the time in ON state.

In the case of the capacitor voltages, it takes more time for them to achieve the reference value.
The transient is then directly proportional to how high the resistor is. For the inductor current,
there is an error signal but it can be easily seen that the variable answer is slower in comparison to
when the resistor value was 10 Ω.

From the figures 4-7 and 4-8 the analysis above was taken with R=16Ω.
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Figure 4-7: Change in control signals when R is increased.

Figure 4-8: Change in variables when R is increased.

4.2 Change in the inductor value

If the idea is to modify the inductor value, it is important to pay attention because it may cause
that the system change from continuous to discontinuous. If the inductor value is decreased, the
system takes more time to stabilize and the variables take more time to achieve the reference value,
in other words, the transient time is bigger.

The figures 4-9 and 4-10 show the behavior of the control signals and variables respectively. An
inductor 0.8 mH was used.

As concluded, when the inductor value decreases, the transient time increases. Following this
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Figure 4-9: Change in control signals when L is decreased.

Figure 4-10: Change in variables when L is decreased.

logic, one should say that this time the transient will decrease, but what really happens is that the
transient does not increase, but it does not decrease either. It is almost the same. This change
affects the variables behavior, they take more time to achieve the value where they stabilize, this
can be seen in figure 4-12.

The duty cycles are not affected by the inductor value. The value where the control signals stabi-
lize is equal for any inductor value tried in this study: 1 mH, 0.8 mH or 2 mH.
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Figure 4-11: Change in control signals when L is increased.

Figure 4-12: Change in variables when L is increased.

4.3 Change in the capacitors values

When the capacitors values are decreased, for example to 10 µF, the system response would be
equal to the one obtained with the reference circuit. The duty cycles are not affected, the value in
which the control signals stabilize would be approximately the same one in the basic configuration.

Even though, it might be a problem with a smaller capacitor, if it is really small the circuit becomes
unstable.

The figures 4-13 and 4-14 show the circuit behavior: control signals and variables in time respec-
tively.
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Figure 4-13: Change in control signals when C is decreased.

Figure 4-14: Change in variables when C is decreased.

When the capacitors take a greater value, for example 33 µF, the circuit transient increases as well.
The variables do not achieve the reference value as soon as they do when using a 22 µ capacitors
which is the one used in the reference circuit. The duty cycles are not affected either. The ripple
in the capacitor voltages is smaller, which is good, but the transient increases.

The previously described behavior can be seen in figures 4-15 and 4-16.
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Figure 4-15: Change in control signals when C is increased.

Figure 4-16: Change in variables when C is increased.
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In this section, the system bifurcation behavior is analyzed. As defined in [30], the qualitative
changes in the dynamics of a system are called bifurcations, and the parameter values at which
they occur are called bifurcation points. In this study, to get the bifurcation diagrams the param-
eter to vary will be ki; also for each bifurcation diagram, three different ki values will be taken
and the variable. Duty cycles figures for each one of them will be obtained in order to support and
make a deeper analysis of the system behavior.

As ki is the main parameter and is the one that is varied in this study, the most interesting phe-
nomenon will be appreciated in the current bifurcation diagram. The other diagrams will show how
the other variables are affected by these changes, even though the dynamic is different because it
depends on the tolerance taken for each variable.

For the diagrams in chapter 5 and also in chapter 6, the parameters were taken as is was stated in
chapter 4, eq. (4-1) and the reference current was Iref = 50A.

5.1 iL Analysis

Figure 5-1 presents the bifurcation diagram for the current of the three-cell buck converter while
the parameter ki is varied from 0.04 to 0.15; the Iref value taken is 50 A because it is possible to
see the interesting behavior the current takes.

It can be easily seen how at the beginning, the current presents a stable behavior. There is a single
value curve which represents a fixed point until ki ≈ 0.68, which is when there is period doubling.
This period doubling continues until the ki reach the approximate value 0.078, that is when the
current signal iL takes four different values for a short time and then chaotic behavior is registered.
Later, this chaos stabilizes in four periods between ki ≈ 0.103 and ki = 0.107. At this last point,
the branches bifurcates again and an eight period domain starts; when ki ≈ 0.12 period becomes
infinite because the current shows a continual variation in amplitude.

In this case, bifurcation occurs as the ki parameter is increased.
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Figure 5-1: Bifurcation Behavior for iL when ki is varied.

There is an analysis for the current behavior when giving different values to ki.

ki = 0.06

Figure 5-2: iL behavior for ki = 0.06

Figure 5-2 describes the current behavior for ki = 0.06. In this sketch, it is possible to see that the
transitory is short in time. The variable iL stabilizes in a lower value than the one expected which
is Iref = 50A. The difference between the reference signal and the one obtained, is an error signal



40 5 Nonlinear dynamics

that needs to be considered. The current can not reach the reference value for this given ki.

Comparing this figure 5-2 with the bifurcation diagram in figure 5-1, it is possible to predict that
the value the current will take is approximately 44 A. This bifurcation diagram also allowed to
predict the stability that is shown in figure 5-2.

Figure 5-1 also predicts a stable fixed point when ki = 0.06, which means the system is stable
for this ki value. This fixed point existence was proved with procedure explained in section 3.3.4.
This way was demonstrated that both algorithms are accurate and the method used to get results
works.

ki = 0.09

Figure 5-3: iL behavior for ki = 0.09

ki = 0.09 is taken because of the dynamic behavior that can be seen in figure 6-1. Both graphics
5-1 and 5-3 show that for this parameter value, it is supposed to be registered chaos.

At figure 5-1, when ki = 0.09, two chaotic important zones are described, this means that the
current alternates the values it takes and never stabilizes.

Figure 5-3 describes the behavior for the current when ki = 0.09, it is possible to see that there
is no pattern or anything that indicates periodicity. The values vary in a wide range, so this figure
indicates chaos, which confirms the conclusion made from figure 5-1 observation.

ki = 0.12

The figure 5-4 describes the trajectory for the current iL when ki = 0.12. For this ki value, in
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Figure 5-4: iL behavior for ki = 0.12

figure 5-1, there are registered eight subharmonics due to the existence of eight different branches,
result of the bifurcation of four branches that appeared after a burst of chaos. Figure 5-4 is the
proof of it, it can be easily seen that the red trajectory, which is the one that samples the first value
per period, has different values after the transient, to be precise, eight different values.

The advantage of the current graphic registered as time increases, is that it is easy to recognize
when the behavior is stable and when it is not. The magnitude is big but not as big as the voltages.
For 3D bifurcation diagrams, one can think that the voltage does not vary as much as the current,
but the truth is that it does vary. Those values have a bigger magnitudes, the difference looks like
smaller but has to be considered.

5.2 Vc1 Analysis

The control equations 2-3 given in section 2.2, show that for each capacitor voltage, there are cor-
responding feedback coefficients kv1 and kv2. The parameter varied in the bifurcation diagram in
figure 5-5 is ki, which is the one that affects the current behavior. Even though, changes in the
voltages are registered as well.

The bifurcation diagram for Vc1 is shown in figure 5-5. From this figure, it is possible to conclude
that for ki values between 0.01 and 0.062 approximately, there is a fixed point, there is a single
value line and proves that it reaches the reference value. When ki = 0.068, the output signal
registers a continual variation in amplitude, so chaotic behavior is present for a very narrow range
because this behavior changes for the next value ki and suddenly becomes a period one cycle
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Figure 5-5: Bifurcation behavior for Vc1

which means that there is another fixed point but for this one, the value for this voltage is bigger
than the reference. When ki reaches 0.075, the variable starts to bifurcate until finally chaotic
behavior appears. When ki ≈ 0.1039, the chaos stops and stable behavior starts again. As ki
gets bigger, bifurcation appears for VC1 values until another chaotic domain appears and this is
the behavior that continues until the contemplated range of parameter ki swept finishes.

Figure 5-6: Vc1 behavior for ki = 0.06.
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ki = 0.06

The image 5-6 indicates that for ki = 0.06, the reference voltage is reached once the transient
ends. This signal is stabilized in 400 V, which is the voltage magnitude wanted. In the bifurcation
diagram in figure 5-5, it is shown that the voltage value will reach the reference once the transient
ends. It is also possible to see that the voltage is stable and maintains its value, so it can be con-
cluded that figure 5-6 supports the information plotted on the bifurcation diagram in figure 5-5.

ki = 0.12

Figure 5-7: Vc1 behavior for ki = 0.12.

Figure 5-7 shows that for ki = 0.12, the reference value for the voltage in capacitor 1 is near 400
V, even thought there is a ripple in the value obtained as a result, which can be seen easily. The
behavior in this figure is the one that the bifurcation diagram showed for this ki value. The ripple
indicates that there is no stability, the word that better describes the behavior is chaos.

As mentioned before, this looks like a meaningless non linearity, but in fact it is an important one
due to the magnitude of the variable values expected and registered.

ki = 0.15

In figure 5-8, it can be seen that the voltage does not take a stable value. It takes many values be-
cause of the presence of a ripple, and as this signal is sampled each period, each sample is different
to the other. At least it is different enough to consider that there is an infinite period domain.

Even when in figure 5-8 it looks like the voltage value does not vary that much, it is important to
notice that tolerance is different for voltages and this is the reason that the difference between val-
ues is apparently smaller in figure, but in magnitude is big enough to consider not stable behavior.
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Figure 5-8: Vc1 behavior for ki = 0.15

The bifurcation diagram in figure 5-5 shows a wide range of values for VC1 when ki = 0.15 and
the infinite period domain can be confirmed.

5.3 Vc2 analysis

Now, capacitor 2 voltage behavior will be analyzed. In figure 5-9 the bifurcation diagram for this
variable is displayed. It can be seen that Vc2 takes a value a little bit bigger than the reference
value. When ki ≈ 0.07, the stable behavior stops, there is no longer a fixed point and the voltage
magnitude is less than 798 V. As ki gets bigger, the voltage magnitude increases, and also does
the amount of subharmonics until infinite period domain can be easily seen.

When ki ≈ 0.11, chaos stops and one single branch is formed. This branch starts bifurcating and
periodicity increases as well. A big chaos domain describes the values this variable takes for the
last ki parameter part of the swept.

ki = 0.06

As shown in figure 5-9, for a value of 0.06 in the feedback coefficient ki, the voltage in capacitor
2 is the same of the reference value, which is approximately 800 V, and this can be proved with
the figure 5-10. This figure shows that after the transient, this variable takes this same value. The
signal is stable, there are no ripples.

Both figures 5-9 and 5-10 indicate that there is a fixed point for this parameter values.
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Figure 5-9: Bifurcation behavior for Vc2

Figure 5-10: Voltage in capacitor 2 for ki = 0.06

ki = 0.08

In figure 5-11, it can be seen that the voltage in capacitor 2 is approximate to 800 V, which is the
reference value. Once the time is bigger, ripples appear destabilizing the voltage signal. There is
an error signal generated by this ripple and in order to validate this behavior, in figure 5-9 there are
registered different values for Vc2 when ki = 0.08 which means there is chaos.
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Figure 5-11: Voltage in capacitor 2 for ki = 0.08

ki = 0.12

Figure 5-12: Voltage in capacitor 2 for ki = 0.12

The figure 5-12 shows that for ki = 0.012, the variable Vc2 has a chaotic behavior due to the
many values that the variable Vc2 takes, as the time varies. It is possible to see that there is a
small ripple and this ripple generates an error signal. For the voltages Vc1 and Vc2, the bifurcation
diagrams are different because they depend on the configuration that is running the buck converter
and these voltages are increased, decreased or maintained. When the circuit changes configuration,
the behavior in the variables may change as well, at least one of the behaviors change for sure (see
chapter 2). In conclusion, it is not possible that the three bifurcation diagrams match, they present
a different behavior in comparison to the bifurcation diagram for the current in the inductor iL and
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compared to each other as well.

As mentioned before, in the figures 5-11 and 5-12, there is a ripple that proves the unstable behav-
ior for the voltage in capacitor 2 when some ki values are taken.
Figure 5-10 shows stability which proves this variable can be also stable when lower values for ki
are taken.

5.4 Duty cycles

The switches duty cycles are the time that each switch spends in an active (ON) state. The duty cy-
cles are the pulse duration divided by the pulse period. In this section, the duty cycles are analyzed
and compared for Iref = 70A, their role in the three-cell buck converter is important because they
are the ones that specify for how long the active configuration will be ON.

In the next subsections, the duty cycle behavior will be explained for three different ki values. It
will be possible to see how the duty cycles reflex the system behavior, just like it happens with the
variables. In other words, it will be evidenced that if the variables are unstable, the duty cycles are
not stable either.

ki = 0.06

Through the duty cycles for the system when ki = 0.06 (fig 5-13), it can be observed that a stable
value is taken after 0.6 mS. In this point, the system start switching from one configuration to
another in a determined and fixed sequence:

C8 → C3 → C2 → C7 → C5 → C6

This sequence happens once the requested state variables or time conditions are fulfilled. For a
stable behavior, it is always expected that a sequence of configurations appear, even though this
sequence depends on the switches duty cycles. As the sequence is the same and also are the duty
cycles for the three switches, in the variables it is possible to see that there is a period one behavior.
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Figure 5-13: Duty cycles for ki = 0.06

Figures 5-2, 5-6 and 5-10 show that the control works because when the transitory for the state
variables start in t ≈ 0.55 ms, the duty cycles have not been stabilized yet. The control changes in
a way that the variables try to stabilize very fast and once this is accomplished, the duty cycles tent
to stabilize as well.

ki = 0.12

When ki = 0.12, the system does not behave as stable. The variables do not take a particular
value, they just take values that look like random but they are obtained through the control action.
The variables have infinite period.

The three duty cycle signals in figure 5-14 for the first 0.1 ms behave in a different way. After this
moment in time, they attempt to synchronize, these signals start to look alike because they take the
same values. Despite the control efforts, they never stabilize and as a result the state variables do
not stabilize either.
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Figure 5-14: Duty cycles for ki = 0.12

ki = 0.16

For this value of ki, and as reference current Iref = 70A, the duty cycles do not stabilize. The
state variables do not do it either and chaotic behavior is registered everywhere because the period
becomes infinite due to the tolerance that was set. It is possible to see how the duty cycles some-
times take values 1 and 0. This means that the saturation control functions work perfectly when
the control signals si take values that are too high or too low.

Just like it happens for ki = 0.12, the duty cycles in figure 5-15 look alike, they start taking the
same values approximately after 0.1 ms, even though the duty cycles vary so much per period that
is not possible to recognize how many periods they have, this can be interpreted as if the period
becomes infinite which is also considered as chaos.
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Figure 5-15: Duty cycles for ki = 0.16

Diagram approximations

• iL bifurcation diagram

When fig. 5-16 is compared to fig. 5-1, it is possible to see that both figures describe a
similar current behavior as ki increases. Both have a stable first zone, which differs in
the bifurcation point moment. For fig. 5-1, the current iL shows a stable behavior until
ki ≈ 0.068, where period doubling is registered. For the diagram that was obtained using
the approximation fig. 5-16, the period doubling is registered for ki ≈ 0.058.

Such a difference is expected due to the effect of neglecting the non linear terms in the ap-
proximated form. Even though, as mentioned before, it is an acceptable approximation and
allows to do the stability analysis. The main reason to work with the approximated one is
to gain computational time. This technique has been used for other circuits analysis and has
shown results that are in favor of its use [28] [18].
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Figure 5-16: Bifurcation Behavior for iL when ki is varied with PWL Poincaré approximation.

Figure 5-17: Stability analysis. Eigenvalues

For this case, where Iref = 50A, the fig. 5-17 describes the trajectory the eigenvalues
of the Jacobian matrix have as the ki parameter is increased, to say it on a different way,
when the stability stops. As mentioned before, a necessary condition for stability is that
these eigenvalues lay inside the unit circle. The idea then is to obtain some eigenvalues
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for 0.04 ≤ ki ≤ 0.055, which will prove the behavior is stable. Also, the eigenvalues for
ki > 0.6 will be obtained in order to prove that after this point, there is no stability, conclud-
ing that way that the bifurcation can be detected.

Figure 5-18: Stability analysis. Eigenvalues

In the fig. 5-17, it can be confirmed the stability of the periodic orbits. All the eigenvalues
plotted, are the ones for 0.04 ≤ ki ≤ 0.055. The green arrow indicates that as ki is in-
creased, the eigenvalues (represented by an asterisk “*”) increase as well. As the range taken
is still in the stable part, this is the reason why all the eigenvalues plotted lie inside the unit
circle.

The fig. 5-18 shows the eigenvalues obtained for ki = 0.06 and ki = 0.064. Once again, as
ki increases, the eigenvalues approximate more to the left side of the real axis and of course,
do not lie inside the unit circle.
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• Vc1 bifurcation diagram

Figure 5-19: Bifurcation Behavior for Vc1 when ki is varied with PWL Poincaré approximation.

In the bifurcation diagram for VC1, it is possible to see that the registered behavior is stable
for all the values of ki.

As mentioned before in this document, and of course, referring to some cited studies, it is
possible to obtain this kind of differences between the approximated Poincaré map and the
one that takes into account every single element.

In this case, the second and higher order terms in the P expression modify the behavior of
the variables. When they are neglected, the bifurcation diagram show that at least the volt-
age in the capacitor take the value of the expected fixed points, which is 1/3 and 2/3 of Vin.

Most of the articles that work with the Poincaré map method, state that the non stability
is a product of the second and higher order terms, which appear in the duty cycles expres-
sions [21] [28] [29].
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• Vc2 bifurcation diagram

Figure 5-20: Bifurcation Behavior for Vc2 when ki is varied with PWL Poincaré approximation.

The bifurcation diagram for VC2 using the poincaré map approximation also presents the same
behavior observed in the bifurcation diagram for VC1. The variable take the reference value and
maintains it as ki increases.

As mentioned for the VC1 bifurcation diagram, this is due to the approximation, which neglects
the second and higher order terms.

It can be concluded that an acceptable approximation of the bifurcation diagrams obtained with
the Poincaré map expression in equation (3-20), are the diagrams obtained with equation (3-38).
These last diagrams neglect second and higher order terms that appear in the duty cycle expres-
sions. The behavior observed in the bifurcation diagrams can be proved with the periodic orbit
stability analysis explained in section 3.3.5.

The Jacobian matrix and the corresponding eigenvalues were obtained, these could prove the ve-
racity of the results and conclusions obtained with the bifurcation diagrams. The first bifurcation
was successfully detected by using the approximated method.



6 Two and three dimensional
bifurcations

In this section, there is a deeper variables behavior analysis using two dimensional bifurcations
and 3D mesh graphs. Using these figures, it is possible to analyze the periodicity of the values
taken by each one of the variables when parameters vary.

The images used in this chapter are obtained in two different ways, both related, but they repre-
sent the data differently: the first one is by plotting a matrix that contains the amount of different
values per period that each one of the variables take once the transient has ended, of course, with
a tolerance considered, not an absolute zero. This tolerance depends on the variable. The second
procedure is to plot all the bifurcation diagrams together in order to see the values that each vari-
able takes when the parameters are varied. As a result, a three dimensional graphic will be obtained
and all the values each variable take per parameter combination will be shown. The procedure used
to obtain the diagrams was poincaré map. Eventhough, the two-dimension diagrams are obtained
using the poincaré approximation mentioned before.

As the current feedback coefficient is the one varied in the bifurcation diagrams, it is easy to de-
duce that directly affects the current signals. In order to get a behavior in two dimensions, first, as
a second parameter must be varies as well. This can be the reference value for the inductor current
Iref . Next, there are obtained bifurcation diagrams where parameters Iref and ki are varied. The
period behavior will be analyzed for each one of the variables and duty cycles.

The method used to obtain the periods per combination between ki and Iref is similar to the one
used to obtain the regular bifurcation diagrams but has to be done may times for the different values
of Iref . The algorithm that allows me to obtain the bifurcation diagrams is modified so it does
not plot a figure, it has to save the variables data in a matrix, the same data that would be plotted
in a regular bifurcation diagram. These data are compared to each other and if they differ more
than expected (varies more than the settled tolerance), a period is counted. This period increases
when there is a considerable change in the analyzed variable behavior. e.g. If in the bifurcation
diagram there is a stable part, this will be reflected in the two-dimensional diagram by plotting a
blue region. If in the bifurcation diagram it is possible to see four branches for a given ki, then in
the two-dimensional diagram, in the same moment, a lighter blue region will be plotted. And, if in
the bifurcation diagram, the values taken by the variable for a given ki value are all very different,



56 6 Two and three dimensional bifurcations

and when counting the difference between them we obtain a periodicity of 15 or more, this will be
represented with a red region, which means chaos.

6.1 Current in the inductor iL

Figure 6-1: ki Vs. Iref periodicity for iL

From figure 6-1, it can be concluded that for values between 30 and 31.0101 A for the parameter
Iref , when ki is varying, at the beginning there is a little area where non stable behavior is regis-
tered. Once the feedback coefficient ki increases a little bit, the current behavior is stable for all
Iref take. After ki = 0.061, non stable behavior is registered. There is no longer stability, and
the two parameter map shows that there is a narrow range where the current values are represented
with a short burst of chaos.

For the highest values of Iref , there is intermittence in the behavior. There are parts where the
current has a periodic behavior and then goes to chaos again. For lower values of Iref , there are
even more changes in the variable behavior. There are many chaotic domains that suddenly change
to be n−periodic, where n is any number of periods that can be easily seen in the graphics. This
happens for a very narrow range and then it goes back to chaos.

Figure 6-2 evidences the analysis made for the image 6-1. It is possible to easily see that there is
a big region where the current is stable. When ki ≈ 0.065, the one period zone becomes, for all
the values that Iref takes, chaos which is alternated with n−periodic behavior. For Iref values
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near 68 A, the current is stable for the first values of ki. When this parameter is approximately
0.068, there is a chaotic domain which last for a very narrow range, up to ki ≈ 0.073 the variable
remains stable.

For the other Iref values, after the stable domain for the first values of ki, there is a small chaos
domain and after that the current is n−periodic, where n depends on the reference current Iref
value. After this, n−periodic domain chaos appears again. For some values of Iref , the intermit-
tence continues. For other values of Iref , the chaos remains until ki takes its last value which is
0.18.

Figure 6-2: 2 parameter bifurcation diagram for iL

Figure 6-2 only shows the values this variable takes, it is just like many bifurcation diagrams all
together. It is possible to see how the value of the current increases as the reference current does.
Also, for the stable first part, as ki increases, the value the current gets bigger compared to the
value that it takes for smaller ki values.
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Poincaré map approximation

The fig.6-3 is the one that describes the 2 parameter bifurcation diagram obtained when using the
approximation mentioned in section 3.3.5, equation (3-37).

Figure 6-3: 2 parameter bifurcation diagram for current in the inductor

As it can be seen, there is a difference between the figure that uses the approximation and the one
that does not. An interesting change is that in both of them, there is a period two zone. In the
one that uses the approximation fig. 6-3, it is possible to see that it presents phenomena that is
similar to the one obtained in fig.6-1. The difference is because of the terms that are neglected,
this diagram looks more stable or shows a more stable behavior when compared to the one with
the complete Poincaré map. These two-dimensional bifurcation diagrams have the same important
behaviors: For high values of Iref and ki between 0.8 and 0.9, there are two regions where it
is reflected a period five for the iL. There is another region, which is very small in diagram fig.
6-3 when compared to the one in diagram fig.6-1 but is present in both figures: As ki increases
and Iref ≈ 38A, the number of periods decreases and there is an small but notable region with
period two. After chaos, the periodicity and Fig.6-3 is obtained in less time than it takes to obtain
fig.6-1, which means that for more complex analysis where computational time is important, it is
better to use the approximation method. Even when the bifurcation diagrams with and with no
approximation are not exactly the same, the result is good enough to work with it.

It is possible to see that the limit between the stable behavior (1 period) and more periods zones,
appears before. This means that the stable behavior changes before when using the Poincaré maps
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approximation. This is also registered in the bifurcation diagrams for the current in the inductor.

6.2 Voltage in capacitor 1 Vc1

Figure 6-4: Periodicity diagram for VC1

When parameters ki and iL are varied, Vc1 is stable for a wide plotted area; this means that there
are a lot of parameter combinations where there are fixed points. Most of it occurs for values lower
than 0.062 for the current feedback coefficient ki and for any value the reference current takes,
making the exception of the lowest ones of ki ≈ 0.017, where there is n-periodic behavior for a
very small region.

This two parameter map in figure 6-4, is more dynamic than the one for the current in figure 6-1;
there are zones that are n-periodic instead of chaotic and just like in two parameter map for the
current, for Iref values near to 65 A, the variable behavior is stable but for narrow range near
ki ≈ 0.07 where chaos is registered.

For Iref values between 50 A and 80 A, and ki values between 0.017 and 0.096, there is a do-
main where the stability is intermittent: for the lower values of ki the voltage is stable, but after
ki = 0.068 periodic behavior or chaos domains are registered for a narrow range, then stable be-
havior appears again and later chaos or periodic domain appears. For ki values between 0.096
and 0.123, and for Iref higher values, there are two very dynamic domains and a stable one in the
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middle: the dynamic domain presents a lot of different n-periodic behavior that can be obtained
depending on the parameter combination.

An interesting behavior can be seen when Iref is varied and ki ≈ 0.18: the current takes values
that are intermittent between chaos, stability and period ten behavior.

Figure 6-5: 2 parameter bifurcation diagram for VC1

Some observations that can be made from the capacitor 1 voltage behavior are shown in figure
6-5: there is an important non stable region where Iref takes high values and ki low values; it
is clear that for Iref values between 62A and 80A and for ki between 0.116 and 0.138, VC1

takes lower values as the reference current signal increases being the lowest one 251,2V which is
registered when ki = 0.1336 and Iref = 80A. The value this capacitor voltage takes depends on
the reference current previously set; the control signals do not control this variable as they should
in this non stable region, a difference bigger than the 10% of the reference value is not accepted
for practical purposes.

Poincaré map approximation

Using the poincaré map approximation in equation (3-37), the fig. 6-6 is obtained. Comparing
this figure to the one obtained with the regular poincaré map expression, fig. 6-4, it is possible
to observe that the phenomenon is not longer so similar and it does not behavior like the inductor
current 2-parameter diagram. There is a big stable zones that covers almost all of the region except
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Figure 6-6: 2 parameter bifurcation diagram for Voltage in capacitor 1

for the higher ki values and the lower Iref .

6.3 Voltage in capacitor 2 Vc2

The voltage in capacitor 2 shows a behavior that is as dynamic as the one for capacitor 1; for the
highest values of Iref and for the first half of ki values there is an intermittent behavior between
stability and chaos. For some parameter combinations, the change between stability and chaos is
slow, it means that the periodicity increases until chaos appears. This periodicity changes appear
because of the continual variation in amplitude of the variable VC2.

Just like it happens in the other variable two parameters map: for lower values of ki, there is more
intermittence than for higher values. In this case, the intermittence is between stability, six periodic
behavior and chaos.

Also, there is a parameter combination for which the control does not work very well, it can be
seen in figure 6-8 from ki = 0.101 to ki = 0.138 this variable takes values lower than the refer-
ence. This condition starts from Iref ≈ 48A and for higher reference current values, the voltage
in capacitor 2 gets lower and lower being the lowest value registered approximately 777 V.

In figure 6-8, it is also possible to see the wide stable area for the first values of ki, and through
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Figure 6-7: Periodicity diagram for VC2

Figure 6-8: 2 parameter bifurcation diagram for VC2

the Z axis it can be seen the different values the variable takes. The more values the variable take
per parameters combination, the more periods it has and this can be easily proved with figure 6-7,
where periodicity for VC2 is shown.
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Poincaré map approximation

Figure 6-9: 2 parameter bifurcation diagram for voltage in capacitor 2

Figure 6-9 describes the two parameter bifurcation diagram with the approximated Poincaré method.
For the voltage in capacitor 2, the graphic does change more. This graphic shows almost a com-
plete stable behavior. It can be concluded that for the voltage in capacitor 2, the elements that add
the chaotic or unstable behavior have two or more orders.

For both one and two dimensional bifurcation diagrams for voltage in capacitor 2, it has been
possible to see that when the approximation is used, a more stable behavior is obtained. The
instabilities that are registered in fig. 6-7 do not appear in fig. 6-9.

6.4 Duty cycle for switch 1

For the switches duty cycles, a tolerance of 1x10−6 is considered to obtain the two parameter map.

If all the variables have a common stable domain, the most logic thing is that the duty cycles also
have it. As it can be seen in figure 6-10, a blue stable zone can be recognized in the left half. For
ki approximately between 60 A and 67 A, there is a domain of intermittent behavior: one periodic
behavior appears, when Iref is approximately 0.68 there is a narrow range of chaos, for some
parameter combination in this range there is also n-periodic behavior where n > 6.
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Figure 6-10: Periodicity diagram for duty cycle 1

For ki marginally greater than 0.75, instead of converging to a single number, the duty cycle for
switch one settles down to two values, there is no interspersion. This behavior continues as ki
is increased until 0.091, one period subharmonic emerges instead of two. Even though, there is a
little range when Iref ≈ 66A; for the first ki values, one subharmonic is registered. Later on, for
a narrow range there is chaotic behavior and then it goes back to one subharmonic.

Figure 6-10 shows that the duty cycle for switch one is very dynamic. There are a lot of period n
behavior in the right side of the figure, chaos is the most common one but there are some little do-
mains where there are periodic domains. When Iref ≈ 38A, the behavior for the duty cycles starts
with stability and finishes also stable. In the middle of both extremes, there are a lot of n-periodic
and even chaotic ranges.

Figure 6-11 shows the last 50 values for each duty cycle in switch 1, for parameters ki and Iref
combinations. It is easy to see that for the lowest values of the parameter ki, there are fixed points,
but this stability in the behavior ends after ki ≈ 46A. At this point, it is where the duty cycle
values start to change because the control tries that the circuit variables reach the reference value.
Even though as seen in figure 6-10, sometimes this is achieved, some others it is not. It depends
on the parameters values.
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Figure 6-11: 2 parameter bifurcation diagram for duty cycle 1

Figure 6-12: 2 parameter bifurcation diagram for duty cycle 1

Poincaré map approximation

In the fig. 6-12, there is a diagram which describes the duty cycle for switch 1 diagram using the
approximation for the matrix exponential in equation (3-37). When using both expressions, full
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poincaré map and poincaré map with exponential matrix approximation, the duty cycle behavior is
similar. As mentioned before for the system variables, some of the phenomenon or behavior, such
as one periodic zones which are remarkable, appear for lower values of Iref . This is expected, if
the variables are affected this way, the most logical thing is that it affects the same way the switches
duty cycles.

6.5 Duty cycle for switch 2

Figure 6-13: Periodicity diagram for duty cycle 2

Figure 6-13 shows the two parameters map for capacitor 2 voltage. In the left side of the figure,
it is possible to recognize the stable domain which is suddenly interrupted by chaos, which lasts
only for a very narrow range up to ki ≈ 0.078. For the lower Iref values, there are two chaotic
ranges separated by a stable one. Once the chaotic behavior finishes, there is a period 2 behav-
ior for almost all the Iref values except the ones around 68 A, which register stable behavior
from ki ≈ 0.078 until ki ≈ 0.18. For Iref values between 55 A and 80 A, after the period two
behavior, the periodicity starts increasing and a pattern with cycles of length 2n starts to be noticed.

Later on, for some cases as ki increases, chaos and n- periodic behavior alternate, but at the end,
chaos is the behavior that remains. Even though, when ki starts getting closer to 0.163, periodic
behavior starts appearing, and for values of Iref between 68 A and 75 A, the behavior starts to
converge to period 10, 11 and 12. For Iref between 53 A and 60 A, the pattern of 2n periods start
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again and starts converging gradually to 2inf , that is when chaos appear.

For Iref values between 32 A and 42 A, and ki between 0.12 and 0.18, there is a stable domain.
For values near 37 A, and for values near the 32A and 42 A, the periodicity increases being 10, 11
and 12 the most common number of subharmonics registered in that area.

Figure 6-14: 2 parameter bifurcation diagram for duty cycle 2

Figure 6-14 looks alike figure 6-11, there is a stable zone before ki ≈ 0.68 and once it takes this
value, for the lowest values of the reference current Iref , the periods start increasing and this is
evidenced because it is possible to see how the values changes for d1, this values are limited by
saturation function and they can only be 0 or 1. As ki increases, the duty cycles start varying more
and more because they try to control the output variables, this sometimes is not possible to achieve.

Poincaré map approximation

For this fig.6-15, it is possible to see that when compared to fig.6-13, which is a 2 parameter bifur-
cation diagram, the periodicity is similar for both. As seen in the other approximation figures, the
stable behavior appears for lower Iref values, but in addition to this, the ten-periodic zone in the
upper area remains.

A difference is that for the approximated model, in the 2 parameter map it is possible to see a new
stable zone which is not present in fig.6-13, positioned for the high values of both Iref and ki.
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Figure 6-15: 2 parameter bifurcation diagram for duty cycle 2

6.6 Duty cycle for switch 3

All the switches duty cycles look alike, they have stable behavior in the same zone and the duty
cycles values are almost the same for most of the parameter combinations. Even though, there are
some parts where the periodicity changes and this is because each duty cycle depends on the values
of the respective switch control signal. Figure 6-17 can be seen the evolution of the duty cycle in
switch 3 for the different parameter combinations.In figure 6-16, the periodicity for the duty cycle
3 for each parameter combination is shown.

For Iref values between 30 A and 60 A, intermittentcy between stable, chaos and two periods is
very common. For some cases six, ten and eleven period behavior is registered; there are other
small parameter combination where the duty cycle value try to stabilize but for a narrow range of
ki because it later goes back to chaos but once ki.

Poincaré map approximation

In the duty cycle of switch 3, happens the same as mentioned for the approximated poincaré map,
there is a new stable zone that was no visible in the figure obtained without approximation and
also, the phenomena happen in a similar way but for the whole poincaré map expression, it takes
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Figure 6-16: Periodicity diagram for duty cycle 3

Figure 6-17: 2 parameter bifurcation diagram for duty cycle 3

place in higher values of Iref .

This is expected because the control makes the three control signals to be the same or at least, as
similar as possible.
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Figure 6-18: 2 parameter bifurcation diagram for duty cycle 3



7 Conclusions

• The three-cell buck converter controlled with digital PWM mathematical analysis was done
using mathematical simulation and discrete time modeling. The results obtained with the de-
veloped mathematical algorithm were compared with simulation software results, the results
obtained with the algorithm are similar.

• The discrete time modeling is a very efficient method, it is possible to obtain results in less
time than any other method takes; it is also very accurate and the advantage of using Poincaré
maps is that stability study can be done.

• The approximation used for the Poincaré map method improves the computational time of
response and graphics are obtained in less time. Eventhough, the one and two dimensional
bifurcation diagrams for the voltages in capacitors are not similar to the ones obtained with
the normal Poincaré map method. This technique has been used to analyze other circuits
with successful results. There is a possibility that to decrease the computational time, this
approximation may not be the best idea and other methods can be explored.

• The Poincaré map discrete time modeling was successfully implemented, fixed points were
obtained through an algorithm designed to do the mathematical procedure and results were
compared to the graphics obtained with the algorithm to describe the system and also with
simulation in PSIM software.

• The effect of the circuit parameters, which are as well the control signal constants, was
analyzed by obtaining variable response graphics for bigger and smaller magnitudes for the
load, inductor and capacitors and by obtaining and analyzing bifurcation diagrams.

• The two and three dimensional bifurcation diagrams were obtained, they allowed to under-
stand better the effect of the parameters ki and Iref in the system variables and duty cycles.
These parameters are analyzed in detail due to the use od the current to obtain the output
voltage in the load.

• A range of values for the parameters ki and Iref can be obtained from the diagrams that
describe the current in the inductor and voltages in the capacitors present in the three-cell
buck converter in order to make sure the system has a stable behavior.

• The method to analyze the stability of the periodic orbits was successfully implemented, the
first bifurcation can be detected for the approximated poincaré map expression.



Future work

Experimental validation is a subject of future study, physical proves could be done and the circuit
can be properly tested. Extension of the results using other control methods or other multi-cell
converters are considered and would contribute to the field of study.

The three cell buck converter behavior can be analyzed using many different methods. This thesis
has results obtained with the Poincaré map method. Other methods can be implemented as well
and compared with the ones in this thesis and with simulations.
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