
ATTAINING MULTIPLE DISPATCH IN

WIDESPREAD OBJECT-ORIENTED LANGUAGES

APROXIMACIONES PARA OBTENER MULTI-MÉTODOS EN LOS

LENGUAJES ORIENTADOS A OBJETO MÁS EXTENDIDOS

FRANCISCO ORTIN1, MIGUEL GARCIA1, JOSE M. REDONDO1, JOSE QUIROGA2

1Ph.D., Computer Science Department, University of Oviedo, Spain, ortin@uniovi.es
2Computer Engineer, Computer Science Department, University of Oviedo, Spain, quirogajose@uniovi.es

Received for review: D-M-A, accepted: D-M-A, final version: D-M-A.

ABSTRACT: Multiple dispatch allows determining the actual method to be executed, depending on the dynamic types

of its arguments. Although some programming languages provide multiple dispatch, most widespread object-oriented

languages lack this feature. Therefore, different implementation techniques are commonly used to obtain multiple

dispatch in these languages. We evaluate the existing approaches, presenting a new one based on hybrid dynamic and

static typing. A qualitative evaluation is presented, considering factors such as software maintainability and readability,

code size, parameter generalization, and compile-time type checking. We also perform a quantitative assessment of

runtime performance and memory consumption.

KEYWORDS: Multiple dispatch, multi-method, dynamic binding, reflection, method overload, hybrid typing

RESUMEN: Los multi-métodos seleccionan una de las implementaciones de un método sobrecargado, dependiendo

en el tipo dinámico de sus argumentos. Aunque existen lenguajes que soportan multi-métodos, la mayoría de los len-

guajes más extendidos no ofrecen esta funcionalidad. Por ello, es común ver la utilización de distintos mecanismos

auxiliares para obtener su funcionalidad. En este artículo evaluamos las alternativas existentes y presentamos una

nueva basada en lenguajes con tipado híbrido. Una primera evaluación cualitativa analiza factores como la mantenibi-

lidad, legibilidad, tamaño del código fuente, generalización de los parámetros y comprobación estática de tipos. Tam-

bién presentamos una evaluación cuantitativa del rendimiento en tiempo de ejecución y consumo de memoria.

PALABRAS CLAVE: Multi-métodos, enlace dinámico, reflexión, sobrecarga de métodos, tipado híbrido

1. INTRODUCTION

Object-oriented programming languages provide

dynamic binding as a mechanism to implement

maintainable code. Dynamic binding is a dispatch-

ing technique that postpones until runtime the pro-

cess of associating a message to a specific method.

Therefore, when the toString message is passed

to a Java object, the actual toString method

called is that implemented by the dynamic type of

the object, discovered by the virtual machine at

runtime.

Although dynamic binding is a powerful tool,

widespread languages such as Java, C# and C++

only support it as a single dispatch mechanism: the

actual method to be invoked depends on the dy-

namic type of a single object. In these languages,

multiple-dispatch is simulated by the programmer

using specific design patterns, inspecting the dy-

namic type of objects, or using reflection.

In languages that support multiple-dispatch, a mes-

sage can be dynamically associated to a specific

method based on the runtime type of all its argu-

ments. These multiple-dispatch methods are also

called multi-methods [1]. For example, if we want

to evaluate binary expressions of different types

with different operators, multi-methods allow

modularizing each operand-operator-operand

combination in a single method. In the example C#

code in Figure 1, each Visit method implements

a different kind of operation for three concrete

types, returning the appropriate value type. As

shown in Figure 2, the values and operators imple-

ment the Value and Operator interface, respec-

tively. Taking two Value operands and an Oper-

ator, a multi-method is able to receive these three

Ortin, Garcia, Redondo and Quiroga 2

parameters and dynamically select the appropriate

Visit method to be called. It works like dynamic

binding, but with multiple types. In our example, a

triple dispatch mechanism is required (the appro-

priate Visit method to be called is determined by

the dynamic type of its three parameters).

Polymorphism can be used to provide a default be-

havior if one combination of two expressions and

one operator is not provided. Since Value and Op-

erator are the base types of the parameters (Fig-

ure 2), the last Visit method in Figure 1 will be

called by the multiple dispatcher when there is no

other suitable Visit method with the concrete dy-

namic types of the arguments passed. An example

is evaluating the addition (AddOp) of two Boolean

(Bool) expressions.

In this paper, we analyze the common approaches

programmers use to simulate multiple dispatching

in those widespread object-oriented languages that

only provide single dispatch (e.g., Java, C# and

C++). To qualitatively compare the different alter-

natives, we consider factors such as software

maintainability and readability, code size, parame-

ter generalization, and compile-time type check-

ing. A quantitative assessment of runtime perfor-

mance and memory consumption is also presented.

We also present a new approach to obtain multiple

dispatch in languages that provide hybrid dynamic

and static typing, such as C#, Objective-C, Boo

and Cobra. This alternative provides high main-

tainability and readability, requires reduced code

size, allows parameter generalization, and per-

forms significantly better than the reflective ap-

proach, requiring more memory resources.

The rest of this paper is structured as follows. In

Section 2, the common approaches to obtain multi-

methods in widespread object-oriented program-

ming languages are presented and qualitatively

evaluated. Section 3 presents a new approach for

hybrid typing languages, and a comparison with

the previously analyzed systems. Section 4 details

the runtime performance and memory consump-

tion evaluation. Conclusions and future work are

presented in Section 5.

2. COMMON APPROACHES

2.1. The Visitor Design Pattern

The Visitor design patter is a very common ap-

proach to obtain multiple dispatch in object-ori-

ented languages than do not implement multi-

methods [2]. By using method overloading, each

combination of non-abstract types is implemented

in a specific Visit method (Figure 1). Static type

checking is used to modularize each operation in a

different method. The compiler solves method

overloading by selecting the appropriate imple-

mentation depending on the static types of the pa-

rameters. Suppose an n-dispatch scenario: a

method with n polymorphic parameters, where

each parameter should be dynamically dispatched

considering its dynamic type (i.e., multiple dy-

namic binding). In this n-dispatch scenario, the n

parameters belong to the H1, H2… Hn hierarchies,

public class EvaluateExpression {

 // Addition
 Integer Visit(Integer op1, AddOp op, Integer op2) { return new Integer(op1.Value + op2.Value); }
 Double Visit(Double op1, AddOp op, Integer op2) { return new Double(op1.Value + op2.Value); }
 Double Visit(Integer op1, AddOp op, Double op2) { return new Double(op1.Value + op2.Value); }
 Double Visit(Double op1, AddOp op, Double op2) { return new Double(op1.Value + op2.Value); }
 String Visit(String op1, AddOp op, String op2) { return new String(op1.Value + op2.Value); }
 String Visit(String op1, AddOp op, Value op2) { return new String(op1.Value + op2.ToString()); }
 String Visit(Value op1, AddOp op, String op2) { return new String(op1.ToString() + op2.Value); }

 // EqualsTo
 Bool Visit(Integer op1, EqualToOp op, Integer op2) { return new Bool(op1.Value == op2.Value); }
 Bool Visit(Double op1, EqualToOp op, Integer op2) { return new Bool((int)(op1.Value) == op2.Value); }
 Bool Visit(Integer op1, EqualToOp op, Double op2) { return new Bool(op1.Value == ((int)op2.Value)); }
 Bool Visit(Double op1, EqualToOp op, Double op2) { return new Bool(op1.Value == op2.Value); }
 Bool Visit(Bool op1, EqualToOp op, Bool op2) { return new Bool(op1.Value == op2.Value); }
 Bool Visit(String op1, EqualToOp op, String op2) { return new Bool(op1.Value.Equals(op2.Value)); }

 // And
 Bool Visit(Bool op1, AndOp op, Bool op2) { return new Bool (op1.Value && op2.Value); }

 // The rest of combinations
 Expression Visit(Value op1, Operator op, Value op2) { return null; }

}

Figure 1. Modularizing each operand and operator type combination.

Dyna 137, 2013 3

respectively. Under these circumstances, there are

potentially ∏ 𝐶𝐶𝑖
𝑛
𝑖=1 Visit methods, CCi being

the number of concrete (non-abstract) classes in

the Hi hierarchy.

Using polymorphism, parameters can be general-

ized in groups of shared behavior (base classes or

interfaces). An example of this generalization is

the two last addition methods in Figure 1. They

generalize the way strings are concatenated with

any other Value. This feature that allows grouping

implementations by means of polymorphism is the

parameter generalization criterion mentioned in

the previous section.

As shown in Figure 2, the Visitor pattern places the

Visit methods in another class (or hierarchy) to

avoid mixing the tree structures to be visited

(Value and Operator) with the traversal algo-

rithms (Visitor) [3]. The (single) dispatching

mechanism used to select the correct Visit

method is dynamic binding [2]. A polymorphic

(virtual) method must be declared in the tree hier-

archy, because that is the hierarchy the specific pa-

rameter types of the Visit methods belong to. In

Figure 2, the Accept method in Value provides

the multiple dispatch. When overriding this

method in a concrete Value class, the type of

this will be non-abstract, and hence the specific

dynamic type of the first parameter of Visit will

be known. Therefore, by using dynamic binding,

the type of the first parameter is discovered. This

process has to be repeated for every parameter of

the Visit method. In our example (Figure 2), the

type of the second operand is discovered with the

Accept2 method in Operator, and Accept3 in

Value discovers the type of the third parameter

before calling the appropriate Visit method.

In this approach, the number of AcceptX method

implementations grows geometrically relative to

the dispatch dimensions (i.e., the n in n-dispatch,

or the number of the Visit parameters). Namely,

for H1, H2… Hn hierarchies of the corresponding n

parameters in Visit, the number of Accept

methods are 1+∑ ∏ 𝐶𝐶𝑗
𝑖
𝑗=1

𝑛−1
𝑖=1 . Therefore, the

code size grows geometrically with the number of

parameters in the multi-method. Additionally, de-

claring the signature of each single AcceptX

method is error-prone and reduces its readability.

Adding a new concrete class to the tree hierarchy

requires adding more AcceptX methods to the im-

plementation (see the formula in the previous par-

agraph). This feature reduces the maintainability

of this approach, causing the so-called expression

problem [4]. This problem is produced when the

addition of a new type to a type hierarchy involves

changes in other classes.

Figure 2. Multiple dispatch implementation with the statically typed approach (ellipsis obviates repeated members).

Integer

+ Value: int

+ Accept(op:Operator, op2:Value, v:Visitor) : Value

+ Accept3(op1:Integer, op:AddOp, v:Visitor):Value

«interface»

Value

+ Accept(Operator, Value, Visitor) : Value

+ Accept3(Integer, AddOp, Visitor) : Value

+ Accept3(Double, AddOp, Visitor) : Value

+ Accept3(String, AddOp, Visitor) : Value

+ Accept3(Bool, AddOp, Visitor) : Value

+ Accept3(Integer, EqualToOp, Visitor) : Value

+ Accept3(Double, EqualToOp, Visitor) : Value

+ Accept3(String, EqualToOp, Visitor) : Value

+ Accept3(Bool, EqualToOp, Visitor) : Value

+ Accept3(Integer, AndOp, Visitor) : Value

+ Accept3(Double, AndOp, Visitor) : Value

+ Accept3(String, AndOp, Visitor) : Value

+ Accept3(Bool, AndOp, Visitor) : Value

«interface»

Operator

+ Accept2(Integer, Value, Visitor) : Value

+ Accept2(Double, Value, Visitor) : Value

+ Accept2(String, Value, Visitor) : Value

+ Accept2(Bool, Value, Visitor) : Value

«interface»

Visitor

+ Visit(Integer, AddOp, Integer) : Integer

+ Visit(Integer, AddOp, Double) : Double

+ Visit(Double, AddOp, Integer) : Double

AddOpEqualToOp

AndOp

+ Accept2(op1:Integer,op2:Value,v:Visitor):Value

return op.Accept2(this, op2, v);

return v.visit(op1, op, op2);

return op2.Accept3(op1, this, v);

EvaluateVisitor

+ Visit(Integer, AddOp, Integer) : Integer

+ Visit(Integer, AddOp, Double) : Double

+ Visit(Double, AddOp, Integer) : Double

…

…

…

… …

Double

+ Value: double

…

String

+ Value: string

…

Bool

+ Value: bool

…

Tree Hierarchy

Visitor Hierarchy

Ortin, Garcia, Redondo and Quiroga 4

The Visitor approach provides different ad-

vantages. First, the static type error detection pro-

vided by the compiler. Second, this approach pro-

vides the best runtime performance (see Section

4). Finally, parameter generalization, as men-

tioned, is also supported. A summary of the pros

and cons of all the approaches is presented in Table

1, after analyzing all the alternatives.

2.2. Runtime Type Inspection

In the previous approach, the dispatcher is imple-

mented by reducing multiple-dispatch to multiple

cases of single dispatch. Its high dependence on

the number of concrete classes makes it error-

prone and reduces its maintainability. This second

approach implements a dispatcher by consulting

the dynamic type of each parameter in order to

solve the specific Visit method to be called. This

type inspection could be performed by either using

an is type of operator (e.g., is in C# or in-

stanceof in Java) or asking the type of an object

at runtime (e.g., GetType in C# or getClass in

Java). Figure 3 shows an example implementation

in C# using the is operator. Notice that this single

Accept method is part of the EvaluateExpres-

sion class in Figure 1 (it does not need to be added

to the tree hierarchy).

Figure 3 shows the low readability of this approach

for our triple dispatch example with seven concrete

classes. The maintainability of the code is also

low, because the dispatcher implementation is

highly coupled with the number of both the param-

eters of the Visit method and the concrete classes

in the tree hierarchy. At the same time, the code

size of the dispatcher grows with the number of pa-

rameters and concrete classes.

The is operator approach makes extensive use of

type casts. Since cast expressions perform type

checks at runtime, this approximation loses the ro-

bustness of full compile-time type checking. The

GetType approach also has this limitation to-

gether with the use of strings for class names,

which may cause runtime errors when the class

name is not written correctly. Parameter generali-

zation is provided by means of polymorphism. As

discussed in Section 4, the runtime performance of

these two approaches is not as good as that of the

previous alternative.

2.2. Reflection

The objective of the reflection approach is to im-

plement a dispatcher that does not depend on the

number of concrete classes in the tree hierarchy.

For this purpose, not only the types of the parame-

ters but also the methods to be invoked are discov-

ered at runtime. The mechanism used to obtain this

objective is reflection, one of the main techniques

used in meta-programming [5]. Reflection is the

capability of a computational system to reason

about and act upon itself, adjusting itself to chang-

ing conditions [6]. Using reflection, the self-repre-

sentation of programs can be dynamically con-

sulted and, sometimes, modified [7]. As shown in

Figure 5, the dynamic type of an object can be ob-

tained using reflection (GetType). It is also possi-

ble to retrieve the specific Visit method imple-

mented by its dynamic type (GetMethod), passing

the dynamic types of the parameters. It also pro-

vides the runtime invocation of dynamically dis-

covered methods (Invoke).

public class EvaluateExpression {
 … // * Selects the appropriate Visit method in Figure 1
 public Value Accept(Value op1, Operator op, Value op2) {
 if (op is AndOp) {
 if (op1 is Bool) {
 if (op2 is Bool) return Visit((Bool)op1, (AndOp)op, (Bool)op2);
 else if (op2 is String) return Visit((Bool)op1, (AndOp)op, (String)op2);
 else if (op2 is Double) return Visit((Bool)op1, (AndOp)op, (Double)op2);
 else if (op2 is Integer) return Visit((Bool)op1, (AndOp)op, (Integer)op2);
 }
 else if (op1 is String) { … }
 else if (op1 is Double) { … }
 else if (op1 is Integer) { … }
 else if (op is EqualToOp) { … }
 else if (op is AddOp) { … }
 Debug.Assert(false, String.Format("No implementation for op1={0}, op={1} and op2={2}",op1, op, op2));
 return null;
} }

Figure 3. Multiple dispatch implementation using runtime type inspection with the is operator (ellipsis is used to

obviate repeating code).

Dyna 137, 2013 5

The code size of this approach does not grow with

the number of concrete classes. Moreover, the ad-

dition of another parameter does involve important

changes in the code. Consequently, as shown in

Table 1, this approach is more maintainable than

the previous ones. Although the reflective Accept

method in Figure 4 may be somewhat atypical at

first, we think its readability is certainly higher

than the one in Figure 3.

The first drawback of this approach is that no static

type checking is performed. If Accept invokes a

nonexistent Visit method, an exception is thrown

at runtime, but no compilation error is produced.

Another limitation is that parameter generalization

is not provided because reflection only looks for

one specific Visit method. If an implementation

with the exact signature specified does not exist,

no other polymorphic implementation is searched

(e.g., the last Visit method in Figure 1 is never

called). Finally, this approach has showed the

worst runtime performance in our evaluation (Sec-

tion 4).

3. A HYBRID TYPING APPROACH

Hybrid static and dynamic typing (henceforth re-

ferred to simply as hybrid typing) languages pro-

vide both typing approaches in the very same pro-

gramming language. Programmers may use one al-

ternative or the other depending on their interests,

following the static typing where possible, dy-

namic typing when needed principle [8]. In the

case of multiple dispatch, we have used static typ-

ing to modularize the implementation of each op-

erand and operator type combination (Visit

methods in Figure 1). We propose the use of dy-

namic typing to implement multiple dispatchers

that dynamically discover the suitable Visit

method to be invoked.

In a hybrid typing language, its static typing rules

are also applied at runtime when dynamic typing

is selected. This means that, for instance, method

overload is postponed until runtime, but the reso-

lution algorithm stays the same [9]. We have used

this feature to implement a multiple dispatcher that

discovers the correct Visit method to be invoked

at runtime, using the overload resolution mecha-

nism provided by the language. At the same time,

parameter generalization by means of polymor-

phism is also achieved.

Figure 5 shows an example of multiple dispatch

implementation (Accept method) in C#. With

dynamic the programmer indicates that dynamic

typing is preferred, postponing the overload reso-

lution until runtime. The first maintainability ben-

efit is that the dispatcher does not depend on the

number of concrete classes in the tree hierarchy

(the expression problem [4]). Besides, another dis-

patching dimension can be provided by simply de-

claring one more parameter, and passing it as a

new argument to Visit. The dispatcher consists

in a single invocation to the overloaded Visit

method, indicating which parameters require dy-

namic binding (multiple dispatching) with a cast

to dynamic. If the programmer wants to avoid dy-

namic binding for a specific parameter, this cast to

dynamic will not be used. This simplicity makes

the code highly readable and reduces its size con-

siderably (Table 1). At the same time, since the

overload resolution mechanism is preserved, pa-

rameter generalization by means of polymorphism

is also provided (i.e., polymorphic methods like

the two last addition implementations for strings in

Figure 1).

In C#, static type checking is disabled when the

dynamic type is used, lacking the compile-time

detection of type errors. However, there are re-

search works on hybrid typing languages, such as

the StaDyn programming language [10], that pro-

vide static type checking when the dynamic type

is used. When this feature is not supported, the best

approach is to use static types to declare the Ac-

cept parameters using polymorphism (restricting

public class EvaluateExpression {
 … // * Selects the appropriate Visit method in Figure 1
 public Value Accept(Value op1, Operator op, Value op2) {
 MethodInfo method = this.GetType().GetMethod("Visit", BindingFlags.NonPublic | BindingFlags.Instance,
 null, new Type[] { op1.GetType(), op.GetType(), op2.GetType() }, null);
 if (method == null) {
 Debug.Assert(false,String.Format("No implementation for op1={0}, op={1} and op2={2}",op1,op,op2));
 return null;
 }
 return (Value)method.Invoke(this, new object[] { op1, op, op2 });
} }

Figure 4. Multiple dispatch implementation using reflection.

Ortin, Garcia, Redondo and Quiroga 6

their types to Value and Operator, as shown in

Figure 5). At the same time, exception handling is

another mechanism that can be used to make the

code more robust –notice that parameter generali-

zation reduces the number of possible exceptions

to be thrown, compared to the reflection approach.

Finally, this approach shows a runtime perfor-

mance between the statically typed implementa-

tion and the reflective one (see Section 4). Hybrid

typing languages, including C#, commonly imple-

ment a dynamic cache to improve runtime perfor-

mance of dynamically typed code [11]. This tech-

nique provides a significant runtime performance

improvement compared to reflection [12].

Table 1. Qualitative evaluation of the approaches.

M
ai

n
ta

in
ab

il
it

y

R
ea

d
ab

il
it

y

C
o

d
e

S
iz

e

P
ar

am
et

er

G
en

er
al

iz
at

io
n

C
o

m
p

il
e-

ti
m

e
ty

p
e

ch
ec

k
in

g

R
u

n
ti

m
e

P

er
fo

rm
an

ce

M
em

o
ry

C

o
n

su
m

p
ti

o
n

Visitor Pattern ✓ ✓ ✓ ✓

is Operator ✓ ½ ✓

GetType Method ✓ ½ ✓

Reflection ✓ ✓ ✓ ✓

Hybrid Typing ✓ ✓ ✓ ✓ ½

4. EVALUATION

In this section, we measure execution time and

memory consumption of the five different ap-

proaches analyzed. Detailed information is pre-

sented to justify the performance and memory as-

sessment in the two last columns of Table 1.

4.1. Methodology

In order to compare the performance of the pro-

posed approaches, we have developed a set of syn-

thetic micro-benchmarks. These benchmarks

measure the influence of the following variables

on runtime performance and memory consump-

tion:

 Dispatch dimensions. We have measured pro-

grams executing single, double and triple dis-

patch methods. These dispatch dimensions rep-

resent the number of parameters passed to the

Accept method shown in Figures 3, 4 and 5.

 Number of concrete classes. This variable is the

number of concrete classes of each parameter

of the Accept method. For each one, we define

from 1 to 5 possible derived concrete classes.

Therefore, the implemented dispatchers will

have to select the correct Visit method out of

up to 125 different implementations (53).

 Invocations. Each program is called an increas-

ing number of times to analyze their perfor-

mance in long-running scenarios (e.g., server

applications).

 Approach. The same application is imple-

mented using the static typing, runtime type in-

spection (is and GetType alternatives), reflec-

tion, and hybrid typing approaches.

Each program implements a collection of Visit

methods that simply increment a counter field. The

idea is to measure the execution time of each dis-

patch technique, avoiding additional significant

computation we have previously evaluated a

more realistic application in [13].

Regarding the data analysis, we have followed the

methodology proposed in [14] to evaluate the

runtime performance of applications, including

those executed on virtual machines that provide

JIT compilation. We have followed a two-step

methodology:

1. We measure the elapsed execution time of run-

ning multiple times the same program. This re-

sults in p (we have taken p = 30) measurements

xi with 1≤ i ≤ p.

2. The confidence interval for a given confidence

level (95%) is computed to eliminate measure-

ment errors that may introduce a bias in the

evaluation. The confidence interval is com-

puted using the Student's t-distribution because

public class EvaluateExpression {
 … // * Selects the appropriate Visit method in Figure 1
 public Value Accept(Value op1, Operator op, Value op2) {
 try {
 return this.Visit((dynamic)op1, (dynamic)op, (dynamic)op2);
 } catch (RuntimeBinderException) {
 Debug.Assert(false, String.Format("No implementation for op1={0}, op={1} and op2={2}",op1,op,op2));
 }
 return null;
} }

Figure 5. Multiple dispatch implementation with the hybrid typing approach.

Dyna 137, 2013 7

we took p = 30 [15]. Therefore, we compute the

confidence interval [c1,c2] as:

𝑐1 = 𝑥̅ − 𝑡1−𝛼/2;𝑝−1
𝑠

√𝑝
 𝑐2 = 𝑥̅ + 𝑡1−𝛼/2;𝑝−1

𝑠

√𝑝

where 𝑥̅ is the arithmetic mean of the xi meas-

urements, α = 0.05(95%), s is the standard de-

viation of the xi measurements, and 𝑡1−𝛼/2;𝑝−1

is defined such that a random variable T, that

follows the Student's t-distribution with 𝑝 − 1

degrees of freedom, obeys

 Pr[𝑇 ≤ 𝑡1−𝛼/2;𝑝−1] = 1 − 𝛼/2.

The memory consumption has been measured fol-

lowing the same methodology to determine the

memory used by the whole process. All the tests

were carried out on a lightly loaded 3.4 GHz Intel

Core I7 2600 system with 16 GB of RAM running

an updated 64-bit version of Windows 8 Profes-

sional.

4.2. Runtime Performance

Figure 6 shows the execution time of single, dou-

ble and triple dispatch, when each parameter of the

multi-method has five concrete derived types.

Each Visit method is executed at least once. To

analyze the influence of the number of invocations

on the execution time, we invoke multi-methods in

loops from 1 to 100,000 iterations. Figure 6 shows

the average execution time for a 95% confidence

level, with an error interval lower than 2%.

As can be seen in Figure 6, all the approaches have

a linear influence of the number of iterations on

execution time. However, the dispatch dimension

(i.e., the number of multi-method parameters) of

the analyzed approaches shows a different influ-

ence. For single dispatch, the hybrid typing ap-

proach is 19% and 2,787% faster than GetType

and reflection, respectively, but requires 8 and 27

more execution time that is and static typing. For

double dispatch, the runtime performance of the

hybrid approach improves in comparison with the

rest of alternatives (Figure 6). For triple dispatch,

the hybrid static and dynamic typing alternative is

the second fastest one, performing 1.4, 2.5 and 265

times better than is, GetType and reflection, re-

spectively (static typing is 2.7 times faster than hy-

brid typing in this scenario).

Figure 7 shows execution time, when the number

of concrete classes that implement each multi-

method parameter increases (for 100,000 fixed it-

erations). For each parameter, we increment (from

1 to 5) the number of its derived concrete classes.

In the case of triple dispatch and 5 different con-

crete classes, the multiple dispatcher has to select

the correct Visit method out of 125 (53) different

implementations.

As show in Figure 7, the relative performance of

the hybrid approach improves as the number of

concrete classes increases. For single dispatch, hy-

brid typing requires 213% more execution time

than GetType for one concrete type of the single

parameter; however, the hybrid approach is 19%

faster than GetType for 5 different concrete types.

For double dispatch, the hybrid approach improves

its relative performance, being faster than Get-

Type for any number of classes. When the dimen-

sion of the dispatch is triple, the relative runtime

performance of the hybrid approach also improves

as the number of concrete classes increases. With

5 different types for each of the 3 parameters, the

hybrid approach is the second fastest one, being

40% faster than is and 265 times faster than re-

flection (static typing is 2.7 times faster than hy-

brid typing).

4.3. Memory Consumption

We have measured memory consumption, analyz-

ing all the variables mentioned in the Section 4.1.

There is no influence of the number of iterations,

the dimensions of dispatch, or the number of con-

crete classes, in the memory consumed by the

benchmark.

The memory required by the approaches but hy-

brid typing are similar (the difference is 1%, lower

than the 2% error interval). However, the hybrid

approach involves an average increase of 31%

compared with the rest of approaches. This differ-

ence is due to the use of the Dynamic Language

Runtime (DLR) [16]. The DLR is a new layer over

the CLR to provide a set of services to facilitate the

implementation of dynamic languages. The DLR

implements a runtime cache to optimize runtime

performance of dynamically typed operations, per-

forming better than reflection (as shown in Figures

6 and 7) [13]. However, this runtime performance

improvement also requires additional memory re-

sources.

5. RELATED WORK

There exist some programming languages that pro-

vide multiple dispatch. CLOS [17] and Clojure

[18] are examples of dynamically typed languages

that include multi-methods in their semantics.

Ortin, Garcia, Redondo and Quiroga 8

Clojure has recently created a port for .NET that

makes use of the DLR [¡Error! No se encuentra

el origen de la referencia.9]. These approaches

are fully dynamic, detecting all the type errors at

runtime.

Xtend is a Java extension that provides statically

typed multiple dispatch [20]. Method resolution

and binding in Xtend are done at compile time as

in Java. Dylan [21], Cecil [1] and, recently,

Groovy 2 [22] are programming languages that

provide both dynamic and static typing. Although

these three languages support dynamically typed

multi-methods, multiple dispatch can also be

achieved with the hybrid typing approach pro-

posed in this article.

Figure 6. Execution time (microseconds in

logarithmic scale) increasing the number of iterations.

Figure 7. Execution time (microseconds in logarithmic

scale) increasing the number of concrete types.

1 E+00

1 E+01

1 E+02

1 E+03

1 E+04

1 E+05

1 E+06

1 E+07

1 E+08

1 1 0 1 0 0 1 K 1 0 K 1 0 0 K

Number of Iterations

Double Dispatch

1 E-01

1 E+00

1 E+01

1 E+02

1 E+03

1 E+04

1 E+05

1 E+06

1 E+07

1 1 0 1 0 0 1 K 1 0 K 1 0 0 K

Number of Iterations

Single Dispatch

1 E+00

1 E+01

1 E+02

1 E+03

1 E+04

1 E+05

1 E+06

1 E+07

1 E+08

1 E+09

1 E+10

1 1 0 1 0 0 1 K 1 0 K 1 0 0 K

Number of Iterations

Tr ip le Dispatch

StaticTyping Is GetType Reflection HybridTyping

1 E-01

1 E+00

1 E+01

1 E+02

1 E+03

1 2 3 4 5

Number of Concrete Classes

Single Dispatch

1 E-01

1 E+00

1 E+01

1 E+02

1 E+03

1 E+04

1 2 3 4 5

Number of Concrete Classes

Double Dispatch

1 E-01

1 E+00

1 E+01

1 E+02

1 E+03

1 E+04

1 E+05

1 E+06

1 2 3 4 5

Number of Concrete Classes

Tr ip le Dispatch

StaticTyping Is GetType Reflection HybridTyping

Dyna 137, 2013 9

Many different approaches exist to provide multi-

ple dispatch to the Java platform. One of the first

works is Runabout, a library to support two-argu-

ment dispatch (i.e., double dispatch) for Java [23].

Runabout is based on improving a previous reflec-

tive implementation of the Visitor pattern called

Walkabout [24]. The appropriate method imple-

mentation is found via reflection, but method in-

vocation is performed by generating Java bytecode

at runtime performing better than Walkabout.

Dynamic Dispatcher is a double-dispatch frame-

work for Java [25]. Three different dispatch meth-

ods are provided, combining the use of reflection

and dynamic code generation. It provides the gen-

eralization of multi-method parameters by means

of polymorphism.

Sprintabout is another double-dispatch alternative

for Java, provided as a library [266]. Sprintabout

uses a naming convention to identify multi-meth-

ods. Multi-methods implement a runtime type in-

spection dispatch (the GetType approach). The

dispatch object implements a cache to efficiently

obtain the different method implementations at

runtime, avoiding the use of reflection.

MultiJava is a backward-compatible extension of

Java that supports any dispatch dimension (not just

double dispatch) [27]. Given a set of multi-method

implementations, the MultiJava compiler produces

a single Java dispatch method containing the

bodies of the set of multi-method implementations.

The multi-method implements the runtime type in-

spection approach, using the instanceof Java

operator (is in C#).

The Java Multi-Method Framework (JMMF) uses

reflection to provide multiple dispatch for Java

[28]. Multi-methods can be defined in any class

and with any name. JMMF is provided as a library;

it proposes neither language extensions nor virtual

machine modifications.

PolyD is aimed at providing a flexible multiple

dispatch technique for Java [29]. PolyD generates

Java bytecodes dynamically, and allows the user to

define customized dispatching policies. Three

standard dispatching policies are available: multi-

ple dispatching (cached GetType runtime type in-

spection), overloading (static method overload)

and a ‘non-subsumptive’ policy (only calls a

method if the classes of the arguments match ex-

actly those of the method parameters; i.e. no pa-

rameter generalization).

6. CONCLUSIONS

Different alternatives are nowadays used to

achieve multiple dispatch in widespread language

s that do not provide multi-methods. A qualitative

evaluate has shown the pros and cons of each ap-

proach.

A new alternative has been described for hybrid

typing languages. Their benefits are high readabil-

ity and maintainability, loose coupling with the

number of concrete classes and the dispatch di-

mensions, and parameter generalization. The main

limitation is no compile-time type error detection.

Its runtime performance is analogous to the

runtime type inspection approaches. The average

execution time of all the measured hybrid pro-

grams took 3.9 times more execution time the Vis-

itor design pattern, being 36.6 times faster than re-

flection. The proposed approach has consumed

31% more memory resources than the rest of alter-

natives.

Future work will be focused on improving com-

pile-time type error detection and runtime perfor-

mance of the hybrid typing approach. We have de-

veloped an extension of C# that performs type in-

ference over dynamic references [10]. This C# ex-

tension may eventually detect type errors of the hy-

brid typing approach. Another future work will be

analyzing the suitability of implementing multi-

methods in Java using the new invokedynamic

opcode [30].

All the programs used in the evaluation of runtime

performance and memory consumption, and the

detailed measurement data are freely available at

http://www.reflection.uniovi.es/stadyn/down-

load/2013/dyna.zip

ACKNOWLEDGEMENTS

This work has been partially funded by Microsoft

Research and the Department of Science and Inno-

vation (Spain) under the National Program for Re-

search, Development and Innovation: project

TIN2011-25978.

REFERENCES

[1] Chambers, G. Object-oriented multi-methods in

Cecil. European Conference on Object-Oriented Pro-

gramming (ECOOP). The Netherlands, 33-56, 1992.

[2] Erich, G., Richard, H., Ralph, J. and John, V. Design

patterns: elements of reusable object-oriented software.

Addison Wesley, 1995.

[3] Ortin, F., Zapico, D. and Cueva, J.M. Design pat-

http://www.reflection.uniovi.es/stadyn/download/2013/dyna.zip
http://www.reflection.uniovi.es/stadyn/download/2013/dyna.zip

Ortin, Garcia, Redondo and Quiroga 10

terns for teaching type checking in a compiler construc-

tion course, IEEE Transactions on Education, 50, 273-

283, 2007.

[4] Torgersen, M. The expression problem revisited.

European Conference on Object-Oriented Program-

ming (ECOOP). Oslo, Norway, 123-146, 2004.

[5] Ortin, F., Lopez, B. and Perez-Schofield, J.B.G.

Separating adaptable persistence attributes through

computational reflection, IEEE Software 21, 41-49,

2004.

[6] Maes, P. Computational Reflection. PhD thesis, La-

boratory for Artificial Intelligence, Vrije Universiteit,

Amsterdam, the Netherlands, 1987.

[7] Redondo, J.M. and Ortin, F. Efficient support of dy-

namic inheritance for class- and prototype-based lan-

guages, Journal of Systems and Software, 86, 278-301,

2013.

[8] Meijer, E. and Drayton, P. Static typing where pos-

sible, dynamic typing when needed: The end of the cold

war between programming languages. OOPSLA 2004

Workshop on Revival of Dynamic Languages. Vancou-

ver, Canada, 1-6, 2004.

[9] Bierman, G., Meijer, E. and Torgersen, M. Adding

dynamic types to C#. European Conference on Object-

Oriented Programming (ECOOP). Maribor, Slovenia,

76-100, 2010.

[10] Ortin, F., Zapico, D., Perez-Schofield, J.B.G. and

Garcia, M. Including both static and dynamic typing in

the same programming language, IET Software, 4, 268-

282, 2010.

[11] Ortin, F., Redondo, J.M. and Perez-Schofield,

J.B.G. Efficient virtual machine support of runtime

structural reflection, Science of computer Program-

ming, 74, 836-860, 2009.

[12] Redondo, J.M., Ortin, F. and Cueva, J.M. Optimiz-

ing reflective primitives of dynamic languages, Interna-

tional Journal of Software Engineering and Knowledge

Engineering, 18, 759-783, 2008.

[13] Ortin, F., Garcia, M., Redondo, J.M. and Quiroga,

J. Achieving multiple dispatch in hybrid statically and

dynamically typed languages. World Conference on In-

formation Systems and Technologies (WorldCIST),

Advances in Information Systems and Technologies,

206, 703-713, 2013.

[14] Georges, A., Buytaert, D. and Eeckhout, L. Statis-

tically rigorous Java performance evaluation. Object-

Oriented Programming, Systems, Languages & Appli-

cations (OOPSLA). Montreal, 57-76, 2007.

[15] Lilja, D.J. Measuring computer performance: a

practitioner’s guide. Cambridge University Press, 2005.

[16] Chiles, B. and Turner, A. Dynamic Language

Runtime. http://www.codeplex.com/Download?Pro-

jectName=dlr&DownloadId=127512.

[17] DeMichiel, L.G. and Gabriel, R.P. The Common

Lisp Object System: an overview. European Confer-

ence on Object-Oriented Programming (ECOOP).

Paris, France, 151-170, 1987.

[18] Hickey, R. The Clojure programming language.

Symposium on Dynamic Languages (DLS). Paphos,

Cyprus, 1-10, 2008.

[19] ClojureCLR. A port of Clojure to the CLR, part of

the Clojure project. https://github.com/clojure/clojure-

clr

[20] Eclipse Project, Xtend, Java 10 today!

http://www.eclipse.org/xtend.

[21] Shalit, A. The Dylan reference manual: the defini-

tive guide to the new object-oriented dynamic language.

Addison Wesley Longman Publishing, 1996.

[22] Groovy 2.0 release notes. A “static theme” for a

dynamic language.

http://groovy.codehaus.org/Groovy+2.0+release+notes

[23] Grothoff, C. Walkabout revisited: The Runabout.

European Conference on Object-Oriented Program-

ming (ECOOP). Darmstadt, Germany, 103-125, 2003.

[24] Palsberg, J. and Jay, C.B. The essence of the visitor

pattern. Computer Software and Applications Confer-

ence (COMPSAC). Vienna, Austria, 9-15, 1998.

[25] Büttner, F., Radfelder, O., Lindow, A. and

Gogolla, M. Digging into the visitor pattern. Interna-

tional Conference on Software Engineering &

Knowledge Engineering (SEKE). Banff, Alberta, Can-

ada, 135-141, 2004.

[26] Forax, R., Duris, E. and Roussel, G. Reflection-

based implementation of Java extensions: the double-

dispatch use-case. Symposium on Applied Computing

(SAC). Santa Fe, New Mexico, 1409-1413, 2005.

[27] Clifton, C., Leavens, G.T., Chambers, G. and Mill-

stein, T. MultiJava: Modular open classes and symmet-

ric multiple dispatch for Java. Object-Oriented Pro-

gramming Systems, Languages, and Applications

(OOPSLA). Minneapolis, Minnesota, 130-145, 2000.

[28] Forax, R., Duris, E. and Roussel, G. A reflective

implementation of Java multi-methods, IEEE Transac-

tions on Software Engineering, 30, 1055-1071, 2004.

[29] Cunei, A. and Vitek, J. An efficient and flexible

toolkit for composing customized method dispatchers,

Software: Practice and Experience, 38, 33-73, 2008.

[30] Ortin, F., Conde, P., Izquierdo, R. and Fernandez-

Lanvin, D. Runtime performance of invokedynamic:

Evaluation through a Java library, IEEE Software, 1-16,

2013.

http://www.codeplex.com/Download?ProjectName=dlr&DownloadId=127512
http://www.codeplex.com/Download?ProjectName=dlr&DownloadId=127512
https://github.com/clojure/clojure-clr
https://github.com/clojure/clojure-clr
http://www.eclipse.org/xtend
http://groovy.codehaus.org/Groovy+2.0+release+notes

